mm: restrict cma pages to GFP_HIGHUSER_MOVABLE
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 /*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94 int _node_numa_mem_[MAX_NUMNODES];
95 #endif
96
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex);
99 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy;
103 EXPORT_SYMBOL(latent_entropy);
104 #endif
105
106 /*
107 * Array of node states.
108 */
109 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112 #ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #endif
117 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 #ifdef CONFIG_PM_SLEEP
134 /*
135 * The following functions are used by the suspend/hibernate code to temporarily
136 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
137 * while devices are suspended. To avoid races with the suspend/hibernate code,
138 * they should always be called with pm_mutex held (gfp_allowed_mask also should
139 * only be modified with pm_mutex held, unless the suspend/hibernate code is
140 * guaranteed not to run in parallel with that modification).
141 */
142
143 static gfp_t saved_gfp_mask;
144
145 void pm_restore_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 if (saved_gfp_mask) {
149 gfp_allowed_mask = saved_gfp_mask;
150 saved_gfp_mask = 0;
151 }
152 }
153
154 void pm_restrict_gfp_mask(void)
155 {
156 WARN_ON(!mutex_is_locked(&pm_mutex));
157 WARN_ON(saved_gfp_mask);
158 saved_gfp_mask = gfp_allowed_mask;
159 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
160 }
161
162 bool pm_suspended_storage(void)
163 {
164 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
165 return false;
166 return true;
167 }
168 #endif /* CONFIG_PM_SLEEP */
169
170 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
171 unsigned int pageblock_order __read_mostly;
172 #endif
173
174 static void __free_pages_ok(struct page *page, unsigned int order);
175
176 /*
177 * results with 256, 32 in the lowmem_reserve sysctl:
178 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
179 * 1G machine -> (16M dma, 784M normal, 224M high)
180 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
181 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
182 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
183 *
184 * TBD: should special case ZONE_DMA32 machines here - in those we normally
185 * don't need any ZONE_NORMAL reservation
186 */
187 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
188 #ifdef CONFIG_ZONE_DMA
189 256,
190 #endif
191 #ifdef CONFIG_ZONE_DMA32
192 256,
193 #endif
194 #ifdef CONFIG_HIGHMEM
195 32,
196 #endif
197 32,
198 };
199
200 EXPORT_SYMBOL(totalram_pages);
201
202 static char * const zone_names[MAX_NR_ZONES] = {
203 #ifdef CONFIG_ZONE_DMA
204 "DMA",
205 #endif
206 #ifdef CONFIG_ZONE_DMA32
207 "DMA32",
208 #endif
209 "Normal",
210 #ifdef CONFIG_HIGHMEM
211 "HighMem",
212 #endif
213 "Movable",
214 #ifdef CONFIG_ZONE_DEVICE
215 "Device",
216 #endif
217 };
218
219 char * const migratetype_names[MIGRATE_TYPES] = {
220 "Unmovable",
221 "Movable",
222 "Reclaimable",
223 "HighAtomic",
224 #ifdef CONFIG_CMA
225 "CMA",
226 #endif
227 #ifdef CONFIG_MEMORY_ISOLATION
228 "Isolate",
229 #endif
230 };
231
232 compound_page_dtor * const compound_page_dtors[] = {
233 NULL,
234 free_compound_page,
235 #ifdef CONFIG_HUGETLB_PAGE
236 free_huge_page,
237 #endif
238 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
239 free_transhuge_page,
240 #endif
241 };
242
243 /*
244 * Try to keep at least this much lowmem free. Do not allow normal
245 * allocations below this point, only high priority ones. Automatically
246 * tuned according to the amount of memory in the system.
247 */
248 int min_free_kbytes = 1024;
249 int user_min_free_kbytes = -1;
250 int watermark_scale_factor = 10;
251
252 /*
253 * Extra memory for the system to try freeing. Used to temporarily
254 * free memory, to make space for new workloads. Anyone can allocate
255 * down to the min watermarks controlled by min_free_kbytes above.
256 */
257 int extra_free_kbytes = 0;
258
259 static unsigned long __meminitdata nr_kernel_pages;
260 static unsigned long __meminitdata nr_all_pages;
261 static unsigned long __meminitdata dma_reserve;
262
263 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
264 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
265 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __initdata required_kernelcore;
267 static unsigned long __initdata required_movablecore;
268 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
269 static bool mirrored_kernelcore;
270
271 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
272 int movable_zone;
273 EXPORT_SYMBOL(movable_zone);
274 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
275
276 #if MAX_NUMNODES > 1
277 int nr_node_ids __read_mostly = MAX_NUMNODES;
278 int nr_online_nodes __read_mostly = 1;
279 EXPORT_SYMBOL(nr_node_ids);
280 EXPORT_SYMBOL(nr_online_nodes);
281 #endif
282
283 int page_group_by_mobility_disabled __read_mostly;
284
285 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
286
287 /*
288 * Determine how many pages need to be initialized durig early boot
289 * (non-deferred initialization).
290 * The value of first_deferred_pfn will be set later, once non-deferred pages
291 * are initialized, but for now set it ULONG_MAX.
292 */
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 phys_addr_t start_addr, end_addr;
296 unsigned long max_pgcnt;
297 unsigned long reserved;
298
299 /*
300 * Initialise at least 2G of a node but also take into account that
301 * two large system hashes that can take up 1GB for 0.25TB/node.
302 */
303 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
304 (pgdat->node_spanned_pages >> 8));
305
306 /*
307 * Compensate the all the memblock reservations (e.g. crash kernel)
308 * from the initial estimation to make sure we will initialize enough
309 * memory to boot.
310 */
311 start_addr = PFN_PHYS(pgdat->node_start_pfn);
312 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
313 reserved = memblock_reserved_memory_within(start_addr, end_addr);
314 max_pgcnt += PHYS_PFN(reserved);
315
316 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
317 pgdat->first_deferred_pfn = ULONG_MAX;
318 }
319
320 /* Returns true if the struct page for the pfn is uninitialised */
321 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
322 {
323 int nid = early_pfn_to_nid(pfn);
324
325 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
326 return true;
327
328 return false;
329 }
330
331 /*
332 * Returns false when the remaining initialisation should be deferred until
333 * later in the boot cycle when it can be parallelised.
334 */
335 static inline bool update_defer_init(pg_data_t *pgdat,
336 unsigned long pfn, unsigned long zone_end,
337 unsigned long *nr_initialised)
338 {
339 /* Always populate low zones for address-contrained allocations */
340 if (zone_end < pgdat_end_pfn(pgdat))
341 return true;
342 (*nr_initialised)++;
343 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
344 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
345 pgdat->first_deferred_pfn = pfn;
346 return false;
347 }
348
349 return true;
350 }
351 #else
352 static inline void reset_deferred_meminit(pg_data_t *pgdat)
353 {
354 }
355
356 static inline bool early_page_uninitialised(unsigned long pfn)
357 {
358 return false;
359 }
360
361 static inline bool update_defer_init(pg_data_t *pgdat,
362 unsigned long pfn, unsigned long zone_end,
363 unsigned long *nr_initialised)
364 {
365 return true;
366 }
367 #endif
368
369 /* Return a pointer to the bitmap storing bits affecting a block of pages */
370 static inline unsigned long *get_pageblock_bitmap(struct page *page,
371 unsigned long pfn)
372 {
373 #ifdef CONFIG_SPARSEMEM
374 return __pfn_to_section(pfn)->pageblock_flags;
375 #else
376 return page_zone(page)->pageblock_flags;
377 #endif /* CONFIG_SPARSEMEM */
378 }
379
380 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
381 {
382 #ifdef CONFIG_SPARSEMEM
383 pfn &= (PAGES_PER_SECTION-1);
384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
385 #else
386 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
387 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
388 #endif /* CONFIG_SPARSEMEM */
389 }
390
391 /**
392 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
393 * @page: The page within the block of interest
394 * @pfn: The target page frame number
395 * @end_bitidx: The last bit of interest to retrieve
396 * @mask: mask of bits that the caller is interested in
397 *
398 * Return: pageblock_bits flags
399 */
400 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
401 unsigned long pfn,
402 unsigned long end_bitidx,
403 unsigned long mask)
404 {
405 unsigned long *bitmap;
406 unsigned long bitidx, word_bitidx;
407 unsigned long word;
408
409 bitmap = get_pageblock_bitmap(page, pfn);
410 bitidx = pfn_to_bitidx(page, pfn);
411 word_bitidx = bitidx / BITS_PER_LONG;
412 bitidx &= (BITS_PER_LONG-1);
413
414 word = bitmap[word_bitidx];
415 bitidx += end_bitidx;
416 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
417 }
418
419 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
420 unsigned long end_bitidx,
421 unsigned long mask)
422 {
423 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
424 }
425
426 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
427 {
428 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
429 }
430
431 /**
432 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
433 * @page: The page within the block of interest
434 * @flags: The flags to set
435 * @pfn: The target page frame number
436 * @end_bitidx: The last bit of interest
437 * @mask: mask of bits that the caller is interested in
438 */
439 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
440 unsigned long pfn,
441 unsigned long end_bitidx,
442 unsigned long mask)
443 {
444 unsigned long *bitmap;
445 unsigned long bitidx, word_bitidx;
446 unsigned long old_word, word;
447
448 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
449
450 bitmap = get_pageblock_bitmap(page, pfn);
451 bitidx = pfn_to_bitidx(page, pfn);
452 word_bitidx = bitidx / BITS_PER_LONG;
453 bitidx &= (BITS_PER_LONG-1);
454
455 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
456
457 bitidx += end_bitidx;
458 mask <<= (BITS_PER_LONG - bitidx - 1);
459 flags <<= (BITS_PER_LONG - bitidx - 1);
460
461 word = READ_ONCE(bitmap[word_bitidx]);
462 for (;;) {
463 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
464 if (word == old_word)
465 break;
466 word = old_word;
467 }
468 }
469
470 void set_pageblock_migratetype(struct page *page, int migratetype)
471 {
472 if (unlikely(page_group_by_mobility_disabled &&
473 migratetype < MIGRATE_PCPTYPES))
474 migratetype = MIGRATE_UNMOVABLE;
475
476 set_pageblock_flags_group(page, (unsigned long)migratetype,
477 PB_migrate, PB_migrate_end);
478 }
479
480 #ifdef CONFIG_DEBUG_VM
481 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
482 {
483 int ret = 0;
484 unsigned seq;
485 unsigned long pfn = page_to_pfn(page);
486 unsigned long sp, start_pfn;
487
488 do {
489 seq = zone_span_seqbegin(zone);
490 start_pfn = zone->zone_start_pfn;
491 sp = zone->spanned_pages;
492 if (!zone_spans_pfn(zone, pfn))
493 ret = 1;
494 } while (zone_span_seqretry(zone, seq));
495
496 if (ret)
497 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
498 pfn, zone_to_nid(zone), zone->name,
499 start_pfn, start_pfn + sp);
500
501 return ret;
502 }
503
504 static int page_is_consistent(struct zone *zone, struct page *page)
505 {
506 if (!pfn_valid_within(page_to_pfn(page)))
507 return 0;
508 if (zone != page_zone(page))
509 return 0;
510
511 return 1;
512 }
513 /*
514 * Temporary debugging check for pages not lying within a given zone.
515 */
516 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
517 {
518 if (page_outside_zone_boundaries(zone, page))
519 return 1;
520 if (!page_is_consistent(zone, page))
521 return 1;
522
523 return 0;
524 }
525 #else
526 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
527 {
528 return 0;
529 }
530 #endif
531
532 static void bad_page(struct page *page, const char *reason,
533 unsigned long bad_flags)
534 {
535 static unsigned long resume;
536 static unsigned long nr_shown;
537 static unsigned long nr_unshown;
538
539 /*
540 * Allow a burst of 60 reports, then keep quiet for that minute;
541 * or allow a steady drip of one report per second.
542 */
543 if (nr_shown == 60) {
544 if (time_before(jiffies, resume)) {
545 nr_unshown++;
546 goto out;
547 }
548 if (nr_unshown) {
549 pr_alert(
550 "BUG: Bad page state: %lu messages suppressed\n",
551 nr_unshown);
552 nr_unshown = 0;
553 }
554 nr_shown = 0;
555 }
556 if (nr_shown++ == 0)
557 resume = jiffies + 60 * HZ;
558
559 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
560 current->comm, page_to_pfn(page));
561 __dump_page(page, reason);
562 bad_flags &= page->flags;
563 if (bad_flags)
564 pr_alert("bad because of flags: %#lx(%pGp)\n",
565 bad_flags, &bad_flags);
566 dump_page_owner(page);
567
568 print_modules();
569 dump_stack();
570 out:
571 /* Leave bad fields for debug, except PageBuddy could make trouble */
572 page_mapcount_reset(page); /* remove PageBuddy */
573 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
574 }
575
576 /*
577 * Higher-order pages are called "compound pages". They are structured thusly:
578 *
579 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
580 *
581 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
582 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
583 *
584 * The first tail page's ->compound_dtor holds the offset in array of compound
585 * page destructors. See compound_page_dtors.
586 *
587 * The first tail page's ->compound_order holds the order of allocation.
588 * This usage means that zero-order pages may not be compound.
589 */
590
591 void free_compound_page(struct page *page)
592 {
593 __free_pages_ok(page, compound_order(page));
594 }
595
596 void prep_compound_page(struct page *page, unsigned int order)
597 {
598 int i;
599 int nr_pages = 1 << order;
600
601 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
602 set_compound_order(page, order);
603 __SetPageHead(page);
604 for (i = 1; i < nr_pages; i++) {
605 struct page *p = page + i;
606 set_page_count(p, 0);
607 p->mapping = TAIL_MAPPING;
608 set_compound_head(p, page);
609 }
610 atomic_set(compound_mapcount_ptr(page), -1);
611 }
612
613 #ifdef CONFIG_DEBUG_PAGEALLOC
614 unsigned int _debug_guardpage_minorder;
615 bool _debug_pagealloc_enabled __read_mostly
616 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
617 EXPORT_SYMBOL(_debug_pagealloc_enabled);
618 bool _debug_guardpage_enabled __read_mostly;
619
620 static int __init early_debug_pagealloc(char *buf)
621 {
622 if (!buf)
623 return -EINVAL;
624 return kstrtobool(buf, &_debug_pagealloc_enabled);
625 }
626 early_param("debug_pagealloc", early_debug_pagealloc);
627
628 static bool need_debug_guardpage(void)
629 {
630 /* If we don't use debug_pagealloc, we don't need guard page */
631 if (!debug_pagealloc_enabled())
632 return false;
633
634 if (!debug_guardpage_minorder())
635 return false;
636
637 return true;
638 }
639
640 static void init_debug_guardpage(void)
641 {
642 if (!debug_pagealloc_enabled())
643 return;
644
645 if (!debug_guardpage_minorder())
646 return;
647
648 _debug_guardpage_enabled = true;
649 }
650
651 struct page_ext_operations debug_guardpage_ops = {
652 .need = need_debug_guardpage,
653 .init = init_debug_guardpage,
654 };
655
656 static int __init debug_guardpage_minorder_setup(char *buf)
657 {
658 unsigned long res;
659
660 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
661 pr_err("Bad debug_guardpage_minorder value\n");
662 return 0;
663 }
664 _debug_guardpage_minorder = res;
665 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
666 return 0;
667 }
668 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
669
670 static inline bool set_page_guard(struct zone *zone, struct page *page,
671 unsigned int order, int migratetype)
672 {
673 struct page_ext *page_ext;
674
675 if (!debug_guardpage_enabled())
676 return false;
677
678 if (order >= debug_guardpage_minorder())
679 return false;
680
681 page_ext = lookup_page_ext(page);
682 if (unlikely(!page_ext))
683 return false;
684
685 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
686
687 INIT_LIST_HEAD(&page->lru);
688 set_page_private(page, order);
689 /* Guard pages are not available for any usage */
690 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
691
692 return true;
693 }
694
695 static inline void clear_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype)
697 {
698 struct page_ext *page_ext;
699
700 if (!debug_guardpage_enabled())
701 return;
702
703 page_ext = lookup_page_ext(page);
704 if (unlikely(!page_ext))
705 return;
706
707 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
708
709 set_page_private(page, 0);
710 if (!is_migrate_isolate(migratetype))
711 __mod_zone_freepage_state(zone, (1 << order), migratetype);
712 }
713 #else
714 struct page_ext_operations debug_guardpage_ops;
715 static inline bool set_page_guard(struct zone *zone, struct page *page,
716 unsigned int order, int migratetype) { return false; }
717 static inline void clear_page_guard(struct zone *zone, struct page *page,
718 unsigned int order, int migratetype) {}
719 #endif
720
721 static inline void set_page_order(struct page *page, unsigned int order)
722 {
723 set_page_private(page, order);
724 __SetPageBuddy(page);
725 }
726
727 static inline void rmv_page_order(struct page *page)
728 {
729 __ClearPageBuddy(page);
730 set_page_private(page, 0);
731 }
732
733 /*
734 * This function checks whether a page is free && is the buddy
735 * we can do coalesce a page and its buddy if
736 * (a) the buddy is not in a hole (check before calling!) &&
737 * (b) the buddy is in the buddy system &&
738 * (c) a page and its buddy have the same order &&
739 * (d) a page and its buddy are in the same zone.
740 *
741 * For recording whether a page is in the buddy system, we set ->_mapcount
742 * PAGE_BUDDY_MAPCOUNT_VALUE.
743 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
744 * serialized by zone->lock.
745 *
746 * For recording page's order, we use page_private(page).
747 */
748 static inline int page_is_buddy(struct page *page, struct page *buddy,
749 unsigned int order)
750 {
751 if (page_is_guard(buddy) && page_order(buddy) == order) {
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
757 return 1;
758 }
759
760 if (PageBuddy(buddy) && page_order(buddy) == order) {
761 /*
762 * zone check is done late to avoid uselessly
763 * calculating zone/node ids for pages that could
764 * never merge.
765 */
766 if (page_zone_id(page) != page_zone_id(buddy))
767 return 0;
768
769 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
770
771 return 1;
772 }
773 return 0;
774 }
775
776 /*
777 * Freeing function for a buddy system allocator.
778 *
779 * The concept of a buddy system is to maintain direct-mapped table
780 * (containing bit values) for memory blocks of various "orders".
781 * The bottom level table contains the map for the smallest allocatable
782 * units of memory (here, pages), and each level above it describes
783 * pairs of units from the levels below, hence, "buddies".
784 * At a high level, all that happens here is marking the table entry
785 * at the bottom level available, and propagating the changes upward
786 * as necessary, plus some accounting needed to play nicely with other
787 * parts of the VM system.
788 * At each level, we keep a list of pages, which are heads of continuous
789 * free pages of length of (1 << order) and marked with _mapcount
790 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
791 * field.
792 * So when we are allocating or freeing one, we can derive the state of the
793 * other. That is, if we allocate a small block, and both were
794 * free, the remainder of the region must be split into blocks.
795 * If a block is freed, and its buddy is also free, then this
796 * triggers coalescing into a block of larger size.
797 *
798 * -- nyc
799 */
800
801 static inline void __free_one_page(struct page *page,
802 unsigned long pfn,
803 struct zone *zone, unsigned int order,
804 int migratetype)
805 {
806 unsigned long combined_pfn;
807 unsigned long uninitialized_var(buddy_pfn);
808 struct page *buddy;
809 unsigned int max_order;
810
811 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
812
813 VM_BUG_ON(!zone_is_initialized(zone));
814 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
815
816 VM_BUG_ON(migratetype == -1);
817 if (likely(!is_migrate_isolate(migratetype)))
818 __mod_zone_freepage_state(zone, 1 << order, migratetype);
819
820 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
821 VM_BUG_ON_PAGE(bad_range(zone, page), page);
822
823 continue_merging:
824 while (order < max_order - 1) {
825 buddy_pfn = __find_buddy_pfn(pfn, order);
826 buddy = page + (buddy_pfn - pfn);
827
828 if (!pfn_valid_within(buddy_pfn))
829 goto done_merging;
830 if (!page_is_buddy(page, buddy, order))
831 goto done_merging;
832 /*
833 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
834 * merge with it and move up one order.
835 */
836 if (page_is_guard(buddy)) {
837 clear_page_guard(zone, buddy, order, migratetype);
838 } else {
839 list_del(&buddy->lru);
840 zone->free_area[order].nr_free--;
841 rmv_page_order(buddy);
842 }
843 combined_pfn = buddy_pfn & pfn;
844 page = page + (combined_pfn - pfn);
845 pfn = combined_pfn;
846 order++;
847 }
848 if (max_order < MAX_ORDER) {
849 /* If we are here, it means order is >= pageblock_order.
850 * We want to prevent merge between freepages on isolate
851 * pageblock and normal pageblock. Without this, pageblock
852 * isolation could cause incorrect freepage or CMA accounting.
853 *
854 * We don't want to hit this code for the more frequent
855 * low-order merging.
856 */
857 if (unlikely(has_isolate_pageblock(zone))) {
858 int buddy_mt;
859
860 buddy_pfn = __find_buddy_pfn(pfn, order);
861 buddy = page + (buddy_pfn - pfn);
862 buddy_mt = get_pageblock_migratetype(buddy);
863
864 if (migratetype != buddy_mt
865 && (is_migrate_isolate(migratetype) ||
866 is_migrate_isolate(buddy_mt)))
867 goto done_merging;
868 }
869 max_order++;
870 goto continue_merging;
871 }
872
873 done_merging:
874 set_page_order(page, order);
875
876 /*
877 * If this is not the largest possible page, check if the buddy
878 * of the next-highest order is free. If it is, it's possible
879 * that pages are being freed that will coalesce soon. In case,
880 * that is happening, add the free page to the tail of the list
881 * so it's less likely to be used soon and more likely to be merged
882 * as a higher order page
883 */
884 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
885 struct page *higher_page, *higher_buddy;
886 combined_pfn = buddy_pfn & pfn;
887 higher_page = page + (combined_pfn - pfn);
888 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
889 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
890 if (pfn_valid_within(buddy_pfn) &&
891 page_is_buddy(higher_page, higher_buddy, order + 1)) {
892 list_add_tail(&page->lru,
893 &zone->free_area[order].free_list[migratetype]);
894 goto out;
895 }
896 }
897
898 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
899 out:
900 zone->free_area[order].nr_free++;
901 }
902
903 /*
904 * A bad page could be due to a number of fields. Instead of multiple branches,
905 * try and check multiple fields with one check. The caller must do a detailed
906 * check if necessary.
907 */
908 static inline bool page_expected_state(struct page *page,
909 unsigned long check_flags)
910 {
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
912 return false;
913
914 if (unlikely((unsigned long)page->mapping |
915 page_ref_count(page) |
916 #ifdef CONFIG_MEMCG
917 (unsigned long)page->mem_cgroup |
918 #endif
919 (page->flags & check_flags)))
920 return false;
921
922 return true;
923 }
924
925 static void free_pages_check_bad(struct page *page)
926 {
927 const char *bad_reason;
928 unsigned long bad_flags;
929
930 bad_reason = NULL;
931 bad_flags = 0;
932
933 if (unlikely(atomic_read(&page->_mapcount) != -1))
934 bad_reason = "nonzero mapcount";
935 if (unlikely(page->mapping != NULL))
936 bad_reason = "non-NULL mapping";
937 if (unlikely(page_ref_count(page) != 0))
938 bad_reason = "nonzero _refcount";
939 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
940 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
941 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
942 }
943 #ifdef CONFIG_MEMCG
944 if (unlikely(page->mem_cgroup))
945 bad_reason = "page still charged to cgroup";
946 #endif
947 bad_page(page, bad_reason, bad_flags);
948 }
949
950 static inline int free_pages_check(struct page *page)
951 {
952 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
953 return 0;
954
955 /* Something has gone sideways, find it */
956 free_pages_check_bad(page);
957 return 1;
958 }
959
960 static int free_tail_pages_check(struct page *head_page, struct page *page)
961 {
962 int ret = 1;
963
964 /*
965 * We rely page->lru.next never has bit 0 set, unless the page
966 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
967 */
968 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
969
970 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
971 ret = 0;
972 goto out;
973 }
974 switch (page - head_page) {
975 case 1:
976 /* the first tail page: ->mapping is compound_mapcount() */
977 if (unlikely(compound_mapcount(page))) {
978 bad_page(page, "nonzero compound_mapcount", 0);
979 goto out;
980 }
981 break;
982 case 2:
983 /*
984 * the second tail page: ->mapping is
985 * page_deferred_list().next -- ignore value.
986 */
987 break;
988 default:
989 if (page->mapping != TAIL_MAPPING) {
990 bad_page(page, "corrupted mapping in tail page", 0);
991 goto out;
992 }
993 break;
994 }
995 if (unlikely(!PageTail(page))) {
996 bad_page(page, "PageTail not set", 0);
997 goto out;
998 }
999 if (unlikely(compound_head(page) != head_page)) {
1000 bad_page(page, "compound_head not consistent", 0);
1001 goto out;
1002 }
1003 ret = 0;
1004 out:
1005 page->mapping = NULL;
1006 clear_compound_head(page);
1007 return ret;
1008 }
1009
1010 static __always_inline bool free_pages_prepare(struct page *page,
1011 unsigned int order, bool check_free)
1012 {
1013 int bad = 0;
1014
1015 VM_BUG_ON_PAGE(PageTail(page), page);
1016
1017 trace_mm_page_free(page, order);
1018
1019 /*
1020 * Check tail pages before head page information is cleared to
1021 * avoid checking PageCompound for order-0 pages.
1022 */
1023 if (unlikely(order)) {
1024 bool compound = PageCompound(page);
1025 int i;
1026
1027 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1028
1029 if (compound)
1030 ClearPageDoubleMap(page);
1031 for (i = 1; i < (1 << order); i++) {
1032 if (compound)
1033 bad += free_tail_pages_check(page, page + i);
1034 if (unlikely(free_pages_check(page + i))) {
1035 bad++;
1036 continue;
1037 }
1038 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 }
1040 }
1041 if (PageMappingFlags(page))
1042 page->mapping = NULL;
1043 if (memcg_kmem_enabled() && PageKmemcg(page))
1044 memcg_kmem_uncharge(page, order);
1045 if (check_free)
1046 bad += free_pages_check(page);
1047 if (bad)
1048 return false;
1049
1050 page_cpupid_reset_last(page);
1051 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1052 reset_page_owner(page, order);
1053
1054 if (!PageHighMem(page)) {
1055 debug_check_no_locks_freed(page_address(page),
1056 PAGE_SIZE << order);
1057 debug_check_no_obj_freed(page_address(page),
1058 PAGE_SIZE << order);
1059 }
1060 arch_free_page(page, order);
1061 kernel_poison_pages(page, 1 << order, 0);
1062 kernel_map_pages(page, 1 << order, 0);
1063 kasan_free_pages(page, order);
1064
1065 return true;
1066 }
1067
1068 #ifdef CONFIG_DEBUG_VM
1069 static inline bool free_pcp_prepare(struct page *page)
1070 {
1071 return free_pages_prepare(page, 0, true);
1072 }
1073
1074 static inline bool bulkfree_pcp_prepare(struct page *page)
1075 {
1076 return false;
1077 }
1078 #else
1079 static bool free_pcp_prepare(struct page *page)
1080 {
1081 return free_pages_prepare(page, 0, false);
1082 }
1083
1084 static bool bulkfree_pcp_prepare(struct page *page)
1085 {
1086 return free_pages_check(page);
1087 }
1088 #endif /* CONFIG_DEBUG_VM */
1089
1090 /*
1091 * Frees a number of pages from the PCP lists
1092 * Assumes all pages on list are in same zone, and of same order.
1093 * count is the number of pages to free.
1094 *
1095 * If the zone was previously in an "all pages pinned" state then look to
1096 * see if this freeing clears that state.
1097 *
1098 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1099 * pinned" detection logic.
1100 */
1101 static void free_pcppages_bulk(struct zone *zone, int count,
1102 struct per_cpu_pages *pcp)
1103 {
1104 int migratetype = 0;
1105 int batch_free = 0;
1106 bool isolated_pageblocks;
1107
1108 spin_lock(&zone->lock);
1109 isolated_pageblocks = has_isolate_pageblock(zone);
1110
1111 while (count) {
1112 struct page *page;
1113 struct list_head *list;
1114
1115 /*
1116 * Remove pages from lists in a round-robin fashion. A
1117 * batch_free count is maintained that is incremented when an
1118 * empty list is encountered. This is so more pages are freed
1119 * off fuller lists instead of spinning excessively around empty
1120 * lists
1121 */
1122 do {
1123 batch_free++;
1124 if (++migratetype == MIGRATE_PCPTYPES)
1125 migratetype = 0;
1126 list = &pcp->lists[migratetype];
1127 } while (list_empty(list));
1128
1129 /* This is the only non-empty list. Free them all. */
1130 if (batch_free == MIGRATE_PCPTYPES)
1131 batch_free = count;
1132
1133 do {
1134 int mt; /* migratetype of the to-be-freed page */
1135
1136 page = list_last_entry(list, struct page, lru);
1137 /* must delete as __free_one_page list manipulates */
1138 list_del(&page->lru);
1139
1140 mt = get_pcppage_migratetype(page);
1141 /* MIGRATE_ISOLATE page should not go to pcplists */
1142 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1143 /* Pageblock could have been isolated meanwhile */
1144 if (unlikely(isolated_pageblocks))
1145 mt = get_pageblock_migratetype(page);
1146
1147 if (bulkfree_pcp_prepare(page))
1148 continue;
1149
1150 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1151 trace_mm_page_pcpu_drain(page, 0, mt);
1152 } while (--count && --batch_free && !list_empty(list));
1153 }
1154 spin_unlock(&zone->lock);
1155 }
1156
1157 static void free_one_page(struct zone *zone,
1158 struct page *page, unsigned long pfn,
1159 unsigned int order,
1160 int migratetype)
1161 {
1162 spin_lock(&zone->lock);
1163 if (unlikely(has_isolate_pageblock(zone) ||
1164 is_migrate_isolate(migratetype))) {
1165 migratetype = get_pfnblock_migratetype(page, pfn);
1166 }
1167 __free_one_page(page, pfn, zone, order, migratetype);
1168 spin_unlock(&zone->lock);
1169 }
1170
1171 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1172 unsigned long zone, int nid)
1173 {
1174 set_page_links(page, zone, nid, pfn);
1175 init_page_count(page);
1176 page_mapcount_reset(page);
1177 page_cpupid_reset_last(page);
1178
1179 INIT_LIST_HEAD(&page->lru);
1180 #ifdef WANT_PAGE_VIRTUAL
1181 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1182 if (!is_highmem_idx(zone))
1183 set_page_address(page, __va(pfn << PAGE_SHIFT));
1184 #endif
1185 }
1186
1187 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1188 int nid)
1189 {
1190 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1191 }
1192
1193 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1194 static void __meminit init_reserved_page(unsigned long pfn)
1195 {
1196 pg_data_t *pgdat;
1197 int nid, zid;
1198
1199 if (!early_page_uninitialised(pfn))
1200 return;
1201
1202 nid = early_pfn_to_nid(pfn);
1203 pgdat = NODE_DATA(nid);
1204
1205 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1206 struct zone *zone = &pgdat->node_zones[zid];
1207
1208 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1209 break;
1210 }
1211 __init_single_pfn(pfn, zid, nid);
1212 }
1213 #else
1214 static inline void init_reserved_page(unsigned long pfn)
1215 {
1216 }
1217 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1218
1219 /*
1220 * Initialised pages do not have PageReserved set. This function is
1221 * called for each range allocated by the bootmem allocator and
1222 * marks the pages PageReserved. The remaining valid pages are later
1223 * sent to the buddy page allocator.
1224 */
1225 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1226 {
1227 unsigned long start_pfn = PFN_DOWN(start);
1228 unsigned long end_pfn = PFN_UP(end);
1229
1230 for (; start_pfn < end_pfn; start_pfn++) {
1231 if (pfn_valid(start_pfn)) {
1232 struct page *page = pfn_to_page(start_pfn);
1233
1234 init_reserved_page(start_pfn);
1235
1236 /* Avoid false-positive PageTail() */
1237 INIT_LIST_HEAD(&page->lru);
1238
1239 SetPageReserved(page);
1240 }
1241 }
1242 }
1243
1244 static void __free_pages_ok(struct page *page, unsigned int order)
1245 {
1246 unsigned long flags;
1247 int migratetype;
1248 unsigned long pfn = page_to_pfn(page);
1249
1250 if (!free_pages_prepare(page, order, true))
1251 return;
1252
1253 migratetype = get_pfnblock_migratetype(page, pfn);
1254 local_irq_save(flags);
1255 __count_vm_events(PGFREE, 1 << order);
1256 free_one_page(page_zone(page), page, pfn, order, migratetype);
1257 local_irq_restore(flags);
1258 }
1259
1260 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1261 {
1262 unsigned int nr_pages = 1 << order;
1263 struct page *p = page;
1264 unsigned int loop;
1265
1266 prefetchw(p);
1267 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1268 prefetchw(p + 1);
1269 __ClearPageReserved(p);
1270 set_page_count(p, 0);
1271 }
1272 __ClearPageReserved(p);
1273 set_page_count(p, 0);
1274
1275 page_zone(page)->managed_pages += nr_pages;
1276 set_page_refcounted(page);
1277 __free_pages(page, order);
1278 }
1279
1280 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1281 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1282
1283 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1284
1285 int __meminit early_pfn_to_nid(unsigned long pfn)
1286 {
1287 static DEFINE_SPINLOCK(early_pfn_lock);
1288 int nid;
1289
1290 spin_lock(&early_pfn_lock);
1291 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1292 if (nid < 0)
1293 nid = first_online_node;
1294 spin_unlock(&early_pfn_lock);
1295
1296 return nid;
1297 }
1298 #endif
1299
1300 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1301 static inline bool __meminit __maybe_unused
1302 meminit_pfn_in_nid(unsigned long pfn, int node,
1303 struct mminit_pfnnid_cache *state)
1304 {
1305 int nid;
1306
1307 nid = __early_pfn_to_nid(pfn, state);
1308 if (nid >= 0 && nid != node)
1309 return false;
1310 return true;
1311 }
1312
1313 /* Only safe to use early in boot when initialisation is single-threaded */
1314 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1315 {
1316 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1317 }
1318
1319 #else
1320
1321 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322 {
1323 return true;
1324 }
1325 static inline bool __meminit __maybe_unused
1326 meminit_pfn_in_nid(unsigned long pfn, int node,
1327 struct mminit_pfnnid_cache *state)
1328 {
1329 return true;
1330 }
1331 #endif
1332
1333
1334 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1335 unsigned int order)
1336 {
1337 if (early_page_uninitialised(pfn))
1338 return;
1339 return __free_pages_boot_core(page, order);
1340 }
1341
1342 /*
1343 * Check that the whole (or subset of) a pageblock given by the interval of
1344 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1345 * with the migration of free compaction scanner. The scanners then need to
1346 * use only pfn_valid_within() check for arches that allow holes within
1347 * pageblocks.
1348 *
1349 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1350 *
1351 * It's possible on some configurations to have a setup like node0 node1 node0
1352 * i.e. it's possible that all pages within a zones range of pages do not
1353 * belong to a single zone. We assume that a border between node0 and node1
1354 * can occur within a single pageblock, but not a node0 node1 node0
1355 * interleaving within a single pageblock. It is therefore sufficient to check
1356 * the first and last page of a pageblock and avoid checking each individual
1357 * page in a pageblock.
1358 */
1359 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1360 unsigned long end_pfn, struct zone *zone)
1361 {
1362 struct page *start_page;
1363 struct page *end_page;
1364
1365 /* end_pfn is one past the range we are checking */
1366 end_pfn--;
1367
1368 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1369 return NULL;
1370
1371 start_page = pfn_to_online_page(start_pfn);
1372 if (!start_page)
1373 return NULL;
1374
1375 if (page_zone(start_page) != zone)
1376 return NULL;
1377
1378 end_page = pfn_to_page(end_pfn);
1379
1380 /* This gives a shorter code than deriving page_zone(end_page) */
1381 if (page_zone_id(start_page) != page_zone_id(end_page))
1382 return NULL;
1383
1384 return start_page;
1385 }
1386
1387 void set_zone_contiguous(struct zone *zone)
1388 {
1389 unsigned long block_start_pfn = zone->zone_start_pfn;
1390 unsigned long block_end_pfn;
1391
1392 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1393 for (; block_start_pfn < zone_end_pfn(zone);
1394 block_start_pfn = block_end_pfn,
1395 block_end_pfn += pageblock_nr_pages) {
1396
1397 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1398
1399 if (!__pageblock_pfn_to_page(block_start_pfn,
1400 block_end_pfn, zone))
1401 return;
1402 }
1403
1404 /* We confirm that there is no hole */
1405 zone->contiguous = true;
1406 }
1407
1408 void clear_zone_contiguous(struct zone *zone)
1409 {
1410 zone->contiguous = false;
1411 }
1412
1413 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1414 static void __init deferred_free_range(struct page *page,
1415 unsigned long pfn, int nr_pages)
1416 {
1417 int i;
1418
1419 if (!page)
1420 return;
1421
1422 /* Free a large naturally-aligned chunk if possible */
1423 if (nr_pages == pageblock_nr_pages &&
1424 (pfn & (pageblock_nr_pages - 1)) == 0) {
1425 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1426 __free_pages_boot_core(page, pageblock_order);
1427 return;
1428 }
1429
1430 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1431 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1432 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1433 __free_pages_boot_core(page, 0);
1434 }
1435 }
1436
1437 /* Completion tracking for deferred_init_memmap() threads */
1438 static atomic_t pgdat_init_n_undone __initdata;
1439 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1440
1441 static inline void __init pgdat_init_report_one_done(void)
1442 {
1443 if (atomic_dec_and_test(&pgdat_init_n_undone))
1444 complete(&pgdat_init_all_done_comp);
1445 }
1446
1447 /* Initialise remaining memory on a node */
1448 static int __init deferred_init_memmap(void *data)
1449 {
1450 pg_data_t *pgdat = data;
1451 int nid = pgdat->node_id;
1452 struct mminit_pfnnid_cache nid_init_state = { };
1453 unsigned long start = jiffies;
1454 unsigned long nr_pages = 0;
1455 unsigned long walk_start, walk_end;
1456 int i, zid;
1457 struct zone *zone;
1458 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1459 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1460
1461 if (first_init_pfn == ULONG_MAX) {
1462 pgdat_init_report_one_done();
1463 return 0;
1464 }
1465
1466 /* Bind memory initialisation thread to a local node if possible */
1467 if (!cpumask_empty(cpumask))
1468 set_cpus_allowed_ptr(current, cpumask);
1469
1470 /* Sanity check boundaries */
1471 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1472 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1473 pgdat->first_deferred_pfn = ULONG_MAX;
1474
1475 /* Only the highest zone is deferred so find it */
1476 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1477 zone = pgdat->node_zones + zid;
1478 if (first_init_pfn < zone_end_pfn(zone))
1479 break;
1480 }
1481
1482 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1483 unsigned long pfn, end_pfn;
1484 struct page *page = NULL;
1485 struct page *free_base_page = NULL;
1486 unsigned long free_base_pfn = 0;
1487 int nr_to_free = 0;
1488
1489 end_pfn = min(walk_end, zone_end_pfn(zone));
1490 pfn = first_init_pfn;
1491 if (pfn < walk_start)
1492 pfn = walk_start;
1493 if (pfn < zone->zone_start_pfn)
1494 pfn = zone->zone_start_pfn;
1495
1496 for (; pfn < end_pfn; pfn++) {
1497 if (!pfn_valid_within(pfn))
1498 goto free_range;
1499
1500 /*
1501 * Ensure pfn_valid is checked every
1502 * pageblock_nr_pages for memory holes
1503 */
1504 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1505 if (!pfn_valid(pfn)) {
1506 page = NULL;
1507 goto free_range;
1508 }
1509 }
1510
1511 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1512 page = NULL;
1513 goto free_range;
1514 }
1515
1516 /* Minimise pfn page lookups and scheduler checks */
1517 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1518 page++;
1519 } else {
1520 nr_pages += nr_to_free;
1521 deferred_free_range(free_base_page,
1522 free_base_pfn, nr_to_free);
1523 free_base_page = NULL;
1524 free_base_pfn = nr_to_free = 0;
1525
1526 page = pfn_to_page(pfn);
1527 cond_resched();
1528 }
1529
1530 if (page->flags) {
1531 VM_BUG_ON(page_zone(page) != zone);
1532 goto free_range;
1533 }
1534
1535 __init_single_page(page, pfn, zid, nid);
1536 if (!free_base_page) {
1537 free_base_page = page;
1538 free_base_pfn = pfn;
1539 nr_to_free = 0;
1540 }
1541 nr_to_free++;
1542
1543 /* Where possible, batch up pages for a single free */
1544 continue;
1545 free_range:
1546 /* Free the current block of pages to allocator */
1547 nr_pages += nr_to_free;
1548 deferred_free_range(free_base_page, free_base_pfn,
1549 nr_to_free);
1550 free_base_page = NULL;
1551 free_base_pfn = nr_to_free = 0;
1552 }
1553 /* Free the last block of pages to allocator */
1554 nr_pages += nr_to_free;
1555 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1556
1557 first_init_pfn = max(end_pfn, first_init_pfn);
1558 }
1559
1560 /* Sanity check that the next zone really is unpopulated */
1561 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1562
1563 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1564 jiffies_to_msecs(jiffies - start));
1565
1566 pgdat_init_report_one_done();
1567 return 0;
1568 }
1569 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1570
1571 void __init page_alloc_init_late(void)
1572 {
1573 struct zone *zone;
1574
1575 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1576 int nid;
1577
1578 /* There will be num_node_state(N_MEMORY) threads */
1579 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1580 for_each_node_state(nid, N_MEMORY) {
1581 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1582 }
1583
1584 /* Block until all are initialised */
1585 wait_for_completion(&pgdat_init_all_done_comp);
1586
1587 /* Reinit limits that are based on free pages after the kernel is up */
1588 files_maxfiles_init();
1589 #endif
1590 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1591 /* Discard memblock private memory */
1592 memblock_discard();
1593 #endif
1594
1595 for_each_populated_zone(zone)
1596 set_zone_contiguous(zone);
1597 }
1598
1599 #ifdef CONFIG_CMA
1600 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1601 void __init init_cma_reserved_pageblock(struct page *page)
1602 {
1603 unsigned i = pageblock_nr_pages;
1604 struct page *p = page;
1605
1606 do {
1607 __ClearPageReserved(p);
1608 set_page_count(p, 0);
1609 } while (++p, --i);
1610
1611 set_pageblock_migratetype(page, MIGRATE_CMA);
1612
1613 if (pageblock_order >= MAX_ORDER) {
1614 i = pageblock_nr_pages;
1615 p = page;
1616 do {
1617 set_page_refcounted(p);
1618 __free_pages(p, MAX_ORDER - 1);
1619 p += MAX_ORDER_NR_PAGES;
1620 } while (i -= MAX_ORDER_NR_PAGES);
1621 } else {
1622 set_page_refcounted(page);
1623 __free_pages(page, pageblock_order);
1624 }
1625
1626 adjust_managed_page_count(page, pageblock_nr_pages);
1627 }
1628 #endif
1629
1630 /*
1631 * The order of subdivision here is critical for the IO subsystem.
1632 * Please do not alter this order without good reasons and regression
1633 * testing. Specifically, as large blocks of memory are subdivided,
1634 * the order in which smaller blocks are delivered depends on the order
1635 * they're subdivided in this function. This is the primary factor
1636 * influencing the order in which pages are delivered to the IO
1637 * subsystem according to empirical testing, and this is also justified
1638 * by considering the behavior of a buddy system containing a single
1639 * large block of memory acted on by a series of small allocations.
1640 * This behavior is a critical factor in sglist merging's success.
1641 *
1642 * -- nyc
1643 */
1644 static inline void expand(struct zone *zone, struct page *page,
1645 int low, int high, struct free_area *area,
1646 int migratetype)
1647 {
1648 unsigned long size = 1 << high;
1649
1650 while (high > low) {
1651 area--;
1652 high--;
1653 size >>= 1;
1654 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1655
1656 /*
1657 * Mark as guard pages (or page), that will allow to
1658 * merge back to allocator when buddy will be freed.
1659 * Corresponding page table entries will not be touched,
1660 * pages will stay not present in virtual address space
1661 */
1662 if (set_page_guard(zone, &page[size], high, migratetype))
1663 continue;
1664
1665 list_add(&page[size].lru, &area->free_list[migratetype]);
1666 area->nr_free++;
1667 set_page_order(&page[size], high);
1668 }
1669 }
1670
1671 static void check_new_page_bad(struct page *page)
1672 {
1673 const char *bad_reason = NULL;
1674 unsigned long bad_flags = 0;
1675
1676 if (unlikely(atomic_read(&page->_mapcount) != -1))
1677 bad_reason = "nonzero mapcount";
1678 if (unlikely(page->mapping != NULL))
1679 bad_reason = "non-NULL mapping";
1680 if (unlikely(page_ref_count(page) != 0))
1681 bad_reason = "nonzero _count";
1682 if (unlikely(page->flags & __PG_HWPOISON)) {
1683 bad_reason = "HWPoisoned (hardware-corrupted)";
1684 bad_flags = __PG_HWPOISON;
1685 /* Don't complain about hwpoisoned pages */
1686 page_mapcount_reset(page); /* remove PageBuddy */
1687 return;
1688 }
1689 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1690 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1691 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1692 }
1693 #ifdef CONFIG_MEMCG
1694 if (unlikely(page->mem_cgroup))
1695 bad_reason = "page still charged to cgroup";
1696 #endif
1697 bad_page(page, bad_reason, bad_flags);
1698 }
1699
1700 /*
1701 * This page is about to be returned from the page allocator
1702 */
1703 static inline int check_new_page(struct page *page)
1704 {
1705 if (likely(page_expected_state(page,
1706 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1707 return 0;
1708
1709 check_new_page_bad(page);
1710 return 1;
1711 }
1712
1713 static inline bool free_pages_prezeroed(void)
1714 {
1715 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1716 page_poisoning_enabled();
1717 }
1718
1719 #ifdef CONFIG_DEBUG_VM
1720 static bool check_pcp_refill(struct page *page)
1721 {
1722 return false;
1723 }
1724
1725 static bool check_new_pcp(struct page *page)
1726 {
1727 return check_new_page(page);
1728 }
1729 #else
1730 static bool check_pcp_refill(struct page *page)
1731 {
1732 return check_new_page(page);
1733 }
1734 static bool check_new_pcp(struct page *page)
1735 {
1736 return false;
1737 }
1738 #endif /* CONFIG_DEBUG_VM */
1739
1740 static bool check_new_pages(struct page *page, unsigned int order)
1741 {
1742 int i;
1743 for (i = 0; i < (1 << order); i++) {
1744 struct page *p = page + i;
1745
1746 if (unlikely(check_new_page(p)))
1747 return true;
1748 }
1749
1750 return false;
1751 }
1752
1753 inline void post_alloc_hook(struct page *page, unsigned int order,
1754 gfp_t gfp_flags)
1755 {
1756 set_page_private(page, 0);
1757 set_page_refcounted(page);
1758
1759 arch_alloc_page(page, order);
1760 kernel_map_pages(page, 1 << order, 1);
1761 kernel_poison_pages(page, 1 << order, 1);
1762 kasan_alloc_pages(page, order);
1763 set_page_owner(page, order, gfp_flags);
1764 }
1765
1766 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1767 unsigned int alloc_flags)
1768 {
1769 int i;
1770
1771 post_alloc_hook(page, order, gfp_flags);
1772
1773 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1774 for (i = 0; i < (1 << order); i++)
1775 clear_highpage(page + i);
1776
1777 if (order && (gfp_flags & __GFP_COMP))
1778 prep_compound_page(page, order);
1779
1780 /*
1781 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1782 * allocate the page. The expectation is that the caller is taking
1783 * steps that will free more memory. The caller should avoid the page
1784 * being used for !PFMEMALLOC purposes.
1785 */
1786 if (alloc_flags & ALLOC_NO_WATERMARKS)
1787 set_page_pfmemalloc(page);
1788 else
1789 clear_page_pfmemalloc(page);
1790 }
1791
1792 /*
1793 * Go through the free lists for the given migratetype and remove
1794 * the smallest available page from the freelists
1795 */
1796 static inline
1797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1798 int migratetype)
1799 {
1800 unsigned int current_order;
1801 struct free_area *area;
1802 struct page *page;
1803
1804 /* Find a page of the appropriate size in the preferred list */
1805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1806 area = &(zone->free_area[current_order]);
1807 page = list_first_entry_or_null(&area->free_list[migratetype],
1808 struct page, lru);
1809 if (!page)
1810 continue;
1811 list_del(&page->lru);
1812 rmv_page_order(page);
1813 area->nr_free--;
1814 expand(zone, page, order, current_order, area, migratetype);
1815 set_pcppage_migratetype(page, migratetype);
1816 return page;
1817 }
1818
1819 return NULL;
1820 }
1821
1822
1823 /*
1824 * This array describes the order lists are fallen back to when
1825 * the free lists for the desirable migrate type are depleted
1826 */
1827 static int fallbacks[MIGRATE_TYPES][4] = {
1828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1831 #ifdef CONFIG_CMA
1832 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1833 #endif
1834 #ifdef CONFIG_MEMORY_ISOLATION
1835 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1836 #endif
1837 };
1838
1839 #ifdef CONFIG_CMA
1840 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1841 unsigned int order)
1842 {
1843 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1844 }
1845 #else
1846 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1847 unsigned int order) { return NULL; }
1848 #endif
1849
1850 /*
1851 * Move the free pages in a range to the free lists of the requested type.
1852 * Note that start_page and end_pages are not aligned on a pageblock
1853 * boundary. If alignment is required, use move_freepages_block()
1854 */
1855 static int move_freepages(struct zone *zone,
1856 struct page *start_page, struct page *end_page,
1857 int migratetype, int *num_movable)
1858 {
1859 struct page *page;
1860 unsigned int order;
1861 int pages_moved = 0;
1862
1863 #ifndef CONFIG_HOLES_IN_ZONE
1864 /*
1865 * page_zone is not safe to call in this context when
1866 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1867 * anyway as we check zone boundaries in move_freepages_block().
1868 * Remove at a later date when no bug reports exist related to
1869 * grouping pages by mobility
1870 */
1871 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1872 #endif
1873
1874 if (num_movable)
1875 *num_movable = 0;
1876
1877 for (page = start_page; page <= end_page;) {
1878 if (!pfn_valid_within(page_to_pfn(page))) {
1879 page++;
1880 continue;
1881 }
1882
1883 /* Make sure we are not inadvertently changing nodes */
1884 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1885
1886 if (!PageBuddy(page)) {
1887 /*
1888 * We assume that pages that could be isolated for
1889 * migration are movable. But we don't actually try
1890 * isolating, as that would be expensive.
1891 */
1892 if (num_movable &&
1893 (PageLRU(page) || __PageMovable(page)))
1894 (*num_movable)++;
1895
1896 page++;
1897 continue;
1898 }
1899
1900 order = page_order(page);
1901 list_move(&page->lru,
1902 &zone->free_area[order].free_list[migratetype]);
1903 page += 1 << order;
1904 pages_moved += 1 << order;
1905 }
1906
1907 return pages_moved;
1908 }
1909
1910 int move_freepages_block(struct zone *zone, struct page *page,
1911 int migratetype, int *num_movable)
1912 {
1913 unsigned long start_pfn, end_pfn;
1914 struct page *start_page, *end_page;
1915
1916 start_pfn = page_to_pfn(page);
1917 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1918 start_page = pfn_to_page(start_pfn);
1919 end_page = start_page + pageblock_nr_pages - 1;
1920 end_pfn = start_pfn + pageblock_nr_pages - 1;
1921
1922 /* Do not cross zone boundaries */
1923 if (!zone_spans_pfn(zone, start_pfn))
1924 start_page = page;
1925 if (!zone_spans_pfn(zone, end_pfn))
1926 return 0;
1927
1928 return move_freepages(zone, start_page, end_page, migratetype,
1929 num_movable);
1930 }
1931
1932 static void change_pageblock_range(struct page *pageblock_page,
1933 int start_order, int migratetype)
1934 {
1935 int nr_pageblocks = 1 << (start_order - pageblock_order);
1936
1937 while (nr_pageblocks--) {
1938 set_pageblock_migratetype(pageblock_page, migratetype);
1939 pageblock_page += pageblock_nr_pages;
1940 }
1941 }
1942
1943 /*
1944 * When we are falling back to another migratetype during allocation, try to
1945 * steal extra free pages from the same pageblocks to satisfy further
1946 * allocations, instead of polluting multiple pageblocks.
1947 *
1948 * If we are stealing a relatively large buddy page, it is likely there will
1949 * be more free pages in the pageblock, so try to steal them all. For
1950 * reclaimable and unmovable allocations, we steal regardless of page size,
1951 * as fragmentation caused by those allocations polluting movable pageblocks
1952 * is worse than movable allocations stealing from unmovable and reclaimable
1953 * pageblocks.
1954 */
1955 static bool can_steal_fallback(unsigned int order, int start_mt)
1956 {
1957 /*
1958 * Leaving this order check is intended, although there is
1959 * relaxed order check in next check. The reason is that
1960 * we can actually steal whole pageblock if this condition met,
1961 * but, below check doesn't guarantee it and that is just heuristic
1962 * so could be changed anytime.
1963 */
1964 if (order >= pageblock_order)
1965 return true;
1966
1967 if (order >= pageblock_order / 2 ||
1968 start_mt == MIGRATE_RECLAIMABLE ||
1969 start_mt == MIGRATE_UNMOVABLE ||
1970 page_group_by_mobility_disabled)
1971 return true;
1972
1973 return false;
1974 }
1975
1976 /*
1977 * This function implements actual steal behaviour. If order is large enough,
1978 * we can steal whole pageblock. If not, we first move freepages in this
1979 * pageblock to our migratetype and determine how many already-allocated pages
1980 * are there in the pageblock with a compatible migratetype. If at least half
1981 * of pages are free or compatible, we can change migratetype of the pageblock
1982 * itself, so pages freed in the future will be put on the correct free list.
1983 */
1984 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1985 int start_type, bool whole_block)
1986 {
1987 unsigned int current_order = page_order(page);
1988 struct free_area *area;
1989 int free_pages, movable_pages, alike_pages;
1990 int old_block_type;
1991
1992 old_block_type = get_pageblock_migratetype(page);
1993
1994 /*
1995 * This can happen due to races and we want to prevent broken
1996 * highatomic accounting.
1997 */
1998 if (is_migrate_highatomic(old_block_type))
1999 goto single_page;
2000
2001 /* Take ownership for orders >= pageblock_order */
2002 if (current_order >= pageblock_order) {
2003 change_pageblock_range(page, current_order, start_type);
2004 goto single_page;
2005 }
2006
2007 /* We are not allowed to try stealing from the whole block */
2008 if (!whole_block)
2009 goto single_page;
2010
2011 free_pages = move_freepages_block(zone, page, start_type,
2012 &movable_pages);
2013 /*
2014 * Determine how many pages are compatible with our allocation.
2015 * For movable allocation, it's the number of movable pages which
2016 * we just obtained. For other types it's a bit more tricky.
2017 */
2018 if (start_type == MIGRATE_MOVABLE) {
2019 alike_pages = movable_pages;
2020 } else {
2021 /*
2022 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2023 * to MOVABLE pageblock, consider all non-movable pages as
2024 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2025 * vice versa, be conservative since we can't distinguish the
2026 * exact migratetype of non-movable pages.
2027 */
2028 if (old_block_type == MIGRATE_MOVABLE)
2029 alike_pages = pageblock_nr_pages
2030 - (free_pages + movable_pages);
2031 else
2032 alike_pages = 0;
2033 }
2034
2035 /* moving whole block can fail due to zone boundary conditions */
2036 if (!free_pages)
2037 goto single_page;
2038
2039 /*
2040 * If a sufficient number of pages in the block are either free or of
2041 * comparable migratability as our allocation, claim the whole block.
2042 */
2043 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2044 page_group_by_mobility_disabled)
2045 set_pageblock_migratetype(page, start_type);
2046
2047 return;
2048
2049 single_page:
2050 area = &zone->free_area[current_order];
2051 list_move(&page->lru, &area->free_list[start_type]);
2052 }
2053
2054 /*
2055 * Check whether there is a suitable fallback freepage with requested order.
2056 * If only_stealable is true, this function returns fallback_mt only if
2057 * we can steal other freepages all together. This would help to reduce
2058 * fragmentation due to mixed migratetype pages in one pageblock.
2059 */
2060 int find_suitable_fallback(struct free_area *area, unsigned int order,
2061 int migratetype, bool only_stealable, bool *can_steal)
2062 {
2063 int i;
2064 int fallback_mt;
2065
2066 if (area->nr_free == 0)
2067 return -1;
2068
2069 *can_steal = false;
2070 for (i = 0;; i++) {
2071 fallback_mt = fallbacks[migratetype][i];
2072 if (fallback_mt == MIGRATE_TYPES)
2073 break;
2074
2075 if (list_empty(&area->free_list[fallback_mt]))
2076 continue;
2077
2078 if (can_steal_fallback(order, migratetype))
2079 *can_steal = true;
2080
2081 if (!only_stealable)
2082 return fallback_mt;
2083
2084 if (*can_steal)
2085 return fallback_mt;
2086 }
2087
2088 return -1;
2089 }
2090
2091 /*
2092 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2093 * there are no empty page blocks that contain a page with a suitable order
2094 */
2095 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2096 unsigned int alloc_order)
2097 {
2098 int mt;
2099 unsigned long max_managed, flags;
2100
2101 /*
2102 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2103 * Check is race-prone but harmless.
2104 */
2105 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2106 if (zone->nr_reserved_highatomic >= max_managed)
2107 return;
2108
2109 spin_lock_irqsave(&zone->lock, flags);
2110
2111 /* Recheck the nr_reserved_highatomic limit under the lock */
2112 if (zone->nr_reserved_highatomic >= max_managed)
2113 goto out_unlock;
2114
2115 /* Yoink! */
2116 mt = get_pageblock_migratetype(page);
2117 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2118 && !is_migrate_cma(mt)) {
2119 zone->nr_reserved_highatomic += pageblock_nr_pages;
2120 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2121 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2122 }
2123
2124 out_unlock:
2125 spin_unlock_irqrestore(&zone->lock, flags);
2126 }
2127
2128 /*
2129 * Used when an allocation is about to fail under memory pressure. This
2130 * potentially hurts the reliability of high-order allocations when under
2131 * intense memory pressure but failed atomic allocations should be easier
2132 * to recover from than an OOM.
2133 *
2134 * If @force is true, try to unreserve a pageblock even though highatomic
2135 * pageblock is exhausted.
2136 */
2137 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2138 bool force)
2139 {
2140 struct zonelist *zonelist = ac->zonelist;
2141 unsigned long flags;
2142 struct zoneref *z;
2143 struct zone *zone;
2144 struct page *page;
2145 int order;
2146 bool ret;
2147
2148 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2149 ac->nodemask) {
2150 /*
2151 * Preserve at least one pageblock unless memory pressure
2152 * is really high.
2153 */
2154 if (!force && zone->nr_reserved_highatomic <=
2155 pageblock_nr_pages)
2156 continue;
2157
2158 spin_lock_irqsave(&zone->lock, flags);
2159 for (order = 0; order < MAX_ORDER; order++) {
2160 struct free_area *area = &(zone->free_area[order]);
2161
2162 page = list_first_entry_or_null(
2163 &area->free_list[MIGRATE_HIGHATOMIC],
2164 struct page, lru);
2165 if (!page)
2166 continue;
2167
2168 /*
2169 * In page freeing path, migratetype change is racy so
2170 * we can counter several free pages in a pageblock
2171 * in this loop althoug we changed the pageblock type
2172 * from highatomic to ac->migratetype. So we should
2173 * adjust the count once.
2174 */
2175 if (is_migrate_highatomic_page(page)) {
2176 /*
2177 * It should never happen but changes to
2178 * locking could inadvertently allow a per-cpu
2179 * drain to add pages to MIGRATE_HIGHATOMIC
2180 * while unreserving so be safe and watch for
2181 * underflows.
2182 */
2183 zone->nr_reserved_highatomic -= min(
2184 pageblock_nr_pages,
2185 zone->nr_reserved_highatomic);
2186 }
2187
2188 /*
2189 * Convert to ac->migratetype and avoid the normal
2190 * pageblock stealing heuristics. Minimally, the caller
2191 * is doing the work and needs the pages. More
2192 * importantly, if the block was always converted to
2193 * MIGRATE_UNMOVABLE or another type then the number
2194 * of pageblocks that cannot be completely freed
2195 * may increase.
2196 */
2197 set_pageblock_migratetype(page, ac->migratetype);
2198 ret = move_freepages_block(zone, page, ac->migratetype,
2199 NULL);
2200 if (ret) {
2201 spin_unlock_irqrestore(&zone->lock, flags);
2202 return ret;
2203 }
2204 }
2205 spin_unlock_irqrestore(&zone->lock, flags);
2206 }
2207
2208 return false;
2209 }
2210
2211 /*
2212 * Try finding a free buddy page on the fallback list and put it on the free
2213 * list of requested migratetype, possibly along with other pages from the same
2214 * block, depending on fragmentation avoidance heuristics. Returns true if
2215 * fallback was found so that __rmqueue_smallest() can grab it.
2216 *
2217 * The use of signed ints for order and current_order is a deliberate
2218 * deviation from the rest of this file, to make the for loop
2219 * condition simpler.
2220 */
2221 static inline bool
2222 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2223 {
2224 struct free_area *area;
2225 int current_order;
2226 struct page *page;
2227 int fallback_mt;
2228 bool can_steal;
2229
2230 /*
2231 * Find the largest available free page in the other list. This roughly
2232 * approximates finding the pageblock with the most free pages, which
2233 * would be too costly to do exactly.
2234 */
2235 for (current_order = MAX_ORDER - 1; current_order >= order;
2236 --current_order) {
2237 area = &(zone->free_area[current_order]);
2238 fallback_mt = find_suitable_fallback(area, current_order,
2239 start_migratetype, false, &can_steal);
2240 if (fallback_mt == -1)
2241 continue;
2242
2243 /*
2244 * We cannot steal all free pages from the pageblock and the
2245 * requested migratetype is movable. In that case it's better to
2246 * steal and split the smallest available page instead of the
2247 * largest available page, because even if the next movable
2248 * allocation falls back into a different pageblock than this
2249 * one, it won't cause permanent fragmentation.
2250 */
2251 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2252 && current_order > order)
2253 goto find_smallest;
2254
2255 goto do_steal;
2256 }
2257
2258 return false;
2259
2260 find_smallest:
2261 for (current_order = order; current_order < MAX_ORDER;
2262 current_order++) {
2263 area = &(zone->free_area[current_order]);
2264 fallback_mt = find_suitable_fallback(area, current_order,
2265 start_migratetype, false, &can_steal);
2266 if (fallback_mt != -1)
2267 break;
2268 }
2269
2270 /*
2271 * This should not happen - we already found a suitable fallback
2272 * when looking for the largest page.
2273 */
2274 VM_BUG_ON(current_order == MAX_ORDER);
2275
2276 do_steal:
2277 page = list_first_entry(&area->free_list[fallback_mt],
2278 struct page, lru);
2279
2280 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2281
2282 trace_mm_page_alloc_extfrag(page, order, current_order,
2283 start_migratetype, fallback_mt);
2284
2285 return true;
2286
2287 }
2288
2289 /*
2290 * Do the hard work of removing an element from the buddy allocator.
2291 * Call me with the zone->lock already held.
2292 * If gfp mask of the page allocation has GFP_HIGHUSER_MOVABLE, @migratetype
2293 * is changed from MIGRATE_MOVABLE to MIGRATE_CMA in rmqueue() to select the
2294 * free list of MIGRATE_CMA. It helps depleting CMA free pages so that
2295 * evaluation of watermark for unmovable page allocations is not too different
2296 * from movable page allocations.
2297 * If @migratetype is MIGRATE_CMA, it should be corrected to MIGRATE_MOVABLE
2298 * after the free list of MIGRATE_CMA is searched to have a chance to search the
2299 * free list of MIGRATE_MOVABLE. It also records correct migrate type in the
2300 * trace as intended by the page allocation.
2301 */
2302 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2303 int migratetype)
2304 {
2305 struct page *page = NULL;
2306
2307 #ifdef CONFIG_CMA
2308 if (migratetype == MIGRATE_CMA) {
2309 #else
2310 if (migratetype == MIGRATE_MOVABLE) {
2311 #endif
2312 page = __rmqueue_cma_fallback(zone, order);
2313 migratetype = MIGRATE_MOVABLE;
2314 }
2315
2316 while (!page) {
2317 page = __rmqueue_smallest(zone, order, migratetype);
2318 if (unlikely(!page) &&
2319 !__rmqueue_fallback(zone, order, migratetype))
2320 break;
2321 }
2322
2323 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2324 return page;
2325 }
2326
2327 /*
2328 * Obtain a specified number of elements from the buddy allocator, all under
2329 * a single hold of the lock, for efficiency. Add them to the supplied list.
2330 * Returns the number of new pages which were placed at *list.
2331 */
2332 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2333 unsigned long count, struct list_head *list,
2334 int migratetype, bool cold)
2335 {
2336 int i, alloced = 0;
2337
2338 spin_lock(&zone->lock);
2339 for (i = 0; i < count; ++i) {
2340 struct page *page = __rmqueue(zone, order, migratetype);
2341 if (unlikely(page == NULL))
2342 break;
2343
2344 if (unlikely(check_pcp_refill(page)))
2345 continue;
2346
2347 /*
2348 * Split buddy pages returned by expand() are received here
2349 * in physical page order. The page is added to the callers and
2350 * list and the list head then moves forward. From the callers
2351 * perspective, the linked list is ordered by page number in
2352 * some conditions. This is useful for IO devices that can
2353 * merge IO requests if the physical pages are ordered
2354 * properly.
2355 */
2356 if (likely(!cold))
2357 list_add(&page->lru, list);
2358 else
2359 list_add_tail(&page->lru, list);
2360 list = &page->lru;
2361 alloced++;
2362 if (is_migrate_cma(get_pcppage_migratetype(page)))
2363 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2364 -(1 << order));
2365 }
2366
2367 /*
2368 * i pages were removed from the buddy list even if some leak due
2369 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2370 * on i. Do not confuse with 'alloced' which is the number of
2371 * pages added to the pcp list.
2372 */
2373 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2374 spin_unlock(&zone->lock);
2375 return alloced;
2376 }
2377
2378 #ifdef CONFIG_NUMA
2379 /*
2380 * Called from the vmstat counter updater to drain pagesets of this
2381 * currently executing processor on remote nodes after they have
2382 * expired.
2383 *
2384 * Note that this function must be called with the thread pinned to
2385 * a single processor.
2386 */
2387 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2388 {
2389 unsigned long flags;
2390 int to_drain, batch;
2391
2392 local_irq_save(flags);
2393 batch = READ_ONCE(pcp->batch);
2394 to_drain = min(pcp->count, batch);
2395 if (to_drain > 0) {
2396 free_pcppages_bulk(zone, to_drain, pcp);
2397 pcp->count -= to_drain;
2398 }
2399 local_irq_restore(flags);
2400 }
2401 #endif
2402
2403 /*
2404 * Drain pcplists of the indicated processor and zone.
2405 *
2406 * The processor must either be the current processor and the
2407 * thread pinned to the current processor or a processor that
2408 * is not online.
2409 */
2410 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2411 {
2412 unsigned long flags;
2413 struct per_cpu_pageset *pset;
2414 struct per_cpu_pages *pcp;
2415
2416 local_irq_save(flags);
2417 pset = per_cpu_ptr(zone->pageset, cpu);
2418
2419 pcp = &pset->pcp;
2420 if (pcp->count) {
2421 free_pcppages_bulk(zone, pcp->count, pcp);
2422 pcp->count = 0;
2423 }
2424 local_irq_restore(flags);
2425 }
2426
2427 /*
2428 * Drain pcplists of all zones on the indicated processor.
2429 *
2430 * The processor must either be the current processor and the
2431 * thread pinned to the current processor or a processor that
2432 * is not online.
2433 */
2434 static void drain_pages(unsigned int cpu)
2435 {
2436 struct zone *zone;
2437
2438 for_each_populated_zone(zone) {
2439 drain_pages_zone(cpu, zone);
2440 }
2441 }
2442
2443 /*
2444 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2445 *
2446 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2447 * the single zone's pages.
2448 */
2449 void drain_local_pages(struct zone *zone)
2450 {
2451 int cpu = smp_processor_id();
2452
2453 if (zone)
2454 drain_pages_zone(cpu, zone);
2455 else
2456 drain_pages(cpu);
2457 }
2458
2459 static void drain_local_pages_wq(struct work_struct *work)
2460 {
2461 /*
2462 * drain_all_pages doesn't use proper cpu hotplug protection so
2463 * we can race with cpu offline when the WQ can move this from
2464 * a cpu pinned worker to an unbound one. We can operate on a different
2465 * cpu which is allright but we also have to make sure to not move to
2466 * a different one.
2467 */
2468 preempt_disable();
2469 drain_local_pages(NULL);
2470 preempt_enable();
2471 }
2472
2473 /*
2474 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2475 *
2476 * When zone parameter is non-NULL, spill just the single zone's pages.
2477 *
2478 * Note that this can be extremely slow as the draining happens in a workqueue.
2479 */
2480 void drain_all_pages(struct zone *zone)
2481 {
2482 int cpu;
2483
2484 /*
2485 * Allocate in the BSS so we wont require allocation in
2486 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2487 */
2488 static cpumask_t cpus_with_pcps;
2489
2490 /*
2491 * Make sure nobody triggers this path before mm_percpu_wq is fully
2492 * initialized.
2493 */
2494 if (WARN_ON_ONCE(!mm_percpu_wq))
2495 return;
2496
2497 /*
2498 * Do not drain if one is already in progress unless it's specific to
2499 * a zone. Such callers are primarily CMA and memory hotplug and need
2500 * the drain to be complete when the call returns.
2501 */
2502 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2503 if (!zone)
2504 return;
2505 mutex_lock(&pcpu_drain_mutex);
2506 }
2507
2508 /*
2509 * We don't care about racing with CPU hotplug event
2510 * as offline notification will cause the notified
2511 * cpu to drain that CPU pcps and on_each_cpu_mask
2512 * disables preemption as part of its processing
2513 */
2514 for_each_online_cpu(cpu) {
2515 struct per_cpu_pageset *pcp;
2516 struct zone *z;
2517 bool has_pcps = false;
2518
2519 if (zone) {
2520 pcp = per_cpu_ptr(zone->pageset, cpu);
2521 if (pcp->pcp.count)
2522 has_pcps = true;
2523 } else {
2524 for_each_populated_zone(z) {
2525 pcp = per_cpu_ptr(z->pageset, cpu);
2526 if (pcp->pcp.count) {
2527 has_pcps = true;
2528 break;
2529 }
2530 }
2531 }
2532
2533 if (has_pcps)
2534 cpumask_set_cpu(cpu, &cpus_with_pcps);
2535 else
2536 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2537 }
2538
2539 for_each_cpu(cpu, &cpus_with_pcps) {
2540 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2541 INIT_WORK(work, drain_local_pages_wq);
2542 queue_work_on(cpu, mm_percpu_wq, work);
2543 }
2544 for_each_cpu(cpu, &cpus_with_pcps)
2545 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2546
2547 mutex_unlock(&pcpu_drain_mutex);
2548 }
2549
2550 #ifdef CONFIG_HIBERNATION
2551
2552 /*
2553 * Touch the watchdog for every WD_PAGE_COUNT pages.
2554 */
2555 #define WD_PAGE_COUNT (128*1024)
2556
2557 void mark_free_pages(struct zone *zone)
2558 {
2559 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2560 unsigned long flags;
2561 unsigned int order, t;
2562 struct page *page;
2563
2564 if (zone_is_empty(zone))
2565 return;
2566
2567 spin_lock_irqsave(&zone->lock, flags);
2568
2569 max_zone_pfn = zone_end_pfn(zone);
2570 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2571 if (pfn_valid(pfn)) {
2572 page = pfn_to_page(pfn);
2573
2574 if (!--page_count) {
2575 touch_nmi_watchdog();
2576 page_count = WD_PAGE_COUNT;
2577 }
2578
2579 if (page_zone(page) != zone)
2580 continue;
2581
2582 if (!swsusp_page_is_forbidden(page))
2583 swsusp_unset_page_free(page);
2584 }
2585
2586 for_each_migratetype_order(order, t) {
2587 list_for_each_entry(page,
2588 &zone->free_area[order].free_list[t], lru) {
2589 unsigned long i;
2590
2591 pfn = page_to_pfn(page);
2592 for (i = 0; i < (1UL << order); i++) {
2593 if (!--page_count) {
2594 touch_nmi_watchdog();
2595 page_count = WD_PAGE_COUNT;
2596 }
2597 swsusp_set_page_free(pfn_to_page(pfn + i));
2598 }
2599 }
2600 }
2601 spin_unlock_irqrestore(&zone->lock, flags);
2602 }
2603 #endif /* CONFIG_PM */
2604
2605 /*
2606 * Free a 0-order page
2607 * cold == true ? free a cold page : free a hot page
2608 */
2609 void free_hot_cold_page(struct page *page, bool cold)
2610 {
2611 struct zone *zone = page_zone(page);
2612 struct per_cpu_pages *pcp;
2613 unsigned long flags;
2614 unsigned long pfn = page_to_pfn(page);
2615 int migratetype;
2616
2617 if (!free_pcp_prepare(page))
2618 return;
2619
2620 migratetype = get_pfnblock_migratetype(page, pfn);
2621 set_pcppage_migratetype(page, migratetype);
2622 local_irq_save(flags);
2623 __count_vm_event(PGFREE);
2624
2625 /*
2626 * We only track unmovable, reclaimable and movable on pcp lists.
2627 * Free ISOLATE pages back to the allocator because they are being
2628 * offlined but treat HIGHATOMIC as movable pages so we can get those
2629 * areas back if necessary. Otherwise, we may have to free
2630 * excessively into the page allocator
2631 */
2632 if (migratetype >= MIGRATE_PCPTYPES) {
2633 if (unlikely(is_migrate_isolate(migratetype))) {
2634 free_one_page(zone, page, pfn, 0, migratetype);
2635 goto out;
2636 }
2637 migratetype = MIGRATE_MOVABLE;
2638 }
2639
2640 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2641 if (!cold)
2642 list_add(&page->lru, &pcp->lists[migratetype]);
2643 else
2644 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2645 pcp->count++;
2646 if (pcp->count >= pcp->high) {
2647 unsigned long batch = READ_ONCE(pcp->batch);
2648 free_pcppages_bulk(zone, batch, pcp);
2649 pcp->count -= batch;
2650 }
2651
2652 out:
2653 local_irq_restore(flags);
2654 }
2655
2656 /*
2657 * Free a list of 0-order pages
2658 */
2659 void free_hot_cold_page_list(struct list_head *list, bool cold)
2660 {
2661 struct page *page, *next;
2662
2663 list_for_each_entry_safe(page, next, list, lru) {
2664 trace_mm_page_free_batched(page, cold);
2665 free_hot_cold_page(page, cold);
2666 }
2667 }
2668
2669 /*
2670 * split_page takes a non-compound higher-order page, and splits it into
2671 * n (1<<order) sub-pages: page[0..n]
2672 * Each sub-page must be freed individually.
2673 *
2674 * Note: this is probably too low level an operation for use in drivers.
2675 * Please consult with lkml before using this in your driver.
2676 */
2677 void split_page(struct page *page, unsigned int order)
2678 {
2679 int i;
2680
2681 VM_BUG_ON_PAGE(PageCompound(page), page);
2682 VM_BUG_ON_PAGE(!page_count(page), page);
2683
2684 for (i = 1; i < (1 << order); i++)
2685 set_page_refcounted(page + i);
2686 split_page_owner(page, order);
2687 }
2688 EXPORT_SYMBOL_GPL(split_page);
2689
2690 int __isolate_free_page(struct page *page, unsigned int order)
2691 {
2692 unsigned long watermark;
2693 struct zone *zone;
2694 int mt;
2695
2696 BUG_ON(!PageBuddy(page));
2697
2698 zone = page_zone(page);
2699 mt = get_pageblock_migratetype(page);
2700
2701 if (!is_migrate_isolate(mt)) {
2702 /*
2703 * Obey watermarks as if the page was being allocated. We can
2704 * emulate a high-order watermark check with a raised order-0
2705 * watermark, because we already know our high-order page
2706 * exists.
2707 */
2708 watermark = min_wmark_pages(zone) + (1UL << order);
2709 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2710 return 0;
2711
2712 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2713 }
2714
2715 /* Remove page from free list */
2716 list_del(&page->lru);
2717 zone->free_area[order].nr_free--;
2718 rmv_page_order(page);
2719
2720 /*
2721 * Set the pageblock if the isolated page is at least half of a
2722 * pageblock
2723 */
2724 if (order >= pageblock_order - 1) {
2725 struct page *endpage = page + (1 << order) - 1;
2726 for (; page < endpage; page += pageblock_nr_pages) {
2727 int mt = get_pageblock_migratetype(page);
2728 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2729 && !is_migrate_highatomic(mt))
2730 set_pageblock_migratetype(page,
2731 MIGRATE_MOVABLE);
2732 }
2733 }
2734
2735
2736 return 1UL << order;
2737 }
2738
2739 /*
2740 * Update NUMA hit/miss statistics
2741 *
2742 * Must be called with interrupts disabled.
2743 */
2744 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2745 {
2746 #ifdef CONFIG_NUMA
2747 enum numa_stat_item local_stat = NUMA_LOCAL;
2748
2749 if (z->node != numa_node_id())
2750 local_stat = NUMA_OTHER;
2751
2752 if (z->node == preferred_zone->node)
2753 __inc_numa_state(z, NUMA_HIT);
2754 else {
2755 __inc_numa_state(z, NUMA_MISS);
2756 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2757 }
2758 __inc_numa_state(z, local_stat);
2759 #endif
2760 }
2761
2762 /* Remove page from the per-cpu list, caller must protect the list */
2763 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2764 bool cold, struct per_cpu_pages *pcp,
2765 struct list_head *list)
2766 {
2767 struct page *page;
2768
2769 do {
2770 if (list_empty(list)) {
2771 pcp->count += rmqueue_bulk(zone, 0,
2772 pcp->batch, list,
2773 migratetype, cold);
2774 if (unlikely(list_empty(list)))
2775 return NULL;
2776 }
2777
2778 if (cold)
2779 page = list_last_entry(list, struct page, lru);
2780 else
2781 page = list_first_entry(list, struct page, lru);
2782
2783 /*
2784 * If the head or the tail page in the pcp list is CMA page and
2785 * the gfp flags is not GFP_HIGHUSER_MOVABLE, do not allocate a
2786 * page from the pcp list. The free list of MIGRATE_CMA is a
2787 * special case of the free list of MIGRATE_MOVABLE and the
2788 * pages from the free list of MIGRATE_CMA are pushed to the pcp
2789 * list of MIGRATE_MOVABLE. Since the pcp list of
2790 * MIGRATE_MOVABLE is selected if the gfp flags has GFP_MOVABLE,
2791 * we should avoid the case that a cma page in the pcp list of
2792 * MIGRATE_MOVABLE is allocated to a movable allocation without
2793 * GFP_HIGHUSER_MOVABLE.
2794 * If this is the case, allocate a movable page from the free
2795 * list of MIGRATE_MOVABLE instead of pcp list of
2796 * MIGRATE_MOVABLE.
2797 */
2798 #ifdef CONFIG_CMA
2799 if (is_migrate_cma_page(page) && (migratetype != MIGRATE_CMA))
2800 return NULL;
2801 #endif
2802 list_del(&page->lru);
2803 pcp->count--;
2804 } while (check_new_pcp(page));
2805
2806 return page;
2807 }
2808
2809 /* Lock and remove page from the per-cpu list */
2810 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2811 struct zone *zone, unsigned int order,
2812 gfp_t gfp_flags, int migratetype,
2813 int migratetype_rmqueue)
2814 {
2815 struct per_cpu_pages *pcp;
2816 struct list_head *list;
2817 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2818 struct page *page;
2819 unsigned long flags;
2820
2821 local_irq_save(flags);
2822 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2823 list = &pcp->lists[migratetype];
2824 page = __rmqueue_pcplist(zone, migratetype_rmqueue, cold, pcp, list);
2825 if (page) {
2826 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2827 zone_statistics(preferred_zone, zone);
2828 }
2829 local_irq_restore(flags);
2830 return page;
2831 }
2832
2833 /*
2834 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2835 */
2836 static inline
2837 struct page *rmqueue(struct zone *preferred_zone,
2838 struct zone *zone, unsigned int order,
2839 gfp_t gfp_flags, unsigned int alloc_flags,
2840 int migratetype)
2841 {
2842 unsigned long flags;
2843 struct page *page;
2844 int migratetype_rmqueue = migratetype;
2845
2846 #ifdef CONFIG_CMA
2847 if ((migratetype_rmqueue == MIGRATE_MOVABLE) &&
2848 ((gfp_flags & GFP_HIGHUSER_MOVABLE) == GFP_HIGHUSER_MOVABLE))
2849 migratetype_rmqueue = MIGRATE_CMA;
2850 #endif
2851 if (likely(order == 0)) {
2852 page = rmqueue_pcplist(preferred_zone, zone, order,
2853 gfp_flags, migratetype, migratetype_rmqueue);
2854 /*
2855 * Allocation with GFP_MOVABLE and !GFP_HIGHMEM will have
2856 * another chance of page allocation from the free list.
2857 * See the comment in __rmqueue_pcplist().
2858 */
2859 #ifdef CONFIG_CMA
2860 if (likely(page) || (migratetype_rmqueue != MIGRATE_MOVABLE))
2861 #endif
2862 goto out;
2863 }
2864
2865 /*
2866 * We most definitely don't want callers attempting to
2867 * allocate greater than order-1 page units with __GFP_NOFAIL.
2868 */
2869 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2870 spin_lock_irqsave(&zone->lock, flags);
2871
2872 do {
2873 page = NULL;
2874 if (alloc_flags & ALLOC_HARDER) {
2875 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2876 if (page)
2877 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2878 }
2879 if (!page)
2880 page = __rmqueue(zone, order, migratetype_rmqueue);
2881 } while (page && check_new_pages(page, order));
2882 spin_unlock(&zone->lock);
2883 if (!page)
2884 goto failed;
2885 __mod_zone_freepage_state(zone, -(1 << order),
2886 get_pcppage_migratetype(page));
2887
2888 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2889 zone_statistics(preferred_zone, zone);
2890 local_irq_restore(flags);
2891
2892 out:
2893 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2894 return page;
2895
2896 failed:
2897 local_irq_restore(flags);
2898 return NULL;
2899 }
2900
2901 #ifdef CONFIG_FAIL_PAGE_ALLOC
2902
2903 static struct {
2904 struct fault_attr attr;
2905
2906 bool ignore_gfp_highmem;
2907 bool ignore_gfp_reclaim;
2908 u32 min_order;
2909 } fail_page_alloc = {
2910 .attr = FAULT_ATTR_INITIALIZER,
2911 .ignore_gfp_reclaim = true,
2912 .ignore_gfp_highmem = true,
2913 .min_order = 1,
2914 };
2915
2916 static int __init setup_fail_page_alloc(char *str)
2917 {
2918 return setup_fault_attr(&fail_page_alloc.attr, str);
2919 }
2920 __setup("fail_page_alloc=", setup_fail_page_alloc);
2921
2922 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2923 {
2924 if (order < fail_page_alloc.min_order)
2925 return false;
2926 if (gfp_mask & __GFP_NOFAIL)
2927 return false;
2928 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2929 return false;
2930 if (fail_page_alloc.ignore_gfp_reclaim &&
2931 (gfp_mask & __GFP_DIRECT_RECLAIM))
2932 return false;
2933
2934 return should_fail(&fail_page_alloc.attr, 1 << order);
2935 }
2936
2937 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2938
2939 static int __init fail_page_alloc_debugfs(void)
2940 {
2941 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2942 struct dentry *dir;
2943
2944 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2945 &fail_page_alloc.attr);
2946 if (IS_ERR(dir))
2947 return PTR_ERR(dir);
2948
2949 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2950 &fail_page_alloc.ignore_gfp_reclaim))
2951 goto fail;
2952 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2953 &fail_page_alloc.ignore_gfp_highmem))
2954 goto fail;
2955 if (!debugfs_create_u32("min-order", mode, dir,
2956 &fail_page_alloc.min_order))
2957 goto fail;
2958
2959 return 0;
2960 fail:
2961 debugfs_remove_recursive(dir);
2962
2963 return -ENOMEM;
2964 }
2965
2966 late_initcall(fail_page_alloc_debugfs);
2967
2968 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2969
2970 #else /* CONFIG_FAIL_PAGE_ALLOC */
2971
2972 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2973 {
2974 return false;
2975 }
2976
2977 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2978
2979 /*
2980 * Return true if free base pages are above 'mark'. For high-order checks it
2981 * will return true of the order-0 watermark is reached and there is at least
2982 * one free page of a suitable size. Checking now avoids taking the zone lock
2983 * to check in the allocation paths if no pages are free.
2984 */
2985 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2986 int classzone_idx, unsigned int alloc_flags,
2987 long free_pages)
2988 {
2989 long min = mark;
2990 int o;
2991 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2992
2993 /* free_pages may go negative - that's OK */
2994 free_pages -= (1 << order) - 1;
2995
2996 if (alloc_flags & ALLOC_HIGH)
2997 min -= min / 2;
2998
2999 /*
3000 * If the caller does not have rights to ALLOC_HARDER then subtract
3001 * the high-atomic reserves. This will over-estimate the size of the
3002 * atomic reserve but it avoids a search.
3003 */
3004 if (likely(!alloc_harder)) {
3005 free_pages -= z->nr_reserved_highatomic;
3006 } else {
3007 /*
3008 * OOM victims can try even harder than normal ALLOC_HARDER
3009 * users on the grounds that it's definitely going to be in
3010 * the exit path shortly and free memory. Any allocation it
3011 * makes during the free path will be small and short-lived.
3012 */
3013 if (alloc_flags & ALLOC_OOM)
3014 min -= min / 2;
3015 else
3016 min -= min / 4;
3017 }
3018
3019
3020 #ifdef CONFIG_CMA
3021 /* If allocation can't use CMA areas don't use free CMA pages */
3022 if (!(alloc_flags & ALLOC_CMA))
3023 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3024 #endif
3025
3026 /*
3027 * Check watermarks for an order-0 allocation request. If these
3028 * are not met, then a high-order request also cannot go ahead
3029 * even if a suitable page happened to be free.
3030 */
3031 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3032 return false;
3033
3034 /* If this is an order-0 request then the watermark is fine */
3035 if (!order)
3036 return true;
3037
3038 /* For a high-order request, check at least one suitable page is free */
3039 for (o = order; o < MAX_ORDER; o++) {
3040 struct free_area *area = &z->free_area[o];
3041 int mt;
3042
3043 if (!area->nr_free)
3044 continue;
3045
3046 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3047 if (!list_empty(&area->free_list[mt]))
3048 return true;
3049 }
3050
3051 #ifdef CONFIG_CMA
3052 if ((alloc_flags & ALLOC_CMA) &&
3053 !list_empty(&area->free_list[MIGRATE_CMA])) {
3054 return true;
3055 }
3056 #endif
3057 if (alloc_harder &&
3058 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3059 return true;
3060 }
3061 return false;
3062 }
3063
3064 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3065 int classzone_idx, unsigned int alloc_flags)
3066 {
3067 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3068 zone_page_state(z, NR_FREE_PAGES));
3069 }
3070
3071 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3072 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3073 {
3074 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3075 long cma_pages = 0;
3076
3077 #ifdef CONFIG_CMA
3078 /* If allocation can't use CMA areas don't use free CMA pages */
3079 if (!(alloc_flags & ALLOC_CMA))
3080 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3081 #endif
3082
3083 /*
3084 * Fast check for order-0 only. If this fails then the reserves
3085 * need to be calculated. There is a corner case where the check
3086 * passes but only the high-order atomic reserve are free. If
3087 * the caller is !atomic then it'll uselessly search the free
3088 * list. That corner case is then slower but it is harmless.
3089 */
3090 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3091 return true;
3092
3093 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3094 free_pages);
3095 }
3096
3097 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3098 unsigned long mark, int classzone_idx)
3099 {
3100 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3101
3102 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3103 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3104
3105 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3106 free_pages);
3107 }
3108
3109 #ifdef CONFIG_NUMA
3110 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3111 {
3112 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3113 RECLAIM_DISTANCE;
3114 }
3115 #else /* CONFIG_NUMA */
3116 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3117 {
3118 return true;
3119 }
3120 #endif /* CONFIG_NUMA */
3121
3122 /*
3123 * get_page_from_freelist goes through the zonelist trying to allocate
3124 * a page.
3125 */
3126 static struct page *
3127 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3128 const struct alloc_context *ac)
3129 {
3130 struct zoneref *z = ac->preferred_zoneref;
3131 struct zone *zone;
3132 struct pglist_data *last_pgdat_dirty_limit = NULL;
3133
3134 /*
3135 * Scan zonelist, looking for a zone with enough free.
3136 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3137 */
3138 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3139 ac->nodemask) {
3140 struct page *page;
3141 unsigned long mark;
3142
3143 if (cpusets_enabled() &&
3144 (alloc_flags & ALLOC_CPUSET) &&
3145 !__cpuset_zone_allowed(zone, gfp_mask))
3146 continue;
3147 /*
3148 * When allocating a page cache page for writing, we
3149 * want to get it from a node that is within its dirty
3150 * limit, such that no single node holds more than its
3151 * proportional share of globally allowed dirty pages.
3152 * The dirty limits take into account the node's
3153 * lowmem reserves and high watermark so that kswapd
3154 * should be able to balance it without having to
3155 * write pages from its LRU list.
3156 *
3157 * XXX: For now, allow allocations to potentially
3158 * exceed the per-node dirty limit in the slowpath
3159 * (spread_dirty_pages unset) before going into reclaim,
3160 * which is important when on a NUMA setup the allowed
3161 * nodes are together not big enough to reach the
3162 * global limit. The proper fix for these situations
3163 * will require awareness of nodes in the
3164 * dirty-throttling and the flusher threads.
3165 */
3166 if (ac->spread_dirty_pages) {
3167 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3168 continue;
3169
3170 if (!node_dirty_ok(zone->zone_pgdat)) {
3171 last_pgdat_dirty_limit = zone->zone_pgdat;
3172 continue;
3173 }
3174 }
3175
3176 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3177 if (!zone_watermark_fast(zone, order, mark,
3178 ac_classzone_idx(ac), alloc_flags)) {
3179 int ret;
3180
3181 /* Checked here to keep the fast path fast */
3182 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3183 if (alloc_flags & ALLOC_NO_WATERMARKS)
3184 goto try_this_zone;
3185
3186 if (node_reclaim_mode == 0 ||
3187 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3188 continue;
3189
3190 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3191 switch (ret) {
3192 case NODE_RECLAIM_NOSCAN:
3193 /* did not scan */
3194 continue;
3195 case NODE_RECLAIM_FULL:
3196 /* scanned but unreclaimable */
3197 continue;
3198 default:
3199 /* did we reclaim enough */
3200 if (zone_watermark_ok(zone, order, mark,
3201 ac_classzone_idx(ac), alloc_flags))
3202 goto try_this_zone;
3203
3204 continue;
3205 }
3206 }
3207
3208 try_this_zone:
3209 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3210 gfp_mask, alloc_flags, ac->migratetype);
3211 if (page) {
3212 prep_new_page(page, order, gfp_mask, alloc_flags);
3213
3214 /*
3215 * If this is a high-order atomic allocation then check
3216 * if the pageblock should be reserved for the future
3217 */
3218 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3219 reserve_highatomic_pageblock(page, zone, order);
3220
3221 return page;
3222 }
3223 }
3224
3225 return NULL;
3226 }
3227
3228 /*
3229 * Large machines with many possible nodes should not always dump per-node
3230 * meminfo in irq context.
3231 */
3232 static inline bool should_suppress_show_mem(void)
3233 {
3234 bool ret = false;
3235
3236 #if NODES_SHIFT > 8
3237 ret = in_interrupt();
3238 #endif
3239 return ret;
3240 }
3241
3242 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3243 {
3244 unsigned int filter = SHOW_MEM_FILTER_NODES;
3245 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3246
3247 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3248 return;
3249
3250 /*
3251 * This documents exceptions given to allocations in certain
3252 * contexts that are allowed to allocate outside current's set
3253 * of allowed nodes.
3254 */
3255 if (!(gfp_mask & __GFP_NOMEMALLOC))
3256 if (tsk_is_oom_victim(current) ||
3257 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3258 filter &= ~SHOW_MEM_FILTER_NODES;
3259 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3260 filter &= ~SHOW_MEM_FILTER_NODES;
3261
3262 show_mem(filter, nodemask);
3263 }
3264
3265 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3266 {
3267 struct va_format vaf;
3268 va_list args;
3269 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3270 DEFAULT_RATELIMIT_BURST);
3271
3272 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3273 return;
3274
3275 pr_warn("%s: ", current->comm);
3276
3277 va_start(args, fmt);
3278 vaf.fmt = fmt;
3279 vaf.va = &args;
3280 pr_cont("%pV", &vaf);
3281 va_end(args);
3282
3283 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3284 if (nodemask)
3285 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3286 else
3287 pr_cont("(null)\n");
3288
3289 cpuset_print_current_mems_allowed();
3290
3291 dump_stack();
3292 warn_alloc_show_mem(gfp_mask, nodemask);
3293 }
3294
3295 static inline struct page *
3296 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3297 unsigned int alloc_flags,
3298 const struct alloc_context *ac)
3299 {
3300 struct page *page;
3301
3302 page = get_page_from_freelist(gfp_mask, order,
3303 alloc_flags|ALLOC_CPUSET, ac);
3304 /*
3305 * fallback to ignore cpuset restriction if our nodes
3306 * are depleted
3307 */
3308 if (!page)
3309 page = get_page_from_freelist(gfp_mask, order,
3310 alloc_flags, ac);
3311
3312 return page;
3313 }
3314
3315 static inline struct page *
3316 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3317 const struct alloc_context *ac, unsigned long *did_some_progress)
3318 {
3319 struct oom_control oc = {
3320 .zonelist = ac->zonelist,
3321 .nodemask = ac->nodemask,
3322 .memcg = NULL,
3323 .gfp_mask = gfp_mask,
3324 .order = order,
3325 };
3326 struct page *page;
3327
3328 *did_some_progress = 0;
3329
3330 /*
3331 * Acquire the oom lock. If that fails, somebody else is
3332 * making progress for us.
3333 */
3334 if (!mutex_trylock(&oom_lock)) {
3335 *did_some_progress = 1;
3336 schedule_timeout_uninterruptible(1);
3337 return NULL;
3338 }
3339
3340 /*
3341 * Go through the zonelist yet one more time, keep very high watermark
3342 * here, this is only to catch a parallel oom killing, we must fail if
3343 * we're still under heavy pressure. But make sure that this reclaim
3344 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3345 * allocation which will never fail due to oom_lock already held.
3346 */
3347 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3348 ~__GFP_DIRECT_RECLAIM, order,
3349 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3350 if (page)
3351 goto out;
3352
3353 /* Coredumps can quickly deplete all memory reserves */
3354 if (current->flags & PF_DUMPCORE)
3355 goto out;
3356 /* The OOM killer will not help higher order allocs */
3357 if (order > PAGE_ALLOC_COSTLY_ORDER)
3358 goto out;
3359 /*
3360 * We have already exhausted all our reclaim opportunities without any
3361 * success so it is time to admit defeat. We will skip the OOM killer
3362 * because it is very likely that the caller has a more reasonable
3363 * fallback than shooting a random task.
3364 */
3365 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3366 goto out;
3367 /* The OOM killer does not needlessly kill tasks for lowmem */
3368 if (ac->high_zoneidx < ZONE_NORMAL)
3369 goto out;
3370 if (pm_suspended_storage())
3371 goto out;
3372 /*
3373 * XXX: GFP_NOFS allocations should rather fail than rely on
3374 * other request to make a forward progress.
3375 * We are in an unfortunate situation where out_of_memory cannot
3376 * do much for this context but let's try it to at least get
3377 * access to memory reserved if the current task is killed (see
3378 * out_of_memory). Once filesystems are ready to handle allocation
3379 * failures more gracefully we should just bail out here.
3380 */
3381
3382 /* The OOM killer may not free memory on a specific node */
3383 if (gfp_mask & __GFP_THISNODE)
3384 goto out;
3385
3386 /* Exhausted what can be done so it's blamo time */
3387 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3388 *did_some_progress = 1;
3389
3390 /*
3391 * Help non-failing allocations by giving them access to memory
3392 * reserves
3393 */
3394 if (gfp_mask & __GFP_NOFAIL)
3395 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3396 ALLOC_NO_WATERMARKS, ac);
3397 }
3398 out:
3399 mutex_unlock(&oom_lock);
3400 return page;
3401 }
3402
3403 /*
3404 * Maximum number of compaction retries wit a progress before OOM
3405 * killer is consider as the only way to move forward.
3406 */
3407 #define MAX_COMPACT_RETRIES 16
3408
3409 #ifdef CONFIG_COMPACTION
3410 /* Try memory compaction for high-order allocations before reclaim */
3411 static struct page *
3412 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3413 unsigned int alloc_flags, const struct alloc_context *ac,
3414 enum compact_priority prio, enum compact_result *compact_result)
3415 {
3416 struct page *page;
3417 unsigned int noreclaim_flag;
3418
3419 if (!order)
3420 return NULL;
3421
3422 noreclaim_flag = memalloc_noreclaim_save();
3423 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3424 prio);
3425 memalloc_noreclaim_restore(noreclaim_flag);
3426
3427 if (*compact_result <= COMPACT_INACTIVE)
3428 return NULL;
3429
3430 /*
3431 * At least in one zone compaction wasn't deferred or skipped, so let's
3432 * count a compaction stall
3433 */
3434 count_vm_event(COMPACTSTALL);
3435
3436 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3437
3438 if (page) {
3439 struct zone *zone = page_zone(page);
3440
3441 zone->compact_blockskip_flush = false;
3442 compaction_defer_reset(zone, order, true);
3443 count_vm_event(COMPACTSUCCESS);
3444 return page;
3445 }
3446
3447 /*
3448 * It's bad if compaction run occurs and fails. The most likely reason
3449 * is that pages exist, but not enough to satisfy watermarks.
3450 */
3451 count_vm_event(COMPACTFAIL);
3452
3453 cond_resched();
3454
3455 return NULL;
3456 }
3457
3458 static inline bool
3459 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3460 enum compact_result compact_result,
3461 enum compact_priority *compact_priority,
3462 int *compaction_retries)
3463 {
3464 int max_retries = MAX_COMPACT_RETRIES;
3465 int min_priority;
3466 bool ret = false;
3467 int retries = *compaction_retries;
3468 enum compact_priority priority = *compact_priority;
3469
3470 if (!order)
3471 return false;
3472
3473 if (compaction_made_progress(compact_result))
3474 (*compaction_retries)++;
3475
3476 /*
3477 * compaction considers all the zone as desperately out of memory
3478 * so it doesn't really make much sense to retry except when the
3479 * failure could be caused by insufficient priority
3480 */
3481 if (compaction_failed(compact_result))
3482 goto check_priority;
3483
3484 /*
3485 * make sure the compaction wasn't deferred or didn't bail out early
3486 * due to locks contention before we declare that we should give up.
3487 * But do not retry if the given zonelist is not suitable for
3488 * compaction.
3489 */
3490 if (compaction_withdrawn(compact_result)) {
3491 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3492 goto out;
3493 }
3494
3495 /*
3496 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3497 * costly ones because they are de facto nofail and invoke OOM
3498 * killer to move on while costly can fail and users are ready
3499 * to cope with that. 1/4 retries is rather arbitrary but we
3500 * would need much more detailed feedback from compaction to
3501 * make a better decision.
3502 */
3503 if (order > PAGE_ALLOC_COSTLY_ORDER)
3504 max_retries /= 4;
3505 if (*compaction_retries <= max_retries) {
3506 ret = true;
3507 goto out;
3508 }
3509
3510 /*
3511 * Make sure there are attempts at the highest priority if we exhausted
3512 * all retries or failed at the lower priorities.
3513 */
3514 check_priority:
3515 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3516 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3517
3518 if (*compact_priority > min_priority) {
3519 (*compact_priority)--;
3520 *compaction_retries = 0;
3521 ret = true;
3522 }
3523 out:
3524 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3525 return ret;
3526 }
3527 #else
3528 static inline struct page *
3529 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3530 unsigned int alloc_flags, const struct alloc_context *ac,
3531 enum compact_priority prio, enum compact_result *compact_result)
3532 {
3533 *compact_result = COMPACT_SKIPPED;
3534 return NULL;
3535 }
3536
3537 static inline bool
3538 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3539 enum compact_result compact_result,
3540 enum compact_priority *compact_priority,
3541 int *compaction_retries)
3542 {
3543 struct zone *zone;
3544 struct zoneref *z;
3545
3546 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3547 return false;
3548
3549 /*
3550 * There are setups with compaction disabled which would prefer to loop
3551 * inside the allocator rather than hit the oom killer prematurely.
3552 * Let's give them a good hope and keep retrying while the order-0
3553 * watermarks are OK.
3554 */
3555 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3556 ac->nodemask) {
3557 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3558 ac_classzone_idx(ac), alloc_flags))
3559 return true;
3560 }
3561 return false;
3562 }
3563 #endif /* CONFIG_COMPACTION */
3564
3565 #ifdef CONFIG_LOCKDEP
3566 struct lockdep_map __fs_reclaim_map =
3567 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3568
3569 static bool __need_fs_reclaim(gfp_t gfp_mask)
3570 {
3571 gfp_mask = current_gfp_context(gfp_mask);
3572
3573 /* no reclaim without waiting on it */
3574 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3575 return false;
3576
3577 /* this guy won't enter reclaim */
3578 if (current->flags & PF_MEMALLOC)
3579 return false;
3580
3581 /* We're only interested __GFP_FS allocations for now */
3582 if (!(gfp_mask & __GFP_FS))
3583 return false;
3584
3585 if (gfp_mask & __GFP_NOLOCKDEP)
3586 return false;
3587
3588 return true;
3589 }
3590
3591 void fs_reclaim_acquire(gfp_t gfp_mask)
3592 {
3593 if (__need_fs_reclaim(gfp_mask))
3594 lock_map_acquire(&__fs_reclaim_map);
3595 }
3596 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3597
3598 void fs_reclaim_release(gfp_t gfp_mask)
3599 {
3600 if (__need_fs_reclaim(gfp_mask))
3601 lock_map_release(&__fs_reclaim_map);
3602 }
3603 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3604 #endif
3605
3606 /* Perform direct synchronous page reclaim */
3607 static int
3608 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3609 const struct alloc_context *ac)
3610 {
3611 struct reclaim_state reclaim_state;
3612 int progress;
3613 unsigned int noreclaim_flag;
3614
3615 cond_resched();
3616
3617 /* We now go into synchronous reclaim */
3618 cpuset_memory_pressure_bump();
3619 noreclaim_flag = memalloc_noreclaim_save();
3620 fs_reclaim_acquire(gfp_mask);
3621 reclaim_state.reclaimed_slab = 0;
3622 current->reclaim_state = &reclaim_state;
3623
3624 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3625 ac->nodemask);
3626
3627 current->reclaim_state = NULL;
3628 fs_reclaim_release(gfp_mask);
3629 memalloc_noreclaim_restore(noreclaim_flag);
3630
3631 cond_resched();
3632
3633 return progress;
3634 }
3635
3636 /* The really slow allocator path where we enter direct reclaim */
3637 static inline struct page *
3638 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3639 unsigned int alloc_flags, const struct alloc_context *ac,
3640 unsigned long *did_some_progress)
3641 {
3642 struct page *page = NULL;
3643 bool drained = false;
3644
3645 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3646 if (unlikely(!(*did_some_progress)))
3647 return NULL;
3648
3649 retry:
3650 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3651
3652 /*
3653 * If an allocation failed after direct reclaim, it could be because
3654 * pages are pinned on the per-cpu lists or in high alloc reserves.
3655 * Shrink them them and try again
3656 */
3657 if (!page && !drained) {
3658 unreserve_highatomic_pageblock(ac, false);
3659 drain_all_pages(NULL);
3660 drained = true;
3661 goto retry;
3662 }
3663
3664 return page;
3665 }
3666
3667 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3668 {
3669 struct zoneref *z;
3670 struct zone *zone;
3671 pg_data_t *last_pgdat = NULL;
3672
3673 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3674 ac->high_zoneidx, ac->nodemask) {
3675 if (last_pgdat != zone->zone_pgdat)
3676 wakeup_kswapd(zone, order, ac->high_zoneidx);
3677 last_pgdat = zone->zone_pgdat;
3678 }
3679 }
3680
3681 static inline unsigned int
3682 gfp_to_alloc_flags(gfp_t gfp_mask)
3683 {
3684 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3685
3686 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3687 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3688
3689 /*
3690 * The caller may dip into page reserves a bit more if the caller
3691 * cannot run direct reclaim, or if the caller has realtime scheduling
3692 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3693 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3694 */
3695 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3696
3697 if (gfp_mask & __GFP_ATOMIC) {
3698 /*
3699 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3700 * if it can't schedule.
3701 */
3702 if (!(gfp_mask & __GFP_NOMEMALLOC))
3703 alloc_flags |= ALLOC_HARDER;
3704 /*
3705 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3706 * comment for __cpuset_node_allowed().
3707 */
3708 alloc_flags &= ~ALLOC_CPUSET;
3709 } else if (unlikely(rt_task(current)) && !in_interrupt())
3710 alloc_flags |= ALLOC_HARDER;
3711
3712 #ifdef CONFIG_CMA
3713 if ((gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) ||
3714 ((gfp_mask & GFP_HIGHUSER_MOVABLE) == GFP_HIGHUSER_MOVABLE))
3715 alloc_flags |= ALLOC_CMA;
3716 #endif
3717 return alloc_flags;
3718 }
3719
3720 static bool oom_reserves_allowed(struct task_struct *tsk)
3721 {
3722 if (!tsk_is_oom_victim(tsk))
3723 return false;
3724
3725 /*
3726 * !MMU doesn't have oom reaper so give access to memory reserves
3727 * only to the thread with TIF_MEMDIE set
3728 */
3729 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3730 return false;
3731
3732 return true;
3733 }
3734
3735 /*
3736 * Distinguish requests which really need access to full memory
3737 * reserves from oom victims which can live with a portion of it
3738 */
3739 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3740 {
3741 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3742 return 0;
3743 if (gfp_mask & __GFP_MEMALLOC)
3744 return ALLOC_NO_WATERMARKS;
3745 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3746 return ALLOC_NO_WATERMARKS;
3747 if (!in_interrupt()) {
3748 if (current->flags & PF_MEMALLOC)
3749 return ALLOC_NO_WATERMARKS;
3750 else if (oom_reserves_allowed(current))
3751 return ALLOC_OOM;
3752 }
3753
3754 return 0;
3755 }
3756
3757 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3758 {
3759 return !!__gfp_pfmemalloc_flags(gfp_mask);
3760 }
3761
3762 /*
3763 * Checks whether it makes sense to retry the reclaim to make a forward progress
3764 * for the given allocation request.
3765 *
3766 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3767 * without success, or when we couldn't even meet the watermark if we
3768 * reclaimed all remaining pages on the LRU lists.
3769 *
3770 * Returns true if a retry is viable or false to enter the oom path.
3771 */
3772 static inline bool
3773 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3774 struct alloc_context *ac, int alloc_flags,
3775 bool did_some_progress, int *no_progress_loops)
3776 {
3777 struct zone *zone;
3778 struct zoneref *z;
3779
3780 /*
3781 * Costly allocations might have made a progress but this doesn't mean
3782 * their order will become available due to high fragmentation so
3783 * always increment the no progress counter for them
3784 */
3785 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3786 *no_progress_loops = 0;
3787 else
3788 (*no_progress_loops)++;
3789
3790 /*
3791 * Make sure we converge to OOM if we cannot make any progress
3792 * several times in the row.
3793 */
3794 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3795 /* Before OOM, exhaust highatomic_reserve */
3796 return unreserve_highatomic_pageblock(ac, true);
3797 }
3798
3799 /*
3800 * Keep reclaiming pages while there is a chance this will lead
3801 * somewhere. If none of the target zones can satisfy our allocation
3802 * request even if all reclaimable pages are considered then we are
3803 * screwed and have to go OOM.
3804 */
3805 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3806 ac->nodemask) {
3807 unsigned long available;
3808 unsigned long reclaimable;
3809 unsigned long min_wmark = min_wmark_pages(zone);
3810 bool wmark;
3811
3812 available = reclaimable = zone_reclaimable_pages(zone);
3813 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3814
3815 /*
3816 * Would the allocation succeed if we reclaimed all
3817 * reclaimable pages?
3818 */
3819 wmark = __zone_watermark_ok(zone, order, min_wmark,
3820 ac_classzone_idx(ac), alloc_flags, available);
3821 trace_reclaim_retry_zone(z, order, reclaimable,
3822 available, min_wmark, *no_progress_loops, wmark);
3823 if (wmark) {
3824 /*
3825 * If we didn't make any progress and have a lot of
3826 * dirty + writeback pages then we should wait for
3827 * an IO to complete to slow down the reclaim and
3828 * prevent from pre mature OOM
3829 */
3830 if (!did_some_progress) {
3831 unsigned long write_pending;
3832
3833 write_pending = zone_page_state_snapshot(zone,
3834 NR_ZONE_WRITE_PENDING);
3835
3836 if (2 * write_pending > reclaimable) {
3837 congestion_wait(BLK_RW_ASYNC, HZ/10);
3838 return true;
3839 }
3840 }
3841
3842 /*
3843 * Memory allocation/reclaim might be called from a WQ
3844 * context and the current implementation of the WQ
3845 * concurrency control doesn't recognize that
3846 * a particular WQ is congested if the worker thread is
3847 * looping without ever sleeping. Therefore we have to
3848 * do a short sleep here rather than calling
3849 * cond_resched().
3850 */
3851 if (current->flags & PF_WQ_WORKER)
3852 schedule_timeout_uninterruptible(1);
3853 else
3854 cond_resched();
3855
3856 return true;
3857 }
3858 }
3859
3860 return false;
3861 }
3862
3863 static inline bool
3864 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3865 {
3866 /*
3867 * It's possible that cpuset's mems_allowed and the nodemask from
3868 * mempolicy don't intersect. This should be normally dealt with by
3869 * policy_nodemask(), but it's possible to race with cpuset update in
3870 * such a way the check therein was true, and then it became false
3871 * before we got our cpuset_mems_cookie here.
3872 * This assumes that for all allocations, ac->nodemask can come only
3873 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3874 * when it does not intersect with the cpuset restrictions) or the
3875 * caller can deal with a violated nodemask.
3876 */
3877 if (cpusets_enabled() && ac->nodemask &&
3878 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3879 ac->nodemask = NULL;
3880 return true;
3881 }
3882
3883 /*
3884 * When updating a task's mems_allowed or mempolicy nodemask, it is
3885 * possible to race with parallel threads in such a way that our
3886 * allocation can fail while the mask is being updated. If we are about
3887 * to fail, check if the cpuset changed during allocation and if so,
3888 * retry.
3889 */
3890 if (read_mems_allowed_retry(cpuset_mems_cookie))
3891 return true;
3892
3893 return false;
3894 }
3895
3896 static inline struct page *
3897 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3898 struct alloc_context *ac)
3899 {
3900 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3901 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3902 struct page *page = NULL;
3903 unsigned int alloc_flags;
3904 unsigned long did_some_progress;
3905 enum compact_priority compact_priority;
3906 enum compact_result compact_result;
3907 int compaction_retries;
3908 int no_progress_loops;
3909 unsigned long alloc_start = jiffies;
3910 unsigned int stall_timeout = 10 * HZ;
3911 unsigned int cpuset_mems_cookie;
3912 int reserve_flags;
3913
3914 /*
3915 * In the slowpath, we sanity check order to avoid ever trying to
3916 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3917 * be using allocators in order of preference for an area that is
3918 * too large.
3919 */
3920 if (order >= MAX_ORDER) {
3921 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3922 return NULL;
3923 }
3924
3925 /*
3926 * We also sanity check to catch abuse of atomic reserves being used by
3927 * callers that are not in atomic context.
3928 */
3929 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3930 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3931 gfp_mask &= ~__GFP_ATOMIC;
3932
3933 retry_cpuset:
3934 compaction_retries = 0;
3935 no_progress_loops = 0;
3936 compact_priority = DEF_COMPACT_PRIORITY;
3937 cpuset_mems_cookie = read_mems_allowed_begin();
3938
3939 /*
3940 * The fast path uses conservative alloc_flags to succeed only until
3941 * kswapd needs to be woken up, and to avoid the cost of setting up
3942 * alloc_flags precisely. So we do that now.
3943 */
3944 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3945
3946 /*
3947 * We need to recalculate the starting point for the zonelist iterator
3948 * because we might have used different nodemask in the fast path, or
3949 * there was a cpuset modification and we are retrying - otherwise we
3950 * could end up iterating over non-eligible zones endlessly.
3951 */
3952 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3953 ac->high_zoneidx, ac->nodemask);
3954 if (!ac->preferred_zoneref->zone)
3955 goto nopage;
3956
3957 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3958 wake_all_kswapds(order, ac);
3959
3960 /*
3961 * The adjusted alloc_flags might result in immediate success, so try
3962 * that first
3963 */
3964 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3965 if (page)
3966 goto got_pg;
3967
3968 /*
3969 * For costly allocations, try direct compaction first, as it's likely
3970 * that we have enough base pages and don't need to reclaim. For non-
3971 * movable high-order allocations, do that as well, as compaction will
3972 * try prevent permanent fragmentation by migrating from blocks of the
3973 * same migratetype.
3974 * Don't try this for allocations that are allowed to ignore
3975 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3976 */
3977 if (can_direct_reclaim &&
3978 (costly_order ||
3979 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3980 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3981 page = __alloc_pages_direct_compact(gfp_mask, order,
3982 alloc_flags, ac,
3983 INIT_COMPACT_PRIORITY,
3984 &compact_result);
3985 if (page)
3986 goto got_pg;
3987
3988 /*
3989 * Checks for costly allocations with __GFP_NORETRY, which
3990 * includes THP page fault allocations
3991 */
3992 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3993 /*
3994 * If compaction is deferred for high-order allocations,
3995 * it is because sync compaction recently failed. If
3996 * this is the case and the caller requested a THP
3997 * allocation, we do not want to heavily disrupt the
3998 * system, so we fail the allocation instead of entering
3999 * direct reclaim.
4000 */
4001 if (compact_result == COMPACT_DEFERRED)
4002 goto nopage;
4003
4004 /*
4005 * Looks like reclaim/compaction is worth trying, but
4006 * sync compaction could be very expensive, so keep
4007 * using async compaction.
4008 */
4009 compact_priority = INIT_COMPACT_PRIORITY;
4010 }
4011 }
4012
4013 retry:
4014 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4015 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4016 wake_all_kswapds(order, ac);
4017
4018 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4019 if (reserve_flags)
4020 alloc_flags = reserve_flags;
4021
4022 /*
4023 * Reset the zonelist iterators if memory policies can be ignored.
4024 * These allocations are high priority and system rather than user
4025 * orientated.
4026 */
4027 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4028 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4029 ac->high_zoneidx, ac->nodemask);
4030 }
4031
4032 /* Attempt with potentially adjusted zonelist and alloc_flags */
4033 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4034 if (page)
4035 goto got_pg;
4036
4037 /* Caller is not willing to reclaim, we can't balance anything */
4038 if (!can_direct_reclaim)
4039 goto nopage;
4040
4041 /* Make sure we know about allocations which stall for too long */
4042 if (time_after(jiffies, alloc_start + stall_timeout)) {
4043 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
4044 "page allocation stalls for %ums, order:%u",
4045 jiffies_to_msecs(jiffies-alloc_start), order);
4046 stall_timeout += 10 * HZ;
4047 }
4048
4049 /* Avoid recursion of direct reclaim */
4050 if (current->flags & PF_MEMALLOC)
4051 goto nopage;
4052
4053 /* Try direct reclaim and then allocating */
4054 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4055 &did_some_progress);
4056 if (page)
4057 goto got_pg;
4058
4059 /* Try direct compaction and then allocating */
4060 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4061 compact_priority, &compact_result);
4062 if (page)
4063 goto got_pg;
4064
4065 /* Do not loop if specifically requested */
4066 if (gfp_mask & __GFP_NORETRY)
4067 goto nopage;
4068
4069 /*
4070 * Do not retry costly high order allocations unless they are
4071 * __GFP_RETRY_MAYFAIL
4072 */
4073 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4074 goto nopage;
4075
4076 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4077 did_some_progress > 0, &no_progress_loops))
4078 goto retry;
4079
4080 /*
4081 * It doesn't make any sense to retry for the compaction if the order-0
4082 * reclaim is not able to make any progress because the current
4083 * implementation of the compaction depends on the sufficient amount
4084 * of free memory (see __compaction_suitable)
4085 */
4086 if (did_some_progress > 0 &&
4087 should_compact_retry(ac, order, alloc_flags,
4088 compact_result, &compact_priority,
4089 &compaction_retries))
4090 goto retry;
4091
4092
4093 /* Deal with possible cpuset update races before we start OOM killing */
4094 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4095 goto retry_cpuset;
4096
4097 /* Reclaim has failed us, start killing things */
4098 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4099 if (page)
4100 goto got_pg;
4101
4102 /* Avoid allocations with no watermarks from looping endlessly */
4103 if (tsk_is_oom_victim(current) &&
4104 (alloc_flags == ALLOC_OOM ||
4105 (gfp_mask & __GFP_NOMEMALLOC)))
4106 goto nopage;
4107
4108 /* Retry as long as the OOM killer is making progress */
4109 if (did_some_progress) {
4110 no_progress_loops = 0;
4111 goto retry;
4112 }
4113
4114 nopage:
4115 /* Deal with possible cpuset update races before we fail */
4116 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4117 goto retry_cpuset;
4118
4119 /*
4120 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4121 * we always retry
4122 */
4123 if (gfp_mask & __GFP_NOFAIL) {
4124 /*
4125 * All existing users of the __GFP_NOFAIL are blockable, so warn
4126 * of any new users that actually require GFP_NOWAIT
4127 */
4128 if (WARN_ON_ONCE(!can_direct_reclaim))
4129 goto fail;
4130
4131 /*
4132 * PF_MEMALLOC request from this context is rather bizarre
4133 * because we cannot reclaim anything and only can loop waiting
4134 * for somebody to do a work for us
4135 */
4136 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4137
4138 /*
4139 * non failing costly orders are a hard requirement which we
4140 * are not prepared for much so let's warn about these users
4141 * so that we can identify them and convert them to something
4142 * else.
4143 */
4144 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4145
4146 /*
4147 * Help non-failing allocations by giving them access to memory
4148 * reserves but do not use ALLOC_NO_WATERMARKS because this
4149 * could deplete whole memory reserves which would just make
4150 * the situation worse
4151 */
4152 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4153 if (page)
4154 goto got_pg;
4155
4156 cond_resched();
4157 goto retry;
4158 }
4159 fail:
4160 warn_alloc(gfp_mask, ac->nodemask,
4161 "page allocation failure: order:%u", order);
4162 got_pg:
4163 return page;
4164 }
4165
4166 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4167 int preferred_nid, nodemask_t *nodemask,
4168 struct alloc_context *ac, gfp_t *alloc_mask,
4169 unsigned int *alloc_flags)
4170 {
4171 ac->high_zoneidx = gfp_zone(gfp_mask);
4172 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4173 ac->nodemask = nodemask;
4174 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4175
4176 if (cpusets_enabled()) {
4177 *alloc_mask |= __GFP_HARDWALL;
4178 if (!ac->nodemask)
4179 ac->nodemask = &cpuset_current_mems_allowed;
4180 else
4181 *alloc_flags |= ALLOC_CPUSET;
4182 }
4183
4184 fs_reclaim_acquire(gfp_mask);
4185 fs_reclaim_release(gfp_mask);
4186
4187 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4188
4189 if (should_fail_alloc_page(gfp_mask, order))
4190 return false;
4191
4192 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4193 *alloc_flags |= ALLOC_CMA;
4194
4195 return true;
4196 }
4197
4198 /* Determine whether to spread dirty pages and what the first usable zone */
4199 static inline void finalise_ac(gfp_t gfp_mask,
4200 unsigned int order, struct alloc_context *ac)
4201 {
4202 /* Dirty zone balancing only done in the fast path */
4203 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4204
4205 /*
4206 * The preferred zone is used for statistics but crucially it is
4207 * also used as the starting point for the zonelist iterator. It
4208 * may get reset for allocations that ignore memory policies.
4209 */
4210 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4211 ac->high_zoneidx, ac->nodemask);
4212 }
4213
4214 /*
4215 * This is the 'heart' of the zoned buddy allocator.
4216 */
4217 struct page *
4218 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4219 nodemask_t *nodemask)
4220 {
4221 struct page *page;
4222 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4223 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4224 struct alloc_context ac = { };
4225
4226 gfp_mask &= gfp_allowed_mask;
4227 alloc_mask = gfp_mask;
4228 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4229 return NULL;
4230
4231 finalise_ac(gfp_mask, order, &ac);
4232
4233 /* First allocation attempt */
4234 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4235 if (likely(page))
4236 goto out;
4237
4238 /*
4239 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4240 * resp. GFP_NOIO which has to be inherited for all allocation requests
4241 * from a particular context which has been marked by
4242 * memalloc_no{fs,io}_{save,restore}.
4243 */
4244 alloc_mask = current_gfp_context(gfp_mask);
4245 ac.spread_dirty_pages = false;
4246
4247 /*
4248 * Restore the original nodemask if it was potentially replaced with
4249 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4250 */
4251 if (unlikely(ac.nodemask != nodemask))
4252 ac.nodemask = nodemask;
4253
4254 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4255
4256 out:
4257 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4258 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4259 __free_pages(page, order);
4260 page = NULL;
4261 }
4262
4263 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4264
4265 return page;
4266 }
4267 EXPORT_SYMBOL(__alloc_pages_nodemask);
4268
4269 /*
4270 * Common helper functions.
4271 */
4272 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4273 {
4274 struct page *page;
4275
4276 /*
4277 * __get_free_pages() returns a 32-bit address, which cannot represent
4278 * a highmem page
4279 */
4280 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4281
4282 page = alloc_pages(gfp_mask, order);
4283 if (!page)
4284 return 0;
4285 return (unsigned long) page_address(page);
4286 }
4287 EXPORT_SYMBOL(__get_free_pages);
4288
4289 unsigned long get_zeroed_page(gfp_t gfp_mask)
4290 {
4291 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4292 }
4293 EXPORT_SYMBOL(get_zeroed_page);
4294
4295 void __free_pages(struct page *page, unsigned int order)
4296 {
4297 if (put_page_testzero(page)) {
4298 if (order == 0)
4299 free_hot_cold_page(page, false);
4300 else
4301 __free_pages_ok(page, order);
4302 }
4303 }
4304
4305 EXPORT_SYMBOL(__free_pages);
4306
4307 void free_pages(unsigned long addr, unsigned int order)
4308 {
4309 if (addr != 0) {
4310 VM_BUG_ON(!virt_addr_valid((void *)addr));
4311 __free_pages(virt_to_page((void *)addr), order);
4312 }
4313 }
4314
4315 EXPORT_SYMBOL(free_pages);
4316
4317 /*
4318 * Page Fragment:
4319 * An arbitrary-length arbitrary-offset area of memory which resides
4320 * within a 0 or higher order page. Multiple fragments within that page
4321 * are individually refcounted, in the page's reference counter.
4322 *
4323 * The page_frag functions below provide a simple allocation framework for
4324 * page fragments. This is used by the network stack and network device
4325 * drivers to provide a backing region of memory for use as either an
4326 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4327 */
4328 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4329 gfp_t gfp_mask)
4330 {
4331 struct page *page = NULL;
4332 gfp_t gfp = gfp_mask;
4333
4334 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4335 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4336 __GFP_NOMEMALLOC;
4337 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4338 PAGE_FRAG_CACHE_MAX_ORDER);
4339 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4340 #endif
4341 if (unlikely(!page))
4342 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4343
4344 nc->va = page ? page_address(page) : NULL;
4345
4346 return page;
4347 }
4348
4349 void __page_frag_cache_drain(struct page *page, unsigned int count)
4350 {
4351 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4352
4353 if (page_ref_sub_and_test(page, count)) {
4354 unsigned int order = compound_order(page);
4355
4356 if (order == 0)
4357 free_hot_cold_page(page, false);
4358 else
4359 __free_pages_ok(page, order);
4360 }
4361 }
4362 EXPORT_SYMBOL(__page_frag_cache_drain);
4363
4364 void *page_frag_alloc(struct page_frag_cache *nc,
4365 unsigned int fragsz, gfp_t gfp_mask)
4366 {
4367 unsigned int size = PAGE_SIZE;
4368 struct page *page;
4369 int offset;
4370
4371 if (unlikely(!nc->va)) {
4372 refill:
4373 page = __page_frag_cache_refill(nc, gfp_mask);
4374 if (!page)
4375 return NULL;
4376
4377 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4378 /* if size can vary use size else just use PAGE_SIZE */
4379 size = nc->size;
4380 #endif
4381 /* Even if we own the page, we do not use atomic_set().
4382 * This would break get_page_unless_zero() users.
4383 */
4384 page_ref_add(page, size - 1);
4385
4386 /* reset page count bias and offset to start of new frag */
4387 nc->pfmemalloc = page_is_pfmemalloc(page);
4388 nc->pagecnt_bias = size;
4389 nc->offset = size;
4390 }
4391
4392 offset = nc->offset - fragsz;
4393 if (unlikely(offset < 0)) {
4394 page = virt_to_page(nc->va);
4395
4396 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4397 goto refill;
4398
4399 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4400 /* if size can vary use size else just use PAGE_SIZE */
4401 size = nc->size;
4402 #endif
4403 /* OK, page count is 0, we can safely set it */
4404 set_page_count(page, size);
4405
4406 /* reset page count bias and offset to start of new frag */
4407 nc->pagecnt_bias = size;
4408 offset = size - fragsz;
4409 }
4410
4411 nc->pagecnt_bias--;
4412 nc->offset = offset;
4413
4414 return nc->va + offset;
4415 }
4416 EXPORT_SYMBOL(page_frag_alloc);
4417
4418 /*
4419 * Frees a page fragment allocated out of either a compound or order 0 page.
4420 */
4421 void page_frag_free(void *addr)
4422 {
4423 struct page *page = virt_to_head_page(addr);
4424
4425 if (unlikely(put_page_testzero(page)))
4426 __free_pages_ok(page, compound_order(page));
4427 }
4428 EXPORT_SYMBOL(page_frag_free);
4429
4430 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4431 size_t size)
4432 {
4433 if (addr) {
4434 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4435 unsigned long used = addr + PAGE_ALIGN(size);
4436
4437 split_page(virt_to_page((void *)addr), order);
4438 while (used < alloc_end) {
4439 free_page(used);
4440 used += PAGE_SIZE;
4441 }
4442 }
4443 return (void *)addr;
4444 }
4445
4446 /**
4447 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4448 * @size: the number of bytes to allocate
4449 * @gfp_mask: GFP flags for the allocation
4450 *
4451 * This function is similar to alloc_pages(), except that it allocates the
4452 * minimum number of pages to satisfy the request. alloc_pages() can only
4453 * allocate memory in power-of-two pages.
4454 *
4455 * This function is also limited by MAX_ORDER.
4456 *
4457 * Memory allocated by this function must be released by free_pages_exact().
4458 */
4459 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4460 {
4461 unsigned int order = get_order(size);
4462 unsigned long addr;
4463
4464 addr = __get_free_pages(gfp_mask, order);
4465 return make_alloc_exact(addr, order, size);
4466 }
4467 EXPORT_SYMBOL(alloc_pages_exact);
4468
4469 /**
4470 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4471 * pages on a node.
4472 * @nid: the preferred node ID where memory should be allocated
4473 * @size: the number of bytes to allocate
4474 * @gfp_mask: GFP flags for the allocation
4475 *
4476 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4477 * back.
4478 */
4479 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4480 {
4481 unsigned int order = get_order(size);
4482 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4483 if (!p)
4484 return NULL;
4485 return make_alloc_exact((unsigned long)page_address(p), order, size);
4486 }
4487
4488 /**
4489 * free_pages_exact - release memory allocated via alloc_pages_exact()
4490 * @virt: the value returned by alloc_pages_exact.
4491 * @size: size of allocation, same value as passed to alloc_pages_exact().
4492 *
4493 * Release the memory allocated by a previous call to alloc_pages_exact.
4494 */
4495 void free_pages_exact(void *virt, size_t size)
4496 {
4497 unsigned long addr = (unsigned long)virt;
4498 unsigned long end = addr + PAGE_ALIGN(size);
4499
4500 while (addr < end) {
4501 free_page(addr);
4502 addr += PAGE_SIZE;
4503 }
4504 }
4505 EXPORT_SYMBOL(free_pages_exact);
4506
4507 /**
4508 * nr_free_zone_pages - count number of pages beyond high watermark
4509 * @offset: The zone index of the highest zone
4510 *
4511 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4512 * high watermark within all zones at or below a given zone index. For each
4513 * zone, the number of pages is calculated as:
4514 *
4515 * nr_free_zone_pages = managed_pages - high_pages
4516 */
4517 static unsigned long nr_free_zone_pages(int offset)
4518 {
4519 struct zoneref *z;
4520 struct zone *zone;
4521
4522 /* Just pick one node, since fallback list is circular */
4523 unsigned long sum = 0;
4524
4525 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4526
4527 for_each_zone_zonelist(zone, z, zonelist, offset) {
4528 unsigned long size = zone->managed_pages;
4529 unsigned long high = high_wmark_pages(zone);
4530 if (size > high)
4531 sum += size - high;
4532 }
4533
4534 return sum;
4535 }
4536
4537 /**
4538 * nr_free_buffer_pages - count number of pages beyond high watermark
4539 *
4540 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4541 * watermark within ZONE_DMA and ZONE_NORMAL.
4542 */
4543 unsigned long nr_free_buffer_pages(void)
4544 {
4545 return nr_free_zone_pages(gfp_zone(GFP_USER));
4546 }
4547 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4548
4549 /**
4550 * nr_free_pagecache_pages - count number of pages beyond high watermark
4551 *
4552 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4553 * high watermark within all zones.
4554 */
4555 unsigned long nr_free_pagecache_pages(void)
4556 {
4557 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4558 }
4559
4560 static inline void show_node(struct zone *zone)
4561 {
4562 if (IS_ENABLED(CONFIG_NUMA))
4563 printk("Node %d ", zone_to_nid(zone));
4564 }
4565
4566 long si_mem_available(void)
4567 {
4568 long available;
4569 unsigned long pagecache;
4570 unsigned long wmark_low = 0;
4571 unsigned long pages[NR_LRU_LISTS];
4572 struct zone *zone;
4573 int lru;
4574
4575 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4576 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4577
4578 for_each_zone(zone)
4579 wmark_low += zone->watermark[WMARK_LOW];
4580
4581 /*
4582 * Estimate the amount of memory available for userspace allocations,
4583 * without causing swapping.
4584 */
4585 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4586
4587 /*
4588 * Not all the page cache can be freed, otherwise the system will
4589 * start swapping. Assume at least half of the page cache, or the
4590 * low watermark worth of cache, needs to stay.
4591 */
4592 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4593 pagecache -= min(pagecache / 2, wmark_low);
4594 available += pagecache;
4595
4596 /*
4597 * Part of the reclaimable slab consists of items that are in use,
4598 * and cannot be freed. Cap this estimate at the low watermark.
4599 */
4600 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4601 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4602 wmark_low);
4603
4604 if (available < 0)
4605 available = 0;
4606 return available;
4607 }
4608 EXPORT_SYMBOL_GPL(si_mem_available);
4609
4610 void si_meminfo(struct sysinfo *val)
4611 {
4612 val->totalram = totalram_pages;
4613 val->sharedram = global_node_page_state(NR_SHMEM);
4614 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4615 val->bufferram = nr_blockdev_pages();
4616 val->totalhigh = totalhigh_pages;
4617 val->freehigh = nr_free_highpages();
4618 val->mem_unit = PAGE_SIZE;
4619 }
4620
4621 EXPORT_SYMBOL(si_meminfo);
4622
4623 #ifdef CONFIG_NUMA
4624 void si_meminfo_node(struct sysinfo *val, int nid)
4625 {
4626 int zone_type; /* needs to be signed */
4627 unsigned long managed_pages = 0;
4628 unsigned long managed_highpages = 0;
4629 unsigned long free_highpages = 0;
4630 pg_data_t *pgdat = NODE_DATA(nid);
4631
4632 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4633 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4634 val->totalram = managed_pages;
4635 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4636 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4637 #ifdef CONFIG_HIGHMEM
4638 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4639 struct zone *zone = &pgdat->node_zones[zone_type];
4640
4641 if (is_highmem(zone)) {
4642 managed_highpages += zone->managed_pages;
4643 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4644 }
4645 }
4646 val->totalhigh = managed_highpages;
4647 val->freehigh = free_highpages;
4648 #else
4649 val->totalhigh = managed_highpages;
4650 val->freehigh = free_highpages;
4651 #endif
4652 val->mem_unit = PAGE_SIZE;
4653 }
4654 #endif
4655
4656 /*
4657 * Determine whether the node should be displayed or not, depending on whether
4658 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4659 */
4660 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4661 {
4662 if (!(flags & SHOW_MEM_FILTER_NODES))
4663 return false;
4664
4665 /*
4666 * no node mask - aka implicit memory numa policy. Do not bother with
4667 * the synchronization - read_mems_allowed_begin - because we do not
4668 * have to be precise here.
4669 */
4670 if (!nodemask)
4671 nodemask = &cpuset_current_mems_allowed;
4672
4673 return !node_isset(nid, *nodemask);
4674 }
4675
4676 #define K(x) ((x) << (PAGE_SHIFT-10))
4677
4678 static void show_migration_types(unsigned char type)
4679 {
4680 static const char types[MIGRATE_TYPES] = {
4681 [MIGRATE_UNMOVABLE] = 'U',
4682 [MIGRATE_MOVABLE] = 'M',
4683 [MIGRATE_RECLAIMABLE] = 'E',
4684 [MIGRATE_HIGHATOMIC] = 'H',
4685 #ifdef CONFIG_CMA
4686 [MIGRATE_CMA] = 'C',
4687 #endif
4688 #ifdef CONFIG_MEMORY_ISOLATION
4689 [MIGRATE_ISOLATE] = 'I',
4690 #endif
4691 };
4692 char tmp[MIGRATE_TYPES + 1];
4693 char *p = tmp;
4694 int i;
4695
4696 for (i = 0; i < MIGRATE_TYPES; i++) {
4697 if (type & (1 << i))
4698 *p++ = types[i];
4699 }
4700
4701 *p = '\0';
4702 printk(KERN_CONT "(%s) ", tmp);
4703 }
4704
4705 /*
4706 * Show free area list (used inside shift_scroll-lock stuff)
4707 * We also calculate the percentage fragmentation. We do this by counting the
4708 * memory on each free list with the exception of the first item on the list.
4709 *
4710 * Bits in @filter:
4711 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4712 * cpuset.
4713 */
4714 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4715 {
4716 unsigned long free_pcp = 0;
4717 int cpu;
4718 struct zone *zone;
4719 pg_data_t *pgdat;
4720
4721 for_each_populated_zone(zone) {
4722 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4723 continue;
4724
4725 for_each_online_cpu(cpu)
4726 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4727 }
4728
4729 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4730 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4731 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4732 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4733 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4734 " free:%lu free_pcp:%lu free_cma:%lu\n",
4735 global_node_page_state(NR_ACTIVE_ANON),
4736 global_node_page_state(NR_INACTIVE_ANON),
4737 global_node_page_state(NR_ISOLATED_ANON),
4738 global_node_page_state(NR_ACTIVE_FILE),
4739 global_node_page_state(NR_INACTIVE_FILE),
4740 global_node_page_state(NR_ISOLATED_FILE),
4741 global_node_page_state(NR_UNEVICTABLE),
4742 global_node_page_state(NR_FILE_DIRTY),
4743 global_node_page_state(NR_WRITEBACK),
4744 global_node_page_state(NR_UNSTABLE_NFS),
4745 global_node_page_state(NR_SLAB_RECLAIMABLE),
4746 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4747 global_node_page_state(NR_FILE_MAPPED),
4748 global_node_page_state(NR_SHMEM),
4749 global_zone_page_state(NR_PAGETABLE),
4750 global_zone_page_state(NR_BOUNCE),
4751 global_zone_page_state(NR_FREE_PAGES),
4752 free_pcp,
4753 global_zone_page_state(NR_FREE_CMA_PAGES));
4754
4755 for_each_online_pgdat(pgdat) {
4756 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4757 continue;
4758
4759 printk("Node %d"
4760 " active_anon:%lukB"
4761 " inactive_anon:%lukB"
4762 " active_file:%lukB"
4763 " inactive_file:%lukB"
4764 " unevictable:%lukB"
4765 " isolated(anon):%lukB"
4766 " isolated(file):%lukB"
4767 " mapped:%lukB"
4768 " dirty:%lukB"
4769 " writeback:%lukB"
4770 " shmem:%lukB"
4771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4772 " shmem_thp: %lukB"
4773 " shmem_pmdmapped: %lukB"
4774 " anon_thp: %lukB"
4775 #endif
4776 " writeback_tmp:%lukB"
4777 " unstable:%lukB"
4778 " all_unreclaimable? %s"
4779 "\n",
4780 pgdat->node_id,
4781 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4782 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4783 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4784 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4785 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4786 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4787 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4788 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4789 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4790 K(node_page_state(pgdat, NR_WRITEBACK)),
4791 K(node_page_state(pgdat, NR_SHMEM)),
4792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4793 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4794 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4795 * HPAGE_PMD_NR),
4796 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4797 #endif
4798 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4799 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4800 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4801 "yes" : "no");
4802 }
4803
4804 for_each_populated_zone(zone) {
4805 int i;
4806
4807 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4808 continue;
4809
4810 free_pcp = 0;
4811 for_each_online_cpu(cpu)
4812 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4813
4814 show_node(zone);
4815 printk(KERN_CONT
4816 "%s"
4817 " free:%lukB"
4818 " min:%lukB"
4819 " low:%lukB"
4820 " high:%lukB"
4821 " active_anon:%lukB"
4822 " inactive_anon:%lukB"
4823 " active_file:%lukB"
4824 " inactive_file:%lukB"
4825 " unevictable:%lukB"
4826 " writepending:%lukB"
4827 " present:%lukB"
4828 " managed:%lukB"
4829 " mlocked:%lukB"
4830 " kernel_stack:%lukB"
4831 " pagetables:%lukB"
4832 " bounce:%lukB"
4833 " free_pcp:%lukB"
4834 " local_pcp:%ukB"
4835 " free_cma:%lukB"
4836 "\n",
4837 zone->name,
4838 K(zone_page_state(zone, NR_FREE_PAGES)),
4839 K(min_wmark_pages(zone)),
4840 K(low_wmark_pages(zone)),
4841 K(high_wmark_pages(zone)),
4842 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4843 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4844 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4845 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4846 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4847 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4848 K(zone->present_pages),
4849 K(zone->managed_pages),
4850 K(zone_page_state(zone, NR_MLOCK)),
4851 zone_page_state(zone, NR_KERNEL_STACK_KB),
4852 K(zone_page_state(zone, NR_PAGETABLE)),
4853 K(zone_page_state(zone, NR_BOUNCE)),
4854 K(free_pcp),
4855 K(this_cpu_read(zone->pageset->pcp.count)),
4856 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4857 printk("lowmem_reserve[]:");
4858 for (i = 0; i < MAX_NR_ZONES; i++)
4859 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4860 printk(KERN_CONT "\n");
4861 }
4862
4863 for_each_populated_zone(zone) {
4864 unsigned int order;
4865 unsigned long nr[MAX_ORDER], flags, total = 0;
4866 unsigned char types[MAX_ORDER];
4867
4868 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4869 continue;
4870 show_node(zone);
4871 printk(KERN_CONT "%s: ", zone->name);
4872
4873 spin_lock_irqsave(&zone->lock, flags);
4874 for (order = 0; order < MAX_ORDER; order++) {
4875 struct free_area *area = &zone->free_area[order];
4876 int type;
4877
4878 nr[order] = area->nr_free;
4879 total += nr[order] << order;
4880
4881 types[order] = 0;
4882 for (type = 0; type < MIGRATE_TYPES; type++) {
4883 if (!list_empty(&area->free_list[type]))
4884 types[order] |= 1 << type;
4885 }
4886 }
4887 spin_unlock_irqrestore(&zone->lock, flags);
4888 for (order = 0; order < MAX_ORDER; order++) {
4889 printk(KERN_CONT "%lu*%lukB ",
4890 nr[order], K(1UL) << order);
4891 if (nr[order])
4892 show_migration_types(types[order]);
4893 }
4894 printk(KERN_CONT "= %lukB\n", K(total));
4895 }
4896
4897 hugetlb_show_meminfo();
4898
4899 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4900
4901 show_swap_cache_info();
4902 }
4903
4904 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4905 {
4906 zoneref->zone = zone;
4907 zoneref->zone_idx = zone_idx(zone);
4908 }
4909
4910 /*
4911 * Builds allocation fallback zone lists.
4912 *
4913 * Add all populated zones of a node to the zonelist.
4914 */
4915 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4916 {
4917 struct zone *zone;
4918 enum zone_type zone_type = MAX_NR_ZONES;
4919 int nr_zones = 0;
4920
4921 do {
4922 zone_type--;
4923 zone = pgdat->node_zones + zone_type;
4924 if (managed_zone(zone)) {
4925 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4926 check_highest_zone(zone_type);
4927 }
4928 } while (zone_type);
4929
4930 return nr_zones;
4931 }
4932
4933 #ifdef CONFIG_NUMA
4934
4935 static int __parse_numa_zonelist_order(char *s)
4936 {
4937 /*
4938 * We used to support different zonlists modes but they turned
4939 * out to be just not useful. Let's keep the warning in place
4940 * if somebody still use the cmd line parameter so that we do
4941 * not fail it silently
4942 */
4943 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4944 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4945 return -EINVAL;
4946 }
4947 return 0;
4948 }
4949
4950 static __init int setup_numa_zonelist_order(char *s)
4951 {
4952 if (!s)
4953 return 0;
4954
4955 return __parse_numa_zonelist_order(s);
4956 }
4957 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4958
4959 char numa_zonelist_order[] = "Node";
4960
4961 /*
4962 * sysctl handler for numa_zonelist_order
4963 */
4964 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4965 void __user *buffer, size_t *length,
4966 loff_t *ppos)
4967 {
4968 char *str;
4969 int ret;
4970
4971 if (!write)
4972 return proc_dostring(table, write, buffer, length, ppos);
4973 str = memdup_user_nul(buffer, 16);
4974 if (IS_ERR(str))
4975 return PTR_ERR(str);
4976
4977 ret = __parse_numa_zonelist_order(str);
4978 kfree(str);
4979 return ret;
4980 }
4981
4982
4983 #define MAX_NODE_LOAD (nr_online_nodes)
4984 static int node_load[MAX_NUMNODES];
4985
4986 /**
4987 * find_next_best_node - find the next node that should appear in a given node's fallback list
4988 * @node: node whose fallback list we're appending
4989 * @used_node_mask: nodemask_t of already used nodes
4990 *
4991 * We use a number of factors to determine which is the next node that should
4992 * appear on a given node's fallback list. The node should not have appeared
4993 * already in @node's fallback list, and it should be the next closest node
4994 * according to the distance array (which contains arbitrary distance values
4995 * from each node to each node in the system), and should also prefer nodes
4996 * with no CPUs, since presumably they'll have very little allocation pressure
4997 * on them otherwise.
4998 * It returns -1 if no node is found.
4999 */
5000 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5001 {
5002 int n, val;
5003 int min_val = INT_MAX;
5004 int best_node = NUMA_NO_NODE;
5005 const struct cpumask *tmp = cpumask_of_node(0);
5006
5007 /* Use the local node if we haven't already */
5008 if (!node_isset(node, *used_node_mask)) {
5009 node_set(node, *used_node_mask);
5010 return node;
5011 }
5012
5013 for_each_node_state(n, N_MEMORY) {
5014
5015 /* Don't want a node to appear more than once */
5016 if (node_isset(n, *used_node_mask))
5017 continue;
5018
5019 /* Use the distance array to find the distance */
5020 val = node_distance(node, n);
5021
5022 /* Penalize nodes under us ("prefer the next node") */
5023 val += (n < node);
5024
5025 /* Give preference to headless and unused nodes */
5026 tmp = cpumask_of_node(n);
5027 if (!cpumask_empty(tmp))
5028 val += PENALTY_FOR_NODE_WITH_CPUS;
5029
5030 /* Slight preference for less loaded node */
5031 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5032 val += node_load[n];
5033
5034 if (val < min_val) {
5035 min_val = val;
5036 best_node = n;
5037 }
5038 }
5039
5040 if (best_node >= 0)
5041 node_set(best_node, *used_node_mask);
5042
5043 return best_node;
5044 }
5045
5046
5047 /*
5048 * Build zonelists ordered by node and zones within node.
5049 * This results in maximum locality--normal zone overflows into local
5050 * DMA zone, if any--but risks exhausting DMA zone.
5051 */
5052 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5053 unsigned nr_nodes)
5054 {
5055 struct zoneref *zonerefs;
5056 int i;
5057
5058 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5059
5060 for (i = 0; i < nr_nodes; i++) {
5061 int nr_zones;
5062
5063 pg_data_t *node = NODE_DATA(node_order[i]);
5064
5065 nr_zones = build_zonerefs_node(node, zonerefs);
5066 zonerefs += nr_zones;
5067 }
5068 zonerefs->zone = NULL;
5069 zonerefs->zone_idx = 0;
5070 }
5071
5072 /*
5073 * Build gfp_thisnode zonelists
5074 */
5075 static void build_thisnode_zonelists(pg_data_t *pgdat)
5076 {
5077 struct zoneref *zonerefs;
5078 int nr_zones;
5079
5080 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5081 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5082 zonerefs += nr_zones;
5083 zonerefs->zone = NULL;
5084 zonerefs->zone_idx = 0;
5085 }
5086
5087 /*
5088 * Build zonelists ordered by zone and nodes within zones.
5089 * This results in conserving DMA zone[s] until all Normal memory is
5090 * exhausted, but results in overflowing to remote node while memory
5091 * may still exist in local DMA zone.
5092 */
5093
5094 static void build_zonelists(pg_data_t *pgdat)
5095 {
5096 static int node_order[MAX_NUMNODES];
5097 int node, load, nr_nodes = 0;
5098 nodemask_t used_mask;
5099 int local_node, prev_node;
5100
5101 /* NUMA-aware ordering of nodes */
5102 local_node = pgdat->node_id;
5103 load = nr_online_nodes;
5104 prev_node = local_node;
5105 nodes_clear(used_mask);
5106
5107 memset(node_order, 0, sizeof(node_order));
5108 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5109 /*
5110 * We don't want to pressure a particular node.
5111 * So adding penalty to the first node in same
5112 * distance group to make it round-robin.
5113 */
5114 if (node_distance(local_node, node) !=
5115 node_distance(local_node, prev_node))
5116 node_load[node] = load;
5117
5118 node_order[nr_nodes++] = node;
5119 prev_node = node;
5120 load--;
5121 }
5122
5123 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5124 build_thisnode_zonelists(pgdat);
5125 }
5126
5127 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5128 /*
5129 * Return node id of node used for "local" allocations.
5130 * I.e., first node id of first zone in arg node's generic zonelist.
5131 * Used for initializing percpu 'numa_mem', which is used primarily
5132 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5133 */
5134 int local_memory_node(int node)
5135 {
5136 struct zoneref *z;
5137
5138 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5139 gfp_zone(GFP_KERNEL),
5140 NULL);
5141 return z->zone->node;
5142 }
5143 #endif
5144
5145 static void setup_min_unmapped_ratio(void);
5146 static void setup_min_slab_ratio(void);
5147 #else /* CONFIG_NUMA */
5148
5149 static void build_zonelists(pg_data_t *pgdat)
5150 {
5151 int node, local_node;
5152 struct zoneref *zonerefs;
5153 int nr_zones;
5154
5155 local_node = pgdat->node_id;
5156
5157 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5158 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5159 zonerefs += nr_zones;
5160
5161 /*
5162 * Now we build the zonelist so that it contains the zones
5163 * of all the other nodes.
5164 * We don't want to pressure a particular node, so when
5165 * building the zones for node N, we make sure that the
5166 * zones coming right after the local ones are those from
5167 * node N+1 (modulo N)
5168 */
5169 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5170 if (!node_online(node))
5171 continue;
5172 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5173 zonerefs += nr_zones;
5174 }
5175 for (node = 0; node < local_node; node++) {
5176 if (!node_online(node))
5177 continue;
5178 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5179 zonerefs += nr_zones;
5180 }
5181
5182 zonerefs->zone = NULL;
5183 zonerefs->zone_idx = 0;
5184 }
5185
5186 #endif /* CONFIG_NUMA */
5187
5188 /*
5189 * Boot pageset table. One per cpu which is going to be used for all
5190 * zones and all nodes. The parameters will be set in such a way
5191 * that an item put on a list will immediately be handed over to
5192 * the buddy list. This is safe since pageset manipulation is done
5193 * with interrupts disabled.
5194 *
5195 * The boot_pagesets must be kept even after bootup is complete for
5196 * unused processors and/or zones. They do play a role for bootstrapping
5197 * hotplugged processors.
5198 *
5199 * zoneinfo_show() and maybe other functions do
5200 * not check if the processor is online before following the pageset pointer.
5201 * Other parts of the kernel may not check if the zone is available.
5202 */
5203 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5204 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5205 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5206
5207 static void __build_all_zonelists(void *data)
5208 {
5209 int nid;
5210 int __maybe_unused cpu;
5211 pg_data_t *self = data;
5212 static DEFINE_SPINLOCK(lock);
5213
5214 spin_lock(&lock);
5215
5216 #ifdef CONFIG_NUMA
5217 memset(node_load, 0, sizeof(node_load));
5218 #endif
5219
5220 /*
5221 * This node is hotadded and no memory is yet present. So just
5222 * building zonelists is fine - no need to touch other nodes.
5223 */
5224 if (self && !node_online(self->node_id)) {
5225 build_zonelists(self);
5226 } else {
5227 for_each_online_node(nid) {
5228 pg_data_t *pgdat = NODE_DATA(nid);
5229
5230 build_zonelists(pgdat);
5231 }
5232
5233 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5234 /*
5235 * We now know the "local memory node" for each node--
5236 * i.e., the node of the first zone in the generic zonelist.
5237 * Set up numa_mem percpu variable for on-line cpus. During
5238 * boot, only the boot cpu should be on-line; we'll init the
5239 * secondary cpus' numa_mem as they come on-line. During
5240 * node/memory hotplug, we'll fixup all on-line cpus.
5241 */
5242 for_each_online_cpu(cpu)
5243 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5244 #endif
5245 }
5246
5247 spin_unlock(&lock);
5248 }
5249
5250 static noinline void __init
5251 build_all_zonelists_init(void)
5252 {
5253 int cpu;
5254
5255 __build_all_zonelists(NULL);
5256
5257 /*
5258 * Initialize the boot_pagesets that are going to be used
5259 * for bootstrapping processors. The real pagesets for
5260 * each zone will be allocated later when the per cpu
5261 * allocator is available.
5262 *
5263 * boot_pagesets are used also for bootstrapping offline
5264 * cpus if the system is already booted because the pagesets
5265 * are needed to initialize allocators on a specific cpu too.
5266 * F.e. the percpu allocator needs the page allocator which
5267 * needs the percpu allocator in order to allocate its pagesets
5268 * (a chicken-egg dilemma).
5269 */
5270 for_each_possible_cpu(cpu)
5271 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5272
5273 mminit_verify_zonelist();
5274 cpuset_init_current_mems_allowed();
5275 }
5276
5277 /*
5278 * unless system_state == SYSTEM_BOOTING.
5279 *
5280 * __ref due to call of __init annotated helper build_all_zonelists_init
5281 * [protected by SYSTEM_BOOTING].
5282 */
5283 void __ref build_all_zonelists(pg_data_t *pgdat)
5284 {
5285 if (system_state == SYSTEM_BOOTING) {
5286 build_all_zonelists_init();
5287 } else {
5288 __build_all_zonelists(pgdat);
5289 /* cpuset refresh routine should be here */
5290 }
5291 vm_total_pages = nr_free_pagecache_pages();
5292 /*
5293 * Disable grouping by mobility if the number of pages in the
5294 * system is too low to allow the mechanism to work. It would be
5295 * more accurate, but expensive to check per-zone. This check is
5296 * made on memory-hotadd so a system can start with mobility
5297 * disabled and enable it later
5298 */
5299 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5300 page_group_by_mobility_disabled = 1;
5301 else
5302 page_group_by_mobility_disabled = 0;
5303
5304 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5305 nr_online_nodes,
5306 page_group_by_mobility_disabled ? "off" : "on",
5307 vm_total_pages);
5308 #ifdef CONFIG_NUMA
5309 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5310 #endif
5311 }
5312
5313 /*
5314 * Initially all pages are reserved - free ones are freed
5315 * up by free_all_bootmem() once the early boot process is
5316 * done. Non-atomic initialization, single-pass.
5317 */
5318 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5319 unsigned long start_pfn, enum memmap_context context)
5320 {
5321 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5322 unsigned long end_pfn = start_pfn + size;
5323 pg_data_t *pgdat = NODE_DATA(nid);
5324 unsigned long pfn;
5325 unsigned long nr_initialised = 0;
5326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5327 struct memblock_region *r = NULL, *tmp;
5328 #endif
5329
5330 if (highest_memmap_pfn < end_pfn - 1)
5331 highest_memmap_pfn = end_pfn - 1;
5332
5333 /*
5334 * Honor reservation requested by the driver for this ZONE_DEVICE
5335 * memory
5336 */
5337 if (altmap && start_pfn == altmap->base_pfn)
5338 start_pfn += altmap->reserve;
5339
5340 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5341 /*
5342 * There can be holes in boot-time mem_map[]s handed to this
5343 * function. They do not exist on hotplugged memory.
5344 */
5345 if (context != MEMMAP_EARLY)
5346 goto not_early;
5347
5348 if (!early_pfn_valid(pfn))
5349 continue;
5350 if (!early_pfn_in_nid(pfn, nid))
5351 continue;
5352 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5353 break;
5354
5355 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5356 /*
5357 * Check given memblock attribute by firmware which can affect
5358 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5359 * mirrored, it's an overlapped memmap init. skip it.
5360 */
5361 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5362 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5363 for_each_memblock(memory, tmp)
5364 if (pfn < memblock_region_memory_end_pfn(tmp))
5365 break;
5366 r = tmp;
5367 }
5368 if (pfn >= memblock_region_memory_base_pfn(r) &&
5369 memblock_is_mirror(r)) {
5370 /* already initialized as NORMAL */
5371 pfn = memblock_region_memory_end_pfn(r);
5372 continue;
5373 }
5374 }
5375 #endif
5376
5377 not_early:
5378 /*
5379 * Mark the block movable so that blocks are reserved for
5380 * movable at startup. This will force kernel allocations
5381 * to reserve their blocks rather than leaking throughout
5382 * the address space during boot when many long-lived
5383 * kernel allocations are made.
5384 *
5385 * bitmap is created for zone's valid pfn range. but memmap
5386 * can be created for invalid pages (for alignment)
5387 * check here not to call set_pageblock_migratetype() against
5388 * pfn out of zone.
5389 */
5390 if (!(pfn & (pageblock_nr_pages - 1))) {
5391 struct page *page = pfn_to_page(pfn);
5392
5393 __init_single_page(page, pfn, zone, nid);
5394 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5395 cond_resched();
5396 } else {
5397 __init_single_pfn(pfn, zone, nid);
5398 }
5399 }
5400 }
5401
5402 static void __meminit zone_init_free_lists(struct zone *zone)
5403 {
5404 unsigned int order, t;
5405 for_each_migratetype_order(order, t) {
5406 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5407 zone->free_area[order].nr_free = 0;
5408 }
5409 }
5410
5411 #ifndef __HAVE_ARCH_MEMMAP_INIT
5412 #define memmap_init(size, nid, zone, start_pfn) \
5413 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5414 #endif
5415
5416 static int zone_batchsize(struct zone *zone)
5417 {
5418 #ifdef CONFIG_MMU
5419 int batch;
5420
5421 /*
5422 * The per-cpu-pages pools are set to around 1000th of the
5423 * size of the zone. But no more than 1/2 of a meg.
5424 *
5425 * OK, so we don't know how big the cache is. So guess.
5426 */
5427 batch = zone->managed_pages / 1024;
5428 if (batch * PAGE_SIZE > 512 * 1024)
5429 batch = (512 * 1024) / PAGE_SIZE;
5430 batch /= 4; /* We effectively *= 4 below */
5431 if (batch < 1)
5432 batch = 1;
5433
5434 /*
5435 * Clamp the batch to a 2^n - 1 value. Having a power
5436 * of 2 value was found to be more likely to have
5437 * suboptimal cache aliasing properties in some cases.
5438 *
5439 * For example if 2 tasks are alternately allocating
5440 * batches of pages, one task can end up with a lot
5441 * of pages of one half of the possible page colors
5442 * and the other with pages of the other colors.
5443 */
5444 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5445
5446 return batch;
5447
5448 #else
5449 /* The deferral and batching of frees should be suppressed under NOMMU
5450 * conditions.
5451 *
5452 * The problem is that NOMMU needs to be able to allocate large chunks
5453 * of contiguous memory as there's no hardware page translation to
5454 * assemble apparent contiguous memory from discontiguous pages.
5455 *
5456 * Queueing large contiguous runs of pages for batching, however,
5457 * causes the pages to actually be freed in smaller chunks. As there
5458 * can be a significant delay between the individual batches being
5459 * recycled, this leads to the once large chunks of space being
5460 * fragmented and becoming unavailable for high-order allocations.
5461 */
5462 return 0;
5463 #endif
5464 }
5465
5466 /*
5467 * pcp->high and pcp->batch values are related and dependent on one another:
5468 * ->batch must never be higher then ->high.
5469 * The following function updates them in a safe manner without read side
5470 * locking.
5471 *
5472 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5473 * those fields changing asynchronously (acording the the above rule).
5474 *
5475 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5476 * outside of boot time (or some other assurance that no concurrent updaters
5477 * exist).
5478 */
5479 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5480 unsigned long batch)
5481 {
5482 /* start with a fail safe value for batch */
5483 pcp->batch = 1;
5484 smp_wmb();
5485
5486 /* Update high, then batch, in order */
5487 pcp->high = high;
5488 smp_wmb();
5489
5490 pcp->batch = batch;
5491 }
5492
5493 /* a companion to pageset_set_high() */
5494 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5495 {
5496 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5497 }
5498
5499 static void pageset_init(struct per_cpu_pageset *p)
5500 {
5501 struct per_cpu_pages *pcp;
5502 int migratetype;
5503
5504 memset(p, 0, sizeof(*p));
5505
5506 pcp = &p->pcp;
5507 pcp->count = 0;
5508 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5509 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5510 }
5511
5512 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5513 {
5514 pageset_init(p);
5515 pageset_set_batch(p, batch);
5516 }
5517
5518 /*
5519 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5520 * to the value high for the pageset p.
5521 */
5522 static void pageset_set_high(struct per_cpu_pageset *p,
5523 unsigned long high)
5524 {
5525 unsigned long batch = max(1UL, high / 4);
5526 if ((high / 4) > (PAGE_SHIFT * 8))
5527 batch = PAGE_SHIFT * 8;
5528
5529 pageset_update(&p->pcp, high, batch);
5530 }
5531
5532 static void pageset_set_high_and_batch(struct zone *zone,
5533 struct per_cpu_pageset *pcp)
5534 {
5535 if (percpu_pagelist_fraction)
5536 pageset_set_high(pcp,
5537 (zone->managed_pages /
5538 percpu_pagelist_fraction));
5539 else
5540 pageset_set_batch(pcp, zone_batchsize(zone));
5541 }
5542
5543 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5544 {
5545 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5546
5547 pageset_init(pcp);
5548 pageset_set_high_and_batch(zone, pcp);
5549 }
5550
5551 void __meminit setup_zone_pageset(struct zone *zone)
5552 {
5553 int cpu;
5554 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5555 for_each_possible_cpu(cpu)
5556 zone_pageset_init(zone, cpu);
5557 }
5558
5559 /*
5560 * Allocate per cpu pagesets and initialize them.
5561 * Before this call only boot pagesets were available.
5562 */
5563 void __init setup_per_cpu_pageset(void)
5564 {
5565 struct pglist_data *pgdat;
5566 struct zone *zone;
5567
5568 for_each_populated_zone(zone)
5569 setup_zone_pageset(zone);
5570
5571 for_each_online_pgdat(pgdat)
5572 pgdat->per_cpu_nodestats =
5573 alloc_percpu(struct per_cpu_nodestat);
5574 }
5575
5576 static __meminit void zone_pcp_init(struct zone *zone)
5577 {
5578 /*
5579 * per cpu subsystem is not up at this point. The following code
5580 * relies on the ability of the linker to provide the
5581 * offset of a (static) per cpu variable into the per cpu area.
5582 */
5583 zone->pageset = &boot_pageset;
5584
5585 if (populated_zone(zone))
5586 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5587 zone->name, zone->present_pages,
5588 zone_batchsize(zone));
5589 }
5590
5591 void __meminit init_currently_empty_zone(struct zone *zone,
5592 unsigned long zone_start_pfn,
5593 unsigned long size)
5594 {
5595 struct pglist_data *pgdat = zone->zone_pgdat;
5596
5597 pgdat->nr_zones = zone_idx(zone) + 1;
5598
5599 zone->zone_start_pfn = zone_start_pfn;
5600
5601 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5602 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5603 pgdat->node_id,
5604 (unsigned long)zone_idx(zone),
5605 zone_start_pfn, (zone_start_pfn + size));
5606
5607 zone_init_free_lists(zone);
5608 zone->initialized = 1;
5609 }
5610
5611 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5612 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5613
5614 /*
5615 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5616 */
5617 int __meminit __early_pfn_to_nid(unsigned long pfn,
5618 struct mminit_pfnnid_cache *state)
5619 {
5620 unsigned long start_pfn, end_pfn;
5621 int nid;
5622
5623 if (state->last_start <= pfn && pfn < state->last_end)
5624 return state->last_nid;
5625
5626 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5627 if (nid != -1) {
5628 state->last_start = start_pfn;
5629 state->last_end = end_pfn;
5630 state->last_nid = nid;
5631 }
5632
5633 return nid;
5634 }
5635 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5636
5637 /**
5638 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5639 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5640 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5641 *
5642 * If an architecture guarantees that all ranges registered contain no holes
5643 * and may be freed, this this function may be used instead of calling
5644 * memblock_free_early_nid() manually.
5645 */
5646 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5647 {
5648 unsigned long start_pfn, end_pfn;
5649 int i, this_nid;
5650
5651 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5652 start_pfn = min(start_pfn, max_low_pfn);
5653 end_pfn = min(end_pfn, max_low_pfn);
5654
5655 if (start_pfn < end_pfn)
5656 memblock_free_early_nid(PFN_PHYS(start_pfn),
5657 (end_pfn - start_pfn) << PAGE_SHIFT,
5658 this_nid);
5659 }
5660 }
5661
5662 /**
5663 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5664 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5665 *
5666 * If an architecture guarantees that all ranges registered contain no holes and may
5667 * be freed, this function may be used instead of calling memory_present() manually.
5668 */
5669 void __init sparse_memory_present_with_active_regions(int nid)
5670 {
5671 unsigned long start_pfn, end_pfn;
5672 int i, this_nid;
5673
5674 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5675 memory_present(this_nid, start_pfn, end_pfn);
5676 }
5677
5678 /**
5679 * get_pfn_range_for_nid - Return the start and end page frames for a node
5680 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5681 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5682 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5683 *
5684 * It returns the start and end page frame of a node based on information
5685 * provided by memblock_set_node(). If called for a node
5686 * with no available memory, a warning is printed and the start and end
5687 * PFNs will be 0.
5688 */
5689 void __meminit get_pfn_range_for_nid(unsigned int nid,
5690 unsigned long *start_pfn, unsigned long *end_pfn)
5691 {
5692 unsigned long this_start_pfn, this_end_pfn;
5693 int i;
5694
5695 *start_pfn = -1UL;
5696 *end_pfn = 0;
5697
5698 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5699 *start_pfn = min(*start_pfn, this_start_pfn);
5700 *end_pfn = max(*end_pfn, this_end_pfn);
5701 }
5702
5703 if (*start_pfn == -1UL)
5704 *start_pfn = 0;
5705 }
5706
5707 /*
5708 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5709 * assumption is made that zones within a node are ordered in monotonic
5710 * increasing memory addresses so that the "highest" populated zone is used
5711 */
5712 static void __init find_usable_zone_for_movable(void)
5713 {
5714 int zone_index;
5715 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5716 if (zone_index == ZONE_MOVABLE)
5717 continue;
5718
5719 if (arch_zone_highest_possible_pfn[zone_index] >
5720 arch_zone_lowest_possible_pfn[zone_index])
5721 break;
5722 }
5723
5724 VM_BUG_ON(zone_index == -1);
5725 movable_zone = zone_index;
5726 }
5727
5728 /*
5729 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5730 * because it is sized independent of architecture. Unlike the other zones,
5731 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5732 * in each node depending on the size of each node and how evenly kernelcore
5733 * is distributed. This helper function adjusts the zone ranges
5734 * provided by the architecture for a given node by using the end of the
5735 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5736 * zones within a node are in order of monotonic increases memory addresses
5737 */
5738 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5739 unsigned long zone_type,
5740 unsigned long node_start_pfn,
5741 unsigned long node_end_pfn,
5742 unsigned long *zone_start_pfn,
5743 unsigned long *zone_end_pfn)
5744 {
5745 /* Only adjust if ZONE_MOVABLE is on this node */
5746 if (zone_movable_pfn[nid]) {
5747 /* Size ZONE_MOVABLE */
5748 if (zone_type == ZONE_MOVABLE) {
5749 *zone_start_pfn = zone_movable_pfn[nid];
5750 *zone_end_pfn = min(node_end_pfn,
5751 arch_zone_highest_possible_pfn[movable_zone]);
5752
5753 /* Adjust for ZONE_MOVABLE starting within this range */
5754 } else if (!mirrored_kernelcore &&
5755 *zone_start_pfn < zone_movable_pfn[nid] &&
5756 *zone_end_pfn > zone_movable_pfn[nid]) {
5757 *zone_end_pfn = zone_movable_pfn[nid];
5758
5759 /* Check if this whole range is within ZONE_MOVABLE */
5760 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5761 *zone_start_pfn = *zone_end_pfn;
5762 }
5763 }
5764
5765 /*
5766 * Return the number of pages a zone spans in a node, including holes
5767 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5768 */
5769 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5770 unsigned long zone_type,
5771 unsigned long node_start_pfn,
5772 unsigned long node_end_pfn,
5773 unsigned long *zone_start_pfn,
5774 unsigned long *zone_end_pfn,
5775 unsigned long *ignored)
5776 {
5777 /* When hotadd a new node from cpu_up(), the node should be empty */
5778 if (!node_start_pfn && !node_end_pfn)
5779 return 0;
5780
5781 /* Get the start and end of the zone */
5782 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5783 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5784 adjust_zone_range_for_zone_movable(nid, zone_type,
5785 node_start_pfn, node_end_pfn,
5786 zone_start_pfn, zone_end_pfn);
5787
5788 /* Check that this node has pages within the zone's required range */
5789 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5790 return 0;
5791
5792 /* Move the zone boundaries inside the node if necessary */
5793 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5794 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5795
5796 /* Return the spanned pages */
5797 return *zone_end_pfn - *zone_start_pfn;
5798 }
5799
5800 /*
5801 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5802 * then all holes in the requested range will be accounted for.
5803 */
5804 unsigned long __meminit __absent_pages_in_range(int nid,
5805 unsigned long range_start_pfn,
5806 unsigned long range_end_pfn)
5807 {
5808 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5809 unsigned long start_pfn, end_pfn;
5810 int i;
5811
5812 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5813 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5814 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5815 nr_absent -= end_pfn - start_pfn;
5816 }
5817 return nr_absent;
5818 }
5819
5820 /**
5821 * absent_pages_in_range - Return number of page frames in holes within a range
5822 * @start_pfn: The start PFN to start searching for holes
5823 * @end_pfn: The end PFN to stop searching for holes
5824 *
5825 * It returns the number of pages frames in memory holes within a range.
5826 */
5827 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5828 unsigned long end_pfn)
5829 {
5830 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5831 }
5832
5833 /* Return the number of page frames in holes in a zone on a node */
5834 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5835 unsigned long zone_type,
5836 unsigned long node_start_pfn,
5837 unsigned long node_end_pfn,
5838 unsigned long *ignored)
5839 {
5840 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5841 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5842 unsigned long zone_start_pfn, zone_end_pfn;
5843 unsigned long nr_absent;
5844
5845 /* When hotadd a new node from cpu_up(), the node should be empty */
5846 if (!node_start_pfn && !node_end_pfn)
5847 return 0;
5848
5849 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5850 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5851
5852 adjust_zone_range_for_zone_movable(nid, zone_type,
5853 node_start_pfn, node_end_pfn,
5854 &zone_start_pfn, &zone_end_pfn);
5855 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5856
5857 /*
5858 * ZONE_MOVABLE handling.
5859 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5860 * and vice versa.
5861 */
5862 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5863 unsigned long start_pfn, end_pfn;
5864 struct memblock_region *r;
5865
5866 for_each_memblock(memory, r) {
5867 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5868 zone_start_pfn, zone_end_pfn);
5869 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5870 zone_start_pfn, zone_end_pfn);
5871
5872 if (zone_type == ZONE_MOVABLE &&
5873 memblock_is_mirror(r))
5874 nr_absent += end_pfn - start_pfn;
5875
5876 if (zone_type == ZONE_NORMAL &&
5877 !memblock_is_mirror(r))
5878 nr_absent += end_pfn - start_pfn;
5879 }
5880 }
5881
5882 return nr_absent;
5883 }
5884
5885 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5886 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5887 unsigned long zone_type,
5888 unsigned long node_start_pfn,
5889 unsigned long node_end_pfn,
5890 unsigned long *zone_start_pfn,
5891 unsigned long *zone_end_pfn,
5892 unsigned long *zones_size)
5893 {
5894 unsigned int zone;
5895
5896 *zone_start_pfn = node_start_pfn;
5897 for (zone = 0; zone < zone_type; zone++)
5898 *zone_start_pfn += zones_size[zone];
5899
5900 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5901
5902 return zones_size[zone_type];
5903 }
5904
5905 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5906 unsigned long zone_type,
5907 unsigned long node_start_pfn,
5908 unsigned long node_end_pfn,
5909 unsigned long *zholes_size)
5910 {
5911 if (!zholes_size)
5912 return 0;
5913
5914 return zholes_size[zone_type];
5915 }
5916
5917 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5918
5919 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5920 unsigned long node_start_pfn,
5921 unsigned long node_end_pfn,
5922 unsigned long *zones_size,
5923 unsigned long *zholes_size)
5924 {
5925 unsigned long realtotalpages = 0, totalpages = 0;
5926 enum zone_type i;
5927
5928 for (i = 0; i < MAX_NR_ZONES; i++) {
5929 struct zone *zone = pgdat->node_zones + i;
5930 unsigned long zone_start_pfn, zone_end_pfn;
5931 unsigned long size, real_size;
5932
5933 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5934 node_start_pfn,
5935 node_end_pfn,
5936 &zone_start_pfn,
5937 &zone_end_pfn,
5938 zones_size);
5939 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5940 node_start_pfn, node_end_pfn,
5941 zholes_size);
5942 if (size)
5943 zone->zone_start_pfn = zone_start_pfn;
5944 else
5945 zone->zone_start_pfn = 0;
5946 zone->spanned_pages = size;
5947 zone->present_pages = real_size;
5948
5949 totalpages += size;
5950 realtotalpages += real_size;
5951 }
5952
5953 pgdat->node_spanned_pages = totalpages;
5954 pgdat->node_present_pages = realtotalpages;
5955 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5956 realtotalpages);
5957 }
5958
5959 #ifndef CONFIG_SPARSEMEM
5960 /*
5961 * Calculate the size of the zone->blockflags rounded to an unsigned long
5962 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5963 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5964 * round what is now in bits to nearest long in bits, then return it in
5965 * bytes.
5966 */
5967 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5968 {
5969 unsigned long usemapsize;
5970
5971 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5972 usemapsize = roundup(zonesize, pageblock_nr_pages);
5973 usemapsize = usemapsize >> pageblock_order;
5974 usemapsize *= NR_PAGEBLOCK_BITS;
5975 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5976
5977 return usemapsize / 8;
5978 }
5979
5980 static void __init setup_usemap(struct pglist_data *pgdat,
5981 struct zone *zone,
5982 unsigned long zone_start_pfn,
5983 unsigned long zonesize)
5984 {
5985 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5986 zone->pageblock_flags = NULL;
5987 if (usemapsize)
5988 zone->pageblock_flags =
5989 memblock_virt_alloc_node_nopanic(usemapsize,
5990 pgdat->node_id);
5991 }
5992 #else
5993 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5994 unsigned long zone_start_pfn, unsigned long zonesize) {}
5995 #endif /* CONFIG_SPARSEMEM */
5996
5997 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5998
5999 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6000 void __paginginit set_pageblock_order(void)
6001 {
6002 unsigned int order;
6003
6004 /* Check that pageblock_nr_pages has not already been setup */
6005 if (pageblock_order)
6006 return;
6007
6008 if (HPAGE_SHIFT > PAGE_SHIFT)
6009 order = HUGETLB_PAGE_ORDER;
6010 else
6011 order = MAX_ORDER - 1;
6012
6013 /*
6014 * Assume the largest contiguous order of interest is a huge page.
6015 * This value may be variable depending on boot parameters on IA64 and
6016 * powerpc.
6017 */
6018 pageblock_order = order;
6019 }
6020 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6021
6022 /*
6023 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6024 * is unused as pageblock_order is set at compile-time. See
6025 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6026 * the kernel config
6027 */
6028 void __paginginit set_pageblock_order(void)
6029 {
6030 }
6031
6032 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6033
6034 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6035 unsigned long present_pages)
6036 {
6037 unsigned long pages = spanned_pages;
6038
6039 /*
6040 * Provide a more accurate estimation if there are holes within
6041 * the zone and SPARSEMEM is in use. If there are holes within the
6042 * zone, each populated memory region may cost us one or two extra
6043 * memmap pages due to alignment because memmap pages for each
6044 * populated regions may not be naturally aligned on page boundary.
6045 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6046 */
6047 if (spanned_pages > present_pages + (present_pages >> 4) &&
6048 IS_ENABLED(CONFIG_SPARSEMEM))
6049 pages = present_pages;
6050
6051 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6052 }
6053
6054 /*
6055 * Set up the zone data structures:
6056 * - mark all pages reserved
6057 * - mark all memory queues empty
6058 * - clear the memory bitmaps
6059 *
6060 * NOTE: pgdat should get zeroed by caller.
6061 */
6062 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6063 {
6064 enum zone_type j;
6065 int nid = pgdat->node_id;
6066
6067 pgdat_resize_init(pgdat);
6068 #ifdef CONFIG_NUMA_BALANCING
6069 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6070 pgdat->numabalancing_migrate_nr_pages = 0;
6071 pgdat->numabalancing_migrate_next_window = jiffies;
6072 #endif
6073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6074 spin_lock_init(&pgdat->split_queue_lock);
6075 INIT_LIST_HEAD(&pgdat->split_queue);
6076 pgdat->split_queue_len = 0;
6077 #endif
6078 init_waitqueue_head(&pgdat->kswapd_wait);
6079 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6080 #ifdef CONFIG_COMPACTION
6081 init_waitqueue_head(&pgdat->kcompactd_wait);
6082 #endif
6083 pgdat_page_ext_init(pgdat);
6084 spin_lock_init(&pgdat->lru_lock);
6085 lruvec_init(node_lruvec(pgdat));
6086
6087 pgdat->per_cpu_nodestats = &boot_nodestats;
6088
6089 for (j = 0; j < MAX_NR_ZONES; j++) {
6090 struct zone *zone = pgdat->node_zones + j;
6091 unsigned long size, realsize, freesize, memmap_pages;
6092 unsigned long zone_start_pfn = zone->zone_start_pfn;
6093
6094 size = zone->spanned_pages;
6095 realsize = freesize = zone->present_pages;
6096
6097 /*
6098 * Adjust freesize so that it accounts for how much memory
6099 * is used by this zone for memmap. This affects the watermark
6100 * and per-cpu initialisations
6101 */
6102 memmap_pages = calc_memmap_size(size, realsize);
6103 if (!is_highmem_idx(j)) {
6104 if (freesize >= memmap_pages) {
6105 freesize -= memmap_pages;
6106 if (memmap_pages)
6107 printk(KERN_DEBUG
6108 " %s zone: %lu pages used for memmap\n",
6109 zone_names[j], memmap_pages);
6110 } else
6111 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6112 zone_names[j], memmap_pages, freesize);
6113 }
6114
6115 /* Account for reserved pages */
6116 if (j == 0 && freesize > dma_reserve) {
6117 freesize -= dma_reserve;
6118 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6119 zone_names[0], dma_reserve);
6120 }
6121
6122 if (!is_highmem_idx(j))
6123 nr_kernel_pages += freesize;
6124 /* Charge for highmem memmap if there are enough kernel pages */
6125 else if (nr_kernel_pages > memmap_pages * 2)
6126 nr_kernel_pages -= memmap_pages;
6127 nr_all_pages += freesize;
6128
6129 /*
6130 * Set an approximate value for lowmem here, it will be adjusted
6131 * when the bootmem allocator frees pages into the buddy system.
6132 * And all highmem pages will be managed by the buddy system.
6133 */
6134 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6135 #ifdef CONFIG_NUMA
6136 zone->node = nid;
6137 #endif
6138 zone->name = zone_names[j];
6139 zone->zone_pgdat = pgdat;
6140 spin_lock_init(&zone->lock);
6141 zone_seqlock_init(zone);
6142 zone_pcp_init(zone);
6143
6144 if (!size)
6145 continue;
6146
6147 set_pageblock_order();
6148 setup_usemap(pgdat, zone, zone_start_pfn, size);
6149 init_currently_empty_zone(zone, zone_start_pfn, size);
6150 memmap_init(size, nid, j, zone_start_pfn);
6151 }
6152 }
6153
6154 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6155 {
6156 unsigned long __maybe_unused start = 0;
6157 unsigned long __maybe_unused offset = 0;
6158
6159 /* Skip empty nodes */
6160 if (!pgdat->node_spanned_pages)
6161 return;
6162
6163 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6164 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6165 offset = pgdat->node_start_pfn - start;
6166 /* ia64 gets its own node_mem_map, before this, without bootmem */
6167 if (!pgdat->node_mem_map) {
6168 unsigned long size, end;
6169 struct page *map;
6170
6171 /*
6172 * The zone's endpoints aren't required to be MAX_ORDER
6173 * aligned but the node_mem_map endpoints must be in order
6174 * for the buddy allocator to function correctly.
6175 */
6176 end = pgdat_end_pfn(pgdat);
6177 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6178 size = (end - start) * sizeof(struct page);
6179 map = alloc_remap(pgdat->node_id, size);
6180 if (!map)
6181 map = memblock_virt_alloc_node_nopanic(size,
6182 pgdat->node_id);
6183 pgdat->node_mem_map = map + offset;
6184 }
6185 #ifndef CONFIG_NEED_MULTIPLE_NODES
6186 /*
6187 * With no DISCONTIG, the global mem_map is just set as node 0's
6188 */
6189 if (pgdat == NODE_DATA(0)) {
6190 mem_map = NODE_DATA(0)->node_mem_map;
6191 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6192 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6193 mem_map -= offset;
6194 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6195 }
6196 #endif
6197 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6198 }
6199
6200 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6201 unsigned long node_start_pfn, unsigned long *zholes_size)
6202 {
6203 pg_data_t *pgdat = NODE_DATA(nid);
6204 unsigned long start_pfn = 0;
6205 unsigned long end_pfn = 0;
6206
6207 /* pg_data_t should be reset to zero when it's allocated */
6208 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6209
6210 pgdat->node_id = nid;
6211 pgdat->node_start_pfn = node_start_pfn;
6212 pgdat->per_cpu_nodestats = NULL;
6213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6214 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6215 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6216 (u64)start_pfn << PAGE_SHIFT,
6217 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6218 #else
6219 start_pfn = node_start_pfn;
6220 #endif
6221 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6222 zones_size, zholes_size);
6223
6224 alloc_node_mem_map(pgdat);
6225 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6226 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6227 nid, (unsigned long)pgdat,
6228 (unsigned long)pgdat->node_mem_map);
6229 #endif
6230
6231 reset_deferred_meminit(pgdat);
6232 free_area_init_core(pgdat);
6233 }
6234
6235 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6236
6237 #if MAX_NUMNODES > 1
6238 /*
6239 * Figure out the number of possible node ids.
6240 */
6241 void __init setup_nr_node_ids(void)
6242 {
6243 unsigned int highest;
6244
6245 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6246 nr_node_ids = highest + 1;
6247 }
6248 #endif
6249
6250 /**
6251 * node_map_pfn_alignment - determine the maximum internode alignment
6252 *
6253 * This function should be called after node map is populated and sorted.
6254 * It calculates the maximum power of two alignment which can distinguish
6255 * all the nodes.
6256 *
6257 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6258 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6259 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6260 * shifted, 1GiB is enough and this function will indicate so.
6261 *
6262 * This is used to test whether pfn -> nid mapping of the chosen memory
6263 * model has fine enough granularity to avoid incorrect mapping for the
6264 * populated node map.
6265 *
6266 * Returns the determined alignment in pfn's. 0 if there is no alignment
6267 * requirement (single node).
6268 */
6269 unsigned long __init node_map_pfn_alignment(void)
6270 {
6271 unsigned long accl_mask = 0, last_end = 0;
6272 unsigned long start, end, mask;
6273 int last_nid = -1;
6274 int i, nid;
6275
6276 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6277 if (!start || last_nid < 0 || last_nid == nid) {
6278 last_nid = nid;
6279 last_end = end;
6280 continue;
6281 }
6282
6283 /*
6284 * Start with a mask granular enough to pin-point to the
6285 * start pfn and tick off bits one-by-one until it becomes
6286 * too coarse to separate the current node from the last.
6287 */
6288 mask = ~((1 << __ffs(start)) - 1);
6289 while (mask && last_end <= (start & (mask << 1)))
6290 mask <<= 1;
6291
6292 /* accumulate all internode masks */
6293 accl_mask |= mask;
6294 }
6295
6296 /* convert mask to number of pages */
6297 return ~accl_mask + 1;
6298 }
6299
6300 /* Find the lowest pfn for a node */
6301 static unsigned long __init find_min_pfn_for_node(int nid)
6302 {
6303 unsigned long min_pfn = ULONG_MAX;
6304 unsigned long start_pfn;
6305 int i;
6306
6307 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6308 min_pfn = min(min_pfn, start_pfn);
6309
6310 if (min_pfn == ULONG_MAX) {
6311 pr_warn("Could not find start_pfn for node %d\n", nid);
6312 return 0;
6313 }
6314
6315 return min_pfn;
6316 }
6317
6318 /**
6319 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6320 *
6321 * It returns the minimum PFN based on information provided via
6322 * memblock_set_node().
6323 */
6324 unsigned long __init find_min_pfn_with_active_regions(void)
6325 {
6326 return find_min_pfn_for_node(MAX_NUMNODES);
6327 }
6328
6329 /*
6330 * early_calculate_totalpages()
6331 * Sum pages in active regions for movable zone.
6332 * Populate N_MEMORY for calculating usable_nodes.
6333 */
6334 static unsigned long __init early_calculate_totalpages(void)
6335 {
6336 unsigned long totalpages = 0;
6337 unsigned long start_pfn, end_pfn;
6338 int i, nid;
6339
6340 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6341 unsigned long pages = end_pfn - start_pfn;
6342
6343 totalpages += pages;
6344 if (pages)
6345 node_set_state(nid, N_MEMORY);
6346 }
6347 return totalpages;
6348 }
6349
6350 /*
6351 * Find the PFN the Movable zone begins in each node. Kernel memory
6352 * is spread evenly between nodes as long as the nodes have enough
6353 * memory. When they don't, some nodes will have more kernelcore than
6354 * others
6355 */
6356 static void __init find_zone_movable_pfns_for_nodes(void)
6357 {
6358 int i, nid;
6359 unsigned long usable_startpfn;
6360 unsigned long kernelcore_node, kernelcore_remaining;
6361 /* save the state before borrow the nodemask */
6362 nodemask_t saved_node_state = node_states[N_MEMORY];
6363 unsigned long totalpages = early_calculate_totalpages();
6364 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6365 struct memblock_region *r;
6366
6367 /* Need to find movable_zone earlier when movable_node is specified. */
6368 find_usable_zone_for_movable();
6369
6370 /*
6371 * If movable_node is specified, ignore kernelcore and movablecore
6372 * options.
6373 */
6374 if (movable_node_is_enabled()) {
6375 for_each_memblock(memory, r) {
6376 if (!memblock_is_hotpluggable(r))
6377 continue;
6378
6379 nid = r->nid;
6380
6381 usable_startpfn = PFN_DOWN(r->base);
6382 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6383 min(usable_startpfn, zone_movable_pfn[nid]) :
6384 usable_startpfn;
6385 }
6386
6387 goto out2;
6388 }
6389
6390 /*
6391 * If kernelcore=mirror is specified, ignore movablecore option
6392 */
6393 if (mirrored_kernelcore) {
6394 bool mem_below_4gb_not_mirrored = false;
6395
6396 for_each_memblock(memory, r) {
6397 if (memblock_is_mirror(r))
6398 continue;
6399
6400 nid = r->nid;
6401
6402 usable_startpfn = memblock_region_memory_base_pfn(r);
6403
6404 if (usable_startpfn < 0x100000) {
6405 mem_below_4gb_not_mirrored = true;
6406 continue;
6407 }
6408
6409 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6410 min(usable_startpfn, zone_movable_pfn[nid]) :
6411 usable_startpfn;
6412 }
6413
6414 if (mem_below_4gb_not_mirrored)
6415 pr_warn("This configuration results in unmirrored kernel memory.");
6416
6417 goto out2;
6418 }
6419
6420 /*
6421 * If movablecore=nn[KMG] was specified, calculate what size of
6422 * kernelcore that corresponds so that memory usable for
6423 * any allocation type is evenly spread. If both kernelcore
6424 * and movablecore are specified, then the value of kernelcore
6425 * will be used for required_kernelcore if it's greater than
6426 * what movablecore would have allowed.
6427 */
6428 if (required_movablecore) {
6429 unsigned long corepages;
6430
6431 /*
6432 * Round-up so that ZONE_MOVABLE is at least as large as what
6433 * was requested by the user
6434 */
6435 required_movablecore =
6436 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6437 required_movablecore = min(totalpages, required_movablecore);
6438 corepages = totalpages - required_movablecore;
6439
6440 required_kernelcore = max(required_kernelcore, corepages);
6441 }
6442
6443 /*
6444 * If kernelcore was not specified or kernelcore size is larger
6445 * than totalpages, there is no ZONE_MOVABLE.
6446 */
6447 if (!required_kernelcore || required_kernelcore >= totalpages)
6448 goto out;
6449
6450 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6451 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6452
6453 restart:
6454 /* Spread kernelcore memory as evenly as possible throughout nodes */
6455 kernelcore_node = required_kernelcore / usable_nodes;
6456 for_each_node_state(nid, N_MEMORY) {
6457 unsigned long start_pfn, end_pfn;
6458
6459 /*
6460 * Recalculate kernelcore_node if the division per node
6461 * now exceeds what is necessary to satisfy the requested
6462 * amount of memory for the kernel
6463 */
6464 if (required_kernelcore < kernelcore_node)
6465 kernelcore_node = required_kernelcore / usable_nodes;
6466
6467 /*
6468 * As the map is walked, we track how much memory is usable
6469 * by the kernel using kernelcore_remaining. When it is
6470 * 0, the rest of the node is usable by ZONE_MOVABLE
6471 */
6472 kernelcore_remaining = kernelcore_node;
6473
6474 /* Go through each range of PFNs within this node */
6475 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6476 unsigned long size_pages;
6477
6478 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6479 if (start_pfn >= end_pfn)
6480 continue;
6481
6482 /* Account for what is only usable for kernelcore */
6483 if (start_pfn < usable_startpfn) {
6484 unsigned long kernel_pages;
6485 kernel_pages = min(end_pfn, usable_startpfn)
6486 - start_pfn;
6487
6488 kernelcore_remaining -= min(kernel_pages,
6489 kernelcore_remaining);
6490 required_kernelcore -= min(kernel_pages,
6491 required_kernelcore);
6492
6493 /* Continue if range is now fully accounted */
6494 if (end_pfn <= usable_startpfn) {
6495
6496 /*
6497 * Push zone_movable_pfn to the end so
6498 * that if we have to rebalance
6499 * kernelcore across nodes, we will
6500 * not double account here
6501 */
6502 zone_movable_pfn[nid] = end_pfn;
6503 continue;
6504 }
6505 start_pfn = usable_startpfn;
6506 }
6507
6508 /*
6509 * The usable PFN range for ZONE_MOVABLE is from
6510 * start_pfn->end_pfn. Calculate size_pages as the
6511 * number of pages used as kernelcore
6512 */
6513 size_pages = end_pfn - start_pfn;
6514 if (size_pages > kernelcore_remaining)
6515 size_pages = kernelcore_remaining;
6516 zone_movable_pfn[nid] = start_pfn + size_pages;
6517
6518 /*
6519 * Some kernelcore has been met, update counts and
6520 * break if the kernelcore for this node has been
6521 * satisfied
6522 */
6523 required_kernelcore -= min(required_kernelcore,
6524 size_pages);
6525 kernelcore_remaining -= size_pages;
6526 if (!kernelcore_remaining)
6527 break;
6528 }
6529 }
6530
6531 /*
6532 * If there is still required_kernelcore, we do another pass with one
6533 * less node in the count. This will push zone_movable_pfn[nid] further
6534 * along on the nodes that still have memory until kernelcore is
6535 * satisfied
6536 */
6537 usable_nodes--;
6538 if (usable_nodes && required_kernelcore > usable_nodes)
6539 goto restart;
6540
6541 out2:
6542 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6543 for (nid = 0; nid < MAX_NUMNODES; nid++)
6544 zone_movable_pfn[nid] =
6545 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6546
6547 out:
6548 /* restore the node_state */
6549 node_states[N_MEMORY] = saved_node_state;
6550 }
6551
6552 /* Any regular or high memory on that node ? */
6553 static void check_for_memory(pg_data_t *pgdat, int nid)
6554 {
6555 enum zone_type zone_type;
6556
6557 if (N_MEMORY == N_NORMAL_MEMORY)
6558 return;
6559
6560 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6561 struct zone *zone = &pgdat->node_zones[zone_type];
6562 if (populated_zone(zone)) {
6563 node_set_state(nid, N_HIGH_MEMORY);
6564 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6565 zone_type <= ZONE_NORMAL)
6566 node_set_state(nid, N_NORMAL_MEMORY);
6567 break;
6568 }
6569 }
6570 }
6571
6572 /**
6573 * free_area_init_nodes - Initialise all pg_data_t and zone data
6574 * @max_zone_pfn: an array of max PFNs for each zone
6575 *
6576 * This will call free_area_init_node() for each active node in the system.
6577 * Using the page ranges provided by memblock_set_node(), the size of each
6578 * zone in each node and their holes is calculated. If the maximum PFN
6579 * between two adjacent zones match, it is assumed that the zone is empty.
6580 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6581 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6582 * starts where the previous one ended. For example, ZONE_DMA32 starts
6583 * at arch_max_dma_pfn.
6584 */
6585 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6586 {
6587 unsigned long start_pfn, end_pfn;
6588 int i, nid;
6589
6590 /* Record where the zone boundaries are */
6591 memset(arch_zone_lowest_possible_pfn, 0,
6592 sizeof(arch_zone_lowest_possible_pfn));
6593 memset(arch_zone_highest_possible_pfn, 0,
6594 sizeof(arch_zone_highest_possible_pfn));
6595
6596 start_pfn = find_min_pfn_with_active_regions();
6597
6598 for (i = 0; i < MAX_NR_ZONES; i++) {
6599 if (i == ZONE_MOVABLE)
6600 continue;
6601
6602 end_pfn = max(max_zone_pfn[i], start_pfn);
6603 arch_zone_lowest_possible_pfn[i] = start_pfn;
6604 arch_zone_highest_possible_pfn[i] = end_pfn;
6605
6606 start_pfn = end_pfn;
6607 }
6608
6609 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6610 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6611 find_zone_movable_pfns_for_nodes();
6612
6613 /* Print out the zone ranges */
6614 pr_info("Zone ranges:\n");
6615 for (i = 0; i < MAX_NR_ZONES; i++) {
6616 if (i == ZONE_MOVABLE)
6617 continue;
6618 pr_info(" %-8s ", zone_names[i]);
6619 if (arch_zone_lowest_possible_pfn[i] ==
6620 arch_zone_highest_possible_pfn[i])
6621 pr_cont("empty\n");
6622 else
6623 pr_cont("[mem %#018Lx-%#018Lx]\n",
6624 (u64)arch_zone_lowest_possible_pfn[i]
6625 << PAGE_SHIFT,
6626 ((u64)arch_zone_highest_possible_pfn[i]
6627 << PAGE_SHIFT) - 1);
6628 }
6629
6630 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6631 pr_info("Movable zone start for each node\n");
6632 for (i = 0; i < MAX_NUMNODES; i++) {
6633 if (zone_movable_pfn[i])
6634 pr_info(" Node %d: %#018Lx\n", i,
6635 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6636 }
6637
6638 /* Print out the early node map */
6639 pr_info("Early memory node ranges\n");
6640 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6641 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6642 (u64)start_pfn << PAGE_SHIFT,
6643 ((u64)end_pfn << PAGE_SHIFT) - 1);
6644
6645 /* Initialise every node */
6646 mminit_verify_pageflags_layout();
6647 setup_nr_node_ids();
6648 for_each_online_node(nid) {
6649 pg_data_t *pgdat = NODE_DATA(nid);
6650 free_area_init_node(nid, NULL,
6651 find_min_pfn_for_node(nid), NULL);
6652
6653 /* Any memory on that node */
6654 if (pgdat->node_present_pages)
6655 node_set_state(nid, N_MEMORY);
6656 check_for_memory(pgdat, nid);
6657 }
6658 }
6659
6660 static int __init cmdline_parse_core(char *p, unsigned long *core)
6661 {
6662 unsigned long long coremem;
6663 if (!p)
6664 return -EINVAL;
6665
6666 coremem = memparse(p, &p);
6667 *core = coremem >> PAGE_SHIFT;
6668
6669 /* Paranoid check that UL is enough for the coremem value */
6670 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6671
6672 return 0;
6673 }
6674
6675 /*
6676 * kernelcore=size sets the amount of memory for use for allocations that
6677 * cannot be reclaimed or migrated.
6678 */
6679 static int __init cmdline_parse_kernelcore(char *p)
6680 {
6681 /* parse kernelcore=mirror */
6682 if (parse_option_str(p, "mirror")) {
6683 mirrored_kernelcore = true;
6684 return 0;
6685 }
6686
6687 return cmdline_parse_core(p, &required_kernelcore);
6688 }
6689
6690 /*
6691 * movablecore=size sets the amount of memory for use for allocations that
6692 * can be reclaimed or migrated.
6693 */
6694 static int __init cmdline_parse_movablecore(char *p)
6695 {
6696 return cmdline_parse_core(p, &required_movablecore);
6697 }
6698
6699 early_param("kernelcore", cmdline_parse_kernelcore);
6700 early_param("movablecore", cmdline_parse_movablecore);
6701
6702 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6703
6704 void adjust_managed_page_count(struct page *page, long count)
6705 {
6706 spin_lock(&managed_page_count_lock);
6707 page_zone(page)->managed_pages += count;
6708 totalram_pages += count;
6709 #ifdef CONFIG_HIGHMEM
6710 if (PageHighMem(page))
6711 totalhigh_pages += count;
6712 #endif
6713 spin_unlock(&managed_page_count_lock);
6714 }
6715 EXPORT_SYMBOL(adjust_managed_page_count);
6716
6717 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6718 {
6719 void *pos;
6720 unsigned long pages = 0;
6721
6722 start = (void *)PAGE_ALIGN((unsigned long)start);
6723 end = (void *)((unsigned long)end & PAGE_MASK);
6724 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6725 if ((unsigned int)poison <= 0xFF)
6726 memset(pos, poison, PAGE_SIZE);
6727 free_reserved_page(virt_to_page(pos));
6728 }
6729
6730 if (pages && s)
6731 pr_info("Freeing %s memory: %ldK\n",
6732 s, pages << (PAGE_SHIFT - 10));
6733
6734 return pages;
6735 }
6736 EXPORT_SYMBOL(free_reserved_area);
6737
6738 #ifdef CONFIG_HIGHMEM
6739 void free_highmem_page(struct page *page)
6740 {
6741 __free_reserved_page(page);
6742 totalram_pages++;
6743 page_zone(page)->managed_pages++;
6744 totalhigh_pages++;
6745 }
6746 #endif
6747
6748
6749 void __init mem_init_print_info(const char *str)
6750 {
6751 unsigned long physpages, codesize, datasize, rosize, bss_size;
6752 unsigned long init_code_size, init_data_size;
6753
6754 physpages = get_num_physpages();
6755 codesize = _etext - _stext;
6756 datasize = _edata - _sdata;
6757 rosize = __end_rodata - __start_rodata;
6758 bss_size = __bss_stop - __bss_start;
6759 init_data_size = __init_end - __init_begin;
6760 init_code_size = _einittext - _sinittext;
6761
6762 /*
6763 * Detect special cases and adjust section sizes accordingly:
6764 * 1) .init.* may be embedded into .data sections
6765 * 2) .init.text.* may be out of [__init_begin, __init_end],
6766 * please refer to arch/tile/kernel/vmlinux.lds.S.
6767 * 3) .rodata.* may be embedded into .text or .data sections.
6768 */
6769 #define adj_init_size(start, end, size, pos, adj) \
6770 do { \
6771 if (start <= pos && pos < end && size > adj) \
6772 size -= adj; \
6773 } while (0)
6774
6775 adj_init_size(__init_begin, __init_end, init_data_size,
6776 _sinittext, init_code_size);
6777 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6778 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6779 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6780 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6781
6782 #undef adj_init_size
6783
6784 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6785 #ifdef CONFIG_HIGHMEM
6786 ", %luK highmem"
6787 #endif
6788 "%s%s)\n",
6789 nr_free_pages() << (PAGE_SHIFT - 10),
6790 physpages << (PAGE_SHIFT - 10),
6791 codesize >> 10, datasize >> 10, rosize >> 10,
6792 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6793 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6794 totalcma_pages << (PAGE_SHIFT - 10),
6795 #ifdef CONFIG_HIGHMEM
6796 totalhigh_pages << (PAGE_SHIFT - 10),
6797 #endif
6798 str ? ", " : "", str ? str : "");
6799 }
6800
6801 /**
6802 * set_dma_reserve - set the specified number of pages reserved in the first zone
6803 * @new_dma_reserve: The number of pages to mark reserved
6804 *
6805 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6806 * In the DMA zone, a significant percentage may be consumed by kernel image
6807 * and other unfreeable allocations which can skew the watermarks badly. This
6808 * function may optionally be used to account for unfreeable pages in the
6809 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6810 * smaller per-cpu batchsize.
6811 */
6812 void __init set_dma_reserve(unsigned long new_dma_reserve)
6813 {
6814 dma_reserve = new_dma_reserve;
6815 }
6816
6817 void __init free_area_init(unsigned long *zones_size)
6818 {
6819 free_area_init_node(0, zones_size,
6820 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6821 }
6822
6823 static int page_alloc_cpu_dead(unsigned int cpu)
6824 {
6825
6826 lru_add_drain_cpu(cpu);
6827 drain_pages(cpu);
6828
6829 /*
6830 * Spill the event counters of the dead processor
6831 * into the current processors event counters.
6832 * This artificially elevates the count of the current
6833 * processor.
6834 */
6835 vm_events_fold_cpu(cpu);
6836
6837 /*
6838 * Zero the differential counters of the dead processor
6839 * so that the vm statistics are consistent.
6840 *
6841 * This is only okay since the processor is dead and cannot
6842 * race with what we are doing.
6843 */
6844 cpu_vm_stats_fold(cpu);
6845 return 0;
6846 }
6847
6848 void __init page_alloc_init(void)
6849 {
6850 int ret;
6851
6852 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6853 "mm/page_alloc:dead", NULL,
6854 page_alloc_cpu_dead);
6855 WARN_ON(ret < 0);
6856 }
6857
6858 /*
6859 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6860 * or min_free_kbytes changes.
6861 */
6862 static void calculate_totalreserve_pages(void)
6863 {
6864 struct pglist_data *pgdat;
6865 unsigned long reserve_pages = 0;
6866 enum zone_type i, j;
6867
6868 for_each_online_pgdat(pgdat) {
6869
6870 pgdat->totalreserve_pages = 0;
6871
6872 for (i = 0; i < MAX_NR_ZONES; i++) {
6873 struct zone *zone = pgdat->node_zones + i;
6874 long max = 0;
6875
6876 /* Find valid and maximum lowmem_reserve in the zone */
6877 for (j = i; j < MAX_NR_ZONES; j++) {
6878 if (zone->lowmem_reserve[j] > max)
6879 max = zone->lowmem_reserve[j];
6880 }
6881
6882 /* we treat the high watermark as reserved pages. */
6883 max += high_wmark_pages(zone);
6884
6885 if (max > zone->managed_pages)
6886 max = zone->managed_pages;
6887
6888 pgdat->totalreserve_pages += max;
6889
6890 reserve_pages += max;
6891 }
6892 }
6893 totalreserve_pages = reserve_pages;
6894 }
6895
6896 /*
6897 * setup_per_zone_lowmem_reserve - called whenever
6898 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6899 * has a correct pages reserved value, so an adequate number of
6900 * pages are left in the zone after a successful __alloc_pages().
6901 */
6902 static void setup_per_zone_lowmem_reserve(void)
6903 {
6904 struct pglist_data *pgdat;
6905 enum zone_type j, idx;
6906
6907 for_each_online_pgdat(pgdat) {
6908 for (j = 0; j < MAX_NR_ZONES; j++) {
6909 struct zone *zone = pgdat->node_zones + j;
6910 unsigned long managed_pages = zone->managed_pages;
6911
6912 zone->lowmem_reserve[j] = 0;
6913
6914 idx = j;
6915 while (idx) {
6916 struct zone *lower_zone;
6917
6918 idx--;
6919
6920 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6921 sysctl_lowmem_reserve_ratio[idx] = 1;
6922
6923 lower_zone = pgdat->node_zones + idx;
6924 lower_zone->lowmem_reserve[j] = managed_pages /
6925 sysctl_lowmem_reserve_ratio[idx];
6926 managed_pages += lower_zone->managed_pages;
6927 }
6928 }
6929 }
6930
6931 /* update totalreserve_pages */
6932 calculate_totalreserve_pages();
6933 }
6934
6935 static void __setup_per_zone_wmarks(void)
6936 {
6937 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6938 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
6939 unsigned long lowmem_pages = 0;
6940 struct zone *zone;
6941 unsigned long flags;
6942
6943 /* Calculate total number of !ZONE_HIGHMEM pages */
6944 for_each_zone(zone) {
6945 if (!is_highmem(zone))
6946 lowmem_pages += zone->managed_pages;
6947 }
6948
6949 for_each_zone(zone) {
6950 u64 min, low;
6951
6952 spin_lock_irqsave(&zone->lock, flags);
6953 min = (u64)pages_min * zone->managed_pages;
6954 do_div(min, lowmem_pages);
6955 low = (u64)pages_low * zone->managed_pages;
6956 do_div(low, vm_total_pages);
6957
6958 if (is_highmem(zone)) {
6959 /*
6960 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6961 * need highmem pages, so cap pages_min to a small
6962 * value here.
6963 *
6964 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6965 * deltas control asynch page reclaim, and so should
6966 * not be capped for highmem.
6967 */
6968 unsigned long min_pages;
6969
6970 min_pages = zone->managed_pages / 1024;
6971 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6972 zone->watermark[WMARK_MIN] = min_pages;
6973 } else {
6974 /*
6975 * If it's a lowmem zone, reserve a number of pages
6976 * proportionate to the zone's size.
6977 */
6978 zone->watermark[WMARK_MIN] = min;
6979 }
6980
6981 /*
6982 * Set the kswapd watermarks distance according to the
6983 * scale factor in proportion to available memory, but
6984 * ensure a minimum size on small systems.
6985 */
6986 min = max_t(u64, min >> 2,
6987 mult_frac(zone->managed_pages,
6988 watermark_scale_factor, 10000));
6989
6990 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6991 low + min;
6992 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6993 low + min * 2;
6994
6995 spin_unlock_irqrestore(&zone->lock, flags);
6996 }
6997
6998 /* update totalreserve_pages */
6999 calculate_totalreserve_pages();
7000 }
7001
7002 /**
7003 * setup_per_zone_wmarks - called when min_free_kbytes changes
7004 * or when memory is hot-{added|removed}
7005 *
7006 * Ensures that the watermark[min,low,high] values for each zone are set
7007 * correctly with respect to min_free_kbytes.
7008 */
7009 void setup_per_zone_wmarks(void)
7010 {
7011 static DEFINE_SPINLOCK(lock);
7012
7013 spin_lock(&lock);
7014 __setup_per_zone_wmarks();
7015 spin_unlock(&lock);
7016 }
7017
7018 /*
7019 * Initialise min_free_kbytes.
7020 *
7021 * For small machines we want it small (128k min). For large machines
7022 * we want it large (64MB max). But it is not linear, because network
7023 * bandwidth does not increase linearly with machine size. We use
7024 *
7025 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7026 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7027 *
7028 * which yields
7029 *
7030 * 16MB: 512k
7031 * 32MB: 724k
7032 * 64MB: 1024k
7033 * 128MB: 1448k
7034 * 256MB: 2048k
7035 * 512MB: 2896k
7036 * 1024MB: 4096k
7037 * 2048MB: 5792k
7038 * 4096MB: 8192k
7039 * 8192MB: 11584k
7040 * 16384MB: 16384k
7041 */
7042 int __meminit init_per_zone_wmark_min(void)
7043 {
7044 unsigned long lowmem_kbytes;
7045 int new_min_free_kbytes;
7046
7047 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7048 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7049
7050 if (new_min_free_kbytes > user_min_free_kbytes) {
7051 min_free_kbytes = new_min_free_kbytes;
7052 if (min_free_kbytes < 128)
7053 min_free_kbytes = 128;
7054 if (min_free_kbytes > 65536)
7055 min_free_kbytes = 65536;
7056 } else {
7057 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7058 new_min_free_kbytes, user_min_free_kbytes);
7059 }
7060 setup_per_zone_wmarks();
7061 refresh_zone_stat_thresholds();
7062 setup_per_zone_lowmem_reserve();
7063
7064 #ifdef CONFIG_NUMA
7065 setup_min_unmapped_ratio();
7066 setup_min_slab_ratio();
7067 #endif
7068
7069 return 0;
7070 }
7071 core_initcall(init_per_zone_wmark_min)
7072
7073 /*
7074 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7075 * that we can call two helper functions whenever min_free_kbytes
7076 * or extra_free_kbytes changes.
7077 */
7078 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7079 void __user *buffer, size_t *length, loff_t *ppos)
7080 {
7081 int rc;
7082
7083 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7084 if (rc)
7085 return rc;
7086
7087 if (write) {
7088 user_min_free_kbytes = min_free_kbytes;
7089 setup_per_zone_wmarks();
7090 }
7091 return 0;
7092 }
7093
7094 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7095 void __user *buffer, size_t *length, loff_t *ppos)
7096 {
7097 int rc;
7098
7099 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7100 if (rc)
7101 return rc;
7102
7103 if (write)
7104 setup_per_zone_wmarks();
7105
7106 return 0;
7107 }
7108
7109 #ifdef CONFIG_NUMA
7110 static void setup_min_unmapped_ratio(void)
7111 {
7112 pg_data_t *pgdat;
7113 struct zone *zone;
7114
7115 for_each_online_pgdat(pgdat)
7116 pgdat->min_unmapped_pages = 0;
7117
7118 for_each_zone(zone)
7119 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7120 sysctl_min_unmapped_ratio) / 100;
7121 }
7122
7123
7124 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7125 void __user *buffer, size_t *length, loff_t *ppos)
7126 {
7127 int rc;
7128
7129 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7130 if (rc)
7131 return rc;
7132
7133 setup_min_unmapped_ratio();
7134
7135 return 0;
7136 }
7137
7138 static void setup_min_slab_ratio(void)
7139 {
7140 pg_data_t *pgdat;
7141 struct zone *zone;
7142
7143 for_each_online_pgdat(pgdat)
7144 pgdat->min_slab_pages = 0;
7145
7146 for_each_zone(zone)
7147 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7148 sysctl_min_slab_ratio) / 100;
7149 }
7150
7151 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7152 void __user *buffer, size_t *length, loff_t *ppos)
7153 {
7154 int rc;
7155
7156 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7157 if (rc)
7158 return rc;
7159
7160 setup_min_slab_ratio();
7161
7162 return 0;
7163 }
7164 #endif
7165
7166 /*
7167 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7168 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7169 * whenever sysctl_lowmem_reserve_ratio changes.
7170 *
7171 * The reserve ratio obviously has absolutely no relation with the
7172 * minimum watermarks. The lowmem reserve ratio can only make sense
7173 * if in function of the boot time zone sizes.
7174 */
7175 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7176 void __user *buffer, size_t *length, loff_t *ppos)
7177 {
7178 proc_dointvec_minmax(table, write, buffer, length, ppos);
7179 setup_per_zone_lowmem_reserve();
7180 return 0;
7181 }
7182
7183 /*
7184 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7185 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7186 * pagelist can have before it gets flushed back to buddy allocator.
7187 */
7188 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7189 void __user *buffer, size_t *length, loff_t *ppos)
7190 {
7191 struct zone *zone;
7192 int old_percpu_pagelist_fraction;
7193 int ret;
7194
7195 mutex_lock(&pcp_batch_high_lock);
7196 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7197
7198 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7199 if (!write || ret < 0)
7200 goto out;
7201
7202 /* Sanity checking to avoid pcp imbalance */
7203 if (percpu_pagelist_fraction &&
7204 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7205 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7206 ret = -EINVAL;
7207 goto out;
7208 }
7209
7210 /* No change? */
7211 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7212 goto out;
7213
7214 for_each_populated_zone(zone) {
7215 unsigned int cpu;
7216
7217 for_each_possible_cpu(cpu)
7218 pageset_set_high_and_batch(zone,
7219 per_cpu_ptr(zone->pageset, cpu));
7220 }
7221 out:
7222 mutex_unlock(&pcp_batch_high_lock);
7223 return ret;
7224 }
7225
7226 #ifdef CONFIG_NUMA
7227 int hashdist = HASHDIST_DEFAULT;
7228
7229 static int __init set_hashdist(char *str)
7230 {
7231 if (!str)
7232 return 0;
7233 hashdist = simple_strtoul(str, &str, 0);
7234 return 1;
7235 }
7236 __setup("hashdist=", set_hashdist);
7237 #endif
7238
7239 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7240 /*
7241 * Returns the number of pages that arch has reserved but
7242 * is not known to alloc_large_system_hash().
7243 */
7244 static unsigned long __init arch_reserved_kernel_pages(void)
7245 {
7246 return 0;
7247 }
7248 #endif
7249
7250 /*
7251 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7252 * machines. As memory size is increased the scale is also increased but at
7253 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7254 * quadruples the scale is increased by one, which means the size of hash table
7255 * only doubles, instead of quadrupling as well.
7256 * Because 32-bit systems cannot have large physical memory, where this scaling
7257 * makes sense, it is disabled on such platforms.
7258 */
7259 #if __BITS_PER_LONG > 32
7260 #define ADAPT_SCALE_BASE (64ul << 30)
7261 #define ADAPT_SCALE_SHIFT 2
7262 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7263 #endif
7264
7265 /*
7266 * allocate a large system hash table from bootmem
7267 * - it is assumed that the hash table must contain an exact power-of-2
7268 * quantity of entries
7269 * - limit is the number of hash buckets, not the total allocation size
7270 */
7271 void *__init alloc_large_system_hash(const char *tablename,
7272 unsigned long bucketsize,
7273 unsigned long numentries,
7274 int scale,
7275 int flags,
7276 unsigned int *_hash_shift,
7277 unsigned int *_hash_mask,
7278 unsigned long low_limit,
7279 unsigned long high_limit)
7280 {
7281 unsigned long long max = high_limit;
7282 unsigned long log2qty, size;
7283 void *table = NULL;
7284 gfp_t gfp_flags;
7285
7286 /* allow the kernel cmdline to have a say */
7287 if (!numentries) {
7288 /* round applicable memory size up to nearest megabyte */
7289 numentries = nr_kernel_pages;
7290 numentries -= arch_reserved_kernel_pages();
7291
7292 /* It isn't necessary when PAGE_SIZE >= 1MB */
7293 if (PAGE_SHIFT < 20)
7294 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7295
7296 #if __BITS_PER_LONG > 32
7297 if (!high_limit) {
7298 unsigned long adapt;
7299
7300 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7301 adapt <<= ADAPT_SCALE_SHIFT)
7302 scale++;
7303 }
7304 #endif
7305
7306 /* limit to 1 bucket per 2^scale bytes of low memory */
7307 if (scale > PAGE_SHIFT)
7308 numentries >>= (scale - PAGE_SHIFT);
7309 else
7310 numentries <<= (PAGE_SHIFT - scale);
7311
7312 /* Make sure we've got at least a 0-order allocation.. */
7313 if (unlikely(flags & HASH_SMALL)) {
7314 /* Makes no sense without HASH_EARLY */
7315 WARN_ON(!(flags & HASH_EARLY));
7316 if (!(numentries >> *_hash_shift)) {
7317 numentries = 1UL << *_hash_shift;
7318 BUG_ON(!numentries);
7319 }
7320 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7321 numentries = PAGE_SIZE / bucketsize;
7322 }
7323 numentries = roundup_pow_of_two(numentries);
7324
7325 /* limit allocation size to 1/16 total memory by default */
7326 if (max == 0) {
7327 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7328 do_div(max, bucketsize);
7329 }
7330 max = min(max, 0x80000000ULL);
7331
7332 if (numentries < low_limit)
7333 numentries = low_limit;
7334 if (numentries > max)
7335 numentries = max;
7336
7337 log2qty = ilog2(numentries);
7338
7339 /*
7340 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7341 * currently not used when HASH_EARLY is specified.
7342 */
7343 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7344 do {
7345 size = bucketsize << log2qty;
7346 if (flags & HASH_EARLY)
7347 table = memblock_virt_alloc_nopanic(size, 0);
7348 else if (hashdist)
7349 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7350 else {
7351 /*
7352 * If bucketsize is not a power-of-two, we may free
7353 * some pages at the end of hash table which
7354 * alloc_pages_exact() automatically does
7355 */
7356 if (get_order(size) < MAX_ORDER) {
7357 table = alloc_pages_exact(size, gfp_flags);
7358 kmemleak_alloc(table, size, 1, gfp_flags);
7359 }
7360 }
7361 } while (!table && size > PAGE_SIZE && --log2qty);
7362
7363 if (!table)
7364 panic("Failed to allocate %s hash table\n", tablename);
7365
7366 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7367 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7368
7369 if (_hash_shift)
7370 *_hash_shift = log2qty;
7371 if (_hash_mask)
7372 *_hash_mask = (1 << log2qty) - 1;
7373
7374 return table;
7375 }
7376
7377 /*
7378 * This function checks whether pageblock includes unmovable pages or not.
7379 * If @count is not zero, it is okay to include less @count unmovable pages
7380 *
7381 * PageLRU check without isolation or lru_lock could race so that
7382 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7383 * check without lock_page also may miss some movable non-lru pages at
7384 * race condition. So you can't expect this function should be exact.
7385 */
7386 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7387 bool skip_hwpoisoned_pages)
7388 {
7389 unsigned long pfn, iter, found;
7390 int mt;
7391
7392 /*
7393 * For avoiding noise data, lru_add_drain_all() should be called
7394 * If ZONE_MOVABLE, the zone never contains unmovable pages
7395 */
7396 if (zone_idx(zone) == ZONE_MOVABLE)
7397 return false;
7398 mt = get_pageblock_migratetype(page);
7399 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7400 return false;
7401
7402 pfn = page_to_pfn(page);
7403 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7404 unsigned long check = pfn + iter;
7405
7406 if (!pfn_valid_within(check))
7407 continue;
7408
7409 page = pfn_to_page(check);
7410
7411 /*
7412 * Hugepages are not in LRU lists, but they're movable.
7413 * We need not scan over tail pages bacause we don't
7414 * handle each tail page individually in migration.
7415 */
7416 if (PageHuge(page)) {
7417 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7418 continue;
7419 }
7420
7421 /*
7422 * We can't use page_count without pin a page
7423 * because another CPU can free compound page.
7424 * This check already skips compound tails of THP
7425 * because their page->_refcount is zero at all time.
7426 */
7427 if (!page_ref_count(page)) {
7428 if (PageBuddy(page))
7429 iter += (1 << page_order(page)) - 1;
7430 continue;
7431 }
7432
7433 /*
7434 * The HWPoisoned page may be not in buddy system, and
7435 * page_count() is not 0.
7436 */
7437 if (skip_hwpoisoned_pages && PageHWPoison(page))
7438 continue;
7439
7440 if (__PageMovable(page))
7441 continue;
7442
7443 if (!PageLRU(page))
7444 found++;
7445 /*
7446 * If there are RECLAIMABLE pages, we need to check
7447 * it. But now, memory offline itself doesn't call
7448 * shrink_node_slabs() and it still to be fixed.
7449 */
7450 /*
7451 * If the page is not RAM, page_count()should be 0.
7452 * we don't need more check. This is an _used_ not-movable page.
7453 *
7454 * The problematic thing here is PG_reserved pages. PG_reserved
7455 * is set to both of a memory hole page and a _used_ kernel
7456 * page at boot.
7457 */
7458 if (found > count)
7459 return true;
7460 }
7461 return false;
7462 }
7463
7464 bool is_pageblock_removable_nolock(struct page *page)
7465 {
7466 struct zone *zone;
7467 unsigned long pfn;
7468
7469 /*
7470 * We have to be careful here because we are iterating over memory
7471 * sections which are not zone aware so we might end up outside of
7472 * the zone but still within the section.
7473 * We have to take care about the node as well. If the node is offline
7474 * its NODE_DATA will be NULL - see page_zone.
7475 */
7476 if (!node_online(page_to_nid(page)))
7477 return false;
7478
7479 zone = page_zone(page);
7480 pfn = page_to_pfn(page);
7481 if (!zone_spans_pfn(zone, pfn))
7482 return false;
7483
7484 return !has_unmovable_pages(zone, page, 0, true);
7485 }
7486
7487 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7488
7489 static unsigned long pfn_max_align_down(unsigned long pfn)
7490 {
7491 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7492 pageblock_nr_pages) - 1);
7493 }
7494
7495 static unsigned long pfn_max_align_up(unsigned long pfn)
7496 {
7497 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7498 pageblock_nr_pages));
7499 }
7500
7501 /* [start, end) must belong to a single zone. */
7502 static int __alloc_contig_migrate_range(struct compact_control *cc,
7503 unsigned long start, unsigned long end,
7504 bool drain)
7505 {
7506 /* This function is based on compact_zone() from compaction.c. */
7507 unsigned long nr_reclaimed;
7508 unsigned long pfn = start;
7509 unsigned int tries = 0;
7510 int ret = 0;
7511
7512 if (drain)
7513 migrate_prep();
7514
7515 while (pfn < end || !list_empty(&cc->migratepages)) {
7516 if (fatal_signal_pending(current)) {
7517 ret = -EINTR;
7518 break;
7519 }
7520
7521 if (list_empty(&cc->migratepages)) {
7522 cc->nr_migratepages = 0;
7523 pfn = isolate_migratepages_range(cc, pfn, end);
7524 if (!pfn) {
7525 ret = -EINTR;
7526 break;
7527 }
7528 tries = 0;
7529 } else if (++tries == 5) {
7530 ret = ret < 0 ? ret : -EBUSY;
7531 break;
7532 }
7533
7534 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7535 &cc->migratepages);
7536 cc->nr_migratepages -= nr_reclaimed;
7537
7538 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7539 NULL, 0, cc->mode, drain ? MR_CMA : MR_HPA);
7540 }
7541 if (ret < 0) {
7542 putback_movable_pages(&cc->migratepages);
7543 return ret;
7544 }
7545 return 0;
7546 }
7547
7548 /**
7549 * alloc_contig_range() -- tries to allocate given range of pages
7550 * @start: start PFN to allocate
7551 * @end: one-past-the-last PFN to allocate
7552 * @migratetype: migratetype of the underlaying pageblocks (either
7553 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7554 * in range must have the same migratetype and it must
7555 * be either of the two.
7556 * @gfp_mask: GFP mask to use during compaction
7557 *
7558 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7559 * aligned, however it's the caller's responsibility to guarantee that
7560 * we are the only thread that changes migrate type of pageblocks the
7561 * pages fall in.
7562 *
7563 * The PFN range must belong to a single zone.
7564 *
7565 * Returns zero on success or negative error code. On success all
7566 * pages which PFN is in [start, end) are allocated for the caller and
7567 * need to be freed with free_contig_range().
7568 */
7569 int __alloc_contig_range(unsigned long start, unsigned long end,
7570 unsigned migratetype, gfp_t gfp_mask, bool drain)
7571 {
7572 unsigned long outer_start, outer_end;
7573 unsigned int order;
7574 int ret = 0;
7575
7576 struct compact_control cc = {
7577 .nr_migratepages = 0,
7578 .order = -1,
7579 .zone = page_zone(pfn_to_page(start)),
7580 .mode = MIGRATE_SYNC,
7581 .ignore_skip_hint = true,
7582 .gfp_mask = current_gfp_context(gfp_mask),
7583 };
7584 INIT_LIST_HEAD(&cc.migratepages);
7585
7586 /*
7587 * What we do here is we mark all pageblocks in range as
7588 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7589 * have different sizes, and due to the way page allocator
7590 * work, we align the range to biggest of the two pages so
7591 * that page allocator won't try to merge buddies from
7592 * different pageblocks and change MIGRATE_ISOLATE to some
7593 * other migration type.
7594 *
7595 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7596 * migrate the pages from an unaligned range (ie. pages that
7597 * we are interested in). This will put all the pages in
7598 * range back to page allocator as MIGRATE_ISOLATE.
7599 *
7600 * When this is done, we take the pages in range from page
7601 * allocator removing them from the buddy system. This way
7602 * page allocator will never consider using them.
7603 *
7604 * This lets us mark the pageblocks back as
7605 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7606 * aligned range but not in the unaligned, original range are
7607 * put back to page allocator so that buddy can use them.
7608 */
7609
7610 ret = start_isolate_page_range(pfn_max_align_down(start),
7611 pfn_max_align_up(end), migratetype,
7612 false);
7613 if (ret)
7614 return ret;
7615
7616 /*
7617 * In case of -EBUSY, we'd like to know which page causes problem.
7618 * So, just fall through. test_pages_isolated() has a tracepoint
7619 * which will report the busy page.
7620 *
7621 * It is possible that busy pages could become available before
7622 * the call to test_pages_isolated, and the range will actually be
7623 * allocated. So, if we fall through be sure to clear ret so that
7624 * -EBUSY is not accidentally used or returned to caller.
7625 */
7626 ret = __alloc_contig_migrate_range(&cc, start, end, drain);
7627 if (ret && ret != -EBUSY)
7628 goto done;
7629 ret =0;
7630
7631 /*
7632 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7633 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7634 * more, all pages in [start, end) are free in page allocator.
7635 * What we are going to do is to allocate all pages from
7636 * [start, end) (that is remove them from page allocator).
7637 *
7638 * The only problem is that pages at the beginning and at the
7639 * end of interesting range may be not aligned with pages that
7640 * page allocator holds, ie. they can be part of higher order
7641 * pages. Because of this, we reserve the bigger range and
7642 * once this is done free the pages we are not interested in.
7643 *
7644 * We don't have to hold zone->lock here because the pages are
7645 * isolated thus they won't get removed from buddy.
7646 */
7647
7648 order = 0;
7649 outer_start = start;
7650
7651 if (drain) {
7652 lru_add_drain_all();
7653 drain_all_pages(cc.zone);
7654
7655 while (!PageBuddy(pfn_to_page(outer_start))) {
7656 if (++order >= MAX_ORDER) {
7657 outer_start = start;
7658 break;
7659 }
7660 outer_start &= ~0UL << order;
7661 }
7662
7663 if (outer_start != start) {
7664 order = page_order(pfn_to_page(outer_start));
7665
7666 /*
7667 * outer_start page could be small order buddy page and
7668 * it doesn't include start page. Adjust outer_start
7669 * in this case to report failed page properly
7670 * on tracepoint in test_pages_isolated()
7671 */
7672 if (outer_start + (1UL << order) <= start)
7673 outer_start = start;
7674 }
7675
7676 /* Make sure the range is really isolated. */
7677 if (test_pages_isolated(outer_start, end, false)) {
7678 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7679 __func__, outer_start, end);
7680 ret = -EBUSY;
7681 goto done;
7682 }
7683 }
7684
7685 /* Grab isolated pages from freelists. */
7686 outer_end = isolate_freepages_range(&cc, outer_start, end);
7687 if (!outer_end) {
7688 ret = -EBUSY;
7689 goto done;
7690 }
7691
7692 /* Free head and tail (if any) */
7693 if (start != outer_start)
7694 free_contig_range(outer_start, start - outer_start);
7695 if (end != outer_end)
7696 free_contig_range(end, outer_end - end);
7697
7698 done:
7699 undo_isolate_page_range(pfn_max_align_down(start),
7700 pfn_max_align_up(end), migratetype);
7701 return ret;
7702 }
7703
7704 int alloc_contig_range(unsigned long start, unsigned long end,
7705 unsigned migratetype, gfp_t gfp_mask)
7706 {
7707 return __alloc_contig_range(start, end, migratetype, gfp_mask, true);
7708 }
7709
7710 int alloc_contig_range_fast(unsigned long start, unsigned long end,
7711 unsigned migratetype)
7712 {
7713 return __alloc_contig_range(start, end, migratetype, GFP_KERNEL, false);
7714 }
7715
7716 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7717 {
7718 unsigned int count = 0;
7719
7720 for (; nr_pages--; pfn++) {
7721 struct page *page = pfn_to_page(pfn);
7722
7723 count += page_count(page) != 1;
7724 __free_page(page);
7725 }
7726 WARN(count != 0, "%d pages are still in use!\n", count);
7727 }
7728 #endif
7729
7730 #ifdef CONFIG_MEMORY_HOTPLUG
7731 /*
7732 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7733 * page high values need to be recalulated.
7734 */
7735 void __meminit zone_pcp_update(struct zone *zone)
7736 {
7737 unsigned cpu;
7738 mutex_lock(&pcp_batch_high_lock);
7739 for_each_possible_cpu(cpu)
7740 pageset_set_high_and_batch(zone,
7741 per_cpu_ptr(zone->pageset, cpu));
7742 mutex_unlock(&pcp_batch_high_lock);
7743 }
7744 #endif
7745
7746 void zone_pcp_reset(struct zone *zone)
7747 {
7748 unsigned long flags;
7749 int cpu;
7750 struct per_cpu_pageset *pset;
7751
7752 /* avoid races with drain_pages() */
7753 local_irq_save(flags);
7754 if (zone->pageset != &boot_pageset) {
7755 for_each_online_cpu(cpu) {
7756 pset = per_cpu_ptr(zone->pageset, cpu);
7757 drain_zonestat(zone, pset);
7758 }
7759 free_percpu(zone->pageset);
7760 zone->pageset = &boot_pageset;
7761 }
7762 local_irq_restore(flags);
7763 }
7764
7765 #ifdef CONFIG_MEMORY_HOTREMOVE
7766 /*
7767 * All pages in the range must be in a single zone and isolated
7768 * before calling this.
7769 */
7770 void
7771 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7772 {
7773 struct page *page;
7774 struct zone *zone;
7775 unsigned int order, i;
7776 unsigned long pfn;
7777 unsigned long flags;
7778 /* find the first valid pfn */
7779 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7780 if (pfn_valid(pfn))
7781 break;
7782 if (pfn == end_pfn)
7783 return;
7784 offline_mem_sections(pfn, end_pfn);
7785 zone = page_zone(pfn_to_page(pfn));
7786 spin_lock_irqsave(&zone->lock, flags);
7787 pfn = start_pfn;
7788 while (pfn < end_pfn) {
7789 if (!pfn_valid(pfn)) {
7790 pfn++;
7791 continue;
7792 }
7793 page = pfn_to_page(pfn);
7794 /*
7795 * The HWPoisoned page may be not in buddy system, and
7796 * page_count() is not 0.
7797 */
7798 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7799 pfn++;
7800 SetPageReserved(page);
7801 continue;
7802 }
7803
7804 BUG_ON(page_count(page));
7805 BUG_ON(!PageBuddy(page));
7806 order = page_order(page);
7807 #ifdef CONFIG_DEBUG_VM
7808 pr_info("remove from free list %lx %d %lx\n",
7809 pfn, 1 << order, end_pfn);
7810 #endif
7811 list_del(&page->lru);
7812 rmv_page_order(page);
7813 zone->free_area[order].nr_free--;
7814 for (i = 0; i < (1 << order); i++)
7815 SetPageReserved((page+i));
7816 pfn += (1 << order);
7817 }
7818 spin_unlock_irqrestore(&zone->lock, flags);
7819 }
7820 #endif
7821
7822 bool is_free_buddy_page(struct page *page)
7823 {
7824 struct zone *zone = page_zone(page);
7825 unsigned long pfn = page_to_pfn(page);
7826 unsigned long flags;
7827 unsigned int order;
7828
7829 spin_lock_irqsave(&zone->lock, flags);
7830 for (order = 0; order < MAX_ORDER; order++) {
7831 struct page *page_head = page - (pfn & ((1 << order) - 1));
7832
7833 if (PageBuddy(page_head) && page_order(page_head) >= order)
7834 break;
7835 }
7836 spin_unlock_irqrestore(&zone->lock, flags);
7837
7838 return order < MAX_ORDER;
7839 }