remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48 #define MAX_PAUSE max(HZ/5, 1)
49
50 /*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56 /*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT 10
62
63 /*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74 int dirty_background_ratio = 10;
75
76 /*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80 unsigned long dirty_background_bytes;
81
82 /*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86 int vm_highmem_is_dirtyable;
87
88 /*
89 * The generator of dirty data starts writeback at this percentage
90 */
91 int vm_dirty_ratio = 20;
92
93 /*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97 unsigned long vm_dirty_bytes;
98
99 /*
100 * The interval between `kupdate'-style writebacks
101 */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107 * The longest time for which data is allowed to remain dirty
108 */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114 int block_dump;
115
116 /*
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
119 */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 struct wb_domain global_wb_domain;
127
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
133 #endif
134 struct bdi_writeback *wb;
135 struct fprop_local_percpu *wb_completions;
136
137 unsigned long avail; /* dirtyable */
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
141
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
144 unsigned long wb_bg_thresh;
145
146 unsigned long pos_ratio;
147 };
148
149 /*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 #ifdef CONFIG_CGROUP_WRITEBACK
157
158 #define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
161
162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163
164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
168
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171 return dtc->dom;
172 }
173
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176 return dtc->dom;
177 }
178
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181 return mdtc->gdtc;
182 }
183
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186 return &wb->memcg_completions;
187 }
188
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191 {
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
196
197 /*
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
200 */
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
204 do_div(min, tot_bw);
205 }
206 if (max < 100) {
207 max *= this_bw;
208 do_div(max, tot_bw);
209 }
210 }
211
212 *minp = min;
213 *maxp = max;
214 }
215
216 #else /* CONFIG_CGROUP_WRITEBACK */
217
218 #define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225 return false;
226 }
227
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230 return &global_wb_domain;
231 }
232
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235 return NULL;
236 }
237
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240 return NULL;
241 }
242
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
245 {
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
248 }
249
250 #endif /* CONFIG_CGROUP_WRITEBACK */
251
252 /*
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
258 *
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
263 *
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
268 */
269
270 /**
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
273 *
274 * Returns the node's number of pages potentially available for dirty
275 * page cache. This is the base value for the per-node dirty limits.
276 */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279 unsigned long nr_pages = 0;
280 int z;
281
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
284
285 if (!populated_zone(zone))
286 continue;
287
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 }
290
291 /*
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
295 */
296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300
301 return nr_pages;
302 }
303
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307 int node;
308 unsigned long x = 0;
309 int i;
310
311 for_each_node_state(node, N_HIGH_MEMORY) {
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
314 unsigned long nr_pages;
315
316 if (!is_highmem_idx(i))
317 continue;
318
319 z = &NODE_DATA(node)->node_zones[i];
320 if (!populated_zone(z))
321 continue;
322
323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 /* watch for underflows */
325 nr_pages -= min(nr_pages, high_wmark_pages(z));
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
329 }
330 }
331
332 /*
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
340 */
341 if ((long)x < 0)
342 x = 0;
343
344 /*
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
349 */
350 return min(x, total);
351 #else
352 return 0;
353 #endif
354 }
355
356 /**
357 * global_dirtyable_memory - number of globally dirtyable pages
358 *
359 * Returns the global number of pages potentially available for dirty
360 * page cache. This is the base value for the global dirty limits.
361 */
362 static unsigned long global_dirtyable_memory(void)
363 {
364 unsigned long x;
365
366 x = global_zone_page_state(NR_FREE_PAGES);
367 /*
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
371 */
372 x -= min(x, totalreserve_pages);
373
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
376
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
379
380 return x + 1; /* Ensure that we never return 0 */
381 }
382
383 /**
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
386 *
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391 * real-time tasks.
392 */
393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394 {
395 const unsigned long available_memory = dtc->avail;
396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 unsigned long bytes = vm_dirty_bytes;
398 unsigned long bg_bytes = dirty_background_bytes;
399 /* convert ratios to per-PAGE_SIZE for higher precision */
400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 unsigned long thresh;
403 unsigned long bg_thresh;
404 struct task_struct *tsk;
405
406 /* gdtc is !NULL iff @dtc is for memcg domain */
407 if (gdtc) {
408 unsigned long global_avail = gdtc->avail;
409
410 /*
411 * The byte settings can't be applied directly to memcg
412 * domains. Convert them to ratios by scaling against
413 * globally available memory. As the ratios are in
414 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 * number of pages.
416 */
417 if (bytes)
418 ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 PAGE_SIZE);
420 if (bg_bytes)
421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 PAGE_SIZE);
423 bytes = bg_bytes = 0;
424 }
425
426 if (bytes)
427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428 else
429 thresh = (ratio * available_memory) / PAGE_SIZE;
430
431 if (bg_bytes)
432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433 else
434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435
436 if (bg_thresh >= thresh)
437 bg_thresh = thresh / 2;
438 tsk = current;
439 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
440 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
441 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
442 }
443 dtc->thresh = thresh;
444 dtc->bg_thresh = bg_thresh;
445
446 /* we should eventually report the domain in the TP */
447 if (!gdtc)
448 trace_global_dirty_state(bg_thresh, thresh);
449 }
450
451 /**
452 * global_dirty_limits - background-writeback and dirty-throttling thresholds
453 * @pbackground: out parameter for bg_thresh
454 * @pdirty: out parameter for thresh
455 *
456 * Calculate bg_thresh and thresh for global_wb_domain. See
457 * domain_dirty_limits() for details.
458 */
459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
460 {
461 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
462
463 gdtc.avail = global_dirtyable_memory();
464 domain_dirty_limits(&gdtc);
465
466 *pbackground = gdtc.bg_thresh;
467 *pdirty = gdtc.thresh;
468 }
469
470 /**
471 * node_dirty_limit - maximum number of dirty pages allowed in a node
472 * @pgdat: the node
473 *
474 * Returns the maximum number of dirty pages allowed in a node, based
475 * on the node's dirtyable memory.
476 */
477 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
478 {
479 unsigned long node_memory = node_dirtyable_memory(pgdat);
480 struct task_struct *tsk = current;
481 unsigned long dirty;
482
483 if (vm_dirty_bytes)
484 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
485 node_memory / global_dirtyable_memory();
486 else
487 dirty = vm_dirty_ratio * node_memory / 100;
488
489 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
490 dirty += dirty / 4;
491
492 return dirty;
493 }
494
495 /**
496 * node_dirty_ok - tells whether a node is within its dirty limits
497 * @pgdat: the node to check
498 *
499 * Returns %true when the dirty pages in @pgdat are within the node's
500 * dirty limit, %false if the limit is exceeded.
501 */
502 bool node_dirty_ok(struct pglist_data *pgdat)
503 {
504 unsigned long limit = node_dirty_limit(pgdat);
505 unsigned long nr_pages = 0;
506
507 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
508 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
509 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
510
511 return nr_pages <= limit;
512 }
513
514 int dirty_background_ratio_handler(struct ctl_table *table, int write,
515 void __user *buffer, size_t *lenp,
516 loff_t *ppos)
517 {
518 int ret;
519
520 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521 if (ret == 0 && write)
522 dirty_background_bytes = 0;
523 return ret;
524 }
525
526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
527 void __user *buffer, size_t *lenp,
528 loff_t *ppos)
529 {
530 int ret;
531
532 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
533 if (ret == 0 && write)
534 dirty_background_ratio = 0;
535 return ret;
536 }
537
538 int dirty_ratio_handler(struct ctl_table *table, int write,
539 void __user *buffer, size_t *lenp,
540 loff_t *ppos)
541 {
542 int old_ratio = vm_dirty_ratio;
543 int ret;
544
545 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
546 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
547 writeback_set_ratelimit();
548 vm_dirty_bytes = 0;
549 }
550 return ret;
551 }
552
553 int dirty_bytes_handler(struct ctl_table *table, int write,
554 void __user *buffer, size_t *lenp,
555 loff_t *ppos)
556 {
557 unsigned long old_bytes = vm_dirty_bytes;
558 int ret;
559
560 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
561 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
562 writeback_set_ratelimit();
563 vm_dirty_ratio = 0;
564 }
565 return ret;
566 }
567
568 static unsigned long wp_next_time(unsigned long cur_time)
569 {
570 cur_time += VM_COMPLETIONS_PERIOD_LEN;
571 /* 0 has a special meaning... */
572 if (!cur_time)
573 return 1;
574 return cur_time;
575 }
576
577 static void wb_domain_writeout_inc(struct wb_domain *dom,
578 struct fprop_local_percpu *completions,
579 unsigned int max_prop_frac)
580 {
581 __fprop_inc_percpu_max(&dom->completions, completions,
582 max_prop_frac);
583 /* First event after period switching was turned off? */
584 if (unlikely(!dom->period_time)) {
585 /*
586 * We can race with other __bdi_writeout_inc calls here but
587 * it does not cause any harm since the resulting time when
588 * timer will fire and what is in writeout_period_time will be
589 * roughly the same.
590 */
591 dom->period_time = wp_next_time(jiffies);
592 mod_timer(&dom->period_timer, dom->period_time);
593 }
594 }
595
596 /*
597 * Increment @wb's writeout completion count and the global writeout
598 * completion count. Called from test_clear_page_writeback().
599 */
600 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
601 {
602 struct wb_domain *cgdom;
603
604 inc_wb_stat(wb, WB_WRITTEN);
605 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
606 wb->bdi->max_prop_frac);
607
608 cgdom = mem_cgroup_wb_domain(wb);
609 if (cgdom)
610 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
611 wb->bdi->max_prop_frac);
612 }
613
614 void wb_writeout_inc(struct bdi_writeback *wb)
615 {
616 unsigned long flags;
617
618 local_irq_save(flags);
619 __wb_writeout_inc(wb);
620 local_irq_restore(flags);
621 }
622 EXPORT_SYMBOL_GPL(wb_writeout_inc);
623
624 /*
625 * On idle system, we can be called long after we scheduled because we use
626 * deferred timers so count with missed periods.
627 */
628 static void writeout_period(unsigned long t)
629 {
630 struct wb_domain *dom = (void *)t;
631 int miss_periods = (jiffies - dom->period_time) /
632 VM_COMPLETIONS_PERIOD_LEN;
633
634 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
635 dom->period_time = wp_next_time(dom->period_time +
636 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
637 mod_timer(&dom->period_timer, dom->period_time);
638 } else {
639 /*
640 * Aging has zeroed all fractions. Stop wasting CPU on period
641 * updates.
642 */
643 dom->period_time = 0;
644 }
645 }
646
647 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
648 {
649 memset(dom, 0, sizeof(*dom));
650
651 spin_lock_init(&dom->lock);
652
653 setup_deferrable_timer(&dom->period_timer, writeout_period,
654 (unsigned long)dom);
655
656 dom->dirty_limit_tstamp = jiffies;
657
658 return fprop_global_init(&dom->completions, gfp);
659 }
660
661 #ifdef CONFIG_CGROUP_WRITEBACK
662 void wb_domain_exit(struct wb_domain *dom)
663 {
664 del_timer_sync(&dom->period_timer);
665 fprop_global_destroy(&dom->completions);
666 }
667 #endif
668
669 /*
670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
671 * registered backing devices, which, for obvious reasons, can not
672 * exceed 100%.
673 */
674 static unsigned int bdi_min_ratio;
675
676 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
677 {
678 int ret = 0;
679
680 spin_lock_bh(&bdi_lock);
681 if (min_ratio > bdi->max_ratio) {
682 ret = -EINVAL;
683 } else {
684 min_ratio -= bdi->min_ratio;
685 if (bdi_min_ratio + min_ratio < 100) {
686 bdi_min_ratio += min_ratio;
687 bdi->min_ratio += min_ratio;
688 } else {
689 ret = -EINVAL;
690 }
691 }
692 spin_unlock_bh(&bdi_lock);
693
694 return ret;
695 }
696
697 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
698 {
699 int ret = 0;
700
701 if (max_ratio > 100)
702 return -EINVAL;
703
704 spin_lock_bh(&bdi_lock);
705 if (bdi->min_ratio > max_ratio) {
706 ret = -EINVAL;
707 } else {
708 bdi->max_ratio = max_ratio;
709 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
710 }
711 spin_unlock_bh(&bdi_lock);
712
713 return ret;
714 }
715 EXPORT_SYMBOL(bdi_set_max_ratio);
716
717 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
718 unsigned long bg_thresh)
719 {
720 return (thresh + bg_thresh) / 2;
721 }
722
723 static unsigned long hard_dirty_limit(struct wb_domain *dom,
724 unsigned long thresh)
725 {
726 return max(thresh, dom->dirty_limit);
727 }
728
729 /*
730 * Memory which can be further allocated to a memcg domain is capped by
731 * system-wide clean memory excluding the amount being used in the domain.
732 */
733 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
734 unsigned long filepages, unsigned long headroom)
735 {
736 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
737 unsigned long clean = filepages - min(filepages, mdtc->dirty);
738 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
739 unsigned long other_clean = global_clean - min(global_clean, clean);
740
741 mdtc->avail = filepages + min(headroom, other_clean);
742 }
743
744 /**
745 * __wb_calc_thresh - @wb's share of dirty throttling threshold
746 * @dtc: dirty_throttle_context of interest
747 *
748 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
749 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
750 *
751 * Note that balance_dirty_pages() will only seriously take it as a hard limit
752 * when sleeping max_pause per page is not enough to keep the dirty pages under
753 * control. For example, when the device is completely stalled due to some error
754 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
755 * In the other normal situations, it acts more gently by throttling the tasks
756 * more (rather than completely block them) when the wb dirty pages go high.
757 *
758 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
759 * - starving fast devices
760 * - piling up dirty pages (that will take long time to sync) on slow devices
761 *
762 * The wb's share of dirty limit will be adapting to its throughput and
763 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
764 */
765 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
766 {
767 struct wb_domain *dom = dtc_dom(dtc);
768 unsigned long thresh = dtc->thresh;
769 u64 wb_thresh;
770 long numerator, denominator;
771 unsigned long wb_min_ratio, wb_max_ratio;
772
773 /*
774 * Calculate this BDI's share of the thresh ratio.
775 */
776 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
777 &numerator, &denominator);
778
779 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
780 wb_thresh *= numerator;
781 do_div(wb_thresh, denominator);
782
783 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
784
785 wb_thresh += (thresh * wb_min_ratio) / 100;
786 if (wb_thresh > (thresh * wb_max_ratio) / 100)
787 wb_thresh = thresh * wb_max_ratio / 100;
788
789 return wb_thresh;
790 }
791
792 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
793 {
794 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
795 .thresh = thresh };
796 return __wb_calc_thresh(&gdtc);
797 }
798
799 /*
800 * setpoint - dirty 3
801 * f(dirty) := 1.0 + (----------------)
802 * limit - setpoint
803 *
804 * it's a 3rd order polynomial that subjects to
805 *
806 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
807 * (2) f(setpoint) = 1.0 => the balance point
808 * (3) f(limit) = 0 => the hard limit
809 * (4) df/dx <= 0 => negative feedback control
810 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
811 * => fast response on large errors; small oscillation near setpoint
812 */
813 static long long pos_ratio_polynom(unsigned long setpoint,
814 unsigned long dirty,
815 unsigned long limit)
816 {
817 long long pos_ratio;
818 long x;
819
820 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
821 (limit - setpoint) | 1);
822 pos_ratio = x;
823 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
824 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
825 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
826
827 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
828 }
829
830 /*
831 * Dirty position control.
832 *
833 * (o) global/bdi setpoints
834 *
835 * We want the dirty pages be balanced around the global/wb setpoints.
836 * When the number of dirty pages is higher/lower than the setpoint, the
837 * dirty position control ratio (and hence task dirty ratelimit) will be
838 * decreased/increased to bring the dirty pages back to the setpoint.
839 *
840 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
841 *
842 * if (dirty < setpoint) scale up pos_ratio
843 * if (dirty > setpoint) scale down pos_ratio
844 *
845 * if (wb_dirty < wb_setpoint) scale up pos_ratio
846 * if (wb_dirty > wb_setpoint) scale down pos_ratio
847 *
848 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
849 *
850 * (o) global control line
851 *
852 * ^ pos_ratio
853 * |
854 * | |<===== global dirty control scope ======>|
855 * 2.0 .............*
856 * | .*
857 * | . *
858 * | . *
859 * | . *
860 * | . *
861 * | . *
862 * 1.0 ................................*
863 * | . . *
864 * | . . *
865 * | . . *
866 * | . . *
867 * | . . *
868 * 0 +------------.------------------.----------------------*------------->
869 * freerun^ setpoint^ limit^ dirty pages
870 *
871 * (o) wb control line
872 *
873 * ^ pos_ratio
874 * |
875 * | *
876 * | *
877 * | *
878 * | *
879 * | * |<=========== span ============>|
880 * 1.0 .......................*
881 * | . *
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * | . *
892 * 1/4 ...............................................* * * * * * * * * * * *
893 * | . .
894 * | . .
895 * | . .
896 * 0 +----------------------.-------------------------------.------------->
897 * wb_setpoint^ x_intercept^
898 *
899 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
900 * be smoothly throttled down to normal if it starts high in situations like
901 * - start writing to a slow SD card and a fast disk at the same time. The SD
902 * card's wb_dirty may rush to many times higher than wb_setpoint.
903 * - the wb dirty thresh drops quickly due to change of JBOD workload
904 */
905 static void wb_position_ratio(struct dirty_throttle_control *dtc)
906 {
907 struct bdi_writeback *wb = dtc->wb;
908 unsigned long write_bw = wb->avg_write_bandwidth;
909 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
910 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
911 unsigned long wb_thresh = dtc->wb_thresh;
912 unsigned long x_intercept;
913 unsigned long setpoint; /* dirty pages' target balance point */
914 unsigned long wb_setpoint;
915 unsigned long span;
916 long long pos_ratio; /* for scaling up/down the rate limit */
917 long x;
918
919 dtc->pos_ratio = 0;
920
921 if (unlikely(dtc->dirty >= limit))
922 return;
923
924 /*
925 * global setpoint
926 *
927 * See comment for pos_ratio_polynom().
928 */
929 setpoint = (freerun + limit) / 2;
930 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
931
932 /*
933 * The strictlimit feature is a tool preventing mistrusted filesystems
934 * from growing a large number of dirty pages before throttling. For
935 * such filesystems balance_dirty_pages always checks wb counters
936 * against wb limits. Even if global "nr_dirty" is under "freerun".
937 * This is especially important for fuse which sets bdi->max_ratio to
938 * 1% by default. Without strictlimit feature, fuse writeback may
939 * consume arbitrary amount of RAM because it is accounted in
940 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
941 *
942 * Here, in wb_position_ratio(), we calculate pos_ratio based on
943 * two values: wb_dirty and wb_thresh. Let's consider an example:
944 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
945 * limits are set by default to 10% and 20% (background and throttle).
946 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
947 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
948 * about ~6K pages (as the average of background and throttle wb
949 * limits). The 3rd order polynomial will provide positive feedback if
950 * wb_dirty is under wb_setpoint and vice versa.
951 *
952 * Note, that we cannot use global counters in these calculations
953 * because we want to throttle process writing to a strictlimit wb
954 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
955 * in the example above).
956 */
957 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
958 long long wb_pos_ratio;
959
960 if (dtc->wb_dirty < 8) {
961 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
962 2 << RATELIMIT_CALC_SHIFT);
963 return;
964 }
965
966 if (dtc->wb_dirty >= wb_thresh)
967 return;
968
969 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
970 dtc->wb_bg_thresh);
971
972 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
973 return;
974
975 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
976 wb_thresh);
977
978 /*
979 * Typically, for strictlimit case, wb_setpoint << setpoint
980 * and pos_ratio >> wb_pos_ratio. In the other words global
981 * state ("dirty") is not limiting factor and we have to
982 * make decision based on wb counters. But there is an
983 * important case when global pos_ratio should get precedence:
984 * global limits are exceeded (e.g. due to activities on other
985 * wb's) while given strictlimit wb is below limit.
986 *
987 * "pos_ratio * wb_pos_ratio" would work for the case above,
988 * but it would look too non-natural for the case of all
989 * activity in the system coming from a single strictlimit wb
990 * with bdi->max_ratio == 100%.
991 *
992 * Note that min() below somewhat changes the dynamics of the
993 * control system. Normally, pos_ratio value can be well over 3
994 * (when globally we are at freerun and wb is well below wb
995 * setpoint). Now the maximum pos_ratio in the same situation
996 * is 2. We might want to tweak this if we observe the control
997 * system is too slow to adapt.
998 */
999 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1000 return;
1001 }
1002
1003 /*
1004 * We have computed basic pos_ratio above based on global situation. If
1005 * the wb is over/under its share of dirty pages, we want to scale
1006 * pos_ratio further down/up. That is done by the following mechanism.
1007 */
1008
1009 /*
1010 * wb setpoint
1011 *
1012 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1013 *
1014 * x_intercept - wb_dirty
1015 * := --------------------------
1016 * x_intercept - wb_setpoint
1017 *
1018 * The main wb control line is a linear function that subjects to
1019 *
1020 * (1) f(wb_setpoint) = 1.0
1021 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1022 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1023 *
1024 * For single wb case, the dirty pages are observed to fluctuate
1025 * regularly within range
1026 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1027 * for various filesystems, where (2) can yield in a reasonable 12.5%
1028 * fluctuation range for pos_ratio.
1029 *
1030 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1031 * own size, so move the slope over accordingly and choose a slope that
1032 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1033 */
1034 if (unlikely(wb_thresh > dtc->thresh))
1035 wb_thresh = dtc->thresh;
1036 /*
1037 * It's very possible that wb_thresh is close to 0 not because the
1038 * device is slow, but that it has remained inactive for long time.
1039 * Honour such devices a reasonable good (hopefully IO efficient)
1040 * threshold, so that the occasional writes won't be blocked and active
1041 * writes can rampup the threshold quickly.
1042 */
1043 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1044 /*
1045 * scale global setpoint to wb's:
1046 * wb_setpoint = setpoint * wb_thresh / thresh
1047 */
1048 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1049 wb_setpoint = setpoint * (u64)x >> 16;
1050 /*
1051 * Use span=(8*write_bw) in single wb case as indicated by
1052 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1053 *
1054 * wb_thresh thresh - wb_thresh
1055 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1056 * thresh thresh
1057 */
1058 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1059 x_intercept = wb_setpoint + span;
1060
1061 if (dtc->wb_dirty < x_intercept - span / 4) {
1062 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1063 (x_intercept - wb_setpoint) | 1);
1064 } else
1065 pos_ratio /= 4;
1066
1067 /*
1068 * wb reserve area, safeguard against dirty pool underrun and disk idle
1069 * It may push the desired control point of global dirty pages higher
1070 * than setpoint.
1071 */
1072 x_intercept = wb_thresh / 2;
1073 if (dtc->wb_dirty < x_intercept) {
1074 if (dtc->wb_dirty > x_intercept / 8)
1075 pos_ratio = div_u64(pos_ratio * x_intercept,
1076 dtc->wb_dirty);
1077 else
1078 pos_ratio *= 8;
1079 }
1080
1081 dtc->pos_ratio = pos_ratio;
1082 }
1083
1084 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1085 unsigned long elapsed,
1086 unsigned long written)
1087 {
1088 const unsigned long period = roundup_pow_of_two(3 * HZ);
1089 unsigned long avg = wb->avg_write_bandwidth;
1090 unsigned long old = wb->write_bandwidth;
1091 u64 bw;
1092
1093 /*
1094 * bw = written * HZ / elapsed
1095 *
1096 * bw * elapsed + write_bandwidth * (period - elapsed)
1097 * write_bandwidth = ---------------------------------------------------
1098 * period
1099 *
1100 * @written may have decreased due to account_page_redirty().
1101 * Avoid underflowing @bw calculation.
1102 */
1103 bw = written - min(written, wb->written_stamp);
1104 bw *= HZ;
1105 if (unlikely(elapsed > period)) {
1106 do_div(bw, elapsed);
1107 avg = bw;
1108 goto out;
1109 }
1110 bw += (u64)wb->write_bandwidth * (period - elapsed);
1111 bw >>= ilog2(period);
1112
1113 /*
1114 * one more level of smoothing, for filtering out sudden spikes
1115 */
1116 if (avg > old && old >= (unsigned long)bw)
1117 avg -= (avg - old) >> 3;
1118
1119 if (avg < old && old <= (unsigned long)bw)
1120 avg += (old - avg) >> 3;
1121
1122 out:
1123 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1124 avg = max(avg, 1LU);
1125 if (wb_has_dirty_io(wb)) {
1126 long delta = avg - wb->avg_write_bandwidth;
1127 WARN_ON_ONCE(atomic_long_add_return(delta,
1128 &wb->bdi->tot_write_bandwidth) <= 0);
1129 }
1130 wb->write_bandwidth = bw;
1131 wb->avg_write_bandwidth = avg;
1132 }
1133
1134 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1135 {
1136 struct wb_domain *dom = dtc_dom(dtc);
1137 unsigned long thresh = dtc->thresh;
1138 unsigned long limit = dom->dirty_limit;
1139
1140 /*
1141 * Follow up in one step.
1142 */
1143 if (limit < thresh) {
1144 limit = thresh;
1145 goto update;
1146 }
1147
1148 /*
1149 * Follow down slowly. Use the higher one as the target, because thresh
1150 * may drop below dirty. This is exactly the reason to introduce
1151 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1152 */
1153 thresh = max(thresh, dtc->dirty);
1154 if (limit > thresh) {
1155 limit -= (limit - thresh) >> 5;
1156 goto update;
1157 }
1158 return;
1159 update:
1160 dom->dirty_limit = limit;
1161 }
1162
1163 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1164 unsigned long now)
1165 {
1166 struct wb_domain *dom = dtc_dom(dtc);
1167
1168 /*
1169 * check locklessly first to optimize away locking for the most time
1170 */
1171 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1172 return;
1173
1174 spin_lock(&dom->lock);
1175 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1176 update_dirty_limit(dtc);
1177 dom->dirty_limit_tstamp = now;
1178 }
1179 spin_unlock(&dom->lock);
1180 }
1181
1182 /*
1183 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1184 *
1185 * Normal wb tasks will be curbed at or below it in long term.
1186 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1187 */
1188 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1189 unsigned long dirtied,
1190 unsigned long elapsed)
1191 {
1192 struct bdi_writeback *wb = dtc->wb;
1193 unsigned long dirty = dtc->dirty;
1194 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1195 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1196 unsigned long setpoint = (freerun + limit) / 2;
1197 unsigned long write_bw = wb->avg_write_bandwidth;
1198 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1199 unsigned long dirty_rate;
1200 unsigned long task_ratelimit;
1201 unsigned long balanced_dirty_ratelimit;
1202 unsigned long step;
1203 unsigned long x;
1204 unsigned long shift;
1205
1206 /*
1207 * The dirty rate will match the writeout rate in long term, except
1208 * when dirty pages are truncated by userspace or re-dirtied by FS.
1209 */
1210 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1211
1212 /*
1213 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1214 */
1215 task_ratelimit = (u64)dirty_ratelimit *
1216 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1217 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1218
1219 /*
1220 * A linear estimation of the "balanced" throttle rate. The theory is,
1221 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1222 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1223 * formula will yield the balanced rate limit (write_bw / N).
1224 *
1225 * Note that the expanded form is not a pure rate feedback:
1226 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1227 * but also takes pos_ratio into account:
1228 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1229 *
1230 * (1) is not realistic because pos_ratio also takes part in balancing
1231 * the dirty rate. Consider the state
1232 * pos_ratio = 0.5 (3)
1233 * rate = 2 * (write_bw / N) (4)
1234 * If (1) is used, it will stuck in that state! Because each dd will
1235 * be throttled at
1236 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1237 * yielding
1238 * dirty_rate = N * task_ratelimit = write_bw (6)
1239 * put (6) into (1) we get
1240 * rate_(i+1) = rate_(i) (7)
1241 *
1242 * So we end up using (2) to always keep
1243 * rate_(i+1) ~= (write_bw / N) (8)
1244 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1245 * pos_ratio is able to drive itself to 1.0, which is not only where
1246 * the dirty count meet the setpoint, but also where the slope of
1247 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1248 */
1249 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1250 dirty_rate | 1);
1251 /*
1252 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1253 */
1254 if (unlikely(balanced_dirty_ratelimit > write_bw))
1255 balanced_dirty_ratelimit = write_bw;
1256
1257 /*
1258 * We could safely do this and return immediately:
1259 *
1260 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1261 *
1262 * However to get a more stable dirty_ratelimit, the below elaborated
1263 * code makes use of task_ratelimit to filter out singular points and
1264 * limit the step size.
1265 *
1266 * The below code essentially only uses the relative value of
1267 *
1268 * task_ratelimit - dirty_ratelimit
1269 * = (pos_ratio - 1) * dirty_ratelimit
1270 *
1271 * which reflects the direction and size of dirty position error.
1272 */
1273
1274 /*
1275 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1276 * task_ratelimit is on the same side of dirty_ratelimit, too.
1277 * For example, when
1278 * - dirty_ratelimit > balanced_dirty_ratelimit
1279 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1280 * lowering dirty_ratelimit will help meet both the position and rate
1281 * control targets. Otherwise, don't update dirty_ratelimit if it will
1282 * only help meet the rate target. After all, what the users ultimately
1283 * feel and care are stable dirty rate and small position error.
1284 *
1285 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1286 * and filter out the singular points of balanced_dirty_ratelimit. Which
1287 * keeps jumping around randomly and can even leap far away at times
1288 * due to the small 200ms estimation period of dirty_rate (we want to
1289 * keep that period small to reduce time lags).
1290 */
1291 step = 0;
1292
1293 /*
1294 * For strictlimit case, calculations above were based on wb counters
1295 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1296 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1297 * Hence, to calculate "step" properly, we have to use wb_dirty as
1298 * "dirty" and wb_setpoint as "setpoint".
1299 *
1300 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1301 * it's possible that wb_thresh is close to zero due to inactivity
1302 * of backing device.
1303 */
1304 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1305 dirty = dtc->wb_dirty;
1306 if (dtc->wb_dirty < 8)
1307 setpoint = dtc->wb_dirty + 1;
1308 else
1309 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1310 }
1311
1312 if (dirty < setpoint) {
1313 x = min3(wb->balanced_dirty_ratelimit,
1314 balanced_dirty_ratelimit, task_ratelimit);
1315 if (dirty_ratelimit < x)
1316 step = x - dirty_ratelimit;
1317 } else {
1318 x = max3(wb->balanced_dirty_ratelimit,
1319 balanced_dirty_ratelimit, task_ratelimit);
1320 if (dirty_ratelimit > x)
1321 step = dirty_ratelimit - x;
1322 }
1323
1324 /*
1325 * Don't pursue 100% rate matching. It's impossible since the balanced
1326 * rate itself is constantly fluctuating. So decrease the track speed
1327 * when it gets close to the target. Helps eliminate pointless tremors.
1328 */
1329 shift = dirty_ratelimit / (2 * step + 1);
1330 if (shift < BITS_PER_LONG)
1331 step = DIV_ROUND_UP(step >> shift, 8);
1332 else
1333 step = 0;
1334
1335 if (dirty_ratelimit < balanced_dirty_ratelimit)
1336 dirty_ratelimit += step;
1337 else
1338 dirty_ratelimit -= step;
1339
1340 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1341 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1342
1343 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1344 }
1345
1346 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1347 struct dirty_throttle_control *mdtc,
1348 unsigned long start_time,
1349 bool update_ratelimit)
1350 {
1351 struct bdi_writeback *wb = gdtc->wb;
1352 unsigned long now = jiffies;
1353 unsigned long elapsed = now - wb->bw_time_stamp;
1354 unsigned long dirtied;
1355 unsigned long written;
1356
1357 lockdep_assert_held(&wb->list_lock);
1358
1359 /*
1360 * rate-limit, only update once every 200ms.
1361 */
1362 if (elapsed < BANDWIDTH_INTERVAL)
1363 return;
1364
1365 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1366 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1367
1368 /*
1369 * Skip quiet periods when disk bandwidth is under-utilized.
1370 * (at least 1s idle time between two flusher runs)
1371 */
1372 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1373 goto snapshot;
1374
1375 if (update_ratelimit) {
1376 domain_update_bandwidth(gdtc, now);
1377 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1378
1379 /*
1380 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1381 * compiler has no way to figure that out. Help it.
1382 */
1383 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1384 domain_update_bandwidth(mdtc, now);
1385 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1386 }
1387 }
1388 wb_update_write_bandwidth(wb, elapsed, written);
1389
1390 snapshot:
1391 wb->dirtied_stamp = dirtied;
1392 wb->written_stamp = written;
1393 wb->bw_time_stamp = now;
1394 }
1395
1396 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1397 {
1398 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1399
1400 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1401 }
1402
1403 /*
1404 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1405 * will look to see if it needs to start dirty throttling.
1406 *
1407 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1408 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1409 * (the number of pages we may dirty without exceeding the dirty limits).
1410 */
1411 static unsigned long dirty_poll_interval(unsigned long dirty,
1412 unsigned long thresh)
1413 {
1414 if (thresh > dirty)
1415 return 1UL << (ilog2(thresh - dirty) >> 1);
1416
1417 return 1;
1418 }
1419
1420 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1421 unsigned long wb_dirty)
1422 {
1423 unsigned long bw = wb->avg_write_bandwidth;
1424 unsigned long t;
1425
1426 /*
1427 * Limit pause time for small memory systems. If sleeping for too long
1428 * time, a small pool of dirty/writeback pages may go empty and disk go
1429 * idle.
1430 *
1431 * 8 serves as the safety ratio.
1432 */
1433 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1434 t++;
1435
1436 return min_t(unsigned long, t, MAX_PAUSE);
1437 }
1438
1439 static long wb_min_pause(struct bdi_writeback *wb,
1440 long max_pause,
1441 unsigned long task_ratelimit,
1442 unsigned long dirty_ratelimit,
1443 int *nr_dirtied_pause)
1444 {
1445 long hi = ilog2(wb->avg_write_bandwidth);
1446 long lo = ilog2(wb->dirty_ratelimit);
1447 long t; /* target pause */
1448 long pause; /* estimated next pause */
1449 int pages; /* target nr_dirtied_pause */
1450
1451 /* target for 10ms pause on 1-dd case */
1452 t = max(1, HZ / 100);
1453
1454 /*
1455 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1456 * overheads.
1457 *
1458 * (N * 10ms) on 2^N concurrent tasks.
1459 */
1460 if (hi > lo)
1461 t += (hi - lo) * (10 * HZ) / 1024;
1462
1463 /*
1464 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1465 * on the much more stable dirty_ratelimit. However the next pause time
1466 * will be computed based on task_ratelimit and the two rate limits may
1467 * depart considerably at some time. Especially if task_ratelimit goes
1468 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1469 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1470 * result task_ratelimit won't be executed faithfully, which could
1471 * eventually bring down dirty_ratelimit.
1472 *
1473 * We apply two rules to fix it up:
1474 * 1) try to estimate the next pause time and if necessary, use a lower
1475 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1476 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1477 * 2) limit the target pause time to max_pause/2, so that the normal
1478 * small fluctuations of task_ratelimit won't trigger rule (1) and
1479 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1480 */
1481 t = min(t, 1 + max_pause / 2);
1482 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1483
1484 /*
1485 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1486 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1487 * When the 16 consecutive reads are often interrupted by some dirty
1488 * throttling pause during the async writes, cfq will go into idles
1489 * (deadline is fine). So push nr_dirtied_pause as high as possible
1490 * until reaches DIRTY_POLL_THRESH=32 pages.
1491 */
1492 if (pages < DIRTY_POLL_THRESH) {
1493 t = max_pause;
1494 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1495 if (pages > DIRTY_POLL_THRESH) {
1496 pages = DIRTY_POLL_THRESH;
1497 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1498 }
1499 }
1500
1501 pause = HZ * pages / (task_ratelimit + 1);
1502 if (pause > max_pause) {
1503 t = max_pause;
1504 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1505 }
1506
1507 *nr_dirtied_pause = pages;
1508 /*
1509 * The minimal pause time will normally be half the target pause time.
1510 */
1511 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1512 }
1513
1514 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1515 {
1516 struct bdi_writeback *wb = dtc->wb;
1517 unsigned long wb_reclaimable;
1518
1519 /*
1520 * wb_thresh is not treated as some limiting factor as
1521 * dirty_thresh, due to reasons
1522 * - in JBOD setup, wb_thresh can fluctuate a lot
1523 * - in a system with HDD and USB key, the USB key may somehow
1524 * go into state (wb_dirty >> wb_thresh) either because
1525 * wb_dirty starts high, or because wb_thresh drops low.
1526 * In this case we don't want to hard throttle the USB key
1527 * dirtiers for 100 seconds until wb_dirty drops under
1528 * wb_thresh. Instead the auxiliary wb control line in
1529 * wb_position_ratio() will let the dirtier task progress
1530 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1531 */
1532 dtc->wb_thresh = __wb_calc_thresh(dtc);
1533 dtc->wb_bg_thresh = dtc->thresh ?
1534 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1535
1536 /*
1537 * In order to avoid the stacked BDI deadlock we need
1538 * to ensure we accurately count the 'dirty' pages when
1539 * the threshold is low.
1540 *
1541 * Otherwise it would be possible to get thresh+n pages
1542 * reported dirty, even though there are thresh-m pages
1543 * actually dirty; with m+n sitting in the percpu
1544 * deltas.
1545 */
1546 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1547 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1548 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1549 } else {
1550 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1551 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1552 }
1553 }
1554
1555 /*
1556 * balance_dirty_pages() must be called by processes which are generating dirty
1557 * data. It looks at the number of dirty pages in the machine and will force
1558 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1559 * If we're over `background_thresh' then the writeback threads are woken to
1560 * perform some writeout.
1561 */
1562 static void balance_dirty_pages(struct address_space *mapping,
1563 struct bdi_writeback *wb,
1564 unsigned long pages_dirtied)
1565 {
1566 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1567 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1568 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1569 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1570 &mdtc_stor : NULL;
1571 struct dirty_throttle_control *sdtc;
1572 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1573 long period;
1574 long pause;
1575 long max_pause;
1576 long min_pause;
1577 int nr_dirtied_pause;
1578 bool dirty_exceeded = false;
1579 unsigned long task_ratelimit;
1580 unsigned long dirty_ratelimit;
1581 struct backing_dev_info *bdi = wb->bdi;
1582 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1583 unsigned long start_time = jiffies;
1584
1585 for (;;) {
1586 unsigned long now = jiffies;
1587 unsigned long dirty, thresh, bg_thresh;
1588 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1589 unsigned long m_thresh = 0;
1590 unsigned long m_bg_thresh = 0;
1591
1592 /*
1593 * Unstable writes are a feature of certain networked
1594 * filesystems (i.e. NFS) in which data may have been
1595 * written to the server's write cache, but has not yet
1596 * been flushed to permanent storage.
1597 */
1598 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1599 global_node_page_state(NR_UNSTABLE_NFS);
1600 gdtc->avail = global_dirtyable_memory();
1601 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1602
1603 domain_dirty_limits(gdtc);
1604
1605 if (unlikely(strictlimit)) {
1606 wb_dirty_limits(gdtc);
1607
1608 dirty = gdtc->wb_dirty;
1609 thresh = gdtc->wb_thresh;
1610 bg_thresh = gdtc->wb_bg_thresh;
1611 } else {
1612 dirty = gdtc->dirty;
1613 thresh = gdtc->thresh;
1614 bg_thresh = gdtc->bg_thresh;
1615 }
1616
1617 if (mdtc) {
1618 unsigned long filepages, headroom, writeback;
1619
1620 /*
1621 * If @wb belongs to !root memcg, repeat the same
1622 * basic calculations for the memcg domain.
1623 */
1624 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1625 &mdtc->dirty, &writeback);
1626 mdtc->dirty += writeback;
1627 mdtc_calc_avail(mdtc, filepages, headroom);
1628
1629 domain_dirty_limits(mdtc);
1630
1631 if (unlikely(strictlimit)) {
1632 wb_dirty_limits(mdtc);
1633 m_dirty = mdtc->wb_dirty;
1634 m_thresh = mdtc->wb_thresh;
1635 m_bg_thresh = mdtc->wb_bg_thresh;
1636 } else {
1637 m_dirty = mdtc->dirty;
1638 m_thresh = mdtc->thresh;
1639 m_bg_thresh = mdtc->bg_thresh;
1640 }
1641 }
1642
1643 /*
1644 * Throttle it only when the background writeback cannot
1645 * catch-up. This avoids (excessively) small writeouts
1646 * when the wb limits are ramping up in case of !strictlimit.
1647 *
1648 * In strictlimit case make decision based on the wb counters
1649 * and limits. Small writeouts when the wb limits are ramping
1650 * up are the price we consciously pay for strictlimit-ing.
1651 *
1652 * If memcg domain is in effect, @dirty should be under
1653 * both global and memcg freerun ceilings.
1654 */
1655 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1656 (!mdtc ||
1657 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1658 unsigned long intv = dirty_poll_interval(dirty, thresh);
1659 unsigned long m_intv = ULONG_MAX;
1660
1661 current->dirty_paused_when = now;
1662 current->nr_dirtied = 0;
1663 if (mdtc)
1664 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1665 current->nr_dirtied_pause = min(intv, m_intv);
1666 break;
1667 }
1668
1669 if (unlikely(!writeback_in_progress(wb)))
1670 wb_start_background_writeback(wb);
1671
1672 /*
1673 * Calculate global domain's pos_ratio and select the
1674 * global dtc by default.
1675 */
1676 if (!strictlimit)
1677 wb_dirty_limits(gdtc);
1678
1679 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1681
1682 wb_position_ratio(gdtc);
1683 sdtc = gdtc;
1684
1685 if (mdtc) {
1686 /*
1687 * If memcg domain is in effect, calculate its
1688 * pos_ratio. @wb should satisfy constraints from
1689 * both global and memcg domains. Choose the one
1690 * w/ lower pos_ratio.
1691 */
1692 if (!strictlimit)
1693 wb_dirty_limits(mdtc);
1694
1695 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1697
1698 wb_position_ratio(mdtc);
1699 if (mdtc->pos_ratio < gdtc->pos_ratio)
1700 sdtc = mdtc;
1701 }
1702
1703 if (dirty_exceeded && !wb->dirty_exceeded)
1704 wb->dirty_exceeded = 1;
1705
1706 if (time_is_before_jiffies(wb->bw_time_stamp +
1707 BANDWIDTH_INTERVAL)) {
1708 spin_lock(&wb->list_lock);
1709 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710 spin_unlock(&wb->list_lock);
1711 }
1712
1713 /* throttle according to the chosen dtc */
1714 dirty_ratelimit = wb->dirty_ratelimit;
1715 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716 RATELIMIT_CALC_SHIFT;
1717 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718 min_pause = wb_min_pause(wb, max_pause,
1719 task_ratelimit, dirty_ratelimit,
1720 &nr_dirtied_pause);
1721
1722 if (unlikely(task_ratelimit == 0)) {
1723 period = max_pause;
1724 pause = max_pause;
1725 goto pause;
1726 }
1727 period = HZ * pages_dirtied / task_ratelimit;
1728 pause = period;
1729 if (current->dirty_paused_when)
1730 pause -= now - current->dirty_paused_when;
1731 /*
1732 * For less than 1s think time (ext3/4 may block the dirtier
1733 * for up to 800ms from time to time on 1-HDD; so does xfs,
1734 * however at much less frequency), try to compensate it in
1735 * future periods by updating the virtual time; otherwise just
1736 * do a reset, as it may be a light dirtier.
1737 */
1738 if (pause < min_pause) {
1739 trace_balance_dirty_pages(wb,
1740 sdtc->thresh,
1741 sdtc->bg_thresh,
1742 sdtc->dirty,
1743 sdtc->wb_thresh,
1744 sdtc->wb_dirty,
1745 dirty_ratelimit,
1746 task_ratelimit,
1747 pages_dirtied,
1748 period,
1749 min(pause, 0L),
1750 start_time);
1751 if (pause < -HZ) {
1752 current->dirty_paused_when = now;
1753 current->nr_dirtied = 0;
1754 } else if (period) {
1755 current->dirty_paused_when += period;
1756 current->nr_dirtied = 0;
1757 } else if (current->nr_dirtied_pause <= pages_dirtied)
1758 current->nr_dirtied_pause += pages_dirtied;
1759 break;
1760 }
1761 if (unlikely(pause > max_pause)) {
1762 /* for occasional dropped task_ratelimit */
1763 now += min(pause - max_pause, max_pause);
1764 pause = max_pause;
1765 }
1766
1767 pause:
1768 trace_balance_dirty_pages(wb,
1769 sdtc->thresh,
1770 sdtc->bg_thresh,
1771 sdtc->dirty,
1772 sdtc->wb_thresh,
1773 sdtc->wb_dirty,
1774 dirty_ratelimit,
1775 task_ratelimit,
1776 pages_dirtied,
1777 period,
1778 pause,
1779 start_time);
1780 __set_current_state(TASK_KILLABLE);
1781 wb->dirty_sleep = now;
1782 io_schedule_timeout(pause);
1783
1784 current->dirty_paused_when = now + pause;
1785 current->nr_dirtied = 0;
1786 current->nr_dirtied_pause = nr_dirtied_pause;
1787
1788 /*
1789 * This is typically equal to (dirty < thresh) and can also
1790 * keep "1000+ dd on a slow USB stick" under control.
1791 */
1792 if (task_ratelimit)
1793 break;
1794
1795 /*
1796 * In the case of an unresponding NFS server and the NFS dirty
1797 * pages exceeds dirty_thresh, give the other good wb's a pipe
1798 * to go through, so that tasks on them still remain responsive.
1799 *
1800 * In theory 1 page is enough to keep the consumer-producer
1801 * pipe going: the flusher cleans 1 page => the task dirties 1
1802 * more page. However wb_dirty has accounting errors. So use
1803 * the larger and more IO friendly wb_stat_error.
1804 */
1805 if (sdtc->wb_dirty <= wb_stat_error(wb))
1806 break;
1807
1808 if (fatal_signal_pending(current))
1809 break;
1810 }
1811
1812 if (!dirty_exceeded && wb->dirty_exceeded)
1813 wb->dirty_exceeded = 0;
1814
1815 if (writeback_in_progress(wb))
1816 return;
1817
1818 /*
1819 * In laptop mode, we wait until hitting the higher threshold before
1820 * starting background writeout, and then write out all the way down
1821 * to the lower threshold. So slow writers cause minimal disk activity.
1822 *
1823 * In normal mode, we start background writeout at the lower
1824 * background_thresh, to keep the amount of dirty memory low.
1825 */
1826 if (laptop_mode)
1827 return;
1828
1829 if (nr_reclaimable > gdtc->bg_thresh)
1830 wb_start_background_writeback(wb);
1831 }
1832
1833 static DEFINE_PER_CPU(int, bdp_ratelimits);
1834
1835 /*
1836 * Normal tasks are throttled by
1837 * loop {
1838 * dirty tsk->nr_dirtied_pause pages;
1839 * take a snap in balance_dirty_pages();
1840 * }
1841 * However there is a worst case. If every task exit immediately when dirtied
1842 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1843 * called to throttle the page dirties. The solution is to save the not yet
1844 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1845 * randomly into the running tasks. This works well for the above worst case,
1846 * as the new task will pick up and accumulate the old task's leaked dirty
1847 * count and eventually get throttled.
1848 */
1849 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1850
1851 /**
1852 * balance_dirty_pages_ratelimited - balance dirty memory state
1853 * @mapping: address_space which was dirtied
1854 *
1855 * Processes which are dirtying memory should call in here once for each page
1856 * which was newly dirtied. The function will periodically check the system's
1857 * dirty state and will initiate writeback if needed.
1858 *
1859 * On really big machines, get_writeback_state is expensive, so try to avoid
1860 * calling it too often (ratelimiting). But once we're over the dirty memory
1861 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1862 * from overshooting the limit by (ratelimit_pages) each.
1863 */
1864 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1865 {
1866 struct inode *inode = mapping->host;
1867 struct backing_dev_info *bdi = inode_to_bdi(inode);
1868 struct bdi_writeback *wb = NULL;
1869 int ratelimit;
1870 int *p;
1871
1872 if (!bdi_cap_account_dirty(bdi))
1873 return;
1874
1875 if (inode_cgwb_enabled(inode))
1876 wb = wb_get_create_current(bdi, GFP_KERNEL);
1877 if (!wb)
1878 wb = &bdi->wb;
1879
1880 ratelimit = current->nr_dirtied_pause;
1881 if (wb->dirty_exceeded)
1882 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1883
1884 preempt_disable();
1885 /*
1886 * This prevents one CPU to accumulate too many dirtied pages without
1887 * calling into balance_dirty_pages(), which can happen when there are
1888 * 1000+ tasks, all of them start dirtying pages at exactly the same
1889 * time, hence all honoured too large initial task->nr_dirtied_pause.
1890 */
1891 p = this_cpu_ptr(&bdp_ratelimits);
1892 if (unlikely(current->nr_dirtied >= ratelimit))
1893 *p = 0;
1894 else if (unlikely(*p >= ratelimit_pages)) {
1895 *p = 0;
1896 ratelimit = 0;
1897 }
1898 /*
1899 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1900 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1901 * the dirty throttling and livelock other long-run dirtiers.
1902 */
1903 p = this_cpu_ptr(&dirty_throttle_leaks);
1904 if (*p > 0 && current->nr_dirtied < ratelimit) {
1905 unsigned long nr_pages_dirtied;
1906 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1907 *p -= nr_pages_dirtied;
1908 current->nr_dirtied += nr_pages_dirtied;
1909 }
1910 preempt_enable();
1911
1912 if (unlikely(current->nr_dirtied >= ratelimit))
1913 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1914
1915 wb_put(wb);
1916 }
1917 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1918
1919 /**
1920 * wb_over_bg_thresh - does @wb need to be written back?
1921 * @wb: bdi_writeback of interest
1922 *
1923 * Determines whether background writeback should keep writing @wb or it's
1924 * clean enough. Returns %true if writeback should continue.
1925 */
1926 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1927 {
1928 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1929 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1930 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1931 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1932 &mdtc_stor : NULL;
1933
1934 /*
1935 * Similar to balance_dirty_pages() but ignores pages being written
1936 * as we're trying to decide whether to put more under writeback.
1937 */
1938 gdtc->avail = global_dirtyable_memory();
1939 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1940 global_node_page_state(NR_UNSTABLE_NFS);
1941 domain_dirty_limits(gdtc);
1942
1943 if (gdtc->dirty > gdtc->bg_thresh)
1944 return true;
1945
1946 if (wb_stat(wb, WB_RECLAIMABLE) >
1947 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1948 return true;
1949
1950 if (mdtc) {
1951 unsigned long filepages, headroom, writeback;
1952
1953 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1954 &writeback);
1955 mdtc_calc_avail(mdtc, filepages, headroom);
1956 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1957
1958 if (mdtc->dirty > mdtc->bg_thresh)
1959 return true;
1960
1961 if (wb_stat(wb, WB_RECLAIMABLE) >
1962 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1963 return true;
1964 }
1965
1966 return false;
1967 }
1968
1969 /*
1970 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1971 */
1972 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1973 void __user *buffer, size_t *length, loff_t *ppos)
1974 {
1975 proc_dointvec(table, write, buffer, length, ppos);
1976 return 0;
1977 }
1978
1979 #ifdef CONFIG_BLOCK
1980 void laptop_mode_timer_fn(unsigned long data)
1981 {
1982 struct request_queue *q = (struct request_queue *)data;
1983 int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
1984 global_node_page_state(NR_UNSTABLE_NFS);
1985 struct bdi_writeback *wb;
1986
1987 /*
1988 * We want to write everything out, not just down to the dirty
1989 * threshold
1990 */
1991 if (!bdi_has_dirty_io(q->backing_dev_info))
1992 return;
1993
1994 rcu_read_lock();
1995 list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node)
1996 if (wb_has_dirty_io(wb))
1997 wb_start_writeback(wb, nr_pages, true,
1998 WB_REASON_LAPTOP_TIMER);
1999 rcu_read_unlock();
2000 }
2001
2002 /*
2003 * We've spun up the disk and we're in laptop mode: schedule writeback
2004 * of all dirty data a few seconds from now. If the flush is already scheduled
2005 * then push it back - the user is still using the disk.
2006 */
2007 void laptop_io_completion(struct backing_dev_info *info)
2008 {
2009 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2010 }
2011
2012 /*
2013 * We're in laptop mode and we've just synced. The sync's writes will have
2014 * caused another writeback to be scheduled by laptop_io_completion.
2015 * Nothing needs to be written back anymore, so we unschedule the writeback.
2016 */
2017 void laptop_sync_completion(void)
2018 {
2019 struct backing_dev_info *bdi;
2020
2021 rcu_read_lock();
2022
2023 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2024 del_timer(&bdi->laptop_mode_wb_timer);
2025
2026 rcu_read_unlock();
2027 }
2028 #endif
2029
2030 /*
2031 * If ratelimit_pages is too high then we can get into dirty-data overload
2032 * if a large number of processes all perform writes at the same time.
2033 * If it is too low then SMP machines will call the (expensive)
2034 * get_writeback_state too often.
2035 *
2036 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2037 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2038 * thresholds.
2039 */
2040
2041 void writeback_set_ratelimit(void)
2042 {
2043 struct wb_domain *dom = &global_wb_domain;
2044 unsigned long background_thresh;
2045 unsigned long dirty_thresh;
2046
2047 global_dirty_limits(&background_thresh, &dirty_thresh);
2048 dom->dirty_limit = dirty_thresh;
2049 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2050 if (ratelimit_pages < 16)
2051 ratelimit_pages = 16;
2052 }
2053
2054 static int page_writeback_cpu_online(unsigned int cpu)
2055 {
2056 writeback_set_ratelimit();
2057 return 0;
2058 }
2059
2060 /*
2061 * Called early on to tune the page writeback dirty limits.
2062 *
2063 * We used to scale dirty pages according to how total memory
2064 * related to pages that could be allocated for buffers (by
2065 * comparing nr_free_buffer_pages() to vm_total_pages.
2066 *
2067 * However, that was when we used "dirty_ratio" to scale with
2068 * all memory, and we don't do that any more. "dirty_ratio"
2069 * is now applied to total non-HIGHPAGE memory (by subtracting
2070 * totalhigh_pages from vm_total_pages), and as such we can't
2071 * get into the old insane situation any more where we had
2072 * large amounts of dirty pages compared to a small amount of
2073 * non-HIGHMEM memory.
2074 *
2075 * But we might still want to scale the dirty_ratio by how
2076 * much memory the box has..
2077 */
2078 void __init page_writeback_init(void)
2079 {
2080 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2081
2082 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2083 page_writeback_cpu_online, NULL);
2084 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2085 page_writeback_cpu_online);
2086 }
2087
2088 /**
2089 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2090 * @mapping: address space structure to write
2091 * @start: starting page index
2092 * @end: ending page index (inclusive)
2093 *
2094 * This function scans the page range from @start to @end (inclusive) and tags
2095 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2096 * that write_cache_pages (or whoever calls this function) will then use
2097 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2098 * used to avoid livelocking of writeback by a process steadily creating new
2099 * dirty pages in the file (thus it is important for this function to be quick
2100 * so that it can tag pages faster than a dirtying process can create them).
2101 */
2102 /*
2103 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2104 */
2105 void tag_pages_for_writeback(struct address_space *mapping,
2106 pgoff_t start, pgoff_t end)
2107 {
2108 #define WRITEBACK_TAG_BATCH 4096
2109 unsigned long tagged = 0;
2110 struct radix_tree_iter iter;
2111 void **slot;
2112
2113 spin_lock_irq(&mapping->tree_lock);
2114 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2115 PAGECACHE_TAG_DIRTY) {
2116 if (iter.index > end)
2117 break;
2118 radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2119 PAGECACHE_TAG_TOWRITE);
2120 tagged++;
2121 if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2122 continue;
2123 slot = radix_tree_iter_resume(slot, &iter);
2124 spin_unlock_irq(&mapping->tree_lock);
2125 cond_resched();
2126 spin_lock_irq(&mapping->tree_lock);
2127 }
2128 spin_unlock_irq(&mapping->tree_lock);
2129 }
2130 EXPORT_SYMBOL(tag_pages_for_writeback);
2131
2132 /**
2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2134 * @mapping: address space structure to write
2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2136 * @writepage: function called for each page
2137 * @data: data passed to writepage function
2138 *
2139 * If a page is already under I/O, write_cache_pages() skips it, even
2140 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2141 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2142 * and msync() need to guarantee that all the data which was dirty at the time
2143 * the call was made get new I/O started against them. If wbc->sync_mode is
2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2145 * existing IO to complete.
2146 *
2147 * To avoid livelocks (when other process dirties new pages), we first tag
2148 * pages which should be written back with TOWRITE tag and only then start
2149 * writing them. For data-integrity sync we have to be careful so that we do
2150 * not miss some pages (e.g., because some other process has cleared TOWRITE
2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2152 * by the process clearing the DIRTY tag (and submitting the page for IO).
2153 */
2154 int write_cache_pages(struct address_space *mapping,
2155 struct writeback_control *wbc, writepage_t writepage,
2156 void *data)
2157 {
2158 int ret = 0;
2159 int done = 0;
2160 int error;
2161 struct pagevec pvec;
2162 int nr_pages;
2163 pgoff_t uninitialized_var(writeback_index);
2164 pgoff_t index;
2165 pgoff_t end; /* Inclusive */
2166 pgoff_t done_index;
2167 int cycled;
2168 int range_whole = 0;
2169 int tag;
2170
2171 pagevec_init(&pvec, 0);
2172 if (wbc->range_cyclic) {
2173 writeback_index = mapping->writeback_index; /* prev offset */
2174 index = writeback_index;
2175 if (index == 0)
2176 cycled = 1;
2177 else
2178 cycled = 0;
2179 end = -1;
2180 } else {
2181 index = wbc->range_start >> PAGE_SHIFT;
2182 end = wbc->range_end >> PAGE_SHIFT;
2183 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184 range_whole = 1;
2185 cycled = 1; /* ignore range_cyclic tests */
2186 }
2187 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188 tag = PAGECACHE_TAG_TOWRITE;
2189 else
2190 tag = PAGECACHE_TAG_DIRTY;
2191 retry:
2192 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193 tag_pages_for_writeback(mapping, index, end);
2194 done_index = index;
2195 while (!done && (index <= end)) {
2196 int i;
2197
2198 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2199 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2200 if (nr_pages == 0)
2201 break;
2202
2203 for (i = 0; i < nr_pages; i++) {
2204 struct page *page = pvec.pages[i];
2205
2206 /*
2207 * At this point, the page may be truncated or
2208 * invalidated (changing page->mapping to NULL), or
2209 * even swizzled back from swapper_space to tmpfs file
2210 * mapping. However, page->index will not change
2211 * because we have a reference on the page.
2212 */
2213 if (page->index > end) {
2214 /*
2215 * can't be range_cyclic (1st pass) because
2216 * end == -1 in that case.
2217 */
2218 done = 1;
2219 break;
2220 }
2221
2222 done_index = page->index;
2223
2224 lock_page(page);
2225
2226 /*
2227 * Page truncated or invalidated. We can freely skip it
2228 * then, even for data integrity operations: the page
2229 * has disappeared concurrently, so there could be no
2230 * real expectation of this data interity operation
2231 * even if there is now a new, dirty page at the same
2232 * pagecache address.
2233 */
2234 if (unlikely(page->mapping != mapping)) {
2235 continue_unlock:
2236 unlock_page(page);
2237 continue;
2238 }
2239
2240 if (!PageDirty(page)) {
2241 /* someone wrote it for us */
2242 goto continue_unlock;
2243 }
2244
2245 if (PageWriteback(page)) {
2246 if (wbc->sync_mode != WB_SYNC_NONE)
2247 wait_on_page_writeback(page);
2248 else
2249 goto continue_unlock;
2250 }
2251
2252 BUG_ON(PageWriteback(page));
2253 if (!clear_page_dirty_for_io(page))
2254 goto continue_unlock;
2255
2256 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257 error = (*writepage)(page, wbc, data);
2258 if (unlikely(error)) {
2259 /*
2260 * Handle errors according to the type of
2261 * writeback. There's no need to continue for
2262 * background writeback. Just push done_index
2263 * past this page so media errors won't choke
2264 * writeout for the entire file. For integrity
2265 * writeback, we must process the entire dirty
2266 * set regardless of errors because the fs may
2267 * still have state to clear for each page. In
2268 * that case we continue processing and return
2269 * the first error.
2270 */
2271 if (error == AOP_WRITEPAGE_ACTIVATE) {
2272 unlock_page(page);
2273 error = 0;
2274 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2275 ret = error;
2276 done_index = page->index + 1;
2277 done = 1;
2278 break;
2279 }
2280 if (!ret)
2281 ret = error;
2282 }
2283
2284 /*
2285 * We stop writing back only if we are not doing
2286 * integrity sync. In case of integrity sync we have to
2287 * keep going until we have written all the pages
2288 * we tagged for writeback prior to entering this loop.
2289 */
2290 if (--wbc->nr_to_write <= 0 &&
2291 wbc->sync_mode == WB_SYNC_NONE) {
2292 done = 1;
2293 break;
2294 }
2295 }
2296 pagevec_release(&pvec);
2297 cond_resched();
2298 }
2299 if (!cycled && !done) {
2300 /*
2301 * range_cyclic:
2302 * We hit the last page and there is more work to be done: wrap
2303 * back to the start of the file
2304 */
2305 cycled = 1;
2306 index = 0;
2307 end = writeback_index - 1;
2308 goto retry;
2309 }
2310 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2311 mapping->writeback_index = done_index;
2312
2313 return ret;
2314 }
2315 EXPORT_SYMBOL(write_cache_pages);
2316
2317 /*
2318 * Function used by generic_writepages to call the real writepage
2319 * function and set the mapping flags on error
2320 */
2321 static int __writepage(struct page *page, struct writeback_control *wbc,
2322 void *data)
2323 {
2324 struct address_space *mapping = data;
2325 int ret = mapping->a_ops->writepage(page, wbc);
2326 mapping_set_error(mapping, ret);
2327 return ret;
2328 }
2329
2330 /**
2331 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2332 * @mapping: address space structure to write
2333 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2334 *
2335 * This is a library function, which implements the writepages()
2336 * address_space_operation.
2337 */
2338 int generic_writepages(struct address_space *mapping,
2339 struct writeback_control *wbc)
2340 {
2341 struct blk_plug plug;
2342 int ret;
2343
2344 /* deal with chardevs and other special file */
2345 if (!mapping->a_ops->writepage)
2346 return 0;
2347
2348 blk_start_plug(&plug);
2349 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2350 blk_finish_plug(&plug);
2351 return ret;
2352 }
2353
2354 EXPORT_SYMBOL(generic_writepages);
2355
2356 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2357 {
2358 int ret;
2359
2360 if (wbc->nr_to_write <= 0)
2361 return 0;
2362 while (1) {
2363 if (mapping->a_ops->writepages)
2364 ret = mapping->a_ops->writepages(mapping, wbc);
2365 else
2366 ret = generic_writepages(mapping, wbc);
2367 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2368 break;
2369 cond_resched();
2370 congestion_wait(BLK_RW_ASYNC, HZ/50);
2371 }
2372 return ret;
2373 }
2374
2375 /**
2376 * write_one_page - write out a single page and wait on I/O
2377 * @page: the page to write
2378 *
2379 * The page must be locked by the caller and will be unlocked upon return.
2380 *
2381 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2382 * function returns.
2383 */
2384 int write_one_page(struct page *page)
2385 {
2386 struct address_space *mapping = page->mapping;
2387 int ret = 0;
2388 struct writeback_control wbc = {
2389 .sync_mode = WB_SYNC_ALL,
2390 .nr_to_write = 1,
2391 };
2392
2393 BUG_ON(!PageLocked(page));
2394
2395 wait_on_page_writeback(page);
2396
2397 if (clear_page_dirty_for_io(page)) {
2398 get_page(page);
2399 ret = mapping->a_ops->writepage(page, &wbc);
2400 if (ret == 0)
2401 wait_on_page_writeback(page);
2402 put_page(page);
2403 } else {
2404 unlock_page(page);
2405 }
2406
2407 if (!ret)
2408 ret = filemap_check_errors(mapping);
2409 return ret;
2410 }
2411 EXPORT_SYMBOL(write_one_page);
2412
2413 /*
2414 * For address_spaces which do not use buffers nor write back.
2415 */
2416 int __set_page_dirty_no_writeback(struct page *page)
2417 {
2418 if (!PageDirty(page))
2419 return !TestSetPageDirty(page);
2420 return 0;
2421 }
2422
2423 /*
2424 * Helper function for set_page_dirty family.
2425 *
2426 * Caller must hold lock_page_memcg().
2427 *
2428 * NOTE: This relies on being atomic wrt interrupts.
2429 */
2430 void account_page_dirtied(struct page *page, struct address_space *mapping)
2431 {
2432 struct inode *inode = mapping->host;
2433
2434 trace_writeback_dirty_page(page, mapping);
2435
2436 if (mapping_cap_account_dirty(mapping)) {
2437 struct bdi_writeback *wb;
2438
2439 inode_attach_wb(inode, page);
2440 wb = inode_to_wb(inode);
2441
2442 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2443 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2444 __inc_node_page_state(page, NR_DIRTIED);
2445 inc_wb_stat(wb, WB_RECLAIMABLE);
2446 inc_wb_stat(wb, WB_DIRTIED);
2447 task_io_account_write(PAGE_SIZE);
2448 current->nr_dirtied++;
2449 this_cpu_inc(bdp_ratelimits);
2450 }
2451 }
2452 EXPORT_SYMBOL(account_page_dirtied);
2453
2454 /*
2455 * Helper function for deaccounting dirty page without writeback.
2456 *
2457 * Caller must hold lock_page_memcg().
2458 */
2459 void account_page_cleaned(struct page *page, struct address_space *mapping,
2460 struct bdi_writeback *wb)
2461 {
2462 if (mapping_cap_account_dirty(mapping)) {
2463 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2464 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2465 dec_wb_stat(wb, WB_RECLAIMABLE);
2466 task_io_account_cancelled_write(PAGE_SIZE);
2467 }
2468 }
2469
2470 /*
2471 * For address_spaces which do not use buffers. Just tag the page as dirty in
2472 * its radix tree.
2473 *
2474 * This is also used when a single buffer is being dirtied: we want to set the
2475 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2476 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2477 *
2478 * The caller must ensure this doesn't race with truncation. Most will simply
2479 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2480 * the pte lock held, which also locks out truncation.
2481 */
2482 int __set_page_dirty_nobuffers(struct page *page)
2483 {
2484 lock_page_memcg(page);
2485 if (!TestSetPageDirty(page)) {
2486 struct address_space *mapping = page_mapping(page);
2487 unsigned long flags;
2488
2489 if (!mapping) {
2490 unlock_page_memcg(page);
2491 return 1;
2492 }
2493
2494 spin_lock_irqsave(&mapping->tree_lock, flags);
2495 BUG_ON(page_mapping(page) != mapping);
2496 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2497 account_page_dirtied(page, mapping);
2498 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2499 PAGECACHE_TAG_DIRTY);
2500 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2501 unlock_page_memcg(page);
2502
2503 if (mapping->host) {
2504 /* !PageAnon && !swapper_space */
2505 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2506 }
2507 return 1;
2508 }
2509 unlock_page_memcg(page);
2510 return 0;
2511 }
2512 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2513
2514 /*
2515 * Call this whenever redirtying a page, to de-account the dirty counters
2516 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2517 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2518 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2519 * control.
2520 */
2521 void account_page_redirty(struct page *page)
2522 {
2523 struct address_space *mapping = page->mapping;
2524
2525 if (mapping && mapping_cap_account_dirty(mapping)) {
2526 struct inode *inode = mapping->host;
2527 struct bdi_writeback *wb;
2528 struct wb_lock_cookie cookie = {};
2529
2530 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2531 current->nr_dirtied--;
2532 dec_node_page_state(page, NR_DIRTIED);
2533 dec_wb_stat(wb, WB_DIRTIED);
2534 unlocked_inode_to_wb_end(inode, &cookie);
2535 }
2536 }
2537 EXPORT_SYMBOL(account_page_redirty);
2538
2539 /*
2540 * When a writepage implementation decides that it doesn't want to write this
2541 * page for some reason, it should redirty the locked page via
2542 * redirty_page_for_writepage() and it should then unlock the page and return 0
2543 */
2544 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2545 {
2546 int ret;
2547
2548 wbc->pages_skipped++;
2549 ret = __set_page_dirty_nobuffers(page);
2550 account_page_redirty(page);
2551 return ret;
2552 }
2553 EXPORT_SYMBOL(redirty_page_for_writepage);
2554
2555 /*
2556 * Dirty a page.
2557 *
2558 * For pages with a mapping this should be done under the page lock
2559 * for the benefit of asynchronous memory errors who prefer a consistent
2560 * dirty state. This rule can be broken in some special cases,
2561 * but should be better not to.
2562 *
2563 * If the mapping doesn't provide a set_page_dirty a_op, then
2564 * just fall through and assume that it wants buffer_heads.
2565 */
2566 int set_page_dirty(struct page *page)
2567 {
2568 struct address_space *mapping = page_mapping(page);
2569
2570 page = compound_head(page);
2571 if (likely(mapping)) {
2572 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2573 /*
2574 * readahead/lru_deactivate_page could remain
2575 * PG_readahead/PG_reclaim due to race with end_page_writeback
2576 * About readahead, if the page is written, the flags would be
2577 * reset. So no problem.
2578 * About lru_deactivate_page, if the page is redirty, the flag
2579 * will be reset. So no problem. but if the page is used by readahead
2580 * it will confuse readahead and make it restart the size rampup
2581 * process. But it's a trivial problem.
2582 */
2583 if (PageReclaim(page))
2584 ClearPageReclaim(page);
2585 #ifdef CONFIG_BLOCK
2586 if (!spd)
2587 spd = __set_page_dirty_buffers;
2588 #endif
2589 return (*spd)(page);
2590 }
2591 if (!PageDirty(page)) {
2592 if (!TestSetPageDirty(page))
2593 return 1;
2594 }
2595 return 0;
2596 }
2597 EXPORT_SYMBOL(set_page_dirty);
2598
2599 /*
2600 * set_page_dirty() is racy if the caller has no reference against
2601 * page->mapping->host, and if the page is unlocked. This is because another
2602 * CPU could truncate the page off the mapping and then free the mapping.
2603 *
2604 * Usually, the page _is_ locked, or the caller is a user-space process which
2605 * holds a reference on the inode by having an open file.
2606 *
2607 * In other cases, the page should be locked before running set_page_dirty().
2608 */
2609 int set_page_dirty_lock(struct page *page)
2610 {
2611 int ret;
2612
2613 lock_page(page);
2614 ret = set_page_dirty(page);
2615 unlock_page(page);
2616 return ret;
2617 }
2618 EXPORT_SYMBOL(set_page_dirty_lock);
2619
2620 /*
2621 * This cancels just the dirty bit on the kernel page itself, it does NOT
2622 * actually remove dirty bits on any mmap's that may be around. It also
2623 * leaves the page tagged dirty, so any sync activity will still find it on
2624 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2625 * look at the dirty bits in the VM.
2626 *
2627 * Doing this should *normally* only ever be done when a page is truncated,
2628 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2629 * this when it notices that somebody has cleaned out all the buffers on a
2630 * page without actually doing it through the VM. Can you say "ext3 is
2631 * horribly ugly"? Thought you could.
2632 */
2633 void cancel_dirty_page(struct page *page)
2634 {
2635 struct address_space *mapping = page_mapping(page);
2636
2637 if (mapping_cap_account_dirty(mapping)) {
2638 struct inode *inode = mapping->host;
2639 struct bdi_writeback *wb;
2640 struct wb_lock_cookie cookie = {};
2641
2642 lock_page_memcg(page);
2643 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2644
2645 if (TestClearPageDirty(page))
2646 account_page_cleaned(page, mapping, wb);
2647
2648 unlocked_inode_to_wb_end(inode, &cookie);
2649 unlock_page_memcg(page);
2650 } else {
2651 ClearPageDirty(page);
2652 }
2653 }
2654 EXPORT_SYMBOL(cancel_dirty_page);
2655
2656 /*
2657 * Clear a page's dirty flag, while caring for dirty memory accounting.
2658 * Returns true if the page was previously dirty.
2659 *
2660 * This is for preparing to put the page under writeout. We leave the page
2661 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2662 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2663 * implementation will run either set_page_writeback() or set_page_dirty(),
2664 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2665 * back into sync.
2666 *
2667 * This incoherency between the page's dirty flag and radix-tree tag is
2668 * unfortunate, but it only exists while the page is locked.
2669 */
2670 int clear_page_dirty_for_io(struct page *page)
2671 {
2672 struct address_space *mapping = page_mapping(page);
2673 int ret = 0;
2674
2675 BUG_ON(!PageLocked(page));
2676
2677 if (mapping && mapping_cap_account_dirty(mapping)) {
2678 struct inode *inode = mapping->host;
2679 struct bdi_writeback *wb;
2680 struct wb_lock_cookie cookie = {};
2681
2682 /*
2683 * Yes, Virginia, this is indeed insane.
2684 *
2685 * We use this sequence to make sure that
2686 * (a) we account for dirty stats properly
2687 * (b) we tell the low-level filesystem to
2688 * mark the whole page dirty if it was
2689 * dirty in a pagetable. Only to then
2690 * (c) clean the page again and return 1 to
2691 * cause the writeback.
2692 *
2693 * This way we avoid all nasty races with the
2694 * dirty bit in multiple places and clearing
2695 * them concurrently from different threads.
2696 *
2697 * Note! Normally the "set_page_dirty(page)"
2698 * has no effect on the actual dirty bit - since
2699 * that will already usually be set. But we
2700 * need the side effects, and it can help us
2701 * avoid races.
2702 *
2703 * We basically use the page "master dirty bit"
2704 * as a serialization point for all the different
2705 * threads doing their things.
2706 */
2707 if (page_mkclean(page))
2708 set_page_dirty(page);
2709 /*
2710 * We carefully synchronise fault handlers against
2711 * installing a dirty pte and marking the page dirty
2712 * at this point. We do this by having them hold the
2713 * page lock while dirtying the page, and pages are
2714 * always locked coming in here, so we get the desired
2715 * exclusion.
2716 */
2717 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2718 if (TestClearPageDirty(page)) {
2719 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2720 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2721 dec_wb_stat(wb, WB_RECLAIMABLE);
2722 ret = 1;
2723 }
2724 unlocked_inode_to_wb_end(inode, &cookie);
2725 return ret;
2726 }
2727 return TestClearPageDirty(page);
2728 }
2729 EXPORT_SYMBOL(clear_page_dirty_for_io);
2730
2731 int test_clear_page_writeback(struct page *page)
2732 {
2733 struct address_space *mapping = page_mapping(page);
2734 struct mem_cgroup *memcg;
2735 struct lruvec *lruvec;
2736 int ret;
2737
2738 memcg = lock_page_memcg(page);
2739 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2740 if (mapping && mapping_use_writeback_tags(mapping)) {
2741 struct inode *inode = mapping->host;
2742 struct backing_dev_info *bdi = inode_to_bdi(inode);
2743 unsigned long flags;
2744
2745 spin_lock_irqsave(&mapping->tree_lock, flags);
2746 ret = TestClearPageWriteback(page);
2747 if (ret) {
2748 radix_tree_tag_clear(&mapping->page_tree,
2749 page_index(page),
2750 PAGECACHE_TAG_WRITEBACK);
2751 if (bdi_cap_account_writeback(bdi)) {
2752 struct bdi_writeback *wb = inode_to_wb(inode);
2753
2754 dec_wb_stat(wb, WB_WRITEBACK);
2755 __wb_writeout_inc(wb);
2756 }
2757 }
2758
2759 if (mapping->host && !mapping_tagged(mapping,
2760 PAGECACHE_TAG_WRITEBACK))
2761 sb_clear_inode_writeback(mapping->host);
2762
2763 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2764 } else {
2765 ret = TestClearPageWriteback(page);
2766 }
2767 /*
2768 * NOTE: Page might be free now! Writeback doesn't hold a page
2769 * reference on its own, it relies on truncation to wait for
2770 * the clearing of PG_writeback. The below can only access
2771 * page state that is static across allocation cycles.
2772 */
2773 if (ret) {
2774 dec_lruvec_state(lruvec, NR_WRITEBACK);
2775 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2776 inc_node_page_state(page, NR_WRITTEN);
2777 }
2778 __unlock_page_memcg(memcg);
2779 return ret;
2780 }
2781
2782 int __test_set_page_writeback(struct page *page, bool keep_write)
2783 {
2784 struct address_space *mapping = page_mapping(page);
2785 int ret;
2786
2787 lock_page_memcg(page);
2788 if (mapping && mapping_use_writeback_tags(mapping)) {
2789 struct inode *inode = mapping->host;
2790 struct backing_dev_info *bdi = inode_to_bdi(inode);
2791 unsigned long flags;
2792
2793 spin_lock_irqsave(&mapping->tree_lock, flags);
2794 ret = TestSetPageWriteback(page);
2795 if (!ret) {
2796 bool on_wblist;
2797
2798 on_wblist = mapping_tagged(mapping,
2799 PAGECACHE_TAG_WRITEBACK);
2800
2801 radix_tree_tag_set(&mapping->page_tree,
2802 page_index(page),
2803 PAGECACHE_TAG_WRITEBACK);
2804 if (bdi_cap_account_writeback(bdi))
2805 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2806
2807 /*
2808 * We can come through here when swapping anonymous
2809 * pages, so we don't necessarily have an inode to track
2810 * for sync.
2811 */
2812 if (mapping->host && !on_wblist)
2813 sb_mark_inode_writeback(mapping->host);
2814 }
2815 if (!PageDirty(page))
2816 radix_tree_tag_clear(&mapping->page_tree,
2817 page_index(page),
2818 PAGECACHE_TAG_DIRTY);
2819 if (!keep_write)
2820 radix_tree_tag_clear(&mapping->page_tree,
2821 page_index(page),
2822 PAGECACHE_TAG_TOWRITE);
2823 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2824 } else {
2825 ret = TestSetPageWriteback(page);
2826 }
2827 if (!ret) {
2828 inc_lruvec_page_state(page, NR_WRITEBACK);
2829 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2830 }
2831 unlock_page_memcg(page);
2832 return ret;
2833
2834 }
2835 EXPORT_SYMBOL(__test_set_page_writeback);
2836
2837 /*
2838 * Return true if any of the pages in the mapping are marked with the
2839 * passed tag.
2840 */
2841 int mapping_tagged(struct address_space *mapping, int tag)
2842 {
2843 return radix_tree_tagged(&mapping->page_tree, tag);
2844 }
2845 EXPORT_SYMBOL(mapping_tagged);
2846
2847 /**
2848 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2849 * @page: The page to wait on.
2850 *
2851 * This function determines if the given page is related to a backing device
2852 * that requires page contents to be held stable during writeback. If so, then
2853 * it will wait for any pending writeback to complete.
2854 */
2855 void wait_for_stable_page(struct page *page)
2856 {
2857 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2858 wait_on_page_writeback(page);
2859 }
2860 EXPORT_SYMBOL_GPL(wait_for_stable_page);