remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53
54 #include "internal.h"
55
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
97 */
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 pgprot_t vm_get_page_prot(unsigned long vm_flags)
104 {
105 return __pgprot(pgprot_val(protection_map[vm_flags &
106 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
107 pgprot_val(arch_vm_get_page_prot(vm_flags)));
108 }
109 EXPORT_SYMBOL(vm_get_page_prot);
110
111 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
112 {
113 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
114 }
115
116 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
117 void vma_set_page_prot(struct vm_area_struct *vma)
118 {
119 unsigned long vm_flags = vma->vm_flags;
120 pgprot_t vm_page_prot;
121
122 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
123 if (vma_wants_writenotify(vma, vm_page_prot)) {
124 vm_flags &= ~VM_SHARED;
125 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
126 }
127 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
128 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
129 }
130
131 /*
132 * Requires inode->i_mapping->i_mmap_rwsem
133 */
134 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
135 struct file *file, struct address_space *mapping)
136 {
137 if (vma->vm_flags & VM_DENYWRITE)
138 atomic_inc(&file_inode(file)->i_writecount);
139 if (vma->vm_flags & VM_SHARED)
140 mapping_unmap_writable(mapping);
141
142 flush_dcache_mmap_lock(mapping);
143 vma_interval_tree_remove(vma, &mapping->i_mmap);
144 flush_dcache_mmap_unlock(mapping);
145 }
146
147 /*
148 * Unlink a file-based vm structure from its interval tree, to hide
149 * vma from rmap and vmtruncate before freeing its page tables.
150 */
151 void unlink_file_vma(struct vm_area_struct *vma)
152 {
153 struct file *file = vma->vm_file;
154
155 if (file) {
156 struct address_space *mapping = file->f_mapping;
157 i_mmap_lock_write(mapping);
158 __remove_shared_vm_struct(vma, file, mapping);
159 i_mmap_unlock_write(mapping);
160 }
161 }
162
163 /*
164 * Close a vm structure and free it, returning the next.
165 */
166 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
167 {
168 struct vm_area_struct *next = vma->vm_next;
169
170 might_sleep();
171 if (vma->vm_ops && vma->vm_ops->close)
172 vma->vm_ops->close(vma);
173 if (vma->vm_file)
174 fput(vma->vm_file);
175 mpol_put(vma_policy(vma));
176 kmem_cache_free(vm_area_cachep, vma);
177 return next;
178 }
179
180 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
181 struct list_head *uf);
182 SYSCALL_DEFINE1(brk, unsigned long, brk)
183 {
184 unsigned long retval;
185 unsigned long newbrk, oldbrk;
186 struct mm_struct *mm = current->mm;
187 struct vm_area_struct *next;
188 unsigned long min_brk;
189 bool populate;
190 LIST_HEAD(uf);
191
192 if (down_write_killable(&mm->mmap_sem))
193 return -EINTR;
194
195 #ifdef CONFIG_COMPAT_BRK
196 /*
197 * CONFIG_COMPAT_BRK can still be overridden by setting
198 * randomize_va_space to 2, which will still cause mm->start_brk
199 * to be arbitrarily shifted
200 */
201 if (current->brk_randomized)
202 min_brk = mm->start_brk;
203 else
204 min_brk = mm->end_data;
205 #else
206 min_brk = mm->start_brk;
207 #endif
208 if (brk < min_brk)
209 goto out;
210
211 /*
212 * Check against rlimit here. If this check is done later after the test
213 * of oldbrk with newbrk then it can escape the test and let the data
214 * segment grow beyond its set limit the in case where the limit is
215 * not page aligned -Ram Gupta
216 */
217 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
218 mm->end_data, mm->start_data))
219 goto out;
220
221 newbrk = PAGE_ALIGN(brk);
222 oldbrk = PAGE_ALIGN(mm->brk);
223 if (oldbrk == newbrk)
224 goto set_brk;
225
226 /* Always allow shrinking brk. */
227 if (brk <= mm->brk) {
228 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
229 goto set_brk;
230 goto out;
231 }
232
233 /* Check against existing mmap mappings. */
234 next = find_vma(mm, oldbrk);
235 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
236 goto out;
237
238 /* Ok, looks good - let it rip. */
239 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
240 goto out;
241
242 set_brk:
243 mm->brk = brk;
244 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
245 up_write(&mm->mmap_sem);
246 userfaultfd_unmap_complete(mm, &uf);
247 if (populate)
248 mm_populate(oldbrk, newbrk - oldbrk);
249 return brk;
250
251 out:
252 retval = mm->brk;
253 up_write(&mm->mmap_sem);
254 return retval;
255 }
256
257 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
258 {
259 unsigned long max, prev_end, subtree_gap;
260
261 /*
262 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
263 * allow two stack_guard_gaps between them here, and when choosing
264 * an unmapped area; whereas when expanding we only require one.
265 * That's a little inconsistent, but keeps the code here simpler.
266 */
267 max = vm_start_gap(vma);
268 if (vma->vm_prev) {
269 prev_end = vm_end_gap(vma->vm_prev);
270 if (max > prev_end)
271 max -= prev_end;
272 else
273 max = 0;
274 }
275 if (vma->vm_rb.rb_left) {
276 subtree_gap = rb_entry(vma->vm_rb.rb_left,
277 struct vm_area_struct, vm_rb)->rb_subtree_gap;
278 if (subtree_gap > max)
279 max = subtree_gap;
280 }
281 if (vma->vm_rb.rb_right) {
282 subtree_gap = rb_entry(vma->vm_rb.rb_right,
283 struct vm_area_struct, vm_rb)->rb_subtree_gap;
284 if (subtree_gap > max)
285 max = subtree_gap;
286 }
287 return max;
288 }
289
290 #ifdef CONFIG_DEBUG_VM_RB
291 static int browse_rb(struct mm_struct *mm)
292 {
293 struct rb_root *root = &mm->mm_rb;
294 int i = 0, j, bug = 0;
295 struct rb_node *nd, *pn = NULL;
296 unsigned long prev = 0, pend = 0;
297
298 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
299 struct vm_area_struct *vma;
300 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
301 if (vma->vm_start < prev) {
302 pr_emerg("vm_start %lx < prev %lx\n",
303 vma->vm_start, prev);
304 bug = 1;
305 }
306 if (vma->vm_start < pend) {
307 pr_emerg("vm_start %lx < pend %lx\n",
308 vma->vm_start, pend);
309 bug = 1;
310 }
311 if (vma->vm_start > vma->vm_end) {
312 pr_emerg("vm_start %lx > vm_end %lx\n",
313 vma->vm_start, vma->vm_end);
314 bug = 1;
315 }
316 spin_lock(&mm->page_table_lock);
317 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
318 pr_emerg("free gap %lx, correct %lx\n",
319 vma->rb_subtree_gap,
320 vma_compute_subtree_gap(vma));
321 bug = 1;
322 }
323 spin_unlock(&mm->page_table_lock);
324 i++;
325 pn = nd;
326 prev = vma->vm_start;
327 pend = vma->vm_end;
328 }
329 j = 0;
330 for (nd = pn; nd; nd = rb_prev(nd))
331 j++;
332 if (i != j) {
333 pr_emerg("backwards %d, forwards %d\n", j, i);
334 bug = 1;
335 }
336 return bug ? -1 : i;
337 }
338
339 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
340 {
341 struct rb_node *nd;
342
343 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
344 struct vm_area_struct *vma;
345 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
346 VM_BUG_ON_VMA(vma != ignore &&
347 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
348 vma);
349 }
350 }
351
352 static void validate_mm(struct mm_struct *mm)
353 {
354 int bug = 0;
355 int i = 0;
356 unsigned long highest_address = 0;
357 struct vm_area_struct *vma = mm->mmap;
358
359 while (vma) {
360 struct anon_vma *anon_vma = vma->anon_vma;
361 struct anon_vma_chain *avc;
362
363 if (anon_vma) {
364 anon_vma_lock_read(anon_vma);
365 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
366 anon_vma_interval_tree_verify(avc);
367 anon_vma_unlock_read(anon_vma);
368 }
369
370 highest_address = vm_end_gap(vma);
371 vma = vma->vm_next;
372 i++;
373 }
374 if (i != mm->map_count) {
375 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
376 bug = 1;
377 }
378 if (highest_address != mm->highest_vm_end) {
379 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
380 mm->highest_vm_end, highest_address);
381 bug = 1;
382 }
383 i = browse_rb(mm);
384 if (i != mm->map_count) {
385 if (i != -1)
386 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
387 bug = 1;
388 }
389 VM_BUG_ON_MM(bug, mm);
390 }
391 #else
392 #define validate_mm_rb(root, ignore) do { } while (0)
393 #define validate_mm(mm) do { } while (0)
394 #endif
395
396 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
397 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
398
399 /*
400 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
401 * vma->vm_prev->vm_end values changed, without modifying the vma's position
402 * in the rbtree.
403 */
404 static void vma_gap_update(struct vm_area_struct *vma)
405 {
406 /*
407 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
408 * function that does exacltly what we want.
409 */
410 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
411 }
412
413 static inline void vma_rb_insert(struct vm_area_struct *vma,
414 struct rb_root *root)
415 {
416 /* All rb_subtree_gap values must be consistent prior to insertion */
417 validate_mm_rb(root, NULL);
418
419 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
420 }
421
422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
423 {
424 /*
425 * Note rb_erase_augmented is a fairly large inline function,
426 * so make sure we instantiate it only once with our desired
427 * augmented rbtree callbacks.
428 */
429 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
430 }
431
432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
433 struct rb_root *root,
434 struct vm_area_struct *ignore)
435 {
436 /*
437 * All rb_subtree_gap values must be consistent prior to erase,
438 * with the possible exception of the "next" vma being erased if
439 * next->vm_start was reduced.
440 */
441 validate_mm_rb(root, ignore);
442
443 __vma_rb_erase(vma, root);
444 }
445
446 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
447 struct rb_root *root)
448 {
449 /*
450 * All rb_subtree_gap values must be consistent prior to erase,
451 * with the possible exception of the vma being erased.
452 */
453 validate_mm_rb(root, vma);
454
455 __vma_rb_erase(vma, root);
456 }
457
458 /*
459 * vma has some anon_vma assigned, and is already inserted on that
460 * anon_vma's interval trees.
461 *
462 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
463 * vma must be removed from the anon_vma's interval trees using
464 * anon_vma_interval_tree_pre_update_vma().
465 *
466 * After the update, the vma will be reinserted using
467 * anon_vma_interval_tree_post_update_vma().
468 *
469 * The entire update must be protected by exclusive mmap_sem and by
470 * the root anon_vma's mutex.
471 */
472 static inline void
473 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
474 {
475 struct anon_vma_chain *avc;
476
477 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
478 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
479 }
480
481 static inline void
482 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
483 {
484 struct anon_vma_chain *avc;
485
486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
488 }
489
490 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
491 unsigned long end, struct vm_area_struct **pprev,
492 struct rb_node ***rb_link, struct rb_node **rb_parent)
493 {
494 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
495
496 __rb_link = &mm->mm_rb.rb_node;
497 rb_prev = __rb_parent = NULL;
498
499 while (*__rb_link) {
500 struct vm_area_struct *vma_tmp;
501
502 __rb_parent = *__rb_link;
503 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
504
505 if (vma_tmp->vm_end > addr) {
506 /* Fail if an existing vma overlaps the area */
507 if (vma_tmp->vm_start < end)
508 return -ENOMEM;
509 __rb_link = &__rb_parent->rb_left;
510 } else {
511 rb_prev = __rb_parent;
512 __rb_link = &__rb_parent->rb_right;
513 }
514 }
515
516 *pprev = NULL;
517 if (rb_prev)
518 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
519 *rb_link = __rb_link;
520 *rb_parent = __rb_parent;
521 return 0;
522 }
523
524 static unsigned long count_vma_pages_range(struct mm_struct *mm,
525 unsigned long addr, unsigned long end)
526 {
527 unsigned long nr_pages = 0;
528 struct vm_area_struct *vma;
529
530 /* Find first overlaping mapping */
531 vma = find_vma_intersection(mm, addr, end);
532 if (!vma)
533 return 0;
534
535 nr_pages = (min(end, vma->vm_end) -
536 max(addr, vma->vm_start)) >> PAGE_SHIFT;
537
538 /* Iterate over the rest of the overlaps */
539 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
540 unsigned long overlap_len;
541
542 if (vma->vm_start > end)
543 break;
544
545 overlap_len = min(end, vma->vm_end) - vma->vm_start;
546 nr_pages += overlap_len >> PAGE_SHIFT;
547 }
548
549 return nr_pages;
550 }
551
552 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
553 struct rb_node **rb_link, struct rb_node *rb_parent)
554 {
555 /* Update tracking information for the gap following the new vma. */
556 if (vma->vm_next)
557 vma_gap_update(vma->vm_next);
558 else
559 mm->highest_vm_end = vm_end_gap(vma);
560
561 /*
562 * vma->vm_prev wasn't known when we followed the rbtree to find the
563 * correct insertion point for that vma. As a result, we could not
564 * update the vma vm_rb parents rb_subtree_gap values on the way down.
565 * So, we first insert the vma with a zero rb_subtree_gap value
566 * (to be consistent with what we did on the way down), and then
567 * immediately update the gap to the correct value. Finally we
568 * rebalance the rbtree after all augmented values have been set.
569 */
570 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
571 vma->rb_subtree_gap = 0;
572 vma_gap_update(vma);
573 vma_rb_insert(vma, &mm->mm_rb);
574 }
575
576 static void __vma_link_file(struct vm_area_struct *vma)
577 {
578 struct file *file;
579
580 file = vma->vm_file;
581 if (file) {
582 struct address_space *mapping = file->f_mapping;
583
584 if (vma->vm_flags & VM_DENYWRITE)
585 atomic_dec(&file_inode(file)->i_writecount);
586 if (vma->vm_flags & VM_SHARED)
587 atomic_inc(&mapping->i_mmap_writable);
588
589 flush_dcache_mmap_lock(mapping);
590 vma_interval_tree_insert(vma, &mapping->i_mmap);
591 flush_dcache_mmap_unlock(mapping);
592 }
593 }
594
595 static void
596 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
597 struct vm_area_struct *prev, struct rb_node **rb_link,
598 struct rb_node *rb_parent)
599 {
600 __vma_link_list(mm, vma, prev, rb_parent);
601 __vma_link_rb(mm, vma, rb_link, rb_parent);
602 }
603
604 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
605 struct vm_area_struct *prev, struct rb_node **rb_link,
606 struct rb_node *rb_parent)
607 {
608 struct address_space *mapping = NULL;
609
610 if (vma->vm_file) {
611 mapping = vma->vm_file->f_mapping;
612 i_mmap_lock_write(mapping);
613 }
614
615 __vma_link(mm, vma, prev, rb_link, rb_parent);
616 __vma_link_file(vma);
617
618 if (mapping)
619 i_mmap_unlock_write(mapping);
620
621 mm->map_count++;
622 validate_mm(mm);
623 }
624
625 /*
626 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
627 * mm's list and rbtree. It has already been inserted into the interval tree.
628 */
629 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
630 {
631 struct vm_area_struct *prev;
632 struct rb_node **rb_link, *rb_parent;
633
634 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
635 &prev, &rb_link, &rb_parent))
636 BUG();
637 __vma_link(mm, vma, prev, rb_link, rb_parent);
638 mm->map_count++;
639 }
640
641 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
642 struct vm_area_struct *vma,
643 struct vm_area_struct *prev,
644 bool has_prev,
645 struct vm_area_struct *ignore)
646 {
647 struct vm_area_struct *next;
648
649 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
650 next = vma->vm_next;
651 if (has_prev)
652 prev->vm_next = next;
653 else {
654 prev = vma->vm_prev;
655 if (prev)
656 prev->vm_next = next;
657 else
658 mm->mmap = next;
659 }
660 if (next)
661 next->vm_prev = prev;
662
663 /* Kill the cache */
664 vmacache_invalidate(mm);
665 }
666
667 static inline void __vma_unlink_prev(struct mm_struct *mm,
668 struct vm_area_struct *vma,
669 struct vm_area_struct *prev)
670 {
671 __vma_unlink_common(mm, vma, prev, true, vma);
672 }
673
674 /*
675 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
676 * is already present in an i_mmap tree without adjusting the tree.
677 * The following helper function should be used when such adjustments
678 * are necessary. The "insert" vma (if any) is to be inserted
679 * before we drop the necessary locks.
680 */
681 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
682 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
683 struct vm_area_struct *expand)
684 {
685 struct mm_struct *mm = vma->vm_mm;
686 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
687 struct address_space *mapping = NULL;
688 struct rb_root_cached *root = NULL;
689 struct anon_vma *anon_vma = NULL;
690 struct file *file = vma->vm_file;
691 bool start_changed = false, end_changed = false;
692 long adjust_next = 0;
693 int remove_next = 0;
694
695 if (next && !insert) {
696 struct vm_area_struct *exporter = NULL, *importer = NULL;
697
698 if (end >= next->vm_end) {
699 /*
700 * vma expands, overlapping all the next, and
701 * perhaps the one after too (mprotect case 6).
702 * The only other cases that gets here are
703 * case 1, case 7 and case 8.
704 */
705 if (next == expand) {
706 /*
707 * The only case where we don't expand "vma"
708 * and we expand "next" instead is case 8.
709 */
710 VM_WARN_ON(end != next->vm_end);
711 /*
712 * remove_next == 3 means we're
713 * removing "vma" and that to do so we
714 * swapped "vma" and "next".
715 */
716 remove_next = 3;
717 VM_WARN_ON(file != next->vm_file);
718 swap(vma, next);
719 } else {
720 VM_WARN_ON(expand != vma);
721 /*
722 * case 1, 6, 7, remove_next == 2 is case 6,
723 * remove_next == 1 is case 1 or 7.
724 */
725 remove_next = 1 + (end > next->vm_end);
726 VM_WARN_ON(remove_next == 2 &&
727 end != next->vm_next->vm_end);
728 VM_WARN_ON(remove_next == 1 &&
729 end != next->vm_end);
730 /* trim end to next, for case 6 first pass */
731 end = next->vm_end;
732 }
733
734 exporter = next;
735 importer = vma;
736
737 /*
738 * If next doesn't have anon_vma, import from vma after
739 * next, if the vma overlaps with it.
740 */
741 if (remove_next == 2 && !next->anon_vma)
742 exporter = next->vm_next;
743
744 } else if (end > next->vm_start) {
745 /*
746 * vma expands, overlapping part of the next:
747 * mprotect case 5 shifting the boundary up.
748 */
749 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
750 exporter = next;
751 importer = vma;
752 VM_WARN_ON(expand != importer);
753 } else if (end < vma->vm_end) {
754 /*
755 * vma shrinks, and !insert tells it's not
756 * split_vma inserting another: so it must be
757 * mprotect case 4 shifting the boundary down.
758 */
759 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
760 exporter = vma;
761 importer = next;
762 VM_WARN_ON(expand != importer);
763 }
764
765 /*
766 * Easily overlooked: when mprotect shifts the boundary,
767 * make sure the expanding vma has anon_vma set if the
768 * shrinking vma had, to cover any anon pages imported.
769 */
770 if (exporter && exporter->anon_vma && !importer->anon_vma) {
771 int error;
772
773 importer->anon_vma = exporter->anon_vma;
774 error = anon_vma_clone(importer, exporter);
775 if (error)
776 return error;
777 }
778 }
779 again:
780 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
781
782 if (file) {
783 mapping = file->f_mapping;
784 root = &mapping->i_mmap;
785 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
786
787 if (adjust_next)
788 uprobe_munmap(next, next->vm_start, next->vm_end);
789
790 i_mmap_lock_write(mapping);
791 if (insert) {
792 /*
793 * Put into interval tree now, so instantiated pages
794 * are visible to arm/parisc __flush_dcache_page
795 * throughout; but we cannot insert into address
796 * space until vma start or end is updated.
797 */
798 __vma_link_file(insert);
799 }
800 }
801
802 anon_vma = vma->anon_vma;
803 if (!anon_vma && adjust_next)
804 anon_vma = next->anon_vma;
805 if (anon_vma) {
806 VM_WARN_ON(adjust_next && next->anon_vma &&
807 anon_vma != next->anon_vma);
808 anon_vma_lock_write(anon_vma);
809 anon_vma_interval_tree_pre_update_vma(vma);
810 if (adjust_next)
811 anon_vma_interval_tree_pre_update_vma(next);
812 }
813
814 if (root) {
815 flush_dcache_mmap_lock(mapping);
816 vma_interval_tree_remove(vma, root);
817 if (adjust_next)
818 vma_interval_tree_remove(next, root);
819 }
820
821 if (start != vma->vm_start) {
822 vma->vm_start = start;
823 start_changed = true;
824 }
825 if (end != vma->vm_end) {
826 vma->vm_end = end;
827 end_changed = true;
828 }
829 vma->vm_pgoff = pgoff;
830 if (adjust_next) {
831 next->vm_start += adjust_next << PAGE_SHIFT;
832 next->vm_pgoff += adjust_next;
833 }
834
835 if (root) {
836 if (adjust_next)
837 vma_interval_tree_insert(next, root);
838 vma_interval_tree_insert(vma, root);
839 flush_dcache_mmap_unlock(mapping);
840 }
841
842 if (remove_next) {
843 /*
844 * vma_merge has merged next into vma, and needs
845 * us to remove next before dropping the locks.
846 */
847 if (remove_next != 3)
848 __vma_unlink_prev(mm, next, vma);
849 else
850 /*
851 * vma is not before next if they've been
852 * swapped.
853 *
854 * pre-swap() next->vm_start was reduced so
855 * tell validate_mm_rb to ignore pre-swap()
856 * "next" (which is stored in post-swap()
857 * "vma").
858 */
859 __vma_unlink_common(mm, next, NULL, false, vma);
860 if (file)
861 __remove_shared_vm_struct(next, file, mapping);
862 } else if (insert) {
863 /*
864 * split_vma has split insert from vma, and needs
865 * us to insert it before dropping the locks
866 * (it may either follow vma or precede it).
867 */
868 __insert_vm_struct(mm, insert);
869 } else {
870 if (start_changed)
871 vma_gap_update(vma);
872 if (end_changed) {
873 if (!next)
874 mm->highest_vm_end = vm_end_gap(vma);
875 else if (!adjust_next)
876 vma_gap_update(next);
877 }
878 }
879
880 if (anon_vma) {
881 anon_vma_interval_tree_post_update_vma(vma);
882 if (adjust_next)
883 anon_vma_interval_tree_post_update_vma(next);
884 anon_vma_unlock_write(anon_vma);
885 }
886 if (mapping)
887 i_mmap_unlock_write(mapping);
888
889 if (root) {
890 uprobe_mmap(vma);
891
892 if (adjust_next)
893 uprobe_mmap(next);
894 }
895
896 if (remove_next) {
897 if (file) {
898 uprobe_munmap(next, next->vm_start, next->vm_end);
899 fput(file);
900 }
901 if (next->anon_vma)
902 anon_vma_merge(vma, next);
903 mm->map_count--;
904 mpol_put(vma_policy(next));
905 kmem_cache_free(vm_area_cachep, next);
906 /*
907 * In mprotect's case 6 (see comments on vma_merge),
908 * we must remove another next too. It would clutter
909 * up the code too much to do both in one go.
910 */
911 if (remove_next != 3) {
912 /*
913 * If "next" was removed and vma->vm_end was
914 * expanded (up) over it, in turn
915 * "next->vm_prev->vm_end" changed and the
916 * "vma->vm_next" gap must be updated.
917 */
918 next = vma->vm_next;
919 } else {
920 /*
921 * For the scope of the comment "next" and
922 * "vma" considered pre-swap(): if "vma" was
923 * removed, next->vm_start was expanded (down)
924 * over it and the "next" gap must be updated.
925 * Because of the swap() the post-swap() "vma"
926 * actually points to pre-swap() "next"
927 * (post-swap() "next" as opposed is now a
928 * dangling pointer).
929 */
930 next = vma;
931 }
932 if (remove_next == 2) {
933 remove_next = 1;
934 end = next->vm_end;
935 goto again;
936 }
937 else if (next)
938 vma_gap_update(next);
939 else {
940 /*
941 * If remove_next == 2 we obviously can't
942 * reach this path.
943 *
944 * If remove_next == 3 we can't reach this
945 * path because pre-swap() next is always not
946 * NULL. pre-swap() "next" is not being
947 * removed and its next->vm_end is not altered
948 * (and furthermore "end" already matches
949 * next->vm_end in remove_next == 3).
950 *
951 * We reach this only in the remove_next == 1
952 * case if the "next" vma that was removed was
953 * the highest vma of the mm. However in such
954 * case next->vm_end == "end" and the extended
955 * "vma" has vma->vm_end == next->vm_end so
956 * mm->highest_vm_end doesn't need any update
957 * in remove_next == 1 case.
958 */
959 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
960 }
961 }
962 if (insert && file)
963 uprobe_mmap(insert);
964
965 validate_mm(mm);
966
967 return 0;
968 }
969
970 /*
971 * If the vma has a ->close operation then the driver probably needs to release
972 * per-vma resources, so we don't attempt to merge those.
973 */
974 static inline int is_mergeable_vma(struct vm_area_struct *vma,
975 struct file *file, unsigned long vm_flags,
976 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
977 const char __user *anon_name)
978 {
979 /*
980 * VM_SOFTDIRTY should not prevent from VMA merging, if we
981 * match the flags but dirty bit -- the caller should mark
982 * merged VMA as dirty. If dirty bit won't be excluded from
983 * comparison, we increase pressue on the memory system forcing
984 * the kernel to generate new VMAs when old one could be
985 * extended instead.
986 */
987 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
988 return 0;
989 if (vma->vm_file != file)
990 return 0;
991 if (vma->vm_ops && vma->vm_ops->close)
992 return 0;
993 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
994 return 0;
995 if (vma_get_anon_name(vma) != anon_name)
996 return 0;
997 return 1;
998 }
999
1000 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1001 struct anon_vma *anon_vma2,
1002 struct vm_area_struct *vma)
1003 {
1004 /*
1005 * The list_is_singular() test is to avoid merging VMA cloned from
1006 * parents. This can improve scalability caused by anon_vma lock.
1007 */
1008 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1009 list_is_singular(&vma->anon_vma_chain)))
1010 return 1;
1011 return anon_vma1 == anon_vma2;
1012 }
1013
1014 /*
1015 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1016 * in front of (at a lower virtual address and file offset than) the vma.
1017 *
1018 * We cannot merge two vmas if they have differently assigned (non-NULL)
1019 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1020 *
1021 * We don't check here for the merged mmap wrapping around the end of pagecache
1022 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1023 * wrap, nor mmaps which cover the final page at index -1UL.
1024 */
1025 static int
1026 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1027 struct anon_vma *anon_vma, struct file *file,
1028 pgoff_t vm_pgoff,
1029 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1030 const char __user *anon_name)
1031 {
1032 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1033 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034 if (vma->vm_pgoff == vm_pgoff)
1035 return 1;
1036 }
1037 return 0;
1038 }
1039
1040 /*
1041 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1042 * beyond (at a higher virtual address and file offset than) the vma.
1043 *
1044 * We cannot merge two vmas if they have differently assigned (non-NULL)
1045 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1046 */
1047 static int
1048 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1049 struct anon_vma *anon_vma, struct file *file,
1050 pgoff_t vm_pgoff,
1051 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1052 const char __user *anon_name)
1053 {
1054 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1055 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1056 pgoff_t vm_pglen;
1057 vm_pglen = vma_pages(vma);
1058 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1059 return 1;
1060 }
1061 return 0;
1062 }
1063
1064 /*
1065 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1066 * figure out whether that can be merged with its predecessor or its
1067 * successor. Or both (it neatly fills a hole).
1068 *
1069 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1070 * certain not to be mapped by the time vma_merge is called; but when
1071 * called for mprotect, it is certain to be already mapped (either at
1072 * an offset within prev, or at the start of next), and the flags of
1073 * this area are about to be changed to vm_flags - and the no-change
1074 * case has already been eliminated.
1075 *
1076 * The following mprotect cases have to be considered, where AAAA is
1077 * the area passed down from mprotect_fixup, never extending beyond one
1078 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1079 *
1080 * AAAA AAAA AAAA AAAA
1081 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1082 * cannot merge might become might become might become
1083 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1084 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1085 * mremap move: PPPPXXXXXXXX 8
1086 * AAAA
1087 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1088 * might become case 1 below case 2 below case 3 below
1089 *
1090 * It is important for case 8 that the the vma NNNN overlapping the
1091 * region AAAA is never going to extended over XXXX. Instead XXXX must
1092 * be extended in region AAAA and NNNN must be removed. This way in
1093 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1094 * rmap_locks, the properties of the merged vma will be already
1095 * correct for the whole merged range. Some of those properties like
1096 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1097 * be correct for the whole merged range immediately after the
1098 * rmap_locks are released. Otherwise if XXXX would be removed and
1099 * NNNN would be extended over the XXXX range, remove_migration_ptes
1100 * or other rmap walkers (if working on addresses beyond the "end"
1101 * parameter) may establish ptes with the wrong permissions of NNNN
1102 * instead of the right permissions of XXXX.
1103 */
1104 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1105 struct vm_area_struct *prev, unsigned long addr,
1106 unsigned long end, unsigned long vm_flags,
1107 struct anon_vma *anon_vma, struct file *file,
1108 pgoff_t pgoff, struct mempolicy *policy,
1109 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1110 const char __user *anon_name)
1111 {
1112 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1113 struct vm_area_struct *area, *next;
1114 int err;
1115
1116 /*
1117 * We later require that vma->vm_flags == vm_flags,
1118 * so this tests vma->vm_flags & VM_SPECIAL, too.
1119 */
1120 if (vm_flags & VM_SPECIAL)
1121 return NULL;
1122
1123 if (prev)
1124 next = prev->vm_next;
1125 else
1126 next = mm->mmap;
1127 area = next;
1128 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1129 next = next->vm_next;
1130
1131 /* verify some invariant that must be enforced by the caller */
1132 VM_WARN_ON(prev && addr <= prev->vm_start);
1133 VM_WARN_ON(area && end > area->vm_end);
1134 VM_WARN_ON(addr >= end);
1135
1136 /*
1137 * Can it merge with the predecessor?
1138 */
1139 if (prev && prev->vm_end == addr &&
1140 mpol_equal(vma_policy(prev), policy) &&
1141 can_vma_merge_after(prev, vm_flags,
1142 anon_vma, file, pgoff,
1143 vm_userfaultfd_ctx,
1144 anon_name)) {
1145 /*
1146 * OK, it can. Can we now merge in the successor as well?
1147 */
1148 if (next && end == next->vm_start &&
1149 mpol_equal(policy, vma_policy(next)) &&
1150 can_vma_merge_before(next, vm_flags,
1151 anon_vma, file,
1152 pgoff+pglen,
1153 vm_userfaultfd_ctx,
1154 anon_name) &&
1155 is_mergeable_anon_vma(prev->anon_vma,
1156 next->anon_vma, NULL)) {
1157 /* cases 1, 6 */
1158 err = __vma_adjust(prev, prev->vm_start,
1159 next->vm_end, prev->vm_pgoff, NULL,
1160 prev);
1161 } else /* cases 2, 5, 7 */
1162 err = __vma_adjust(prev, prev->vm_start,
1163 end, prev->vm_pgoff, NULL, prev);
1164 if (err)
1165 return NULL;
1166 khugepaged_enter_vma_merge(prev, vm_flags);
1167 return prev;
1168 }
1169
1170 /*
1171 * Can this new request be merged in front of next?
1172 */
1173 if (next && end == next->vm_start &&
1174 mpol_equal(policy, vma_policy(next)) &&
1175 can_vma_merge_before(next, vm_flags,
1176 anon_vma, file, pgoff+pglen,
1177 vm_userfaultfd_ctx,
1178 anon_name)) {
1179 if (prev && addr < prev->vm_end) /* case 4 */
1180 err = __vma_adjust(prev, prev->vm_start,
1181 addr, prev->vm_pgoff, NULL, next);
1182 else { /* cases 3, 8 */
1183 err = __vma_adjust(area, addr, next->vm_end,
1184 next->vm_pgoff - pglen, NULL, next);
1185 /*
1186 * In case 3 area is already equal to next and
1187 * this is a noop, but in case 8 "area" has
1188 * been removed and next was expanded over it.
1189 */
1190 area = next;
1191 }
1192 if (err)
1193 return NULL;
1194 khugepaged_enter_vma_merge(area, vm_flags);
1195 return area;
1196 }
1197
1198 return NULL;
1199 }
1200
1201 /*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215 {
1216 return a->vm_end == b->vm_start &&
1217 mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 a->vm_file == b->vm_file &&
1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221 }
1222
1223 /*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246 {
1247 if (anon_vma_compatible(a, b)) {
1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251 return anon_vma;
1252 }
1253 return NULL;
1254 }
1255
1256 /*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma. It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265 {
1266 struct anon_vma *anon_vma;
1267 struct vm_area_struct *near;
1268
1269 near = vma->vm_next;
1270 if (!near)
1271 goto try_prev;
1272
1273 anon_vma = reusable_anon_vma(near, vma, near);
1274 if (anon_vma)
1275 return anon_vma;
1276 try_prev:
1277 near = vma->vm_prev;
1278 if (!near)
1279 goto none;
1280
1281 anon_vma = reusable_anon_vma(near, near, vma);
1282 if (anon_vma)
1283 return anon_vma;
1284 none:
1285 /*
1286 * There's no absolute need to look only at touching neighbours:
1287 * we could search further afield for "compatible" anon_vmas.
1288 * But it would probably just be a waste of time searching,
1289 * or lead to too many vmas hanging off the same anon_vma.
1290 * We're trying to allow mprotect remerging later on,
1291 * not trying to minimize memory used for anon_vmas.
1292 */
1293 return NULL;
1294 }
1295
1296 /*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300 static inline unsigned long round_hint_to_min(unsigned long hint)
1301 {
1302 hint &= PAGE_MASK;
1303 if (((void *)hint != NULL) &&
1304 (hint < mmap_min_addr))
1305 return PAGE_ALIGN(mmap_min_addr);
1306 return hint;
1307 }
1308
1309 static inline int mlock_future_check(struct mm_struct *mm,
1310 unsigned long flags,
1311 unsigned long len)
1312 {
1313 unsigned long locked, lock_limit;
1314
1315 /* mlock MCL_FUTURE? */
1316 if (flags & VM_LOCKED) {
1317 locked = len >> PAGE_SHIFT;
1318 locked += mm->locked_vm;
1319 lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 lock_limit >>= PAGE_SHIFT;
1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 return -EAGAIN;
1323 }
1324 return 0;
1325 }
1326
1327 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328 {
1329 if (S_ISREG(inode->i_mode))
1330 return MAX_LFS_FILESIZE;
1331
1332 if (S_ISBLK(inode->i_mode))
1333 return MAX_LFS_FILESIZE;
1334
1335 /* Special "we do even unsigned file positions" case */
1336 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337 return 0;
1338
1339 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340 return ULONG_MAX;
1341 }
1342
1343 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344 unsigned long pgoff, unsigned long len)
1345 {
1346 u64 maxsize = file_mmap_size_max(file, inode);
1347
1348 if (maxsize && len > maxsize)
1349 return false;
1350 maxsize -= len;
1351 if (pgoff > maxsize >> PAGE_SHIFT)
1352 return false;
1353 return true;
1354 }
1355
1356 /*
1357 * The caller must hold down_write(&current->mm->mmap_sem).
1358 */
1359 unsigned long do_mmap(struct file *file, unsigned long addr,
1360 unsigned long len, unsigned long prot,
1361 unsigned long flags, vm_flags_t vm_flags,
1362 unsigned long pgoff, unsigned long *populate,
1363 struct list_head *uf)
1364 {
1365 struct mm_struct *mm = current->mm;
1366 int pkey = 0;
1367
1368 *populate = 0;
1369
1370 if (!len)
1371 return -EINVAL;
1372
1373 /*
1374 * Does the application expect PROT_READ to imply PROT_EXEC?
1375 *
1376 * (the exception is when the underlying filesystem is noexec
1377 * mounted, in which case we dont add PROT_EXEC.)
1378 */
1379 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380 if (!(file && path_noexec(&file->f_path)))
1381 prot |= PROT_EXEC;
1382
1383 if (!(flags & MAP_FIXED))
1384 addr = round_hint_to_min(addr);
1385
1386 /* Careful about overflows.. */
1387 len = PAGE_ALIGN(len);
1388 if (!len)
1389 return -ENOMEM;
1390
1391 /* offset overflow? */
1392 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1393 return -EOVERFLOW;
1394
1395 /* Too many mappings? */
1396 if (mm->map_count > sysctl_max_map_count)
1397 return -ENOMEM;
1398
1399 /* Obtain the address to map to. we verify (or select) it and ensure
1400 * that it represents a valid section of the address space.
1401 */
1402 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1403 if (offset_in_page(addr))
1404 return addr;
1405
1406 if (prot == PROT_EXEC) {
1407 pkey = execute_only_pkey(mm);
1408 if (pkey < 0)
1409 pkey = 0;
1410 }
1411
1412 /* Do simple checking here so the lower-level routines won't have
1413 * to. we assume access permissions have been handled by the open
1414 * of the memory object, so we don't do any here.
1415 */
1416 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1417 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1418
1419 if (flags & MAP_LOCKED)
1420 if (!can_do_mlock())
1421 return -EPERM;
1422
1423 if (mlock_future_check(mm, vm_flags, len))
1424 return -EAGAIN;
1425
1426 if (file) {
1427 struct inode *inode = file_inode(file);
1428
1429 if (!file_mmap_ok(file, inode, pgoff, len))
1430 return -EOVERFLOW;
1431
1432 switch (flags & MAP_TYPE) {
1433 case MAP_SHARED:
1434 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1435 return -EACCES;
1436
1437 /*
1438 * Make sure we don't allow writing to an append-only
1439 * file..
1440 */
1441 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1442 return -EACCES;
1443
1444 /*
1445 * Make sure there are no mandatory locks on the file.
1446 */
1447 if (locks_verify_locked(file))
1448 return -EAGAIN;
1449
1450 vm_flags |= VM_SHARED | VM_MAYSHARE;
1451 if (!(file->f_mode & FMODE_WRITE))
1452 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1453
1454 /* fall through */
1455 case MAP_PRIVATE:
1456 if (!(file->f_mode & FMODE_READ))
1457 return -EACCES;
1458 if (path_noexec(&file->f_path)) {
1459 if (vm_flags & VM_EXEC)
1460 return -EPERM;
1461 vm_flags &= ~VM_MAYEXEC;
1462 }
1463
1464 if (!file->f_op->mmap)
1465 return -ENODEV;
1466 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1467 return -EINVAL;
1468 break;
1469
1470 default:
1471 return -EINVAL;
1472 }
1473 } else {
1474 switch (flags & MAP_TYPE) {
1475 case MAP_SHARED:
1476 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1477 return -EINVAL;
1478 /*
1479 * Ignore pgoff.
1480 */
1481 pgoff = 0;
1482 vm_flags |= VM_SHARED | VM_MAYSHARE;
1483 break;
1484 case MAP_PRIVATE:
1485 /*
1486 * Set pgoff according to addr for anon_vma.
1487 */
1488 pgoff = addr >> PAGE_SHIFT;
1489 break;
1490 default:
1491 return -EINVAL;
1492 }
1493 }
1494
1495 /*
1496 * Set 'VM_NORESERVE' if we should not account for the
1497 * memory use of this mapping.
1498 */
1499 if (flags & MAP_NORESERVE) {
1500 /* We honor MAP_NORESERVE if allowed to overcommit */
1501 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1502 vm_flags |= VM_NORESERVE;
1503
1504 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1505 if (file && is_file_hugepages(file))
1506 vm_flags |= VM_NORESERVE;
1507 }
1508
1509 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1510 if (!IS_ERR_VALUE(addr) &&
1511 ((vm_flags & VM_LOCKED) ||
1512 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1513 *populate = len;
1514 return addr;
1515 }
1516
1517 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1518 unsigned long, prot, unsigned long, flags,
1519 unsigned long, fd, unsigned long, pgoff)
1520 {
1521 struct file *file = NULL;
1522 unsigned long retval;
1523
1524 if (!(flags & MAP_ANONYMOUS)) {
1525 audit_mmap_fd(fd, flags);
1526 file = fget(fd);
1527 if (!file)
1528 return -EBADF;
1529 if (is_file_hugepages(file))
1530 len = ALIGN(len, huge_page_size(hstate_file(file)));
1531 retval = -EINVAL;
1532 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1533 goto out_fput;
1534 } else if (flags & MAP_HUGETLB) {
1535 struct user_struct *user = NULL;
1536 struct hstate *hs;
1537
1538 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1539 if (!hs)
1540 return -EINVAL;
1541
1542 len = ALIGN(len, huge_page_size(hs));
1543 /*
1544 * VM_NORESERVE is used because the reservations will be
1545 * taken when vm_ops->mmap() is called
1546 * A dummy user value is used because we are not locking
1547 * memory so no accounting is necessary
1548 */
1549 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1550 VM_NORESERVE,
1551 &user, HUGETLB_ANONHUGE_INODE,
1552 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1553 if (IS_ERR(file))
1554 return PTR_ERR(file);
1555 }
1556
1557 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1558
1559 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1560 out_fput:
1561 if (file)
1562 fput(file);
1563 return retval;
1564 }
1565
1566 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1567 struct mmap_arg_struct {
1568 unsigned long addr;
1569 unsigned long len;
1570 unsigned long prot;
1571 unsigned long flags;
1572 unsigned long fd;
1573 unsigned long offset;
1574 };
1575
1576 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1577 {
1578 struct mmap_arg_struct a;
1579
1580 if (copy_from_user(&a, arg, sizeof(a)))
1581 return -EFAULT;
1582 if (offset_in_page(a.offset))
1583 return -EINVAL;
1584
1585 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1586 a.offset >> PAGE_SHIFT);
1587 }
1588 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1589
1590 /*
1591 * Some shared mappigns will want the pages marked read-only
1592 * to track write events. If so, we'll downgrade vm_page_prot
1593 * to the private version (using protection_map[] without the
1594 * VM_SHARED bit).
1595 */
1596 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1597 {
1598 vm_flags_t vm_flags = vma->vm_flags;
1599 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1600
1601 /* If it was private or non-writable, the write bit is already clear */
1602 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1603 return 0;
1604
1605 /* The backer wishes to know when pages are first written to? */
1606 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1607 return 1;
1608
1609 /* The open routine did something to the protections that pgprot_modify
1610 * won't preserve? */
1611 if (pgprot_val(vm_page_prot) !=
1612 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1613 return 0;
1614
1615 /* Do we need to track softdirty? */
1616 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1617 return 1;
1618
1619 /* Specialty mapping? */
1620 if (vm_flags & VM_PFNMAP)
1621 return 0;
1622
1623 /* Can the mapping track the dirty pages? */
1624 return vma->vm_file && vma->vm_file->f_mapping &&
1625 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1626 }
1627
1628 /*
1629 * We account for memory if it's a private writeable mapping,
1630 * not hugepages and VM_NORESERVE wasn't set.
1631 */
1632 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1633 {
1634 /*
1635 * hugetlb has its own accounting separate from the core VM
1636 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1637 */
1638 if (file && is_file_hugepages(file))
1639 return 0;
1640
1641 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1642 }
1643
1644 unsigned long mmap_region(struct file *file, unsigned long addr,
1645 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1646 struct list_head *uf)
1647 {
1648 struct mm_struct *mm = current->mm;
1649 struct vm_area_struct *vma, *prev;
1650 int error;
1651 struct rb_node **rb_link, *rb_parent;
1652 unsigned long charged = 0;
1653
1654 /* Check against address space limit. */
1655 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1656 unsigned long nr_pages;
1657
1658 /*
1659 * MAP_FIXED may remove pages of mappings that intersects with
1660 * requested mapping. Account for the pages it would unmap.
1661 */
1662 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1663
1664 if (!may_expand_vm(mm, vm_flags,
1665 (len >> PAGE_SHIFT) - nr_pages))
1666 return -ENOMEM;
1667 }
1668
1669 /* Clear old maps */
1670 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1671 &rb_parent)) {
1672 if (do_munmap(mm, addr, len, uf))
1673 return -ENOMEM;
1674 }
1675
1676 /*
1677 * Private writable mapping: check memory availability
1678 */
1679 if (accountable_mapping(file, vm_flags)) {
1680 charged = len >> PAGE_SHIFT;
1681 if (security_vm_enough_memory_mm(mm, charged))
1682 return -ENOMEM;
1683 vm_flags |= VM_ACCOUNT;
1684 }
1685
1686 /*
1687 * Can we just expand an old mapping?
1688 */
1689 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1690 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1691 if (vma)
1692 goto out;
1693
1694 /*
1695 * Determine the object being mapped and call the appropriate
1696 * specific mapper. the address has already been validated, but
1697 * not unmapped, but the maps are removed from the list.
1698 */
1699 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1700 if (!vma) {
1701 error = -ENOMEM;
1702 goto unacct_error;
1703 }
1704
1705 vma->vm_mm = mm;
1706 vma->vm_start = addr;
1707 vma->vm_end = addr + len;
1708 vma->vm_flags = vm_flags;
1709 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1710 vma->vm_pgoff = pgoff;
1711 INIT_LIST_HEAD(&vma->anon_vma_chain);
1712
1713 if (file) {
1714 if (vm_flags & VM_DENYWRITE) {
1715 error = deny_write_access(file);
1716 if (error)
1717 goto free_vma;
1718 }
1719 if (vm_flags & VM_SHARED) {
1720 error = mapping_map_writable(file->f_mapping);
1721 if (error)
1722 goto allow_write_and_free_vma;
1723 }
1724
1725 /* ->mmap() can change vma->vm_file, but must guarantee that
1726 * vma_link() below can deny write-access if VM_DENYWRITE is set
1727 * and map writably if VM_SHARED is set. This usually means the
1728 * new file must not have been exposed to user-space, yet.
1729 */
1730 vma->vm_file = get_file(file);
1731 error = call_mmap(file, vma);
1732 if (error)
1733 goto unmap_and_free_vma;
1734
1735 /* Can addr have changed??
1736 *
1737 * Answer: Yes, several device drivers can do it in their
1738 * f_op->mmap method. -DaveM
1739 * Bug: If addr is changed, prev, rb_link, rb_parent should
1740 * be updated for vma_link()
1741 */
1742 WARN_ON_ONCE(addr != vma->vm_start);
1743
1744 addr = vma->vm_start;
1745 vm_flags = vma->vm_flags;
1746 } else if (vm_flags & VM_SHARED) {
1747 error = shmem_zero_setup(vma);
1748 if (error)
1749 goto free_vma;
1750 }
1751
1752 vma_link(mm, vma, prev, rb_link, rb_parent);
1753 /* Once vma denies write, undo our temporary denial count */
1754 if (file) {
1755 if (vm_flags & VM_SHARED)
1756 mapping_unmap_writable(file->f_mapping);
1757 if (vm_flags & VM_DENYWRITE)
1758 allow_write_access(file);
1759 }
1760 file = vma->vm_file;
1761 out:
1762 perf_event_mmap(vma);
1763
1764 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1765 if (vm_flags & VM_LOCKED) {
1766 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1767 vma == get_gate_vma(current->mm)))
1768 mm->locked_vm += (len >> PAGE_SHIFT);
1769 else
1770 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1771 }
1772
1773 if (file)
1774 uprobe_mmap(vma);
1775
1776 /*
1777 * New (or expanded) vma always get soft dirty status.
1778 * Otherwise user-space soft-dirty page tracker won't
1779 * be able to distinguish situation when vma area unmapped,
1780 * then new mapped in-place (which must be aimed as
1781 * a completely new data area).
1782 */
1783 vma->vm_flags |= VM_SOFTDIRTY;
1784
1785 vma_set_page_prot(vma);
1786
1787 return addr;
1788
1789 unmap_and_free_vma:
1790 vma->vm_file = NULL;
1791 fput(file);
1792
1793 /* Undo any partial mapping done by a device driver. */
1794 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1795 charged = 0;
1796 if (vm_flags & VM_SHARED)
1797 mapping_unmap_writable(file->f_mapping);
1798 allow_write_and_free_vma:
1799 if (vm_flags & VM_DENYWRITE)
1800 allow_write_access(file);
1801 free_vma:
1802 kmem_cache_free(vm_area_cachep, vma);
1803 unacct_error:
1804 if (charged)
1805 vm_unacct_memory(charged);
1806 return error;
1807 }
1808
1809 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1810 {
1811 /*
1812 * We implement the search by looking for an rbtree node that
1813 * immediately follows a suitable gap. That is,
1814 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1815 * - gap_end = vma->vm_start >= info->low_limit + length;
1816 * - gap_end - gap_start >= length
1817 */
1818
1819 struct mm_struct *mm = current->mm;
1820 struct vm_area_struct *vma;
1821 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1822
1823 /* Adjust search length to account for worst case alignment overhead */
1824 length = info->length + info->align_mask;
1825 if (length < info->length)
1826 return -ENOMEM;
1827
1828 /* Adjust search limits by the desired length */
1829 if (info->high_limit < length)
1830 return -ENOMEM;
1831 high_limit = info->high_limit - length;
1832
1833 if (info->low_limit > high_limit)
1834 return -ENOMEM;
1835 low_limit = info->low_limit + length;
1836
1837 /* Check if rbtree root looks promising */
1838 if (RB_EMPTY_ROOT(&mm->mm_rb))
1839 goto check_highest;
1840 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1841 if (vma->rb_subtree_gap < length)
1842 goto check_highest;
1843
1844 while (true) {
1845 /* Visit left subtree if it looks promising */
1846 gap_end = vm_start_gap(vma);
1847 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1848 struct vm_area_struct *left =
1849 rb_entry(vma->vm_rb.rb_left,
1850 struct vm_area_struct, vm_rb);
1851 if (left->rb_subtree_gap >= length) {
1852 vma = left;
1853 continue;
1854 }
1855 }
1856
1857 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1858 check_current:
1859 /* Check if current node has a suitable gap */
1860 if (gap_start > high_limit)
1861 return -ENOMEM;
1862 if (gap_end >= low_limit &&
1863 gap_end > gap_start && gap_end - gap_start >= length)
1864 goto found;
1865
1866 /* Visit right subtree if it looks promising */
1867 if (vma->vm_rb.rb_right) {
1868 struct vm_area_struct *right =
1869 rb_entry(vma->vm_rb.rb_right,
1870 struct vm_area_struct, vm_rb);
1871 if (right->rb_subtree_gap >= length) {
1872 vma = right;
1873 continue;
1874 }
1875 }
1876
1877 /* Go back up the rbtree to find next candidate node */
1878 while (true) {
1879 struct rb_node *prev = &vma->vm_rb;
1880 if (!rb_parent(prev))
1881 goto check_highest;
1882 vma = rb_entry(rb_parent(prev),
1883 struct vm_area_struct, vm_rb);
1884 if (prev == vma->vm_rb.rb_left) {
1885 gap_start = vm_end_gap(vma->vm_prev);
1886 gap_end = vm_start_gap(vma);
1887 goto check_current;
1888 }
1889 }
1890 }
1891
1892 check_highest:
1893 /* Check highest gap, which does not precede any rbtree node */
1894 gap_start = mm->highest_vm_end;
1895 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1896 if (gap_start > high_limit)
1897 return -ENOMEM;
1898
1899 found:
1900 /* We found a suitable gap. Clip it with the original low_limit. */
1901 if (gap_start < info->low_limit)
1902 gap_start = info->low_limit;
1903
1904 /* Adjust gap address to the desired alignment */
1905 gap_start += (info->align_offset - gap_start) & info->align_mask;
1906
1907 VM_BUG_ON(gap_start + info->length > info->high_limit);
1908 VM_BUG_ON(gap_start + info->length > gap_end);
1909 return gap_start;
1910 }
1911
1912 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1913 {
1914 struct mm_struct *mm = current->mm;
1915 struct vm_area_struct *vma;
1916 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1917
1918 /* Adjust search length to account for worst case alignment overhead */
1919 length = info->length + info->align_mask;
1920 if (length < info->length)
1921 return -ENOMEM;
1922
1923 /*
1924 * Adjust search limits by the desired length.
1925 * See implementation comment at top of unmapped_area().
1926 */
1927 gap_end = info->high_limit;
1928 if (gap_end < length)
1929 return -ENOMEM;
1930 high_limit = gap_end - length;
1931
1932 if (info->low_limit > high_limit)
1933 return -ENOMEM;
1934 low_limit = info->low_limit + length;
1935
1936 /* Check highest gap, which does not precede any rbtree node */
1937 gap_start = mm->highest_vm_end;
1938 if (gap_start <= high_limit)
1939 goto found_highest;
1940
1941 /* Check if rbtree root looks promising */
1942 if (RB_EMPTY_ROOT(&mm->mm_rb))
1943 return -ENOMEM;
1944 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1945 if (vma->rb_subtree_gap < length)
1946 return -ENOMEM;
1947
1948 while (true) {
1949 /* Visit right subtree if it looks promising */
1950 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1951 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1952 struct vm_area_struct *right =
1953 rb_entry(vma->vm_rb.rb_right,
1954 struct vm_area_struct, vm_rb);
1955 if (right->rb_subtree_gap >= length) {
1956 vma = right;
1957 continue;
1958 }
1959 }
1960
1961 check_current:
1962 /* Check if current node has a suitable gap */
1963 gap_end = vm_start_gap(vma);
1964 if (gap_end < low_limit)
1965 return -ENOMEM;
1966 if (gap_start <= high_limit &&
1967 gap_end > gap_start && gap_end - gap_start >= length)
1968 goto found;
1969
1970 /* Visit left subtree if it looks promising */
1971 if (vma->vm_rb.rb_left) {
1972 struct vm_area_struct *left =
1973 rb_entry(vma->vm_rb.rb_left,
1974 struct vm_area_struct, vm_rb);
1975 if (left->rb_subtree_gap >= length) {
1976 vma = left;
1977 continue;
1978 }
1979 }
1980
1981 /* Go back up the rbtree to find next candidate node */
1982 while (true) {
1983 struct rb_node *prev = &vma->vm_rb;
1984 if (!rb_parent(prev))
1985 return -ENOMEM;
1986 vma = rb_entry(rb_parent(prev),
1987 struct vm_area_struct, vm_rb);
1988 if (prev == vma->vm_rb.rb_right) {
1989 gap_start = vma->vm_prev ?
1990 vm_end_gap(vma->vm_prev) : 0;
1991 goto check_current;
1992 }
1993 }
1994 }
1995
1996 found:
1997 /* We found a suitable gap. Clip it with the original high_limit. */
1998 if (gap_end > info->high_limit)
1999 gap_end = info->high_limit;
2000
2001 found_highest:
2002 /* Compute highest gap address at the desired alignment */
2003 gap_end -= info->length;
2004 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2005
2006 VM_BUG_ON(gap_end < info->low_limit);
2007 VM_BUG_ON(gap_end < gap_start);
2008 return gap_end;
2009 }
2010
2011 /* Get an address range which is currently unmapped.
2012 * For shmat() with addr=0.
2013 *
2014 * Ugly calling convention alert:
2015 * Return value with the low bits set means error value,
2016 * ie
2017 * if (ret & ~PAGE_MASK)
2018 * error = ret;
2019 *
2020 * This function "knows" that -ENOMEM has the bits set.
2021 */
2022 #ifndef HAVE_ARCH_UNMAPPED_AREA
2023 unsigned long
2024 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2025 unsigned long len, unsigned long pgoff, unsigned long flags)
2026 {
2027 struct mm_struct *mm = current->mm;
2028 struct vm_area_struct *vma, *prev;
2029 struct vm_unmapped_area_info info;
2030
2031 if (len > TASK_SIZE - mmap_min_addr)
2032 return -ENOMEM;
2033
2034 if (flags & MAP_FIXED)
2035 return addr;
2036
2037 if (addr) {
2038 addr = PAGE_ALIGN(addr);
2039 vma = find_vma_prev(mm, addr, &prev);
2040 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2041 (!vma || addr + len <= vm_start_gap(vma)) &&
2042 (!prev || addr >= vm_end_gap(prev)))
2043 return addr;
2044 }
2045
2046 info.flags = 0;
2047 info.length = len;
2048 info.low_limit = mm->mmap_base;
2049 info.high_limit = TASK_SIZE;
2050 info.align_mask = 0;
2051 return vm_unmapped_area(&info);
2052 }
2053 #endif
2054
2055 /*
2056 * This mmap-allocator allocates new areas top-down from below the
2057 * stack's low limit (the base):
2058 */
2059 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2060 unsigned long
2061 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2062 const unsigned long len, const unsigned long pgoff,
2063 const unsigned long flags)
2064 {
2065 struct vm_area_struct *vma, *prev;
2066 struct mm_struct *mm = current->mm;
2067 unsigned long addr = addr0;
2068 struct vm_unmapped_area_info info;
2069
2070 /* requested length too big for entire address space */
2071 if (len > TASK_SIZE - mmap_min_addr)
2072 return -ENOMEM;
2073
2074 if (flags & MAP_FIXED)
2075 return addr;
2076
2077 /* requesting a specific address */
2078 if (addr) {
2079 addr = PAGE_ALIGN(addr);
2080 vma = find_vma_prev(mm, addr, &prev);
2081 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2082 (!vma || addr + len <= vm_start_gap(vma)) &&
2083 (!prev || addr >= vm_end_gap(prev)))
2084 return addr;
2085 }
2086
2087 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2088 info.length = len;
2089 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2090 info.high_limit = mm->mmap_base;
2091 info.align_mask = 0;
2092 addr = vm_unmapped_area(&info);
2093
2094 /*
2095 * A failed mmap() very likely causes application failure,
2096 * so fall back to the bottom-up function here. This scenario
2097 * can happen with large stack limits and large mmap()
2098 * allocations.
2099 */
2100 if (offset_in_page(addr)) {
2101 VM_BUG_ON(addr != -ENOMEM);
2102 info.flags = 0;
2103 info.low_limit = TASK_UNMAPPED_BASE;
2104 info.high_limit = TASK_SIZE;
2105 addr = vm_unmapped_area(&info);
2106 }
2107
2108 return addr;
2109 }
2110 #endif
2111
2112 unsigned long
2113 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2114 unsigned long pgoff, unsigned long flags)
2115 {
2116 unsigned long (*get_area)(struct file *, unsigned long,
2117 unsigned long, unsigned long, unsigned long);
2118
2119 unsigned long error = arch_mmap_check(addr, len, flags);
2120 if (error)
2121 return error;
2122
2123 /* Careful about overflows.. */
2124 if (len > TASK_SIZE)
2125 return -ENOMEM;
2126
2127 get_area = current->mm->get_unmapped_area;
2128 if (file) {
2129 if (file->f_op->get_unmapped_area)
2130 get_area = file->f_op->get_unmapped_area;
2131 } else if (flags & MAP_SHARED) {
2132 /*
2133 * mmap_region() will call shmem_zero_setup() to create a file,
2134 * so use shmem's get_unmapped_area in case it can be huge.
2135 * do_mmap_pgoff() will clear pgoff, so match alignment.
2136 */
2137 pgoff = 0;
2138 get_area = shmem_get_unmapped_area;
2139 }
2140
2141 addr = get_area(file, addr, len, pgoff, flags);
2142 if (IS_ERR_VALUE(addr))
2143 return addr;
2144
2145 if (addr > TASK_SIZE - len)
2146 return -ENOMEM;
2147 if (offset_in_page(addr))
2148 return -EINVAL;
2149
2150 error = security_mmap_addr(addr);
2151 return error ? error : addr;
2152 }
2153
2154 EXPORT_SYMBOL(get_unmapped_area);
2155
2156 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2157 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2158 {
2159 struct rb_node *rb_node;
2160 struct vm_area_struct *vma;
2161
2162 /* Check the cache first. */
2163 vma = vmacache_find(mm, addr);
2164 if (likely(vma))
2165 return vma;
2166
2167 rb_node = mm->mm_rb.rb_node;
2168
2169 while (rb_node) {
2170 struct vm_area_struct *tmp;
2171
2172 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2173
2174 if (tmp->vm_end > addr) {
2175 vma = tmp;
2176 if (tmp->vm_start <= addr)
2177 break;
2178 rb_node = rb_node->rb_left;
2179 } else
2180 rb_node = rb_node->rb_right;
2181 }
2182
2183 if (vma)
2184 vmacache_update(addr, vma);
2185 return vma;
2186 }
2187
2188 EXPORT_SYMBOL(find_vma);
2189
2190 /*
2191 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2192 */
2193 struct vm_area_struct *
2194 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2195 struct vm_area_struct **pprev)
2196 {
2197 struct vm_area_struct *vma;
2198
2199 vma = find_vma(mm, addr);
2200 if (vma) {
2201 *pprev = vma->vm_prev;
2202 } else {
2203 struct rb_node *rb_node = mm->mm_rb.rb_node;
2204 *pprev = NULL;
2205 while (rb_node) {
2206 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2207 rb_node = rb_node->rb_right;
2208 }
2209 }
2210 return vma;
2211 }
2212
2213 /*
2214 * Verify that the stack growth is acceptable and
2215 * update accounting. This is shared with both the
2216 * grow-up and grow-down cases.
2217 */
2218 static int acct_stack_growth(struct vm_area_struct *vma,
2219 unsigned long size, unsigned long grow)
2220 {
2221 struct mm_struct *mm = vma->vm_mm;
2222 unsigned long new_start;
2223
2224 /* address space limit tests */
2225 if (!may_expand_vm(mm, vma->vm_flags, grow))
2226 return -ENOMEM;
2227
2228 /* Stack limit test */
2229 if (size > rlimit(RLIMIT_STACK))
2230 return -ENOMEM;
2231
2232 /* mlock limit tests */
2233 if (vma->vm_flags & VM_LOCKED) {
2234 unsigned long locked;
2235 unsigned long limit;
2236 locked = mm->locked_vm + grow;
2237 limit = rlimit(RLIMIT_MEMLOCK);
2238 limit >>= PAGE_SHIFT;
2239 if (locked > limit && !capable(CAP_IPC_LOCK))
2240 return -ENOMEM;
2241 }
2242
2243 /* Check to ensure the stack will not grow into a hugetlb-only region */
2244 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2245 vma->vm_end - size;
2246 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2247 return -EFAULT;
2248
2249 /*
2250 * Overcommit.. This must be the final test, as it will
2251 * update security statistics.
2252 */
2253 if (security_vm_enough_memory_mm(mm, grow))
2254 return -ENOMEM;
2255
2256 return 0;
2257 }
2258
2259 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2260 /*
2261 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2262 * vma is the last one with address > vma->vm_end. Have to extend vma.
2263 */
2264 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2265 {
2266 struct mm_struct *mm = vma->vm_mm;
2267 struct vm_area_struct *next;
2268 unsigned long gap_addr;
2269 int error = 0;
2270
2271 if (!(vma->vm_flags & VM_GROWSUP))
2272 return -EFAULT;
2273
2274 /* Guard against exceeding limits of the address space. */
2275 address &= PAGE_MASK;
2276 if (address >= (TASK_SIZE & PAGE_MASK))
2277 return -ENOMEM;
2278 address += PAGE_SIZE;
2279
2280 /* Enforce stack_guard_gap */
2281 gap_addr = address + stack_guard_gap;
2282
2283 /* Guard against overflow */
2284 if (gap_addr < address || gap_addr > TASK_SIZE)
2285 gap_addr = TASK_SIZE;
2286
2287 next = vma->vm_next;
2288 if (next && next->vm_start < gap_addr &&
2289 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2290 if (!(next->vm_flags & VM_GROWSUP))
2291 return -ENOMEM;
2292 /* Check that both stack segments have the same anon_vma? */
2293 }
2294
2295 /* We must make sure the anon_vma is allocated. */
2296 if (unlikely(anon_vma_prepare(vma)))
2297 return -ENOMEM;
2298
2299 /*
2300 * vma->vm_start/vm_end cannot change under us because the caller
2301 * is required to hold the mmap_sem in read mode. We need the
2302 * anon_vma lock to serialize against concurrent expand_stacks.
2303 */
2304 anon_vma_lock_write(vma->anon_vma);
2305
2306 /* Somebody else might have raced and expanded it already */
2307 if (address > vma->vm_end) {
2308 unsigned long size, grow;
2309
2310 size = address - vma->vm_start;
2311 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2312
2313 error = -ENOMEM;
2314 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2315 error = acct_stack_growth(vma, size, grow);
2316 if (!error) {
2317 /*
2318 * vma_gap_update() doesn't support concurrent
2319 * updates, but we only hold a shared mmap_sem
2320 * lock here, so we need to protect against
2321 * concurrent vma expansions.
2322 * anon_vma_lock_write() doesn't help here, as
2323 * we don't guarantee that all growable vmas
2324 * in a mm share the same root anon vma.
2325 * So, we reuse mm->page_table_lock to guard
2326 * against concurrent vma expansions.
2327 */
2328 spin_lock(&mm->page_table_lock);
2329 if (vma->vm_flags & VM_LOCKED)
2330 mm->locked_vm += grow;
2331 vm_stat_account(mm, vma->vm_flags, grow);
2332 anon_vma_interval_tree_pre_update_vma(vma);
2333 vma->vm_end = address;
2334 anon_vma_interval_tree_post_update_vma(vma);
2335 if (vma->vm_next)
2336 vma_gap_update(vma->vm_next);
2337 else
2338 mm->highest_vm_end = vm_end_gap(vma);
2339 spin_unlock(&mm->page_table_lock);
2340
2341 perf_event_mmap(vma);
2342 }
2343 }
2344 }
2345 anon_vma_unlock_write(vma->anon_vma);
2346 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2347 validate_mm(mm);
2348 return error;
2349 }
2350 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2351
2352 /*
2353 * vma is the first one with address < vma->vm_start. Have to extend vma.
2354 */
2355 int expand_downwards(struct vm_area_struct *vma,
2356 unsigned long address)
2357 {
2358 struct mm_struct *mm = vma->vm_mm;
2359 struct vm_area_struct *prev;
2360 int error = 0;
2361
2362 address &= PAGE_MASK;
2363 if (address < mmap_min_addr)
2364 return -EPERM;
2365
2366 /* Enforce stack_guard_gap */
2367 prev = vma->vm_prev;
2368 /* Check that both stack segments have the same anon_vma? */
2369 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2370 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2371 if (address - prev->vm_end < stack_guard_gap)
2372 return -ENOMEM;
2373 }
2374
2375 /* We must make sure the anon_vma is allocated. */
2376 if (unlikely(anon_vma_prepare(vma)))
2377 return -ENOMEM;
2378
2379 /*
2380 * vma->vm_start/vm_end cannot change under us because the caller
2381 * is required to hold the mmap_sem in read mode. We need the
2382 * anon_vma lock to serialize against concurrent expand_stacks.
2383 */
2384 anon_vma_lock_write(vma->anon_vma);
2385
2386 /* Somebody else might have raced and expanded it already */
2387 if (address < vma->vm_start) {
2388 unsigned long size, grow;
2389
2390 size = vma->vm_end - address;
2391 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2392
2393 error = -ENOMEM;
2394 if (grow <= vma->vm_pgoff) {
2395 error = acct_stack_growth(vma, size, grow);
2396 if (!error) {
2397 /*
2398 * vma_gap_update() doesn't support concurrent
2399 * updates, but we only hold a shared mmap_sem
2400 * lock here, so we need to protect against
2401 * concurrent vma expansions.
2402 * anon_vma_lock_write() doesn't help here, as
2403 * we don't guarantee that all growable vmas
2404 * in a mm share the same root anon vma.
2405 * So, we reuse mm->page_table_lock to guard
2406 * against concurrent vma expansions.
2407 */
2408 spin_lock(&mm->page_table_lock);
2409 if (vma->vm_flags & VM_LOCKED)
2410 mm->locked_vm += grow;
2411 vm_stat_account(mm, vma->vm_flags, grow);
2412 anon_vma_interval_tree_pre_update_vma(vma);
2413 vma->vm_start = address;
2414 vma->vm_pgoff -= grow;
2415 anon_vma_interval_tree_post_update_vma(vma);
2416 vma_gap_update(vma);
2417 spin_unlock(&mm->page_table_lock);
2418
2419 perf_event_mmap(vma);
2420 }
2421 }
2422 }
2423 anon_vma_unlock_write(vma->anon_vma);
2424 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2425 validate_mm(mm);
2426 return error;
2427 }
2428
2429 /* enforced gap between the expanding stack and other mappings. */
2430 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2431
2432 static int __init cmdline_parse_stack_guard_gap(char *p)
2433 {
2434 unsigned long val;
2435 char *endptr;
2436
2437 val = simple_strtoul(p, &endptr, 10);
2438 if (!*endptr)
2439 stack_guard_gap = val << PAGE_SHIFT;
2440
2441 return 0;
2442 }
2443 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2444
2445 #ifdef CONFIG_STACK_GROWSUP
2446 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2447 {
2448 return expand_upwards(vma, address);
2449 }
2450
2451 struct vm_area_struct *
2452 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2453 {
2454 struct vm_area_struct *vma, *prev;
2455
2456 addr &= PAGE_MASK;
2457 vma = find_vma_prev(mm, addr, &prev);
2458 if (vma && (vma->vm_start <= addr))
2459 return vma;
2460 if (!prev || expand_stack(prev, addr))
2461 return NULL;
2462 if (prev->vm_flags & VM_LOCKED)
2463 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2464 return prev;
2465 }
2466 #else
2467 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2468 {
2469 return expand_downwards(vma, address);
2470 }
2471
2472 struct vm_area_struct *
2473 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2474 {
2475 struct vm_area_struct *vma;
2476 unsigned long start;
2477
2478 addr &= PAGE_MASK;
2479 vma = find_vma(mm, addr);
2480 if (!vma)
2481 return NULL;
2482 if (vma->vm_start <= addr)
2483 return vma;
2484 if (!(vma->vm_flags & VM_GROWSDOWN))
2485 return NULL;
2486 start = vma->vm_start;
2487 if (expand_stack(vma, addr))
2488 return NULL;
2489 if (vma->vm_flags & VM_LOCKED)
2490 populate_vma_page_range(vma, addr, start, NULL);
2491 return vma;
2492 }
2493 #endif
2494
2495 EXPORT_SYMBOL_GPL(find_extend_vma);
2496
2497 /*
2498 * Ok - we have the memory areas we should free on the vma list,
2499 * so release them, and do the vma updates.
2500 *
2501 * Called with the mm semaphore held.
2502 */
2503 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2504 {
2505 unsigned long nr_accounted = 0;
2506
2507 /* Update high watermark before we lower total_vm */
2508 update_hiwater_vm(mm);
2509 do {
2510 long nrpages = vma_pages(vma);
2511
2512 if (vma->vm_flags & VM_ACCOUNT)
2513 nr_accounted += nrpages;
2514 vm_stat_account(mm, vma->vm_flags, -nrpages);
2515 vma = remove_vma(vma);
2516 } while (vma);
2517 vm_unacct_memory(nr_accounted);
2518 validate_mm(mm);
2519 }
2520
2521 /*
2522 * Get rid of page table information in the indicated region.
2523 *
2524 * Called with the mm semaphore held.
2525 */
2526 static void unmap_region(struct mm_struct *mm,
2527 struct vm_area_struct *vma, struct vm_area_struct *prev,
2528 unsigned long start, unsigned long end)
2529 {
2530 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2531 struct mmu_gather tlb;
2532
2533 lru_add_drain();
2534 tlb_gather_mmu(&tlb, mm, start, end);
2535 update_hiwater_rss(mm);
2536 unmap_vmas(&tlb, vma, start, end);
2537 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2538 next ? next->vm_start : USER_PGTABLES_CEILING);
2539 tlb_finish_mmu(&tlb, start, end);
2540 }
2541
2542 /*
2543 * Create a list of vma's touched by the unmap, removing them from the mm's
2544 * vma list as we go..
2545 */
2546 static void
2547 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2548 struct vm_area_struct *prev, unsigned long end)
2549 {
2550 struct vm_area_struct **insertion_point;
2551 struct vm_area_struct *tail_vma = NULL;
2552
2553 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2554 vma->vm_prev = NULL;
2555 do {
2556 vma_rb_erase(vma, &mm->mm_rb);
2557 mm->map_count--;
2558 tail_vma = vma;
2559 vma = vma->vm_next;
2560 } while (vma && vma->vm_start < end);
2561 *insertion_point = vma;
2562 if (vma) {
2563 vma->vm_prev = prev;
2564 vma_gap_update(vma);
2565 } else
2566 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2567 tail_vma->vm_next = NULL;
2568
2569 /* Kill the cache */
2570 vmacache_invalidate(mm);
2571 }
2572
2573 /*
2574 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2575 * has already been checked or doesn't make sense to fail.
2576 */
2577 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2578 unsigned long addr, int new_below)
2579 {
2580 struct vm_area_struct *new;
2581 int err;
2582
2583 if (vma->vm_ops && vma->vm_ops->split) {
2584 err = vma->vm_ops->split(vma, addr);
2585 if (err)
2586 return err;
2587 }
2588
2589 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2590 if (!new)
2591 return -ENOMEM;
2592
2593 /* most fields are the same, copy all, and then fixup */
2594 *new = *vma;
2595
2596 INIT_LIST_HEAD(&new->anon_vma_chain);
2597
2598 if (new_below)
2599 new->vm_end = addr;
2600 else {
2601 new->vm_start = addr;
2602 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2603 }
2604
2605 err = vma_dup_policy(vma, new);
2606 if (err)
2607 goto out_free_vma;
2608
2609 err = anon_vma_clone(new, vma);
2610 if (err)
2611 goto out_free_mpol;
2612
2613 if (new->vm_file)
2614 get_file(new->vm_file);
2615
2616 if (new->vm_ops && new->vm_ops->open)
2617 new->vm_ops->open(new);
2618
2619 if (new_below)
2620 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2621 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2622 else
2623 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2624
2625 /* Success. */
2626 if (!err)
2627 return 0;
2628
2629 /* Clean everything up if vma_adjust failed. */
2630 if (new->vm_ops && new->vm_ops->close)
2631 new->vm_ops->close(new);
2632 if (new->vm_file)
2633 fput(new->vm_file);
2634 unlink_anon_vmas(new);
2635 out_free_mpol:
2636 mpol_put(vma_policy(new));
2637 out_free_vma:
2638 kmem_cache_free(vm_area_cachep, new);
2639 return err;
2640 }
2641
2642 /*
2643 * Split a vma into two pieces at address 'addr', a new vma is allocated
2644 * either for the first part or the tail.
2645 */
2646 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2647 unsigned long addr, int new_below)
2648 {
2649 if (mm->map_count >= sysctl_max_map_count)
2650 return -ENOMEM;
2651
2652 return __split_vma(mm, vma, addr, new_below);
2653 }
2654
2655 /* Munmap is split into 2 main parts -- this part which finds
2656 * what needs doing, and the areas themselves, which do the
2657 * work. This now handles partial unmappings.
2658 * Jeremy Fitzhardinge <jeremy@goop.org>
2659 */
2660 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2661 struct list_head *uf)
2662 {
2663 unsigned long end;
2664 struct vm_area_struct *vma, *prev, *last;
2665
2666 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2667 return -EINVAL;
2668
2669 len = PAGE_ALIGN(len);
2670 if (len == 0)
2671 return -EINVAL;
2672
2673 /* Find the first overlapping VMA */
2674 vma = find_vma(mm, start);
2675 if (!vma)
2676 return 0;
2677 prev = vma->vm_prev;
2678 /* we have start < vma->vm_end */
2679
2680 /* if it doesn't overlap, we have nothing.. */
2681 end = start + len;
2682 if (vma->vm_start >= end)
2683 return 0;
2684
2685 /*
2686 * If we need to split any vma, do it now to save pain later.
2687 *
2688 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2689 * unmapped vm_area_struct will remain in use: so lower split_vma
2690 * places tmp vma above, and higher split_vma places tmp vma below.
2691 */
2692 if (start > vma->vm_start) {
2693 int error;
2694
2695 /*
2696 * Make sure that map_count on return from munmap() will
2697 * not exceed its limit; but let map_count go just above
2698 * its limit temporarily, to help free resources as expected.
2699 */
2700 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2701 return -ENOMEM;
2702
2703 error = __split_vma(mm, vma, start, 0);
2704 if (error)
2705 return error;
2706 prev = vma;
2707 }
2708
2709 /* Does it split the last one? */
2710 last = find_vma(mm, end);
2711 if (last && end > last->vm_start) {
2712 int error = __split_vma(mm, last, end, 1);
2713 if (error)
2714 return error;
2715 }
2716 vma = prev ? prev->vm_next : mm->mmap;
2717
2718 if (unlikely(uf)) {
2719 /*
2720 * If userfaultfd_unmap_prep returns an error the vmas
2721 * will remain splitted, but userland will get a
2722 * highly unexpected error anyway. This is no
2723 * different than the case where the first of the two
2724 * __split_vma fails, but we don't undo the first
2725 * split, despite we could. This is unlikely enough
2726 * failure that it's not worth optimizing it for.
2727 */
2728 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2729 if (error)
2730 return error;
2731 }
2732
2733 /*
2734 * unlock any mlock()ed ranges before detaching vmas
2735 */
2736 if (mm->locked_vm) {
2737 struct vm_area_struct *tmp = vma;
2738 while (tmp && tmp->vm_start < end) {
2739 if (tmp->vm_flags & VM_LOCKED) {
2740 mm->locked_vm -= vma_pages(tmp);
2741 munlock_vma_pages_all(tmp);
2742 }
2743 tmp = tmp->vm_next;
2744 }
2745 }
2746
2747 /*
2748 * Remove the vma's, and unmap the actual pages
2749 */
2750 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2751 unmap_region(mm, vma, prev, start, end);
2752
2753 arch_unmap(mm, vma, start, end);
2754
2755 /* Fix up all other VM information */
2756 remove_vma_list(mm, vma);
2757
2758 return 0;
2759 }
2760 EXPORT_SYMBOL(do_munmap);
2761
2762 int vm_munmap(unsigned long start, size_t len)
2763 {
2764 int ret;
2765 struct mm_struct *mm = current->mm;
2766 LIST_HEAD(uf);
2767
2768 if (down_write_killable(&mm->mmap_sem))
2769 return -EINTR;
2770
2771 ret = do_munmap(mm, start, len, &uf);
2772 up_write(&mm->mmap_sem);
2773 userfaultfd_unmap_complete(mm, &uf);
2774 return ret;
2775 }
2776 EXPORT_SYMBOL(vm_munmap);
2777
2778 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2779 {
2780 profile_munmap(addr);
2781 return vm_munmap(addr, len);
2782 }
2783
2784
2785 /*
2786 * Emulation of deprecated remap_file_pages() syscall.
2787 */
2788 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2789 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2790 {
2791
2792 struct mm_struct *mm = current->mm;
2793 struct vm_area_struct *vma;
2794 unsigned long populate = 0;
2795 unsigned long ret = -EINVAL;
2796 struct file *file;
2797
2798 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2799 current->comm, current->pid);
2800
2801 if (prot)
2802 return ret;
2803 start = start & PAGE_MASK;
2804 size = size & PAGE_MASK;
2805
2806 if (start + size <= start)
2807 return ret;
2808
2809 /* Does pgoff wrap? */
2810 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2811 return ret;
2812
2813 if (down_write_killable(&mm->mmap_sem))
2814 return -EINTR;
2815
2816 vma = find_vma(mm, start);
2817
2818 if (!vma || !(vma->vm_flags & VM_SHARED))
2819 goto out;
2820
2821 if (start < vma->vm_start)
2822 goto out;
2823
2824 if (start + size > vma->vm_end) {
2825 struct vm_area_struct *next;
2826
2827 for (next = vma->vm_next; next; next = next->vm_next) {
2828 /* hole between vmas ? */
2829 if (next->vm_start != next->vm_prev->vm_end)
2830 goto out;
2831
2832 if (next->vm_file != vma->vm_file)
2833 goto out;
2834
2835 if (next->vm_flags != vma->vm_flags)
2836 goto out;
2837
2838 if (start + size <= next->vm_end)
2839 break;
2840 }
2841
2842 if (!next)
2843 goto out;
2844 }
2845
2846 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2847 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2848 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2849
2850 flags &= MAP_NONBLOCK;
2851 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2852 if (vma->vm_flags & VM_LOCKED) {
2853 struct vm_area_struct *tmp;
2854 flags |= MAP_LOCKED;
2855
2856 /* drop PG_Mlocked flag for over-mapped range */
2857 for (tmp = vma; tmp->vm_start >= start + size;
2858 tmp = tmp->vm_next) {
2859 /*
2860 * Split pmd and munlock page on the border
2861 * of the range.
2862 */
2863 vma_adjust_trans_huge(tmp, start, start + size, 0);
2864
2865 munlock_vma_pages_range(tmp,
2866 max(tmp->vm_start, start),
2867 min(tmp->vm_end, start + size));
2868 }
2869 }
2870
2871 file = get_file(vma->vm_file);
2872 ret = do_mmap_pgoff(vma->vm_file, start, size,
2873 prot, flags, pgoff, &populate, NULL);
2874 fput(file);
2875 out:
2876 up_write(&mm->mmap_sem);
2877 if (populate)
2878 mm_populate(ret, populate);
2879 if (!IS_ERR_VALUE(ret))
2880 ret = 0;
2881 return ret;
2882 }
2883
2884 static inline void verify_mm_writelocked(struct mm_struct *mm)
2885 {
2886 #ifdef CONFIG_DEBUG_VM
2887 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2888 WARN_ON(1);
2889 up_read(&mm->mmap_sem);
2890 }
2891 #endif
2892 }
2893
2894 /*
2895 * this is really a simplified "do_mmap". it only handles
2896 * anonymous maps. eventually we may be able to do some
2897 * brk-specific accounting here.
2898 */
2899 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2900 {
2901 struct mm_struct *mm = current->mm;
2902 struct vm_area_struct *vma, *prev;
2903 struct rb_node **rb_link, *rb_parent;
2904 pgoff_t pgoff = addr >> PAGE_SHIFT;
2905 int error;
2906
2907 /* Until we need other flags, refuse anything except VM_EXEC. */
2908 if ((flags & (~VM_EXEC)) != 0)
2909 return -EINVAL;
2910 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2911
2912 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2913 if (offset_in_page(error))
2914 return error;
2915
2916 error = mlock_future_check(mm, mm->def_flags, len);
2917 if (error)
2918 return error;
2919
2920 /*
2921 * mm->mmap_sem is required to protect against another thread
2922 * changing the mappings in case we sleep.
2923 */
2924 verify_mm_writelocked(mm);
2925
2926 /*
2927 * Clear old maps. this also does some error checking for us
2928 */
2929 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2930 &rb_parent)) {
2931 if (do_munmap(mm, addr, len, uf))
2932 return -ENOMEM;
2933 }
2934
2935 /* Check against address space limits *after* clearing old maps... */
2936 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2937 return -ENOMEM;
2938
2939 if (mm->map_count > sysctl_max_map_count)
2940 return -ENOMEM;
2941
2942 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2943 return -ENOMEM;
2944
2945 /* Can we just expand an old private anonymous mapping? */
2946 vma = vma_merge(mm, prev, addr, addr + len, flags,
2947 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2948 if (vma)
2949 goto out;
2950
2951 /*
2952 * create a vma struct for an anonymous mapping
2953 */
2954 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2955 if (!vma) {
2956 vm_unacct_memory(len >> PAGE_SHIFT);
2957 return -ENOMEM;
2958 }
2959
2960 INIT_LIST_HEAD(&vma->anon_vma_chain);
2961 vma->vm_mm = mm;
2962 vma->vm_start = addr;
2963 vma->vm_end = addr + len;
2964 vma->vm_pgoff = pgoff;
2965 vma->vm_flags = flags;
2966 vma->vm_page_prot = vm_get_page_prot(flags);
2967 vma_link(mm, vma, prev, rb_link, rb_parent);
2968 out:
2969 perf_event_mmap(vma);
2970 mm->total_vm += len >> PAGE_SHIFT;
2971 mm->data_vm += len >> PAGE_SHIFT;
2972 if (flags & VM_LOCKED)
2973 mm->locked_vm += (len >> PAGE_SHIFT);
2974 vma->vm_flags |= VM_SOFTDIRTY;
2975 return 0;
2976 }
2977
2978 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2979 {
2980 struct mm_struct *mm = current->mm;
2981 unsigned long len;
2982 int ret;
2983 bool populate;
2984 LIST_HEAD(uf);
2985
2986 len = PAGE_ALIGN(request);
2987 if (len < request)
2988 return -ENOMEM;
2989 if (!len)
2990 return 0;
2991
2992 if (down_write_killable(&mm->mmap_sem))
2993 return -EINTR;
2994
2995 ret = do_brk_flags(addr, len, flags, &uf);
2996 populate = ((mm->def_flags & VM_LOCKED) != 0);
2997 up_write(&mm->mmap_sem);
2998 userfaultfd_unmap_complete(mm, &uf);
2999 if (populate && !ret)
3000 mm_populate(addr, len);
3001 return ret;
3002 }
3003 EXPORT_SYMBOL(vm_brk_flags);
3004
3005 int vm_brk(unsigned long addr, unsigned long len)
3006 {
3007 return vm_brk_flags(addr, len, 0);
3008 }
3009 EXPORT_SYMBOL(vm_brk);
3010
3011 /* Release all mmaps. */
3012 void exit_mmap(struct mm_struct *mm)
3013 {
3014 struct mmu_gather tlb;
3015 struct vm_area_struct *vma;
3016 unsigned long nr_accounted = 0;
3017
3018 /* mm's last user has gone, and its about to be pulled down */
3019 mmu_notifier_release(mm);
3020
3021 if (unlikely(mm_is_oom_victim(mm))) {
3022 /*
3023 * Manually reap the mm to free as much memory as possible.
3024 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3025 * this mm from further consideration. Taking mm->mmap_sem for
3026 * write after setting MMF_OOM_SKIP will guarantee that the oom
3027 * reaper will not run on this mm again after mmap_sem is
3028 * dropped.
3029 *
3030 * Nothing can be holding mm->mmap_sem here and the above call
3031 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3032 * __oom_reap_task_mm() will not block.
3033 *
3034 * This needs to be done before calling munlock_vma_pages_all(),
3035 * which clears VM_LOCKED, otherwise the oom reaper cannot
3036 * reliably test it.
3037 */
3038 mutex_lock(&oom_lock);
3039 __oom_reap_task_mm(mm);
3040 mutex_unlock(&oom_lock);
3041
3042 set_bit(MMF_OOM_SKIP, &mm->flags);
3043 down_write(&mm->mmap_sem);
3044 up_write(&mm->mmap_sem);
3045 }
3046
3047 if (mm->locked_vm) {
3048 vma = mm->mmap;
3049 while (vma) {
3050 if (vma->vm_flags & VM_LOCKED)
3051 munlock_vma_pages_all(vma);
3052 vma = vma->vm_next;
3053 }
3054 }
3055
3056 arch_exit_mmap(mm);
3057
3058 vma = mm->mmap;
3059 if (!vma) /* Can happen if dup_mmap() received an OOM */
3060 return;
3061
3062 lru_add_drain();
3063 flush_cache_mm(mm);
3064 tlb_gather_mmu(&tlb, mm, 0, -1);
3065 /* update_hiwater_rss(mm) here? but nobody should be looking */
3066 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3067 unmap_vmas(&tlb, vma, 0, -1);
3068 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3069 tlb_finish_mmu(&tlb, 0, -1);
3070
3071 /*
3072 * Walk the list again, actually closing and freeing it,
3073 * with preemption enabled, without holding any MM locks.
3074 */
3075 while (vma) {
3076 if (vma->vm_flags & VM_ACCOUNT)
3077 nr_accounted += vma_pages(vma);
3078 vma = remove_vma(vma);
3079 }
3080 vm_unacct_memory(nr_accounted);
3081 }
3082
3083 /* Insert vm structure into process list sorted by address
3084 * and into the inode's i_mmap tree. If vm_file is non-NULL
3085 * then i_mmap_rwsem is taken here.
3086 */
3087 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3088 {
3089 struct vm_area_struct *prev;
3090 struct rb_node **rb_link, *rb_parent;
3091
3092 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3093 &prev, &rb_link, &rb_parent))
3094 return -ENOMEM;
3095 if ((vma->vm_flags & VM_ACCOUNT) &&
3096 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3097 return -ENOMEM;
3098
3099 /*
3100 * The vm_pgoff of a purely anonymous vma should be irrelevant
3101 * until its first write fault, when page's anon_vma and index
3102 * are set. But now set the vm_pgoff it will almost certainly
3103 * end up with (unless mremap moves it elsewhere before that
3104 * first wfault), so /proc/pid/maps tells a consistent story.
3105 *
3106 * By setting it to reflect the virtual start address of the
3107 * vma, merges and splits can happen in a seamless way, just
3108 * using the existing file pgoff checks and manipulations.
3109 * Similarly in do_mmap_pgoff and in do_brk.
3110 */
3111 if (vma_is_anonymous(vma)) {
3112 BUG_ON(vma->anon_vma);
3113 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3114 }
3115
3116 vma_link(mm, vma, prev, rb_link, rb_parent);
3117 return 0;
3118 }
3119
3120 /*
3121 * Copy the vma structure to a new location in the same mm,
3122 * prior to moving page table entries, to effect an mremap move.
3123 */
3124 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3125 unsigned long addr, unsigned long len, pgoff_t pgoff,
3126 bool *need_rmap_locks)
3127 {
3128 struct vm_area_struct *vma = *vmap;
3129 unsigned long vma_start = vma->vm_start;
3130 struct mm_struct *mm = vma->vm_mm;
3131 struct vm_area_struct *new_vma, *prev;
3132 struct rb_node **rb_link, *rb_parent;
3133 bool faulted_in_anon_vma = true;
3134
3135 /*
3136 * If anonymous vma has not yet been faulted, update new pgoff
3137 * to match new location, to increase its chance of merging.
3138 */
3139 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3140 pgoff = addr >> PAGE_SHIFT;
3141 faulted_in_anon_vma = false;
3142 }
3143
3144 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3145 return NULL; /* should never get here */
3146 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3147 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3148 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3149 if (new_vma) {
3150 /*
3151 * Source vma may have been merged into new_vma
3152 */
3153 if (unlikely(vma_start >= new_vma->vm_start &&
3154 vma_start < new_vma->vm_end)) {
3155 /*
3156 * The only way we can get a vma_merge with
3157 * self during an mremap is if the vma hasn't
3158 * been faulted in yet and we were allowed to
3159 * reset the dst vma->vm_pgoff to the
3160 * destination address of the mremap to allow
3161 * the merge to happen. mremap must change the
3162 * vm_pgoff linearity between src and dst vmas
3163 * (in turn preventing a vma_merge) to be
3164 * safe. It is only safe to keep the vm_pgoff
3165 * linear if there are no pages mapped yet.
3166 */
3167 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3168 *vmap = vma = new_vma;
3169 }
3170 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3171 } else {
3172 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3173 if (!new_vma)
3174 goto out;
3175 *new_vma = *vma;
3176 new_vma->vm_start = addr;
3177 new_vma->vm_end = addr + len;
3178 new_vma->vm_pgoff = pgoff;
3179 if (vma_dup_policy(vma, new_vma))
3180 goto out_free_vma;
3181 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3182 if (anon_vma_clone(new_vma, vma))
3183 goto out_free_mempol;
3184 if (new_vma->vm_file)
3185 get_file(new_vma->vm_file);
3186 if (new_vma->vm_ops && new_vma->vm_ops->open)
3187 new_vma->vm_ops->open(new_vma);
3188 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3189 *need_rmap_locks = false;
3190 }
3191 return new_vma;
3192
3193 out_free_mempol:
3194 mpol_put(vma_policy(new_vma));
3195 out_free_vma:
3196 kmem_cache_free(vm_area_cachep, new_vma);
3197 out:
3198 return NULL;
3199 }
3200
3201 /*
3202 * Return true if the calling process may expand its vm space by the passed
3203 * number of pages
3204 */
3205 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3206 {
3207 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3208 return false;
3209
3210 if (is_data_mapping(flags) &&
3211 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3212 /* Workaround for Valgrind */
3213 if (rlimit(RLIMIT_DATA) == 0 &&
3214 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3215 return true;
3216 if (!ignore_rlimit_data) {
3217 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3218 current->comm, current->pid,
3219 (mm->data_vm + npages) << PAGE_SHIFT,
3220 rlimit(RLIMIT_DATA));
3221 return false;
3222 }
3223 }
3224
3225 return true;
3226 }
3227
3228 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3229 {
3230 mm->total_vm += npages;
3231
3232 if (is_exec_mapping(flags))
3233 mm->exec_vm += npages;
3234 else if (is_stack_mapping(flags))
3235 mm->stack_vm += npages;
3236 else if (is_data_mapping(flags))
3237 mm->data_vm += npages;
3238 }
3239
3240 static int special_mapping_fault(struct vm_fault *vmf);
3241
3242 /*
3243 * Having a close hook prevents vma merging regardless of flags.
3244 */
3245 static void special_mapping_close(struct vm_area_struct *vma)
3246 {
3247 }
3248
3249 static const char *special_mapping_name(struct vm_area_struct *vma)
3250 {
3251 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3252 }
3253
3254 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3255 {
3256 struct vm_special_mapping *sm = new_vma->vm_private_data;
3257
3258 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3259 return -EFAULT;
3260
3261 if (sm->mremap)
3262 return sm->mremap(sm, new_vma);
3263
3264 return 0;
3265 }
3266
3267 static const struct vm_operations_struct special_mapping_vmops = {
3268 .close = special_mapping_close,
3269 .fault = special_mapping_fault,
3270 .mremap = special_mapping_mremap,
3271 .name = special_mapping_name,
3272 };
3273
3274 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3275 .close = special_mapping_close,
3276 .fault = special_mapping_fault,
3277 };
3278
3279 static int special_mapping_fault(struct vm_fault *vmf)
3280 {
3281 struct vm_area_struct *vma = vmf->vma;
3282 pgoff_t pgoff;
3283 struct page **pages;
3284
3285 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3286 pages = vma->vm_private_data;
3287 } else {
3288 struct vm_special_mapping *sm = vma->vm_private_data;
3289
3290 if (sm->fault)
3291 return sm->fault(sm, vmf->vma, vmf);
3292
3293 pages = sm->pages;
3294 }
3295
3296 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3297 pgoff--;
3298
3299 if (*pages) {
3300 struct page *page = *pages;
3301 get_page(page);
3302 vmf->page = page;
3303 return 0;
3304 }
3305
3306 return VM_FAULT_SIGBUS;
3307 }
3308
3309 static struct vm_area_struct *__install_special_mapping(
3310 struct mm_struct *mm,
3311 unsigned long addr, unsigned long len,
3312 unsigned long vm_flags, void *priv,
3313 const struct vm_operations_struct *ops)
3314 {
3315 int ret;
3316 struct vm_area_struct *vma;
3317
3318 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3319 if (unlikely(vma == NULL))
3320 return ERR_PTR(-ENOMEM);
3321
3322 INIT_LIST_HEAD(&vma->anon_vma_chain);
3323 vma->vm_mm = mm;
3324 vma->vm_start = addr;
3325 vma->vm_end = addr + len;
3326
3327 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3328 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3329
3330 vma->vm_ops = ops;
3331 vma->vm_private_data = priv;
3332
3333 ret = insert_vm_struct(mm, vma);
3334 if (ret)
3335 goto out;
3336
3337 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3338
3339 perf_event_mmap(vma);
3340
3341 return vma;
3342
3343 out:
3344 kmem_cache_free(vm_area_cachep, vma);
3345 return ERR_PTR(ret);
3346 }
3347
3348 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3349 const struct vm_special_mapping *sm)
3350 {
3351 return vma->vm_private_data == sm &&
3352 (vma->vm_ops == &special_mapping_vmops ||
3353 vma->vm_ops == &legacy_special_mapping_vmops);
3354 }
3355
3356 /*
3357 * Called with mm->mmap_sem held for writing.
3358 * Insert a new vma covering the given region, with the given flags.
3359 * Its pages are supplied by the given array of struct page *.
3360 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3361 * The region past the last page supplied will always produce SIGBUS.
3362 * The array pointer and the pages it points to are assumed to stay alive
3363 * for as long as this mapping might exist.
3364 */
3365 struct vm_area_struct *_install_special_mapping(
3366 struct mm_struct *mm,
3367 unsigned long addr, unsigned long len,
3368 unsigned long vm_flags, const struct vm_special_mapping *spec)
3369 {
3370 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3371 &special_mapping_vmops);
3372 }
3373
3374 int install_special_mapping(struct mm_struct *mm,
3375 unsigned long addr, unsigned long len,
3376 unsigned long vm_flags, struct page **pages)
3377 {
3378 struct vm_area_struct *vma = __install_special_mapping(
3379 mm, addr, len, vm_flags, (void *)pages,
3380 &legacy_special_mapping_vmops);
3381
3382 return PTR_ERR_OR_ZERO(vma);
3383 }
3384
3385 static DEFINE_MUTEX(mm_all_locks_mutex);
3386
3387 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3388 {
3389 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3390 /*
3391 * The LSB of head.next can't change from under us
3392 * because we hold the mm_all_locks_mutex.
3393 */
3394 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3395 /*
3396 * We can safely modify head.next after taking the
3397 * anon_vma->root->rwsem. If some other vma in this mm shares
3398 * the same anon_vma we won't take it again.
3399 *
3400 * No need of atomic instructions here, head.next
3401 * can't change from under us thanks to the
3402 * anon_vma->root->rwsem.
3403 */
3404 if (__test_and_set_bit(0, (unsigned long *)
3405 &anon_vma->root->rb_root.rb_root.rb_node))
3406 BUG();
3407 }
3408 }
3409
3410 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3411 {
3412 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3413 /*
3414 * AS_MM_ALL_LOCKS can't change from under us because
3415 * we hold the mm_all_locks_mutex.
3416 *
3417 * Operations on ->flags have to be atomic because
3418 * even if AS_MM_ALL_LOCKS is stable thanks to the
3419 * mm_all_locks_mutex, there may be other cpus
3420 * changing other bitflags in parallel to us.
3421 */
3422 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3423 BUG();
3424 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3425 }
3426 }
3427
3428 /*
3429 * This operation locks against the VM for all pte/vma/mm related
3430 * operations that could ever happen on a certain mm. This includes
3431 * vmtruncate, try_to_unmap, and all page faults.
3432 *
3433 * The caller must take the mmap_sem in write mode before calling
3434 * mm_take_all_locks(). The caller isn't allowed to release the
3435 * mmap_sem until mm_drop_all_locks() returns.
3436 *
3437 * mmap_sem in write mode is required in order to block all operations
3438 * that could modify pagetables and free pages without need of
3439 * altering the vma layout. It's also needed in write mode to avoid new
3440 * anon_vmas to be associated with existing vmas.
3441 *
3442 * A single task can't take more than one mm_take_all_locks() in a row
3443 * or it would deadlock.
3444 *
3445 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3446 * mapping->flags avoid to take the same lock twice, if more than one
3447 * vma in this mm is backed by the same anon_vma or address_space.
3448 *
3449 * We take locks in following order, accordingly to comment at beginning
3450 * of mm/rmap.c:
3451 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3452 * hugetlb mapping);
3453 * - all i_mmap_rwsem locks;
3454 * - all anon_vma->rwseml
3455 *
3456 * We can take all locks within these types randomly because the VM code
3457 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3458 * mm_all_locks_mutex.
3459 *
3460 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3461 * that may have to take thousand of locks.
3462 *
3463 * mm_take_all_locks() can fail if it's interrupted by signals.
3464 */
3465 int mm_take_all_locks(struct mm_struct *mm)
3466 {
3467 struct vm_area_struct *vma;
3468 struct anon_vma_chain *avc;
3469
3470 BUG_ON(down_read_trylock(&mm->mmap_sem));
3471
3472 mutex_lock(&mm_all_locks_mutex);
3473
3474 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3475 if (signal_pending(current))
3476 goto out_unlock;
3477 if (vma->vm_file && vma->vm_file->f_mapping &&
3478 is_vm_hugetlb_page(vma))
3479 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3480 }
3481
3482 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3483 if (signal_pending(current))
3484 goto out_unlock;
3485 if (vma->vm_file && vma->vm_file->f_mapping &&
3486 !is_vm_hugetlb_page(vma))
3487 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3488 }
3489
3490 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3491 if (signal_pending(current))
3492 goto out_unlock;
3493 if (vma->anon_vma)
3494 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3495 vm_lock_anon_vma(mm, avc->anon_vma);
3496 }
3497
3498 return 0;
3499
3500 out_unlock:
3501 mm_drop_all_locks(mm);
3502 return -EINTR;
3503 }
3504
3505 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3506 {
3507 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3508 /*
3509 * The LSB of head.next can't change to 0 from under
3510 * us because we hold the mm_all_locks_mutex.
3511 *
3512 * We must however clear the bitflag before unlocking
3513 * the vma so the users using the anon_vma->rb_root will
3514 * never see our bitflag.
3515 *
3516 * No need of atomic instructions here, head.next
3517 * can't change from under us until we release the
3518 * anon_vma->root->rwsem.
3519 */
3520 if (!__test_and_clear_bit(0, (unsigned long *)
3521 &anon_vma->root->rb_root.rb_root.rb_node))
3522 BUG();
3523 anon_vma_unlock_write(anon_vma);
3524 }
3525 }
3526
3527 static void vm_unlock_mapping(struct address_space *mapping)
3528 {
3529 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3530 /*
3531 * AS_MM_ALL_LOCKS can't change to 0 from under us
3532 * because we hold the mm_all_locks_mutex.
3533 */
3534 i_mmap_unlock_write(mapping);
3535 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3536 &mapping->flags))
3537 BUG();
3538 }
3539 }
3540
3541 /*
3542 * The mmap_sem cannot be released by the caller until
3543 * mm_drop_all_locks() returns.
3544 */
3545 void mm_drop_all_locks(struct mm_struct *mm)
3546 {
3547 struct vm_area_struct *vma;
3548 struct anon_vma_chain *avc;
3549
3550 BUG_ON(down_read_trylock(&mm->mmap_sem));
3551 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3552
3553 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3554 if (vma->anon_vma)
3555 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3556 vm_unlock_anon_vma(avc->anon_vma);
3557 if (vma->vm_file && vma->vm_file->f_mapping)
3558 vm_unlock_mapping(vma->vm_file->f_mapping);
3559 }
3560
3561 mutex_unlock(&mm_all_locks_mutex);
3562 }
3563
3564 /*
3565 * initialise the percpu counter for VM
3566 */
3567 void __init mmap_init(void)
3568 {
3569 int ret;
3570
3571 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3572 VM_BUG_ON(ret);
3573 }
3574
3575 /*
3576 * Initialise sysctl_user_reserve_kbytes.
3577 *
3578 * This is intended to prevent a user from starting a single memory hogging
3579 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3580 * mode.
3581 *
3582 * The default value is min(3% of free memory, 128MB)
3583 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3584 */
3585 static int init_user_reserve(void)
3586 {
3587 unsigned long free_kbytes;
3588
3589 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3590
3591 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3592 return 0;
3593 }
3594 subsys_initcall(init_user_reserve);
3595
3596 /*
3597 * Initialise sysctl_admin_reserve_kbytes.
3598 *
3599 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3600 * to log in and kill a memory hogging process.
3601 *
3602 * Systems with more than 256MB will reserve 8MB, enough to recover
3603 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3604 * only reserve 3% of free pages by default.
3605 */
3606 static int init_admin_reserve(void)
3607 {
3608 unsigned long free_kbytes;
3609
3610 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3611
3612 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3613 return 0;
3614 }
3615 subsys_initcall(init_admin_reserve);
3616
3617 /*
3618 * Reinititalise user and admin reserves if memory is added or removed.
3619 *
3620 * The default user reserve max is 128MB, and the default max for the
3621 * admin reserve is 8MB. These are usually, but not always, enough to
3622 * enable recovery from a memory hogging process using login/sshd, a shell,
3623 * and tools like top. It may make sense to increase or even disable the
3624 * reserve depending on the existence of swap or variations in the recovery
3625 * tools. So, the admin may have changed them.
3626 *
3627 * If memory is added and the reserves have been eliminated or increased above
3628 * the default max, then we'll trust the admin.
3629 *
3630 * If memory is removed and there isn't enough free memory, then we
3631 * need to reset the reserves.
3632 *
3633 * Otherwise keep the reserve set by the admin.
3634 */
3635 static int reserve_mem_notifier(struct notifier_block *nb,
3636 unsigned long action, void *data)
3637 {
3638 unsigned long tmp, free_kbytes;
3639
3640 switch (action) {
3641 case MEM_ONLINE:
3642 /* Default max is 128MB. Leave alone if modified by operator. */
3643 tmp = sysctl_user_reserve_kbytes;
3644 if (0 < tmp && tmp < (1UL << 17))
3645 init_user_reserve();
3646
3647 /* Default max is 8MB. Leave alone if modified by operator. */
3648 tmp = sysctl_admin_reserve_kbytes;
3649 if (0 < tmp && tmp < (1UL << 13))
3650 init_admin_reserve();
3651
3652 break;
3653 case MEM_OFFLINE:
3654 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3655
3656 if (sysctl_user_reserve_kbytes > free_kbytes) {
3657 init_user_reserve();
3658 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3659 sysctl_user_reserve_kbytes);
3660 }
3661
3662 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3663 init_admin_reserve();
3664 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3665 sysctl_admin_reserve_kbytes);
3666 }
3667 break;
3668 default:
3669 break;
3670 }
3671 return NOTIFY_OK;
3672 }
3673
3674 static struct notifier_block reserve_mem_nb = {
3675 .notifier_call = reserve_mem_notifier,
3676 };
3677
3678 static int __meminit init_reserve_notifier(void)
3679 {
3680 if (register_hotmemory_notifier(&reserve_mem_nb))
3681 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3682
3683 return 0;
3684 }
3685 subsys_initcall(init_reserve_notifier);