remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / mlock.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26
27 #include "internal.h"
28
29 bool can_do_mlock(void)
30 {
31 if (rlimit(RLIMIT_MEMLOCK) != 0)
32 return true;
33 if (capable(CAP_IPC_LOCK))
34 return true;
35 return false;
36 }
37 EXPORT_SYMBOL(can_do_mlock);
38
39 /*
40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 * in vmscan and, possibly, the fault path; and to support semi-accurate
42 * statistics.
43 *
44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 * The unevictable list is an LRU sibling list to the [in]active lists.
47 * PageUnevictable is set to indicate the unevictable state.
48 *
49 * When lazy mlocking via vmscan, it is important to ensure that the
50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 * may have mlocked a page that is being munlocked. So lazy mlock must take
52 * the mmap_sem for read, and verify that the vma really is locked
53 * (see mm/rmap.c).
54 */
55
56 /*
57 * LRU accounting for clear_page_mlock()
58 */
59 void clear_page_mlock(struct page *page)
60 {
61 if (!TestClearPageMlocked(page))
62 return;
63
64 mod_zone_page_state(page_zone(page), NR_MLOCK,
65 -hpage_nr_pages(page));
66 count_vm_event(UNEVICTABLE_PGCLEARED);
67 if (!isolate_lru_page(page)) {
68 putback_lru_page(page);
69 } else {
70 /*
71 * We lost the race. the page already moved to evictable list.
72 */
73 if (PageUnevictable(page))
74 count_vm_event(UNEVICTABLE_PGSTRANDED);
75 }
76 }
77
78 /*
79 * Mark page as mlocked if not already.
80 * If page on LRU, isolate and putback to move to unevictable list.
81 */
82 void mlock_vma_page(struct page *page)
83 {
84 /* Serialize with page migration */
85 BUG_ON(!PageLocked(page));
86
87 VM_BUG_ON_PAGE(PageTail(page), page);
88 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
89
90 if (!TestSetPageMlocked(page)) {
91 mod_zone_page_state(page_zone(page), NR_MLOCK,
92 hpage_nr_pages(page));
93 count_vm_event(UNEVICTABLE_PGMLOCKED);
94 if (!isolate_lru_page(page))
95 putback_lru_page(page);
96 }
97 }
98
99 /*
100 * Isolate a page from LRU with optional get_page() pin.
101 * Assumes lru_lock already held and page already pinned.
102 */
103 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
104 {
105 if (PageLRU(page)) {
106 struct lruvec *lruvec;
107
108 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
109 if (getpage)
110 get_page(page);
111 ClearPageLRU(page);
112 del_page_from_lru_list(page, lruvec, page_lru(page));
113 return true;
114 }
115
116 return false;
117 }
118
119 /*
120 * Finish munlock after successful page isolation
121 *
122 * Page must be locked. This is a wrapper for try_to_munlock()
123 * and putback_lru_page() with munlock accounting.
124 */
125 static void __munlock_isolated_page(struct page *page)
126 {
127 /*
128 * Optimization: if the page was mapped just once, that's our mapping
129 * and we don't need to check all the other vmas.
130 */
131 if (page_mapcount(page) > 1)
132 try_to_munlock(page);
133
134 /* Did try_to_unlock() succeed or punt? */
135 if (!PageMlocked(page))
136 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
137
138 putback_lru_page(page);
139 }
140
141 /*
142 * Accounting for page isolation fail during munlock
143 *
144 * Performs accounting when page isolation fails in munlock. There is nothing
145 * else to do because it means some other task has already removed the page
146 * from the LRU. putback_lru_page() will take care of removing the page from
147 * the unevictable list, if necessary. vmscan [page_referenced()] will move
148 * the page back to the unevictable list if some other vma has it mlocked.
149 */
150 static void __munlock_isolation_failed(struct page *page)
151 {
152 if (PageUnevictable(page))
153 __count_vm_event(UNEVICTABLE_PGSTRANDED);
154 else
155 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
156 }
157
158 /**
159 * munlock_vma_page - munlock a vma page
160 * @page - page to be unlocked, either a normal page or THP page head
161 *
162 * returns the size of the page as a page mask (0 for normal page,
163 * HPAGE_PMD_NR - 1 for THP head page)
164 *
165 * called from munlock()/munmap() path with page supposedly on the LRU.
166 * When we munlock a page, because the vma where we found the page is being
167 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
168 * page locked so that we can leave it on the unevictable lru list and not
169 * bother vmscan with it. However, to walk the page's rmap list in
170 * try_to_munlock() we must isolate the page from the LRU. If some other
171 * task has removed the page from the LRU, we won't be able to do that.
172 * So we clear the PageMlocked as we might not get another chance. If we
173 * can't isolate the page, we leave it for putback_lru_page() and vmscan
174 * [page_referenced()/try_to_unmap()] to deal with.
175 */
176 unsigned int munlock_vma_page(struct page *page)
177 {
178 int nr_pages;
179 struct zone *zone = page_zone(page);
180
181 /* For try_to_munlock() and to serialize with page migration */
182 BUG_ON(!PageLocked(page));
183
184 VM_BUG_ON_PAGE(PageTail(page), page);
185
186 /*
187 * Serialize with any parallel __split_huge_page_refcount() which
188 * might otherwise copy PageMlocked to part of the tail pages before
189 * we clear it in the head page. It also stabilizes hpage_nr_pages().
190 */
191 spin_lock_irq(zone_lru_lock(zone));
192
193 if (!TestClearPageMlocked(page)) {
194 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
195 nr_pages = 1;
196 goto unlock_out;
197 }
198
199 nr_pages = hpage_nr_pages(page);
200 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
201
202 if (__munlock_isolate_lru_page(page, true)) {
203 spin_unlock_irq(zone_lru_lock(zone));
204 __munlock_isolated_page(page);
205 goto out;
206 }
207 __munlock_isolation_failed(page);
208
209 unlock_out:
210 spin_unlock_irq(zone_lru_lock(zone));
211
212 out:
213 return nr_pages - 1;
214 }
215
216 /*
217 * convert get_user_pages() return value to posix mlock() error
218 */
219 static int __mlock_posix_error_return(long retval)
220 {
221 if (retval == -EFAULT)
222 retval = -ENOMEM;
223 else if (retval == -ENOMEM)
224 retval = -EAGAIN;
225 return retval;
226 }
227
228 /*
229 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
230 *
231 * The fast path is available only for evictable pages with single mapping.
232 * Then we can bypass the per-cpu pvec and get better performance.
233 * when mapcount > 1 we need try_to_munlock() which can fail.
234 * when !page_evictable(), we need the full redo logic of putback_lru_page to
235 * avoid leaving evictable page in unevictable list.
236 *
237 * In case of success, @page is added to @pvec and @pgrescued is incremented
238 * in case that the page was previously unevictable. @page is also unlocked.
239 */
240 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
241 int *pgrescued)
242 {
243 VM_BUG_ON_PAGE(PageLRU(page), page);
244 VM_BUG_ON_PAGE(!PageLocked(page), page);
245
246 if (page_mapcount(page) <= 1 && page_evictable(page)) {
247 pagevec_add(pvec, page);
248 if (TestClearPageUnevictable(page))
249 (*pgrescued)++;
250 unlock_page(page);
251 return true;
252 }
253
254 return false;
255 }
256
257 /*
258 * Putback multiple evictable pages to the LRU
259 *
260 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
261 * the pages might have meanwhile become unevictable but that is OK.
262 */
263 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
264 {
265 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
266 /*
267 *__pagevec_lru_add() calls release_pages() so we don't call
268 * put_page() explicitly
269 */
270 __pagevec_lru_add(pvec);
271 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
272 }
273
274 /*
275 * Munlock a batch of pages from the same zone
276 *
277 * The work is split to two main phases. First phase clears the Mlocked flag
278 * and attempts to isolate the pages, all under a single zone lru lock.
279 * The second phase finishes the munlock only for pages where isolation
280 * succeeded.
281 *
282 * Note that the pagevec may be modified during the process.
283 */
284 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
285 {
286 int i;
287 int nr = pagevec_count(pvec);
288 int delta_munlocked = -nr;
289 struct pagevec pvec_putback;
290 int pgrescued = 0;
291
292 pagevec_init(&pvec_putback, 0);
293
294 /* Phase 1: page isolation */
295 spin_lock_irq(zone_lru_lock(zone));
296 for (i = 0; i < nr; i++) {
297 struct page *page = pvec->pages[i];
298
299 if (TestClearPageMlocked(page)) {
300 /*
301 * We already have pin from follow_page_mask()
302 * so we can spare the get_page() here.
303 */
304 if (__munlock_isolate_lru_page(page, false))
305 continue;
306 else
307 __munlock_isolation_failed(page);
308 } else {
309 delta_munlocked++;
310 }
311
312 /*
313 * We won't be munlocking this page in the next phase
314 * but we still need to release the follow_page_mask()
315 * pin. We cannot do it under lru_lock however. If it's
316 * the last pin, __page_cache_release() would deadlock.
317 */
318 pagevec_add(&pvec_putback, pvec->pages[i]);
319 pvec->pages[i] = NULL;
320 }
321 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
322 spin_unlock_irq(zone_lru_lock(zone));
323
324 /* Now we can release pins of pages that we are not munlocking */
325 pagevec_release(&pvec_putback);
326
327 /* Phase 2: page munlock */
328 for (i = 0; i < nr; i++) {
329 struct page *page = pvec->pages[i];
330
331 if (page) {
332 lock_page(page);
333 if (!__putback_lru_fast_prepare(page, &pvec_putback,
334 &pgrescued)) {
335 /*
336 * Slow path. We don't want to lose the last
337 * pin before unlock_page()
338 */
339 get_page(page); /* for putback_lru_page() */
340 __munlock_isolated_page(page);
341 unlock_page(page);
342 put_page(page); /* from follow_page_mask() */
343 }
344 }
345 }
346
347 /*
348 * Phase 3: page putback for pages that qualified for the fast path
349 * This will also call put_page() to return pin from follow_page_mask()
350 */
351 if (pagevec_count(&pvec_putback))
352 __putback_lru_fast(&pvec_putback, pgrescued);
353 }
354
355 /*
356 * Fill up pagevec for __munlock_pagevec using pte walk
357 *
358 * The function expects that the struct page corresponding to @start address is
359 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
360 *
361 * The rest of @pvec is filled by subsequent pages within the same pmd and same
362 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
363 * pages also get pinned.
364 *
365 * Returns the address of the next page that should be scanned. This equals
366 * @start + PAGE_SIZE when no page could be added by the pte walk.
367 */
368 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
369 struct vm_area_struct *vma, struct zone *zone,
370 unsigned long start, unsigned long end)
371 {
372 pte_t *pte;
373 spinlock_t *ptl;
374
375 /*
376 * Initialize pte walk starting at the already pinned page where we
377 * are sure that there is a pte, as it was pinned under the same
378 * mmap_sem write op.
379 */
380 pte = get_locked_pte(vma->vm_mm, start, &ptl);
381 /* Make sure we do not cross the page table boundary */
382 end = pgd_addr_end(start, end);
383 end = p4d_addr_end(start, end);
384 end = pud_addr_end(start, end);
385 end = pmd_addr_end(start, end);
386
387 /* The page next to the pinned page is the first we will try to get */
388 start += PAGE_SIZE;
389 while (start < end) {
390 struct page *page = NULL;
391 pte++;
392 if (pte_present(*pte))
393 page = vm_normal_page(vma, start, *pte);
394 /*
395 * Break if page could not be obtained or the page's node+zone does not
396 * match
397 */
398 if (!page || page_zone(page) != zone)
399 break;
400
401 /*
402 * Do not use pagevec for PTE-mapped THP,
403 * munlock_vma_pages_range() will handle them.
404 */
405 if (PageTransCompound(page))
406 break;
407
408 get_page(page);
409 /*
410 * Increase the address that will be returned *before* the
411 * eventual break due to pvec becoming full by adding the page
412 */
413 start += PAGE_SIZE;
414 if (pagevec_add(pvec, page) == 0)
415 break;
416 }
417 pte_unmap_unlock(pte, ptl);
418 return start;
419 }
420
421 /*
422 * munlock_vma_pages_range() - munlock all pages in the vma range.'
423 * @vma - vma containing range to be munlock()ed.
424 * @start - start address in @vma of the range
425 * @end - end of range in @vma.
426 *
427 * For mremap(), munmap() and exit().
428 *
429 * Called with @vma VM_LOCKED.
430 *
431 * Returns with VM_LOCKED cleared. Callers must be prepared to
432 * deal with this.
433 *
434 * We don't save and restore VM_LOCKED here because pages are
435 * still on lru. In unmap path, pages might be scanned by reclaim
436 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
437 * free them. This will result in freeing mlocked pages.
438 */
439 void munlock_vma_pages_range(struct vm_area_struct *vma,
440 unsigned long start, unsigned long end)
441 {
442 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
443
444 while (start < end) {
445 struct page *page;
446 unsigned int page_mask = 0;
447 unsigned long page_increm;
448 struct pagevec pvec;
449 struct zone *zone;
450
451 pagevec_init(&pvec, 0);
452 /*
453 * Although FOLL_DUMP is intended for get_dump_page(),
454 * it just so happens that its special treatment of the
455 * ZERO_PAGE (returning an error instead of doing get_page)
456 * suits munlock very well (and if somehow an abnormal page
457 * has sneaked into the range, we won't oops here: great).
458 */
459 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
460
461 if (page && !IS_ERR(page)) {
462 if (PageTransTail(page)) {
463 VM_BUG_ON_PAGE(PageMlocked(page), page);
464 put_page(page); /* follow_page_mask() */
465 } else if (PageTransHuge(page)) {
466 lock_page(page);
467 /*
468 * Any THP page found by follow_page_mask() may
469 * have gotten split before reaching
470 * munlock_vma_page(), so we need to compute
471 * the page_mask here instead.
472 */
473 page_mask = munlock_vma_page(page);
474 unlock_page(page);
475 put_page(page); /* follow_page_mask() */
476 } else {
477 /*
478 * Non-huge pages are handled in batches via
479 * pagevec. The pin from follow_page_mask()
480 * prevents them from collapsing by THP.
481 */
482 pagevec_add(&pvec, page);
483 zone = page_zone(page);
484
485 /*
486 * Try to fill the rest of pagevec using fast
487 * pte walk. This will also update start to
488 * the next page to process. Then munlock the
489 * pagevec.
490 */
491 start = __munlock_pagevec_fill(&pvec, vma,
492 zone, start, end);
493 __munlock_pagevec(&pvec, zone);
494 goto next;
495 }
496 }
497 page_increm = 1 + page_mask;
498 start += page_increm * PAGE_SIZE;
499 next:
500 cond_resched();
501 }
502 }
503
504 /*
505 * mlock_fixup - handle mlock[all]/munlock[all] requests.
506 *
507 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
508 * munlock is a no-op. However, for some special vmas, we go ahead and
509 * populate the ptes.
510 *
511 * For vmas that pass the filters, merge/split as appropriate.
512 */
513 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
514 unsigned long start, unsigned long end, vm_flags_t newflags)
515 {
516 struct mm_struct *mm = vma->vm_mm;
517 pgoff_t pgoff;
518 int nr_pages;
519 int ret = 0;
520 int lock = !!(newflags & VM_LOCKED);
521 vm_flags_t old_flags = vma->vm_flags;
522
523 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
524 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
525 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
526 goto out;
527
528 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
529 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
530 vma->vm_file, pgoff, vma_policy(vma),
531 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
532 if (*prev) {
533 vma = *prev;
534 goto success;
535 }
536
537 if (start != vma->vm_start) {
538 ret = split_vma(mm, vma, start, 1);
539 if (ret)
540 goto out;
541 }
542
543 if (end != vma->vm_end) {
544 ret = split_vma(mm, vma, end, 0);
545 if (ret)
546 goto out;
547 }
548
549 success:
550 /*
551 * Keep track of amount of locked VM.
552 */
553 nr_pages = (end - start) >> PAGE_SHIFT;
554 if (!lock)
555 nr_pages = -nr_pages;
556 else if (old_flags & VM_LOCKED)
557 nr_pages = 0;
558 mm->locked_vm += nr_pages;
559
560 /*
561 * vm_flags is protected by the mmap_sem held in write mode.
562 * It's okay if try_to_unmap_one unmaps a page just after we
563 * set VM_LOCKED, populate_vma_page_range will bring it back.
564 */
565
566 if (lock)
567 vma->vm_flags = newflags;
568 else
569 munlock_vma_pages_range(vma, start, end);
570
571 out:
572 *prev = vma;
573 return ret;
574 }
575
576 static int apply_vma_lock_flags(unsigned long start, size_t len,
577 vm_flags_t flags)
578 {
579 unsigned long nstart, end, tmp;
580 struct vm_area_struct * vma, * prev;
581 int error;
582
583 VM_BUG_ON(offset_in_page(start));
584 VM_BUG_ON(len != PAGE_ALIGN(len));
585 end = start + len;
586 if (end < start)
587 return -EINVAL;
588 if (end == start)
589 return 0;
590 vma = find_vma(current->mm, start);
591 if (!vma || vma->vm_start > start)
592 return -ENOMEM;
593
594 prev = vma->vm_prev;
595 if (start > vma->vm_start)
596 prev = vma;
597
598 for (nstart = start ; ; ) {
599 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
600
601 newflags |= flags;
602
603 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
604 tmp = vma->vm_end;
605 if (tmp > end)
606 tmp = end;
607 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
608 if (error)
609 break;
610 nstart = tmp;
611 if (nstart < prev->vm_end)
612 nstart = prev->vm_end;
613 if (nstart >= end)
614 break;
615
616 vma = prev->vm_next;
617 if (!vma || vma->vm_start != nstart) {
618 error = -ENOMEM;
619 break;
620 }
621 }
622 return error;
623 }
624
625 /*
626 * Go through vma areas and sum size of mlocked
627 * vma pages, as return value.
628 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
629 * is also counted.
630 * Return value: previously mlocked page counts
631 */
632 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
633 unsigned long start, size_t len)
634 {
635 struct vm_area_struct *vma;
636 int count = 0;
637
638 if (mm == NULL)
639 mm = current->mm;
640
641 vma = find_vma(mm, start);
642 if (vma == NULL)
643 vma = mm->mmap;
644
645 for (; vma ; vma = vma->vm_next) {
646 if (start >= vma->vm_end)
647 continue;
648 if (start + len <= vma->vm_start)
649 break;
650 if (vma->vm_flags & VM_LOCKED) {
651 if (start > vma->vm_start)
652 count -= (start - vma->vm_start);
653 if (start + len < vma->vm_end) {
654 count += start + len - vma->vm_start;
655 break;
656 }
657 count += vma->vm_end - vma->vm_start;
658 }
659 }
660
661 return count >> PAGE_SHIFT;
662 }
663
664 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
665 {
666 unsigned long locked;
667 unsigned long lock_limit;
668 int error = -ENOMEM;
669
670 if (!can_do_mlock())
671 return -EPERM;
672
673 lru_add_drain_all(); /* flush pagevec */
674
675 len = PAGE_ALIGN(len + (offset_in_page(start)));
676 start &= PAGE_MASK;
677
678 lock_limit = rlimit(RLIMIT_MEMLOCK);
679 lock_limit >>= PAGE_SHIFT;
680 locked = len >> PAGE_SHIFT;
681
682 if (down_write_killable(&current->mm->mmap_sem))
683 return -EINTR;
684
685 locked += current->mm->locked_vm;
686 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
687 /*
688 * It is possible that the regions requested intersect with
689 * previously mlocked areas, that part area in "mm->locked_vm"
690 * should not be counted to new mlock increment count. So check
691 * and adjust locked count if necessary.
692 */
693 locked -= count_mm_mlocked_page_nr(current->mm,
694 start, len);
695 }
696
697 /* check against resource limits */
698 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
699 error = apply_vma_lock_flags(start, len, flags);
700
701 up_write(&current->mm->mmap_sem);
702 if (error)
703 return error;
704
705 error = __mm_populate(start, len, 0);
706 if (error)
707 return __mlock_posix_error_return(error);
708 return 0;
709 }
710
711 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
712 {
713 return do_mlock(start, len, VM_LOCKED);
714 }
715
716 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
717 {
718 vm_flags_t vm_flags = VM_LOCKED;
719
720 if (flags & ~MLOCK_ONFAULT)
721 return -EINVAL;
722
723 if (flags & MLOCK_ONFAULT)
724 vm_flags |= VM_LOCKONFAULT;
725
726 return do_mlock(start, len, vm_flags);
727 }
728
729 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
730 {
731 int ret;
732
733 len = PAGE_ALIGN(len + (offset_in_page(start)));
734 start &= PAGE_MASK;
735
736 if (down_write_killable(&current->mm->mmap_sem))
737 return -EINTR;
738 ret = apply_vma_lock_flags(start, len, 0);
739 up_write(&current->mm->mmap_sem);
740
741 return ret;
742 }
743
744 /*
745 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
746 * and translate into the appropriate modifications to mm->def_flags and/or the
747 * flags for all current VMAs.
748 *
749 * There are a couple of subtleties with this. If mlockall() is called multiple
750 * times with different flags, the values do not necessarily stack. If mlockall
751 * is called once including the MCL_FUTURE flag and then a second time without
752 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
753 */
754 static int apply_mlockall_flags(int flags)
755 {
756 struct vm_area_struct * vma, * prev = NULL;
757 vm_flags_t to_add = 0;
758
759 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
760 if (flags & MCL_FUTURE) {
761 current->mm->def_flags |= VM_LOCKED;
762
763 if (flags & MCL_ONFAULT)
764 current->mm->def_flags |= VM_LOCKONFAULT;
765
766 if (!(flags & MCL_CURRENT))
767 goto out;
768 }
769
770 if (flags & MCL_CURRENT) {
771 to_add |= VM_LOCKED;
772 if (flags & MCL_ONFAULT)
773 to_add |= VM_LOCKONFAULT;
774 }
775
776 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
777 vm_flags_t newflags;
778
779 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
780 newflags |= to_add;
781
782 /* Ignore errors */
783 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
784 cond_resched_rcu_qs();
785 }
786 out:
787 return 0;
788 }
789
790 SYSCALL_DEFINE1(mlockall, int, flags)
791 {
792 unsigned long lock_limit;
793 int ret;
794
795 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
796 return -EINVAL;
797
798 if (!can_do_mlock())
799 return -EPERM;
800
801 if (flags & MCL_CURRENT)
802 lru_add_drain_all(); /* flush pagevec */
803
804 lock_limit = rlimit(RLIMIT_MEMLOCK);
805 lock_limit >>= PAGE_SHIFT;
806
807 if (down_write_killable(&current->mm->mmap_sem))
808 return -EINTR;
809
810 ret = -ENOMEM;
811 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
812 capable(CAP_IPC_LOCK))
813 ret = apply_mlockall_flags(flags);
814 up_write(&current->mm->mmap_sem);
815 if (!ret && (flags & MCL_CURRENT))
816 mm_populate(0, TASK_SIZE);
817
818 return ret;
819 }
820
821 SYSCALL_DEFINE0(munlockall)
822 {
823 int ret;
824
825 if (down_write_killable(&current->mm->mmap_sem))
826 return -EINTR;
827 ret = apply_mlockall_flags(0);
828 up_write(&current->mm->mmap_sem);
829 return ret;
830 }
831
832 /*
833 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
834 * shm segments) get accounted against the user_struct instead.
835 */
836 static DEFINE_SPINLOCK(shmlock_user_lock);
837
838 int user_shm_lock(size_t size, struct user_struct *user)
839 {
840 unsigned long lock_limit, locked;
841 int allowed = 0;
842
843 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 lock_limit = rlimit(RLIMIT_MEMLOCK);
845 if (lock_limit == RLIM_INFINITY)
846 allowed = 1;
847 lock_limit >>= PAGE_SHIFT;
848 spin_lock(&shmlock_user_lock);
849 if (!allowed &&
850 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
851 goto out;
852 get_uid(user);
853 user->locked_shm += locked;
854 allowed = 1;
855 out:
856 spin_unlock(&shmlock_user_lock);
857 return allowed;
858 }
859
860 void user_shm_unlock(size_t size, struct user_struct *user)
861 {
862 spin_lock(&shmlock_user_lock);
863 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
864 spin_unlock(&shmlock_user_lock);
865 free_uid(user);
866 }