mm, memory_hotplug: drop CONFIG_MOVABLE_NODE
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / memory_hotplug.c
1 /*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38
39 #include <asm/tlbflush.h>
40
41 #include "internal.h"
42
43 /*
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
48 */
49
50 static void generic_online_page(struct page *page);
51
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54
55 /* The same as the cpu_hotplug lock, but for memory hotplug. */
56 static struct {
57 struct task_struct *active_writer;
58 struct mutex lock; /* Synchronizes accesses to refcount, */
59 /*
60 * Also blocks the new readers during
61 * an ongoing mem hotplug operation.
62 */
63 int refcount;
64
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 struct lockdep_map dep_map;
67 #endif
68 } mem_hotplug = {
69 .active_writer = NULL,
70 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
71 .refcount = 0,
72 #ifdef CONFIG_DEBUG_LOCK_ALLOC
73 .dep_map = {.name = "mem_hotplug.lock" },
74 #endif
75 };
76
77 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
78 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
79 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
80 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
81
82 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
83 bool memhp_auto_online;
84 #else
85 bool memhp_auto_online = true;
86 #endif
87 EXPORT_SYMBOL_GPL(memhp_auto_online);
88
89 static int __init setup_memhp_default_state(char *str)
90 {
91 if (!strcmp(str, "online"))
92 memhp_auto_online = true;
93 else if (!strcmp(str, "offline"))
94 memhp_auto_online = false;
95
96 return 1;
97 }
98 __setup("memhp_default_state=", setup_memhp_default_state);
99
100 void get_online_mems(void)
101 {
102 might_sleep();
103 if (mem_hotplug.active_writer == current)
104 return;
105 memhp_lock_acquire_read();
106 mutex_lock(&mem_hotplug.lock);
107 mem_hotplug.refcount++;
108 mutex_unlock(&mem_hotplug.lock);
109
110 }
111
112 void put_online_mems(void)
113 {
114 if (mem_hotplug.active_writer == current)
115 return;
116 mutex_lock(&mem_hotplug.lock);
117
118 if (WARN_ON(!mem_hotplug.refcount))
119 mem_hotplug.refcount++; /* try to fix things up */
120
121 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
122 wake_up_process(mem_hotplug.active_writer);
123 mutex_unlock(&mem_hotplug.lock);
124 memhp_lock_release();
125
126 }
127
128 /* Serializes write accesses to mem_hotplug.active_writer. */
129 static DEFINE_MUTEX(memory_add_remove_lock);
130
131 void mem_hotplug_begin(void)
132 {
133 mutex_lock(&memory_add_remove_lock);
134
135 mem_hotplug.active_writer = current;
136
137 memhp_lock_acquire();
138 for (;;) {
139 mutex_lock(&mem_hotplug.lock);
140 if (likely(!mem_hotplug.refcount))
141 break;
142 __set_current_state(TASK_UNINTERRUPTIBLE);
143 mutex_unlock(&mem_hotplug.lock);
144 schedule();
145 }
146 }
147
148 void mem_hotplug_done(void)
149 {
150 mem_hotplug.active_writer = NULL;
151 mutex_unlock(&mem_hotplug.lock);
152 memhp_lock_release();
153 mutex_unlock(&memory_add_remove_lock);
154 }
155
156 /* add this memory to iomem resource */
157 static struct resource *register_memory_resource(u64 start, u64 size)
158 {
159 struct resource *res;
160 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
161 if (!res)
162 return ERR_PTR(-ENOMEM);
163
164 res->name = "System RAM";
165 res->start = start;
166 res->end = start + size - 1;
167 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
168 if (request_resource(&iomem_resource, res) < 0) {
169 pr_debug("System RAM resource %pR cannot be added\n", res);
170 kfree(res);
171 return ERR_PTR(-EEXIST);
172 }
173 return res;
174 }
175
176 static void release_memory_resource(struct resource *res)
177 {
178 if (!res)
179 return;
180 release_resource(res);
181 kfree(res);
182 return;
183 }
184
185 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
186 void get_page_bootmem(unsigned long info, struct page *page,
187 unsigned long type)
188 {
189 page->freelist = (void *)type;
190 SetPagePrivate(page);
191 set_page_private(page, info);
192 page_ref_inc(page);
193 }
194
195 void put_page_bootmem(struct page *page)
196 {
197 unsigned long type;
198
199 type = (unsigned long) page->freelist;
200 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
201 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
202
203 if (page_ref_dec_return(page) == 1) {
204 page->freelist = NULL;
205 ClearPagePrivate(page);
206 set_page_private(page, 0);
207 INIT_LIST_HEAD(&page->lru);
208 free_reserved_page(page);
209 }
210 }
211
212 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
213 #ifndef CONFIG_SPARSEMEM_VMEMMAP
214 static void register_page_bootmem_info_section(unsigned long start_pfn)
215 {
216 unsigned long *usemap, mapsize, section_nr, i;
217 struct mem_section *ms;
218 struct page *page, *memmap;
219
220 section_nr = pfn_to_section_nr(start_pfn);
221 ms = __nr_to_section(section_nr);
222
223 /* Get section's memmap address */
224 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
225
226 /*
227 * Get page for the memmap's phys address
228 * XXX: need more consideration for sparse_vmemmap...
229 */
230 page = virt_to_page(memmap);
231 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
232 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
233
234 /* remember memmap's page */
235 for (i = 0; i < mapsize; i++, page++)
236 get_page_bootmem(section_nr, page, SECTION_INFO);
237
238 usemap = __nr_to_section(section_nr)->pageblock_flags;
239 page = virt_to_page(usemap);
240
241 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
242
243 for (i = 0; i < mapsize; i++, page++)
244 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
245
246 }
247 #else /* CONFIG_SPARSEMEM_VMEMMAP */
248 static void register_page_bootmem_info_section(unsigned long start_pfn)
249 {
250 unsigned long *usemap, mapsize, section_nr, i;
251 struct mem_section *ms;
252 struct page *page, *memmap;
253
254 if (!pfn_valid(start_pfn))
255 return;
256
257 section_nr = pfn_to_section_nr(start_pfn);
258 ms = __nr_to_section(section_nr);
259
260 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
261
262 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
263
264 usemap = __nr_to_section(section_nr)->pageblock_flags;
265 page = virt_to_page(usemap);
266
267 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
268
269 for (i = 0; i < mapsize; i++, page++)
270 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
271 }
272 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
273
274 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
275 {
276 unsigned long i, pfn, end_pfn, nr_pages;
277 int node = pgdat->node_id;
278 struct page *page;
279
280 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
281 page = virt_to_page(pgdat);
282
283 for (i = 0; i < nr_pages; i++, page++)
284 get_page_bootmem(node, page, NODE_INFO);
285
286 pfn = pgdat->node_start_pfn;
287 end_pfn = pgdat_end_pfn(pgdat);
288
289 /* register section info */
290 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
291 /*
292 * Some platforms can assign the same pfn to multiple nodes - on
293 * node0 as well as nodeN. To avoid registering a pfn against
294 * multiple nodes we check that this pfn does not already
295 * reside in some other nodes.
296 */
297 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
298 register_page_bootmem_info_section(pfn);
299 }
300 }
301 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
302
303 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
304 bool want_memblock)
305 {
306 int ret;
307 int i;
308
309 if (pfn_valid(phys_start_pfn))
310 return -EEXIST;
311
312 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn);
313 if (ret < 0)
314 return ret;
315
316 /*
317 * Make all the pages reserved so that nobody will stumble over half
318 * initialized state.
319 * FIXME: We also have to associate it with a node because pfn_to_node
320 * relies on having page with the proper node.
321 */
322 for (i = 0; i < PAGES_PER_SECTION; i++) {
323 unsigned long pfn = phys_start_pfn + i;
324 struct page *page;
325 if (!pfn_valid(pfn))
326 continue;
327
328 page = pfn_to_page(pfn);
329 set_page_node(page, nid);
330 SetPageReserved(page);
331 }
332
333 if (!want_memblock)
334 return 0;
335
336 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
337 }
338
339 /*
340 * Reasonably generic function for adding memory. It is
341 * expected that archs that support memory hotplug will
342 * call this function after deciding the zone to which to
343 * add the new pages.
344 */
345 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
346 unsigned long nr_pages, bool want_memblock)
347 {
348 unsigned long i;
349 int err = 0;
350 int start_sec, end_sec;
351 struct vmem_altmap *altmap;
352
353 /* during initialize mem_map, align hot-added range to section */
354 start_sec = pfn_to_section_nr(phys_start_pfn);
355 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
356
357 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
358 if (altmap) {
359 /*
360 * Validate altmap is within bounds of the total request
361 */
362 if (altmap->base_pfn != phys_start_pfn
363 || vmem_altmap_offset(altmap) > nr_pages) {
364 pr_warn_once("memory add fail, invalid altmap\n");
365 err = -EINVAL;
366 goto out;
367 }
368 altmap->alloc = 0;
369 }
370
371 for (i = start_sec; i <= end_sec; i++) {
372 err = __add_section(nid, section_nr_to_pfn(i), want_memblock);
373
374 /*
375 * EEXIST is finally dealt with by ioresource collision
376 * check. see add_memory() => register_memory_resource()
377 * Warning will be printed if there is collision.
378 */
379 if (err && (err != -EEXIST))
380 break;
381 err = 0;
382 }
383 vmemmap_populate_print_last();
384 out:
385 return err;
386 }
387 EXPORT_SYMBOL_GPL(__add_pages);
388
389 #ifdef CONFIG_MEMORY_HOTREMOVE
390 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
391 static int find_smallest_section_pfn(int nid, struct zone *zone,
392 unsigned long start_pfn,
393 unsigned long end_pfn)
394 {
395 struct mem_section *ms;
396
397 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
398 ms = __pfn_to_section(start_pfn);
399
400 if (unlikely(!valid_section(ms)))
401 continue;
402
403 if (unlikely(pfn_to_nid(start_pfn) != nid))
404 continue;
405
406 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
407 continue;
408
409 return start_pfn;
410 }
411
412 return 0;
413 }
414
415 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
416 static int find_biggest_section_pfn(int nid, struct zone *zone,
417 unsigned long start_pfn,
418 unsigned long end_pfn)
419 {
420 struct mem_section *ms;
421 unsigned long pfn;
422
423 /* pfn is the end pfn of a memory section. */
424 pfn = end_pfn - 1;
425 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
426 ms = __pfn_to_section(pfn);
427
428 if (unlikely(!valid_section(ms)))
429 continue;
430
431 if (unlikely(pfn_to_nid(pfn) != nid))
432 continue;
433
434 if (zone && zone != page_zone(pfn_to_page(pfn)))
435 continue;
436
437 return pfn;
438 }
439
440 return 0;
441 }
442
443 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
444 unsigned long end_pfn)
445 {
446 unsigned long zone_start_pfn = zone->zone_start_pfn;
447 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
448 unsigned long zone_end_pfn = z;
449 unsigned long pfn;
450 struct mem_section *ms;
451 int nid = zone_to_nid(zone);
452
453 zone_span_writelock(zone);
454 if (zone_start_pfn == start_pfn) {
455 /*
456 * If the section is smallest section in the zone, it need
457 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
458 * In this case, we find second smallest valid mem_section
459 * for shrinking zone.
460 */
461 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
462 zone_end_pfn);
463 if (pfn) {
464 zone->zone_start_pfn = pfn;
465 zone->spanned_pages = zone_end_pfn - pfn;
466 }
467 } else if (zone_end_pfn == end_pfn) {
468 /*
469 * If the section is biggest section in the zone, it need
470 * shrink zone->spanned_pages.
471 * In this case, we find second biggest valid mem_section for
472 * shrinking zone.
473 */
474 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
475 start_pfn);
476 if (pfn)
477 zone->spanned_pages = pfn - zone_start_pfn + 1;
478 }
479
480 /*
481 * The section is not biggest or smallest mem_section in the zone, it
482 * only creates a hole in the zone. So in this case, we need not
483 * change the zone. But perhaps, the zone has only hole data. Thus
484 * it check the zone has only hole or not.
485 */
486 pfn = zone_start_pfn;
487 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
488 ms = __pfn_to_section(pfn);
489
490 if (unlikely(!valid_section(ms)))
491 continue;
492
493 if (page_zone(pfn_to_page(pfn)) != zone)
494 continue;
495
496 /* If the section is current section, it continues the loop */
497 if (start_pfn == pfn)
498 continue;
499
500 /* If we find valid section, we have nothing to do */
501 zone_span_writeunlock(zone);
502 return;
503 }
504
505 /* The zone has no valid section */
506 zone->zone_start_pfn = 0;
507 zone->spanned_pages = 0;
508 zone_span_writeunlock(zone);
509 }
510
511 static void shrink_pgdat_span(struct pglist_data *pgdat,
512 unsigned long start_pfn, unsigned long end_pfn)
513 {
514 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
515 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
516 unsigned long pgdat_end_pfn = p;
517 unsigned long pfn;
518 struct mem_section *ms;
519 int nid = pgdat->node_id;
520
521 if (pgdat_start_pfn == start_pfn) {
522 /*
523 * If the section is smallest section in the pgdat, it need
524 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
525 * In this case, we find second smallest valid mem_section
526 * for shrinking zone.
527 */
528 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
529 pgdat_end_pfn);
530 if (pfn) {
531 pgdat->node_start_pfn = pfn;
532 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
533 }
534 } else if (pgdat_end_pfn == end_pfn) {
535 /*
536 * If the section is biggest section in the pgdat, it need
537 * shrink pgdat->node_spanned_pages.
538 * In this case, we find second biggest valid mem_section for
539 * shrinking zone.
540 */
541 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
542 start_pfn);
543 if (pfn)
544 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
545 }
546
547 /*
548 * If the section is not biggest or smallest mem_section in the pgdat,
549 * it only creates a hole in the pgdat. So in this case, we need not
550 * change the pgdat.
551 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
552 * has only hole or not.
553 */
554 pfn = pgdat_start_pfn;
555 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
556 ms = __pfn_to_section(pfn);
557
558 if (unlikely(!valid_section(ms)))
559 continue;
560
561 if (pfn_to_nid(pfn) != nid)
562 continue;
563
564 /* If the section is current section, it continues the loop */
565 if (start_pfn == pfn)
566 continue;
567
568 /* If we find valid section, we have nothing to do */
569 return;
570 }
571
572 /* The pgdat has no valid section */
573 pgdat->node_start_pfn = 0;
574 pgdat->node_spanned_pages = 0;
575 }
576
577 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
578 {
579 struct pglist_data *pgdat = zone->zone_pgdat;
580 int nr_pages = PAGES_PER_SECTION;
581 int zone_type;
582 unsigned long flags;
583
584 zone_type = zone - pgdat->node_zones;
585
586 pgdat_resize_lock(zone->zone_pgdat, &flags);
587 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
588 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
589 pgdat_resize_unlock(zone->zone_pgdat, &flags);
590 }
591
592 static int __remove_section(struct zone *zone, struct mem_section *ms,
593 unsigned long map_offset)
594 {
595 unsigned long start_pfn;
596 int scn_nr;
597 int ret = -EINVAL;
598
599 if (!valid_section(ms))
600 return ret;
601
602 ret = unregister_memory_section(ms);
603 if (ret)
604 return ret;
605
606 scn_nr = __section_nr(ms);
607 start_pfn = section_nr_to_pfn(scn_nr);
608 __remove_zone(zone, start_pfn);
609
610 sparse_remove_one_section(zone, ms, map_offset);
611 return 0;
612 }
613
614 /**
615 * __remove_pages() - remove sections of pages from a zone
616 * @zone: zone from which pages need to be removed
617 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
618 * @nr_pages: number of pages to remove (must be multiple of section size)
619 *
620 * Generic helper function to remove section mappings and sysfs entries
621 * for the section of the memory we are removing. Caller needs to make
622 * sure that pages are marked reserved and zones are adjust properly by
623 * calling offline_pages().
624 */
625 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
626 unsigned long nr_pages)
627 {
628 unsigned long i;
629 unsigned long map_offset = 0;
630 int sections_to_remove, ret = 0;
631
632 /* In the ZONE_DEVICE case device driver owns the memory region */
633 if (is_dev_zone(zone)) {
634 struct page *page = pfn_to_page(phys_start_pfn);
635 struct vmem_altmap *altmap;
636
637 altmap = to_vmem_altmap((unsigned long) page);
638 if (altmap)
639 map_offset = vmem_altmap_offset(altmap);
640 } else {
641 resource_size_t start, size;
642
643 start = phys_start_pfn << PAGE_SHIFT;
644 size = nr_pages * PAGE_SIZE;
645
646 ret = release_mem_region_adjustable(&iomem_resource, start,
647 size);
648 if (ret) {
649 resource_size_t endres = start + size - 1;
650
651 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
652 &start, &endres, ret);
653 }
654 }
655
656 clear_zone_contiguous(zone);
657
658 /*
659 * We can only remove entire sections
660 */
661 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
662 BUG_ON(nr_pages % PAGES_PER_SECTION);
663
664 sections_to_remove = nr_pages / PAGES_PER_SECTION;
665 for (i = 0; i < sections_to_remove; i++) {
666 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
667
668 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
669 map_offset = 0;
670 if (ret)
671 break;
672 }
673
674 set_zone_contiguous(zone);
675
676 return ret;
677 }
678 #endif /* CONFIG_MEMORY_HOTREMOVE */
679
680 int set_online_page_callback(online_page_callback_t callback)
681 {
682 int rc = -EINVAL;
683
684 get_online_mems();
685 mutex_lock(&online_page_callback_lock);
686
687 if (online_page_callback == generic_online_page) {
688 online_page_callback = callback;
689 rc = 0;
690 }
691
692 mutex_unlock(&online_page_callback_lock);
693 put_online_mems();
694
695 return rc;
696 }
697 EXPORT_SYMBOL_GPL(set_online_page_callback);
698
699 int restore_online_page_callback(online_page_callback_t callback)
700 {
701 int rc = -EINVAL;
702
703 get_online_mems();
704 mutex_lock(&online_page_callback_lock);
705
706 if (online_page_callback == callback) {
707 online_page_callback = generic_online_page;
708 rc = 0;
709 }
710
711 mutex_unlock(&online_page_callback_lock);
712 put_online_mems();
713
714 return rc;
715 }
716 EXPORT_SYMBOL_GPL(restore_online_page_callback);
717
718 void __online_page_set_limits(struct page *page)
719 {
720 }
721 EXPORT_SYMBOL_GPL(__online_page_set_limits);
722
723 void __online_page_increment_counters(struct page *page)
724 {
725 adjust_managed_page_count(page, 1);
726 }
727 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
728
729 void __online_page_free(struct page *page)
730 {
731 __free_reserved_page(page);
732 }
733 EXPORT_SYMBOL_GPL(__online_page_free);
734
735 static void generic_online_page(struct page *page)
736 {
737 __online_page_set_limits(page);
738 __online_page_increment_counters(page);
739 __online_page_free(page);
740 }
741
742 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
743 void *arg)
744 {
745 unsigned long i;
746 unsigned long onlined_pages = *(unsigned long *)arg;
747 struct page *page;
748
749 if (PageReserved(pfn_to_page(start_pfn)))
750 for (i = 0; i < nr_pages; i++) {
751 page = pfn_to_page(start_pfn + i);
752 (*online_page_callback)(page);
753 onlined_pages++;
754 }
755
756 online_mem_sections(start_pfn, start_pfn + nr_pages);
757
758 *(unsigned long *)arg = onlined_pages;
759 return 0;
760 }
761
762 /* check which state of node_states will be changed when online memory */
763 static void node_states_check_changes_online(unsigned long nr_pages,
764 struct zone *zone, struct memory_notify *arg)
765 {
766 int nid = zone_to_nid(zone);
767 enum zone_type zone_last = ZONE_NORMAL;
768
769 /*
770 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
771 * contains nodes which have zones of 0...ZONE_NORMAL,
772 * set zone_last to ZONE_NORMAL.
773 *
774 * If we don't have HIGHMEM nor movable node,
775 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
776 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
777 */
778 if (N_MEMORY == N_NORMAL_MEMORY)
779 zone_last = ZONE_MOVABLE;
780
781 /*
782 * if the memory to be online is in a zone of 0...zone_last, and
783 * the zones of 0...zone_last don't have memory before online, we will
784 * need to set the node to node_states[N_NORMAL_MEMORY] after
785 * the memory is online.
786 */
787 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
788 arg->status_change_nid_normal = nid;
789 else
790 arg->status_change_nid_normal = -1;
791
792 #ifdef CONFIG_HIGHMEM
793 /*
794 * If we have movable node, node_states[N_HIGH_MEMORY]
795 * contains nodes which have zones of 0...ZONE_HIGHMEM,
796 * set zone_last to ZONE_HIGHMEM.
797 *
798 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
799 * contains nodes which have zones of 0...ZONE_MOVABLE,
800 * set zone_last to ZONE_MOVABLE.
801 */
802 zone_last = ZONE_HIGHMEM;
803 if (N_MEMORY == N_HIGH_MEMORY)
804 zone_last = ZONE_MOVABLE;
805
806 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
807 arg->status_change_nid_high = nid;
808 else
809 arg->status_change_nid_high = -1;
810 #else
811 arg->status_change_nid_high = arg->status_change_nid_normal;
812 #endif
813
814 /*
815 * if the node don't have memory befor online, we will need to
816 * set the node to node_states[N_MEMORY] after the memory
817 * is online.
818 */
819 if (!node_state(nid, N_MEMORY))
820 arg->status_change_nid = nid;
821 else
822 arg->status_change_nid = -1;
823 }
824
825 static void node_states_set_node(int node, struct memory_notify *arg)
826 {
827 if (arg->status_change_nid_normal >= 0)
828 node_set_state(node, N_NORMAL_MEMORY);
829
830 if (arg->status_change_nid_high >= 0)
831 node_set_state(node, N_HIGH_MEMORY);
832
833 node_set_state(node, N_MEMORY);
834 }
835
836 bool allow_online_pfn_range(int nid, unsigned long pfn, unsigned long nr_pages, int online_type)
837 {
838 struct pglist_data *pgdat = NODE_DATA(nid);
839 struct zone *movable_zone = &pgdat->node_zones[ZONE_MOVABLE];
840 struct zone *default_zone = default_zone_for_pfn(nid, pfn, nr_pages);
841
842 /*
843 * TODO there shouldn't be any inherent reason to have ZONE_NORMAL
844 * physically before ZONE_MOVABLE. All we need is they do not
845 * overlap. Historically we didn't allow ZONE_NORMAL after ZONE_MOVABLE
846 * though so let's stick with it for simplicity for now.
847 * TODO make sure we do not overlap with ZONE_DEVICE
848 */
849 if (online_type == MMOP_ONLINE_KERNEL) {
850 if (zone_is_empty(movable_zone))
851 return true;
852 return movable_zone->zone_start_pfn >= pfn + nr_pages;
853 } else if (online_type == MMOP_ONLINE_MOVABLE) {
854 return zone_end_pfn(default_zone) <= pfn;
855 }
856
857 /* MMOP_ONLINE_KEEP will always succeed and inherits the current zone */
858 return online_type == MMOP_ONLINE_KEEP;
859 }
860
861 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
862 unsigned long nr_pages)
863 {
864 unsigned long old_end_pfn = zone_end_pfn(zone);
865
866 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
867 zone->zone_start_pfn = start_pfn;
868
869 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
870 }
871
872 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
873 unsigned long nr_pages)
874 {
875 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
876
877 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
878 pgdat->node_start_pfn = start_pfn;
879
880 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
881 }
882
883 void __ref move_pfn_range_to_zone(struct zone *zone,
884 unsigned long start_pfn, unsigned long nr_pages)
885 {
886 struct pglist_data *pgdat = zone->zone_pgdat;
887 int nid = pgdat->node_id;
888 unsigned long flags;
889
890 if (zone_is_empty(zone))
891 init_currently_empty_zone(zone, start_pfn, nr_pages);
892
893 clear_zone_contiguous(zone);
894
895 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
896 pgdat_resize_lock(pgdat, &flags);
897 zone_span_writelock(zone);
898 resize_zone_range(zone, start_pfn, nr_pages);
899 zone_span_writeunlock(zone);
900 resize_pgdat_range(pgdat, start_pfn, nr_pages);
901 pgdat_resize_unlock(pgdat, &flags);
902
903 /*
904 * TODO now we have a visible range of pages which are not associated
905 * with their zone properly. Not nice but set_pfnblock_flags_mask
906 * expects the zone spans the pfn range. All the pages in the range
907 * are reserved so nobody should be touching them so we should be safe
908 */
909 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, MEMMAP_HOTPLUG);
910
911 set_zone_contiguous(zone);
912 }
913
914 /*
915 * Returns a default kernel memory zone for the given pfn range.
916 * If no kernel zone covers this pfn range it will automatically go
917 * to the ZONE_NORMAL.
918 */
919 struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
920 unsigned long nr_pages)
921 {
922 struct pglist_data *pgdat = NODE_DATA(nid);
923 int zid;
924
925 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
926 struct zone *zone = &pgdat->node_zones[zid];
927
928 if (zone_intersects(zone, start_pfn, nr_pages))
929 return zone;
930 }
931
932 return &pgdat->node_zones[ZONE_NORMAL];
933 }
934
935 /*
936 * Associates the given pfn range with the given node and the zone appropriate
937 * for the given online type.
938 */
939 static struct zone * __meminit move_pfn_range(int online_type, int nid,
940 unsigned long start_pfn, unsigned long nr_pages)
941 {
942 struct pglist_data *pgdat = NODE_DATA(nid);
943 struct zone *zone = default_zone_for_pfn(nid, start_pfn, nr_pages);
944
945 if (online_type == MMOP_ONLINE_KEEP) {
946 struct zone *movable_zone = &pgdat->node_zones[ZONE_MOVABLE];
947 /*
948 * MMOP_ONLINE_KEEP defaults to MMOP_ONLINE_KERNEL but use
949 * movable zone if that is not possible (e.g. we are within
950 * or past the existing movable zone)
951 */
952 if (!allow_online_pfn_range(nid, start_pfn, nr_pages,
953 MMOP_ONLINE_KERNEL))
954 zone = movable_zone;
955 } else if (online_type == MMOP_ONLINE_MOVABLE) {
956 zone = &pgdat->node_zones[ZONE_MOVABLE];
957 }
958
959 move_pfn_range_to_zone(zone, start_pfn, nr_pages);
960 return zone;
961 }
962
963 /* Must be protected by mem_hotplug_begin() */
964 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
965 {
966 unsigned long flags;
967 unsigned long onlined_pages = 0;
968 struct zone *zone;
969 int need_zonelists_rebuild = 0;
970 int nid;
971 int ret;
972 struct memory_notify arg;
973
974 nid = pfn_to_nid(pfn);
975 if (!allow_online_pfn_range(nid, pfn, nr_pages, online_type))
976 return -EINVAL;
977
978 /* associate pfn range with the zone */
979 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
980
981 arg.start_pfn = pfn;
982 arg.nr_pages = nr_pages;
983 node_states_check_changes_online(nr_pages, zone, &arg);
984
985 ret = memory_notify(MEM_GOING_ONLINE, &arg);
986 ret = notifier_to_errno(ret);
987 if (ret)
988 goto failed_addition;
989
990 /*
991 * If this zone is not populated, then it is not in zonelist.
992 * This means the page allocator ignores this zone.
993 * So, zonelist must be updated after online.
994 */
995 mutex_lock(&zonelists_mutex);
996 if (!populated_zone(zone)) {
997 need_zonelists_rebuild = 1;
998 build_all_zonelists(NULL, zone);
999 }
1000
1001 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1002 online_pages_range);
1003 if (ret) {
1004 if (need_zonelists_rebuild)
1005 zone_pcp_reset(zone);
1006 mutex_unlock(&zonelists_mutex);
1007 goto failed_addition;
1008 }
1009
1010 zone->present_pages += onlined_pages;
1011
1012 pgdat_resize_lock(zone->zone_pgdat, &flags);
1013 zone->zone_pgdat->node_present_pages += onlined_pages;
1014 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1015
1016 if (onlined_pages) {
1017 node_states_set_node(nid, &arg);
1018 if (need_zonelists_rebuild)
1019 build_all_zonelists(NULL, NULL);
1020 else
1021 zone_pcp_update(zone);
1022 }
1023
1024 mutex_unlock(&zonelists_mutex);
1025
1026 init_per_zone_wmark_min();
1027
1028 if (onlined_pages) {
1029 kswapd_run(nid);
1030 kcompactd_run(nid);
1031 }
1032
1033 vm_total_pages = nr_free_pagecache_pages();
1034
1035 writeback_set_ratelimit();
1036
1037 if (onlined_pages)
1038 memory_notify(MEM_ONLINE, &arg);
1039 return 0;
1040
1041 failed_addition:
1042 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1043 (unsigned long long) pfn << PAGE_SHIFT,
1044 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1045 memory_notify(MEM_CANCEL_ONLINE, &arg);
1046 return ret;
1047 }
1048 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1049
1050 static void reset_node_present_pages(pg_data_t *pgdat)
1051 {
1052 struct zone *z;
1053
1054 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1055 z->present_pages = 0;
1056
1057 pgdat->node_present_pages = 0;
1058 }
1059
1060 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1061 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1062 {
1063 struct pglist_data *pgdat;
1064 unsigned long zones_size[MAX_NR_ZONES] = {0};
1065 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1066 unsigned long start_pfn = PFN_DOWN(start);
1067
1068 pgdat = NODE_DATA(nid);
1069 if (!pgdat) {
1070 pgdat = arch_alloc_nodedata(nid);
1071 if (!pgdat)
1072 return NULL;
1073
1074 arch_refresh_nodedata(nid, pgdat);
1075 } else {
1076 /*
1077 * Reset the nr_zones, order and classzone_idx before reuse.
1078 * Note that kswapd will init kswapd_classzone_idx properly
1079 * when it starts in the near future.
1080 */
1081 pgdat->nr_zones = 0;
1082 pgdat->kswapd_order = 0;
1083 pgdat->kswapd_classzone_idx = 0;
1084 }
1085
1086 /* we can use NODE_DATA(nid) from here */
1087
1088 /* init node's zones as empty zones, we don't have any present pages.*/
1089 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1090 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1091
1092 /*
1093 * The node we allocated has no zone fallback lists. For avoiding
1094 * to access not-initialized zonelist, build here.
1095 */
1096 mutex_lock(&zonelists_mutex);
1097 build_all_zonelists(pgdat, NULL);
1098 mutex_unlock(&zonelists_mutex);
1099
1100 /*
1101 * zone->managed_pages is set to an approximate value in
1102 * free_area_init_core(), which will cause
1103 * /sys/device/system/node/nodeX/meminfo has wrong data.
1104 * So reset it to 0 before any memory is onlined.
1105 */
1106 reset_node_managed_pages(pgdat);
1107
1108 /*
1109 * When memory is hot-added, all the memory is in offline state. So
1110 * clear all zones' present_pages because they will be updated in
1111 * online_pages() and offline_pages().
1112 */
1113 reset_node_present_pages(pgdat);
1114
1115 return pgdat;
1116 }
1117
1118 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1119 {
1120 arch_refresh_nodedata(nid, NULL);
1121 free_percpu(pgdat->per_cpu_nodestats);
1122 arch_free_nodedata(pgdat);
1123 return;
1124 }
1125
1126
1127 /**
1128 * try_online_node - online a node if offlined
1129 *
1130 * called by cpu_up() to online a node without onlined memory.
1131 */
1132 int try_online_node(int nid)
1133 {
1134 pg_data_t *pgdat;
1135 int ret;
1136
1137 if (node_online(nid))
1138 return 0;
1139
1140 mem_hotplug_begin();
1141 pgdat = hotadd_new_pgdat(nid, 0);
1142 if (!pgdat) {
1143 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1144 ret = -ENOMEM;
1145 goto out;
1146 }
1147 node_set_online(nid);
1148 ret = register_one_node(nid);
1149 BUG_ON(ret);
1150
1151 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1152 mutex_lock(&zonelists_mutex);
1153 build_all_zonelists(NULL, NULL);
1154 mutex_unlock(&zonelists_mutex);
1155 }
1156
1157 out:
1158 mem_hotplug_done();
1159 return ret;
1160 }
1161
1162 static int check_hotplug_memory_range(u64 start, u64 size)
1163 {
1164 u64 start_pfn = PFN_DOWN(start);
1165 u64 nr_pages = size >> PAGE_SHIFT;
1166
1167 /* Memory range must be aligned with section */
1168 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1169 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1170 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1171 (unsigned long long)start,
1172 (unsigned long long)size);
1173 return -EINVAL;
1174 }
1175
1176 return 0;
1177 }
1178
1179 static int online_memory_block(struct memory_block *mem, void *arg)
1180 {
1181 return device_online(&mem->dev);
1182 }
1183
1184 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1185 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1186 {
1187 u64 start, size;
1188 pg_data_t *pgdat = NULL;
1189 bool new_pgdat;
1190 bool new_node;
1191 int ret;
1192
1193 start = res->start;
1194 size = resource_size(res);
1195
1196 ret = check_hotplug_memory_range(start, size);
1197 if (ret)
1198 return ret;
1199
1200 { /* Stupid hack to suppress address-never-null warning */
1201 void *p = NODE_DATA(nid);
1202 new_pgdat = !p;
1203 }
1204
1205 mem_hotplug_begin();
1206
1207 /*
1208 * Add new range to memblock so that when hotadd_new_pgdat() is called
1209 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1210 * this new range and calculate total pages correctly. The range will
1211 * be removed at hot-remove time.
1212 */
1213 memblock_add_node(start, size, nid);
1214
1215 new_node = !node_online(nid);
1216 if (new_node) {
1217 pgdat = hotadd_new_pgdat(nid, start);
1218 ret = -ENOMEM;
1219 if (!pgdat)
1220 goto error;
1221 }
1222
1223 /* call arch's memory hotadd */
1224 ret = arch_add_memory(nid, start, size, true);
1225
1226 if (ret < 0)
1227 goto error;
1228
1229 /* we online node here. we can't roll back from here. */
1230 node_set_online(nid);
1231
1232 if (new_node) {
1233 unsigned long start_pfn = start >> PAGE_SHIFT;
1234 unsigned long nr_pages = size >> PAGE_SHIFT;
1235
1236 ret = __register_one_node(nid);
1237 if (ret)
1238 goto register_fail;
1239
1240 /*
1241 * link memory sections under this node. This is already
1242 * done when creatig memory section in register_new_memory
1243 * but that depends to have the node registered so offline
1244 * nodes have to go through register_node.
1245 * TODO clean up this mess.
1246 */
1247 ret = link_mem_sections(nid, start_pfn, nr_pages);
1248 register_fail:
1249 /*
1250 * If sysfs file of new node can't create, cpu on the node
1251 * can't be hot-added. There is no rollback way now.
1252 * So, check by BUG_ON() to catch it reluctantly..
1253 */
1254 BUG_ON(ret);
1255 }
1256
1257 /* create new memmap entry */
1258 firmware_map_add_hotplug(start, start + size, "System RAM");
1259
1260 /* online pages if requested */
1261 if (online)
1262 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1263 NULL, online_memory_block);
1264
1265 goto out;
1266
1267 error:
1268 /* rollback pgdat allocation and others */
1269 if (new_pgdat)
1270 rollback_node_hotadd(nid, pgdat);
1271 memblock_remove(start, size);
1272
1273 out:
1274 mem_hotplug_done();
1275 return ret;
1276 }
1277 EXPORT_SYMBOL_GPL(add_memory_resource);
1278
1279 int __ref add_memory(int nid, u64 start, u64 size)
1280 {
1281 struct resource *res;
1282 int ret;
1283
1284 res = register_memory_resource(start, size);
1285 if (IS_ERR(res))
1286 return PTR_ERR(res);
1287
1288 ret = add_memory_resource(nid, res, memhp_auto_online);
1289 if (ret < 0)
1290 release_memory_resource(res);
1291 return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(add_memory);
1294
1295 #ifdef CONFIG_MEMORY_HOTREMOVE
1296 /*
1297 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1298 * set and the size of the free page is given by page_order(). Using this,
1299 * the function determines if the pageblock contains only free pages.
1300 * Due to buddy contraints, a free page at least the size of a pageblock will
1301 * be located at the start of the pageblock
1302 */
1303 static inline int pageblock_free(struct page *page)
1304 {
1305 return PageBuddy(page) && page_order(page) >= pageblock_order;
1306 }
1307
1308 /* Return the start of the next active pageblock after a given page */
1309 static struct page *next_active_pageblock(struct page *page)
1310 {
1311 /* Ensure the starting page is pageblock-aligned */
1312 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1313
1314 /* If the entire pageblock is free, move to the end of free page */
1315 if (pageblock_free(page)) {
1316 int order;
1317 /* be careful. we don't have locks, page_order can be changed.*/
1318 order = page_order(page);
1319 if ((order < MAX_ORDER) && (order >= pageblock_order))
1320 return page + (1 << order);
1321 }
1322
1323 return page + pageblock_nr_pages;
1324 }
1325
1326 /* Checks if this range of memory is likely to be hot-removable. */
1327 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1328 {
1329 struct page *page = pfn_to_page(start_pfn);
1330 struct page *end_page = page + nr_pages;
1331
1332 /* Check the starting page of each pageblock within the range */
1333 for (; page < end_page; page = next_active_pageblock(page)) {
1334 if (!is_pageblock_removable_nolock(page))
1335 return false;
1336 cond_resched();
1337 }
1338
1339 /* All pageblocks in the memory block are likely to be hot-removable */
1340 return true;
1341 }
1342
1343 /*
1344 * Confirm all pages in a range [start, end) belong to the same zone.
1345 * When true, return its valid [start, end).
1346 */
1347 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1348 unsigned long *valid_start, unsigned long *valid_end)
1349 {
1350 unsigned long pfn, sec_end_pfn;
1351 unsigned long start, end;
1352 struct zone *zone = NULL;
1353 struct page *page;
1354 int i;
1355 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1356 pfn < end_pfn;
1357 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1358 /* Make sure the memory section is present first */
1359 if (!present_section_nr(pfn_to_section_nr(pfn)))
1360 continue;
1361 for (; pfn < sec_end_pfn && pfn < end_pfn;
1362 pfn += MAX_ORDER_NR_PAGES) {
1363 i = 0;
1364 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1365 while ((i < MAX_ORDER_NR_PAGES) &&
1366 !pfn_valid_within(pfn + i))
1367 i++;
1368 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1369 continue;
1370 page = pfn_to_page(pfn + i);
1371 if (zone && page_zone(page) != zone)
1372 return 0;
1373 if (!zone)
1374 start = pfn + i;
1375 zone = page_zone(page);
1376 end = pfn + MAX_ORDER_NR_PAGES;
1377 }
1378 }
1379
1380 if (zone) {
1381 *valid_start = start;
1382 *valid_end = min(end, end_pfn);
1383 return 1;
1384 } else {
1385 return 0;
1386 }
1387 }
1388
1389 /*
1390 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1391 * non-lru movable pages and hugepages). We scan pfn because it's much
1392 * easier than scanning over linked list. This function returns the pfn
1393 * of the first found movable page if it's found, otherwise 0.
1394 */
1395 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1396 {
1397 unsigned long pfn;
1398 struct page *page;
1399 for (pfn = start; pfn < end; pfn++) {
1400 if (pfn_valid(pfn)) {
1401 page = pfn_to_page(pfn);
1402 if (PageLRU(page))
1403 return pfn;
1404 if (__PageMovable(page))
1405 return pfn;
1406 if (PageHuge(page)) {
1407 if (page_huge_active(page))
1408 return pfn;
1409 else
1410 pfn = round_up(pfn + 1,
1411 1 << compound_order(page)) - 1;
1412 }
1413 }
1414 }
1415 return 0;
1416 }
1417
1418 static struct page *new_node_page(struct page *page, unsigned long private,
1419 int **result)
1420 {
1421 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1422 int nid = page_to_nid(page);
1423 nodemask_t nmask = node_states[N_MEMORY];
1424 struct page *new_page = NULL;
1425
1426 /*
1427 * TODO: allocate a destination hugepage from a nearest neighbor node,
1428 * accordance with memory policy of the user process if possible. For
1429 * now as a simple work-around, we use the next node for destination.
1430 */
1431 if (PageHuge(page))
1432 return alloc_huge_page_node(page_hstate(compound_head(page)),
1433 next_node_in(nid, nmask));
1434
1435 node_clear(nid, nmask);
1436
1437 if (PageHighMem(page)
1438 || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1439 gfp_mask |= __GFP_HIGHMEM;
1440
1441 if (!nodes_empty(nmask))
1442 new_page = __alloc_pages_nodemask(gfp_mask, 0, nid, &nmask);
1443 if (!new_page)
1444 new_page = __alloc_pages(gfp_mask, 0, nid);
1445
1446 return new_page;
1447 }
1448
1449 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1450 static int
1451 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1452 {
1453 unsigned long pfn;
1454 struct page *page;
1455 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1456 int not_managed = 0;
1457 int ret = 0;
1458 LIST_HEAD(source);
1459
1460 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1461 if (!pfn_valid(pfn))
1462 continue;
1463 page = pfn_to_page(pfn);
1464
1465 if (PageHuge(page)) {
1466 struct page *head = compound_head(page);
1467 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1468 if (compound_order(head) > PFN_SECTION_SHIFT) {
1469 ret = -EBUSY;
1470 break;
1471 }
1472 if (isolate_huge_page(page, &source))
1473 move_pages -= 1 << compound_order(head);
1474 continue;
1475 }
1476
1477 if (!get_page_unless_zero(page))
1478 continue;
1479 /*
1480 * We can skip free pages. And we can deal with pages on
1481 * LRU and non-lru movable pages.
1482 */
1483 if (PageLRU(page))
1484 ret = isolate_lru_page(page);
1485 else
1486 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1487 if (!ret) { /* Success */
1488 put_page(page);
1489 list_add_tail(&page->lru, &source);
1490 move_pages--;
1491 if (!__PageMovable(page))
1492 inc_node_page_state(page, NR_ISOLATED_ANON +
1493 page_is_file_cache(page));
1494
1495 } else {
1496 #ifdef CONFIG_DEBUG_VM
1497 pr_alert("failed to isolate pfn %lx\n", pfn);
1498 dump_page(page, "isolation failed");
1499 #endif
1500 put_page(page);
1501 /* Because we don't have big zone->lock. we should
1502 check this again here. */
1503 if (page_count(page)) {
1504 not_managed++;
1505 ret = -EBUSY;
1506 break;
1507 }
1508 }
1509 }
1510 if (!list_empty(&source)) {
1511 if (not_managed) {
1512 putback_movable_pages(&source);
1513 goto out;
1514 }
1515
1516 /* Allocate a new page from the nearest neighbor node */
1517 ret = migrate_pages(&source, new_node_page, NULL, 0,
1518 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1519 if (ret)
1520 putback_movable_pages(&source);
1521 }
1522 out:
1523 return ret;
1524 }
1525
1526 /*
1527 * remove from free_area[] and mark all as Reserved.
1528 */
1529 static int
1530 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1531 void *data)
1532 {
1533 __offline_isolated_pages(start, start + nr_pages);
1534 return 0;
1535 }
1536
1537 static void
1538 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1539 {
1540 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1541 offline_isolated_pages_cb);
1542 }
1543
1544 /*
1545 * Check all pages in range, recoreded as memory resource, are isolated.
1546 */
1547 static int
1548 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1549 void *data)
1550 {
1551 int ret;
1552 long offlined = *(long *)data;
1553 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1554 offlined = nr_pages;
1555 if (!ret)
1556 *(long *)data += offlined;
1557 return ret;
1558 }
1559
1560 static long
1561 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1562 {
1563 long offlined = 0;
1564 int ret;
1565
1566 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1567 check_pages_isolated_cb);
1568 if (ret < 0)
1569 offlined = (long)ret;
1570 return offlined;
1571 }
1572
1573 static int __init cmdline_parse_movable_node(char *p)
1574 {
1575 movable_node_enabled = true;
1576 return 0;
1577 }
1578 early_param("movable_node", cmdline_parse_movable_node);
1579
1580 /* check which state of node_states will be changed when offline memory */
1581 static void node_states_check_changes_offline(unsigned long nr_pages,
1582 struct zone *zone, struct memory_notify *arg)
1583 {
1584 struct pglist_data *pgdat = zone->zone_pgdat;
1585 unsigned long present_pages = 0;
1586 enum zone_type zt, zone_last = ZONE_NORMAL;
1587
1588 /*
1589 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1590 * contains nodes which have zones of 0...ZONE_NORMAL,
1591 * set zone_last to ZONE_NORMAL.
1592 *
1593 * If we don't have HIGHMEM nor movable node,
1594 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1595 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1596 */
1597 if (N_MEMORY == N_NORMAL_MEMORY)
1598 zone_last = ZONE_MOVABLE;
1599
1600 /*
1601 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1602 * If the memory to be offline is in a zone of 0...zone_last,
1603 * and it is the last present memory, 0...zone_last will
1604 * become empty after offline , thus we can determind we will
1605 * need to clear the node from node_states[N_NORMAL_MEMORY].
1606 */
1607 for (zt = 0; zt <= zone_last; zt++)
1608 present_pages += pgdat->node_zones[zt].present_pages;
1609 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1610 arg->status_change_nid_normal = zone_to_nid(zone);
1611 else
1612 arg->status_change_nid_normal = -1;
1613
1614 #ifdef CONFIG_HIGHMEM
1615 /*
1616 * If we have movable node, node_states[N_HIGH_MEMORY]
1617 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1618 * set zone_last to ZONE_HIGHMEM.
1619 *
1620 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1621 * contains nodes which have zones of 0...ZONE_MOVABLE,
1622 * set zone_last to ZONE_MOVABLE.
1623 */
1624 zone_last = ZONE_HIGHMEM;
1625 if (N_MEMORY == N_HIGH_MEMORY)
1626 zone_last = ZONE_MOVABLE;
1627
1628 for (; zt <= zone_last; zt++)
1629 present_pages += pgdat->node_zones[zt].present_pages;
1630 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1631 arg->status_change_nid_high = zone_to_nid(zone);
1632 else
1633 arg->status_change_nid_high = -1;
1634 #else
1635 arg->status_change_nid_high = arg->status_change_nid_normal;
1636 #endif
1637
1638 /*
1639 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1640 */
1641 zone_last = ZONE_MOVABLE;
1642
1643 /*
1644 * check whether node_states[N_HIGH_MEMORY] will be changed
1645 * If we try to offline the last present @nr_pages from the node,
1646 * we can determind we will need to clear the node from
1647 * node_states[N_HIGH_MEMORY].
1648 */
1649 for (; zt <= zone_last; zt++)
1650 present_pages += pgdat->node_zones[zt].present_pages;
1651 if (nr_pages >= present_pages)
1652 arg->status_change_nid = zone_to_nid(zone);
1653 else
1654 arg->status_change_nid = -1;
1655 }
1656
1657 static void node_states_clear_node(int node, struct memory_notify *arg)
1658 {
1659 if (arg->status_change_nid_normal >= 0)
1660 node_clear_state(node, N_NORMAL_MEMORY);
1661
1662 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1663 (arg->status_change_nid_high >= 0))
1664 node_clear_state(node, N_HIGH_MEMORY);
1665
1666 if ((N_MEMORY != N_HIGH_MEMORY) &&
1667 (arg->status_change_nid >= 0))
1668 node_clear_state(node, N_MEMORY);
1669 }
1670
1671 static int __ref __offline_pages(unsigned long start_pfn,
1672 unsigned long end_pfn, unsigned long timeout)
1673 {
1674 unsigned long pfn, nr_pages, expire;
1675 long offlined_pages;
1676 int ret, drain, retry_max, node;
1677 unsigned long flags;
1678 unsigned long valid_start, valid_end;
1679 struct zone *zone;
1680 struct memory_notify arg;
1681
1682 /* at least, alignment against pageblock is necessary */
1683 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1684 return -EINVAL;
1685 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1686 return -EINVAL;
1687 /* This makes hotplug much easier...and readable.
1688 we assume this for now. .*/
1689 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1690 return -EINVAL;
1691
1692 zone = page_zone(pfn_to_page(valid_start));
1693 node = zone_to_nid(zone);
1694 nr_pages = end_pfn - start_pfn;
1695
1696 /* set above range as isolated */
1697 ret = start_isolate_page_range(start_pfn, end_pfn,
1698 MIGRATE_MOVABLE, true);
1699 if (ret)
1700 return ret;
1701
1702 arg.start_pfn = start_pfn;
1703 arg.nr_pages = nr_pages;
1704 node_states_check_changes_offline(nr_pages, zone, &arg);
1705
1706 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1707 ret = notifier_to_errno(ret);
1708 if (ret)
1709 goto failed_removal;
1710
1711 pfn = start_pfn;
1712 expire = jiffies + timeout;
1713 drain = 0;
1714 retry_max = 5;
1715 repeat:
1716 /* start memory hot removal */
1717 ret = -EAGAIN;
1718 if (time_after(jiffies, expire))
1719 goto failed_removal;
1720 ret = -EINTR;
1721 if (signal_pending(current))
1722 goto failed_removal;
1723 ret = 0;
1724 if (drain) {
1725 lru_add_drain_all();
1726 cond_resched();
1727 drain_all_pages(zone);
1728 }
1729
1730 pfn = scan_movable_pages(start_pfn, end_pfn);
1731 if (pfn) { /* We have movable pages */
1732 ret = do_migrate_range(pfn, end_pfn);
1733 if (!ret) {
1734 drain = 1;
1735 goto repeat;
1736 } else {
1737 if (ret < 0)
1738 if (--retry_max == 0)
1739 goto failed_removal;
1740 yield();
1741 drain = 1;
1742 goto repeat;
1743 }
1744 }
1745 /* drain all zone's lru pagevec, this is asynchronous... */
1746 lru_add_drain_all();
1747 yield();
1748 /* drain pcp pages, this is synchronous. */
1749 drain_all_pages(zone);
1750 /*
1751 * dissolve free hugepages in the memory block before doing offlining
1752 * actually in order to make hugetlbfs's object counting consistent.
1753 */
1754 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1755 if (ret)
1756 goto failed_removal;
1757 /* check again */
1758 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1759 if (offlined_pages < 0) {
1760 ret = -EBUSY;
1761 goto failed_removal;
1762 }
1763 pr_info("Offlined Pages %ld\n", offlined_pages);
1764 /* Ok, all of our target is isolated.
1765 We cannot do rollback at this point. */
1766 offline_isolated_pages(start_pfn, end_pfn);
1767 /* reset pagetype flags and makes migrate type to be MOVABLE */
1768 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1769 /* removal success */
1770 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1771 zone->present_pages -= offlined_pages;
1772
1773 pgdat_resize_lock(zone->zone_pgdat, &flags);
1774 zone->zone_pgdat->node_present_pages -= offlined_pages;
1775 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1776
1777 init_per_zone_wmark_min();
1778
1779 if (!populated_zone(zone)) {
1780 zone_pcp_reset(zone);
1781 mutex_lock(&zonelists_mutex);
1782 build_all_zonelists(NULL, NULL);
1783 mutex_unlock(&zonelists_mutex);
1784 } else
1785 zone_pcp_update(zone);
1786
1787 node_states_clear_node(node, &arg);
1788 if (arg.status_change_nid >= 0) {
1789 kswapd_stop(node);
1790 kcompactd_stop(node);
1791 }
1792
1793 vm_total_pages = nr_free_pagecache_pages();
1794 writeback_set_ratelimit();
1795
1796 memory_notify(MEM_OFFLINE, &arg);
1797 return 0;
1798
1799 failed_removal:
1800 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1801 (unsigned long long) start_pfn << PAGE_SHIFT,
1802 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1803 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1804 /* pushback to free area */
1805 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1806 return ret;
1807 }
1808
1809 /* Must be protected by mem_hotplug_begin() */
1810 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1811 {
1812 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1813 }
1814 #endif /* CONFIG_MEMORY_HOTREMOVE */
1815
1816 /**
1817 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1818 * @start_pfn: start pfn of the memory range
1819 * @end_pfn: end pfn of the memory range
1820 * @arg: argument passed to func
1821 * @func: callback for each memory section walked
1822 *
1823 * This function walks through all present mem sections in range
1824 * [start_pfn, end_pfn) and call func on each mem section.
1825 *
1826 * Returns the return value of func.
1827 */
1828 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1829 void *arg, int (*func)(struct memory_block *, void *))
1830 {
1831 struct memory_block *mem = NULL;
1832 struct mem_section *section;
1833 unsigned long pfn, section_nr;
1834 int ret;
1835
1836 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1837 section_nr = pfn_to_section_nr(pfn);
1838 if (!present_section_nr(section_nr))
1839 continue;
1840
1841 section = __nr_to_section(section_nr);
1842 /* same memblock? */
1843 if (mem)
1844 if ((section_nr >= mem->start_section_nr) &&
1845 (section_nr <= mem->end_section_nr))
1846 continue;
1847
1848 mem = find_memory_block_hinted(section, mem);
1849 if (!mem)
1850 continue;
1851
1852 ret = func(mem, arg);
1853 if (ret) {
1854 kobject_put(&mem->dev.kobj);
1855 return ret;
1856 }
1857 }
1858
1859 if (mem)
1860 kobject_put(&mem->dev.kobj);
1861
1862 return 0;
1863 }
1864
1865 #ifdef CONFIG_MEMORY_HOTREMOVE
1866 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1867 {
1868 int ret = !is_memblock_offlined(mem);
1869
1870 if (unlikely(ret)) {
1871 phys_addr_t beginpa, endpa;
1872
1873 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1874 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1875 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1876 &beginpa, &endpa);
1877 }
1878
1879 return ret;
1880 }
1881
1882 static int check_cpu_on_node(pg_data_t *pgdat)
1883 {
1884 int cpu;
1885
1886 for_each_present_cpu(cpu) {
1887 if (cpu_to_node(cpu) == pgdat->node_id)
1888 /*
1889 * the cpu on this node isn't removed, and we can't
1890 * offline this node.
1891 */
1892 return -EBUSY;
1893 }
1894
1895 return 0;
1896 }
1897
1898 static void unmap_cpu_on_node(pg_data_t *pgdat)
1899 {
1900 #ifdef CONFIG_ACPI_NUMA
1901 int cpu;
1902
1903 for_each_possible_cpu(cpu)
1904 if (cpu_to_node(cpu) == pgdat->node_id)
1905 numa_clear_node(cpu);
1906 #endif
1907 }
1908
1909 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1910 {
1911 int ret;
1912
1913 ret = check_cpu_on_node(pgdat);
1914 if (ret)
1915 return ret;
1916
1917 /*
1918 * the node will be offlined when we come here, so we can clear
1919 * the cpu_to_node() now.
1920 */
1921
1922 unmap_cpu_on_node(pgdat);
1923 return 0;
1924 }
1925
1926 /**
1927 * try_offline_node
1928 *
1929 * Offline a node if all memory sections and cpus of the node are removed.
1930 *
1931 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1932 * and online/offline operations before this call.
1933 */
1934 void try_offline_node(int nid)
1935 {
1936 pg_data_t *pgdat = NODE_DATA(nid);
1937 unsigned long start_pfn = pgdat->node_start_pfn;
1938 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1939 unsigned long pfn;
1940
1941 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1942 unsigned long section_nr = pfn_to_section_nr(pfn);
1943
1944 if (!present_section_nr(section_nr))
1945 continue;
1946
1947 if (pfn_to_nid(pfn) != nid)
1948 continue;
1949
1950 /*
1951 * some memory sections of this node are not removed, and we
1952 * can't offline node now.
1953 */
1954 return;
1955 }
1956
1957 if (check_and_unmap_cpu_on_node(pgdat))
1958 return;
1959
1960 /*
1961 * all memory/cpu of this node are removed, we can offline this
1962 * node now.
1963 */
1964 node_set_offline(nid);
1965 unregister_one_node(nid);
1966 }
1967 EXPORT_SYMBOL(try_offline_node);
1968
1969 /**
1970 * remove_memory
1971 *
1972 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1973 * and online/offline operations before this call, as required by
1974 * try_offline_node().
1975 */
1976 void __ref remove_memory(int nid, u64 start, u64 size)
1977 {
1978 int ret;
1979
1980 BUG_ON(check_hotplug_memory_range(start, size));
1981
1982 mem_hotplug_begin();
1983
1984 /*
1985 * All memory blocks must be offlined before removing memory. Check
1986 * whether all memory blocks in question are offline and trigger a BUG()
1987 * if this is not the case.
1988 */
1989 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1990 check_memblock_offlined_cb);
1991 if (ret)
1992 BUG();
1993
1994 /* remove memmap entry */
1995 firmware_map_remove(start, start + size, "System RAM");
1996 memblock_free(start, size);
1997 memblock_remove(start, size);
1998
1999 arch_remove_memory(start, size);
2000
2001 try_offline_node(nid);
2002
2003 mem_hotplug_done();
2004 }
2005 EXPORT_SYMBOL_GPL(remove_memory);
2006 #endif /* CONFIG_MEMORY_HOTREMOVE */