remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <trace/events/kmem.h>
75
76 #include <asm/io.h>
77 #include <asm/mmu_context.h>
78 #include <asm/pgalloc.h>
79 #include <linux/uaccess.h>
80 #include <asm/tlb.h>
81 #include <asm/tlbflush.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #endif
89
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr;
93 EXPORT_SYMBOL(max_mapnr);
94
95 struct page *mem_map;
96 EXPORT_SYMBOL(mem_map);
97 #endif
98
99 /*
100 * A number of key systems in x86 including ioremap() rely on the assumption
101 * that high_memory defines the upper bound on direct map memory, then end
102 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
103 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 * and ZONE_HIGHMEM.
105 */
106 void *high_memory;
107 EXPORT_SYMBOL(high_memory);
108
109 /*
110 * Randomize the address space (stacks, mmaps, brk, etc.).
111 *
112 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113 * as ancient (libc5 based) binaries can segfault. )
114 */
115 int randomize_va_space __read_mostly =
116 #ifdef CONFIG_COMPAT_BRK
117 1;
118 #else
119 2;
120 #endif
121
122 static int __init disable_randmaps(char *s)
123 {
124 randomize_va_space = 0;
125 return 1;
126 }
127 __setup("norandmaps", disable_randmaps);
128
129 unsigned long zero_pfn __read_mostly;
130 EXPORT_SYMBOL(zero_pfn);
131
132 unsigned long highest_memmap_pfn __read_mostly;
133
134 /*
135 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
136 */
137 static int __init init_zero_pfn(void)
138 {
139 zero_pfn = page_to_pfn(ZERO_PAGE(0));
140 return 0;
141 }
142 core_initcall(init_zero_pfn);
143
144 /*
145 * This threshold is the boundary in the value space, that the counter has to
146 * advance before we trace it. Should be a power of 2. It is to reduce unwanted
147 * trace overhead. The counter is number of pages.
148 */
149 #define TRACE_MM_COUNTER_THRESHOLD 128
150
151 void mm_trace_rss_stat(int member, long count, long value)
152 {
153 long thresh_mask = ~(TRACE_MM_COUNTER_THRESHOLD - 1);
154
155 /* Threshold roll-over, trace it */
156 if ((count & thresh_mask) != ((count - value) & thresh_mask))
157 trace_rss_stat(member, count);
158 }
159
160 #if defined(SPLIT_RSS_COUNTING)
161
162 void sync_mm_rss(struct mm_struct *mm)
163 {
164 int i;
165
166 for (i = 0; i < NR_MM_COUNTERS; i++) {
167 if (current->rss_stat.count[i]) {
168 add_mm_counter(mm, i, current->rss_stat.count[i]);
169 current->rss_stat.count[i] = 0;
170 }
171 }
172 current->rss_stat.events = 0;
173 }
174
175 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
176 {
177 struct task_struct *task = current;
178
179 if (likely(task->mm == mm))
180 task->rss_stat.count[member] += val;
181 else
182 add_mm_counter(mm, member, val);
183 }
184 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
185 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
186
187 /* sync counter once per 64 page faults */
188 #define TASK_RSS_EVENTS_THRESH (64)
189 static void check_sync_rss_stat(struct task_struct *task)
190 {
191 if (unlikely(task != current))
192 return;
193 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
194 sync_mm_rss(task->mm);
195 }
196 #else /* SPLIT_RSS_COUNTING */
197
198 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
199 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
200
201 static void check_sync_rss_stat(struct task_struct *task)
202 {
203 }
204
205 #endif /* SPLIT_RSS_COUNTING */
206
207 #ifdef HAVE_GENERIC_MMU_GATHER
208
209 static bool tlb_next_batch(struct mmu_gather *tlb)
210 {
211 struct mmu_gather_batch *batch;
212
213 batch = tlb->active;
214 if (batch->next) {
215 tlb->active = batch->next;
216 return true;
217 }
218
219 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
220 return false;
221
222 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
223 if (!batch)
224 return false;
225
226 tlb->batch_count++;
227 batch->next = NULL;
228 batch->nr = 0;
229 batch->max = MAX_GATHER_BATCH;
230
231 tlb->active->next = batch;
232 tlb->active = batch;
233
234 return true;
235 }
236
237 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
238 unsigned long start, unsigned long end)
239 {
240 tlb->mm = mm;
241
242 /* Is it from 0 to ~0? */
243 tlb->fullmm = !(start | (end+1));
244 tlb->need_flush_all = 0;
245 tlb->local.next = NULL;
246 tlb->local.nr = 0;
247 tlb->local.max = ARRAY_SIZE(tlb->__pages);
248 tlb->active = &tlb->local;
249 tlb->batch_count = 0;
250
251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
252 tlb->batch = NULL;
253 #endif
254 tlb->page_size = 0;
255
256 __tlb_reset_range(tlb);
257 }
258
259 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
260 {
261 if (!tlb->end)
262 return;
263
264 tlb_flush(tlb);
265 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
266 __tlb_reset_range(tlb);
267 }
268
269 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
270 {
271 struct mmu_gather_batch *batch;
272
273 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
274 tlb_table_flush(tlb);
275 #endif
276 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
277 free_pages_and_swap_cache(batch->pages, batch->nr);
278 batch->nr = 0;
279 }
280 tlb->active = &tlb->local;
281 }
282
283 void tlb_flush_mmu(struct mmu_gather *tlb)
284 {
285 tlb_flush_mmu_tlbonly(tlb);
286 tlb_flush_mmu_free(tlb);
287 }
288
289 /* tlb_finish_mmu
290 * Called at the end of the shootdown operation to free up any resources
291 * that were required.
292 */
293 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
294 unsigned long start, unsigned long end, bool force)
295 {
296 struct mmu_gather_batch *batch, *next;
297
298 if (force)
299 __tlb_adjust_range(tlb, start, end - start);
300
301 tlb_flush_mmu(tlb);
302
303 /* keep the page table cache within bounds */
304 check_pgt_cache();
305
306 for (batch = tlb->local.next; batch; batch = next) {
307 next = batch->next;
308 free_pages((unsigned long)batch, 0);
309 }
310 tlb->local.next = NULL;
311 }
312
313 /* __tlb_remove_page
314 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
315 * handling the additional races in SMP caused by other CPUs caching valid
316 * mappings in their TLBs. Returns the number of free page slots left.
317 * When out of page slots we must call tlb_flush_mmu().
318 *returns true if the caller should flush.
319 */
320 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
321 {
322 struct mmu_gather_batch *batch;
323
324 VM_BUG_ON(!tlb->end);
325 VM_WARN_ON(tlb->page_size != page_size);
326
327 batch = tlb->active;
328 /*
329 * Add the page and check if we are full. If so
330 * force a flush.
331 */
332 batch->pages[batch->nr++] = page;
333 if (batch->nr == batch->max) {
334 if (!tlb_next_batch(tlb))
335 return true;
336 batch = tlb->active;
337 }
338 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
339
340 return false;
341 }
342
343 #endif /* HAVE_GENERIC_MMU_GATHER */
344
345 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
346
347 /*
348 * See the comment near struct mmu_table_batch.
349 */
350
351 /*
352 * If we want tlb_remove_table() to imply TLB invalidates.
353 */
354 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
355 {
356 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
357 /*
358 * Invalidate page-table caches used by hardware walkers. Then we still
359 * need to RCU-sched wait while freeing the pages because software
360 * walkers can still be in-flight.
361 */
362 tlb_flush_mmu_tlbonly(tlb);
363 #endif
364 }
365
366 static void tlb_remove_table_smp_sync(void *arg)
367 {
368 /* Simply deliver the interrupt */
369 }
370
371 static void tlb_remove_table_one(void *table)
372 {
373 /*
374 * This isn't an RCU grace period and hence the page-tables cannot be
375 * assumed to be actually RCU-freed.
376 *
377 * It is however sufficient for software page-table walkers that rely on
378 * IRQ disabling. See the comment near struct mmu_table_batch.
379 */
380 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
381 __tlb_remove_table(table);
382 }
383
384 static void tlb_remove_table_rcu(struct rcu_head *head)
385 {
386 struct mmu_table_batch *batch;
387 int i;
388
389 batch = container_of(head, struct mmu_table_batch, rcu);
390
391 for (i = 0; i < batch->nr; i++)
392 __tlb_remove_table(batch->tables[i]);
393
394 free_page((unsigned long)batch);
395 }
396
397 void tlb_table_flush(struct mmu_gather *tlb)
398 {
399 struct mmu_table_batch **batch = &tlb->batch;
400
401 if (*batch) {
402 tlb_table_invalidate(tlb);
403 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
404 *batch = NULL;
405 }
406 }
407
408 void tlb_remove_table(struct mmu_gather *tlb, void *table)
409 {
410 struct mmu_table_batch **batch = &tlb->batch;
411
412 if (*batch == NULL) {
413 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
414 if (*batch == NULL) {
415 tlb_table_invalidate(tlb);
416 tlb_remove_table_one(table);
417 return;
418 }
419 (*batch)->nr = 0;
420 }
421
422 (*batch)->tables[(*batch)->nr++] = table;
423 if ((*batch)->nr == MAX_TABLE_BATCH)
424 tlb_table_flush(tlb);
425 }
426
427 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
428
429 /* tlb_gather_mmu
430 * Called to initialize an (on-stack) mmu_gather structure for page-table
431 * tear-down from @mm. The @fullmm argument is used when @mm is without
432 * users and we're going to destroy the full address space (exit/execve).
433 */
434 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
435 unsigned long start, unsigned long end)
436 {
437 arch_tlb_gather_mmu(tlb, mm, start, end);
438 inc_tlb_flush_pending(tlb->mm);
439 }
440
441 void tlb_finish_mmu(struct mmu_gather *tlb,
442 unsigned long start, unsigned long end)
443 {
444 /*
445 * If there are parallel threads are doing PTE changes on same range
446 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
447 * flush by batching, a thread has stable TLB entry can fail to flush
448 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
449 * forcefully if we detect parallel PTE batching threads.
450 */
451 bool force = mm_tlb_flush_nested(tlb->mm);
452
453 arch_tlb_finish_mmu(tlb, start, end, force);
454 dec_tlb_flush_pending(tlb->mm);
455 }
456
457 /*
458 * Note: this doesn't free the actual pages themselves. That
459 * has been handled earlier when unmapping all the memory regions.
460 */
461 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
462 unsigned long addr)
463 {
464 pgtable_t token = pmd_pgtable(*pmd);
465 pmd_clear(pmd);
466 pte_free_tlb(tlb, token, addr);
467 atomic_long_dec(&tlb->mm->nr_ptes);
468 }
469
470 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
473 {
474 pmd_t *pmd;
475 unsigned long next;
476 unsigned long start;
477
478 start = addr;
479 pmd = pmd_offset(pud, addr);
480 do {
481 next = pmd_addr_end(addr, end);
482 if (pmd_none_or_clear_bad(pmd))
483 continue;
484 free_pte_range(tlb, pmd, addr);
485 } while (pmd++, addr = next, addr != end);
486
487 start &= PUD_MASK;
488 if (start < floor)
489 return;
490 if (ceiling) {
491 ceiling &= PUD_MASK;
492 if (!ceiling)
493 return;
494 }
495 if (end - 1 > ceiling - 1)
496 return;
497
498 pmd = pmd_offset(pud, start);
499 pud_clear(pud);
500 pmd_free_tlb(tlb, pmd, start);
501 mm_dec_nr_pmds(tlb->mm);
502 }
503
504 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
505 unsigned long addr, unsigned long end,
506 unsigned long floor, unsigned long ceiling)
507 {
508 pud_t *pud;
509 unsigned long next;
510 unsigned long start;
511
512 start = addr;
513 pud = pud_offset(p4d, addr);
514 do {
515 next = pud_addr_end(addr, end);
516 if (pud_none_or_clear_bad(pud))
517 continue;
518 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
519 } while (pud++, addr = next, addr != end);
520
521 start &= P4D_MASK;
522 if (start < floor)
523 return;
524 if (ceiling) {
525 ceiling &= P4D_MASK;
526 if (!ceiling)
527 return;
528 }
529 if (end - 1 > ceiling - 1)
530 return;
531
532 pud = pud_offset(p4d, start);
533 p4d_clear(p4d);
534 pud_free_tlb(tlb, pud, start);
535 }
536
537 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
538 unsigned long addr, unsigned long end,
539 unsigned long floor, unsigned long ceiling)
540 {
541 p4d_t *p4d;
542 unsigned long next;
543 unsigned long start;
544
545 start = addr;
546 p4d = p4d_offset(pgd, addr);
547 do {
548 next = p4d_addr_end(addr, end);
549 if (p4d_none_or_clear_bad(p4d))
550 continue;
551 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
552 } while (p4d++, addr = next, addr != end);
553
554 start &= PGDIR_MASK;
555 if (start < floor)
556 return;
557 if (ceiling) {
558 ceiling &= PGDIR_MASK;
559 if (!ceiling)
560 return;
561 }
562 if (end - 1 > ceiling - 1)
563 return;
564
565 p4d = p4d_offset(pgd, start);
566 pgd_clear(pgd);
567 p4d_free_tlb(tlb, p4d, start);
568 }
569
570 /*
571 * This function frees user-level page tables of a process.
572 */
573 void free_pgd_range(struct mmu_gather *tlb,
574 unsigned long addr, unsigned long end,
575 unsigned long floor, unsigned long ceiling)
576 {
577 pgd_t *pgd;
578 unsigned long next;
579
580 /*
581 * The next few lines have given us lots of grief...
582 *
583 * Why are we testing PMD* at this top level? Because often
584 * there will be no work to do at all, and we'd prefer not to
585 * go all the way down to the bottom just to discover that.
586 *
587 * Why all these "- 1"s? Because 0 represents both the bottom
588 * of the address space and the top of it (using -1 for the
589 * top wouldn't help much: the masks would do the wrong thing).
590 * The rule is that addr 0 and floor 0 refer to the bottom of
591 * the address space, but end 0 and ceiling 0 refer to the top
592 * Comparisons need to use "end - 1" and "ceiling - 1" (though
593 * that end 0 case should be mythical).
594 *
595 * Wherever addr is brought up or ceiling brought down, we must
596 * be careful to reject "the opposite 0" before it confuses the
597 * subsequent tests. But what about where end is brought down
598 * by PMD_SIZE below? no, end can't go down to 0 there.
599 *
600 * Whereas we round start (addr) and ceiling down, by different
601 * masks at different levels, in order to test whether a table
602 * now has no other vmas using it, so can be freed, we don't
603 * bother to round floor or end up - the tests don't need that.
604 */
605
606 addr &= PMD_MASK;
607 if (addr < floor) {
608 addr += PMD_SIZE;
609 if (!addr)
610 return;
611 }
612 if (ceiling) {
613 ceiling &= PMD_MASK;
614 if (!ceiling)
615 return;
616 }
617 if (end - 1 > ceiling - 1)
618 end -= PMD_SIZE;
619 if (addr > end - 1)
620 return;
621 /*
622 * We add page table cache pages with PAGE_SIZE,
623 * (see pte_free_tlb()), flush the tlb if we need
624 */
625 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
626 pgd = pgd_offset(tlb->mm, addr);
627 do {
628 next = pgd_addr_end(addr, end);
629 if (pgd_none_or_clear_bad(pgd))
630 continue;
631 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
632 } while (pgd++, addr = next, addr != end);
633 }
634
635 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
636 unsigned long floor, unsigned long ceiling)
637 {
638 while (vma) {
639 struct vm_area_struct *next = vma->vm_next;
640 unsigned long addr = vma->vm_start;
641
642 /*
643 * Hide vma from rmap and truncate_pagecache before freeing
644 * pgtables
645 */
646 unlink_anon_vmas(vma);
647 unlink_file_vma(vma);
648
649 if (is_vm_hugetlb_page(vma)) {
650 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
651 floor, next ? next->vm_start : ceiling);
652 } else {
653 /*
654 * Optimization: gather nearby vmas into one call down
655 */
656 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
657 && !is_vm_hugetlb_page(next)) {
658 vma = next;
659 next = vma->vm_next;
660 unlink_anon_vmas(vma);
661 unlink_file_vma(vma);
662 }
663 free_pgd_range(tlb, addr, vma->vm_end,
664 floor, next ? next->vm_start : ceiling);
665 }
666 vma = next;
667 }
668 }
669
670 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
671 {
672 spinlock_t *ptl;
673 pgtable_t new = pte_alloc_one(mm, address);
674 if (!new)
675 return -ENOMEM;
676
677 /*
678 * Ensure all pte setup (eg. pte page lock and page clearing) are
679 * visible before the pte is made visible to other CPUs by being
680 * put into page tables.
681 *
682 * The other side of the story is the pointer chasing in the page
683 * table walking code (when walking the page table without locking;
684 * ie. most of the time). Fortunately, these data accesses consist
685 * of a chain of data-dependent loads, meaning most CPUs (alpha
686 * being the notable exception) will already guarantee loads are
687 * seen in-order. See the alpha page table accessors for the
688 * smp_read_barrier_depends() barriers in page table walking code.
689 */
690 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
691
692 ptl = pmd_lock(mm, pmd);
693 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
694 atomic_long_inc(&mm->nr_ptes);
695 pmd_populate(mm, pmd, new);
696 new = NULL;
697 }
698 spin_unlock(ptl);
699 if (new)
700 pte_free(mm, new);
701 return 0;
702 }
703
704 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
705 {
706 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
707 if (!new)
708 return -ENOMEM;
709
710 smp_wmb(); /* See comment in __pte_alloc */
711
712 spin_lock(&init_mm.page_table_lock);
713 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
714 pmd_populate_kernel(&init_mm, pmd, new);
715 new = NULL;
716 }
717 spin_unlock(&init_mm.page_table_lock);
718 if (new)
719 pte_free_kernel(&init_mm, new);
720 return 0;
721 }
722
723 static inline void init_rss_vec(int *rss)
724 {
725 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
726 }
727
728 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
729 {
730 int i;
731
732 if (current->mm == mm)
733 sync_mm_rss(mm);
734 for (i = 0; i < NR_MM_COUNTERS; i++)
735 if (rss[i])
736 add_mm_counter(mm, i, rss[i]);
737 }
738
739 /*
740 * This function is called to print an error when a bad pte
741 * is found. For example, we might have a PFN-mapped pte in
742 * a region that doesn't allow it.
743 *
744 * The calling function must still handle the error.
745 */
746 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
747 pte_t pte, struct page *page)
748 {
749 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
750 p4d_t *p4d = p4d_offset(pgd, addr);
751 pud_t *pud = pud_offset(p4d, addr);
752 pmd_t *pmd = pmd_offset(pud, addr);
753 struct address_space *mapping;
754 pgoff_t index;
755 static unsigned long resume;
756 static unsigned long nr_shown;
757 static unsigned long nr_unshown;
758
759 /*
760 * Allow a burst of 60 reports, then keep quiet for that minute;
761 * or allow a steady drip of one report per second.
762 */
763 if (nr_shown == 60) {
764 if (time_before(jiffies, resume)) {
765 nr_unshown++;
766 return;
767 }
768 if (nr_unshown) {
769 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
770 nr_unshown);
771 nr_unshown = 0;
772 }
773 nr_shown = 0;
774 }
775 if (nr_shown++ == 0)
776 resume = jiffies + 60 * HZ;
777
778 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
779 index = linear_page_index(vma, addr);
780
781 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
782 current->comm,
783 (long long)pte_val(pte), (long long)pmd_val(*pmd));
784 if (page)
785 dump_page(page, "bad pte");
786 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
787 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
788 /*
789 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
790 */
791 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
792 vma->vm_file,
793 vma->vm_ops ? vma->vm_ops->fault : NULL,
794 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
795 mapping ? mapping->a_ops->readpage : NULL);
796 dump_stack();
797 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
798 }
799
800 /*
801 * vm_normal_page -- This function gets the "struct page" associated with a pte.
802 *
803 * "Special" mappings do not wish to be associated with a "struct page" (either
804 * it doesn't exist, or it exists but they don't want to touch it). In this
805 * case, NULL is returned here. "Normal" mappings do have a struct page.
806 *
807 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
808 * pte bit, in which case this function is trivial. Secondly, an architecture
809 * may not have a spare pte bit, which requires a more complicated scheme,
810 * described below.
811 *
812 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
813 * special mapping (even if there are underlying and valid "struct pages").
814 * COWed pages of a VM_PFNMAP are always normal.
815 *
816 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
817 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
818 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
819 * mapping will always honor the rule
820 *
821 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
822 *
823 * And for normal mappings this is false.
824 *
825 * This restricts such mappings to be a linear translation from virtual address
826 * to pfn. To get around this restriction, we allow arbitrary mappings so long
827 * as the vma is not a COW mapping; in that case, we know that all ptes are
828 * special (because none can have been COWed).
829 *
830 *
831 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
832 *
833 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
834 * page" backing, however the difference is that _all_ pages with a struct
835 * page (that is, those where pfn_valid is true) are refcounted and considered
836 * normal pages by the VM. The disadvantage is that pages are refcounted
837 * (which can be slower and simply not an option for some PFNMAP users). The
838 * advantage is that we don't have to follow the strict linearity rule of
839 * PFNMAP mappings in order to support COWable mappings.
840 *
841 */
842 #ifdef __HAVE_ARCH_PTE_SPECIAL
843 # define HAVE_PTE_SPECIAL 1
844 #else
845 # define HAVE_PTE_SPECIAL 0
846 #endif
847 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
848 pte_t pte, bool with_public_device)
849 {
850 unsigned long pfn = pte_pfn(pte);
851
852 if (HAVE_PTE_SPECIAL) {
853 if (likely(!pte_special(pte)))
854 goto check_pfn;
855 if (vma->vm_ops && vma->vm_ops->find_special_page)
856 return vma->vm_ops->find_special_page(vma, addr);
857 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
858 return NULL;
859 if (is_zero_pfn(pfn))
860 return NULL;
861
862 /*
863 * Device public pages are special pages (they are ZONE_DEVICE
864 * pages but different from persistent memory). They behave
865 * allmost like normal pages. The difference is that they are
866 * not on the lru and thus should never be involve with any-
867 * thing that involve lru manipulation (mlock, numa balancing,
868 * ...).
869 *
870 * This is why we still want to return NULL for such page from
871 * vm_normal_page() so that we do not have to special case all
872 * call site of vm_normal_page().
873 */
874 if (likely(pfn <= highest_memmap_pfn)) {
875 struct page *page = pfn_to_page(pfn);
876
877 if (is_device_public_page(page)) {
878 if (with_public_device)
879 return page;
880 return NULL;
881 }
882 }
883 print_bad_pte(vma, addr, pte, NULL);
884 return NULL;
885 }
886
887 /* !HAVE_PTE_SPECIAL case follows: */
888
889 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
890 if (vma->vm_flags & VM_MIXEDMAP) {
891 if (!pfn_valid(pfn))
892 return NULL;
893 goto out;
894 } else {
895 unsigned long off;
896 off = (addr - vma->vm_start) >> PAGE_SHIFT;
897 if (pfn == vma->vm_pgoff + off)
898 return NULL;
899 if (!is_cow_mapping(vma->vm_flags))
900 return NULL;
901 }
902 }
903
904 if (is_zero_pfn(pfn))
905 return NULL;
906 check_pfn:
907 if (unlikely(pfn > highest_memmap_pfn)) {
908 print_bad_pte(vma, addr, pte, NULL);
909 return NULL;
910 }
911
912 /*
913 * NOTE! We still have PageReserved() pages in the page tables.
914 * eg. VDSO mappings can cause them to exist.
915 */
916 out:
917 return pfn_to_page(pfn);
918 }
919
920 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
921 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
922 pmd_t pmd)
923 {
924 unsigned long pfn = pmd_pfn(pmd);
925
926 /*
927 * There is no pmd_special() but there may be special pmds, e.g.
928 * in a direct-access (dax) mapping, so let's just replicate the
929 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
930 */
931 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
932 if (vma->vm_flags & VM_MIXEDMAP) {
933 if (!pfn_valid(pfn))
934 return NULL;
935 goto out;
936 } else {
937 unsigned long off;
938 off = (addr - vma->vm_start) >> PAGE_SHIFT;
939 if (pfn == vma->vm_pgoff + off)
940 return NULL;
941 if (!is_cow_mapping(vma->vm_flags))
942 return NULL;
943 }
944 }
945
946 if (is_zero_pfn(pfn))
947 return NULL;
948 if (unlikely(pfn > highest_memmap_pfn))
949 return NULL;
950
951 /*
952 * NOTE! We still have PageReserved() pages in the page tables.
953 * eg. VDSO mappings can cause them to exist.
954 */
955 out:
956 return pfn_to_page(pfn);
957 }
958 #endif
959
960 /*
961 * copy one vm_area from one task to the other. Assumes the page tables
962 * already present in the new task to be cleared in the whole range
963 * covered by this vma.
964 */
965
966 static inline unsigned long
967 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
969 unsigned long addr, int *rss)
970 {
971 unsigned long vm_flags = vma->vm_flags;
972 pte_t pte = *src_pte;
973 struct page *page;
974
975 /* pte contains position in swap or file, so copy. */
976 if (unlikely(!pte_present(pte))) {
977 swp_entry_t entry = pte_to_swp_entry(pte);
978
979 if (likely(!non_swap_entry(entry))) {
980 if (swap_duplicate(entry) < 0)
981 return entry.val;
982
983 /* make sure dst_mm is on swapoff's mmlist. */
984 if (unlikely(list_empty(&dst_mm->mmlist))) {
985 spin_lock(&mmlist_lock);
986 if (list_empty(&dst_mm->mmlist))
987 list_add(&dst_mm->mmlist,
988 &src_mm->mmlist);
989 spin_unlock(&mmlist_lock);
990 }
991 rss[MM_SWAPENTS]++;
992 } else if (is_migration_entry(entry)) {
993 page = migration_entry_to_page(entry);
994
995 rss[mm_counter(page)]++;
996
997 if (is_write_migration_entry(entry) &&
998 is_cow_mapping(vm_flags)) {
999 /*
1000 * COW mappings require pages in both
1001 * parent and child to be set to read.
1002 */
1003 make_migration_entry_read(&entry);
1004 pte = swp_entry_to_pte(entry);
1005 if (pte_swp_soft_dirty(*src_pte))
1006 pte = pte_swp_mksoft_dirty(pte);
1007 set_pte_at(src_mm, addr, src_pte, pte);
1008 }
1009 } else if (is_device_private_entry(entry)) {
1010 page = device_private_entry_to_page(entry);
1011
1012 /*
1013 * Update rss count even for unaddressable pages, as
1014 * they should treated just like normal pages in this
1015 * respect.
1016 *
1017 * We will likely want to have some new rss counters
1018 * for unaddressable pages, at some point. But for now
1019 * keep things as they are.
1020 */
1021 get_page(page);
1022 rss[mm_counter(page)]++;
1023 page_dup_rmap(page, false);
1024
1025 /*
1026 * We do not preserve soft-dirty information, because so
1027 * far, checkpoint/restore is the only feature that
1028 * requires that. And checkpoint/restore does not work
1029 * when a device driver is involved (you cannot easily
1030 * save and restore device driver state).
1031 */
1032 if (is_write_device_private_entry(entry) &&
1033 is_cow_mapping(vm_flags)) {
1034 make_device_private_entry_read(&entry);
1035 pte = swp_entry_to_pte(entry);
1036 set_pte_at(src_mm, addr, src_pte, pte);
1037 }
1038 }
1039 goto out_set_pte;
1040 }
1041
1042 /*
1043 * If it's a COW mapping, write protect it both
1044 * in the parent and the child
1045 */
1046 if (is_cow_mapping(vm_flags)) {
1047 ptep_set_wrprotect(src_mm, addr, src_pte);
1048 pte = pte_wrprotect(pte);
1049 }
1050
1051 /*
1052 * If it's a shared mapping, mark it clean in
1053 * the child
1054 */
1055 if (vm_flags & VM_SHARED)
1056 pte = pte_mkclean(pte);
1057 pte = pte_mkold(pte);
1058
1059 page = vm_normal_page(vma, addr, pte);
1060 if (page) {
1061 get_page(page);
1062 page_dup_rmap(page, false);
1063 rss[mm_counter(page)]++;
1064 } else if (pte_devmap(pte)) {
1065 page = pte_page(pte);
1066
1067 /*
1068 * Cache coherent device memory behave like regular page and
1069 * not like persistent memory page. For more informations see
1070 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1071 */
1072 if (is_device_public_page(page)) {
1073 get_page(page);
1074 page_dup_rmap(page, false);
1075 rss[mm_counter(page)]++;
1076 }
1077 }
1078
1079 out_set_pte:
1080 set_pte_at(dst_mm, addr, dst_pte, pte);
1081 return 0;
1082 }
1083
1084 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1085 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1086 unsigned long addr, unsigned long end)
1087 {
1088 pte_t *orig_src_pte, *orig_dst_pte;
1089 pte_t *src_pte, *dst_pte;
1090 spinlock_t *src_ptl, *dst_ptl;
1091 int progress = 0;
1092 int rss[NR_MM_COUNTERS];
1093 swp_entry_t entry = (swp_entry_t){0};
1094
1095 again:
1096 init_rss_vec(rss);
1097
1098 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1099 if (!dst_pte)
1100 return -ENOMEM;
1101 src_pte = pte_offset_map(src_pmd, addr);
1102 src_ptl = pte_lockptr(src_mm, src_pmd);
1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1104 orig_src_pte = src_pte;
1105 orig_dst_pte = dst_pte;
1106 arch_enter_lazy_mmu_mode();
1107
1108 do {
1109 /*
1110 * We are holding two locks at this point - either of them
1111 * could generate latencies in another task on another CPU.
1112 */
1113 if (progress >= 32) {
1114 progress = 0;
1115 if (need_resched() ||
1116 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1117 break;
1118 }
1119 if (pte_none(*src_pte)) {
1120 progress++;
1121 continue;
1122 }
1123 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1124 vma, addr, rss);
1125 if (entry.val)
1126 break;
1127 progress += 8;
1128 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1129
1130 arch_leave_lazy_mmu_mode();
1131 spin_unlock(src_ptl);
1132 pte_unmap(orig_src_pte);
1133 add_mm_rss_vec(dst_mm, rss);
1134 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1135 cond_resched();
1136
1137 if (entry.val) {
1138 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1139 return -ENOMEM;
1140 progress = 0;
1141 }
1142 if (addr != end)
1143 goto again;
1144 return 0;
1145 }
1146
1147 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1148 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1149 unsigned long addr, unsigned long end)
1150 {
1151 pmd_t *src_pmd, *dst_pmd;
1152 unsigned long next;
1153
1154 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1155 if (!dst_pmd)
1156 return -ENOMEM;
1157 src_pmd = pmd_offset(src_pud, addr);
1158 do {
1159 next = pmd_addr_end(addr, end);
1160 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1161 || pmd_devmap(*src_pmd)) {
1162 int err;
1163 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1164 err = copy_huge_pmd(dst_mm, src_mm,
1165 dst_pmd, src_pmd, addr, vma);
1166 if (err == -ENOMEM)
1167 return -ENOMEM;
1168 if (!err)
1169 continue;
1170 /* fall through */
1171 }
1172 if (pmd_none_or_clear_bad(src_pmd))
1173 continue;
1174 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1175 vma, addr, next))
1176 return -ENOMEM;
1177 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1178 return 0;
1179 }
1180
1181 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1182 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1183 unsigned long addr, unsigned long end)
1184 {
1185 pud_t *src_pud, *dst_pud;
1186 unsigned long next;
1187
1188 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189 if (!dst_pud)
1190 return -ENOMEM;
1191 src_pud = pud_offset(src_p4d, addr);
1192 do {
1193 next = pud_addr_end(addr, end);
1194 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 int err;
1196
1197 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1198 err = copy_huge_pud(dst_mm, src_mm,
1199 dst_pud, src_pud, addr, vma);
1200 if (err == -ENOMEM)
1201 return -ENOMEM;
1202 if (!err)
1203 continue;
1204 /* fall through */
1205 }
1206 if (pud_none_or_clear_bad(src_pud))
1207 continue;
1208 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1209 vma, addr, next))
1210 return -ENOMEM;
1211 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 return 0;
1213 }
1214
1215 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1217 unsigned long addr, unsigned long end)
1218 {
1219 p4d_t *src_p4d, *dst_p4d;
1220 unsigned long next;
1221
1222 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 if (!dst_p4d)
1224 return -ENOMEM;
1225 src_p4d = p4d_offset(src_pgd, addr);
1226 do {
1227 next = p4d_addr_end(addr, end);
1228 if (p4d_none_or_clear_bad(src_p4d))
1229 continue;
1230 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1231 vma, addr, next))
1232 return -ENOMEM;
1233 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1234 return 0;
1235 }
1236
1237 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1238 struct vm_area_struct *vma)
1239 {
1240 pgd_t *src_pgd, *dst_pgd;
1241 unsigned long next;
1242 unsigned long addr = vma->vm_start;
1243 unsigned long end = vma->vm_end;
1244 unsigned long mmun_start; /* For mmu_notifiers */
1245 unsigned long mmun_end; /* For mmu_notifiers */
1246 bool is_cow;
1247 int ret;
1248
1249 /*
1250 * Don't copy ptes where a page fault will fill them correctly.
1251 * Fork becomes much lighter when there are big shared or private
1252 * readonly mappings. The tradeoff is that copy_page_range is more
1253 * efficient than faulting.
1254 */
1255 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1256 !vma->anon_vma)
1257 return 0;
1258
1259 if (is_vm_hugetlb_page(vma))
1260 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1261
1262 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1263 /*
1264 * We do not free on error cases below as remove_vma
1265 * gets called on error from higher level routine
1266 */
1267 ret = track_pfn_copy(vma);
1268 if (ret)
1269 return ret;
1270 }
1271
1272 /*
1273 * We need to invalidate the secondary MMU mappings only when
1274 * there could be a permission downgrade on the ptes of the
1275 * parent mm. And a permission downgrade will only happen if
1276 * is_cow_mapping() returns true.
1277 */
1278 is_cow = is_cow_mapping(vma->vm_flags);
1279 mmun_start = addr;
1280 mmun_end = end;
1281 if (is_cow)
1282 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1283 mmun_end);
1284
1285 ret = 0;
1286 dst_pgd = pgd_offset(dst_mm, addr);
1287 src_pgd = pgd_offset(src_mm, addr);
1288 do {
1289 next = pgd_addr_end(addr, end);
1290 if (pgd_none_or_clear_bad(src_pgd))
1291 continue;
1292 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1293 vma, addr, next))) {
1294 ret = -ENOMEM;
1295 break;
1296 }
1297 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1298
1299 if (is_cow)
1300 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1301 return ret;
1302 }
1303
1304 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1305 struct vm_area_struct *vma, pmd_t *pmd,
1306 unsigned long addr, unsigned long end,
1307 struct zap_details *details)
1308 {
1309 struct mm_struct *mm = tlb->mm;
1310 int force_flush = 0;
1311 int rss[NR_MM_COUNTERS];
1312 spinlock_t *ptl;
1313 pte_t *start_pte;
1314 pte_t *pte;
1315 swp_entry_t entry;
1316
1317 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1318 again:
1319 init_rss_vec(rss);
1320 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1321 pte = start_pte;
1322 flush_tlb_batched_pending(mm);
1323 arch_enter_lazy_mmu_mode();
1324 do {
1325 pte_t ptent = *pte;
1326 if (pte_none(ptent))
1327 continue;
1328
1329 if (pte_present(ptent)) {
1330 struct page *page;
1331
1332 page = _vm_normal_page(vma, addr, ptent, true);
1333 if (unlikely(details) && page) {
1334 /*
1335 * unmap_shared_mapping_pages() wants to
1336 * invalidate cache without truncating:
1337 * unmap shared but keep private pages.
1338 */
1339 if (details->check_mapping &&
1340 details->check_mapping != page_rmapping(page))
1341 continue;
1342 }
1343 ptent = ptep_get_and_clear_full(mm, addr, pte,
1344 tlb->fullmm);
1345 tlb_remove_tlb_entry(tlb, pte, addr);
1346 if (unlikely(!page))
1347 continue;
1348
1349 if (!PageAnon(page)) {
1350 if (pte_dirty(ptent)) {
1351 force_flush = 1;
1352 set_page_dirty(page);
1353 }
1354 if (pte_young(ptent) &&
1355 likely(!(vma->vm_flags & VM_SEQ_READ)))
1356 mark_page_accessed(page);
1357 }
1358 rss[mm_counter(page)]--;
1359 page_remove_rmap(page, false);
1360 if (unlikely(page_mapcount(page) < 0))
1361 print_bad_pte(vma, addr, ptent, page);
1362 if (unlikely(__tlb_remove_page(tlb, page))) {
1363 force_flush = 1;
1364 addr += PAGE_SIZE;
1365 break;
1366 }
1367 continue;
1368 }
1369
1370 entry = pte_to_swp_entry(ptent);
1371 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1372 struct page *page = device_private_entry_to_page(entry);
1373
1374 if (unlikely(details && details->check_mapping)) {
1375 /*
1376 * unmap_shared_mapping_pages() wants to
1377 * invalidate cache without truncating:
1378 * unmap shared but keep private pages.
1379 */
1380 if (details->check_mapping !=
1381 page_rmapping(page))
1382 continue;
1383 }
1384
1385 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386 rss[mm_counter(page)]--;
1387 page_remove_rmap(page, false);
1388 put_page(page);
1389 continue;
1390 }
1391
1392 /* If details->check_mapping, we leave swap entries. */
1393 if (unlikely(details))
1394 continue;
1395
1396 entry = pte_to_swp_entry(ptent);
1397 if (!non_swap_entry(entry))
1398 rss[MM_SWAPENTS]--;
1399 else if (is_migration_entry(entry)) {
1400 struct page *page;
1401
1402 page = migration_entry_to_page(entry);
1403 rss[mm_counter(page)]--;
1404 }
1405 if (unlikely(!free_swap_and_cache(entry)))
1406 print_bad_pte(vma, addr, ptent, NULL);
1407 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1408 } while (pte++, addr += PAGE_SIZE, addr != end);
1409
1410 add_mm_rss_vec(mm, rss);
1411 arch_leave_lazy_mmu_mode();
1412
1413 /* Do the actual TLB flush before dropping ptl */
1414 if (force_flush)
1415 tlb_flush_mmu_tlbonly(tlb);
1416 pte_unmap_unlock(start_pte, ptl);
1417
1418 /*
1419 * If we forced a TLB flush (either due to running out of
1420 * batch buffers or because we needed to flush dirty TLB
1421 * entries before releasing the ptl), free the batched
1422 * memory too. Restart if we didn't do everything.
1423 */
1424 if (force_flush) {
1425 force_flush = 0;
1426 tlb_flush_mmu_free(tlb);
1427 if (addr != end)
1428 goto again;
1429 }
1430
1431 return addr;
1432 }
1433
1434 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1435 struct vm_area_struct *vma, pud_t *pud,
1436 unsigned long addr, unsigned long end,
1437 struct zap_details *details)
1438 {
1439 pmd_t *pmd;
1440 unsigned long next;
1441
1442 pmd = pmd_offset(pud, addr);
1443 do {
1444 next = pmd_addr_end(addr, end);
1445 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1446 if (next - addr != HPAGE_PMD_SIZE)
1447 __split_huge_pmd(vma, pmd, addr, false, NULL);
1448 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1449 goto next;
1450 /* fall through */
1451 }
1452 /*
1453 * Here there can be other concurrent MADV_DONTNEED or
1454 * trans huge page faults running, and if the pmd is
1455 * none or trans huge it can change under us. This is
1456 * because MADV_DONTNEED holds the mmap_sem in read
1457 * mode.
1458 */
1459 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1460 goto next;
1461 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1462 next:
1463 cond_resched();
1464 } while (pmd++, addr = next, addr != end);
1465
1466 return addr;
1467 }
1468
1469 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1470 struct vm_area_struct *vma, p4d_t *p4d,
1471 unsigned long addr, unsigned long end,
1472 struct zap_details *details)
1473 {
1474 pud_t *pud;
1475 unsigned long next;
1476
1477 pud = pud_offset(p4d, addr);
1478 do {
1479 next = pud_addr_end(addr, end);
1480 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1481 if (next - addr != HPAGE_PUD_SIZE) {
1482 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1483 split_huge_pud(vma, pud, addr);
1484 } else if (zap_huge_pud(tlb, vma, pud, addr))
1485 goto next;
1486 /* fall through */
1487 }
1488 if (pud_none_or_clear_bad(pud))
1489 continue;
1490 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1491 next:
1492 cond_resched();
1493 } while (pud++, addr = next, addr != end);
1494
1495 return addr;
1496 }
1497
1498 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1499 struct vm_area_struct *vma, pgd_t *pgd,
1500 unsigned long addr, unsigned long end,
1501 struct zap_details *details)
1502 {
1503 p4d_t *p4d;
1504 unsigned long next;
1505
1506 p4d = p4d_offset(pgd, addr);
1507 do {
1508 next = p4d_addr_end(addr, end);
1509 if (p4d_none_or_clear_bad(p4d))
1510 continue;
1511 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1512 } while (p4d++, addr = next, addr != end);
1513
1514 return addr;
1515 }
1516
1517 void unmap_page_range(struct mmu_gather *tlb,
1518 struct vm_area_struct *vma,
1519 unsigned long addr, unsigned long end,
1520 struct zap_details *details)
1521 {
1522 pgd_t *pgd;
1523 unsigned long next;
1524
1525 BUG_ON(addr >= end);
1526 tlb_start_vma(tlb, vma);
1527 pgd = pgd_offset(vma->vm_mm, addr);
1528 do {
1529 next = pgd_addr_end(addr, end);
1530 if (pgd_none_or_clear_bad(pgd))
1531 continue;
1532 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1533 } while (pgd++, addr = next, addr != end);
1534 tlb_end_vma(tlb, vma);
1535 }
1536
1537
1538 static void unmap_single_vma(struct mmu_gather *tlb,
1539 struct vm_area_struct *vma, unsigned long start_addr,
1540 unsigned long end_addr,
1541 struct zap_details *details)
1542 {
1543 unsigned long start = max(vma->vm_start, start_addr);
1544 unsigned long end;
1545
1546 if (start >= vma->vm_end)
1547 return;
1548 end = min(vma->vm_end, end_addr);
1549 if (end <= vma->vm_start)
1550 return;
1551
1552 if (vma->vm_file)
1553 uprobe_munmap(vma, start, end);
1554
1555 if (unlikely(vma->vm_flags & VM_PFNMAP))
1556 untrack_pfn(vma, 0, 0);
1557
1558 if (start != end) {
1559 if (unlikely(is_vm_hugetlb_page(vma))) {
1560 /*
1561 * It is undesirable to test vma->vm_file as it
1562 * should be non-null for valid hugetlb area.
1563 * However, vm_file will be NULL in the error
1564 * cleanup path of mmap_region. When
1565 * hugetlbfs ->mmap method fails,
1566 * mmap_region() nullifies vma->vm_file
1567 * before calling this function to clean up.
1568 * Since no pte has actually been setup, it is
1569 * safe to do nothing in this case.
1570 */
1571 if (vma->vm_file) {
1572 i_mmap_lock_write(vma->vm_file->f_mapping);
1573 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1574 i_mmap_unlock_write(vma->vm_file->f_mapping);
1575 }
1576 } else
1577 unmap_page_range(tlb, vma, start, end, details);
1578 }
1579 }
1580
1581 /**
1582 * unmap_vmas - unmap a range of memory covered by a list of vma's
1583 * @tlb: address of the caller's struct mmu_gather
1584 * @vma: the starting vma
1585 * @start_addr: virtual address at which to start unmapping
1586 * @end_addr: virtual address at which to end unmapping
1587 *
1588 * Unmap all pages in the vma list.
1589 *
1590 * Only addresses between `start' and `end' will be unmapped.
1591 *
1592 * The VMA list must be sorted in ascending virtual address order.
1593 *
1594 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1595 * range after unmap_vmas() returns. So the only responsibility here is to
1596 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1597 * drops the lock and schedules.
1598 */
1599 void unmap_vmas(struct mmu_gather *tlb,
1600 struct vm_area_struct *vma, unsigned long start_addr,
1601 unsigned long end_addr)
1602 {
1603 struct mm_struct *mm = vma->vm_mm;
1604
1605 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1606 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1607 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1608 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1609 }
1610
1611 /**
1612 * zap_page_range - remove user pages in a given range
1613 * @vma: vm_area_struct holding the applicable pages
1614 * @start: starting address of pages to zap
1615 * @size: number of bytes to zap
1616 *
1617 * Caller must protect the VMA list
1618 */
1619 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1620 unsigned long size)
1621 {
1622 struct mm_struct *mm = vma->vm_mm;
1623 struct mmu_gather tlb;
1624 unsigned long end = start + size;
1625
1626 lru_add_drain();
1627 tlb_gather_mmu(&tlb, mm, start, end);
1628 update_hiwater_rss(mm);
1629 mmu_notifier_invalidate_range_start(mm, start, end);
1630 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1631 unmap_single_vma(&tlb, vma, start, end, NULL);
1632
1633 /*
1634 * zap_page_range does not specify whether mmap_sem should be
1635 * held for read or write. That allows parallel zap_page_range
1636 * operations to unmap a PTE and defer a flush meaning that
1637 * this call observes pte_none and fails to flush the TLB.
1638 * Rather than adding a complex API, ensure that no stale
1639 * TLB entries exist when this call returns.
1640 */
1641 flush_tlb_range(vma, start, end);
1642 }
1643
1644 mmu_notifier_invalidate_range_end(mm, start, end);
1645 tlb_finish_mmu(&tlb, start, end);
1646 }
1647
1648 /**
1649 * zap_page_range_single - remove user pages in a given range
1650 * @vma: vm_area_struct holding the applicable pages
1651 * @address: starting address of pages to zap
1652 * @size: number of bytes to zap
1653 * @details: details of shared cache invalidation
1654 *
1655 * The range must fit into one VMA.
1656 */
1657 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1658 unsigned long size, struct zap_details *details)
1659 {
1660 struct mm_struct *mm = vma->vm_mm;
1661 struct mmu_gather tlb;
1662 unsigned long end = address + size;
1663
1664 lru_add_drain();
1665 tlb_gather_mmu(&tlb, mm, address, end);
1666 update_hiwater_rss(mm);
1667 mmu_notifier_invalidate_range_start(mm, address, end);
1668 unmap_single_vma(&tlb, vma, address, end, details);
1669 mmu_notifier_invalidate_range_end(mm, address, end);
1670 tlb_finish_mmu(&tlb, address, end);
1671 }
1672
1673 /**
1674 * zap_vma_ptes - remove ptes mapping the vma
1675 * @vma: vm_area_struct holding ptes to be zapped
1676 * @address: starting address of pages to zap
1677 * @size: number of bytes to zap
1678 *
1679 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1680 *
1681 * The entire address range must be fully contained within the vma.
1682 *
1683 * Returns 0 if successful.
1684 */
1685 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1686 unsigned long size)
1687 {
1688 if (address < vma->vm_start || address + size > vma->vm_end ||
1689 !(vma->vm_flags & VM_PFNMAP))
1690 return -1;
1691 zap_page_range_single(vma, address, size, NULL);
1692 return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1695
1696 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1697 spinlock_t **ptl)
1698 {
1699 pgd_t *pgd;
1700 p4d_t *p4d;
1701 pud_t *pud;
1702 pmd_t *pmd;
1703
1704 pgd = pgd_offset(mm, addr);
1705 p4d = p4d_alloc(mm, pgd, addr);
1706 if (!p4d)
1707 return NULL;
1708 pud = pud_alloc(mm, p4d, addr);
1709 if (!pud)
1710 return NULL;
1711 pmd = pmd_alloc(mm, pud, addr);
1712 if (!pmd)
1713 return NULL;
1714
1715 VM_BUG_ON(pmd_trans_huge(*pmd));
1716 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1717 }
1718
1719 /*
1720 * This is the old fallback for page remapping.
1721 *
1722 * For historical reasons, it only allows reserved pages. Only
1723 * old drivers should use this, and they needed to mark their
1724 * pages reserved for the old functions anyway.
1725 */
1726 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1727 struct page *page, pgprot_t prot)
1728 {
1729 struct mm_struct *mm = vma->vm_mm;
1730 int retval;
1731 pte_t *pte;
1732 spinlock_t *ptl;
1733
1734 retval = -EINVAL;
1735 if (PageAnon(page))
1736 goto out;
1737 retval = -ENOMEM;
1738 flush_dcache_page(page);
1739 pte = get_locked_pte(mm, addr, &ptl);
1740 if (!pte)
1741 goto out;
1742 retval = -EBUSY;
1743 if (!pte_none(*pte))
1744 goto out_unlock;
1745
1746 /* Ok, finally just insert the thing.. */
1747 get_page(page);
1748 inc_mm_counter_fast(mm, mm_counter_file(page));
1749 page_add_file_rmap(page, false);
1750 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1751
1752 retval = 0;
1753 pte_unmap_unlock(pte, ptl);
1754 return retval;
1755 out_unlock:
1756 pte_unmap_unlock(pte, ptl);
1757 out:
1758 return retval;
1759 }
1760
1761 /**
1762 * vm_insert_page - insert single page into user vma
1763 * @vma: user vma to map to
1764 * @addr: target user address of this page
1765 * @page: source kernel page
1766 *
1767 * This allows drivers to insert individual pages they've allocated
1768 * into a user vma.
1769 *
1770 * The page has to be a nice clean _individual_ kernel allocation.
1771 * If you allocate a compound page, you need to have marked it as
1772 * such (__GFP_COMP), or manually just split the page up yourself
1773 * (see split_page()).
1774 *
1775 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1776 * took an arbitrary page protection parameter. This doesn't allow
1777 * that. Your vma protection will have to be set up correctly, which
1778 * means that if you want a shared writable mapping, you'd better
1779 * ask for a shared writable mapping!
1780 *
1781 * The page does not need to be reserved.
1782 *
1783 * Usually this function is called from f_op->mmap() handler
1784 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1785 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1786 * function from other places, for example from page-fault handler.
1787 */
1788 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1789 struct page *page)
1790 {
1791 if (addr < vma->vm_start || addr >= vma->vm_end)
1792 return -EFAULT;
1793 if (!page_count(page))
1794 return -EINVAL;
1795 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1796 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1797 BUG_ON(vma->vm_flags & VM_PFNMAP);
1798 vma->vm_flags |= VM_MIXEDMAP;
1799 }
1800 return insert_page(vma, addr, page, vma->vm_page_prot);
1801 }
1802 EXPORT_SYMBOL(vm_insert_page);
1803
1804 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1805 pfn_t pfn, pgprot_t prot, bool mkwrite)
1806 {
1807 struct mm_struct *mm = vma->vm_mm;
1808 int retval;
1809 pte_t *pte, entry;
1810 spinlock_t *ptl;
1811
1812 retval = -ENOMEM;
1813 pte = get_locked_pte(mm, addr, &ptl);
1814 if (!pte)
1815 goto out;
1816 retval = -EBUSY;
1817 if (!pte_none(*pte)) {
1818 if (mkwrite) {
1819 /*
1820 * For read faults on private mappings the PFN passed
1821 * in may not match the PFN we have mapped if the
1822 * mapped PFN is a writeable COW page. In the mkwrite
1823 * case we are creating a writable PTE for a shared
1824 * mapping and we expect the PFNs to match.
1825 */
1826 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1827 goto out_unlock;
1828 entry = *pte;
1829 goto out_mkwrite;
1830 } else
1831 goto out_unlock;
1832 }
1833
1834 /* Ok, finally just insert the thing.. */
1835 if (pfn_t_devmap(pfn))
1836 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1837 else
1838 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1839
1840 out_mkwrite:
1841 if (mkwrite) {
1842 entry = pte_mkyoung(entry);
1843 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1844 }
1845
1846 set_pte_at(mm, addr, pte, entry);
1847 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1848
1849 retval = 0;
1850 out_unlock:
1851 pte_unmap_unlock(pte, ptl);
1852 out:
1853 return retval;
1854 }
1855
1856 /**
1857 * vm_insert_pfn - insert single pfn into user vma
1858 * @vma: user vma to map to
1859 * @addr: target user address of this page
1860 * @pfn: source kernel pfn
1861 *
1862 * Similar to vm_insert_page, this allows drivers to insert individual pages
1863 * they've allocated into a user vma. Same comments apply.
1864 *
1865 * This function should only be called from a vm_ops->fault handler, and
1866 * in that case the handler should return NULL.
1867 *
1868 * vma cannot be a COW mapping.
1869 *
1870 * As this is called only for pages that do not currently exist, we
1871 * do not need to flush old virtual caches or the TLB.
1872 */
1873 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1874 unsigned long pfn)
1875 {
1876 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1877 }
1878 EXPORT_SYMBOL(vm_insert_pfn);
1879
1880 /**
1881 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1882 * @vma: user vma to map to
1883 * @addr: target user address of this page
1884 * @pfn: source kernel pfn
1885 * @pgprot: pgprot flags for the inserted page
1886 *
1887 * This is exactly like vm_insert_pfn, except that it allows drivers to
1888 * to override pgprot on a per-page basis.
1889 *
1890 * This only makes sense for IO mappings, and it makes no sense for
1891 * cow mappings. In general, using multiple vmas is preferable;
1892 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1893 * impractical.
1894 */
1895 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1896 unsigned long pfn, pgprot_t pgprot)
1897 {
1898 int ret;
1899 /*
1900 * Technically, architectures with pte_special can avoid all these
1901 * restrictions (same for remap_pfn_range). However we would like
1902 * consistency in testing and feature parity among all, so we should
1903 * try to keep these invariants in place for everybody.
1904 */
1905 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1906 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1907 (VM_PFNMAP|VM_MIXEDMAP));
1908 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1909 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1910
1911 if (addr < vma->vm_start || addr >= vma->vm_end)
1912 return -EFAULT;
1913
1914 if (!pfn_modify_allowed(pfn, pgprot))
1915 return -EACCES;
1916
1917 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1918
1919 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1920 false);
1921
1922 return ret;
1923 }
1924 EXPORT_SYMBOL(vm_insert_pfn_prot);
1925
1926 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1927 pfn_t pfn, bool mkwrite)
1928 {
1929 pgprot_t pgprot = vma->vm_page_prot;
1930
1931 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1932
1933 if (addr < vma->vm_start || addr >= vma->vm_end)
1934 return -EFAULT;
1935
1936 track_pfn_insert(vma, &pgprot, pfn);
1937
1938 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1939 return -EACCES;
1940
1941 /*
1942 * If we don't have pte special, then we have to use the pfn_valid()
1943 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1944 * refcount the page if pfn_valid is true (hence insert_page rather
1945 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1946 * without pte special, it would there be refcounted as a normal page.
1947 */
1948 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1949 struct page *page;
1950
1951 /*
1952 * At this point we are committed to insert_page()
1953 * regardless of whether the caller specified flags that
1954 * result in pfn_t_has_page() == false.
1955 */
1956 page = pfn_to_page(pfn_t_to_pfn(pfn));
1957 return insert_page(vma, addr, page, pgprot);
1958 }
1959 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1960 }
1961
1962 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1963 pfn_t pfn)
1964 {
1965 return __vm_insert_mixed(vma, addr, pfn, false);
1966
1967 }
1968 EXPORT_SYMBOL(vm_insert_mixed);
1969
1970 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1971 pfn_t pfn)
1972 {
1973 return __vm_insert_mixed(vma, addr, pfn, true);
1974 }
1975 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1976
1977 /*
1978 * maps a range of physical memory into the requested pages. the old
1979 * mappings are removed. any references to nonexistent pages results
1980 * in null mappings (currently treated as "copy-on-access")
1981 */
1982 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1983 unsigned long addr, unsigned long end,
1984 unsigned long pfn, pgprot_t prot)
1985 {
1986 pte_t *pte;
1987 spinlock_t *ptl;
1988 int err = 0;
1989
1990 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1991 if (!pte)
1992 return -ENOMEM;
1993 arch_enter_lazy_mmu_mode();
1994 do {
1995 BUG_ON(!pte_none(*pte));
1996 if (!pfn_modify_allowed(pfn, prot)) {
1997 err = -EACCES;
1998 break;
1999 }
2000 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2001 pfn++;
2002 } while (pte++, addr += PAGE_SIZE, addr != end);
2003 arch_leave_lazy_mmu_mode();
2004 pte_unmap_unlock(pte - 1, ptl);
2005 return err;
2006 }
2007
2008 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2009 unsigned long addr, unsigned long end,
2010 unsigned long pfn, pgprot_t prot)
2011 {
2012 pmd_t *pmd;
2013 unsigned long next;
2014 int err;
2015
2016 pfn -= addr >> PAGE_SHIFT;
2017 pmd = pmd_alloc(mm, pud, addr);
2018 if (!pmd)
2019 return -ENOMEM;
2020 VM_BUG_ON(pmd_trans_huge(*pmd));
2021 do {
2022 next = pmd_addr_end(addr, end);
2023 err = remap_pte_range(mm, pmd, addr, next,
2024 pfn + (addr >> PAGE_SHIFT), prot);
2025 if (err)
2026 return err;
2027 } while (pmd++, addr = next, addr != end);
2028 return 0;
2029 }
2030
2031 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2032 unsigned long addr, unsigned long end,
2033 unsigned long pfn, pgprot_t prot)
2034 {
2035 pud_t *pud;
2036 unsigned long next;
2037 int err;
2038
2039 pfn -= addr >> PAGE_SHIFT;
2040 pud = pud_alloc(mm, p4d, addr);
2041 if (!pud)
2042 return -ENOMEM;
2043 do {
2044 next = pud_addr_end(addr, end);
2045 err = remap_pmd_range(mm, pud, addr, next,
2046 pfn + (addr >> PAGE_SHIFT), prot);
2047 if (err)
2048 return err;
2049 } while (pud++, addr = next, addr != end);
2050 return 0;
2051 }
2052
2053 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2054 unsigned long addr, unsigned long end,
2055 unsigned long pfn, pgprot_t prot)
2056 {
2057 p4d_t *p4d;
2058 unsigned long next;
2059 int err;
2060
2061 pfn -= addr >> PAGE_SHIFT;
2062 p4d = p4d_alloc(mm, pgd, addr);
2063 if (!p4d)
2064 return -ENOMEM;
2065 do {
2066 next = p4d_addr_end(addr, end);
2067 err = remap_pud_range(mm, p4d, addr, next,
2068 pfn + (addr >> PAGE_SHIFT), prot);
2069 if (err)
2070 return err;
2071 } while (p4d++, addr = next, addr != end);
2072 return 0;
2073 }
2074
2075 /**
2076 * remap_pfn_range - remap kernel memory to userspace
2077 * @vma: user vma to map to
2078 * @addr: target user address to start at
2079 * @pfn: physical address of kernel memory
2080 * @size: size of map area
2081 * @prot: page protection flags for this mapping
2082 *
2083 * Note: this is only safe if the mm semaphore is held when called.
2084 */
2085 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2086 unsigned long pfn, unsigned long size, pgprot_t prot)
2087 {
2088 pgd_t *pgd;
2089 unsigned long next;
2090 unsigned long end = addr + PAGE_ALIGN(size);
2091 struct mm_struct *mm = vma->vm_mm;
2092 unsigned long remap_pfn = pfn;
2093 int err;
2094
2095 /*
2096 * Physically remapped pages are special. Tell the
2097 * rest of the world about it:
2098 * VM_IO tells people not to look at these pages
2099 * (accesses can have side effects).
2100 * VM_PFNMAP tells the core MM that the base pages are just
2101 * raw PFN mappings, and do not have a "struct page" associated
2102 * with them.
2103 * VM_DONTEXPAND
2104 * Disable vma merging and expanding with mremap().
2105 * VM_DONTDUMP
2106 * Omit vma from core dump, even when VM_IO turned off.
2107 *
2108 * There's a horrible special case to handle copy-on-write
2109 * behaviour that some programs depend on. We mark the "original"
2110 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2111 * See vm_normal_page() for details.
2112 */
2113 if (is_cow_mapping(vma->vm_flags)) {
2114 if (addr != vma->vm_start || end != vma->vm_end)
2115 return -EINVAL;
2116 vma->vm_pgoff = pfn;
2117 }
2118
2119 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2120 if (err)
2121 return -EINVAL;
2122
2123 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2124
2125 BUG_ON(addr >= end);
2126 pfn -= addr >> PAGE_SHIFT;
2127 pgd = pgd_offset(mm, addr);
2128 flush_cache_range(vma, addr, end);
2129 do {
2130 next = pgd_addr_end(addr, end);
2131 err = remap_p4d_range(mm, pgd, addr, next,
2132 pfn + (addr >> PAGE_SHIFT), prot);
2133 if (err)
2134 break;
2135 } while (pgd++, addr = next, addr != end);
2136
2137 if (err)
2138 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2139
2140 return err;
2141 }
2142 EXPORT_SYMBOL(remap_pfn_range);
2143
2144 /**
2145 * vm_iomap_memory - remap memory to userspace
2146 * @vma: user vma to map to
2147 * @start: start of area
2148 * @len: size of area
2149 *
2150 * This is a simplified io_remap_pfn_range() for common driver use. The
2151 * driver just needs to give us the physical memory range to be mapped,
2152 * we'll figure out the rest from the vma information.
2153 *
2154 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2155 * whatever write-combining details or similar.
2156 */
2157 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2158 {
2159 unsigned long vm_len, pfn, pages;
2160
2161 /* Check that the physical memory area passed in looks valid */
2162 if (start + len < start)
2163 return -EINVAL;
2164 /*
2165 * You *really* shouldn't map things that aren't page-aligned,
2166 * but we've historically allowed it because IO memory might
2167 * just have smaller alignment.
2168 */
2169 len += start & ~PAGE_MASK;
2170 pfn = start >> PAGE_SHIFT;
2171 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2172 if (pfn + pages < pfn)
2173 return -EINVAL;
2174
2175 /* We start the mapping 'vm_pgoff' pages into the area */
2176 if (vma->vm_pgoff > pages)
2177 return -EINVAL;
2178 pfn += vma->vm_pgoff;
2179 pages -= vma->vm_pgoff;
2180
2181 /* Can we fit all of the mapping? */
2182 vm_len = vma->vm_end - vma->vm_start;
2183 if (vm_len >> PAGE_SHIFT > pages)
2184 return -EINVAL;
2185
2186 /* Ok, let it rip */
2187 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2188 }
2189 EXPORT_SYMBOL(vm_iomap_memory);
2190
2191 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2192 unsigned long addr, unsigned long end,
2193 pte_fn_t fn, void *data)
2194 {
2195 pte_t *pte;
2196 int err;
2197 pgtable_t token;
2198 spinlock_t *uninitialized_var(ptl);
2199
2200 pte = (mm == &init_mm) ?
2201 pte_alloc_kernel(pmd, addr) :
2202 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2203 if (!pte)
2204 return -ENOMEM;
2205
2206 BUG_ON(pmd_huge(*pmd));
2207
2208 arch_enter_lazy_mmu_mode();
2209
2210 token = pmd_pgtable(*pmd);
2211
2212 do {
2213 err = fn(pte++, token, addr, data);
2214 if (err)
2215 break;
2216 } while (addr += PAGE_SIZE, addr != end);
2217
2218 arch_leave_lazy_mmu_mode();
2219
2220 if (mm != &init_mm)
2221 pte_unmap_unlock(pte-1, ptl);
2222 return err;
2223 }
2224
2225 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2226 unsigned long addr, unsigned long end,
2227 pte_fn_t fn, void *data)
2228 {
2229 pmd_t *pmd;
2230 unsigned long next;
2231 int err;
2232
2233 BUG_ON(pud_huge(*pud));
2234
2235 pmd = pmd_alloc(mm, pud, addr);
2236 if (!pmd)
2237 return -ENOMEM;
2238 do {
2239 next = pmd_addr_end(addr, end);
2240 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2241 if (err)
2242 break;
2243 } while (pmd++, addr = next, addr != end);
2244 return err;
2245 }
2246
2247 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2248 unsigned long addr, unsigned long end,
2249 pte_fn_t fn, void *data)
2250 {
2251 pud_t *pud;
2252 unsigned long next;
2253 int err;
2254
2255 pud = pud_alloc(mm, p4d, addr);
2256 if (!pud)
2257 return -ENOMEM;
2258 do {
2259 next = pud_addr_end(addr, end);
2260 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2261 if (err)
2262 break;
2263 } while (pud++, addr = next, addr != end);
2264 return err;
2265 }
2266
2267 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2268 unsigned long addr, unsigned long end,
2269 pte_fn_t fn, void *data)
2270 {
2271 p4d_t *p4d;
2272 unsigned long next;
2273 int err;
2274
2275 p4d = p4d_alloc(mm, pgd, addr);
2276 if (!p4d)
2277 return -ENOMEM;
2278 do {
2279 next = p4d_addr_end(addr, end);
2280 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2281 if (err)
2282 break;
2283 } while (p4d++, addr = next, addr != end);
2284 return err;
2285 }
2286
2287 /*
2288 * Scan a region of virtual memory, filling in page tables as necessary
2289 * and calling a provided function on each leaf page table.
2290 */
2291 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2292 unsigned long size, pte_fn_t fn, void *data)
2293 {
2294 pgd_t *pgd;
2295 unsigned long next;
2296 unsigned long end = addr + size;
2297 int err;
2298
2299 if (WARN_ON(addr >= end))
2300 return -EINVAL;
2301
2302 pgd = pgd_offset(mm, addr);
2303 do {
2304 next = pgd_addr_end(addr, end);
2305 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2306 if (err)
2307 break;
2308 } while (pgd++, addr = next, addr != end);
2309
2310 return err;
2311 }
2312 EXPORT_SYMBOL_GPL(apply_to_page_range);
2313
2314 /*
2315 * handle_pte_fault chooses page fault handler according to an entry which was
2316 * read non-atomically. Before making any commitment, on those architectures
2317 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2318 * parts, do_swap_page must check under lock before unmapping the pte and
2319 * proceeding (but do_wp_page is only called after already making such a check;
2320 * and do_anonymous_page can safely check later on).
2321 */
2322 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2323 pte_t *page_table, pte_t orig_pte)
2324 {
2325 int same = 1;
2326 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2327 if (sizeof(pte_t) > sizeof(unsigned long)) {
2328 spinlock_t *ptl = pte_lockptr(mm, pmd);
2329 spin_lock(ptl);
2330 same = pte_same(*page_table, orig_pte);
2331 spin_unlock(ptl);
2332 }
2333 #endif
2334 pte_unmap(page_table);
2335 return same;
2336 }
2337
2338 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2339 {
2340 debug_dma_assert_idle(src);
2341
2342 /*
2343 * If the source page was a PFN mapping, we don't have
2344 * a "struct page" for it. We do a best-effort copy by
2345 * just copying from the original user address. If that
2346 * fails, we just zero-fill it. Live with it.
2347 */
2348 if (unlikely(!src)) {
2349 void *kaddr = kmap_atomic(dst);
2350 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2351
2352 /*
2353 * This really shouldn't fail, because the page is there
2354 * in the page tables. But it might just be unreadable,
2355 * in which case we just give up and fill the result with
2356 * zeroes.
2357 */
2358 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2359 clear_page(kaddr);
2360 kunmap_atomic(kaddr);
2361 flush_dcache_page(dst);
2362 } else
2363 copy_user_highpage(dst, src, va, vma);
2364 }
2365
2366 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2367 {
2368 struct file *vm_file = vma->vm_file;
2369
2370 if (vm_file)
2371 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2372
2373 /*
2374 * Special mappings (e.g. VDSO) do not have any file so fake
2375 * a default GFP_KERNEL for them.
2376 */
2377 return GFP_KERNEL;
2378 }
2379
2380 /*
2381 * Notify the address space that the page is about to become writable so that
2382 * it can prohibit this or wait for the page to get into an appropriate state.
2383 *
2384 * We do this without the lock held, so that it can sleep if it needs to.
2385 */
2386 static int do_page_mkwrite(struct vm_fault *vmf)
2387 {
2388 int ret;
2389 struct page *page = vmf->page;
2390 unsigned int old_flags = vmf->flags;
2391
2392 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2393
2394 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2395 /* Restore original flags so that caller is not surprised */
2396 vmf->flags = old_flags;
2397 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2398 return ret;
2399 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2400 lock_page(page);
2401 if (!page->mapping) {
2402 unlock_page(page);
2403 return 0; /* retry */
2404 }
2405 ret |= VM_FAULT_LOCKED;
2406 } else
2407 VM_BUG_ON_PAGE(!PageLocked(page), page);
2408 return ret;
2409 }
2410
2411 /*
2412 * Handle dirtying of a page in shared file mapping on a write fault.
2413 *
2414 * The function expects the page to be locked and unlocks it.
2415 */
2416 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2417 struct page *page)
2418 {
2419 struct address_space *mapping;
2420 bool dirtied;
2421 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2422
2423 dirtied = set_page_dirty(page);
2424 VM_BUG_ON_PAGE(PageAnon(page), page);
2425 /*
2426 * Take a local copy of the address_space - page.mapping may be zeroed
2427 * by truncate after unlock_page(). The address_space itself remains
2428 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2429 * release semantics to prevent the compiler from undoing this copying.
2430 */
2431 mapping = page_rmapping(page);
2432 unlock_page(page);
2433
2434 if ((dirtied || page_mkwrite) && mapping) {
2435 /*
2436 * Some device drivers do not set page.mapping
2437 * but still dirty their pages
2438 */
2439 balance_dirty_pages_ratelimited(mapping);
2440 }
2441
2442 if (!page_mkwrite)
2443 file_update_time(vma->vm_file);
2444 }
2445
2446 /*
2447 * Handle write page faults for pages that can be reused in the current vma
2448 *
2449 * This can happen either due to the mapping being with the VM_SHARED flag,
2450 * or due to us being the last reference standing to the page. In either
2451 * case, all we need to do here is to mark the page as writable and update
2452 * any related book-keeping.
2453 */
2454 static inline void wp_page_reuse(struct vm_fault *vmf)
2455 __releases(vmf->ptl)
2456 {
2457 struct vm_area_struct *vma = vmf->vma;
2458 struct page *page = vmf->page;
2459 pte_t entry;
2460 /*
2461 * Clear the pages cpupid information as the existing
2462 * information potentially belongs to a now completely
2463 * unrelated process.
2464 */
2465 if (page)
2466 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2467
2468 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2469 entry = pte_mkyoung(vmf->orig_pte);
2470 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2471 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2472 update_mmu_cache(vma, vmf->address, vmf->pte);
2473 pte_unmap_unlock(vmf->pte, vmf->ptl);
2474 }
2475
2476 /*
2477 * Handle the case of a page which we actually need to copy to a new page.
2478 *
2479 * Called with mmap_sem locked and the old page referenced, but
2480 * without the ptl held.
2481 *
2482 * High level logic flow:
2483 *
2484 * - Allocate a page, copy the content of the old page to the new one.
2485 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2486 * - Take the PTL. If the pte changed, bail out and release the allocated page
2487 * - If the pte is still the way we remember it, update the page table and all
2488 * relevant references. This includes dropping the reference the page-table
2489 * held to the old page, as well as updating the rmap.
2490 * - In any case, unlock the PTL and drop the reference we took to the old page.
2491 */
2492 static int wp_page_copy(struct vm_fault *vmf)
2493 {
2494 struct vm_area_struct *vma = vmf->vma;
2495 struct mm_struct *mm = vma->vm_mm;
2496 struct page *old_page = vmf->page;
2497 struct page *new_page = NULL;
2498 pte_t entry;
2499 int page_copied = 0;
2500 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2501 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2502 struct mem_cgroup *memcg;
2503
2504 if (unlikely(anon_vma_prepare(vma)))
2505 goto oom;
2506
2507 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2508 new_page = alloc_zeroed_user_highpage_movable(vma,
2509 vmf->address);
2510 if (!new_page)
2511 goto oom;
2512 } else {
2513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2514 vmf->address);
2515 if (!new_page)
2516 goto oom;
2517 cow_user_page(new_page, old_page, vmf->address, vma);
2518 }
2519
2520 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2521 goto oom_free_new;
2522
2523 __SetPageUptodate(new_page);
2524
2525 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2526
2527 /*
2528 * Re-check the pte - we dropped the lock
2529 */
2530 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2531 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2532 if (old_page) {
2533 if (!PageAnon(old_page)) {
2534 dec_mm_counter_fast(mm,
2535 mm_counter_file(old_page));
2536 inc_mm_counter_fast(mm, MM_ANONPAGES);
2537 }
2538 } else {
2539 inc_mm_counter_fast(mm, MM_ANONPAGES);
2540 }
2541 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2542 entry = mk_pte(new_page, vma->vm_page_prot);
2543 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2544 /*
2545 * Clear the pte entry and flush it first, before updating the
2546 * pte with the new entry. This will avoid a race condition
2547 * seen in the presence of one thread doing SMC and another
2548 * thread doing COW.
2549 */
2550 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2551 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2552 mem_cgroup_commit_charge(new_page, memcg, false, false);
2553 lru_cache_add_active_or_unevictable(new_page, vma);
2554 /*
2555 * We call the notify macro here because, when using secondary
2556 * mmu page tables (such as kvm shadow page tables), we want the
2557 * new page to be mapped directly into the secondary page table.
2558 */
2559 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2560 update_mmu_cache(vma, vmf->address, vmf->pte);
2561 if (old_page) {
2562 /*
2563 * Only after switching the pte to the new page may
2564 * we remove the mapcount here. Otherwise another
2565 * process may come and find the rmap count decremented
2566 * before the pte is switched to the new page, and
2567 * "reuse" the old page writing into it while our pte
2568 * here still points into it and can be read by other
2569 * threads.
2570 *
2571 * The critical issue is to order this
2572 * page_remove_rmap with the ptp_clear_flush above.
2573 * Those stores are ordered by (if nothing else,)
2574 * the barrier present in the atomic_add_negative
2575 * in page_remove_rmap.
2576 *
2577 * Then the TLB flush in ptep_clear_flush ensures that
2578 * no process can access the old page before the
2579 * decremented mapcount is visible. And the old page
2580 * cannot be reused until after the decremented
2581 * mapcount is visible. So transitively, TLBs to
2582 * old page will be flushed before it can be reused.
2583 */
2584 page_remove_rmap(old_page, false);
2585 }
2586
2587 /* Free the old page.. */
2588 new_page = old_page;
2589 page_copied = 1;
2590 } else {
2591 mem_cgroup_cancel_charge(new_page, memcg, false);
2592 }
2593
2594 if (new_page)
2595 put_page(new_page);
2596
2597 pte_unmap_unlock(vmf->pte, vmf->ptl);
2598 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2599 if (old_page) {
2600 /*
2601 * Don't let another task, with possibly unlocked vma,
2602 * keep the mlocked page.
2603 */
2604 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2605 lock_page(old_page); /* LRU manipulation */
2606 if (PageMlocked(old_page))
2607 munlock_vma_page(old_page);
2608 unlock_page(old_page);
2609 }
2610 put_page(old_page);
2611 }
2612 return page_copied ? VM_FAULT_WRITE : 0;
2613 oom_free_new:
2614 put_page(new_page);
2615 oom:
2616 if (old_page)
2617 put_page(old_page);
2618 return VM_FAULT_OOM;
2619 }
2620
2621 /**
2622 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2623 * writeable once the page is prepared
2624 *
2625 * @vmf: structure describing the fault
2626 *
2627 * This function handles all that is needed to finish a write page fault in a
2628 * shared mapping due to PTE being read-only once the mapped page is prepared.
2629 * It handles locking of PTE and modifying it. The function returns
2630 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2631 * lock.
2632 *
2633 * The function expects the page to be locked or other protection against
2634 * concurrent faults / writeback (such as DAX radix tree locks).
2635 */
2636 int finish_mkwrite_fault(struct vm_fault *vmf)
2637 {
2638 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2639 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2640 &vmf->ptl);
2641 /*
2642 * We might have raced with another page fault while we released the
2643 * pte_offset_map_lock.
2644 */
2645 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2646 pte_unmap_unlock(vmf->pte, vmf->ptl);
2647 return VM_FAULT_NOPAGE;
2648 }
2649 wp_page_reuse(vmf);
2650 return 0;
2651 }
2652
2653 /*
2654 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2655 * mapping
2656 */
2657 static int wp_pfn_shared(struct vm_fault *vmf)
2658 {
2659 struct vm_area_struct *vma = vmf->vma;
2660
2661 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2662 int ret;
2663
2664 pte_unmap_unlock(vmf->pte, vmf->ptl);
2665 vmf->flags |= FAULT_FLAG_MKWRITE;
2666 ret = vma->vm_ops->pfn_mkwrite(vmf);
2667 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2668 return ret;
2669 return finish_mkwrite_fault(vmf);
2670 }
2671 wp_page_reuse(vmf);
2672 return VM_FAULT_WRITE;
2673 }
2674
2675 static int wp_page_shared(struct vm_fault *vmf)
2676 __releases(vmf->ptl)
2677 {
2678 struct vm_area_struct *vma = vmf->vma;
2679
2680 get_page(vmf->page);
2681
2682 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2683 int tmp;
2684
2685 pte_unmap_unlock(vmf->pte, vmf->ptl);
2686 tmp = do_page_mkwrite(vmf);
2687 if (unlikely(!tmp || (tmp &
2688 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2689 put_page(vmf->page);
2690 return tmp;
2691 }
2692 tmp = finish_mkwrite_fault(vmf);
2693 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2694 unlock_page(vmf->page);
2695 put_page(vmf->page);
2696 return tmp;
2697 }
2698 } else {
2699 wp_page_reuse(vmf);
2700 lock_page(vmf->page);
2701 }
2702 fault_dirty_shared_page(vma, vmf->page);
2703 put_page(vmf->page);
2704
2705 return VM_FAULT_WRITE;
2706 }
2707
2708 /*
2709 * This routine handles present pages, when users try to write
2710 * to a shared page. It is done by copying the page to a new address
2711 * and decrementing the shared-page counter for the old page.
2712 *
2713 * Note that this routine assumes that the protection checks have been
2714 * done by the caller (the low-level page fault routine in most cases).
2715 * Thus we can safely just mark it writable once we've done any necessary
2716 * COW.
2717 *
2718 * We also mark the page dirty at this point even though the page will
2719 * change only once the write actually happens. This avoids a few races,
2720 * and potentially makes it more efficient.
2721 *
2722 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2723 * but allow concurrent faults), with pte both mapped and locked.
2724 * We return with mmap_sem still held, but pte unmapped and unlocked.
2725 */
2726 static int do_wp_page(struct vm_fault *vmf)
2727 __releases(vmf->ptl)
2728 {
2729 struct vm_area_struct *vma = vmf->vma;
2730
2731 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2732 if (!vmf->page) {
2733 /*
2734 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2735 * VM_PFNMAP VMA.
2736 *
2737 * We should not cow pages in a shared writeable mapping.
2738 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2739 */
2740 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2741 (VM_WRITE|VM_SHARED))
2742 return wp_pfn_shared(vmf);
2743
2744 pte_unmap_unlock(vmf->pte, vmf->ptl);
2745 return wp_page_copy(vmf);
2746 }
2747
2748 /*
2749 * Take out anonymous pages first, anonymous shared vmas are
2750 * not dirty accountable.
2751 */
2752 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2753 int total_map_swapcount;
2754 if (!trylock_page(vmf->page)) {
2755 get_page(vmf->page);
2756 pte_unmap_unlock(vmf->pte, vmf->ptl);
2757 lock_page(vmf->page);
2758 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2759 vmf->address, &vmf->ptl);
2760 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2761 unlock_page(vmf->page);
2762 pte_unmap_unlock(vmf->pte, vmf->ptl);
2763 put_page(vmf->page);
2764 return 0;
2765 }
2766 put_page(vmf->page);
2767 }
2768 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2769 if (total_map_swapcount == 1) {
2770 /*
2771 * The page is all ours. Move it to
2772 * our anon_vma so the rmap code will
2773 * not search our parent or siblings.
2774 * Protected against the rmap code by
2775 * the page lock.
2776 */
2777 page_move_anon_rmap(vmf->page, vma);
2778 }
2779 unlock_page(vmf->page);
2780 wp_page_reuse(vmf);
2781 return VM_FAULT_WRITE;
2782 }
2783 unlock_page(vmf->page);
2784 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2785 (VM_WRITE|VM_SHARED))) {
2786 return wp_page_shared(vmf);
2787 }
2788
2789 /*
2790 * Ok, we need to copy. Oh, well..
2791 */
2792 get_page(vmf->page);
2793
2794 pte_unmap_unlock(vmf->pte, vmf->ptl);
2795 return wp_page_copy(vmf);
2796 }
2797
2798 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2799 unsigned long start_addr, unsigned long end_addr,
2800 struct zap_details *details)
2801 {
2802 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2803 }
2804
2805 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2806 struct zap_details *details)
2807 {
2808 struct vm_area_struct *vma;
2809 pgoff_t vba, vea, zba, zea;
2810
2811 vma_interval_tree_foreach(vma, root,
2812 details->first_index, details->last_index) {
2813
2814 vba = vma->vm_pgoff;
2815 vea = vba + vma_pages(vma) - 1;
2816 zba = details->first_index;
2817 if (zba < vba)
2818 zba = vba;
2819 zea = details->last_index;
2820 if (zea > vea)
2821 zea = vea;
2822
2823 unmap_mapping_range_vma(vma,
2824 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2825 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2826 details);
2827 }
2828 }
2829
2830 /**
2831 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2832 * address_space corresponding to the specified page range in the underlying
2833 * file.
2834 *
2835 * @mapping: the address space containing mmaps to be unmapped.
2836 * @holebegin: byte in first page to unmap, relative to the start of
2837 * the underlying file. This will be rounded down to a PAGE_SIZE
2838 * boundary. Note that this is different from truncate_pagecache(), which
2839 * must keep the partial page. In contrast, we must get rid of
2840 * partial pages.
2841 * @holelen: size of prospective hole in bytes. This will be rounded
2842 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2843 * end of the file.
2844 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2845 * but 0 when invalidating pagecache, don't throw away private data.
2846 */
2847 void unmap_mapping_range(struct address_space *mapping,
2848 loff_t const holebegin, loff_t const holelen, int even_cows)
2849 {
2850 struct zap_details details = { };
2851 pgoff_t hba = holebegin >> PAGE_SHIFT;
2852 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2853
2854 /* Check for overflow. */
2855 if (sizeof(holelen) > sizeof(hlen)) {
2856 long long holeend =
2857 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2858 if (holeend & ~(long long)ULONG_MAX)
2859 hlen = ULONG_MAX - hba + 1;
2860 }
2861
2862 details.check_mapping = even_cows ? NULL : mapping;
2863 details.first_index = hba;
2864 details.last_index = hba + hlen - 1;
2865 if (details.last_index < details.first_index)
2866 details.last_index = ULONG_MAX;
2867
2868 i_mmap_lock_write(mapping);
2869 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2870 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2871 i_mmap_unlock_write(mapping);
2872 }
2873 EXPORT_SYMBOL(unmap_mapping_range);
2874
2875 /*
2876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877 * but allow concurrent faults), and pte mapped but not yet locked.
2878 * We return with pte unmapped and unlocked.
2879 *
2880 * We return with the mmap_sem locked or unlocked in the same cases
2881 * as does filemap_fault().
2882 */
2883 int do_swap_page(struct vm_fault *vmf)
2884 {
2885 struct vm_area_struct *vma = vmf->vma;
2886 struct page *page = NULL, *swapcache;
2887 struct mem_cgroup *memcg;
2888 struct vma_swap_readahead swap_ra;
2889 swp_entry_t entry;
2890 pte_t pte;
2891 int locked;
2892 int exclusive = 0;
2893 int ret = 0;
2894 bool vma_readahead = swap_use_vma_readahead();
2895
2896 if (vma_readahead)
2897 page = swap_readahead_detect(vmf, &swap_ra);
2898 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2899 if (page)
2900 put_page(page);
2901 goto out;
2902 }
2903
2904 entry = pte_to_swp_entry(vmf->orig_pte);
2905 if (unlikely(non_swap_entry(entry))) {
2906 if (is_migration_entry(entry)) {
2907 migration_entry_wait(vma->vm_mm, vmf->pmd,
2908 vmf->address);
2909 } else if (is_device_private_entry(entry)) {
2910 /*
2911 * For un-addressable device memory we call the pgmap
2912 * fault handler callback. The callback must migrate
2913 * the page back to some CPU accessible page.
2914 */
2915 ret = device_private_entry_fault(vma, vmf->address, entry,
2916 vmf->flags, vmf->pmd);
2917 } else if (is_hwpoison_entry(entry)) {
2918 ret = VM_FAULT_HWPOISON;
2919 } else {
2920 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2921 ret = VM_FAULT_SIGBUS;
2922 }
2923 goto out;
2924 }
2925 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2926 if (!page)
2927 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2928 vmf->address);
2929 if (!page) {
2930 if (vma_readahead)
2931 page = do_swap_page_readahead(entry,
2932 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2933 else
2934 page = swapin_readahead(entry,
2935 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2936 if (!page) {
2937 /*
2938 * Back out if somebody else faulted in this pte
2939 * while we released the pte lock.
2940 */
2941 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2942 vmf->address, &vmf->ptl);
2943 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2944 ret = VM_FAULT_OOM;
2945 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2946 goto unlock;
2947 }
2948
2949 /* Had to read the page from swap area: Major fault */
2950 ret = VM_FAULT_MAJOR;
2951 count_vm_event(PGMAJFAULT);
2952 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2953 } else if (PageHWPoison(page)) {
2954 /*
2955 * hwpoisoned dirty swapcache pages are kept for killing
2956 * owner processes (which may be unknown at hwpoison time)
2957 */
2958 ret = VM_FAULT_HWPOISON;
2959 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2960 swapcache = page;
2961 goto out_release;
2962 }
2963
2964 swapcache = page;
2965 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2966
2967 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968 if (!locked) {
2969 ret |= VM_FAULT_RETRY;
2970 goto out_release;
2971 }
2972
2973 /*
2974 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2975 * release the swapcache from under us. The page pin, and pte_same
2976 * test below, are not enough to exclude that. Even if it is still
2977 * swapcache, we need to check that the page's swap has not changed.
2978 */
2979 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2980 goto out_page;
2981
2982 page = ksm_might_need_to_copy(page, vma, vmf->address);
2983 if (unlikely(!page)) {
2984 ret = VM_FAULT_OOM;
2985 page = swapcache;
2986 goto out_page;
2987 }
2988
2989 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2990 &memcg, false)) {
2991 ret = VM_FAULT_OOM;
2992 goto out_page;
2993 }
2994
2995 /*
2996 * Back out if somebody else already faulted in this pte.
2997 */
2998 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2999 &vmf->ptl);
3000 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3001 goto out_nomap;
3002
3003 if (unlikely(!PageUptodate(page))) {
3004 ret = VM_FAULT_SIGBUS;
3005 goto out_nomap;
3006 }
3007
3008 /*
3009 * The page isn't present yet, go ahead with the fault.
3010 *
3011 * Be careful about the sequence of operations here.
3012 * To get its accounting right, reuse_swap_page() must be called
3013 * while the page is counted on swap but not yet in mapcount i.e.
3014 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3015 * must be called after the swap_free(), or it will never succeed.
3016 */
3017
3018 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3019 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3020 pte = mk_pte(page, vma->vm_page_prot);
3021 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3022 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3023 vmf->flags &= ~FAULT_FLAG_WRITE;
3024 ret |= VM_FAULT_WRITE;
3025 exclusive = RMAP_EXCLUSIVE;
3026 }
3027 flush_icache_page(vma, page);
3028 if (pte_swp_soft_dirty(vmf->orig_pte))
3029 pte = pte_mksoft_dirty(pte);
3030 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3031 vmf->orig_pte = pte;
3032 if (page == swapcache) {
3033 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3034 mem_cgroup_commit_charge(page, memcg, true, false);
3035 activate_page(page);
3036 } else { /* ksm created a completely new copy */
3037 page_add_new_anon_rmap(page, vma, vmf->address, false);
3038 mem_cgroup_commit_charge(page, memcg, false, false);
3039 lru_cache_add_active_or_unevictable(page, vma);
3040 }
3041
3042 swap_free(entry);
3043 if (mem_cgroup_swap_full(page) ||
3044 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3045 try_to_free_swap(page);
3046 unlock_page(page);
3047 if (page != swapcache) {
3048 /*
3049 * Hold the lock to avoid the swap entry to be reused
3050 * until we take the PT lock for the pte_same() check
3051 * (to avoid false positives from pte_same). For
3052 * further safety release the lock after the swap_free
3053 * so that the swap count won't change under a
3054 * parallel locked swapcache.
3055 */
3056 unlock_page(swapcache);
3057 put_page(swapcache);
3058 }
3059
3060 if (vmf->flags & FAULT_FLAG_WRITE) {
3061 ret |= do_wp_page(vmf);
3062 if (ret & VM_FAULT_ERROR)
3063 ret &= VM_FAULT_ERROR;
3064 goto out;
3065 }
3066
3067 /* No need to invalidate - it was non-present before */
3068 update_mmu_cache(vma, vmf->address, vmf->pte);
3069 unlock:
3070 pte_unmap_unlock(vmf->pte, vmf->ptl);
3071 out:
3072 return ret | VM_FAULT_SWAP;
3073 out_nomap:
3074 mem_cgroup_cancel_charge(page, memcg, false);
3075 pte_unmap_unlock(vmf->pte, vmf->ptl);
3076 out_page:
3077 unlock_page(page);
3078 out_release:
3079 put_page(page);
3080 if (page != swapcache) {
3081 unlock_page(swapcache);
3082 put_page(swapcache);
3083 }
3084 return ret | VM_FAULT_SWAP;
3085 }
3086
3087 /*
3088 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3089 * but allow concurrent faults), and pte mapped but not yet locked.
3090 * We return with mmap_sem still held, but pte unmapped and unlocked.
3091 */
3092 static int do_anonymous_page(struct vm_fault *vmf)
3093 {
3094 struct vm_area_struct *vma = vmf->vma;
3095 struct mem_cgroup *memcg;
3096 struct page *page;
3097 int ret = 0;
3098 pte_t entry;
3099
3100 /* File mapping without ->vm_ops ? */
3101 if (vma->vm_flags & VM_SHARED)
3102 return VM_FAULT_SIGBUS;
3103
3104 /*
3105 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3106 * pte_offset_map() on pmds where a huge pmd might be created
3107 * from a different thread.
3108 *
3109 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3110 * parallel threads are excluded by other means.
3111 *
3112 * Here we only have down_read(mmap_sem).
3113 */
3114 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3115 return VM_FAULT_OOM;
3116
3117 /* See the comment in pte_alloc_one_map() */
3118 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3119 return 0;
3120
3121 /* Use the zero-page for reads */
3122 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3123 !mm_forbids_zeropage(vma->vm_mm)) {
3124 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3125 vma->vm_page_prot));
3126 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3127 vmf->address, &vmf->ptl);
3128 if (!pte_none(*vmf->pte))
3129 goto unlock;
3130 ret = check_stable_address_space(vma->vm_mm);
3131 if (ret)
3132 goto unlock;
3133 /* Deliver the page fault to userland, check inside PT lock */
3134 if (userfaultfd_missing(vma)) {
3135 pte_unmap_unlock(vmf->pte, vmf->ptl);
3136 return handle_userfault(vmf, VM_UFFD_MISSING);
3137 }
3138 goto setpte;
3139 }
3140
3141 /* Allocate our own private page. */
3142 if (unlikely(anon_vma_prepare(vma)))
3143 goto oom;
3144 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3145 if (!page)
3146 goto oom;
3147
3148 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3149 goto oom_free_page;
3150
3151 /*
3152 * The memory barrier inside __SetPageUptodate makes sure that
3153 * preceeding stores to the page contents become visible before
3154 * the set_pte_at() write.
3155 */
3156 __SetPageUptodate(page);
3157
3158 entry = mk_pte(page, vma->vm_page_prot);
3159 if (vma->vm_flags & VM_WRITE)
3160 entry = pte_mkwrite(pte_mkdirty(entry));
3161
3162 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3163 &vmf->ptl);
3164 if (!pte_none(*vmf->pte))
3165 goto release;
3166
3167 ret = check_stable_address_space(vma->vm_mm);
3168 if (ret)
3169 goto release;
3170
3171 /* Deliver the page fault to userland, check inside PT lock */
3172 if (userfaultfd_missing(vma)) {
3173 pte_unmap_unlock(vmf->pte, vmf->ptl);
3174 mem_cgroup_cancel_charge(page, memcg, false);
3175 put_page(page);
3176 return handle_userfault(vmf, VM_UFFD_MISSING);
3177 }
3178
3179 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3180 page_add_new_anon_rmap(page, vma, vmf->address, false);
3181 mem_cgroup_commit_charge(page, memcg, false, false);
3182 lru_cache_add_active_or_unevictable(page, vma);
3183 setpte:
3184 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3185
3186 /* No need to invalidate - it was non-present before */
3187 update_mmu_cache(vma, vmf->address, vmf->pte);
3188 unlock:
3189 pte_unmap_unlock(vmf->pte, vmf->ptl);
3190 return ret;
3191 release:
3192 mem_cgroup_cancel_charge(page, memcg, false);
3193 put_page(page);
3194 goto unlock;
3195 oom_free_page:
3196 put_page(page);
3197 oom:
3198 return VM_FAULT_OOM;
3199 }
3200
3201 /*
3202 * The mmap_sem must have been held on entry, and may have been
3203 * released depending on flags and vma->vm_ops->fault() return value.
3204 * See filemap_fault() and __lock_page_retry().
3205 */
3206 static int __do_fault(struct vm_fault *vmf)
3207 {
3208 struct vm_area_struct *vma = vmf->vma;
3209 int ret;
3210
3211 /*
3212 * Preallocate pte before we take page_lock because this might lead to
3213 * deadlocks for memcg reclaim which waits for pages under writeback:
3214 * lock_page(A)
3215 * SetPageWriteback(A)
3216 * unlock_page(A)
3217 * lock_page(B)
3218 * lock_page(B)
3219 * pte_alloc_pne
3220 * shrink_page_list
3221 * wait_on_page_writeback(A)
3222 * SetPageWriteback(B)
3223 * unlock_page(B)
3224 * # flush A, B to clear the writeback
3225 */
3226 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3227 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3228 vmf->address);
3229 if (!vmf->prealloc_pte)
3230 return VM_FAULT_OOM;
3231 smp_wmb(); /* See comment in __pte_alloc() */
3232 }
3233
3234 ret = vma->vm_ops->fault(vmf);
3235 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3236 VM_FAULT_DONE_COW)))
3237 return ret;
3238
3239 if (unlikely(PageHWPoison(vmf->page))) {
3240 if (ret & VM_FAULT_LOCKED)
3241 unlock_page(vmf->page);
3242 put_page(vmf->page);
3243 vmf->page = NULL;
3244 return VM_FAULT_HWPOISON;
3245 }
3246
3247 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3248 lock_page(vmf->page);
3249 else
3250 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3251
3252 return ret;
3253 }
3254
3255 /*
3256 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3257 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3258 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3259 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3260 */
3261 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3262 {
3263 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3264 }
3265
3266 static int pte_alloc_one_map(struct vm_fault *vmf)
3267 {
3268 struct vm_area_struct *vma = vmf->vma;
3269
3270 if (!pmd_none(*vmf->pmd))
3271 goto map_pte;
3272 if (vmf->prealloc_pte) {
3273 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3274 if (unlikely(!pmd_none(*vmf->pmd))) {
3275 spin_unlock(vmf->ptl);
3276 goto map_pte;
3277 }
3278
3279 atomic_long_inc(&vma->vm_mm->nr_ptes);
3280 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3281 spin_unlock(vmf->ptl);
3282 vmf->prealloc_pte = NULL;
3283 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3284 return VM_FAULT_OOM;
3285 }
3286 map_pte:
3287 /*
3288 * If a huge pmd materialized under us just retry later. Use
3289 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3290 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3291 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3292 * running immediately after a huge pmd fault in a different thread of
3293 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3294 * All we have to ensure is that it is a regular pmd that we can walk
3295 * with pte_offset_map() and we can do that through an atomic read in
3296 * C, which is what pmd_trans_unstable() provides.
3297 */
3298 if (pmd_devmap_trans_unstable(vmf->pmd))
3299 return VM_FAULT_NOPAGE;
3300
3301 /*
3302 * At this point we know that our vmf->pmd points to a page of ptes
3303 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3304 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3305 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3306 * be valid and we will re-check to make sure the vmf->pte isn't
3307 * pte_none() under vmf->ptl protection when we return to
3308 * alloc_set_pte().
3309 */
3310 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3311 &vmf->ptl);
3312 return 0;
3313 }
3314
3315 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3316
3317 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3318 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3319 unsigned long haddr)
3320 {
3321 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3322 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3323 return false;
3324 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3325 return false;
3326 return true;
3327 }
3328
3329 static void deposit_prealloc_pte(struct vm_fault *vmf)
3330 {
3331 struct vm_area_struct *vma = vmf->vma;
3332
3333 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3334 /*
3335 * We are going to consume the prealloc table,
3336 * count that as nr_ptes.
3337 */
3338 atomic_long_inc(&vma->vm_mm->nr_ptes);
3339 vmf->prealloc_pte = NULL;
3340 }
3341
3342 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3343 {
3344 struct vm_area_struct *vma = vmf->vma;
3345 bool write = vmf->flags & FAULT_FLAG_WRITE;
3346 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3347 pmd_t entry;
3348 int i, ret;
3349
3350 if (!transhuge_vma_suitable(vma, haddr))
3351 return VM_FAULT_FALLBACK;
3352
3353 ret = VM_FAULT_FALLBACK;
3354 page = compound_head(page);
3355
3356 /*
3357 * Archs like ppc64 need additonal space to store information
3358 * related to pte entry. Use the preallocated table for that.
3359 */
3360 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3361 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3362 if (!vmf->prealloc_pte)
3363 return VM_FAULT_OOM;
3364 smp_wmb(); /* See comment in __pte_alloc() */
3365 }
3366
3367 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3368 if (unlikely(!pmd_none(*vmf->pmd)))
3369 goto out;
3370
3371 for (i = 0; i < HPAGE_PMD_NR; i++)
3372 flush_icache_page(vma, page + i);
3373
3374 entry = mk_huge_pmd(page, vma->vm_page_prot);
3375 if (write)
3376 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3377
3378 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3379 page_add_file_rmap(page, true);
3380 /*
3381 * deposit and withdraw with pmd lock held
3382 */
3383 if (arch_needs_pgtable_deposit())
3384 deposit_prealloc_pte(vmf);
3385
3386 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3387
3388 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3389
3390 /* fault is handled */
3391 ret = 0;
3392 count_vm_event(THP_FILE_MAPPED);
3393 out:
3394 spin_unlock(vmf->ptl);
3395 return ret;
3396 }
3397 #else
3398 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3399 {
3400 BUILD_BUG();
3401 return 0;
3402 }
3403 #endif
3404
3405 /**
3406 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3407 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3408 *
3409 * @vmf: fault environment
3410 * @memcg: memcg to charge page (only for private mappings)
3411 * @page: page to map
3412 *
3413 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3414 * return.
3415 *
3416 * Target users are page handler itself and implementations of
3417 * vm_ops->map_pages.
3418 */
3419 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3420 struct page *page)
3421 {
3422 struct vm_area_struct *vma = vmf->vma;
3423 bool write = vmf->flags & FAULT_FLAG_WRITE;
3424 pte_t entry;
3425 int ret;
3426
3427 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3428 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3429 /* THP on COW? */
3430 VM_BUG_ON_PAGE(memcg, page);
3431
3432 ret = do_set_pmd(vmf, page);
3433 if (ret != VM_FAULT_FALLBACK)
3434 return ret;
3435 }
3436
3437 if (!vmf->pte) {
3438 ret = pte_alloc_one_map(vmf);
3439 if (ret)
3440 return ret;
3441 }
3442
3443 /* Re-check under ptl */
3444 if (unlikely(!pte_none(*vmf->pte)))
3445 return VM_FAULT_NOPAGE;
3446
3447 flush_icache_page(vma, page);
3448 entry = mk_pte(page, vma->vm_page_prot);
3449 if (write)
3450 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3451 /* copy-on-write page */
3452 if (write && !(vma->vm_flags & VM_SHARED)) {
3453 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3454 page_add_new_anon_rmap(page, vma, vmf->address, false);
3455 mem_cgroup_commit_charge(page, memcg, false, false);
3456 lru_cache_add_active_or_unevictable(page, vma);
3457 } else {
3458 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3459 page_add_file_rmap(page, false);
3460 }
3461 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3462
3463 /* no need to invalidate: a not-present page won't be cached */
3464 update_mmu_cache(vma, vmf->address, vmf->pte);
3465
3466 return 0;
3467 }
3468
3469
3470 /**
3471 * finish_fault - finish page fault once we have prepared the page to fault
3472 *
3473 * @vmf: structure describing the fault
3474 *
3475 * This function handles all that is needed to finish a page fault once the
3476 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3477 * given page, adds reverse page mapping, handles memcg charges and LRU
3478 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3479 * error.
3480 *
3481 * The function expects the page to be locked and on success it consumes a
3482 * reference of a page being mapped (for the PTE which maps it).
3483 */
3484 int finish_fault(struct vm_fault *vmf)
3485 {
3486 struct page *page;
3487 int ret = 0;
3488
3489 /* Did we COW the page? */
3490 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3491 !(vmf->vma->vm_flags & VM_SHARED))
3492 page = vmf->cow_page;
3493 else
3494 page = vmf->page;
3495
3496 /*
3497 * check even for read faults because we might have lost our CoWed
3498 * page
3499 */
3500 if (!(vmf->vma->vm_flags & VM_SHARED))
3501 ret = check_stable_address_space(vmf->vma->vm_mm);
3502 if (!ret)
3503 ret = alloc_set_pte(vmf, vmf->memcg, page);
3504 if (vmf->pte)
3505 pte_unmap_unlock(vmf->pte, vmf->ptl);
3506 return ret;
3507 }
3508
3509 static unsigned long fault_around_bytes __read_mostly =
3510 rounddown_pow_of_two(65536);
3511
3512 #ifdef CONFIG_DEBUG_FS
3513 static int fault_around_bytes_get(void *data, u64 *val)
3514 {
3515 *val = fault_around_bytes;
3516 return 0;
3517 }
3518
3519 /*
3520 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3521 * rounded down to nearest page order. It's what do_fault_around() expects to
3522 * see.
3523 */
3524 static int fault_around_bytes_set(void *data, u64 val)
3525 {
3526 if (val / PAGE_SIZE > PTRS_PER_PTE)
3527 return -EINVAL;
3528 if (val > PAGE_SIZE)
3529 fault_around_bytes = rounddown_pow_of_two(val);
3530 else
3531 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3532 return 0;
3533 }
3534 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3535 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3536
3537 static int __init fault_around_debugfs(void)
3538 {
3539 void *ret;
3540
3541 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3542 &fault_around_bytes_fops);
3543 if (!ret)
3544 pr_warn("Failed to create fault_around_bytes in debugfs");
3545 return 0;
3546 }
3547 late_initcall(fault_around_debugfs);
3548 #endif
3549
3550 /*
3551 * do_fault_around() tries to map few pages around the fault address. The hope
3552 * is that the pages will be needed soon and this will lower the number of
3553 * faults to handle.
3554 *
3555 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3556 * not ready to be mapped: not up-to-date, locked, etc.
3557 *
3558 * This function is called with the page table lock taken. In the split ptlock
3559 * case the page table lock only protects only those entries which belong to
3560 * the page table corresponding to the fault address.
3561 *
3562 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3563 * only once.
3564 *
3565 * fault_around_pages() defines how many pages we'll try to map.
3566 * do_fault_around() expects it to return a power of two less than or equal to
3567 * PTRS_PER_PTE.
3568 *
3569 * The virtual address of the area that we map is naturally aligned to the
3570 * fault_around_pages() value (and therefore to page order). This way it's
3571 * easier to guarantee that we don't cross page table boundaries.
3572 */
3573 static int do_fault_around(struct vm_fault *vmf)
3574 {
3575 unsigned long address = vmf->address, nr_pages, mask;
3576 pgoff_t start_pgoff = vmf->pgoff;
3577 pgoff_t end_pgoff;
3578 int off, ret = 0;
3579
3580 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3581 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3582
3583 vmf->address = max(address & mask, vmf->vma->vm_start);
3584 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3585 start_pgoff -= off;
3586
3587 /*
3588 * end_pgoff is either end of page table or end of vma
3589 * or fault_around_pages() from start_pgoff, depending what is nearest.
3590 */
3591 end_pgoff = start_pgoff -
3592 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3593 PTRS_PER_PTE - 1;
3594 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3595 start_pgoff + nr_pages - 1);
3596
3597 if (pmd_none(*vmf->pmd)) {
3598 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3599 vmf->address);
3600 if (!vmf->prealloc_pte)
3601 goto out;
3602 smp_wmb(); /* See comment in __pte_alloc() */
3603 }
3604
3605 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3606
3607 /* Huge page is mapped? Page fault is solved */
3608 if (pmd_trans_huge(*vmf->pmd)) {
3609 ret = VM_FAULT_NOPAGE;
3610 goto out;
3611 }
3612
3613 /* ->map_pages() haven't done anything useful. Cold page cache? */
3614 if (!vmf->pte)
3615 goto out;
3616
3617 /* check if the page fault is solved */
3618 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3619 if (!pte_none(*vmf->pte))
3620 ret = VM_FAULT_NOPAGE;
3621 pte_unmap_unlock(vmf->pte, vmf->ptl);
3622 out:
3623 vmf->address = address;
3624 vmf->pte = NULL;
3625 return ret;
3626 }
3627
3628 static int do_read_fault(struct vm_fault *vmf)
3629 {
3630 struct vm_area_struct *vma = vmf->vma;
3631 int ret = 0;
3632
3633 /*
3634 * Let's call ->map_pages() first and use ->fault() as fallback
3635 * if page by the offset is not ready to be mapped (cold cache or
3636 * something).
3637 */
3638 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3639 ret = do_fault_around(vmf);
3640 if (ret)
3641 return ret;
3642 }
3643
3644 ret = __do_fault(vmf);
3645 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3646 return ret;
3647
3648 ret |= finish_fault(vmf);
3649 unlock_page(vmf->page);
3650 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3651 put_page(vmf->page);
3652 return ret;
3653 }
3654
3655 static int do_cow_fault(struct vm_fault *vmf)
3656 {
3657 struct vm_area_struct *vma = vmf->vma;
3658 int ret;
3659
3660 if (unlikely(anon_vma_prepare(vma)))
3661 return VM_FAULT_OOM;
3662
3663 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3664 if (!vmf->cow_page)
3665 return VM_FAULT_OOM;
3666
3667 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3668 &vmf->memcg, false)) {
3669 put_page(vmf->cow_page);
3670 return VM_FAULT_OOM;
3671 }
3672
3673 ret = __do_fault(vmf);
3674 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3675 goto uncharge_out;
3676 if (ret & VM_FAULT_DONE_COW)
3677 return ret;
3678
3679 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3680 __SetPageUptodate(vmf->cow_page);
3681
3682 ret |= finish_fault(vmf);
3683 unlock_page(vmf->page);
3684 put_page(vmf->page);
3685 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3686 goto uncharge_out;
3687 return ret;
3688 uncharge_out:
3689 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3690 put_page(vmf->cow_page);
3691 return ret;
3692 }
3693
3694 static int do_shared_fault(struct vm_fault *vmf)
3695 {
3696 struct vm_area_struct *vma = vmf->vma;
3697 int ret, tmp;
3698
3699 ret = __do_fault(vmf);
3700 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3701 return ret;
3702
3703 /*
3704 * Check if the backing address space wants to know that the page is
3705 * about to become writable
3706 */
3707 if (vma->vm_ops->page_mkwrite) {
3708 unlock_page(vmf->page);
3709 tmp = do_page_mkwrite(vmf);
3710 if (unlikely(!tmp ||
3711 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3712 put_page(vmf->page);
3713 return tmp;
3714 }
3715 }
3716
3717 ret |= finish_fault(vmf);
3718 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3719 VM_FAULT_RETRY))) {
3720 unlock_page(vmf->page);
3721 put_page(vmf->page);
3722 return ret;
3723 }
3724
3725 fault_dirty_shared_page(vma, vmf->page);
3726 return ret;
3727 }
3728
3729 /*
3730 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3731 * but allow concurrent faults).
3732 * The mmap_sem may have been released depending on flags and our
3733 * return value. See filemap_fault() and __lock_page_or_retry().
3734 */
3735 static int do_fault(struct vm_fault *vmf)
3736 {
3737 struct vm_area_struct *vma = vmf->vma;
3738 int ret;
3739
3740 /*
3741 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3742 */
3743 if (!vma->vm_ops->fault) {
3744 /*
3745 * If we find a migration pmd entry or a none pmd entry, which
3746 * should never happen, return SIGBUS
3747 */
3748 if (unlikely(!pmd_present(*vmf->pmd)))
3749 ret = VM_FAULT_SIGBUS;
3750 else {
3751 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3752 vmf->pmd,
3753 vmf->address,
3754 &vmf->ptl);
3755 /*
3756 * Make sure this is not a temporary clearing of pte
3757 * by holding ptl and checking again. A R/M/W update
3758 * of pte involves: take ptl, clearing the pte so that
3759 * we don't have concurrent modification by hardware
3760 * followed by an update.
3761 */
3762 if (unlikely(pte_none(*vmf->pte)))
3763 ret = VM_FAULT_SIGBUS;
3764 else
3765 ret = VM_FAULT_NOPAGE;
3766
3767 pte_unmap_unlock(vmf->pte, vmf->ptl);
3768 }
3769 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3770 ret = do_read_fault(vmf);
3771 else if (!(vma->vm_flags & VM_SHARED))
3772 ret = do_cow_fault(vmf);
3773 else
3774 ret = do_shared_fault(vmf);
3775
3776 /* preallocated pagetable is unused: free it */
3777 if (vmf->prealloc_pte) {
3778 pte_free(vma->vm_mm, vmf->prealloc_pte);
3779 vmf->prealloc_pte = NULL;
3780 }
3781 return ret;
3782 }
3783
3784 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3785 unsigned long addr, int page_nid,
3786 int *flags)
3787 {
3788 get_page(page);
3789
3790 count_vm_numa_event(NUMA_HINT_FAULTS);
3791 if (page_nid == numa_node_id()) {
3792 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3793 *flags |= TNF_FAULT_LOCAL;
3794 }
3795
3796 return mpol_misplaced(page, vma, addr);
3797 }
3798
3799 static int do_numa_page(struct vm_fault *vmf)
3800 {
3801 struct vm_area_struct *vma = vmf->vma;
3802 struct page *page = NULL;
3803 int page_nid = -1;
3804 int last_cpupid;
3805 int target_nid;
3806 bool migrated = false;
3807 pte_t pte;
3808 bool was_writable = pte_savedwrite(vmf->orig_pte);
3809 int flags = 0;
3810
3811 /*
3812 * The "pte" at this point cannot be used safely without
3813 * validation through pte_unmap_same(). It's of NUMA type but
3814 * the pfn may be screwed if the read is non atomic.
3815 */
3816 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3817 spin_lock(vmf->ptl);
3818 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3819 pte_unmap_unlock(vmf->pte, vmf->ptl);
3820 goto out;
3821 }
3822
3823 /*
3824 * Make it present again, Depending on how arch implementes non
3825 * accessible ptes, some can allow access by kernel mode.
3826 */
3827 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3828 pte = pte_modify(pte, vma->vm_page_prot);
3829 pte = pte_mkyoung(pte);
3830 if (was_writable)
3831 pte = pte_mkwrite(pte);
3832 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3833 update_mmu_cache(vma, vmf->address, vmf->pte);
3834
3835 page = vm_normal_page(vma, vmf->address, pte);
3836 if (!page) {
3837 pte_unmap_unlock(vmf->pte, vmf->ptl);
3838 return 0;
3839 }
3840
3841 /* TODO: handle PTE-mapped THP */
3842 if (PageCompound(page)) {
3843 pte_unmap_unlock(vmf->pte, vmf->ptl);
3844 return 0;
3845 }
3846
3847 /*
3848 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3849 * much anyway since they can be in shared cache state. This misses
3850 * the case where a mapping is writable but the process never writes
3851 * to it but pte_write gets cleared during protection updates and
3852 * pte_dirty has unpredictable behaviour between PTE scan updates,
3853 * background writeback, dirty balancing and application behaviour.
3854 */
3855 if (!pte_write(pte))
3856 flags |= TNF_NO_GROUP;
3857
3858 /*
3859 * Flag if the page is shared between multiple address spaces. This
3860 * is later used when determining whether to group tasks together
3861 */
3862 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3863 flags |= TNF_SHARED;
3864
3865 last_cpupid = page_cpupid_last(page);
3866 page_nid = page_to_nid(page);
3867 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3868 &flags);
3869 pte_unmap_unlock(vmf->pte, vmf->ptl);
3870 if (target_nid == -1) {
3871 put_page(page);
3872 goto out;
3873 }
3874
3875 /* Migrate to the requested node */
3876 migrated = migrate_misplaced_page(page, vma, target_nid);
3877 if (migrated) {
3878 page_nid = target_nid;
3879 flags |= TNF_MIGRATED;
3880 } else
3881 flags |= TNF_MIGRATE_FAIL;
3882
3883 out:
3884 if (page_nid != -1)
3885 task_numa_fault(last_cpupid, page_nid, 1, flags);
3886 return 0;
3887 }
3888
3889 static inline int create_huge_pmd(struct vm_fault *vmf)
3890 {
3891 if (vma_is_anonymous(vmf->vma))
3892 return do_huge_pmd_anonymous_page(vmf);
3893 if (vmf->vma->vm_ops->huge_fault)
3894 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3895 return VM_FAULT_FALLBACK;
3896 }
3897
3898 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3899 {
3900 if (vma_is_anonymous(vmf->vma))
3901 return do_huge_pmd_wp_page(vmf, orig_pmd);
3902 if (vmf->vma->vm_ops->huge_fault)
3903 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3904
3905 /* COW handled on pte level: split pmd */
3906 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3907 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3908
3909 return VM_FAULT_FALLBACK;
3910 }
3911
3912 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3913 {
3914 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3915 }
3916
3917 static int create_huge_pud(struct vm_fault *vmf)
3918 {
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 /* No support for anonymous transparent PUD pages yet */
3921 if (vma_is_anonymous(vmf->vma))
3922 return VM_FAULT_FALLBACK;
3923 if (vmf->vma->vm_ops->huge_fault)
3924 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 return VM_FAULT_FALLBACK;
3927 }
3928
3929 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3930 {
3931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3932 /* No support for anonymous transparent PUD pages yet */
3933 if (vma_is_anonymous(vmf->vma))
3934 return VM_FAULT_FALLBACK;
3935 if (vmf->vma->vm_ops->huge_fault)
3936 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3937 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3938 return VM_FAULT_FALLBACK;
3939 }
3940
3941 /*
3942 * These routines also need to handle stuff like marking pages dirty
3943 * and/or accessed for architectures that don't do it in hardware (most
3944 * RISC architectures). The early dirtying is also good on the i386.
3945 *
3946 * There is also a hook called "update_mmu_cache()" that architectures
3947 * with external mmu caches can use to update those (ie the Sparc or
3948 * PowerPC hashed page tables that act as extended TLBs).
3949 *
3950 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3951 * concurrent faults).
3952 *
3953 * The mmap_sem may have been released depending on flags and our return value.
3954 * See filemap_fault() and __lock_page_or_retry().
3955 */
3956 static int handle_pte_fault(struct vm_fault *vmf)
3957 {
3958 pte_t entry;
3959
3960 if (unlikely(pmd_none(*vmf->pmd))) {
3961 /*
3962 * Leave __pte_alloc() until later: because vm_ops->fault may
3963 * want to allocate huge page, and if we expose page table
3964 * for an instant, it will be difficult to retract from
3965 * concurrent faults and from rmap lookups.
3966 */
3967 vmf->pte = NULL;
3968 } else {
3969 /* See comment in pte_alloc_one_map() */
3970 if (pmd_devmap_trans_unstable(vmf->pmd))
3971 return 0;
3972 /*
3973 * A regular pmd is established and it can't morph into a huge
3974 * pmd from under us anymore at this point because we hold the
3975 * mmap_sem read mode and khugepaged takes it in write mode.
3976 * So now it's safe to run pte_offset_map().
3977 */
3978 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3979 vmf->orig_pte = *vmf->pte;
3980
3981 /*
3982 * some architectures can have larger ptes than wordsize,
3983 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3984 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3985 * atomic accesses. The code below just needs a consistent
3986 * view for the ifs and we later double check anyway with the
3987 * ptl lock held. So here a barrier will do.
3988 */
3989 barrier();
3990 if (pte_none(vmf->orig_pte)) {
3991 pte_unmap(vmf->pte);
3992 vmf->pte = NULL;
3993 }
3994 }
3995
3996 if (!vmf->pte) {
3997 if (vma_is_anonymous(vmf->vma))
3998 return do_anonymous_page(vmf);
3999 else
4000 return do_fault(vmf);
4001 }
4002
4003 if (!pte_present(vmf->orig_pte))
4004 return do_swap_page(vmf);
4005
4006 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4007 return do_numa_page(vmf);
4008
4009 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4010 spin_lock(vmf->ptl);
4011 entry = vmf->orig_pte;
4012 if (unlikely(!pte_same(*vmf->pte, entry)))
4013 goto unlock;
4014 if (vmf->flags & FAULT_FLAG_WRITE) {
4015 if (!pte_write(entry))
4016 return do_wp_page(vmf);
4017 entry = pte_mkdirty(entry);
4018 }
4019 entry = pte_mkyoung(entry);
4020 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4021 vmf->flags & FAULT_FLAG_WRITE)) {
4022 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4023 } else {
4024 /*
4025 * This is needed only for protection faults but the arch code
4026 * is not yet telling us if this is a protection fault or not.
4027 * This still avoids useless tlb flushes for .text page faults
4028 * with threads.
4029 */
4030 if (vmf->flags & FAULT_FLAG_WRITE)
4031 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4032 }
4033 unlock:
4034 pte_unmap_unlock(vmf->pte, vmf->ptl);
4035 return 0;
4036 }
4037
4038 /*
4039 * By the time we get here, we already hold the mm semaphore
4040 *
4041 * The mmap_sem may have been released depending on flags and our
4042 * return value. See filemap_fault() and __lock_page_or_retry().
4043 */
4044 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4045 unsigned int flags)
4046 {
4047 struct vm_fault vmf = {
4048 .vma = vma,
4049 .address = address & PAGE_MASK,
4050 .flags = flags,
4051 .pgoff = linear_page_index(vma, address),
4052 .gfp_mask = __get_fault_gfp_mask(vma),
4053 };
4054 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4055 struct mm_struct *mm = vma->vm_mm;
4056 pgd_t *pgd;
4057 p4d_t *p4d;
4058 int ret;
4059
4060 pgd = pgd_offset(mm, address);
4061 p4d = p4d_alloc(mm, pgd, address);
4062 if (!p4d)
4063 return VM_FAULT_OOM;
4064
4065 vmf.pud = pud_alloc(mm, p4d, address);
4066 if (!vmf.pud)
4067 return VM_FAULT_OOM;
4068 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4069 ret = create_huge_pud(&vmf);
4070 if (!(ret & VM_FAULT_FALLBACK))
4071 return ret;
4072 } else {
4073 pud_t orig_pud = *vmf.pud;
4074
4075 barrier();
4076 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4077
4078 /* NUMA case for anonymous PUDs would go here */
4079
4080 if (dirty && !pud_write(orig_pud)) {
4081 ret = wp_huge_pud(&vmf, orig_pud);
4082 if (!(ret & VM_FAULT_FALLBACK))
4083 return ret;
4084 } else {
4085 huge_pud_set_accessed(&vmf, orig_pud);
4086 return 0;
4087 }
4088 }
4089 }
4090
4091 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4092 if (!vmf.pmd)
4093 return VM_FAULT_OOM;
4094 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4095 ret = create_huge_pmd(&vmf);
4096 if (!(ret & VM_FAULT_FALLBACK))
4097 return ret;
4098 } else {
4099 pmd_t orig_pmd = *vmf.pmd;
4100
4101 barrier();
4102 if (unlikely(is_swap_pmd(orig_pmd))) {
4103 VM_BUG_ON(thp_migration_supported() &&
4104 !is_pmd_migration_entry(orig_pmd));
4105 if (is_pmd_migration_entry(orig_pmd))
4106 pmd_migration_entry_wait(mm, vmf.pmd);
4107 return 0;
4108 }
4109 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4110 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4111 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4112
4113 if (dirty && !pmd_write(orig_pmd)) {
4114 ret = wp_huge_pmd(&vmf, orig_pmd);
4115 if (!(ret & VM_FAULT_FALLBACK))
4116 return ret;
4117 } else {
4118 huge_pmd_set_accessed(&vmf, orig_pmd);
4119 return 0;
4120 }
4121 }
4122 }
4123
4124 return handle_pte_fault(&vmf);
4125 }
4126
4127 /*
4128 * By the time we get here, we already hold the mm semaphore
4129 *
4130 * The mmap_sem may have been released depending on flags and our
4131 * return value. See filemap_fault() and __lock_page_or_retry().
4132 */
4133 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4134 unsigned int flags)
4135 {
4136 int ret;
4137
4138 __set_current_state(TASK_RUNNING);
4139
4140 count_vm_event(PGFAULT);
4141 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4142
4143 /* do counter updates before entering really critical section. */
4144 check_sync_rss_stat(current);
4145
4146 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4147 flags & FAULT_FLAG_INSTRUCTION,
4148 flags & FAULT_FLAG_REMOTE))
4149 return VM_FAULT_SIGSEGV;
4150
4151 /*
4152 * Enable the memcg OOM handling for faults triggered in user
4153 * space. Kernel faults are handled more gracefully.
4154 */
4155 if (flags & FAULT_FLAG_USER)
4156 mem_cgroup_oom_enable();
4157
4158 if (unlikely(is_vm_hugetlb_page(vma)))
4159 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4160 else
4161 ret = __handle_mm_fault(vma, address, flags);
4162
4163 if (flags & FAULT_FLAG_USER) {
4164 mem_cgroup_oom_disable();
4165 /*
4166 * The task may have entered a memcg OOM situation but
4167 * if the allocation error was handled gracefully (no
4168 * VM_FAULT_OOM), there is no need to kill anything.
4169 * Just clean up the OOM state peacefully.
4170 */
4171 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4172 mem_cgroup_oom_synchronize(false);
4173 }
4174
4175 return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(handle_mm_fault);
4178
4179 #ifndef __PAGETABLE_P4D_FOLDED
4180 /*
4181 * Allocate p4d page table.
4182 * We've already handled the fast-path in-line.
4183 */
4184 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4185 {
4186 p4d_t *new = p4d_alloc_one(mm, address);
4187 if (!new)
4188 return -ENOMEM;
4189
4190 smp_wmb(); /* See comment in __pte_alloc */
4191
4192 spin_lock(&mm->page_table_lock);
4193 if (pgd_present(*pgd)) /* Another has populated it */
4194 p4d_free(mm, new);
4195 else
4196 pgd_populate(mm, pgd, new);
4197 spin_unlock(&mm->page_table_lock);
4198 return 0;
4199 }
4200 #endif /* __PAGETABLE_P4D_FOLDED */
4201
4202 #ifndef __PAGETABLE_PUD_FOLDED
4203 /*
4204 * Allocate page upper directory.
4205 * We've already handled the fast-path in-line.
4206 */
4207 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4208 {
4209 pud_t *new = pud_alloc_one(mm, address);
4210 if (!new)
4211 return -ENOMEM;
4212
4213 smp_wmb(); /* See comment in __pte_alloc */
4214
4215 spin_lock(&mm->page_table_lock);
4216 #ifndef __ARCH_HAS_5LEVEL_HACK
4217 if (p4d_present(*p4d)) /* Another has populated it */
4218 pud_free(mm, new);
4219 else
4220 p4d_populate(mm, p4d, new);
4221 #else
4222 if (pgd_present(*p4d)) /* Another has populated it */
4223 pud_free(mm, new);
4224 else
4225 pgd_populate(mm, p4d, new);
4226 #endif /* __ARCH_HAS_5LEVEL_HACK */
4227 spin_unlock(&mm->page_table_lock);
4228 return 0;
4229 }
4230 #endif /* __PAGETABLE_PUD_FOLDED */
4231
4232 #ifndef __PAGETABLE_PMD_FOLDED
4233 /*
4234 * Allocate page middle directory.
4235 * We've already handled the fast-path in-line.
4236 */
4237 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4238 {
4239 spinlock_t *ptl;
4240 pmd_t *new = pmd_alloc_one(mm, address);
4241 if (!new)
4242 return -ENOMEM;
4243
4244 smp_wmb(); /* See comment in __pte_alloc */
4245
4246 ptl = pud_lock(mm, pud);
4247 #ifndef __ARCH_HAS_4LEVEL_HACK
4248 if (!pud_present(*pud)) {
4249 mm_inc_nr_pmds(mm);
4250 pud_populate(mm, pud, new);
4251 } else /* Another has populated it */
4252 pmd_free(mm, new);
4253 #else
4254 if (!pgd_present(*pud)) {
4255 mm_inc_nr_pmds(mm);
4256 pgd_populate(mm, pud, new);
4257 } else /* Another has populated it */
4258 pmd_free(mm, new);
4259 #endif /* __ARCH_HAS_4LEVEL_HACK */
4260 spin_unlock(ptl);
4261 return 0;
4262 }
4263 #endif /* __PAGETABLE_PMD_FOLDED */
4264
4265 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4266 unsigned long *start, unsigned long *end,
4267 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4268 {
4269 pgd_t *pgd;
4270 p4d_t *p4d;
4271 pud_t *pud;
4272 pmd_t *pmd;
4273 pte_t *ptep;
4274
4275 pgd = pgd_offset(mm, address);
4276 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4277 goto out;
4278
4279 p4d = p4d_offset(pgd, address);
4280 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4281 goto out;
4282
4283 pud = pud_offset(p4d, address);
4284 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4285 goto out;
4286
4287 pmd = pmd_offset(pud, address);
4288 VM_BUG_ON(pmd_trans_huge(*pmd));
4289
4290 if (pmd_huge(*pmd)) {
4291 if (!pmdpp)
4292 goto out;
4293
4294 if (start && end) {
4295 *start = address & PMD_MASK;
4296 *end = *start + PMD_SIZE;
4297 mmu_notifier_invalidate_range_start(mm, *start, *end);
4298 }
4299 *ptlp = pmd_lock(mm, pmd);
4300 if (pmd_huge(*pmd)) {
4301 *pmdpp = pmd;
4302 return 0;
4303 }
4304 spin_unlock(*ptlp);
4305 if (start && end)
4306 mmu_notifier_invalidate_range_end(mm, *start, *end);
4307 }
4308
4309 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4310 goto out;
4311
4312 if (start && end) {
4313 *start = address & PAGE_MASK;
4314 *end = *start + PAGE_SIZE;
4315 mmu_notifier_invalidate_range_start(mm, *start, *end);
4316 }
4317 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4318 if (!pte_present(*ptep))
4319 goto unlock;
4320 *ptepp = ptep;
4321 return 0;
4322 unlock:
4323 pte_unmap_unlock(ptep, *ptlp);
4324 if (start && end)
4325 mmu_notifier_invalidate_range_end(mm, *start, *end);
4326 out:
4327 return -EINVAL;
4328 }
4329
4330 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4331 pte_t **ptepp, spinlock_t **ptlp)
4332 {
4333 int res;
4334
4335 /* (void) is needed to make gcc happy */
4336 (void) __cond_lock(*ptlp,
4337 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4338 ptepp, NULL, ptlp)));
4339 return res;
4340 }
4341
4342 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4343 unsigned long *start, unsigned long *end,
4344 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4345 {
4346 int res;
4347
4348 /* (void) is needed to make gcc happy */
4349 (void) __cond_lock(*ptlp,
4350 !(res = __follow_pte_pmd(mm, address, start, end,
4351 ptepp, pmdpp, ptlp)));
4352 return res;
4353 }
4354 EXPORT_SYMBOL(follow_pte_pmd);
4355
4356 /**
4357 * follow_pfn - look up PFN at a user virtual address
4358 * @vma: memory mapping
4359 * @address: user virtual address
4360 * @pfn: location to store found PFN
4361 *
4362 * Only IO mappings and raw PFN mappings are allowed.
4363 *
4364 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4365 */
4366 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4367 unsigned long *pfn)
4368 {
4369 int ret = -EINVAL;
4370 spinlock_t *ptl;
4371 pte_t *ptep;
4372
4373 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4374 return ret;
4375
4376 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4377 if (ret)
4378 return ret;
4379 *pfn = pte_pfn(*ptep);
4380 pte_unmap_unlock(ptep, ptl);
4381 return 0;
4382 }
4383 EXPORT_SYMBOL(follow_pfn);
4384
4385 #ifdef CONFIG_HAVE_IOREMAP_PROT
4386 int follow_phys(struct vm_area_struct *vma,
4387 unsigned long address, unsigned int flags,
4388 unsigned long *prot, resource_size_t *phys)
4389 {
4390 int ret = -EINVAL;
4391 pte_t *ptep, pte;
4392 spinlock_t *ptl;
4393
4394 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4395 goto out;
4396
4397 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4398 goto out;
4399 pte = *ptep;
4400
4401 if ((flags & FOLL_WRITE) && !pte_write(pte))
4402 goto unlock;
4403
4404 *prot = pgprot_val(pte_pgprot(pte));
4405 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4406
4407 ret = 0;
4408 unlock:
4409 pte_unmap_unlock(ptep, ptl);
4410 out:
4411 return ret;
4412 }
4413
4414 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4415 void *buf, int len, int write)
4416 {
4417 resource_size_t phys_addr;
4418 unsigned long prot = 0;
4419 void __iomem *maddr;
4420 int offset = addr & (PAGE_SIZE-1);
4421
4422 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4423 return -EINVAL;
4424
4425 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4426 if (!maddr)
4427 return -ENOMEM;
4428
4429 if (write)
4430 memcpy_toio(maddr + offset, buf, len);
4431 else
4432 memcpy_fromio(buf, maddr + offset, len);
4433 iounmap(maddr);
4434
4435 return len;
4436 }
4437 EXPORT_SYMBOL_GPL(generic_access_phys);
4438 #endif
4439
4440 /*
4441 * Access another process' address space as given in mm. If non-NULL, use the
4442 * given task for page fault accounting.
4443 */
4444 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4445 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4446 {
4447 struct vm_area_struct *vma;
4448 void *old_buf = buf;
4449 int write = gup_flags & FOLL_WRITE;
4450
4451 down_read(&mm->mmap_sem);
4452 /* ignore errors, just check how much was successfully transferred */
4453 while (len) {
4454 int bytes, ret, offset;
4455 void *maddr;
4456 struct page *page = NULL;
4457
4458 ret = get_user_pages_remote(tsk, mm, addr, 1,
4459 gup_flags, &page, &vma, NULL);
4460 if (ret <= 0) {
4461 #ifndef CONFIG_HAVE_IOREMAP_PROT
4462 break;
4463 #else
4464 /*
4465 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4466 * we can access using slightly different code.
4467 */
4468 vma = find_vma(mm, addr);
4469 if (!vma || vma->vm_start > addr)
4470 break;
4471 if (vma->vm_ops && vma->vm_ops->access)
4472 ret = vma->vm_ops->access(vma, addr, buf,
4473 len, write);
4474 if (ret <= 0)
4475 break;
4476 bytes = ret;
4477 #endif
4478 } else {
4479 bytes = len;
4480 offset = addr & (PAGE_SIZE-1);
4481 if (bytes > PAGE_SIZE-offset)
4482 bytes = PAGE_SIZE-offset;
4483
4484 maddr = kmap(page);
4485 if (write) {
4486 copy_to_user_page(vma, page, addr,
4487 maddr + offset, buf, bytes);
4488 set_page_dirty_lock(page);
4489 } else {
4490 copy_from_user_page(vma, page, addr,
4491 buf, maddr + offset, bytes);
4492 }
4493 kunmap(page);
4494 put_page(page);
4495 }
4496 len -= bytes;
4497 buf += bytes;
4498 addr += bytes;
4499 }
4500 up_read(&mm->mmap_sem);
4501
4502 return buf - old_buf;
4503 }
4504
4505 /**
4506 * access_remote_vm - access another process' address space
4507 * @mm: the mm_struct of the target address space
4508 * @addr: start address to access
4509 * @buf: source or destination buffer
4510 * @len: number of bytes to transfer
4511 * @gup_flags: flags modifying lookup behaviour
4512 *
4513 * The caller must hold a reference on @mm.
4514 */
4515 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4516 void *buf, int len, unsigned int gup_flags)
4517 {
4518 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4519 }
4520
4521 /*
4522 * Access another process' address space.
4523 * Source/target buffer must be kernel space,
4524 * Do not walk the page table directly, use get_user_pages
4525 */
4526 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4527 void *buf, int len, unsigned int gup_flags)
4528 {
4529 struct mm_struct *mm;
4530 int ret;
4531
4532 mm = get_task_mm(tsk);
4533 if (!mm)
4534 return 0;
4535
4536 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4537
4538 mmput(mm);
4539
4540 return ret;
4541 }
4542 EXPORT_SYMBOL_GPL(access_process_vm);
4543
4544 /*
4545 * Print the name of a VMA.
4546 */
4547 void print_vma_addr(char *prefix, unsigned long ip)
4548 {
4549 struct mm_struct *mm = current->mm;
4550 struct vm_area_struct *vma;
4551
4552 /*
4553 * Do not print if we are in atomic
4554 * contexts (in exception stacks, etc.):
4555 */
4556 if (preempt_count())
4557 return;
4558
4559 down_read(&mm->mmap_sem);
4560 vma = find_vma(mm, ip);
4561 if (vma && vma->vm_file) {
4562 struct file *f = vma->vm_file;
4563 char *buf = (char *)__get_free_page(GFP_KERNEL);
4564 if (buf) {
4565 char *p;
4566
4567 p = file_path(f, buf, PAGE_SIZE);
4568 if (IS_ERR(p))
4569 p = "?";
4570 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4571 vma->vm_start,
4572 vma->vm_end - vma->vm_start);
4573 free_page((unsigned long)buf);
4574 }
4575 }
4576 up_read(&mm->mmap_sem);
4577 }
4578
4579 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4580 void __might_fault(const char *file, int line)
4581 {
4582 /*
4583 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4584 * holding the mmap_sem, this is safe because kernel memory doesn't
4585 * get paged out, therefore we'll never actually fault, and the
4586 * below annotations will generate false positives.
4587 */
4588 if (uaccess_kernel())
4589 return;
4590 if (pagefault_disabled())
4591 return;
4592 __might_sleep(file, line, 0);
4593 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4594 if (current->mm)
4595 might_lock_read(&current->mm->mmap_sem);
4596 #endif
4597 }
4598 EXPORT_SYMBOL(__might_fault);
4599 #endif
4600
4601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4602 static void clear_gigantic_page(struct page *page,
4603 unsigned long addr,
4604 unsigned int pages_per_huge_page)
4605 {
4606 int i;
4607 struct page *p = page;
4608
4609 might_sleep();
4610 for (i = 0; i < pages_per_huge_page;
4611 i++, p = mem_map_next(p, page, i)) {
4612 cond_resched();
4613 clear_user_highpage(p, addr + i * PAGE_SIZE);
4614 }
4615 }
4616 void clear_huge_page(struct page *page,
4617 unsigned long addr_hint, unsigned int pages_per_huge_page)
4618 {
4619 int i, n, base, l;
4620 unsigned long addr = addr_hint &
4621 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4622
4623 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4624 clear_gigantic_page(page, addr, pages_per_huge_page);
4625 return;
4626 }
4627
4628 /* Clear sub-page to access last to keep its cache lines hot */
4629 might_sleep();
4630 n = (addr_hint - addr) / PAGE_SIZE;
4631 if (2 * n <= pages_per_huge_page) {
4632 /* If sub-page to access in first half of huge page */
4633 base = 0;
4634 l = n;
4635 /* Clear sub-pages at the end of huge page */
4636 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4637 cond_resched();
4638 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4639 }
4640 } else {
4641 /* If sub-page to access in second half of huge page */
4642 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4643 l = pages_per_huge_page - n;
4644 /* Clear sub-pages at the begin of huge page */
4645 for (i = 0; i < base; i++) {
4646 cond_resched();
4647 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4648 }
4649 }
4650 /*
4651 * Clear remaining sub-pages in left-right-left-right pattern
4652 * towards the sub-page to access
4653 */
4654 for (i = 0; i < l; i++) {
4655 int left_idx = base + i;
4656 int right_idx = base + 2 * l - 1 - i;
4657
4658 cond_resched();
4659 clear_user_highpage(page + left_idx,
4660 addr + left_idx * PAGE_SIZE);
4661 cond_resched();
4662 clear_user_highpage(page + right_idx,
4663 addr + right_idx * PAGE_SIZE);
4664 }
4665 }
4666
4667 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4668 unsigned long addr,
4669 struct vm_area_struct *vma,
4670 unsigned int pages_per_huge_page)
4671 {
4672 int i;
4673 struct page *dst_base = dst;
4674 struct page *src_base = src;
4675
4676 for (i = 0; i < pages_per_huge_page; ) {
4677 cond_resched();
4678 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4679
4680 i++;
4681 dst = mem_map_next(dst, dst_base, i);
4682 src = mem_map_next(src, src_base, i);
4683 }
4684 }
4685
4686 void copy_user_huge_page(struct page *dst, struct page *src,
4687 unsigned long addr, struct vm_area_struct *vma,
4688 unsigned int pages_per_huge_page)
4689 {
4690 int i;
4691
4692 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4693 copy_user_gigantic_page(dst, src, addr, vma,
4694 pages_per_huge_page);
4695 return;
4696 }
4697
4698 might_sleep();
4699 for (i = 0; i < pages_per_huge_page; i++) {
4700 cond_resched();
4701 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4702 }
4703 }
4704
4705 long copy_huge_page_from_user(struct page *dst_page,
4706 const void __user *usr_src,
4707 unsigned int pages_per_huge_page,
4708 bool allow_pagefault)
4709 {
4710 void *src = (void *)usr_src;
4711 void *page_kaddr;
4712 unsigned long i, rc = 0;
4713 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4714
4715 for (i = 0; i < pages_per_huge_page; i++) {
4716 if (allow_pagefault)
4717 page_kaddr = kmap(dst_page + i);
4718 else
4719 page_kaddr = kmap_atomic(dst_page + i);
4720 rc = copy_from_user(page_kaddr,
4721 (const void __user *)(src + i * PAGE_SIZE),
4722 PAGE_SIZE);
4723 if (allow_pagefault)
4724 kunmap(dst_page + i);
4725 else
4726 kunmap_atomic(page_kaddr);
4727
4728 ret_val -= (PAGE_SIZE - rc);
4729 if (rc)
4730 break;
4731
4732 cond_resched();
4733 }
4734 return ret_val;
4735 }
4736 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4737
4738 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4739
4740 static struct kmem_cache *page_ptl_cachep;
4741
4742 void __init ptlock_cache_init(void)
4743 {
4744 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4745 SLAB_PANIC, NULL);
4746 }
4747
4748 bool ptlock_alloc(struct page *page)
4749 {
4750 spinlock_t *ptl;
4751
4752 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4753 if (!ptl)
4754 return false;
4755 page->ptl = ptl;
4756 return true;
4757 }
4758
4759 void ptlock_free(struct page *page)
4760 {
4761 kmem_cache_free(page_ptl_cachep, page->ptl);
4762 }
4763 #endif