remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / kasan / kasan.c
1 /*
2 * This file contains shadow memory manipulation code.
3 *
4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6 *
7 * Some code borrowed from https://github.com/xairy/kasan-prototype by
8 * Andrey Konovalov <adech.fo@gmail.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
18
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/slab.h>
34 #include <linux/stacktrace.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/vmalloc.h>
38 #include <linux/bug.h>
39
40 #include "kasan.h"
41 #include "../slab.h"
42
43 void kasan_enable_current(void)
44 {
45 current->kasan_depth++;
46 }
47
48 void kasan_disable_current(void)
49 {
50 current->kasan_depth--;
51 }
52
53 /*
54 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
55 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
56 */
57 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
58 {
59 void *shadow_start, *shadow_end;
60
61 shadow_start = kasan_mem_to_shadow(address);
62 shadow_end = kasan_mem_to_shadow(address + size);
63
64 memset(shadow_start, value, shadow_end - shadow_start);
65 }
66
67 void kasan_unpoison_shadow(const void *address, size_t size)
68 {
69 kasan_poison_shadow(address, size, 0);
70
71 if (size & KASAN_SHADOW_MASK) {
72 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
73 *shadow = size & KASAN_SHADOW_MASK;
74 }
75 }
76
77 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
78 {
79 void *base = task_stack_page(task);
80 size_t size = sp - base;
81
82 kasan_unpoison_shadow(base, size);
83 }
84
85 /* Unpoison the entire stack for a task. */
86 void kasan_unpoison_task_stack(struct task_struct *task)
87 {
88 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
89 }
90
91 /* Unpoison the stack for the current task beyond a watermark sp value. */
92 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
93 {
94 /*
95 * Calculate the task stack base address. Avoid using 'current'
96 * because this function is called by early resume code which hasn't
97 * yet set up the percpu register (%gs).
98 */
99 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
100
101 kasan_unpoison_shadow(base, watermark - base);
102 }
103
104 /*
105 * Clear all poison for the region between the current SP and a provided
106 * watermark value, as is sometimes required prior to hand-crafted asm function
107 * returns in the middle of functions.
108 */
109 void kasan_unpoison_stack_above_sp_to(const void *watermark)
110 {
111 const void *sp = __builtin_frame_address(0);
112 size_t size = watermark - sp;
113
114 if (WARN_ON(sp > watermark))
115 return;
116 kasan_unpoison_shadow(sp, size);
117 }
118
119 /*
120 * All functions below always inlined so compiler could
121 * perform better optimizations in each of __asan_loadX/__assn_storeX
122 * depending on memory access size X.
123 */
124
125 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
126 {
127 s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
128
129 if (unlikely(shadow_value)) {
130 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
131 return unlikely(last_accessible_byte >= shadow_value);
132 }
133
134 return false;
135 }
136
137 static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
138 unsigned long size)
139 {
140 u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
141
142 /*
143 * Access crosses 8(shadow size)-byte boundary. Such access maps
144 * into 2 shadow bytes, so we need to check them both.
145 */
146 if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
147 return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
148
149 return memory_is_poisoned_1(addr + size - 1);
150 }
151
152 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
153 {
154 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
155
156 /* Unaligned 16-bytes access maps into 3 shadow bytes. */
157 if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
158 return *shadow_addr || memory_is_poisoned_1(addr + 15);
159
160 return *shadow_addr;
161 }
162
163 static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
164 size_t size)
165 {
166 while (size) {
167 if (unlikely(*start))
168 return (unsigned long)start;
169 start++;
170 size--;
171 }
172
173 return 0;
174 }
175
176 static __always_inline unsigned long memory_is_nonzero(const void *start,
177 const void *end)
178 {
179 unsigned int words;
180 unsigned long ret;
181 unsigned int prefix = (unsigned long)start % 8;
182
183 if (end - start <= 16)
184 return bytes_is_nonzero(start, end - start);
185
186 if (prefix) {
187 prefix = 8 - prefix;
188 ret = bytes_is_nonzero(start, prefix);
189 if (unlikely(ret))
190 return ret;
191 start += prefix;
192 }
193
194 words = (end - start) / 8;
195 while (words) {
196 if (unlikely(*(u64 *)start))
197 return bytes_is_nonzero(start, 8);
198 start += 8;
199 words--;
200 }
201
202 return bytes_is_nonzero(start, (end - start) % 8);
203 }
204
205 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
206 size_t size)
207 {
208 unsigned long ret;
209
210 ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
211 kasan_mem_to_shadow((void *)addr + size - 1) + 1);
212
213 if (unlikely(ret)) {
214 unsigned long last_byte = addr + size - 1;
215 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
216
217 if (unlikely(ret != (unsigned long)last_shadow ||
218 ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
219 return true;
220 }
221 return false;
222 }
223
224 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
225 {
226 if (__builtin_constant_p(size)) {
227 switch (size) {
228 case 1:
229 return memory_is_poisoned_1(addr);
230 case 2:
231 case 4:
232 case 8:
233 return memory_is_poisoned_2_4_8(addr, size);
234 case 16:
235 return memory_is_poisoned_16(addr);
236 default:
237 BUILD_BUG();
238 }
239 }
240
241 return memory_is_poisoned_n(addr, size);
242 }
243
244 static __always_inline void check_memory_region_inline(unsigned long addr,
245 size_t size, bool write,
246 unsigned long ret_ip)
247 {
248 if (unlikely(size == 0))
249 return;
250
251 if (unlikely((void *)addr <
252 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
253 kasan_report(addr, size, write, ret_ip);
254 return;
255 }
256
257 if (likely(!memory_is_poisoned(addr, size)))
258 return;
259
260 kasan_report(addr, size, write, ret_ip);
261 }
262
263 static void check_memory_region(unsigned long addr,
264 size_t size, bool write,
265 unsigned long ret_ip)
266 {
267 check_memory_region_inline(addr, size, write, ret_ip);
268 }
269
270 void kasan_check_read(const volatile void *p, unsigned int size)
271 {
272 check_memory_region((unsigned long)p, size, false, _RET_IP_);
273 }
274 EXPORT_SYMBOL(kasan_check_read);
275
276 void kasan_check_write(const volatile void *p, unsigned int size)
277 {
278 check_memory_region((unsigned long)p, size, true, _RET_IP_);
279 }
280 EXPORT_SYMBOL(kasan_check_write);
281
282 #undef memset
283 void *memset(void *addr, int c, size_t len)
284 {
285 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
286
287 return __memset(addr, c, len);
288 }
289
290 #undef memmove
291 void *memmove(void *dest, const void *src, size_t len)
292 {
293 check_memory_region((unsigned long)src, len, false, _RET_IP_);
294 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
295
296 return __memmove(dest, src, len);
297 }
298
299 #undef memcpy
300 void *memcpy(void *dest, const void *src, size_t len)
301 {
302 check_memory_region((unsigned long)src, len, false, _RET_IP_);
303 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
304
305 return __memcpy(dest, src, len);
306 }
307
308 void kasan_alloc_pages(struct page *page, unsigned int order)
309 {
310 if (likely(!PageHighMem(page)))
311 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
312 }
313
314 void kasan_free_pages(struct page *page, unsigned int order)
315 {
316 if (likely(!PageHighMem(page)))
317 kasan_poison_shadow(page_address(page),
318 PAGE_SIZE << order,
319 KASAN_FREE_PAGE);
320 }
321
322 /*
323 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
324 * For larger allocations larger redzones are used.
325 */
326 static size_t optimal_redzone(size_t object_size)
327 {
328 int rz =
329 object_size <= 64 - 16 ? 16 :
330 object_size <= 128 - 32 ? 32 :
331 object_size <= 512 - 64 ? 64 :
332 object_size <= 4096 - 128 ? 128 :
333 object_size <= (1 << 14) - 256 ? 256 :
334 object_size <= (1 << 15) - 512 ? 512 :
335 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
336 return rz;
337 }
338
339 void kasan_cache_create(struct kmem_cache *cache, size_t *size,
340 unsigned long *flags)
341 {
342 int redzone_adjust;
343 int orig_size = *size;
344
345 /* Add alloc meta. */
346 cache->kasan_info.alloc_meta_offset = *size;
347 *size += sizeof(struct kasan_alloc_meta);
348
349 /* Add free meta. */
350 if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
351 cache->object_size < sizeof(struct kasan_free_meta)) {
352 cache->kasan_info.free_meta_offset = *size;
353 *size += sizeof(struct kasan_free_meta);
354 }
355 redzone_adjust = optimal_redzone(cache->object_size) -
356 (*size - cache->object_size);
357
358 if (redzone_adjust > 0)
359 *size += redzone_adjust;
360
361 *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
362 optimal_redzone(cache->object_size)));
363
364 /*
365 * If the metadata doesn't fit, don't enable KASAN at all.
366 */
367 if (*size <= cache->kasan_info.alloc_meta_offset ||
368 *size <= cache->kasan_info.free_meta_offset) {
369 cache->kasan_info.alloc_meta_offset = 0;
370 cache->kasan_info.free_meta_offset = 0;
371 *size = orig_size;
372 return;
373 }
374
375 *flags |= SLAB_KASAN;
376 }
377
378 void kasan_cache_shrink(struct kmem_cache *cache)
379 {
380 quarantine_remove_cache(cache);
381 }
382
383 void kasan_cache_shutdown(struct kmem_cache *cache)
384 {
385 quarantine_remove_cache(cache);
386 }
387
388 size_t kasan_metadata_size(struct kmem_cache *cache)
389 {
390 return (cache->kasan_info.alloc_meta_offset ?
391 sizeof(struct kasan_alloc_meta) : 0) +
392 (cache->kasan_info.free_meta_offset ?
393 sizeof(struct kasan_free_meta) : 0);
394 }
395
396 void kasan_poison_slab(struct page *page)
397 {
398 kasan_poison_shadow(page_address(page),
399 PAGE_SIZE << compound_order(page),
400 KASAN_KMALLOC_REDZONE);
401 }
402
403 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
404 {
405 kasan_unpoison_shadow(object, cache->object_size);
406 }
407
408 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
409 {
410 kasan_poison_shadow(object,
411 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
412 KASAN_KMALLOC_REDZONE);
413 }
414
415 static inline int in_irqentry_text(unsigned long ptr)
416 {
417 return (ptr >= (unsigned long)&__irqentry_text_start &&
418 ptr < (unsigned long)&__irqentry_text_end) ||
419 (ptr >= (unsigned long)&__softirqentry_text_start &&
420 ptr < (unsigned long)&__softirqentry_text_end);
421 }
422
423 static inline void filter_irq_stacks(struct stack_trace *trace)
424 {
425 int i;
426
427 if (!trace->nr_entries)
428 return;
429 for (i = 0; i < trace->nr_entries; i++)
430 if (in_irqentry_text(trace->entries[i])) {
431 /* Include the irqentry function into the stack. */
432 trace->nr_entries = i + 1;
433 break;
434 }
435 }
436
437 static inline depot_stack_handle_t save_stack(gfp_t flags)
438 {
439 unsigned long entries[KASAN_STACK_DEPTH];
440 struct stack_trace trace = {
441 .nr_entries = 0,
442 .entries = entries,
443 .max_entries = KASAN_STACK_DEPTH,
444 .skip = 0
445 };
446
447 save_stack_trace(&trace);
448 filter_irq_stacks(&trace);
449 if (trace.nr_entries != 0 &&
450 trace.entries[trace.nr_entries-1] == ULONG_MAX)
451 trace.nr_entries--;
452
453 return depot_save_stack(&trace, flags);
454 }
455
456 static inline void set_track(struct kasan_track *track, gfp_t flags)
457 {
458 track->pid = current->pid;
459 track->stack = save_stack(flags);
460 }
461
462 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
463 const void *object)
464 {
465 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
466 return (void *)object + cache->kasan_info.alloc_meta_offset;
467 }
468
469 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
470 const void *object)
471 {
472 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
473 return (void *)object + cache->kasan_info.free_meta_offset;
474 }
475
476 void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
477 {
478 struct kasan_alloc_meta *alloc_info;
479
480 if (!(cache->flags & SLAB_KASAN))
481 return;
482
483 alloc_info = get_alloc_info(cache, object);
484 __memset(alloc_info, 0, sizeof(*alloc_info));
485 }
486
487 void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
488 {
489 kasan_kmalloc(cache, object, cache->object_size, flags);
490 }
491
492 static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
493 {
494 unsigned long size = cache->object_size;
495 unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
496
497 /* RCU slabs could be legally used after free within the RCU period */
498 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
499 return;
500
501 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
502 }
503
504 bool kasan_slab_free(struct kmem_cache *cache, void *object)
505 {
506 s8 shadow_byte;
507
508 /* RCU slabs could be legally used after free within the RCU period */
509 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
510 return false;
511
512 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
513 if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
514 kasan_report_double_free(cache, object,
515 __builtin_return_address(1));
516 return true;
517 }
518
519 kasan_poison_slab_free(cache, object);
520
521 if (unlikely(!(cache->flags & SLAB_KASAN)))
522 return false;
523
524 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
525 quarantine_put(get_free_info(cache, object), cache);
526 return true;
527 }
528
529 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
530 gfp_t flags)
531 {
532 unsigned long redzone_start;
533 unsigned long redzone_end;
534
535 if (gfpflags_allow_blocking(flags))
536 quarantine_reduce();
537
538 if (unlikely(object == NULL))
539 return;
540
541 redzone_start = round_up((unsigned long)(object + size),
542 KASAN_SHADOW_SCALE_SIZE);
543 redzone_end = round_up((unsigned long)object + cache->object_size,
544 KASAN_SHADOW_SCALE_SIZE);
545
546 kasan_unpoison_shadow(object, size);
547 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
548 KASAN_KMALLOC_REDZONE);
549
550 if (cache->flags & SLAB_KASAN)
551 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
552 }
553 EXPORT_SYMBOL(kasan_kmalloc);
554
555 void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
556 {
557 struct page *page;
558 unsigned long redzone_start;
559 unsigned long redzone_end;
560
561 if (gfpflags_allow_blocking(flags))
562 quarantine_reduce();
563
564 if (unlikely(ptr == NULL))
565 return;
566
567 page = virt_to_page(ptr);
568 redzone_start = round_up((unsigned long)(ptr + size),
569 KASAN_SHADOW_SCALE_SIZE);
570 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
571
572 kasan_unpoison_shadow(ptr, size);
573 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
574 KASAN_PAGE_REDZONE);
575 }
576
577 void kasan_krealloc(const void *object, size_t size, gfp_t flags)
578 {
579 struct page *page;
580
581 if (unlikely(object == ZERO_SIZE_PTR))
582 return;
583
584 page = virt_to_head_page(object);
585
586 if (unlikely(!PageSlab(page)))
587 kasan_kmalloc_large(object, size, flags);
588 else
589 kasan_kmalloc(page->slab_cache, object, size, flags);
590 }
591
592 void kasan_poison_kfree(void *ptr)
593 {
594 struct page *page;
595
596 page = virt_to_head_page(ptr);
597
598 if (unlikely(!PageSlab(page)))
599 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
600 KASAN_FREE_PAGE);
601 else
602 kasan_poison_slab_free(page->slab_cache, ptr);
603 }
604
605 void kasan_kfree_large(const void *ptr)
606 {
607 struct page *page = virt_to_page(ptr);
608
609 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
610 KASAN_FREE_PAGE);
611 }
612
613 int kasan_module_alloc(void *addr, size_t size)
614 {
615 void *ret;
616 size_t scaled_size;
617 size_t shadow_size;
618 unsigned long shadow_start;
619
620 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
621 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
622 shadow_size = round_up(scaled_size, PAGE_SIZE);
623
624 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
625 return -EINVAL;
626
627 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
628 shadow_start + shadow_size,
629 GFP_KERNEL | __GFP_ZERO,
630 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
631 __builtin_return_address(0));
632
633 if (ret) {
634 find_vm_area(addr)->flags |= VM_KASAN;
635 kmemleak_ignore(ret);
636 return 0;
637 }
638
639 return -ENOMEM;
640 }
641
642 void kasan_free_shadow(const struct vm_struct *vm)
643 {
644 if (vm->flags & VM_KASAN)
645 vfree(kasan_mem_to_shadow(vm->addr));
646 }
647
648 static void register_global(struct kasan_global *global)
649 {
650 size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
651
652 kasan_unpoison_shadow(global->beg, global->size);
653
654 kasan_poison_shadow(global->beg + aligned_size,
655 global->size_with_redzone - aligned_size,
656 KASAN_GLOBAL_REDZONE);
657 }
658
659 void __asan_register_globals(struct kasan_global *globals, size_t size)
660 {
661 int i;
662
663 for (i = 0; i < size; i++)
664 register_global(&globals[i]);
665 }
666 EXPORT_SYMBOL(__asan_register_globals);
667
668 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
669 {
670 }
671 EXPORT_SYMBOL(__asan_unregister_globals);
672
673 #define DEFINE_ASAN_LOAD_STORE(size) \
674 void __asan_load##size(unsigned long addr) \
675 { \
676 check_memory_region_inline(addr, size, false, _RET_IP_);\
677 } \
678 EXPORT_SYMBOL(__asan_load##size); \
679 __alias(__asan_load##size) \
680 void __asan_load##size##_noabort(unsigned long); \
681 EXPORT_SYMBOL(__asan_load##size##_noabort); \
682 void __asan_store##size(unsigned long addr) \
683 { \
684 check_memory_region_inline(addr, size, true, _RET_IP_); \
685 } \
686 EXPORT_SYMBOL(__asan_store##size); \
687 __alias(__asan_store##size) \
688 void __asan_store##size##_noabort(unsigned long); \
689 EXPORT_SYMBOL(__asan_store##size##_noabort)
690
691 DEFINE_ASAN_LOAD_STORE(1);
692 DEFINE_ASAN_LOAD_STORE(2);
693 DEFINE_ASAN_LOAD_STORE(4);
694 DEFINE_ASAN_LOAD_STORE(8);
695 DEFINE_ASAN_LOAD_STORE(16);
696
697 void __asan_loadN(unsigned long addr, size_t size)
698 {
699 check_memory_region(addr, size, false, _RET_IP_);
700 }
701 EXPORT_SYMBOL(__asan_loadN);
702
703 __alias(__asan_loadN)
704 void __asan_loadN_noabort(unsigned long, size_t);
705 EXPORT_SYMBOL(__asan_loadN_noabort);
706
707 void __asan_storeN(unsigned long addr, size_t size)
708 {
709 check_memory_region(addr, size, true, _RET_IP_);
710 }
711 EXPORT_SYMBOL(__asan_storeN);
712
713 __alias(__asan_storeN)
714 void __asan_storeN_noabort(unsigned long, size_t);
715 EXPORT_SYMBOL(__asan_storeN_noabort);
716
717 /* to shut up compiler complaints */
718 void __asan_handle_no_return(void) {}
719 EXPORT_SYMBOL(__asan_handle_no_return);
720
721 /* Emitted by compiler to poison large objects when they go out of scope. */
722 void __asan_poison_stack_memory(const void *addr, size_t size)
723 {
724 /*
725 * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
726 * by redzones, so we simply round up size to simplify logic.
727 */
728 kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
729 KASAN_USE_AFTER_SCOPE);
730 }
731 EXPORT_SYMBOL(__asan_poison_stack_memory);
732
733 /* Emitted by compiler to unpoison large objects when they go into scope. */
734 void __asan_unpoison_stack_memory(const void *addr, size_t size)
735 {
736 kasan_unpoison_shadow(addr, size);
737 }
738 EXPORT_SYMBOL(__asan_unpoison_stack_memory);
739
740 /* Emitted by compiler to poison alloca()ed objects. */
741 void __asan_alloca_poison(unsigned long addr, size_t size)
742 {
743 size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
744 size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
745 rounded_up_size;
746 size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
747
748 const void *left_redzone = (const void *)(addr -
749 KASAN_ALLOCA_REDZONE_SIZE);
750 const void *right_redzone = (const void *)(addr + rounded_up_size);
751
752 WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
753
754 kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
755 size - rounded_down_size);
756 kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
757 KASAN_ALLOCA_LEFT);
758 kasan_poison_shadow(right_redzone,
759 padding_size + KASAN_ALLOCA_REDZONE_SIZE,
760 KASAN_ALLOCA_RIGHT);
761 }
762 EXPORT_SYMBOL(__asan_alloca_poison);
763
764 /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
765 void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
766 {
767 if (unlikely(!stack_top || stack_top > stack_bottom))
768 return;
769
770 kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
771 }
772 EXPORT_SYMBOL(__asan_allocas_unpoison);
773
774 /* Emitted by the compiler to [un]poison local variables. */
775 #define DEFINE_ASAN_SET_SHADOW(byte) \
776 void __asan_set_shadow_##byte(const void *addr, size_t size) \
777 { \
778 __memset((void *)addr, 0x##byte, size); \
779 } \
780 EXPORT_SYMBOL(__asan_set_shadow_##byte)
781
782 DEFINE_ASAN_SET_SHADOW(00);
783 DEFINE_ASAN_SET_SHADOW(f1);
784 DEFINE_ASAN_SET_SHADOW(f2);
785 DEFINE_ASAN_SET_SHADOW(f3);
786 DEFINE_ASAN_SET_SHADOW(f5);
787 DEFINE_ASAN_SET_SHADOW(f8);
788
789 #ifdef CONFIG_MEMORY_HOTPLUG
790 static bool shadow_mapped(unsigned long addr)
791 {
792 pgd_t *pgd = pgd_offset_k(addr);
793 p4d_t *p4d;
794 pud_t *pud;
795 pmd_t *pmd;
796 pte_t *pte;
797
798 if (pgd_none(*pgd))
799 return false;
800 p4d = p4d_offset(pgd, addr);
801 if (p4d_none(*p4d))
802 return false;
803 pud = pud_offset(p4d, addr);
804 if (pud_none(*pud))
805 return false;
806
807 /*
808 * We can't use pud_large() or pud_huge(), the first one is
809 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
810 * pud_bad(), if pud is bad then it's bad because it's huge.
811 */
812 if (pud_bad(*pud))
813 return true;
814 pmd = pmd_offset(pud, addr);
815 if (pmd_none(*pmd))
816 return false;
817
818 if (pmd_bad(*pmd))
819 return true;
820 pte = pte_offset_kernel(pmd, addr);
821 return !pte_none(*pte);
822 }
823
824 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
825 unsigned long action, void *data)
826 {
827 struct memory_notify *mem_data = data;
828 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
829 unsigned long shadow_end, shadow_size;
830
831 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
832 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
833 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
834 shadow_size = nr_shadow_pages << PAGE_SHIFT;
835 shadow_end = shadow_start + shadow_size;
836
837 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
838 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
839 return NOTIFY_BAD;
840
841 switch (action) {
842 case MEM_GOING_ONLINE: {
843 void *ret;
844
845 /*
846 * If shadow is mapped already than it must have been mapped
847 * during the boot. This could happen if we onlining previously
848 * offlined memory.
849 */
850 if (shadow_mapped(shadow_start))
851 return NOTIFY_OK;
852
853 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
854 shadow_end, GFP_KERNEL,
855 PAGE_KERNEL, VM_NO_GUARD,
856 pfn_to_nid(mem_data->start_pfn),
857 __builtin_return_address(0));
858 if (!ret)
859 return NOTIFY_BAD;
860
861 kmemleak_ignore(ret);
862 return NOTIFY_OK;
863 }
864 case MEM_CANCEL_ONLINE:
865 case MEM_OFFLINE: {
866 struct vm_struct *vm;
867
868 /*
869 * shadow_start was either mapped during boot by kasan_init()
870 * or during memory online by __vmalloc_node_range().
871 * In the latter case we can use vfree() to free shadow.
872 * Non-NULL result of the find_vm_area() will tell us if
873 * that was the second case.
874 *
875 * Currently it's not possible to free shadow mapped
876 * during boot by kasan_init(). It's because the code
877 * to do that hasn't been written yet. So we'll just
878 * leak the memory.
879 */
880 vm = find_vm_area((void *)shadow_start);
881 if (vm)
882 vfree((void *)shadow_start);
883 }
884 }
885
886 return NOTIFY_OK;
887 }
888
889 static int __init kasan_memhotplug_init(void)
890 {
891 hotplug_memory_notifier(kasan_mem_notifier, 0);
892
893 return 0;
894 }
895
896 core_initcall(kasan_memhotplug_init);
897 #endif