Merge tag 'mmc-v4.14-rc4-3' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38
39 int hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
61 */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
88 }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
93 {
94 struct hugepage_subpool *spool;
95
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
111
112 return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121 }
122
123 /*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
133 {
134 long ret = delta;
135
136 if (!spool)
137 return ret;
138
139 spin_lock(&spool->lock);
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
148 }
149
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
168 }
169
170 /*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
178 {
179 long ret = delta;
180
181 if (!spool)
182 return delta;
183
184 spin_lock(&spool->lock);
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
205 unlock_or_release_subpool(spool);
206
207 return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
223 *
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
238 */
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243 };
244
245 /*
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
258 */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
264
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
320
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
325
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
331 }
332
333 /*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
354 */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
360
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
382 }
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
411
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
428
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
438
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
447 }
448
449 /*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466 }
467
468 /*
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
481 */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
488
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
501
502 if (rg->from >= t)
503 break;
504
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
518
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
556 }
557
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
561 }
562
563 /*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583 }
584
585 /*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
594
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
611 spin_unlock(&resv->lock);
612
613 return chg;
614 }
615
616 /*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
622 {
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629 {
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
647 return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650
651 /*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
656 */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 return vma_kernel_pagesize(vma);
661 }
662 #endif
663
664 /*
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
668 */
669 #define HPAGE_RESV_OWNER (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672
673 /*
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
677 *
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
682 *
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
691 */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 return (unsigned long)vma->vm_private_data;
695 }
696
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
699 {
700 vma->vm_private_data = (void *)value;
701 }
702
703 struct resv_map *resv_map_alloc(void)
704 {
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
711 return NULL;
712 }
713
714 kref_init(&resv_map->refs);
715 spin_lock_init(&resv_map->lock);
716 INIT_LIST_HEAD(&resv_map->regions);
717
718 resv_map->adds_in_progress = 0;
719
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
723
724 return resv_map;
725 }
726
727 void resv_map_release(struct kref *ref)
728 {
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
732
733 /* Clear out any active regions before we release the map. */
734 region_del(resv_map, 0, LONG_MAX);
735
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
740 }
741
742 VM_BUG_ON(resv_map->adds_in_progress);
743
744 kfree(resv_map);
745 }
746
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 return inode->i_mapping->private_data;
750 }
751
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
758
759 return inode_resv_map(inode);
760
761 } else {
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
764 }
765 }
766
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787
788 return (get_vma_private_data(vma) & flag) != 0;
789 }
790
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 if (!(vma->vm_flags & VM_MAYSHARE))
796 vma->vm_private_data = (void *)0;
797 }
798
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 if (vma->vm_flags & VM_NORESERVE) {
803 /*
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
811 */
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 return true;
814 else
815 return false;
816 }
817
818 /* Shared mappings always use reserves */
819 if (vma->vm_flags & VM_MAYSHARE) {
820 /*
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
826 */
827 if (chg)
828 return false;
829 else
830 return true;
831 }
832
833 /*
834 * Only the process that called mmap() has reserves for
835 * private mappings.
836 */
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 /*
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
858
859 return false;
860 }
861
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 int nid = page_to_nid(page);
865 list_move(&page->lru, &h->hugepage_freelists[nid]);
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
868 }
869
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872 struct page *page;
873
874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 if (!PageHWPoison(page))
876 break;
877 /*
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
880 */
881 if (&h->hugepage_freelists[nid] == &page->lru)
882 return NULL;
883 list_move(&page->lru, &h->hugepage_activelist);
884 set_page_refcounted(page);
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
888 }
889
890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891 nodemask_t *nmask)
892 {
893 unsigned int cpuset_mems_cookie;
894 struct zonelist *zonelist;
895 struct zone *zone;
896 struct zoneref *z;
897 int node = -1;
898
899 zonelist = node_zonelist(nid, gfp_mask);
900
901 retry_cpuset:
902 cpuset_mems_cookie = read_mems_allowed_begin();
903 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904 struct page *page;
905
906 if (!cpuset_zone_allowed(zone, gfp_mask))
907 continue;
908 /*
909 * no need to ask again on the same node. Pool is node rather than
910 * zone aware
911 */
912 if (zone_to_nid(zone) == node)
913 continue;
914 node = zone_to_nid(zone);
915
916 page = dequeue_huge_page_node_exact(h, node);
917 if (page)
918 return page;
919 }
920 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921 goto retry_cpuset;
922
923 return NULL;
924 }
925
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t htlb_alloc_mask(struct hstate *h)
928 {
929 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
930 return GFP_HIGHUSER_MOVABLE;
931 else
932 return GFP_HIGHUSER;
933 }
934
935 static struct page *dequeue_huge_page_vma(struct hstate *h,
936 struct vm_area_struct *vma,
937 unsigned long address, int avoid_reserve,
938 long chg)
939 {
940 struct page *page;
941 struct mempolicy *mpol;
942 gfp_t gfp_mask;
943 nodemask_t *nodemask;
944 int nid;
945
946 /*
947 * A child process with MAP_PRIVATE mappings created by their parent
948 * have no page reserves. This check ensures that reservations are
949 * not "stolen". The child may still get SIGKILLed
950 */
951 if (!vma_has_reserves(vma, chg) &&
952 h->free_huge_pages - h->resv_huge_pages == 0)
953 goto err;
954
955 /* If reserves cannot be used, ensure enough pages are in the pool */
956 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957 goto err;
958
959 gfp_mask = htlb_alloc_mask(h);
960 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963 SetPagePrivate(page);
964 h->resv_huge_pages--;
965 }
966
967 mpol_cond_put(mpol);
968 return page;
969
970 err:
971 return NULL;
972 }
973
974 /*
975 * common helper functions for hstate_next_node_to_{alloc|free}.
976 * We may have allocated or freed a huge page based on a different
977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978 * be outside of *nodes_allowed. Ensure that we use an allowed
979 * node for alloc or free.
980 */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983 nid = next_node_in(nid, *nodes_allowed);
984 VM_BUG_ON(nid >= MAX_NUMNODES);
985
986 return nid;
987 }
988
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991 if (!node_isset(nid, *nodes_allowed))
992 nid = next_node_allowed(nid, nodes_allowed);
993 return nid;
994 }
995
996 /*
997 * returns the previously saved node ["this node"] from which to
998 * allocate a persistent huge page for the pool and advance the
999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1001 */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003 nodemask_t *nodes_allowed)
1004 {
1005 int nid;
1006
1007 VM_BUG_ON(!nodes_allowed);
1008
1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012 return nid;
1013 }
1014
1015 /*
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page. Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1020 */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023 int nid;
1024
1025 VM_BUG_ON(!nodes_allowed);
1026
1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030 return nid;
1031 }
1032
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1037 nr_nodes--)
1038
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1040 for (nr_nodes = nodes_weight(*mask); \
1041 nr_nodes > 0 && \
1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1043 nr_nodes--)
1044
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047 unsigned int order)
1048 {
1049 int i;
1050 int nr_pages = 1 << order;
1051 struct page *p = page + 1;
1052
1053 atomic_set(compound_mapcount_ptr(page), 0);
1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055 clear_compound_head(p);
1056 set_page_refcounted(p);
1057 }
1058
1059 set_compound_order(page, 0);
1060 __ClearPageHead(page);
1061 }
1062
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065 free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069 unsigned long nr_pages, gfp_t gfp_mask)
1070 {
1071 unsigned long end_pfn = start_pfn + nr_pages;
1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 gfp_mask);
1074 }
1075
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077 unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 unsigned long i, end_pfn = start_pfn + nr_pages;
1080 struct page *page;
1081
1082 for (i = start_pfn; i < end_pfn; i++) {
1083 if (!pfn_valid(i))
1084 return false;
1085
1086 page = pfn_to_page(i);
1087
1088 if (page_zone(page) != z)
1089 return false;
1090
1091 if (PageReserved(page))
1092 return false;
1093
1094 if (page_count(page) > 0)
1095 return false;
1096
1097 if (PageHuge(page))
1098 return false;
1099 }
1100
1101 return true;
1102 }
1103
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1109 }
1110
1111 static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1112 {
1113 unsigned int order = huge_page_order(h);
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
1116 struct zonelist *zonelist;
1117 struct zone *zone;
1118 struct zoneref *z;
1119 gfp_t gfp_mask;
1120
1121 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1122 zonelist = node_zonelist(nid, gfp_mask);
1123 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1124 spin_lock_irqsave(&zone->lock, flags);
1125
1126 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1127 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1128 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1129 /*
1130 * We release the zone lock here because
1131 * alloc_contig_range() will also lock the zone
1132 * at some point. If there's an allocation
1133 * spinning on this lock, it may win the race
1134 * and cause alloc_contig_range() to fail...
1135 */
1136 spin_unlock_irqrestore(&zone->lock, flags);
1137 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1138 if (!ret)
1139 return pfn_to_page(pfn);
1140 spin_lock_irqsave(&zone->lock, flags);
1141 }
1142 pfn += nr_pages;
1143 }
1144
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147
1148 return NULL;
1149 }
1150
1151 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1152 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1153
1154 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1155 {
1156 struct page *page;
1157
1158 page = alloc_gigantic_page(nid, h);
1159 if (page) {
1160 prep_compound_gigantic_page(page, huge_page_order(h));
1161 prep_new_huge_page(h, page, nid);
1162 }
1163
1164 return page;
1165 }
1166
1167 static int alloc_fresh_gigantic_page(struct hstate *h,
1168 nodemask_t *nodes_allowed)
1169 {
1170 struct page *page = NULL;
1171 int nr_nodes, node;
1172
1173 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1174 page = alloc_fresh_gigantic_page_node(h, node);
1175 if (page)
1176 return 1;
1177 }
1178
1179 return 0;
1180 }
1181
1182 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1183 static inline bool gigantic_page_supported(void) { return false; }
1184 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1185 static inline void destroy_compound_gigantic_page(struct page *page,
1186 unsigned int order) { }
1187 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1188 nodemask_t *nodes_allowed) { return 0; }
1189 #endif
1190
1191 static void update_and_free_page(struct hstate *h, struct page *page)
1192 {
1193 int i;
1194
1195 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1196 return;
1197
1198 h->nr_huge_pages--;
1199 h->nr_huge_pages_node[page_to_nid(page)]--;
1200 for (i = 0; i < pages_per_huge_page(h); i++) {
1201 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1202 1 << PG_referenced | 1 << PG_dirty |
1203 1 << PG_active | 1 << PG_private |
1204 1 << PG_writeback);
1205 }
1206 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1207 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1208 set_page_refcounted(page);
1209 if (hstate_is_gigantic(h)) {
1210 destroy_compound_gigantic_page(page, huge_page_order(h));
1211 free_gigantic_page(page, huge_page_order(h));
1212 } else {
1213 __free_pages(page, huge_page_order(h));
1214 }
1215 }
1216
1217 struct hstate *size_to_hstate(unsigned long size)
1218 {
1219 struct hstate *h;
1220
1221 for_each_hstate(h) {
1222 if (huge_page_size(h) == size)
1223 return h;
1224 }
1225 return NULL;
1226 }
1227
1228 /*
1229 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1230 * to hstate->hugepage_activelist.)
1231 *
1232 * This function can be called for tail pages, but never returns true for them.
1233 */
1234 bool page_huge_active(struct page *page)
1235 {
1236 VM_BUG_ON_PAGE(!PageHuge(page), page);
1237 return PageHead(page) && PagePrivate(&page[1]);
1238 }
1239
1240 /* never called for tail page */
1241 static void set_page_huge_active(struct page *page)
1242 {
1243 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1244 SetPagePrivate(&page[1]);
1245 }
1246
1247 static void clear_page_huge_active(struct page *page)
1248 {
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 ClearPagePrivate(&page[1]);
1251 }
1252
1253 void free_huge_page(struct page *page)
1254 {
1255 /*
1256 * Can't pass hstate in here because it is called from the
1257 * compound page destructor.
1258 */
1259 struct hstate *h = page_hstate(page);
1260 int nid = page_to_nid(page);
1261 struct hugepage_subpool *spool =
1262 (struct hugepage_subpool *)page_private(page);
1263 bool restore_reserve;
1264
1265 set_page_private(page, 0);
1266 page->mapping = NULL;
1267 VM_BUG_ON_PAGE(page_count(page), page);
1268 VM_BUG_ON_PAGE(page_mapcount(page), page);
1269 restore_reserve = PagePrivate(page);
1270 ClearPagePrivate(page);
1271
1272 /*
1273 * A return code of zero implies that the subpool will be under its
1274 * minimum size if the reservation is not restored after page is free.
1275 * Therefore, force restore_reserve operation.
1276 */
1277 if (hugepage_subpool_put_pages(spool, 1) == 0)
1278 restore_reserve = true;
1279
1280 spin_lock(&hugetlb_lock);
1281 clear_page_huge_active(page);
1282 hugetlb_cgroup_uncharge_page(hstate_index(h),
1283 pages_per_huge_page(h), page);
1284 if (restore_reserve)
1285 h->resv_huge_pages++;
1286
1287 if (h->surplus_huge_pages_node[nid]) {
1288 /* remove the page from active list */
1289 list_del(&page->lru);
1290 update_and_free_page(h, page);
1291 h->surplus_huge_pages--;
1292 h->surplus_huge_pages_node[nid]--;
1293 } else {
1294 arch_clear_hugepage_flags(page);
1295 enqueue_huge_page(h, page);
1296 }
1297 spin_unlock(&hugetlb_lock);
1298 }
1299
1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1301 {
1302 INIT_LIST_HEAD(&page->lru);
1303 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1304 spin_lock(&hugetlb_lock);
1305 set_hugetlb_cgroup(page, NULL);
1306 h->nr_huge_pages++;
1307 h->nr_huge_pages_node[nid]++;
1308 spin_unlock(&hugetlb_lock);
1309 put_page(page); /* free it into the hugepage allocator */
1310 }
1311
1312 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1313 {
1314 int i;
1315 int nr_pages = 1 << order;
1316 struct page *p = page + 1;
1317
1318 /* we rely on prep_new_huge_page to set the destructor */
1319 set_compound_order(page, order);
1320 __ClearPageReserved(page);
1321 __SetPageHead(page);
1322 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323 /*
1324 * For gigantic hugepages allocated through bootmem at
1325 * boot, it's safer to be consistent with the not-gigantic
1326 * hugepages and clear the PG_reserved bit from all tail pages
1327 * too. Otherwse drivers using get_user_pages() to access tail
1328 * pages may get the reference counting wrong if they see
1329 * PG_reserved set on a tail page (despite the head page not
1330 * having PG_reserved set). Enforcing this consistency between
1331 * head and tail pages allows drivers to optimize away a check
1332 * on the head page when they need know if put_page() is needed
1333 * after get_user_pages().
1334 */
1335 __ClearPageReserved(p);
1336 set_page_count(p, 0);
1337 set_compound_head(p, page);
1338 }
1339 atomic_set(compound_mapcount_ptr(page), -1);
1340 }
1341
1342 /*
1343 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1344 * transparent huge pages. See the PageTransHuge() documentation for more
1345 * details.
1346 */
1347 int PageHuge(struct page *page)
1348 {
1349 if (!PageCompound(page))
1350 return 0;
1351
1352 page = compound_head(page);
1353 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1354 }
1355 EXPORT_SYMBOL_GPL(PageHuge);
1356
1357 /*
1358 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1359 * normal or transparent huge pages.
1360 */
1361 int PageHeadHuge(struct page *page_head)
1362 {
1363 if (!PageHead(page_head))
1364 return 0;
1365
1366 return get_compound_page_dtor(page_head) == free_huge_page;
1367 }
1368
1369 pgoff_t __basepage_index(struct page *page)
1370 {
1371 struct page *page_head = compound_head(page);
1372 pgoff_t index = page_index(page_head);
1373 unsigned long compound_idx;
1374
1375 if (!PageHuge(page_head))
1376 return page_index(page);
1377
1378 if (compound_order(page_head) >= MAX_ORDER)
1379 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1380 else
1381 compound_idx = page - page_head;
1382
1383 return (index << compound_order(page_head)) + compound_idx;
1384 }
1385
1386 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1387 {
1388 struct page *page;
1389
1390 page = __alloc_pages_node(nid,
1391 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1392 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1393 huge_page_order(h));
1394 if (page) {
1395 prep_new_huge_page(h, page, nid);
1396 }
1397
1398 return page;
1399 }
1400
1401 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1402 {
1403 struct page *page;
1404 int nr_nodes, node;
1405 int ret = 0;
1406
1407 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1408 page = alloc_fresh_huge_page_node(h, node);
1409 if (page) {
1410 ret = 1;
1411 break;
1412 }
1413 }
1414
1415 if (ret)
1416 count_vm_event(HTLB_BUDDY_PGALLOC);
1417 else
1418 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1419
1420 return ret;
1421 }
1422
1423 /*
1424 * Free huge page from pool from next node to free.
1425 * Attempt to keep persistent huge pages more or less
1426 * balanced over allowed nodes.
1427 * Called with hugetlb_lock locked.
1428 */
1429 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1430 bool acct_surplus)
1431 {
1432 int nr_nodes, node;
1433 int ret = 0;
1434
1435 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1436 /*
1437 * If we're returning unused surplus pages, only examine
1438 * nodes with surplus pages.
1439 */
1440 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1441 !list_empty(&h->hugepage_freelists[node])) {
1442 struct page *page =
1443 list_entry(h->hugepage_freelists[node].next,
1444 struct page, lru);
1445 list_del(&page->lru);
1446 h->free_huge_pages--;
1447 h->free_huge_pages_node[node]--;
1448 if (acct_surplus) {
1449 h->surplus_huge_pages--;
1450 h->surplus_huge_pages_node[node]--;
1451 }
1452 update_and_free_page(h, page);
1453 ret = 1;
1454 break;
1455 }
1456 }
1457
1458 return ret;
1459 }
1460
1461 /*
1462 * Dissolve a given free hugepage into free buddy pages. This function does
1463 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1464 * number of free hugepages would be reduced below the number of reserved
1465 * hugepages.
1466 */
1467 int dissolve_free_huge_page(struct page *page)
1468 {
1469 int rc = 0;
1470
1471 spin_lock(&hugetlb_lock);
1472 if (PageHuge(page) && !page_count(page)) {
1473 struct page *head = compound_head(page);
1474 struct hstate *h = page_hstate(head);
1475 int nid = page_to_nid(head);
1476 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1477 rc = -EBUSY;
1478 goto out;
1479 }
1480 /*
1481 * Move PageHWPoison flag from head page to the raw error page,
1482 * which makes any subpages rather than the error page reusable.
1483 */
1484 if (PageHWPoison(head) && page != head) {
1485 SetPageHWPoison(page);
1486 ClearPageHWPoison(head);
1487 }
1488 list_del(&head->lru);
1489 h->free_huge_pages--;
1490 h->free_huge_pages_node[nid]--;
1491 h->max_huge_pages--;
1492 update_and_free_page(h, head);
1493 }
1494 out:
1495 spin_unlock(&hugetlb_lock);
1496 return rc;
1497 }
1498
1499 /*
1500 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1501 * make specified memory blocks removable from the system.
1502 * Note that this will dissolve a free gigantic hugepage completely, if any
1503 * part of it lies within the given range.
1504 * Also note that if dissolve_free_huge_page() returns with an error, all
1505 * free hugepages that were dissolved before that error are lost.
1506 */
1507 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1508 {
1509 unsigned long pfn;
1510 struct page *page;
1511 int rc = 0;
1512
1513 if (!hugepages_supported())
1514 return rc;
1515
1516 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1517 page = pfn_to_page(pfn);
1518 if (PageHuge(page) && !page_count(page)) {
1519 rc = dissolve_free_huge_page(page);
1520 if (rc)
1521 break;
1522 }
1523 }
1524
1525 return rc;
1526 }
1527
1528 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1529 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1530 {
1531 int order = huge_page_order(h);
1532
1533 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1534 if (nid == NUMA_NO_NODE)
1535 nid = numa_mem_id();
1536 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1537 }
1538
1539 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1540 int nid, nodemask_t *nmask)
1541 {
1542 struct page *page;
1543 unsigned int r_nid;
1544
1545 if (hstate_is_gigantic(h))
1546 return NULL;
1547
1548 /*
1549 * Assume we will successfully allocate the surplus page to
1550 * prevent racing processes from causing the surplus to exceed
1551 * overcommit
1552 *
1553 * This however introduces a different race, where a process B
1554 * tries to grow the static hugepage pool while alloc_pages() is
1555 * called by process A. B will only examine the per-node
1556 * counters in determining if surplus huge pages can be
1557 * converted to normal huge pages in adjust_pool_surplus(). A
1558 * won't be able to increment the per-node counter, until the
1559 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1560 * no more huge pages can be converted from surplus to normal
1561 * state (and doesn't try to convert again). Thus, we have a
1562 * case where a surplus huge page exists, the pool is grown, and
1563 * the surplus huge page still exists after, even though it
1564 * should just have been converted to a normal huge page. This
1565 * does not leak memory, though, as the hugepage will be freed
1566 * once it is out of use. It also does not allow the counters to
1567 * go out of whack in adjust_pool_surplus() as we don't modify
1568 * the node values until we've gotten the hugepage and only the
1569 * per-node value is checked there.
1570 */
1571 spin_lock(&hugetlb_lock);
1572 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1573 spin_unlock(&hugetlb_lock);
1574 return NULL;
1575 } else {
1576 h->nr_huge_pages++;
1577 h->surplus_huge_pages++;
1578 }
1579 spin_unlock(&hugetlb_lock);
1580
1581 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1582
1583 spin_lock(&hugetlb_lock);
1584 if (page) {
1585 INIT_LIST_HEAD(&page->lru);
1586 r_nid = page_to_nid(page);
1587 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1588 set_hugetlb_cgroup(page, NULL);
1589 /*
1590 * We incremented the global counters already
1591 */
1592 h->nr_huge_pages_node[r_nid]++;
1593 h->surplus_huge_pages_node[r_nid]++;
1594 __count_vm_event(HTLB_BUDDY_PGALLOC);
1595 } else {
1596 h->nr_huge_pages--;
1597 h->surplus_huge_pages--;
1598 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1599 }
1600 spin_unlock(&hugetlb_lock);
1601
1602 return page;
1603 }
1604
1605 /*
1606 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1607 */
1608 static
1609 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1610 struct vm_area_struct *vma, unsigned long addr)
1611 {
1612 struct page *page;
1613 struct mempolicy *mpol;
1614 gfp_t gfp_mask = htlb_alloc_mask(h);
1615 int nid;
1616 nodemask_t *nodemask;
1617
1618 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1619 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1620 mpol_cond_put(mpol);
1621
1622 return page;
1623 }
1624
1625 /*
1626 * This allocation function is useful in the context where vma is irrelevant.
1627 * E.g. soft-offlining uses this function because it only cares physical
1628 * address of error page.
1629 */
1630 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1631 {
1632 gfp_t gfp_mask = htlb_alloc_mask(h);
1633 struct page *page = NULL;
1634
1635 if (nid != NUMA_NO_NODE)
1636 gfp_mask |= __GFP_THISNODE;
1637
1638 spin_lock(&hugetlb_lock);
1639 if (h->free_huge_pages - h->resv_huge_pages > 0)
1640 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1641 spin_unlock(&hugetlb_lock);
1642
1643 if (!page)
1644 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1645
1646 return page;
1647 }
1648
1649
1650 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1651 nodemask_t *nmask)
1652 {
1653 gfp_t gfp_mask = htlb_alloc_mask(h);
1654
1655 spin_lock(&hugetlb_lock);
1656 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1657 struct page *page;
1658
1659 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1660 if (page) {
1661 spin_unlock(&hugetlb_lock);
1662 return page;
1663 }
1664 }
1665 spin_unlock(&hugetlb_lock);
1666
1667 /* No reservations, try to overcommit */
1668
1669 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1670 }
1671
1672 /*
1673 * Increase the hugetlb pool such that it can accommodate a reservation
1674 * of size 'delta'.
1675 */
1676 static int gather_surplus_pages(struct hstate *h, int delta)
1677 {
1678 struct list_head surplus_list;
1679 struct page *page, *tmp;
1680 int ret, i;
1681 int needed, allocated;
1682 bool alloc_ok = true;
1683
1684 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1685 if (needed <= 0) {
1686 h->resv_huge_pages += delta;
1687 return 0;
1688 }
1689
1690 allocated = 0;
1691 INIT_LIST_HEAD(&surplus_list);
1692
1693 ret = -ENOMEM;
1694 retry:
1695 spin_unlock(&hugetlb_lock);
1696 for (i = 0; i < needed; i++) {
1697 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1698 NUMA_NO_NODE, NULL);
1699 if (!page) {
1700 alloc_ok = false;
1701 break;
1702 }
1703 list_add(&page->lru, &surplus_list);
1704 cond_resched();
1705 }
1706 allocated += i;
1707
1708 /*
1709 * After retaking hugetlb_lock, we need to recalculate 'needed'
1710 * because either resv_huge_pages or free_huge_pages may have changed.
1711 */
1712 spin_lock(&hugetlb_lock);
1713 needed = (h->resv_huge_pages + delta) -
1714 (h->free_huge_pages + allocated);
1715 if (needed > 0) {
1716 if (alloc_ok)
1717 goto retry;
1718 /*
1719 * We were not able to allocate enough pages to
1720 * satisfy the entire reservation so we free what
1721 * we've allocated so far.
1722 */
1723 goto free;
1724 }
1725 /*
1726 * The surplus_list now contains _at_least_ the number of extra pages
1727 * needed to accommodate the reservation. Add the appropriate number
1728 * of pages to the hugetlb pool and free the extras back to the buddy
1729 * allocator. Commit the entire reservation here to prevent another
1730 * process from stealing the pages as they are added to the pool but
1731 * before they are reserved.
1732 */
1733 needed += allocated;
1734 h->resv_huge_pages += delta;
1735 ret = 0;
1736
1737 /* Free the needed pages to the hugetlb pool */
1738 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1739 if ((--needed) < 0)
1740 break;
1741 /*
1742 * This page is now managed by the hugetlb allocator and has
1743 * no users -- drop the buddy allocator's reference.
1744 */
1745 put_page_testzero(page);
1746 VM_BUG_ON_PAGE(page_count(page), page);
1747 enqueue_huge_page(h, page);
1748 }
1749 free:
1750 spin_unlock(&hugetlb_lock);
1751
1752 /* Free unnecessary surplus pages to the buddy allocator */
1753 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1754 put_page(page);
1755 spin_lock(&hugetlb_lock);
1756
1757 return ret;
1758 }
1759
1760 /*
1761 * This routine has two main purposes:
1762 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1763 * in unused_resv_pages. This corresponds to the prior adjustments made
1764 * to the associated reservation map.
1765 * 2) Free any unused surplus pages that may have been allocated to satisfy
1766 * the reservation. As many as unused_resv_pages may be freed.
1767 *
1768 * Called with hugetlb_lock held. However, the lock could be dropped (and
1769 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1770 * we must make sure nobody else can claim pages we are in the process of
1771 * freeing. Do this by ensuring resv_huge_page always is greater than the
1772 * number of huge pages we plan to free when dropping the lock.
1773 */
1774 static void return_unused_surplus_pages(struct hstate *h,
1775 unsigned long unused_resv_pages)
1776 {
1777 unsigned long nr_pages;
1778
1779 /* Cannot return gigantic pages currently */
1780 if (hstate_is_gigantic(h))
1781 goto out;
1782
1783 /*
1784 * Part (or even all) of the reservation could have been backed
1785 * by pre-allocated pages. Only free surplus pages.
1786 */
1787 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1788
1789 /*
1790 * We want to release as many surplus pages as possible, spread
1791 * evenly across all nodes with memory. Iterate across these nodes
1792 * until we can no longer free unreserved surplus pages. This occurs
1793 * when the nodes with surplus pages have no free pages.
1794 * free_pool_huge_page() will balance the the freed pages across the
1795 * on-line nodes with memory and will handle the hstate accounting.
1796 *
1797 * Note that we decrement resv_huge_pages as we free the pages. If
1798 * we drop the lock, resv_huge_pages will still be sufficiently large
1799 * to cover subsequent pages we may free.
1800 */
1801 while (nr_pages--) {
1802 h->resv_huge_pages--;
1803 unused_resv_pages--;
1804 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1805 goto out;
1806 cond_resched_lock(&hugetlb_lock);
1807 }
1808
1809 out:
1810 /* Fully uncommit the reservation */
1811 h->resv_huge_pages -= unused_resv_pages;
1812 }
1813
1814
1815 /*
1816 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1817 * are used by the huge page allocation routines to manage reservations.
1818 *
1819 * vma_needs_reservation is called to determine if the huge page at addr
1820 * within the vma has an associated reservation. If a reservation is
1821 * needed, the value 1 is returned. The caller is then responsible for
1822 * managing the global reservation and subpool usage counts. After
1823 * the huge page has been allocated, vma_commit_reservation is called
1824 * to add the page to the reservation map. If the page allocation fails,
1825 * the reservation must be ended instead of committed. vma_end_reservation
1826 * is called in such cases.
1827 *
1828 * In the normal case, vma_commit_reservation returns the same value
1829 * as the preceding vma_needs_reservation call. The only time this
1830 * is not the case is if a reserve map was changed between calls. It
1831 * is the responsibility of the caller to notice the difference and
1832 * take appropriate action.
1833 *
1834 * vma_add_reservation is used in error paths where a reservation must
1835 * be restored when a newly allocated huge page must be freed. It is
1836 * to be called after calling vma_needs_reservation to determine if a
1837 * reservation exists.
1838 */
1839 enum vma_resv_mode {
1840 VMA_NEEDS_RESV,
1841 VMA_COMMIT_RESV,
1842 VMA_END_RESV,
1843 VMA_ADD_RESV,
1844 };
1845 static long __vma_reservation_common(struct hstate *h,
1846 struct vm_area_struct *vma, unsigned long addr,
1847 enum vma_resv_mode mode)
1848 {
1849 struct resv_map *resv;
1850 pgoff_t idx;
1851 long ret;
1852
1853 resv = vma_resv_map(vma);
1854 if (!resv)
1855 return 1;
1856
1857 idx = vma_hugecache_offset(h, vma, addr);
1858 switch (mode) {
1859 case VMA_NEEDS_RESV:
1860 ret = region_chg(resv, idx, idx + 1);
1861 break;
1862 case VMA_COMMIT_RESV:
1863 ret = region_add(resv, idx, idx + 1);
1864 break;
1865 case VMA_END_RESV:
1866 region_abort(resv, idx, idx + 1);
1867 ret = 0;
1868 break;
1869 case VMA_ADD_RESV:
1870 if (vma->vm_flags & VM_MAYSHARE)
1871 ret = region_add(resv, idx, idx + 1);
1872 else {
1873 region_abort(resv, idx, idx + 1);
1874 ret = region_del(resv, idx, idx + 1);
1875 }
1876 break;
1877 default:
1878 BUG();
1879 }
1880
1881 if (vma->vm_flags & VM_MAYSHARE)
1882 return ret;
1883 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1884 /*
1885 * In most cases, reserves always exist for private mappings.
1886 * However, a file associated with mapping could have been
1887 * hole punched or truncated after reserves were consumed.
1888 * As subsequent fault on such a range will not use reserves.
1889 * Subtle - The reserve map for private mappings has the
1890 * opposite meaning than that of shared mappings. If NO
1891 * entry is in the reserve map, it means a reservation exists.
1892 * If an entry exists in the reserve map, it means the
1893 * reservation has already been consumed. As a result, the
1894 * return value of this routine is the opposite of the
1895 * value returned from reserve map manipulation routines above.
1896 */
1897 if (ret)
1898 return 0;
1899 else
1900 return 1;
1901 }
1902 else
1903 return ret < 0 ? ret : 0;
1904 }
1905
1906 static long vma_needs_reservation(struct hstate *h,
1907 struct vm_area_struct *vma, unsigned long addr)
1908 {
1909 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1910 }
1911
1912 static long vma_commit_reservation(struct hstate *h,
1913 struct vm_area_struct *vma, unsigned long addr)
1914 {
1915 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1916 }
1917
1918 static void vma_end_reservation(struct hstate *h,
1919 struct vm_area_struct *vma, unsigned long addr)
1920 {
1921 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1922 }
1923
1924 static long vma_add_reservation(struct hstate *h,
1925 struct vm_area_struct *vma, unsigned long addr)
1926 {
1927 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1928 }
1929
1930 /*
1931 * This routine is called to restore a reservation on error paths. In the
1932 * specific error paths, a huge page was allocated (via alloc_huge_page)
1933 * and is about to be freed. If a reservation for the page existed,
1934 * alloc_huge_page would have consumed the reservation and set PagePrivate
1935 * in the newly allocated page. When the page is freed via free_huge_page,
1936 * the global reservation count will be incremented if PagePrivate is set.
1937 * However, free_huge_page can not adjust the reserve map. Adjust the
1938 * reserve map here to be consistent with global reserve count adjustments
1939 * to be made by free_huge_page.
1940 */
1941 static void restore_reserve_on_error(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long address,
1943 struct page *page)
1944 {
1945 if (unlikely(PagePrivate(page))) {
1946 long rc = vma_needs_reservation(h, vma, address);
1947
1948 if (unlikely(rc < 0)) {
1949 /*
1950 * Rare out of memory condition in reserve map
1951 * manipulation. Clear PagePrivate so that
1952 * global reserve count will not be incremented
1953 * by free_huge_page. This will make it appear
1954 * as though the reservation for this page was
1955 * consumed. This may prevent the task from
1956 * faulting in the page at a later time. This
1957 * is better than inconsistent global huge page
1958 * accounting of reserve counts.
1959 */
1960 ClearPagePrivate(page);
1961 } else if (rc) {
1962 rc = vma_add_reservation(h, vma, address);
1963 if (unlikely(rc < 0))
1964 /*
1965 * See above comment about rare out of
1966 * memory condition.
1967 */
1968 ClearPagePrivate(page);
1969 } else
1970 vma_end_reservation(h, vma, address);
1971 }
1972 }
1973
1974 struct page *alloc_huge_page(struct vm_area_struct *vma,
1975 unsigned long addr, int avoid_reserve)
1976 {
1977 struct hugepage_subpool *spool = subpool_vma(vma);
1978 struct hstate *h = hstate_vma(vma);
1979 struct page *page;
1980 long map_chg, map_commit;
1981 long gbl_chg;
1982 int ret, idx;
1983 struct hugetlb_cgroup *h_cg;
1984
1985 idx = hstate_index(h);
1986 /*
1987 * Examine the region/reserve map to determine if the process
1988 * has a reservation for the page to be allocated. A return
1989 * code of zero indicates a reservation exists (no change).
1990 */
1991 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1992 if (map_chg < 0)
1993 return ERR_PTR(-ENOMEM);
1994
1995 /*
1996 * Processes that did not create the mapping will have no
1997 * reserves as indicated by the region/reserve map. Check
1998 * that the allocation will not exceed the subpool limit.
1999 * Allocations for MAP_NORESERVE mappings also need to be
2000 * checked against any subpool limit.
2001 */
2002 if (map_chg || avoid_reserve) {
2003 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2004 if (gbl_chg < 0) {
2005 vma_end_reservation(h, vma, addr);
2006 return ERR_PTR(-ENOSPC);
2007 }
2008
2009 /*
2010 * Even though there was no reservation in the region/reserve
2011 * map, there could be reservations associated with the
2012 * subpool that can be used. This would be indicated if the
2013 * return value of hugepage_subpool_get_pages() is zero.
2014 * However, if avoid_reserve is specified we still avoid even
2015 * the subpool reservations.
2016 */
2017 if (avoid_reserve)
2018 gbl_chg = 1;
2019 }
2020
2021 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2022 if (ret)
2023 goto out_subpool_put;
2024
2025 spin_lock(&hugetlb_lock);
2026 /*
2027 * glb_chg is passed to indicate whether or not a page must be taken
2028 * from the global free pool (global change). gbl_chg == 0 indicates
2029 * a reservation exists for the allocation.
2030 */
2031 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2032 if (!page) {
2033 spin_unlock(&hugetlb_lock);
2034 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2035 if (!page)
2036 goto out_uncharge_cgroup;
2037 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2038 SetPagePrivate(page);
2039 h->resv_huge_pages--;
2040 }
2041 spin_lock(&hugetlb_lock);
2042 list_move(&page->lru, &h->hugepage_activelist);
2043 /* Fall through */
2044 }
2045 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2046 spin_unlock(&hugetlb_lock);
2047
2048 set_page_private(page, (unsigned long)spool);
2049
2050 map_commit = vma_commit_reservation(h, vma, addr);
2051 if (unlikely(map_chg > map_commit)) {
2052 /*
2053 * The page was added to the reservation map between
2054 * vma_needs_reservation and vma_commit_reservation.
2055 * This indicates a race with hugetlb_reserve_pages.
2056 * Adjust for the subpool count incremented above AND
2057 * in hugetlb_reserve_pages for the same page. Also,
2058 * the reservation count added in hugetlb_reserve_pages
2059 * no longer applies.
2060 */
2061 long rsv_adjust;
2062
2063 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2064 hugetlb_acct_memory(h, -rsv_adjust);
2065 }
2066 return page;
2067
2068 out_uncharge_cgroup:
2069 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2070 out_subpool_put:
2071 if (map_chg || avoid_reserve)
2072 hugepage_subpool_put_pages(spool, 1);
2073 vma_end_reservation(h, vma, addr);
2074 return ERR_PTR(-ENOSPC);
2075 }
2076
2077 /*
2078 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2079 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2080 * where no ERR_VALUE is expected to be returned.
2081 */
2082 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2083 unsigned long addr, int avoid_reserve)
2084 {
2085 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2086 if (IS_ERR(page))
2087 page = NULL;
2088 return page;
2089 }
2090
2091 int alloc_bootmem_huge_page(struct hstate *h)
2092 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2093 int __alloc_bootmem_huge_page(struct hstate *h)
2094 {
2095 struct huge_bootmem_page *m;
2096 int nr_nodes, node;
2097
2098 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2099 void *addr;
2100
2101 addr = memblock_virt_alloc_try_nid_nopanic(
2102 huge_page_size(h), huge_page_size(h),
2103 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2104 if (addr) {
2105 /*
2106 * Use the beginning of the huge page to store the
2107 * huge_bootmem_page struct (until gather_bootmem
2108 * puts them into the mem_map).
2109 */
2110 m = addr;
2111 goto found;
2112 }
2113 }
2114 return 0;
2115
2116 found:
2117 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2118 /* Put them into a private list first because mem_map is not up yet */
2119 list_add(&m->list, &huge_boot_pages);
2120 m->hstate = h;
2121 return 1;
2122 }
2123
2124 static void __init prep_compound_huge_page(struct page *page,
2125 unsigned int order)
2126 {
2127 if (unlikely(order > (MAX_ORDER - 1)))
2128 prep_compound_gigantic_page(page, order);
2129 else
2130 prep_compound_page(page, order);
2131 }
2132
2133 /* Put bootmem huge pages into the standard lists after mem_map is up */
2134 static void __init gather_bootmem_prealloc(void)
2135 {
2136 struct huge_bootmem_page *m;
2137
2138 list_for_each_entry(m, &huge_boot_pages, list) {
2139 struct hstate *h = m->hstate;
2140 struct page *page;
2141
2142 #ifdef CONFIG_HIGHMEM
2143 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2144 memblock_free_late(__pa(m),
2145 sizeof(struct huge_bootmem_page));
2146 #else
2147 page = virt_to_page(m);
2148 #endif
2149 WARN_ON(page_count(page) != 1);
2150 prep_compound_huge_page(page, h->order);
2151 WARN_ON(PageReserved(page));
2152 prep_new_huge_page(h, page, page_to_nid(page));
2153 /*
2154 * If we had gigantic hugepages allocated at boot time, we need
2155 * to restore the 'stolen' pages to totalram_pages in order to
2156 * fix confusing memory reports from free(1) and another
2157 * side-effects, like CommitLimit going negative.
2158 */
2159 if (hstate_is_gigantic(h))
2160 adjust_managed_page_count(page, 1 << h->order);
2161 }
2162 }
2163
2164 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2165 {
2166 unsigned long i;
2167
2168 for (i = 0; i < h->max_huge_pages; ++i) {
2169 if (hstate_is_gigantic(h)) {
2170 if (!alloc_bootmem_huge_page(h))
2171 break;
2172 } else if (!alloc_fresh_huge_page(h,
2173 &node_states[N_MEMORY]))
2174 break;
2175 cond_resched();
2176 }
2177 if (i < h->max_huge_pages) {
2178 char buf[32];
2179
2180 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2182 h->max_huge_pages, buf, i);
2183 h->max_huge_pages = i;
2184 }
2185 }
2186
2187 static void __init hugetlb_init_hstates(void)
2188 {
2189 struct hstate *h;
2190
2191 for_each_hstate(h) {
2192 if (minimum_order > huge_page_order(h))
2193 minimum_order = huge_page_order(h);
2194
2195 /* oversize hugepages were init'ed in early boot */
2196 if (!hstate_is_gigantic(h))
2197 hugetlb_hstate_alloc_pages(h);
2198 }
2199 VM_BUG_ON(minimum_order == UINT_MAX);
2200 }
2201
2202 static void __init report_hugepages(void)
2203 {
2204 struct hstate *h;
2205
2206 for_each_hstate(h) {
2207 char buf[32];
2208
2209 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211 buf, h->free_huge_pages);
2212 }
2213 }
2214
2215 #ifdef CONFIG_HIGHMEM
2216 static void try_to_free_low(struct hstate *h, unsigned long count,
2217 nodemask_t *nodes_allowed)
2218 {
2219 int i;
2220
2221 if (hstate_is_gigantic(h))
2222 return;
2223
2224 for_each_node_mask(i, *nodes_allowed) {
2225 struct page *page, *next;
2226 struct list_head *freel = &h->hugepage_freelists[i];
2227 list_for_each_entry_safe(page, next, freel, lru) {
2228 if (count >= h->nr_huge_pages)
2229 return;
2230 if (PageHighMem(page))
2231 continue;
2232 list_del(&page->lru);
2233 update_and_free_page(h, page);
2234 h->free_huge_pages--;
2235 h->free_huge_pages_node[page_to_nid(page)]--;
2236 }
2237 }
2238 }
2239 #else
2240 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2241 nodemask_t *nodes_allowed)
2242 {
2243 }
2244 #endif
2245
2246 /*
2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2248 * balanced by operating on them in a round-robin fashion.
2249 * Returns 1 if an adjustment was made.
2250 */
2251 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2252 int delta)
2253 {
2254 int nr_nodes, node;
2255
2256 VM_BUG_ON(delta != -1 && delta != 1);
2257
2258 if (delta < 0) {
2259 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2260 if (h->surplus_huge_pages_node[node])
2261 goto found;
2262 }
2263 } else {
2264 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2265 if (h->surplus_huge_pages_node[node] <
2266 h->nr_huge_pages_node[node])
2267 goto found;
2268 }
2269 }
2270 return 0;
2271
2272 found:
2273 h->surplus_huge_pages += delta;
2274 h->surplus_huge_pages_node[node] += delta;
2275 return 1;
2276 }
2277
2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2280 nodemask_t *nodes_allowed)
2281 {
2282 unsigned long min_count, ret;
2283
2284 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2285 return h->max_huge_pages;
2286
2287 /*
2288 * Increase the pool size
2289 * First take pages out of surplus state. Then make up the
2290 * remaining difference by allocating fresh huge pages.
2291 *
2292 * We might race with __alloc_buddy_huge_page() here and be unable
2293 * to convert a surplus huge page to a normal huge page. That is
2294 * not critical, though, it just means the overall size of the
2295 * pool might be one hugepage larger than it needs to be, but
2296 * within all the constraints specified by the sysctls.
2297 */
2298 spin_lock(&hugetlb_lock);
2299 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2300 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2301 break;
2302 }
2303
2304 while (count > persistent_huge_pages(h)) {
2305 /*
2306 * If this allocation races such that we no longer need the
2307 * page, free_huge_page will handle it by freeing the page
2308 * and reducing the surplus.
2309 */
2310 spin_unlock(&hugetlb_lock);
2311
2312 /* yield cpu to avoid soft lockup */
2313 cond_resched();
2314
2315 if (hstate_is_gigantic(h))
2316 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2317 else
2318 ret = alloc_fresh_huge_page(h, nodes_allowed);
2319 spin_lock(&hugetlb_lock);
2320 if (!ret)
2321 goto out;
2322
2323 /* Bail for signals. Probably ctrl-c from user */
2324 if (signal_pending(current))
2325 goto out;
2326 }
2327
2328 /*
2329 * Decrease the pool size
2330 * First return free pages to the buddy allocator (being careful
2331 * to keep enough around to satisfy reservations). Then place
2332 * pages into surplus state as needed so the pool will shrink
2333 * to the desired size as pages become free.
2334 *
2335 * By placing pages into the surplus state independent of the
2336 * overcommit value, we are allowing the surplus pool size to
2337 * exceed overcommit. There are few sane options here. Since
2338 * __alloc_buddy_huge_page() is checking the global counter,
2339 * though, we'll note that we're not allowed to exceed surplus
2340 * and won't grow the pool anywhere else. Not until one of the
2341 * sysctls are changed, or the surplus pages go out of use.
2342 */
2343 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2344 min_count = max(count, min_count);
2345 try_to_free_low(h, min_count, nodes_allowed);
2346 while (min_count < persistent_huge_pages(h)) {
2347 if (!free_pool_huge_page(h, nodes_allowed, 0))
2348 break;
2349 cond_resched_lock(&hugetlb_lock);
2350 }
2351 while (count < persistent_huge_pages(h)) {
2352 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2353 break;
2354 }
2355 out:
2356 ret = persistent_huge_pages(h);
2357 spin_unlock(&hugetlb_lock);
2358 return ret;
2359 }
2360
2361 #define HSTATE_ATTR_RO(_name) \
2362 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2363
2364 #define HSTATE_ATTR(_name) \
2365 static struct kobj_attribute _name##_attr = \
2366 __ATTR(_name, 0644, _name##_show, _name##_store)
2367
2368 static struct kobject *hugepages_kobj;
2369 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2370
2371 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2372
2373 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2374 {
2375 int i;
2376
2377 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2378 if (hstate_kobjs[i] == kobj) {
2379 if (nidp)
2380 *nidp = NUMA_NO_NODE;
2381 return &hstates[i];
2382 }
2383
2384 return kobj_to_node_hstate(kobj, nidp);
2385 }
2386
2387 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2388 struct kobj_attribute *attr, char *buf)
2389 {
2390 struct hstate *h;
2391 unsigned long nr_huge_pages;
2392 int nid;
2393
2394 h = kobj_to_hstate(kobj, &nid);
2395 if (nid == NUMA_NO_NODE)
2396 nr_huge_pages = h->nr_huge_pages;
2397 else
2398 nr_huge_pages = h->nr_huge_pages_node[nid];
2399
2400 return sprintf(buf, "%lu\n", nr_huge_pages);
2401 }
2402
2403 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2404 struct hstate *h, int nid,
2405 unsigned long count, size_t len)
2406 {
2407 int err;
2408 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2409
2410 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2411 err = -EINVAL;
2412 goto out;
2413 }
2414
2415 if (nid == NUMA_NO_NODE) {
2416 /*
2417 * global hstate attribute
2418 */
2419 if (!(obey_mempolicy &&
2420 init_nodemask_of_mempolicy(nodes_allowed))) {
2421 NODEMASK_FREE(nodes_allowed);
2422 nodes_allowed = &node_states[N_MEMORY];
2423 }
2424 } else if (nodes_allowed) {
2425 /*
2426 * per node hstate attribute: adjust count to global,
2427 * but restrict alloc/free to the specified node.
2428 */
2429 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2430 init_nodemask_of_node(nodes_allowed, nid);
2431 } else
2432 nodes_allowed = &node_states[N_MEMORY];
2433
2434 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2435
2436 if (nodes_allowed != &node_states[N_MEMORY])
2437 NODEMASK_FREE(nodes_allowed);
2438
2439 return len;
2440 out:
2441 NODEMASK_FREE(nodes_allowed);
2442 return err;
2443 }
2444
2445 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2446 struct kobject *kobj, const char *buf,
2447 size_t len)
2448 {
2449 struct hstate *h;
2450 unsigned long count;
2451 int nid;
2452 int err;
2453
2454 err = kstrtoul(buf, 10, &count);
2455 if (err)
2456 return err;
2457
2458 h = kobj_to_hstate(kobj, &nid);
2459 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2460 }
2461
2462 static ssize_t nr_hugepages_show(struct kobject *kobj,
2463 struct kobj_attribute *attr, char *buf)
2464 {
2465 return nr_hugepages_show_common(kobj, attr, buf);
2466 }
2467
2468 static ssize_t nr_hugepages_store(struct kobject *kobj,
2469 struct kobj_attribute *attr, const char *buf, size_t len)
2470 {
2471 return nr_hugepages_store_common(false, kobj, buf, len);
2472 }
2473 HSTATE_ATTR(nr_hugepages);
2474
2475 #ifdef CONFIG_NUMA
2476
2477 /*
2478 * hstate attribute for optionally mempolicy-based constraint on persistent
2479 * huge page alloc/free.
2480 */
2481 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2482 struct kobj_attribute *attr, char *buf)
2483 {
2484 return nr_hugepages_show_common(kobj, attr, buf);
2485 }
2486
2487 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2488 struct kobj_attribute *attr, const char *buf, size_t len)
2489 {
2490 return nr_hugepages_store_common(true, kobj, buf, len);
2491 }
2492 HSTATE_ATTR(nr_hugepages_mempolicy);
2493 #endif
2494
2495
2496 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2497 struct kobj_attribute *attr, char *buf)
2498 {
2499 struct hstate *h = kobj_to_hstate(kobj, NULL);
2500 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2501 }
2502
2503 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2504 struct kobj_attribute *attr, const char *buf, size_t count)
2505 {
2506 int err;
2507 unsigned long input;
2508 struct hstate *h = kobj_to_hstate(kobj, NULL);
2509
2510 if (hstate_is_gigantic(h))
2511 return -EINVAL;
2512
2513 err = kstrtoul(buf, 10, &input);
2514 if (err)
2515 return err;
2516
2517 spin_lock(&hugetlb_lock);
2518 h->nr_overcommit_huge_pages = input;
2519 spin_unlock(&hugetlb_lock);
2520
2521 return count;
2522 }
2523 HSTATE_ATTR(nr_overcommit_hugepages);
2524
2525 static ssize_t free_hugepages_show(struct kobject *kobj,
2526 struct kobj_attribute *attr, char *buf)
2527 {
2528 struct hstate *h;
2529 unsigned long free_huge_pages;
2530 int nid;
2531
2532 h = kobj_to_hstate(kobj, &nid);
2533 if (nid == NUMA_NO_NODE)
2534 free_huge_pages = h->free_huge_pages;
2535 else
2536 free_huge_pages = h->free_huge_pages_node[nid];
2537
2538 return sprintf(buf, "%lu\n", free_huge_pages);
2539 }
2540 HSTATE_ATTR_RO(free_hugepages);
2541
2542 static ssize_t resv_hugepages_show(struct kobject *kobj,
2543 struct kobj_attribute *attr, char *buf)
2544 {
2545 struct hstate *h = kobj_to_hstate(kobj, NULL);
2546 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2547 }
2548 HSTATE_ATTR_RO(resv_hugepages);
2549
2550 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2551 struct kobj_attribute *attr, char *buf)
2552 {
2553 struct hstate *h;
2554 unsigned long surplus_huge_pages;
2555 int nid;
2556
2557 h = kobj_to_hstate(kobj, &nid);
2558 if (nid == NUMA_NO_NODE)
2559 surplus_huge_pages = h->surplus_huge_pages;
2560 else
2561 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2562
2563 return sprintf(buf, "%lu\n", surplus_huge_pages);
2564 }
2565 HSTATE_ATTR_RO(surplus_hugepages);
2566
2567 static struct attribute *hstate_attrs[] = {
2568 &nr_hugepages_attr.attr,
2569 &nr_overcommit_hugepages_attr.attr,
2570 &free_hugepages_attr.attr,
2571 &resv_hugepages_attr.attr,
2572 &surplus_hugepages_attr.attr,
2573 #ifdef CONFIG_NUMA
2574 &nr_hugepages_mempolicy_attr.attr,
2575 #endif
2576 NULL,
2577 };
2578
2579 static const struct attribute_group hstate_attr_group = {
2580 .attrs = hstate_attrs,
2581 };
2582
2583 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2584 struct kobject **hstate_kobjs,
2585 const struct attribute_group *hstate_attr_group)
2586 {
2587 int retval;
2588 int hi = hstate_index(h);
2589
2590 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2591 if (!hstate_kobjs[hi])
2592 return -ENOMEM;
2593
2594 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2595 if (retval)
2596 kobject_put(hstate_kobjs[hi]);
2597
2598 return retval;
2599 }
2600
2601 static void __init hugetlb_sysfs_init(void)
2602 {
2603 struct hstate *h;
2604 int err;
2605
2606 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2607 if (!hugepages_kobj)
2608 return;
2609
2610 for_each_hstate(h) {
2611 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2612 hstate_kobjs, &hstate_attr_group);
2613 if (err)
2614 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2615 }
2616 }
2617
2618 #ifdef CONFIG_NUMA
2619
2620 /*
2621 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2622 * with node devices in node_devices[] using a parallel array. The array
2623 * index of a node device or _hstate == node id.
2624 * This is here to avoid any static dependency of the node device driver, in
2625 * the base kernel, on the hugetlb module.
2626 */
2627 struct node_hstate {
2628 struct kobject *hugepages_kobj;
2629 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2630 };
2631 static struct node_hstate node_hstates[MAX_NUMNODES];
2632
2633 /*
2634 * A subset of global hstate attributes for node devices
2635 */
2636 static struct attribute *per_node_hstate_attrs[] = {
2637 &nr_hugepages_attr.attr,
2638 &free_hugepages_attr.attr,
2639 &surplus_hugepages_attr.attr,
2640 NULL,
2641 };
2642
2643 static const struct attribute_group per_node_hstate_attr_group = {
2644 .attrs = per_node_hstate_attrs,
2645 };
2646
2647 /*
2648 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2649 * Returns node id via non-NULL nidp.
2650 */
2651 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2652 {
2653 int nid;
2654
2655 for (nid = 0; nid < nr_node_ids; nid++) {
2656 struct node_hstate *nhs = &node_hstates[nid];
2657 int i;
2658 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2659 if (nhs->hstate_kobjs[i] == kobj) {
2660 if (nidp)
2661 *nidp = nid;
2662 return &hstates[i];
2663 }
2664 }
2665
2666 BUG();
2667 return NULL;
2668 }
2669
2670 /*
2671 * Unregister hstate attributes from a single node device.
2672 * No-op if no hstate attributes attached.
2673 */
2674 static void hugetlb_unregister_node(struct node *node)
2675 {
2676 struct hstate *h;
2677 struct node_hstate *nhs = &node_hstates[node->dev.id];
2678
2679 if (!nhs->hugepages_kobj)
2680 return; /* no hstate attributes */
2681
2682 for_each_hstate(h) {
2683 int idx = hstate_index(h);
2684 if (nhs->hstate_kobjs[idx]) {
2685 kobject_put(nhs->hstate_kobjs[idx]);
2686 nhs->hstate_kobjs[idx] = NULL;
2687 }
2688 }
2689
2690 kobject_put(nhs->hugepages_kobj);
2691 nhs->hugepages_kobj = NULL;
2692 }
2693
2694
2695 /*
2696 * Register hstate attributes for a single node device.
2697 * No-op if attributes already registered.
2698 */
2699 static void hugetlb_register_node(struct node *node)
2700 {
2701 struct hstate *h;
2702 struct node_hstate *nhs = &node_hstates[node->dev.id];
2703 int err;
2704
2705 if (nhs->hugepages_kobj)
2706 return; /* already allocated */
2707
2708 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2709 &node->dev.kobj);
2710 if (!nhs->hugepages_kobj)
2711 return;
2712
2713 for_each_hstate(h) {
2714 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2715 nhs->hstate_kobjs,
2716 &per_node_hstate_attr_group);
2717 if (err) {
2718 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2719 h->name, node->dev.id);
2720 hugetlb_unregister_node(node);
2721 break;
2722 }
2723 }
2724 }
2725
2726 /*
2727 * hugetlb init time: register hstate attributes for all registered node
2728 * devices of nodes that have memory. All on-line nodes should have
2729 * registered their associated device by this time.
2730 */
2731 static void __init hugetlb_register_all_nodes(void)
2732 {
2733 int nid;
2734
2735 for_each_node_state(nid, N_MEMORY) {
2736 struct node *node = node_devices[nid];
2737 if (node->dev.id == nid)
2738 hugetlb_register_node(node);
2739 }
2740
2741 /*
2742 * Let the node device driver know we're here so it can
2743 * [un]register hstate attributes on node hotplug.
2744 */
2745 register_hugetlbfs_with_node(hugetlb_register_node,
2746 hugetlb_unregister_node);
2747 }
2748 #else /* !CONFIG_NUMA */
2749
2750 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2751 {
2752 BUG();
2753 if (nidp)
2754 *nidp = -1;
2755 return NULL;
2756 }
2757
2758 static void hugetlb_register_all_nodes(void) { }
2759
2760 #endif
2761
2762 static int __init hugetlb_init(void)
2763 {
2764 int i;
2765
2766 if (!hugepages_supported())
2767 return 0;
2768
2769 if (!size_to_hstate(default_hstate_size)) {
2770 if (default_hstate_size != 0) {
2771 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2772 default_hstate_size, HPAGE_SIZE);
2773 }
2774
2775 default_hstate_size = HPAGE_SIZE;
2776 if (!size_to_hstate(default_hstate_size))
2777 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2778 }
2779 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2780 if (default_hstate_max_huge_pages) {
2781 if (!default_hstate.max_huge_pages)
2782 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2783 }
2784
2785 hugetlb_init_hstates();
2786 gather_bootmem_prealloc();
2787 report_hugepages();
2788
2789 hugetlb_sysfs_init();
2790 hugetlb_register_all_nodes();
2791 hugetlb_cgroup_file_init();
2792
2793 #ifdef CONFIG_SMP
2794 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2795 #else
2796 num_fault_mutexes = 1;
2797 #endif
2798 hugetlb_fault_mutex_table =
2799 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2800 BUG_ON(!hugetlb_fault_mutex_table);
2801
2802 for (i = 0; i < num_fault_mutexes; i++)
2803 mutex_init(&hugetlb_fault_mutex_table[i]);
2804 return 0;
2805 }
2806 subsys_initcall(hugetlb_init);
2807
2808 /* Should be called on processing a hugepagesz=... option */
2809 void __init hugetlb_bad_size(void)
2810 {
2811 parsed_valid_hugepagesz = false;
2812 }
2813
2814 void __init hugetlb_add_hstate(unsigned int order)
2815 {
2816 struct hstate *h;
2817 unsigned long i;
2818
2819 if (size_to_hstate(PAGE_SIZE << order)) {
2820 pr_warn("hugepagesz= specified twice, ignoring\n");
2821 return;
2822 }
2823 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2824 BUG_ON(order == 0);
2825 h = &hstates[hugetlb_max_hstate++];
2826 h->order = order;
2827 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2828 h->nr_huge_pages = 0;
2829 h->free_huge_pages = 0;
2830 for (i = 0; i < MAX_NUMNODES; ++i)
2831 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2832 INIT_LIST_HEAD(&h->hugepage_activelist);
2833 h->next_nid_to_alloc = first_memory_node;
2834 h->next_nid_to_free = first_memory_node;
2835 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2836 huge_page_size(h)/1024);
2837
2838 parsed_hstate = h;
2839 }
2840
2841 static int __init hugetlb_nrpages_setup(char *s)
2842 {
2843 unsigned long *mhp;
2844 static unsigned long *last_mhp;
2845
2846 if (!parsed_valid_hugepagesz) {
2847 pr_warn("hugepages = %s preceded by "
2848 "an unsupported hugepagesz, ignoring\n", s);
2849 parsed_valid_hugepagesz = true;
2850 return 1;
2851 }
2852 /*
2853 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2854 * so this hugepages= parameter goes to the "default hstate".
2855 */
2856 else if (!hugetlb_max_hstate)
2857 mhp = &default_hstate_max_huge_pages;
2858 else
2859 mhp = &parsed_hstate->max_huge_pages;
2860
2861 if (mhp == last_mhp) {
2862 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2863 return 1;
2864 }
2865
2866 if (sscanf(s, "%lu", mhp) <= 0)
2867 *mhp = 0;
2868
2869 /*
2870 * Global state is always initialized later in hugetlb_init.
2871 * But we need to allocate >= MAX_ORDER hstates here early to still
2872 * use the bootmem allocator.
2873 */
2874 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2875 hugetlb_hstate_alloc_pages(parsed_hstate);
2876
2877 last_mhp = mhp;
2878
2879 return 1;
2880 }
2881 __setup("hugepages=", hugetlb_nrpages_setup);
2882
2883 static int __init hugetlb_default_setup(char *s)
2884 {
2885 default_hstate_size = memparse(s, &s);
2886 return 1;
2887 }
2888 __setup("default_hugepagesz=", hugetlb_default_setup);
2889
2890 static unsigned int cpuset_mems_nr(unsigned int *array)
2891 {
2892 int node;
2893 unsigned int nr = 0;
2894
2895 for_each_node_mask(node, cpuset_current_mems_allowed)
2896 nr += array[node];
2897
2898 return nr;
2899 }
2900
2901 #ifdef CONFIG_SYSCTL
2902 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2903 struct ctl_table *table, int write,
2904 void __user *buffer, size_t *length, loff_t *ppos)
2905 {
2906 struct hstate *h = &default_hstate;
2907 unsigned long tmp = h->max_huge_pages;
2908 int ret;
2909
2910 if (!hugepages_supported())
2911 return -EOPNOTSUPP;
2912
2913 table->data = &tmp;
2914 table->maxlen = sizeof(unsigned long);
2915 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2916 if (ret)
2917 goto out;
2918
2919 if (write)
2920 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2921 NUMA_NO_NODE, tmp, *length);
2922 out:
2923 return ret;
2924 }
2925
2926 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2927 void __user *buffer, size_t *length, loff_t *ppos)
2928 {
2929
2930 return hugetlb_sysctl_handler_common(false, table, write,
2931 buffer, length, ppos);
2932 }
2933
2934 #ifdef CONFIG_NUMA
2935 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2936 void __user *buffer, size_t *length, loff_t *ppos)
2937 {
2938 return hugetlb_sysctl_handler_common(true, table, write,
2939 buffer, length, ppos);
2940 }
2941 #endif /* CONFIG_NUMA */
2942
2943 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2944 void __user *buffer,
2945 size_t *length, loff_t *ppos)
2946 {
2947 struct hstate *h = &default_hstate;
2948 unsigned long tmp;
2949 int ret;
2950
2951 if (!hugepages_supported())
2952 return -EOPNOTSUPP;
2953
2954 tmp = h->nr_overcommit_huge_pages;
2955
2956 if (write && hstate_is_gigantic(h))
2957 return -EINVAL;
2958
2959 table->data = &tmp;
2960 table->maxlen = sizeof(unsigned long);
2961 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2962 if (ret)
2963 goto out;
2964
2965 if (write) {
2966 spin_lock(&hugetlb_lock);
2967 h->nr_overcommit_huge_pages = tmp;
2968 spin_unlock(&hugetlb_lock);
2969 }
2970 out:
2971 return ret;
2972 }
2973
2974 #endif /* CONFIG_SYSCTL */
2975
2976 void hugetlb_report_meminfo(struct seq_file *m)
2977 {
2978 struct hstate *h = &default_hstate;
2979 if (!hugepages_supported())
2980 return;
2981 seq_printf(m,
2982 "HugePages_Total: %5lu\n"
2983 "HugePages_Free: %5lu\n"
2984 "HugePages_Rsvd: %5lu\n"
2985 "HugePages_Surp: %5lu\n"
2986 "Hugepagesize: %8lu kB\n",
2987 h->nr_huge_pages,
2988 h->free_huge_pages,
2989 h->resv_huge_pages,
2990 h->surplus_huge_pages,
2991 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2992 }
2993
2994 int hugetlb_report_node_meminfo(int nid, char *buf)
2995 {
2996 struct hstate *h = &default_hstate;
2997 if (!hugepages_supported())
2998 return 0;
2999 return sprintf(buf,
3000 "Node %d HugePages_Total: %5u\n"
3001 "Node %d HugePages_Free: %5u\n"
3002 "Node %d HugePages_Surp: %5u\n",
3003 nid, h->nr_huge_pages_node[nid],
3004 nid, h->free_huge_pages_node[nid],
3005 nid, h->surplus_huge_pages_node[nid]);
3006 }
3007
3008 void hugetlb_show_meminfo(void)
3009 {
3010 struct hstate *h;
3011 int nid;
3012
3013 if (!hugepages_supported())
3014 return;
3015
3016 for_each_node_state(nid, N_MEMORY)
3017 for_each_hstate(h)
3018 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3019 nid,
3020 h->nr_huge_pages_node[nid],
3021 h->free_huge_pages_node[nid],
3022 h->surplus_huge_pages_node[nid],
3023 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3024 }
3025
3026 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3027 {
3028 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3029 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3030 }
3031
3032 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3033 unsigned long hugetlb_total_pages(void)
3034 {
3035 struct hstate *h;
3036 unsigned long nr_total_pages = 0;
3037
3038 for_each_hstate(h)
3039 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3040 return nr_total_pages;
3041 }
3042
3043 static int hugetlb_acct_memory(struct hstate *h, long delta)
3044 {
3045 int ret = -ENOMEM;
3046
3047 spin_lock(&hugetlb_lock);
3048 /*
3049 * When cpuset is configured, it breaks the strict hugetlb page
3050 * reservation as the accounting is done on a global variable. Such
3051 * reservation is completely rubbish in the presence of cpuset because
3052 * the reservation is not checked against page availability for the
3053 * current cpuset. Application can still potentially OOM'ed by kernel
3054 * with lack of free htlb page in cpuset that the task is in.
3055 * Attempt to enforce strict accounting with cpuset is almost
3056 * impossible (or too ugly) because cpuset is too fluid that
3057 * task or memory node can be dynamically moved between cpusets.
3058 *
3059 * The change of semantics for shared hugetlb mapping with cpuset is
3060 * undesirable. However, in order to preserve some of the semantics,
3061 * we fall back to check against current free page availability as
3062 * a best attempt and hopefully to minimize the impact of changing
3063 * semantics that cpuset has.
3064 */
3065 if (delta > 0) {
3066 if (gather_surplus_pages(h, delta) < 0)
3067 goto out;
3068
3069 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3070 return_unused_surplus_pages(h, delta);
3071 goto out;
3072 }
3073 }
3074
3075 ret = 0;
3076 if (delta < 0)
3077 return_unused_surplus_pages(h, (unsigned long) -delta);
3078
3079 out:
3080 spin_unlock(&hugetlb_lock);
3081 return ret;
3082 }
3083
3084 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3085 {
3086 struct resv_map *resv = vma_resv_map(vma);
3087
3088 /*
3089 * This new VMA should share its siblings reservation map if present.
3090 * The VMA will only ever have a valid reservation map pointer where
3091 * it is being copied for another still existing VMA. As that VMA
3092 * has a reference to the reservation map it cannot disappear until
3093 * after this open call completes. It is therefore safe to take a
3094 * new reference here without additional locking.
3095 */
3096 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3097 kref_get(&resv->refs);
3098 }
3099
3100 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3101 {
3102 struct hstate *h = hstate_vma(vma);
3103 struct resv_map *resv = vma_resv_map(vma);
3104 struct hugepage_subpool *spool = subpool_vma(vma);
3105 unsigned long reserve, start, end;
3106 long gbl_reserve;
3107
3108 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109 return;
3110
3111 start = vma_hugecache_offset(h, vma, vma->vm_start);
3112 end = vma_hugecache_offset(h, vma, vma->vm_end);
3113
3114 reserve = (end - start) - region_count(resv, start, end);
3115
3116 kref_put(&resv->refs, resv_map_release);
3117
3118 if (reserve) {
3119 /*
3120 * Decrement reserve counts. The global reserve count may be
3121 * adjusted if the subpool has a minimum size.
3122 */
3123 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3124 hugetlb_acct_memory(h, -gbl_reserve);
3125 }
3126 }
3127
3128 /*
3129 * We cannot handle pagefaults against hugetlb pages at all. They cause
3130 * handle_mm_fault() to try to instantiate regular-sized pages in the
3131 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3132 * this far.
3133 */
3134 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3135 {
3136 BUG();
3137 return 0;
3138 }
3139
3140 const struct vm_operations_struct hugetlb_vm_ops = {
3141 .fault = hugetlb_vm_op_fault,
3142 .open = hugetlb_vm_op_open,
3143 .close = hugetlb_vm_op_close,
3144 };
3145
3146 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3147 int writable)
3148 {
3149 pte_t entry;
3150
3151 if (writable) {
3152 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3153 vma->vm_page_prot)));
3154 } else {
3155 entry = huge_pte_wrprotect(mk_huge_pte(page,
3156 vma->vm_page_prot));
3157 }
3158 entry = pte_mkyoung(entry);
3159 entry = pte_mkhuge(entry);
3160 entry = arch_make_huge_pte(entry, vma, page, writable);
3161
3162 return entry;
3163 }
3164
3165 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3166 unsigned long address, pte_t *ptep)
3167 {
3168 pte_t entry;
3169
3170 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3171 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3172 update_mmu_cache(vma, address, ptep);
3173 }
3174
3175 bool is_hugetlb_entry_migration(pte_t pte)
3176 {
3177 swp_entry_t swp;
3178
3179 if (huge_pte_none(pte) || pte_present(pte))
3180 return false;
3181 swp = pte_to_swp_entry(pte);
3182 if (non_swap_entry(swp) && is_migration_entry(swp))
3183 return true;
3184 else
3185 return false;
3186 }
3187
3188 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3189 {
3190 swp_entry_t swp;
3191
3192 if (huge_pte_none(pte) || pte_present(pte))
3193 return 0;
3194 swp = pte_to_swp_entry(pte);
3195 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3196 return 1;
3197 else
3198 return 0;
3199 }
3200
3201 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3202 struct vm_area_struct *vma)
3203 {
3204 pte_t *src_pte, *dst_pte, entry;
3205 struct page *ptepage;
3206 unsigned long addr;
3207 int cow;
3208 struct hstate *h = hstate_vma(vma);
3209 unsigned long sz = huge_page_size(h);
3210 unsigned long mmun_start; /* For mmu_notifiers */
3211 unsigned long mmun_end; /* For mmu_notifiers */
3212 int ret = 0;
3213
3214 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3215
3216 mmun_start = vma->vm_start;
3217 mmun_end = vma->vm_end;
3218 if (cow)
3219 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3220
3221 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3222 spinlock_t *src_ptl, *dst_ptl;
3223 src_pte = huge_pte_offset(src, addr, sz);
3224 if (!src_pte)
3225 continue;
3226 dst_pte = huge_pte_alloc(dst, addr, sz);
3227 if (!dst_pte) {
3228 ret = -ENOMEM;
3229 break;
3230 }
3231
3232 /* If the pagetables are shared don't copy or take references */
3233 if (dst_pte == src_pte)
3234 continue;
3235
3236 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3237 src_ptl = huge_pte_lockptr(h, src, src_pte);
3238 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3239 entry = huge_ptep_get(src_pte);
3240 if (huge_pte_none(entry)) { /* skip none entry */
3241 ;
3242 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3243 is_hugetlb_entry_hwpoisoned(entry))) {
3244 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3245
3246 if (is_write_migration_entry(swp_entry) && cow) {
3247 /*
3248 * COW mappings require pages in both
3249 * parent and child to be set to read.
3250 */
3251 make_migration_entry_read(&swp_entry);
3252 entry = swp_entry_to_pte(swp_entry);
3253 set_huge_swap_pte_at(src, addr, src_pte,
3254 entry, sz);
3255 }
3256 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3257 } else {
3258 if (cow) {
3259 huge_ptep_set_wrprotect(src, addr, src_pte);
3260 mmu_notifier_invalidate_range(src, mmun_start,
3261 mmun_end);
3262 }
3263 entry = huge_ptep_get(src_pte);
3264 ptepage = pte_page(entry);
3265 get_page(ptepage);
3266 page_dup_rmap(ptepage, true);
3267 set_huge_pte_at(dst, addr, dst_pte, entry);
3268 hugetlb_count_add(pages_per_huge_page(h), dst);
3269 }
3270 spin_unlock(src_ptl);
3271 spin_unlock(dst_ptl);
3272 }
3273
3274 if (cow)
3275 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3276
3277 return ret;
3278 }
3279
3280 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3281 unsigned long start, unsigned long end,
3282 struct page *ref_page)
3283 {
3284 struct mm_struct *mm = vma->vm_mm;
3285 unsigned long address;
3286 pte_t *ptep;
3287 pte_t pte;
3288 spinlock_t *ptl;
3289 struct page *page;
3290 struct hstate *h = hstate_vma(vma);
3291 unsigned long sz = huge_page_size(h);
3292 const unsigned long mmun_start = start; /* For mmu_notifiers */
3293 const unsigned long mmun_end = end; /* For mmu_notifiers */
3294
3295 WARN_ON(!is_vm_hugetlb_page(vma));
3296 BUG_ON(start & ~huge_page_mask(h));
3297 BUG_ON(end & ~huge_page_mask(h));
3298
3299 /*
3300 * This is a hugetlb vma, all the pte entries should point
3301 * to huge page.
3302 */
3303 tlb_remove_check_page_size_change(tlb, sz);
3304 tlb_start_vma(tlb, vma);
3305 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3306 address = start;
3307 for (; address < end; address += sz) {
3308 ptep = huge_pte_offset(mm, address, sz);
3309 if (!ptep)
3310 continue;
3311
3312 ptl = huge_pte_lock(h, mm, ptep);
3313 if (huge_pmd_unshare(mm, &address, ptep)) {
3314 spin_unlock(ptl);
3315 continue;
3316 }
3317
3318 pte = huge_ptep_get(ptep);
3319 if (huge_pte_none(pte)) {
3320 spin_unlock(ptl);
3321 continue;
3322 }
3323
3324 /*
3325 * Migrating hugepage or HWPoisoned hugepage is already
3326 * unmapped and its refcount is dropped, so just clear pte here.
3327 */
3328 if (unlikely(!pte_present(pte))) {
3329 huge_pte_clear(mm, address, ptep, sz);
3330 spin_unlock(ptl);
3331 continue;
3332 }
3333
3334 page = pte_page(pte);
3335 /*
3336 * If a reference page is supplied, it is because a specific
3337 * page is being unmapped, not a range. Ensure the page we
3338 * are about to unmap is the actual page of interest.
3339 */
3340 if (ref_page) {
3341 if (page != ref_page) {
3342 spin_unlock(ptl);
3343 continue;
3344 }
3345 /*
3346 * Mark the VMA as having unmapped its page so that
3347 * future faults in this VMA will fail rather than
3348 * looking like data was lost
3349 */
3350 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3351 }
3352
3353 pte = huge_ptep_get_and_clear(mm, address, ptep);
3354 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3355 if (huge_pte_dirty(pte))
3356 set_page_dirty(page);
3357
3358 hugetlb_count_sub(pages_per_huge_page(h), mm);
3359 page_remove_rmap(page, true);
3360
3361 spin_unlock(ptl);
3362 tlb_remove_page_size(tlb, page, huge_page_size(h));
3363 /*
3364 * Bail out after unmapping reference page if supplied
3365 */
3366 if (ref_page)
3367 break;
3368 }
3369 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3370 tlb_end_vma(tlb, vma);
3371 }
3372
3373 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3374 struct vm_area_struct *vma, unsigned long start,
3375 unsigned long end, struct page *ref_page)
3376 {
3377 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3378
3379 /*
3380 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3381 * test will fail on a vma being torn down, and not grab a page table
3382 * on its way out. We're lucky that the flag has such an appropriate
3383 * name, and can in fact be safely cleared here. We could clear it
3384 * before the __unmap_hugepage_range above, but all that's necessary
3385 * is to clear it before releasing the i_mmap_rwsem. This works
3386 * because in the context this is called, the VMA is about to be
3387 * destroyed and the i_mmap_rwsem is held.
3388 */
3389 vma->vm_flags &= ~VM_MAYSHARE;
3390 }
3391
3392 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3393 unsigned long end, struct page *ref_page)
3394 {
3395 struct mm_struct *mm;
3396 struct mmu_gather tlb;
3397
3398 mm = vma->vm_mm;
3399
3400 tlb_gather_mmu(&tlb, mm, start, end);
3401 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3402 tlb_finish_mmu(&tlb, start, end);
3403 }
3404
3405 /*
3406 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3407 * mappping it owns the reserve page for. The intention is to unmap the page
3408 * from other VMAs and let the children be SIGKILLed if they are faulting the
3409 * same region.
3410 */
3411 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3412 struct page *page, unsigned long address)
3413 {
3414 struct hstate *h = hstate_vma(vma);
3415 struct vm_area_struct *iter_vma;
3416 struct address_space *mapping;
3417 pgoff_t pgoff;
3418
3419 /*
3420 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3421 * from page cache lookup which is in HPAGE_SIZE units.
3422 */
3423 address = address & huge_page_mask(h);
3424 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3425 vma->vm_pgoff;
3426 mapping = vma->vm_file->f_mapping;
3427
3428 /*
3429 * Take the mapping lock for the duration of the table walk. As
3430 * this mapping should be shared between all the VMAs,
3431 * __unmap_hugepage_range() is called as the lock is already held
3432 */
3433 i_mmap_lock_write(mapping);
3434 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3435 /* Do not unmap the current VMA */
3436 if (iter_vma == vma)
3437 continue;
3438
3439 /*
3440 * Shared VMAs have their own reserves and do not affect
3441 * MAP_PRIVATE accounting but it is possible that a shared
3442 * VMA is using the same page so check and skip such VMAs.
3443 */
3444 if (iter_vma->vm_flags & VM_MAYSHARE)
3445 continue;
3446
3447 /*
3448 * Unmap the page from other VMAs without their own reserves.
3449 * They get marked to be SIGKILLed if they fault in these
3450 * areas. This is because a future no-page fault on this VMA
3451 * could insert a zeroed page instead of the data existing
3452 * from the time of fork. This would look like data corruption
3453 */
3454 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3455 unmap_hugepage_range(iter_vma, address,
3456 address + huge_page_size(h), page);
3457 }
3458 i_mmap_unlock_write(mapping);
3459 }
3460
3461 /*
3462 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3463 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3464 * cannot race with other handlers or page migration.
3465 * Keep the pte_same checks anyway to make transition from the mutex easier.
3466 */
3467 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3468 unsigned long address, pte_t *ptep,
3469 struct page *pagecache_page, spinlock_t *ptl)
3470 {
3471 pte_t pte;
3472 struct hstate *h = hstate_vma(vma);
3473 struct page *old_page, *new_page;
3474 int ret = 0, outside_reserve = 0;
3475 unsigned long mmun_start; /* For mmu_notifiers */
3476 unsigned long mmun_end; /* For mmu_notifiers */
3477
3478 pte = huge_ptep_get(ptep);
3479 old_page = pte_page(pte);
3480
3481 retry_avoidcopy:
3482 /* If no-one else is actually using this page, avoid the copy
3483 * and just make the page writable */
3484 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3485 page_move_anon_rmap(old_page, vma);
3486 set_huge_ptep_writable(vma, address, ptep);
3487 return 0;
3488 }
3489
3490 /*
3491 * If the process that created a MAP_PRIVATE mapping is about to
3492 * perform a COW due to a shared page count, attempt to satisfy
3493 * the allocation without using the existing reserves. The pagecache
3494 * page is used to determine if the reserve at this address was
3495 * consumed or not. If reserves were used, a partial faulted mapping
3496 * at the time of fork() could consume its reserves on COW instead
3497 * of the full address range.
3498 */
3499 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3500 old_page != pagecache_page)
3501 outside_reserve = 1;
3502
3503 get_page(old_page);
3504
3505 /*
3506 * Drop page table lock as buddy allocator may be called. It will
3507 * be acquired again before returning to the caller, as expected.
3508 */
3509 spin_unlock(ptl);
3510 new_page = alloc_huge_page(vma, address, outside_reserve);
3511
3512 if (IS_ERR(new_page)) {
3513 /*
3514 * If a process owning a MAP_PRIVATE mapping fails to COW,
3515 * it is due to references held by a child and an insufficient
3516 * huge page pool. To guarantee the original mappers
3517 * reliability, unmap the page from child processes. The child
3518 * may get SIGKILLed if it later faults.
3519 */
3520 if (outside_reserve) {
3521 put_page(old_page);
3522 BUG_ON(huge_pte_none(pte));
3523 unmap_ref_private(mm, vma, old_page, address);
3524 BUG_ON(huge_pte_none(pte));
3525 spin_lock(ptl);
3526 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3527 huge_page_size(h));
3528 if (likely(ptep &&
3529 pte_same(huge_ptep_get(ptep), pte)))
3530 goto retry_avoidcopy;
3531 /*
3532 * race occurs while re-acquiring page table
3533 * lock, and our job is done.
3534 */
3535 return 0;
3536 }
3537
3538 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3539 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3540 goto out_release_old;
3541 }
3542
3543 /*
3544 * When the original hugepage is shared one, it does not have
3545 * anon_vma prepared.
3546 */
3547 if (unlikely(anon_vma_prepare(vma))) {
3548 ret = VM_FAULT_OOM;
3549 goto out_release_all;
3550 }
3551
3552 copy_user_huge_page(new_page, old_page, address, vma,
3553 pages_per_huge_page(h));
3554 __SetPageUptodate(new_page);
3555 set_page_huge_active(new_page);
3556
3557 mmun_start = address & huge_page_mask(h);
3558 mmun_end = mmun_start + huge_page_size(h);
3559 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3560
3561 /*
3562 * Retake the page table lock to check for racing updates
3563 * before the page tables are altered
3564 */
3565 spin_lock(ptl);
3566 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3567 huge_page_size(h));
3568 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3569 ClearPagePrivate(new_page);
3570
3571 /* Break COW */
3572 huge_ptep_clear_flush(vma, address, ptep);
3573 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3574 set_huge_pte_at(mm, address, ptep,
3575 make_huge_pte(vma, new_page, 1));
3576 page_remove_rmap(old_page, true);
3577 hugepage_add_new_anon_rmap(new_page, vma, address);
3578 /* Make the old page be freed below */
3579 new_page = old_page;
3580 }
3581 spin_unlock(ptl);
3582 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3583 out_release_all:
3584 restore_reserve_on_error(h, vma, address, new_page);
3585 put_page(new_page);
3586 out_release_old:
3587 put_page(old_page);
3588
3589 spin_lock(ptl); /* Caller expects lock to be held */
3590 return ret;
3591 }
3592
3593 /* Return the pagecache page at a given address within a VMA */
3594 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3595 struct vm_area_struct *vma, unsigned long address)
3596 {
3597 struct address_space *mapping;
3598 pgoff_t idx;
3599
3600 mapping = vma->vm_file->f_mapping;
3601 idx = vma_hugecache_offset(h, vma, address);
3602
3603 return find_lock_page(mapping, idx);
3604 }
3605
3606 /*
3607 * Return whether there is a pagecache page to back given address within VMA.
3608 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3609 */
3610 static bool hugetlbfs_pagecache_present(struct hstate *h,
3611 struct vm_area_struct *vma, unsigned long address)
3612 {
3613 struct address_space *mapping;
3614 pgoff_t idx;
3615 struct page *page;
3616
3617 mapping = vma->vm_file->f_mapping;
3618 idx = vma_hugecache_offset(h, vma, address);
3619
3620 page = find_get_page(mapping, idx);
3621 if (page)
3622 put_page(page);
3623 return page != NULL;
3624 }
3625
3626 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3627 pgoff_t idx)
3628 {
3629 struct inode *inode = mapping->host;
3630 struct hstate *h = hstate_inode(inode);
3631 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3632
3633 if (err)
3634 return err;
3635 ClearPagePrivate(page);
3636
3637 spin_lock(&inode->i_lock);
3638 inode->i_blocks += blocks_per_huge_page(h);
3639 spin_unlock(&inode->i_lock);
3640 return 0;
3641 }
3642
3643 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3644 struct address_space *mapping, pgoff_t idx,
3645 unsigned long address, pte_t *ptep, unsigned int flags)
3646 {
3647 struct hstate *h = hstate_vma(vma);
3648 int ret = VM_FAULT_SIGBUS;
3649 int anon_rmap = 0;
3650 unsigned long size;
3651 struct page *page;
3652 pte_t new_pte;
3653 spinlock_t *ptl;
3654
3655 /*
3656 * Currently, we are forced to kill the process in the event the
3657 * original mapper has unmapped pages from the child due to a failed
3658 * COW. Warn that such a situation has occurred as it may not be obvious
3659 */
3660 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3661 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3662 current->pid);
3663 return ret;
3664 }
3665
3666 /*
3667 * Use page lock to guard against racing truncation
3668 * before we get page_table_lock.
3669 */
3670 retry:
3671 page = find_lock_page(mapping, idx);
3672 if (!page) {
3673 size = i_size_read(mapping->host) >> huge_page_shift(h);
3674 if (idx >= size)
3675 goto out;
3676
3677 /*
3678 * Check for page in userfault range
3679 */
3680 if (userfaultfd_missing(vma)) {
3681 u32 hash;
3682 struct vm_fault vmf = {
3683 .vma = vma,
3684 .address = address,
3685 .flags = flags,
3686 /*
3687 * Hard to debug if it ends up being
3688 * used by a callee that assumes
3689 * something about the other
3690 * uninitialized fields... same as in
3691 * memory.c
3692 */
3693 };
3694
3695 /*
3696 * hugetlb_fault_mutex must be dropped before
3697 * handling userfault. Reacquire after handling
3698 * fault to make calling code simpler.
3699 */
3700 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3701 idx, address);
3702 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3703 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3704 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3705 goto out;
3706 }
3707
3708 page = alloc_huge_page(vma, address, 0);
3709 if (IS_ERR(page)) {
3710 ret = PTR_ERR(page);
3711 if (ret == -ENOMEM)
3712 ret = VM_FAULT_OOM;
3713 else
3714 ret = VM_FAULT_SIGBUS;
3715 goto out;
3716 }
3717 clear_huge_page(page, address, pages_per_huge_page(h));
3718 __SetPageUptodate(page);
3719 set_page_huge_active(page);
3720
3721 if (vma->vm_flags & VM_MAYSHARE) {
3722 int err = huge_add_to_page_cache(page, mapping, idx);
3723 if (err) {
3724 put_page(page);
3725 if (err == -EEXIST)
3726 goto retry;
3727 goto out;
3728 }
3729 } else {
3730 lock_page(page);
3731 if (unlikely(anon_vma_prepare(vma))) {
3732 ret = VM_FAULT_OOM;
3733 goto backout_unlocked;
3734 }
3735 anon_rmap = 1;
3736 }
3737 } else {
3738 /*
3739 * If memory error occurs between mmap() and fault, some process
3740 * don't have hwpoisoned swap entry for errored virtual address.
3741 * So we need to block hugepage fault by PG_hwpoison bit check.
3742 */
3743 if (unlikely(PageHWPoison(page))) {
3744 ret = VM_FAULT_HWPOISON |
3745 VM_FAULT_SET_HINDEX(hstate_index(h));
3746 goto backout_unlocked;
3747 }
3748 }
3749
3750 /*
3751 * If we are going to COW a private mapping later, we examine the
3752 * pending reservations for this page now. This will ensure that
3753 * any allocations necessary to record that reservation occur outside
3754 * the spinlock.
3755 */
3756 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3757 if (vma_needs_reservation(h, vma, address) < 0) {
3758 ret = VM_FAULT_OOM;
3759 goto backout_unlocked;
3760 }
3761 /* Just decrements count, does not deallocate */
3762 vma_end_reservation(h, vma, address);
3763 }
3764
3765 ptl = huge_pte_lock(h, mm, ptep);
3766 size = i_size_read(mapping->host) >> huge_page_shift(h);
3767 if (idx >= size)
3768 goto backout;
3769
3770 ret = 0;
3771 if (!huge_pte_none(huge_ptep_get(ptep)))
3772 goto backout;
3773
3774 if (anon_rmap) {
3775 ClearPagePrivate(page);
3776 hugepage_add_new_anon_rmap(page, vma, address);
3777 } else
3778 page_dup_rmap(page, true);
3779 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3780 && (vma->vm_flags & VM_SHARED)));
3781 set_huge_pte_at(mm, address, ptep, new_pte);
3782
3783 hugetlb_count_add(pages_per_huge_page(h), mm);
3784 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3785 /* Optimization, do the COW without a second fault */
3786 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3787 }
3788
3789 spin_unlock(ptl);
3790 unlock_page(page);
3791 out:
3792 return ret;
3793
3794 backout:
3795 spin_unlock(ptl);
3796 backout_unlocked:
3797 unlock_page(page);
3798 restore_reserve_on_error(h, vma, address, page);
3799 put_page(page);
3800 goto out;
3801 }
3802
3803 #ifdef CONFIG_SMP
3804 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3805 struct vm_area_struct *vma,
3806 struct address_space *mapping,
3807 pgoff_t idx, unsigned long address)
3808 {
3809 unsigned long key[2];
3810 u32 hash;
3811
3812 if (vma->vm_flags & VM_SHARED) {
3813 key[0] = (unsigned long) mapping;
3814 key[1] = idx;
3815 } else {
3816 key[0] = (unsigned long) mm;
3817 key[1] = address >> huge_page_shift(h);
3818 }
3819
3820 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3821
3822 return hash & (num_fault_mutexes - 1);
3823 }
3824 #else
3825 /*
3826 * For uniprocesor systems we always use a single mutex, so just
3827 * return 0 and avoid the hashing overhead.
3828 */
3829 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3830 struct vm_area_struct *vma,
3831 struct address_space *mapping,
3832 pgoff_t idx, unsigned long address)
3833 {
3834 return 0;
3835 }
3836 #endif
3837
3838 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3839 unsigned long address, unsigned int flags)
3840 {
3841 pte_t *ptep, entry;
3842 spinlock_t *ptl;
3843 int ret;
3844 u32 hash;
3845 pgoff_t idx;
3846 struct page *page = NULL;
3847 struct page *pagecache_page = NULL;
3848 struct hstate *h = hstate_vma(vma);
3849 struct address_space *mapping;
3850 int need_wait_lock = 0;
3851
3852 address &= huge_page_mask(h);
3853
3854 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3855 if (ptep) {
3856 entry = huge_ptep_get(ptep);
3857 if (unlikely(is_hugetlb_entry_migration(entry))) {
3858 migration_entry_wait_huge(vma, mm, ptep);
3859 return 0;
3860 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3861 return VM_FAULT_HWPOISON_LARGE |
3862 VM_FAULT_SET_HINDEX(hstate_index(h));
3863 } else {
3864 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3865 if (!ptep)
3866 return VM_FAULT_OOM;
3867 }
3868
3869 mapping = vma->vm_file->f_mapping;
3870 idx = vma_hugecache_offset(h, vma, address);
3871
3872 /*
3873 * Serialize hugepage allocation and instantiation, so that we don't
3874 * get spurious allocation failures if two CPUs race to instantiate
3875 * the same page in the page cache.
3876 */
3877 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3878 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3879
3880 entry = huge_ptep_get(ptep);
3881 if (huge_pte_none(entry)) {
3882 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3883 goto out_mutex;
3884 }
3885
3886 ret = 0;
3887
3888 /*
3889 * entry could be a migration/hwpoison entry at this point, so this
3890 * check prevents the kernel from going below assuming that we have
3891 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3892 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3893 * handle it.
3894 */
3895 if (!pte_present(entry))
3896 goto out_mutex;
3897
3898 /*
3899 * If we are going to COW the mapping later, we examine the pending
3900 * reservations for this page now. This will ensure that any
3901 * allocations necessary to record that reservation occur outside the
3902 * spinlock. For private mappings, we also lookup the pagecache
3903 * page now as it is used to determine if a reservation has been
3904 * consumed.
3905 */
3906 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3907 if (vma_needs_reservation(h, vma, address) < 0) {
3908 ret = VM_FAULT_OOM;
3909 goto out_mutex;
3910 }
3911 /* Just decrements count, does not deallocate */
3912 vma_end_reservation(h, vma, address);
3913
3914 if (!(vma->vm_flags & VM_MAYSHARE))
3915 pagecache_page = hugetlbfs_pagecache_page(h,
3916 vma, address);
3917 }
3918
3919 ptl = huge_pte_lock(h, mm, ptep);
3920
3921 /* Check for a racing update before calling hugetlb_cow */
3922 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3923 goto out_ptl;
3924
3925 /*
3926 * hugetlb_cow() requires page locks of pte_page(entry) and
3927 * pagecache_page, so here we need take the former one
3928 * when page != pagecache_page or !pagecache_page.
3929 */
3930 page = pte_page(entry);
3931 if (page != pagecache_page)
3932 if (!trylock_page(page)) {
3933 need_wait_lock = 1;
3934 goto out_ptl;
3935 }
3936
3937 get_page(page);
3938
3939 if (flags & FAULT_FLAG_WRITE) {
3940 if (!huge_pte_write(entry)) {
3941 ret = hugetlb_cow(mm, vma, address, ptep,
3942 pagecache_page, ptl);
3943 goto out_put_page;
3944 }
3945 entry = huge_pte_mkdirty(entry);
3946 }
3947 entry = pte_mkyoung(entry);
3948 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3949 flags & FAULT_FLAG_WRITE))
3950 update_mmu_cache(vma, address, ptep);
3951 out_put_page:
3952 if (page != pagecache_page)
3953 unlock_page(page);
3954 put_page(page);
3955 out_ptl:
3956 spin_unlock(ptl);
3957
3958 if (pagecache_page) {
3959 unlock_page(pagecache_page);
3960 put_page(pagecache_page);
3961 }
3962 out_mutex:
3963 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3964 /*
3965 * Generally it's safe to hold refcount during waiting page lock. But
3966 * here we just wait to defer the next page fault to avoid busy loop and
3967 * the page is not used after unlocked before returning from the current
3968 * page fault. So we are safe from accessing freed page, even if we wait
3969 * here without taking refcount.
3970 */
3971 if (need_wait_lock)
3972 wait_on_page_locked(page);
3973 return ret;
3974 }
3975
3976 /*
3977 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3978 * modifications for huge pages.
3979 */
3980 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3981 pte_t *dst_pte,
3982 struct vm_area_struct *dst_vma,
3983 unsigned long dst_addr,
3984 unsigned long src_addr,
3985 struct page **pagep)
3986 {
3987 struct address_space *mapping;
3988 pgoff_t idx;
3989 unsigned long size;
3990 int vm_shared = dst_vma->vm_flags & VM_SHARED;
3991 struct hstate *h = hstate_vma(dst_vma);
3992 pte_t _dst_pte;
3993 spinlock_t *ptl;
3994 int ret;
3995 struct page *page;
3996
3997 if (!*pagep) {
3998 ret = -ENOMEM;
3999 page = alloc_huge_page(dst_vma, dst_addr, 0);
4000 if (IS_ERR(page))
4001 goto out;
4002
4003 ret = copy_huge_page_from_user(page,
4004 (const void __user *) src_addr,
4005 pages_per_huge_page(h), false);
4006
4007 /* fallback to copy_from_user outside mmap_sem */
4008 if (unlikely(ret)) {
4009 ret = -EFAULT;
4010 *pagep = page;
4011 /* don't free the page */
4012 goto out;
4013 }
4014 } else {
4015 page = *pagep;
4016 *pagep = NULL;
4017 }
4018
4019 /*
4020 * The memory barrier inside __SetPageUptodate makes sure that
4021 * preceding stores to the page contents become visible before
4022 * the set_pte_at() write.
4023 */
4024 __SetPageUptodate(page);
4025 set_page_huge_active(page);
4026
4027 mapping = dst_vma->vm_file->f_mapping;
4028 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4029
4030 /*
4031 * If shared, add to page cache
4032 */
4033 if (vm_shared) {
4034 size = i_size_read(mapping->host) >> huge_page_shift(h);
4035 ret = -EFAULT;
4036 if (idx >= size)
4037 goto out_release_nounlock;
4038
4039 /*
4040 * Serialization between remove_inode_hugepages() and
4041 * huge_add_to_page_cache() below happens through the
4042 * hugetlb_fault_mutex_table that here must be hold by
4043 * the caller.
4044 */
4045 ret = huge_add_to_page_cache(page, mapping, idx);
4046 if (ret)
4047 goto out_release_nounlock;
4048 }
4049
4050 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4051 spin_lock(ptl);
4052
4053 /*
4054 * Recheck the i_size after holding PT lock to make sure not
4055 * to leave any page mapped (as page_mapped()) beyond the end
4056 * of the i_size (remove_inode_hugepages() is strict about
4057 * enforcing that). If we bail out here, we'll also leave a
4058 * page in the radix tree in the vm_shared case beyond the end
4059 * of the i_size, but remove_inode_hugepages() will take care
4060 * of it as soon as we drop the hugetlb_fault_mutex_table.
4061 */
4062 size = i_size_read(mapping->host) >> huge_page_shift(h);
4063 ret = -EFAULT;
4064 if (idx >= size)
4065 goto out_release_unlock;
4066
4067 ret = -EEXIST;
4068 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4069 goto out_release_unlock;
4070
4071 if (vm_shared) {
4072 page_dup_rmap(page, true);
4073 } else {
4074 ClearPagePrivate(page);
4075 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4076 }
4077
4078 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4079 if (dst_vma->vm_flags & VM_WRITE)
4080 _dst_pte = huge_pte_mkdirty(_dst_pte);
4081 _dst_pte = pte_mkyoung(_dst_pte);
4082
4083 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4084
4085 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4086 dst_vma->vm_flags & VM_WRITE);
4087 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4088
4089 /* No need to invalidate - it was non-present before */
4090 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4091
4092 spin_unlock(ptl);
4093 if (vm_shared)
4094 unlock_page(page);
4095 ret = 0;
4096 out:
4097 return ret;
4098 out_release_unlock:
4099 spin_unlock(ptl);
4100 if (vm_shared)
4101 unlock_page(page);
4102 out_release_nounlock:
4103 put_page(page);
4104 goto out;
4105 }
4106
4107 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4108 struct page **pages, struct vm_area_struct **vmas,
4109 unsigned long *position, unsigned long *nr_pages,
4110 long i, unsigned int flags, int *nonblocking)
4111 {
4112 unsigned long pfn_offset;
4113 unsigned long vaddr = *position;
4114 unsigned long remainder = *nr_pages;
4115 struct hstate *h = hstate_vma(vma);
4116 int err = -EFAULT;
4117
4118 while (vaddr < vma->vm_end && remainder) {
4119 pte_t *pte;
4120 spinlock_t *ptl = NULL;
4121 int absent;
4122 struct page *page;
4123
4124 /*
4125 * If we have a pending SIGKILL, don't keep faulting pages and
4126 * potentially allocating memory.
4127 */
4128 if (unlikely(fatal_signal_pending(current))) {
4129 remainder = 0;
4130 break;
4131 }
4132
4133 /*
4134 * Some archs (sparc64, sh*) have multiple pte_ts to
4135 * each hugepage. We have to make sure we get the
4136 * first, for the page indexing below to work.
4137 *
4138 * Note that page table lock is not held when pte is null.
4139 */
4140 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4141 huge_page_size(h));
4142 if (pte)
4143 ptl = huge_pte_lock(h, mm, pte);
4144 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4145
4146 /*
4147 * When coredumping, it suits get_dump_page if we just return
4148 * an error where there's an empty slot with no huge pagecache
4149 * to back it. This way, we avoid allocating a hugepage, and
4150 * the sparse dumpfile avoids allocating disk blocks, but its
4151 * huge holes still show up with zeroes where they need to be.
4152 */
4153 if (absent && (flags & FOLL_DUMP) &&
4154 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4155 if (pte)
4156 spin_unlock(ptl);
4157 remainder = 0;
4158 break;
4159 }
4160
4161 /*
4162 * We need call hugetlb_fault for both hugepages under migration
4163 * (in which case hugetlb_fault waits for the migration,) and
4164 * hwpoisoned hugepages (in which case we need to prevent the
4165 * caller from accessing to them.) In order to do this, we use
4166 * here is_swap_pte instead of is_hugetlb_entry_migration and
4167 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4168 * both cases, and because we can't follow correct pages
4169 * directly from any kind of swap entries.
4170 */
4171 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4172 ((flags & FOLL_WRITE) &&
4173 !huge_pte_write(huge_ptep_get(pte)))) {
4174 int ret;
4175 unsigned int fault_flags = 0;
4176
4177 if (pte)
4178 spin_unlock(ptl);
4179 if (flags & FOLL_WRITE)
4180 fault_flags |= FAULT_FLAG_WRITE;
4181 if (nonblocking)
4182 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4183 if (flags & FOLL_NOWAIT)
4184 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4185 FAULT_FLAG_RETRY_NOWAIT;
4186 if (flags & FOLL_TRIED) {
4187 VM_WARN_ON_ONCE(fault_flags &
4188 FAULT_FLAG_ALLOW_RETRY);
4189 fault_flags |= FAULT_FLAG_TRIED;
4190 }
4191 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4192 if (ret & VM_FAULT_ERROR) {
4193 err = vm_fault_to_errno(ret, flags);
4194 remainder = 0;
4195 break;
4196 }
4197 if (ret & VM_FAULT_RETRY) {
4198 if (nonblocking)
4199 *nonblocking = 0;
4200 *nr_pages = 0;
4201 /*
4202 * VM_FAULT_RETRY must not return an
4203 * error, it will return zero
4204 * instead.
4205 *
4206 * No need to update "position" as the
4207 * caller will not check it after
4208 * *nr_pages is set to 0.
4209 */
4210 return i;
4211 }
4212 continue;
4213 }
4214
4215 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4216 page = pte_page(huge_ptep_get(pte));
4217 same_page:
4218 if (pages) {
4219 pages[i] = mem_map_offset(page, pfn_offset);
4220 get_page(pages[i]);
4221 }
4222
4223 if (vmas)
4224 vmas[i] = vma;
4225
4226 vaddr += PAGE_SIZE;
4227 ++pfn_offset;
4228 --remainder;
4229 ++i;
4230 if (vaddr < vma->vm_end && remainder &&
4231 pfn_offset < pages_per_huge_page(h)) {
4232 /*
4233 * We use pfn_offset to avoid touching the pageframes
4234 * of this compound page.
4235 */
4236 goto same_page;
4237 }
4238 spin_unlock(ptl);
4239 }
4240 *nr_pages = remainder;
4241 /*
4242 * setting position is actually required only if remainder is
4243 * not zero but it's faster not to add a "if (remainder)"
4244 * branch.
4245 */
4246 *position = vaddr;
4247
4248 return i ? i : err;
4249 }
4250
4251 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4252 /*
4253 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4254 * implement this.
4255 */
4256 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4257 #endif
4258
4259 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4260 unsigned long address, unsigned long end, pgprot_t newprot)
4261 {
4262 struct mm_struct *mm = vma->vm_mm;
4263 unsigned long start = address;
4264 pte_t *ptep;
4265 pte_t pte;
4266 struct hstate *h = hstate_vma(vma);
4267 unsigned long pages = 0;
4268
4269 BUG_ON(address >= end);
4270 flush_cache_range(vma, address, end);
4271
4272 mmu_notifier_invalidate_range_start(mm, start, end);
4273 i_mmap_lock_write(vma->vm_file->f_mapping);
4274 for (; address < end; address += huge_page_size(h)) {
4275 spinlock_t *ptl;
4276 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4277 if (!ptep)
4278 continue;
4279 ptl = huge_pte_lock(h, mm, ptep);
4280 if (huge_pmd_unshare(mm, &address, ptep)) {
4281 pages++;
4282 spin_unlock(ptl);
4283 continue;
4284 }
4285 pte = huge_ptep_get(ptep);
4286 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4287 spin_unlock(ptl);
4288 continue;
4289 }
4290 if (unlikely(is_hugetlb_entry_migration(pte))) {
4291 swp_entry_t entry = pte_to_swp_entry(pte);
4292
4293 if (is_write_migration_entry(entry)) {
4294 pte_t newpte;
4295
4296 make_migration_entry_read(&entry);
4297 newpte = swp_entry_to_pte(entry);
4298 set_huge_swap_pte_at(mm, address, ptep,
4299 newpte, huge_page_size(h));
4300 pages++;
4301 }
4302 spin_unlock(ptl);
4303 continue;
4304 }
4305 if (!huge_pte_none(pte)) {
4306 pte = huge_ptep_get_and_clear(mm, address, ptep);
4307 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4308 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4309 set_huge_pte_at(mm, address, ptep, pte);
4310 pages++;
4311 }
4312 spin_unlock(ptl);
4313 }
4314 /*
4315 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4316 * may have cleared our pud entry and done put_page on the page table:
4317 * once we release i_mmap_rwsem, another task can do the final put_page
4318 * and that page table be reused and filled with junk.
4319 */
4320 flush_hugetlb_tlb_range(vma, start, end);
4321 mmu_notifier_invalidate_range(mm, start, end);
4322 i_mmap_unlock_write(vma->vm_file->f_mapping);
4323 mmu_notifier_invalidate_range_end(mm, start, end);
4324
4325 return pages << h->order;
4326 }
4327
4328 int hugetlb_reserve_pages(struct inode *inode,
4329 long from, long to,
4330 struct vm_area_struct *vma,
4331 vm_flags_t vm_flags)
4332 {
4333 long ret, chg;
4334 struct hstate *h = hstate_inode(inode);
4335 struct hugepage_subpool *spool = subpool_inode(inode);
4336 struct resv_map *resv_map;
4337 long gbl_reserve;
4338
4339 /*
4340 * Only apply hugepage reservation if asked. At fault time, an
4341 * attempt will be made for VM_NORESERVE to allocate a page
4342 * without using reserves
4343 */
4344 if (vm_flags & VM_NORESERVE)
4345 return 0;
4346
4347 /*
4348 * Shared mappings base their reservation on the number of pages that
4349 * are already allocated on behalf of the file. Private mappings need
4350 * to reserve the full area even if read-only as mprotect() may be
4351 * called to make the mapping read-write. Assume !vma is a shm mapping
4352 */
4353 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4354 resv_map = inode_resv_map(inode);
4355
4356 chg = region_chg(resv_map, from, to);
4357
4358 } else {
4359 resv_map = resv_map_alloc();
4360 if (!resv_map)
4361 return -ENOMEM;
4362
4363 chg = to - from;
4364
4365 set_vma_resv_map(vma, resv_map);
4366 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4367 }
4368
4369 if (chg < 0) {
4370 ret = chg;
4371 goto out_err;
4372 }
4373
4374 /*
4375 * There must be enough pages in the subpool for the mapping. If
4376 * the subpool has a minimum size, there may be some global
4377 * reservations already in place (gbl_reserve).
4378 */
4379 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4380 if (gbl_reserve < 0) {
4381 ret = -ENOSPC;
4382 goto out_err;
4383 }
4384
4385 /*
4386 * Check enough hugepages are available for the reservation.
4387 * Hand the pages back to the subpool if there are not
4388 */
4389 ret = hugetlb_acct_memory(h, gbl_reserve);
4390 if (ret < 0) {
4391 /* put back original number of pages, chg */
4392 (void)hugepage_subpool_put_pages(spool, chg);
4393 goto out_err;
4394 }
4395
4396 /*
4397 * Account for the reservations made. Shared mappings record regions
4398 * that have reservations as they are shared by multiple VMAs.
4399 * When the last VMA disappears, the region map says how much
4400 * the reservation was and the page cache tells how much of
4401 * the reservation was consumed. Private mappings are per-VMA and
4402 * only the consumed reservations are tracked. When the VMA
4403 * disappears, the original reservation is the VMA size and the
4404 * consumed reservations are stored in the map. Hence, nothing
4405 * else has to be done for private mappings here
4406 */
4407 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4408 long add = region_add(resv_map, from, to);
4409
4410 if (unlikely(chg > add)) {
4411 /*
4412 * pages in this range were added to the reserve
4413 * map between region_chg and region_add. This
4414 * indicates a race with alloc_huge_page. Adjust
4415 * the subpool and reserve counts modified above
4416 * based on the difference.
4417 */
4418 long rsv_adjust;
4419
4420 rsv_adjust = hugepage_subpool_put_pages(spool,
4421 chg - add);
4422 hugetlb_acct_memory(h, -rsv_adjust);
4423 }
4424 }
4425 return 0;
4426 out_err:
4427 if (!vma || vma->vm_flags & VM_MAYSHARE)
4428 /* Don't call region_abort if region_chg failed */
4429 if (chg >= 0)
4430 region_abort(resv_map, from, to);
4431 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4432 kref_put(&resv_map->refs, resv_map_release);
4433 return ret;
4434 }
4435
4436 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4437 long freed)
4438 {
4439 struct hstate *h = hstate_inode(inode);
4440 struct resv_map *resv_map = inode_resv_map(inode);
4441 long chg = 0;
4442 struct hugepage_subpool *spool = subpool_inode(inode);
4443 long gbl_reserve;
4444
4445 if (resv_map) {
4446 chg = region_del(resv_map, start, end);
4447 /*
4448 * region_del() can fail in the rare case where a region
4449 * must be split and another region descriptor can not be
4450 * allocated. If end == LONG_MAX, it will not fail.
4451 */
4452 if (chg < 0)
4453 return chg;
4454 }
4455
4456 spin_lock(&inode->i_lock);
4457 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4458 spin_unlock(&inode->i_lock);
4459
4460 /*
4461 * If the subpool has a minimum size, the number of global
4462 * reservations to be released may be adjusted.
4463 */
4464 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4465 hugetlb_acct_memory(h, -gbl_reserve);
4466
4467 return 0;
4468 }
4469
4470 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4471 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4472 struct vm_area_struct *vma,
4473 unsigned long addr, pgoff_t idx)
4474 {
4475 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4476 svma->vm_start;
4477 unsigned long sbase = saddr & PUD_MASK;
4478 unsigned long s_end = sbase + PUD_SIZE;
4479
4480 /* Allow segments to share if only one is marked locked */
4481 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4482 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4483
4484 /*
4485 * match the virtual addresses, permission and the alignment of the
4486 * page table page.
4487 */
4488 if (pmd_index(addr) != pmd_index(saddr) ||
4489 vm_flags != svm_flags ||
4490 sbase < svma->vm_start || svma->vm_end < s_end)
4491 return 0;
4492
4493 return saddr;
4494 }
4495
4496 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4497 {
4498 unsigned long base = addr & PUD_MASK;
4499 unsigned long end = base + PUD_SIZE;
4500
4501 /*
4502 * check on proper vm_flags and page table alignment
4503 */
4504 if (vma->vm_flags & VM_MAYSHARE &&
4505 vma->vm_start <= base && end <= vma->vm_end)
4506 return true;
4507 return false;
4508 }
4509
4510 /*
4511 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4512 * and returns the corresponding pte. While this is not necessary for the
4513 * !shared pmd case because we can allocate the pmd later as well, it makes the
4514 * code much cleaner. pmd allocation is essential for the shared case because
4515 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4516 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4517 * bad pmd for sharing.
4518 */
4519 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4520 {
4521 struct vm_area_struct *vma = find_vma(mm, addr);
4522 struct address_space *mapping = vma->vm_file->f_mapping;
4523 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4524 vma->vm_pgoff;
4525 struct vm_area_struct *svma;
4526 unsigned long saddr;
4527 pte_t *spte = NULL;
4528 pte_t *pte;
4529 spinlock_t *ptl;
4530
4531 if (!vma_shareable(vma, addr))
4532 return (pte_t *)pmd_alloc(mm, pud, addr);
4533
4534 i_mmap_lock_write(mapping);
4535 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4536 if (svma == vma)
4537 continue;
4538
4539 saddr = page_table_shareable(svma, vma, addr, idx);
4540 if (saddr) {
4541 spte = huge_pte_offset(svma->vm_mm, saddr,
4542 vma_mmu_pagesize(svma));
4543 if (spte) {
4544 get_page(virt_to_page(spte));
4545 break;
4546 }
4547 }
4548 }
4549
4550 if (!spte)
4551 goto out;
4552
4553 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4554 if (pud_none(*pud)) {
4555 pud_populate(mm, pud,
4556 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4557 mm_inc_nr_pmds(mm);
4558 } else {
4559 put_page(virt_to_page(spte));
4560 }
4561 spin_unlock(ptl);
4562 out:
4563 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4564 i_mmap_unlock_write(mapping);
4565 return pte;
4566 }
4567
4568 /*
4569 * unmap huge page backed by shared pte.
4570 *
4571 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4572 * indicated by page_count > 1, unmap is achieved by clearing pud and
4573 * decrementing the ref count. If count == 1, the pte page is not shared.
4574 *
4575 * called with page table lock held.
4576 *
4577 * returns: 1 successfully unmapped a shared pte page
4578 * 0 the underlying pte page is not shared, or it is the last user
4579 */
4580 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4581 {
4582 pgd_t *pgd = pgd_offset(mm, *addr);
4583 p4d_t *p4d = p4d_offset(pgd, *addr);
4584 pud_t *pud = pud_offset(p4d, *addr);
4585
4586 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4587 if (page_count(virt_to_page(ptep)) == 1)
4588 return 0;
4589
4590 pud_clear(pud);
4591 put_page(virt_to_page(ptep));
4592 mm_dec_nr_pmds(mm);
4593 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4594 return 1;
4595 }
4596 #define want_pmd_share() (1)
4597 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4598 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4599 {
4600 return NULL;
4601 }
4602
4603 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4604 {
4605 return 0;
4606 }
4607 #define want_pmd_share() (0)
4608 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4609
4610 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4611 pte_t *huge_pte_alloc(struct mm_struct *mm,
4612 unsigned long addr, unsigned long sz)
4613 {
4614 pgd_t *pgd;
4615 p4d_t *p4d;
4616 pud_t *pud;
4617 pte_t *pte = NULL;
4618
4619 pgd = pgd_offset(mm, addr);
4620 p4d = p4d_offset(pgd, addr);
4621 pud = pud_alloc(mm, p4d, addr);
4622 if (pud) {
4623 if (sz == PUD_SIZE) {
4624 pte = (pte_t *)pud;
4625 } else {
4626 BUG_ON(sz != PMD_SIZE);
4627 if (want_pmd_share() && pud_none(*pud))
4628 pte = huge_pmd_share(mm, addr, pud);
4629 else
4630 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4631 }
4632 }
4633 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4634
4635 return pte;
4636 }
4637
4638 /*
4639 * huge_pte_offset() - Walk the page table to resolve the hugepage
4640 * entry at address @addr
4641 *
4642 * Return: Pointer to page table or swap entry (PUD or PMD) for
4643 * address @addr, or NULL if a p*d_none() entry is encountered and the
4644 * size @sz doesn't match the hugepage size at this level of the page
4645 * table.
4646 */
4647 pte_t *huge_pte_offset(struct mm_struct *mm,
4648 unsigned long addr, unsigned long sz)
4649 {
4650 pgd_t *pgd;
4651 p4d_t *p4d;
4652 pud_t *pud;
4653 pmd_t *pmd;
4654
4655 pgd = pgd_offset(mm, addr);
4656 if (!pgd_present(*pgd))
4657 return NULL;
4658 p4d = p4d_offset(pgd, addr);
4659 if (!p4d_present(*p4d))
4660 return NULL;
4661
4662 pud = pud_offset(p4d, addr);
4663 if (sz != PUD_SIZE && pud_none(*pud))
4664 return NULL;
4665 /* hugepage or swap? */
4666 if (pud_huge(*pud) || !pud_present(*pud))
4667 return (pte_t *)pud;
4668
4669 pmd = pmd_offset(pud, addr);
4670 if (sz != PMD_SIZE && pmd_none(*pmd))
4671 return NULL;
4672 /* hugepage or swap? */
4673 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4674 return (pte_t *)pmd;
4675
4676 return NULL;
4677 }
4678
4679 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4680
4681 /*
4682 * These functions are overwritable if your architecture needs its own
4683 * behavior.
4684 */
4685 struct page * __weak
4686 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4687 int write)
4688 {
4689 return ERR_PTR(-EINVAL);
4690 }
4691
4692 struct page * __weak
4693 follow_huge_pd(struct vm_area_struct *vma,
4694 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4695 {
4696 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4697 return NULL;
4698 }
4699
4700 struct page * __weak
4701 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4702 pmd_t *pmd, int flags)
4703 {
4704 struct page *page = NULL;
4705 spinlock_t *ptl;
4706 pte_t pte;
4707 retry:
4708 ptl = pmd_lockptr(mm, pmd);
4709 spin_lock(ptl);
4710 /*
4711 * make sure that the address range covered by this pmd is not
4712 * unmapped from other threads.
4713 */
4714 if (!pmd_huge(*pmd))
4715 goto out;
4716 pte = huge_ptep_get((pte_t *)pmd);
4717 if (pte_present(pte)) {
4718 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4719 if (flags & FOLL_GET)
4720 get_page(page);
4721 } else {
4722 if (is_hugetlb_entry_migration(pte)) {
4723 spin_unlock(ptl);
4724 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4725 goto retry;
4726 }
4727 /*
4728 * hwpoisoned entry is treated as no_page_table in
4729 * follow_page_mask().
4730 */
4731 }
4732 out:
4733 spin_unlock(ptl);
4734 return page;
4735 }
4736
4737 struct page * __weak
4738 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4739 pud_t *pud, int flags)
4740 {
4741 if (flags & FOLL_GET)
4742 return NULL;
4743
4744 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4745 }
4746
4747 struct page * __weak
4748 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4749 {
4750 if (flags & FOLL_GET)
4751 return NULL;
4752
4753 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4754 }
4755
4756 bool isolate_huge_page(struct page *page, struct list_head *list)
4757 {
4758 bool ret = true;
4759
4760 VM_BUG_ON_PAGE(!PageHead(page), page);
4761 spin_lock(&hugetlb_lock);
4762 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4763 ret = false;
4764 goto unlock;
4765 }
4766 clear_page_huge_active(page);
4767 list_move_tail(&page->lru, list);
4768 unlock:
4769 spin_unlock(&hugetlb_lock);
4770 return ret;
4771 }
4772
4773 void putback_active_hugepage(struct page *page)
4774 {
4775 VM_BUG_ON_PAGE(!PageHead(page), page);
4776 spin_lock(&hugetlb_lock);
4777 set_page_huge_active(page);
4778 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4779 spin_unlock(&hugetlb_lock);
4780 put_page(page);
4781 }