Merge 4.14.36 into android-4.14
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / hmm.c
1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
15 */
16 /*
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
19 */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41 */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51 * struct hmm - HMM per mm struct
52 *
53 * @mm: mm struct this HMM struct is bound to
54 * @lock: lock protecting ranges list
55 * @sequence: we track updates to the CPU page table with a sequence number
56 * @ranges: list of range being snapshotted
57 * @mirrors: list of mirrors for this mm
58 * @mmu_notifier: mmu notifier to track updates to CPU page table
59 * @mirrors_sem: read/write semaphore protecting the mirrors list
60 */
61 struct hmm {
62 struct mm_struct *mm;
63 spinlock_t lock;
64 atomic_t sequence;
65 struct list_head ranges;
66 struct list_head mirrors;
67 struct mmu_notifier mmu_notifier;
68 struct rw_semaphore mirrors_sem;
69 };
70
71 /*
72 * hmm_register - register HMM against an mm (HMM internal)
73 *
74 * @mm: mm struct to attach to
75 *
76 * This is not intended to be used directly by device drivers. It allocates an
77 * HMM struct if mm does not have one, and initializes it.
78 */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81 struct hmm *hmm = READ_ONCE(mm->hmm);
82 bool cleanup = false;
83
84 /*
85 * The hmm struct can only be freed once the mm_struct goes away,
86 * hence we should always have pre-allocated an new hmm struct
87 * above.
88 */
89 if (hmm)
90 return hmm;
91
92 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93 if (!hmm)
94 return NULL;
95 INIT_LIST_HEAD(&hmm->mirrors);
96 init_rwsem(&hmm->mirrors_sem);
97 atomic_set(&hmm->sequence, 0);
98 hmm->mmu_notifier.ops = NULL;
99 INIT_LIST_HEAD(&hmm->ranges);
100 spin_lock_init(&hmm->lock);
101 hmm->mm = mm;
102
103 /*
104 * We should only get here if hold the mmap_sem in write mode ie on
105 * registration of first mirror through hmm_mirror_register()
106 */
107 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109 kfree(hmm);
110 return NULL;
111 }
112
113 spin_lock(&mm->page_table_lock);
114 if (!mm->hmm)
115 mm->hmm = hmm;
116 else
117 cleanup = true;
118 spin_unlock(&mm->page_table_lock);
119
120 if (cleanup) {
121 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122 kfree(hmm);
123 }
124
125 return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130 kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134 enum hmm_update_type action,
135 unsigned long start,
136 unsigned long end)
137 {
138 struct hmm_mirror *mirror;
139 struct hmm_range *range;
140
141 spin_lock(&hmm->lock);
142 list_for_each_entry(range, &hmm->ranges, list) {
143 unsigned long addr, idx, npages;
144
145 if (end < range->start || start >= range->end)
146 continue;
147
148 range->valid = false;
149 addr = max(start, range->start);
150 idx = (addr - range->start) >> PAGE_SHIFT;
151 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153 }
154 spin_unlock(&hmm->lock);
155
156 down_read(&hmm->mirrors_sem);
157 list_for_each_entry(mirror, &hmm->mirrors, list)
158 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159 start, end);
160 up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
164 struct mm_struct *mm,
165 unsigned long start,
166 unsigned long end)
167 {
168 struct hmm *hmm = mm->hmm;
169
170 VM_BUG_ON(!hmm);
171
172 atomic_inc(&hmm->sequence);
173 }
174
175 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
176 struct mm_struct *mm,
177 unsigned long start,
178 unsigned long end)
179 {
180 struct hmm *hmm = mm->hmm;
181
182 VM_BUG_ON(!hmm);
183
184 hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
185 }
186
187 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
188 .invalidate_range_start = hmm_invalidate_range_start,
189 .invalidate_range_end = hmm_invalidate_range_end,
190 };
191
192 /*
193 * hmm_mirror_register() - register a mirror against an mm
194 *
195 * @mirror: new mirror struct to register
196 * @mm: mm to register against
197 *
198 * To start mirroring a process address space, the device driver must register
199 * an HMM mirror struct.
200 *
201 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
202 */
203 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
204 {
205 /* Sanity check */
206 if (!mm || !mirror || !mirror->ops)
207 return -EINVAL;
208
209 mirror->hmm = hmm_register(mm);
210 if (!mirror->hmm)
211 return -ENOMEM;
212
213 down_write(&mirror->hmm->mirrors_sem);
214 list_add(&mirror->list, &mirror->hmm->mirrors);
215 up_write(&mirror->hmm->mirrors_sem);
216
217 return 0;
218 }
219 EXPORT_SYMBOL(hmm_mirror_register);
220
221 /*
222 * hmm_mirror_unregister() - unregister a mirror
223 *
224 * @mirror: new mirror struct to register
225 *
226 * Stop mirroring a process address space, and cleanup.
227 */
228 void hmm_mirror_unregister(struct hmm_mirror *mirror)
229 {
230 struct hmm *hmm = mirror->hmm;
231
232 down_write(&hmm->mirrors_sem);
233 list_del(&mirror->list);
234 up_write(&hmm->mirrors_sem);
235 }
236 EXPORT_SYMBOL(hmm_mirror_unregister);
237
238 struct hmm_vma_walk {
239 struct hmm_range *range;
240 unsigned long last;
241 bool fault;
242 bool block;
243 bool write;
244 };
245
246 static int hmm_vma_do_fault(struct mm_walk *walk,
247 unsigned long addr,
248 hmm_pfn_t *pfn)
249 {
250 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
251 struct hmm_vma_walk *hmm_vma_walk = walk->private;
252 struct vm_area_struct *vma = walk->vma;
253 int r;
254
255 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
256 flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
257 r = handle_mm_fault(vma, addr, flags);
258 if (r & VM_FAULT_RETRY)
259 return -EBUSY;
260 if (r & VM_FAULT_ERROR) {
261 *pfn = HMM_PFN_ERROR;
262 return -EFAULT;
263 }
264
265 return -EAGAIN;
266 }
267
268 static void hmm_pfns_special(hmm_pfn_t *pfns,
269 unsigned long addr,
270 unsigned long end)
271 {
272 for (; addr < end; addr += PAGE_SIZE, pfns++)
273 *pfns = HMM_PFN_SPECIAL;
274 }
275
276 static int hmm_pfns_bad(unsigned long addr,
277 unsigned long end,
278 struct mm_walk *walk)
279 {
280 struct hmm_vma_walk *hmm_vma_walk = walk->private;
281 struct hmm_range *range = hmm_vma_walk->range;
282 hmm_pfn_t *pfns = range->pfns;
283 unsigned long i;
284
285 i = (addr - range->start) >> PAGE_SHIFT;
286 for (; addr < end; addr += PAGE_SIZE, i++)
287 pfns[i] = HMM_PFN_ERROR;
288
289 return 0;
290 }
291
292 static void hmm_pfns_clear(hmm_pfn_t *pfns,
293 unsigned long addr,
294 unsigned long end)
295 {
296 for (; addr < end; addr += PAGE_SIZE, pfns++)
297 *pfns = 0;
298 }
299
300 static int hmm_vma_walk_hole(unsigned long addr,
301 unsigned long end,
302 struct mm_walk *walk)
303 {
304 struct hmm_vma_walk *hmm_vma_walk = walk->private;
305 struct hmm_range *range = hmm_vma_walk->range;
306 hmm_pfn_t *pfns = range->pfns;
307 unsigned long i;
308
309 hmm_vma_walk->last = addr;
310 i = (addr - range->start) >> PAGE_SHIFT;
311 for (; addr < end; addr += PAGE_SIZE, i++) {
312 pfns[i] = HMM_PFN_EMPTY;
313 if (hmm_vma_walk->fault) {
314 int ret;
315
316 ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
317 if (ret != -EAGAIN)
318 return ret;
319 }
320 }
321
322 return hmm_vma_walk->fault ? -EAGAIN : 0;
323 }
324
325 static int hmm_vma_walk_clear(unsigned long addr,
326 unsigned long end,
327 struct mm_walk *walk)
328 {
329 struct hmm_vma_walk *hmm_vma_walk = walk->private;
330 struct hmm_range *range = hmm_vma_walk->range;
331 hmm_pfn_t *pfns = range->pfns;
332 unsigned long i;
333
334 hmm_vma_walk->last = addr;
335 i = (addr - range->start) >> PAGE_SHIFT;
336 for (; addr < end; addr += PAGE_SIZE, i++) {
337 pfns[i] = 0;
338 if (hmm_vma_walk->fault) {
339 int ret;
340
341 ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
342 if (ret != -EAGAIN)
343 return ret;
344 }
345 }
346
347 return hmm_vma_walk->fault ? -EAGAIN : 0;
348 }
349
350 static int hmm_vma_walk_pmd(pmd_t *pmdp,
351 unsigned long start,
352 unsigned long end,
353 struct mm_walk *walk)
354 {
355 struct hmm_vma_walk *hmm_vma_walk = walk->private;
356 struct hmm_range *range = hmm_vma_walk->range;
357 struct vm_area_struct *vma = walk->vma;
358 hmm_pfn_t *pfns = range->pfns;
359 unsigned long addr = start, i;
360 bool write_fault;
361 hmm_pfn_t flag;
362 pte_t *ptep;
363
364 i = (addr - range->start) >> PAGE_SHIFT;
365 flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
366 write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
367
368 again:
369 if (pmd_none(*pmdp))
370 return hmm_vma_walk_hole(start, end, walk);
371
372 if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
373 return hmm_pfns_bad(start, end, walk);
374
375 if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
376 unsigned long pfn;
377 pmd_t pmd;
378
379 /*
380 * No need to take pmd_lock here, even if some other threads
381 * is splitting the huge pmd we will get that event through
382 * mmu_notifier callback.
383 *
384 * So just read pmd value and check again its a transparent
385 * huge or device mapping one and compute corresponding pfn
386 * values.
387 */
388 pmd = pmd_read_atomic(pmdp);
389 barrier();
390 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
391 goto again;
392 if (pmd_protnone(pmd))
393 return hmm_vma_walk_clear(start, end, walk);
394
395 if (write_fault && !pmd_write(pmd))
396 return hmm_vma_walk_clear(start, end, walk);
397
398 pfn = pmd_pfn(pmd) + pte_index(addr);
399 flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
400 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
401 pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
402 return 0;
403 }
404
405 if (pmd_bad(*pmdp))
406 return hmm_pfns_bad(start, end, walk);
407
408 ptep = pte_offset_map(pmdp, addr);
409 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
410 pte_t pte = *ptep;
411
412 pfns[i] = 0;
413
414 if (pte_none(pte)) {
415 pfns[i] = HMM_PFN_EMPTY;
416 if (hmm_vma_walk->fault)
417 goto fault;
418 continue;
419 }
420
421 if (!pte_present(pte)) {
422 swp_entry_t entry;
423
424 if (!non_swap_entry(entry)) {
425 if (hmm_vma_walk->fault)
426 goto fault;
427 continue;
428 }
429
430 entry = pte_to_swp_entry(pte);
431
432 /*
433 * This is a special swap entry, ignore migration, use
434 * device and report anything else as error.
435 */
436 if (is_device_private_entry(entry)) {
437 pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
438 if (is_write_device_private_entry(entry)) {
439 pfns[i] |= HMM_PFN_WRITE;
440 } else if (write_fault)
441 goto fault;
442 pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
443 pfns[i] |= flag;
444 } else if (is_migration_entry(entry)) {
445 if (hmm_vma_walk->fault) {
446 pte_unmap(ptep);
447 hmm_vma_walk->last = addr;
448 migration_entry_wait(vma->vm_mm,
449 pmdp, addr);
450 return -EAGAIN;
451 }
452 continue;
453 } else {
454 /* Report error for everything else */
455 pfns[i] = HMM_PFN_ERROR;
456 }
457 continue;
458 }
459
460 if (write_fault && !pte_write(pte))
461 goto fault;
462
463 pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
464 pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
465 continue;
466
467 fault:
468 pte_unmap(ptep);
469 /* Fault all pages in range */
470 return hmm_vma_walk_clear(start, end, walk);
471 }
472 pte_unmap(ptep - 1);
473
474 return 0;
475 }
476
477 /*
478 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
479 * @vma: virtual memory area containing the virtual address range
480 * @range: used to track snapshot validity
481 * @start: range virtual start address (inclusive)
482 * @end: range virtual end address (exclusive)
483 * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
484 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
485 *
486 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
487 * validity is tracked by range struct. See hmm_vma_range_done() for further
488 * information.
489 *
490 * The range struct is initialized here. It tracks the CPU page table, but only
491 * if the function returns success (0), in which case the caller must then call
492 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
493 *
494 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
495 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
496 */
497 int hmm_vma_get_pfns(struct vm_area_struct *vma,
498 struct hmm_range *range,
499 unsigned long start,
500 unsigned long end,
501 hmm_pfn_t *pfns)
502 {
503 struct hmm_vma_walk hmm_vma_walk;
504 struct mm_walk mm_walk;
505 struct hmm *hmm;
506
507 /* FIXME support hugetlb fs */
508 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
509 hmm_pfns_special(pfns, start, end);
510 return -EINVAL;
511 }
512
513 /* Sanity check, this really should not happen ! */
514 if (start < vma->vm_start || start >= vma->vm_end)
515 return -EINVAL;
516 if (end < vma->vm_start || end > vma->vm_end)
517 return -EINVAL;
518
519 hmm = hmm_register(vma->vm_mm);
520 if (!hmm)
521 return -ENOMEM;
522 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
523 if (!hmm->mmu_notifier.ops)
524 return -EINVAL;
525
526 /* Initialize range to track CPU page table update */
527 range->start = start;
528 range->pfns = pfns;
529 range->end = end;
530 spin_lock(&hmm->lock);
531 range->valid = true;
532 list_add_rcu(&range->list, &hmm->ranges);
533 spin_unlock(&hmm->lock);
534
535 hmm_vma_walk.fault = false;
536 hmm_vma_walk.range = range;
537 mm_walk.private = &hmm_vma_walk;
538
539 mm_walk.vma = vma;
540 mm_walk.mm = vma->vm_mm;
541 mm_walk.pte_entry = NULL;
542 mm_walk.test_walk = NULL;
543 mm_walk.hugetlb_entry = NULL;
544 mm_walk.pmd_entry = hmm_vma_walk_pmd;
545 mm_walk.pte_hole = hmm_vma_walk_hole;
546
547 walk_page_range(start, end, &mm_walk);
548 return 0;
549 }
550 EXPORT_SYMBOL(hmm_vma_get_pfns);
551
552 /*
553 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
554 * @vma: virtual memory area containing the virtual address range
555 * @range: range being tracked
556 * Returns: false if range data has been invalidated, true otherwise
557 *
558 * Range struct is used to track updates to the CPU page table after a call to
559 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
560 * using the data, or wants to lock updates to the data it got from those
561 * functions, it must call the hmm_vma_range_done() function, which will then
562 * stop tracking CPU page table updates.
563 *
564 * Note that device driver must still implement general CPU page table update
565 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
566 * the mmu_notifier API directly.
567 *
568 * CPU page table update tracking done through hmm_range is only temporary and
569 * to be used while trying to duplicate CPU page table contents for a range of
570 * virtual addresses.
571 *
572 * There are two ways to use this :
573 * again:
574 * hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
575 * trans = device_build_page_table_update_transaction(pfns);
576 * device_page_table_lock();
577 * if (!hmm_vma_range_done(vma, range)) {
578 * device_page_table_unlock();
579 * goto again;
580 * }
581 * device_commit_transaction(trans);
582 * device_page_table_unlock();
583 *
584 * Or:
585 * hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
586 * device_page_table_lock();
587 * hmm_vma_range_done(vma, range);
588 * device_update_page_table(pfns);
589 * device_page_table_unlock();
590 */
591 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
592 {
593 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
594 struct hmm *hmm;
595
596 if (range->end <= range->start) {
597 BUG();
598 return false;
599 }
600
601 hmm = hmm_register(vma->vm_mm);
602 if (!hmm) {
603 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
604 return false;
605 }
606
607 spin_lock(&hmm->lock);
608 list_del_rcu(&range->list);
609 spin_unlock(&hmm->lock);
610
611 return range->valid;
612 }
613 EXPORT_SYMBOL(hmm_vma_range_done);
614
615 /*
616 * hmm_vma_fault() - try to fault some address in a virtual address range
617 * @vma: virtual memory area containing the virtual address range
618 * @range: use to track pfns array content validity
619 * @start: fault range virtual start address (inclusive)
620 * @end: fault range virtual end address (exclusive)
621 * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
622 * @write: is it a write fault
623 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
624 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
625 *
626 * This is similar to a regular CPU page fault except that it will not trigger
627 * any memory migration if the memory being faulted is not accessible by CPUs.
628 *
629 * On error, for one virtual address in the range, the function will set the
630 * hmm_pfn_t error flag for the corresponding pfn entry.
631 *
632 * Expected use pattern:
633 * retry:
634 * down_read(&mm->mmap_sem);
635 * // Find vma and address device wants to fault, initialize hmm_pfn_t
636 * // array accordingly
637 * ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
638 * switch (ret) {
639 * case -EAGAIN:
640 * hmm_vma_range_done(vma, range);
641 * // You might want to rate limit or yield to play nicely, you may
642 * // also commit any valid pfn in the array assuming that you are
643 * // getting true from hmm_vma_range_monitor_end()
644 * goto retry;
645 * case 0:
646 * break;
647 * default:
648 * // Handle error !
649 * up_read(&mm->mmap_sem)
650 * return;
651 * }
652 * // Take device driver lock that serialize device page table update
653 * driver_lock_device_page_table_update();
654 * hmm_vma_range_done(vma, range);
655 * // Commit pfns we got from hmm_vma_fault()
656 * driver_unlock_device_page_table_update();
657 * up_read(&mm->mmap_sem)
658 *
659 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
660 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
661 *
662 * YOU HAVE BEEN WARNED !
663 */
664 int hmm_vma_fault(struct vm_area_struct *vma,
665 struct hmm_range *range,
666 unsigned long start,
667 unsigned long end,
668 hmm_pfn_t *pfns,
669 bool write,
670 bool block)
671 {
672 struct hmm_vma_walk hmm_vma_walk;
673 struct mm_walk mm_walk;
674 struct hmm *hmm;
675 int ret;
676
677 /* Sanity check, this really should not happen ! */
678 if (start < vma->vm_start || start >= vma->vm_end)
679 return -EINVAL;
680 if (end < vma->vm_start || end > vma->vm_end)
681 return -EINVAL;
682
683 hmm = hmm_register(vma->vm_mm);
684 if (!hmm) {
685 hmm_pfns_clear(pfns, start, end);
686 return -ENOMEM;
687 }
688 /* Caller must have registered a mirror using hmm_mirror_register() */
689 if (!hmm->mmu_notifier.ops)
690 return -EINVAL;
691
692 /* Initialize range to track CPU page table update */
693 range->start = start;
694 range->pfns = pfns;
695 range->end = end;
696 spin_lock(&hmm->lock);
697 range->valid = true;
698 list_add_rcu(&range->list, &hmm->ranges);
699 spin_unlock(&hmm->lock);
700
701 /* FIXME support hugetlb fs */
702 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
703 hmm_pfns_special(pfns, start, end);
704 return 0;
705 }
706
707 hmm_vma_walk.fault = true;
708 hmm_vma_walk.write = write;
709 hmm_vma_walk.block = block;
710 hmm_vma_walk.range = range;
711 mm_walk.private = &hmm_vma_walk;
712 hmm_vma_walk.last = range->start;
713
714 mm_walk.vma = vma;
715 mm_walk.mm = vma->vm_mm;
716 mm_walk.pte_entry = NULL;
717 mm_walk.test_walk = NULL;
718 mm_walk.hugetlb_entry = NULL;
719 mm_walk.pmd_entry = hmm_vma_walk_pmd;
720 mm_walk.pte_hole = hmm_vma_walk_hole;
721
722 do {
723 ret = walk_page_range(start, end, &mm_walk);
724 start = hmm_vma_walk.last;
725 } while (ret == -EAGAIN);
726
727 if (ret) {
728 unsigned long i;
729
730 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
731 hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
732 hmm_vma_range_done(vma, range);
733 }
734 return ret;
735 }
736 EXPORT_SYMBOL(hmm_vma_fault);
737 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
738
739
740 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
741 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
742 unsigned long addr)
743 {
744 struct page *page;
745
746 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
747 if (!page)
748 return NULL;
749 lock_page(page);
750 return page;
751 }
752 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
753
754
755 static void hmm_devmem_ref_release(struct percpu_ref *ref)
756 {
757 struct hmm_devmem *devmem;
758
759 devmem = container_of(ref, struct hmm_devmem, ref);
760 complete(&devmem->completion);
761 }
762
763 static void hmm_devmem_ref_exit(void *data)
764 {
765 struct percpu_ref *ref = data;
766 struct hmm_devmem *devmem;
767
768 devmem = container_of(ref, struct hmm_devmem, ref);
769 percpu_ref_exit(ref);
770 devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
771 }
772
773 static void hmm_devmem_ref_kill(void *data)
774 {
775 struct percpu_ref *ref = data;
776 struct hmm_devmem *devmem;
777
778 devmem = container_of(ref, struct hmm_devmem, ref);
779 percpu_ref_kill(ref);
780 wait_for_completion(&devmem->completion);
781 devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
782 }
783
784 static int hmm_devmem_fault(struct vm_area_struct *vma,
785 unsigned long addr,
786 const struct page *page,
787 unsigned int flags,
788 pmd_t *pmdp)
789 {
790 struct hmm_devmem *devmem = page->pgmap->data;
791
792 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
793 }
794
795 static void hmm_devmem_free(struct page *page, void *data)
796 {
797 struct hmm_devmem *devmem = data;
798
799 devmem->ops->free(devmem, page);
800 }
801
802 static DEFINE_MUTEX(hmm_devmem_lock);
803 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
804
805 static void hmm_devmem_radix_release(struct resource *resource)
806 {
807 resource_size_t key, align_start, align_size, align_end;
808
809 align_start = resource->start & ~(PA_SECTION_SIZE - 1);
810 align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
811 align_end = align_start + align_size - 1;
812
813 mutex_lock(&hmm_devmem_lock);
814 for (key = resource->start;
815 key <= resource->end;
816 key += PA_SECTION_SIZE)
817 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
818 mutex_unlock(&hmm_devmem_lock);
819 }
820
821 static void hmm_devmem_release(struct device *dev, void *data)
822 {
823 struct hmm_devmem *devmem = data;
824 struct resource *resource = devmem->resource;
825 unsigned long start_pfn, npages;
826 struct zone *zone;
827 struct page *page;
828
829 if (percpu_ref_tryget_live(&devmem->ref)) {
830 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
831 percpu_ref_put(&devmem->ref);
832 }
833
834 /* pages are dead and unused, undo the arch mapping */
835 start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
836 npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
837
838 page = pfn_to_page(start_pfn);
839 zone = page_zone(page);
840
841 mem_hotplug_begin();
842 if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
843 __remove_pages(zone, start_pfn, npages);
844 else
845 arch_remove_memory(start_pfn << PAGE_SHIFT,
846 npages << PAGE_SHIFT);
847 mem_hotplug_done();
848
849 hmm_devmem_radix_release(resource);
850 }
851
852 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
853 {
854 WARN_ON_ONCE(!rcu_read_lock_held());
855
856 return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
857 }
858
859 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
860 {
861 resource_size_t key, align_start, align_size, align_end;
862 struct device *device = devmem->device;
863 int ret, nid, is_ram;
864 unsigned long pfn;
865
866 align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
867 align_size = ALIGN(devmem->resource->start +
868 resource_size(devmem->resource),
869 PA_SECTION_SIZE) - align_start;
870
871 is_ram = region_intersects(align_start, align_size,
872 IORESOURCE_SYSTEM_RAM,
873 IORES_DESC_NONE);
874 if (is_ram == REGION_MIXED) {
875 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
876 __func__, devmem->resource);
877 return -ENXIO;
878 }
879 if (is_ram == REGION_INTERSECTS)
880 return -ENXIO;
881
882 if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
883 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
884 else
885 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
886
887 devmem->pagemap.res = devmem->resource;
888 devmem->pagemap.page_fault = hmm_devmem_fault;
889 devmem->pagemap.page_free = hmm_devmem_free;
890 devmem->pagemap.dev = devmem->device;
891 devmem->pagemap.ref = &devmem->ref;
892 devmem->pagemap.data = devmem;
893
894 mutex_lock(&hmm_devmem_lock);
895 align_end = align_start + align_size - 1;
896 for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
897 struct hmm_devmem *dup;
898
899 rcu_read_lock();
900 dup = hmm_devmem_find(key);
901 rcu_read_unlock();
902 if (dup) {
903 dev_err(device, "%s: collides with mapping for %s\n",
904 __func__, dev_name(dup->device));
905 mutex_unlock(&hmm_devmem_lock);
906 ret = -EBUSY;
907 goto error;
908 }
909 ret = radix_tree_insert(&hmm_devmem_radix,
910 key >> PA_SECTION_SHIFT,
911 devmem);
912 if (ret) {
913 dev_err(device, "%s: failed: %d\n", __func__, ret);
914 mutex_unlock(&hmm_devmem_lock);
915 goto error_radix;
916 }
917 }
918 mutex_unlock(&hmm_devmem_lock);
919
920 nid = dev_to_node(device);
921 if (nid < 0)
922 nid = numa_mem_id();
923
924 mem_hotplug_begin();
925 /*
926 * For device private memory we call add_pages() as we only need to
927 * allocate and initialize struct page for the device memory. More-
928 * over the device memory is un-accessible thus we do not want to
929 * create a linear mapping for the memory like arch_add_memory()
930 * would do.
931 *
932 * For device public memory, which is accesible by the CPU, we do
933 * want the linear mapping and thus use arch_add_memory().
934 */
935 if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
936 ret = arch_add_memory(nid, align_start, align_size, false);
937 else
938 ret = add_pages(nid, align_start >> PAGE_SHIFT,
939 align_size >> PAGE_SHIFT, false);
940 if (ret) {
941 mem_hotplug_done();
942 goto error_add_memory;
943 }
944 move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
945 align_start >> PAGE_SHIFT,
946 align_size >> PAGE_SHIFT);
947 mem_hotplug_done();
948
949 for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
950 struct page *page = pfn_to_page(pfn);
951
952 page->pgmap = &devmem->pagemap;
953 }
954 return 0;
955
956 error_add_memory:
957 untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
958 error_radix:
959 hmm_devmem_radix_release(devmem->resource);
960 error:
961 return ret;
962 }
963
964 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
965 {
966 struct hmm_devmem *devmem = data;
967
968 return devmem->resource == match_data;
969 }
970
971 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
972 {
973 devres_release(devmem->device, &hmm_devmem_release,
974 &hmm_devmem_match, devmem->resource);
975 }
976
977 /*
978 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
979 *
980 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
981 * @device: device struct to bind the resource too
982 * @size: size in bytes of the device memory to add
983 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
984 *
985 * This function first finds an empty range of physical address big enough to
986 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
987 * in turn allocates struct pages. It does not do anything beyond that; all
988 * events affecting the memory will go through the various callbacks provided
989 * by hmm_devmem_ops struct.
990 *
991 * Device driver should call this function during device initialization and
992 * is then responsible of memory management. HMM only provides helpers.
993 */
994 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
995 struct device *device,
996 unsigned long size)
997 {
998 struct hmm_devmem *devmem;
999 resource_size_t addr;
1000 int ret;
1001
1002 static_branch_enable(&device_private_key);
1003
1004 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1005 GFP_KERNEL, dev_to_node(device));
1006 if (!devmem)
1007 return ERR_PTR(-ENOMEM);
1008
1009 init_completion(&devmem->completion);
1010 devmem->pfn_first = -1UL;
1011 devmem->pfn_last = -1UL;
1012 devmem->resource = NULL;
1013 devmem->device = device;
1014 devmem->ops = ops;
1015
1016 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1017 0, GFP_KERNEL);
1018 if (ret)
1019 goto error_percpu_ref;
1020
1021 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1022 if (ret)
1023 goto error_devm_add_action;
1024
1025 size = ALIGN(size, PA_SECTION_SIZE);
1026 addr = min((unsigned long)iomem_resource.end,
1027 (1UL << MAX_PHYSMEM_BITS) - 1);
1028 addr = addr - size + 1UL;
1029
1030 /*
1031 * FIXME add a new helper to quickly walk resource tree and find free
1032 * range
1033 *
1034 * FIXME what about ioport_resource resource ?
1035 */
1036 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1037 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1038 if (ret != REGION_DISJOINT)
1039 continue;
1040
1041 devmem->resource = devm_request_mem_region(device, addr, size,
1042 dev_name(device));
1043 if (!devmem->resource) {
1044 ret = -ENOMEM;
1045 goto error_no_resource;
1046 }
1047 break;
1048 }
1049 if (!devmem->resource) {
1050 ret = -ERANGE;
1051 goto error_no_resource;
1052 }
1053
1054 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1055 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1056 devmem->pfn_last = devmem->pfn_first +
1057 (resource_size(devmem->resource) >> PAGE_SHIFT);
1058
1059 ret = hmm_devmem_pages_create(devmem);
1060 if (ret)
1061 goto error_pages;
1062
1063 devres_add(device, devmem);
1064
1065 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1066 if (ret) {
1067 hmm_devmem_remove(devmem);
1068 return ERR_PTR(ret);
1069 }
1070
1071 return devmem;
1072
1073 error_pages:
1074 devm_release_mem_region(device, devmem->resource->start,
1075 resource_size(devmem->resource));
1076 error_no_resource:
1077 error_devm_add_action:
1078 hmm_devmem_ref_kill(&devmem->ref);
1079 hmm_devmem_ref_exit(&devmem->ref);
1080 error_percpu_ref:
1081 devres_free(devmem);
1082 return ERR_PTR(ret);
1083 }
1084 EXPORT_SYMBOL(hmm_devmem_add);
1085
1086 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1087 struct device *device,
1088 struct resource *res)
1089 {
1090 struct hmm_devmem *devmem;
1091 int ret;
1092
1093 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1094 return ERR_PTR(-EINVAL);
1095
1096 static_branch_enable(&device_private_key);
1097
1098 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1099 GFP_KERNEL, dev_to_node(device));
1100 if (!devmem)
1101 return ERR_PTR(-ENOMEM);
1102
1103 init_completion(&devmem->completion);
1104 devmem->pfn_first = -1UL;
1105 devmem->pfn_last = -1UL;
1106 devmem->resource = res;
1107 devmem->device = device;
1108 devmem->ops = ops;
1109
1110 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1111 0, GFP_KERNEL);
1112 if (ret)
1113 goto error_percpu_ref;
1114
1115 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1116 if (ret)
1117 goto error_devm_add_action;
1118
1119
1120 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1121 devmem->pfn_last = devmem->pfn_first +
1122 (resource_size(devmem->resource) >> PAGE_SHIFT);
1123
1124 ret = hmm_devmem_pages_create(devmem);
1125 if (ret)
1126 goto error_devm_add_action;
1127
1128 devres_add(device, devmem);
1129
1130 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1131 if (ret) {
1132 hmm_devmem_remove(devmem);
1133 return ERR_PTR(ret);
1134 }
1135
1136 return devmem;
1137
1138 error_devm_add_action:
1139 hmm_devmem_ref_kill(&devmem->ref);
1140 hmm_devmem_ref_exit(&devmem->ref);
1141 error_percpu_ref:
1142 devres_free(devmem);
1143 return ERR_PTR(ret);
1144 }
1145 EXPORT_SYMBOL(hmm_devmem_add_resource);
1146
1147 /*
1148 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1149 *
1150 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1151 *
1152 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1153 * of the device driver. It will free struct page and remove the resource that
1154 * reserved the physical address range for this device memory.
1155 */
1156 void hmm_devmem_remove(struct hmm_devmem *devmem)
1157 {
1158 resource_size_t start, size;
1159 struct device *device;
1160 bool cdm = false;
1161
1162 if (!devmem)
1163 return;
1164
1165 device = devmem->device;
1166 start = devmem->resource->start;
1167 size = resource_size(devmem->resource);
1168
1169 cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1170 hmm_devmem_ref_kill(&devmem->ref);
1171 hmm_devmem_ref_exit(&devmem->ref);
1172 hmm_devmem_pages_remove(devmem);
1173
1174 if (!cdm)
1175 devm_release_mem_region(device, start, size);
1176 }
1177 EXPORT_SYMBOL(hmm_devmem_remove);
1178
1179 /*
1180 * A device driver that wants to handle multiple devices memory through a
1181 * single fake device can use hmm_device to do so. This is purely a helper
1182 * and it is not needed to make use of any HMM functionality.
1183 */
1184 #define HMM_DEVICE_MAX 256
1185
1186 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1187 static DEFINE_SPINLOCK(hmm_device_lock);
1188 static struct class *hmm_device_class;
1189 static dev_t hmm_device_devt;
1190
1191 static void hmm_device_release(struct device *device)
1192 {
1193 struct hmm_device *hmm_device;
1194
1195 hmm_device = container_of(device, struct hmm_device, device);
1196 spin_lock(&hmm_device_lock);
1197 clear_bit(hmm_device->minor, hmm_device_mask);
1198 spin_unlock(&hmm_device_lock);
1199
1200 kfree(hmm_device);
1201 }
1202
1203 struct hmm_device *hmm_device_new(void *drvdata)
1204 {
1205 struct hmm_device *hmm_device;
1206
1207 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1208 if (!hmm_device)
1209 return ERR_PTR(-ENOMEM);
1210
1211 spin_lock(&hmm_device_lock);
1212 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1213 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1214 spin_unlock(&hmm_device_lock);
1215 kfree(hmm_device);
1216 return ERR_PTR(-EBUSY);
1217 }
1218 set_bit(hmm_device->minor, hmm_device_mask);
1219 spin_unlock(&hmm_device_lock);
1220
1221 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1222 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1223 hmm_device->minor);
1224 hmm_device->device.release = hmm_device_release;
1225 dev_set_drvdata(&hmm_device->device, drvdata);
1226 hmm_device->device.class = hmm_device_class;
1227 device_initialize(&hmm_device->device);
1228
1229 return hmm_device;
1230 }
1231 EXPORT_SYMBOL(hmm_device_new);
1232
1233 void hmm_device_put(struct hmm_device *hmm_device)
1234 {
1235 put_device(&hmm_device->device);
1236 }
1237 EXPORT_SYMBOL(hmm_device_put);
1238
1239 static int __init hmm_init(void)
1240 {
1241 int ret;
1242
1243 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1244 HMM_DEVICE_MAX,
1245 "hmm_device");
1246 if (ret)
1247 return ret;
1248
1249 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1250 if (IS_ERR(hmm_device_class)) {
1251 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1252 return PTR_ERR(hmm_device_class);
1253 }
1254 return 0;
1255 }
1256
1257 device_initcall(hmm_init);
1258 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */