remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / gup.c
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20
21 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/mmu_notifier.h>
24 #include <asm/tlbflush.h>
25
26 #include "internal.h"
27
28 #ifdef CONFIG_CMA
29 static struct page *__alloc_nonmovable_userpage(struct page *page,
30 unsigned long private, int **result)
31 {
32 return alloc_page(GFP_HIGHUSER);
33 }
34
35 static bool __need_migrate_cma_page(struct page *page,
36 struct vm_area_struct *vma,
37 unsigned long start, unsigned int flags)
38 {
39 if (!(flags & FOLL_GET) || !(flags & FOLL_CMA))
40 return false;
41
42 if (!is_migrate_cma_page(page))
43 return false;
44
45 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
46 VM_STACK_INCOMPLETE_SETUP)
47 return false;
48
49 if (!PageLRU(page)) {
50 migrate_prep_local();
51 if (WARN_ON(!PageLRU(page))) {
52 __dump_page(page, "non-lru cma page");
53 return false;
54 }
55 }
56
57 return true;
58 }
59
60 static int __isolate_cma_pinpage(struct page *page)
61 {
62 struct zone *zone = page_zone(page);
63 struct lruvec *lruvec;
64
65 spin_lock_irq(zone_lru_lock(zone));
66 if (__isolate_lru_page(page, 0) != 0) {
67 spin_unlock_irq(zone_lru_lock(zone));
68 dump_page(page, "failed to isolate lru page");
69 return -EBUSY;
70 } else {
71 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
72 del_page_from_lru_list(page, lruvec, page_lru(page));
73 }
74 spin_unlock_irq(zone_lru_lock(zone));
75
76 return 0;
77 }
78
79 static int __migrate_cma_pinpage(struct page *page, struct vm_area_struct *vma)
80 {
81 struct list_head migratepages;
82 int tries = 0;
83 int ret = 0;
84
85 INIT_LIST_HEAD(&migratepages);
86
87 list_add(&page->lru, &migratepages);
88 inc_zone_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
89
90 while (!list_empty(&migratepages) && tries++ < 5) {
91 ret = migrate_pages(&migratepages, __alloc_nonmovable_userpage,
92 NULL, 0, MIGRATE_SYNC, MR_CMA);
93 }
94
95 if (ret < 0) {
96 putback_movable_pages(&migratepages);
97 pr_err("%s: migration failed %p[%#lx]\n", __func__,
98 page, page_to_pfn(page));
99 return -EFAULT;
100 }
101
102 return 0;
103 }
104 #else
105 static bool __need_migrate_cma_page(struct page *page,
106 struct vm_area_struct *vma,
107 unsigned long start, unsigned int flags)
108 {
109 return false;
110 }
111 static int __migrate_cma_pinpage(struct page *page, struct vm_area_struct *vma)
112 {
113 return 0;
114 }
115 #endif
116
117 static struct page *no_page_table(struct vm_area_struct *vma,
118 unsigned int flags)
119 {
120 /*
121 * When core dumping an enormous anonymous area that nobody
122 * has touched so far, we don't want to allocate unnecessary pages or
123 * page tables. Return error instead of NULL to skip handle_mm_fault,
124 * then get_dump_page() will return NULL to leave a hole in the dump.
125 * But we can only make this optimization where a hole would surely
126 * be zero-filled if handle_mm_fault() actually did handle it.
127 */
128 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
129 return ERR_PTR(-EFAULT);
130 return NULL;
131 }
132
133 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
134 pte_t *pte, unsigned int flags)
135 {
136 /* No page to get reference */
137 if (flags & FOLL_GET)
138 return -EFAULT;
139
140 if (flags & FOLL_TOUCH) {
141 pte_t entry = *pte;
142
143 if (flags & FOLL_WRITE)
144 entry = pte_mkdirty(entry);
145 entry = pte_mkyoung(entry);
146
147 if (!pte_same(*pte, entry)) {
148 set_pte_at(vma->vm_mm, address, pte, entry);
149 update_mmu_cache(vma, address, pte);
150 }
151 }
152
153 /* Proper page table entry exists, but no corresponding struct page */
154 return -EEXIST;
155 }
156
157 /*
158 * FOLL_FORCE can write to even unwritable pte's, but only
159 * after we've gone through a COW cycle and they are dirty.
160 */
161 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
162 {
163 return pte_write(pte) ||
164 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
165 }
166
167 static struct page *follow_page_pte(struct vm_area_struct *vma,
168 unsigned long address, pmd_t *pmd, unsigned int flags)
169 {
170 struct mm_struct *mm = vma->vm_mm;
171 struct dev_pagemap *pgmap = NULL;
172 struct page *page;
173 spinlock_t *ptl;
174 pte_t *ptep, pte;
175
176 retry:
177 if (unlikely(pmd_bad(*pmd)))
178 return no_page_table(vma, flags);
179
180 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
181 pte = *ptep;
182 if (!pte_present(pte)) {
183 swp_entry_t entry;
184 /*
185 * KSM's break_ksm() relies upon recognizing a ksm page
186 * even while it is being migrated, so for that case we
187 * need migration_entry_wait().
188 */
189 if (likely(!(flags & FOLL_MIGRATION)))
190 goto no_page;
191 if (pte_none(pte))
192 goto no_page;
193 entry = pte_to_swp_entry(pte);
194 if (!is_migration_entry(entry))
195 goto no_page;
196 pte_unmap_unlock(ptep, ptl);
197 migration_entry_wait(mm, pmd, address);
198 goto retry;
199 }
200 if ((flags & FOLL_NUMA) && pte_protnone(pte))
201 goto no_page;
202 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
203 pte_unmap_unlock(ptep, ptl);
204 return NULL;
205 }
206
207 page = vm_normal_page(vma, address, pte);
208 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
209 /*
210 * Only return device mapping pages in the FOLL_GET case since
211 * they are only valid while holding the pgmap reference.
212 */
213 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
214 if (pgmap)
215 page = pte_page(pte);
216 else
217 goto no_page;
218 } else if (unlikely(!page)) {
219 if (flags & FOLL_DUMP) {
220 /* Avoid special (like zero) pages in core dumps */
221 page = ERR_PTR(-EFAULT);
222 goto out;
223 }
224
225 if (is_zero_pfn(pte_pfn(pte))) {
226 page = pte_page(pte);
227 } else {
228 int ret;
229
230 ret = follow_pfn_pte(vma, address, ptep, flags);
231 page = ERR_PTR(ret);
232 goto out;
233 }
234 }
235
236 if (__need_migrate_cma_page(page, vma, address, flags)) {
237 if (__isolate_cma_pinpage(page)) {
238 pr_warn("%s: Failed to migrate a cma page\n", __func__);
239 pr_warn("because of racing with compaction.\n");
240 WARN(1, "Please try again get_user_pages()\n");
241 page = ERR_PTR(-EBUSY);
242 goto out;
243 }
244 pte_unmap_unlock(ptep, ptl);
245 if (__migrate_cma_pinpage(page, vma)) {
246 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
247 } else {
248 struct page *old_page = page;
249
250 migration_entry_wait(mm, pmd, address);
251 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
252 update_mmu_cache(vma, address, ptep);
253 pte = *ptep;
254 set_pte_at_notify(mm, address, ptep, pte);
255 page = vm_normal_page(vma, address, pte);
256 BUG_ON(!page);
257
258 pr_debug("cma: cma page %p[%#lx] migrated to new "
259 "page %p[%#lx]\n", old_page,
260 page_to_pfn(old_page),
261 page, page_to_pfn(page));
262 }
263 }
264
265 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
266 int ret;
267 get_page(page);
268 pte_unmap_unlock(ptep, ptl);
269 lock_page(page);
270 ret = split_huge_page(page);
271 unlock_page(page);
272 put_page(page);
273 if (ret)
274 return ERR_PTR(ret);
275 goto retry;
276 }
277
278 if (flags & FOLL_GET) {
279 get_page(page);
280
281 /* drop the pgmap reference now that we hold the page */
282 if (pgmap) {
283 put_dev_pagemap(pgmap);
284 pgmap = NULL;
285 }
286 }
287 if (flags & FOLL_TOUCH) {
288 if ((flags & FOLL_WRITE) &&
289 !pte_dirty(pte) && !PageDirty(page))
290 set_page_dirty(page);
291 /*
292 * pte_mkyoung() would be more correct here, but atomic care
293 * is needed to avoid losing the dirty bit: it is easier to use
294 * mark_page_accessed().
295 */
296 mark_page_accessed(page);
297 }
298 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
299 /* Do not mlock pte-mapped THP */
300 if (PageTransCompound(page))
301 goto out;
302
303 /*
304 * The preliminary mapping check is mainly to avoid the
305 * pointless overhead of lock_page on the ZERO_PAGE
306 * which might bounce very badly if there is contention.
307 *
308 * If the page is already locked, we don't need to
309 * handle it now - vmscan will handle it later if and
310 * when it attempts to reclaim the page.
311 */
312 if (page->mapping && trylock_page(page)) {
313 lru_add_drain(); /* push cached pages to LRU */
314 /*
315 * Because we lock page here, and migration is
316 * blocked by the pte's page reference, and we
317 * know the page is still mapped, we don't even
318 * need to check for file-cache page truncation.
319 */
320 mlock_vma_page(page);
321 unlock_page(page);
322 }
323 }
324 out:
325 pte_unmap_unlock(ptep, ptl);
326 return page;
327 no_page:
328 pte_unmap_unlock(ptep, ptl);
329 if (!pte_none(pte))
330 return NULL;
331 return no_page_table(vma, flags);
332 }
333
334 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
335 unsigned long address, pud_t *pudp,
336 unsigned int flags, unsigned int *page_mask)
337 {
338 pmd_t *pmd;
339 spinlock_t *ptl;
340 struct page *page;
341 struct mm_struct *mm = vma->vm_mm;
342
343 pmd = pmd_offset(pudp, address);
344 if (pmd_none(*pmd))
345 return no_page_table(vma, flags);
346 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
347 page = follow_huge_pmd(mm, address, pmd, flags);
348 if (page)
349 return page;
350 return no_page_table(vma, flags);
351 }
352 if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
353 page = follow_huge_pd(vma, address,
354 __hugepd(pmd_val(*pmd)), flags,
355 PMD_SHIFT);
356 if (page)
357 return page;
358 return no_page_table(vma, flags);
359 }
360 retry:
361 if (!pmd_present(*pmd)) {
362 if (likely(!(flags & FOLL_MIGRATION)))
363 return no_page_table(vma, flags);
364 VM_BUG_ON(thp_migration_supported() &&
365 !is_pmd_migration_entry(*pmd));
366 if (is_pmd_migration_entry(*pmd))
367 pmd_migration_entry_wait(mm, pmd);
368 goto retry;
369 }
370 if (pmd_devmap(*pmd)) {
371 ptl = pmd_lock(mm, pmd);
372 page = follow_devmap_pmd(vma, address, pmd, flags);
373 spin_unlock(ptl);
374 if (page)
375 return page;
376 }
377 if (likely(!pmd_trans_huge(*pmd)))
378 return follow_page_pte(vma, address, pmd, flags);
379
380 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
381 return no_page_table(vma, flags);
382
383 retry_locked:
384 ptl = pmd_lock(mm, pmd);
385 if (unlikely(!pmd_present(*pmd))) {
386 spin_unlock(ptl);
387 if (likely(!(flags & FOLL_MIGRATION)))
388 return no_page_table(vma, flags);
389 pmd_migration_entry_wait(mm, pmd);
390 goto retry_locked;
391 }
392 if (unlikely(!pmd_trans_huge(*pmd))) {
393 spin_unlock(ptl);
394 return follow_page_pte(vma, address, pmd, flags);
395 }
396 if (flags & FOLL_SPLIT) {
397 int ret;
398 page = pmd_page(*pmd);
399 if (is_huge_zero_page(page)) {
400 spin_unlock(ptl);
401 ret = 0;
402 split_huge_pmd(vma, pmd, address);
403 if (pmd_trans_unstable(pmd))
404 ret = -EBUSY;
405 } else {
406 get_page(page);
407 spin_unlock(ptl);
408 lock_page(page);
409 ret = split_huge_page(page);
410 unlock_page(page);
411 put_page(page);
412 if (pmd_none(*pmd))
413 return no_page_table(vma, flags);
414 }
415
416 return ret ? ERR_PTR(ret) :
417 follow_page_pte(vma, address, pmd, flags);
418 }
419 page = follow_trans_huge_pmd(vma, address, pmd, flags);
420 spin_unlock(ptl);
421 *page_mask = HPAGE_PMD_NR - 1;
422 return page;
423 }
424
425
426 static struct page *follow_pud_mask(struct vm_area_struct *vma,
427 unsigned long address, p4d_t *p4dp,
428 unsigned int flags, unsigned int *page_mask)
429 {
430 pud_t *pud;
431 spinlock_t *ptl;
432 struct page *page;
433 struct mm_struct *mm = vma->vm_mm;
434
435 pud = pud_offset(p4dp, address);
436 if (pud_none(*pud))
437 return no_page_table(vma, flags);
438 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
439 page = follow_huge_pud(mm, address, pud, flags);
440 if (page)
441 return page;
442 return no_page_table(vma, flags);
443 }
444 if (is_hugepd(__hugepd(pud_val(*pud)))) {
445 page = follow_huge_pd(vma, address,
446 __hugepd(pud_val(*pud)), flags,
447 PUD_SHIFT);
448 if (page)
449 return page;
450 return no_page_table(vma, flags);
451 }
452 if (pud_devmap(*pud)) {
453 ptl = pud_lock(mm, pud);
454 page = follow_devmap_pud(vma, address, pud, flags);
455 spin_unlock(ptl);
456 if (page)
457 return page;
458 }
459 if (unlikely(pud_bad(*pud)))
460 return no_page_table(vma, flags);
461
462 return follow_pmd_mask(vma, address, pud, flags, page_mask);
463 }
464
465
466 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
467 unsigned long address, pgd_t *pgdp,
468 unsigned int flags, unsigned int *page_mask)
469 {
470 p4d_t *p4d;
471 struct page *page;
472
473 p4d = p4d_offset(pgdp, address);
474 if (p4d_none(*p4d))
475 return no_page_table(vma, flags);
476 BUILD_BUG_ON(p4d_huge(*p4d));
477 if (unlikely(p4d_bad(*p4d)))
478 return no_page_table(vma, flags);
479
480 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
481 page = follow_huge_pd(vma, address,
482 __hugepd(p4d_val(*p4d)), flags,
483 P4D_SHIFT);
484 if (page)
485 return page;
486 return no_page_table(vma, flags);
487 }
488 return follow_pud_mask(vma, address, p4d, flags, page_mask);
489 }
490
491 /**
492 * follow_page_mask - look up a page descriptor from a user-virtual address
493 * @vma: vm_area_struct mapping @address
494 * @address: virtual address to look up
495 * @flags: flags modifying lookup behaviour
496 * @page_mask: on output, *page_mask is set according to the size of the page
497 *
498 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
499 *
500 * Returns the mapped (struct page *), %NULL if no mapping exists, or
501 * an error pointer if there is a mapping to something not represented
502 * by a page descriptor (see also vm_normal_page()).
503 */
504 struct page *follow_page_mask(struct vm_area_struct *vma,
505 unsigned long address, unsigned int flags,
506 unsigned int *page_mask)
507 {
508 pgd_t *pgd;
509 struct page *page;
510 struct mm_struct *mm = vma->vm_mm;
511
512 *page_mask = 0;
513
514 /* make this handle hugepd */
515 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
516 if (!IS_ERR(page)) {
517 BUG_ON(flags & FOLL_GET);
518 return page;
519 }
520
521 pgd = pgd_offset(mm, address);
522
523 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
524 return no_page_table(vma, flags);
525
526 if (pgd_huge(*pgd)) {
527 page = follow_huge_pgd(mm, address, pgd, flags);
528 if (page)
529 return page;
530 return no_page_table(vma, flags);
531 }
532 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
533 page = follow_huge_pd(vma, address,
534 __hugepd(pgd_val(*pgd)), flags,
535 PGDIR_SHIFT);
536 if (page)
537 return page;
538 return no_page_table(vma, flags);
539 }
540
541 return follow_p4d_mask(vma, address, pgd, flags, page_mask);
542 }
543
544 static int get_gate_page(struct mm_struct *mm, unsigned long address,
545 unsigned int gup_flags, struct vm_area_struct **vma,
546 struct page **page)
547 {
548 pgd_t *pgd;
549 p4d_t *p4d;
550 pud_t *pud;
551 pmd_t *pmd;
552 pte_t *pte;
553 int ret = -EFAULT;
554
555 /* user gate pages are read-only */
556 if (gup_flags & FOLL_WRITE)
557 return -EFAULT;
558 if (address > TASK_SIZE)
559 pgd = pgd_offset_k(address);
560 else
561 pgd = pgd_offset_gate(mm, address);
562 BUG_ON(pgd_none(*pgd));
563 p4d = p4d_offset(pgd, address);
564 BUG_ON(p4d_none(*p4d));
565 pud = pud_offset(p4d, address);
566 BUG_ON(pud_none(*pud));
567 pmd = pmd_offset(pud, address);
568 if (!pmd_present(*pmd))
569 return -EFAULT;
570 VM_BUG_ON(pmd_trans_huge(*pmd));
571 pte = pte_offset_map(pmd, address);
572 if (pte_none(*pte))
573 goto unmap;
574 *vma = get_gate_vma(mm);
575 if (!page)
576 goto out;
577 *page = vm_normal_page(*vma, address, *pte);
578 if (!*page) {
579 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
580 goto unmap;
581 *page = pte_page(*pte);
582
583 /*
584 * This should never happen (a device public page in the gate
585 * area).
586 */
587 if (is_device_public_page(*page))
588 goto unmap;
589 }
590 get_page(*page);
591 out:
592 ret = 0;
593 unmap:
594 pte_unmap(pte);
595 return ret;
596 }
597
598 /*
599 * mmap_sem must be held on entry. If @nonblocking != NULL and
600 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
601 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
602 */
603 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
604 unsigned long address, unsigned int *flags, int *nonblocking)
605 {
606 unsigned int fault_flags = 0;
607 int ret;
608
609 /* mlock all present pages, but do not fault in new pages */
610 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
611 return -ENOENT;
612 if (*flags & FOLL_WRITE)
613 fault_flags |= FAULT_FLAG_WRITE;
614 if (*flags & FOLL_REMOTE)
615 fault_flags |= FAULT_FLAG_REMOTE;
616 if (nonblocking)
617 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
618 if (*flags & FOLL_NOWAIT)
619 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
620 if (*flags & FOLL_TRIED) {
621 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
622 fault_flags |= FAULT_FLAG_TRIED;
623 }
624
625 ret = handle_mm_fault(vma, address, fault_flags);
626 if (ret & VM_FAULT_ERROR) {
627 int err = vm_fault_to_errno(ret, *flags);
628
629 if (err)
630 return err;
631 BUG();
632 }
633
634 if (tsk) {
635 if (ret & VM_FAULT_MAJOR)
636 tsk->maj_flt++;
637 else
638 tsk->min_flt++;
639 }
640
641 if (ret & VM_FAULT_RETRY) {
642 if (nonblocking)
643 *nonblocking = 0;
644 return -EBUSY;
645 }
646
647 /*
648 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
649 * necessary, even if maybe_mkwrite decided not to set pte_write. We
650 * can thus safely do subsequent page lookups as if they were reads.
651 * But only do so when looping for pte_write is futile: in some cases
652 * userspace may also be wanting to write to the gotten user page,
653 * which a read fault here might prevent (a readonly page might get
654 * reCOWed by userspace write).
655 */
656 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
657 *flags |= FOLL_COW;
658 return 0;
659 }
660
661 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
662 {
663 vm_flags_t vm_flags = vma->vm_flags;
664 int write = (gup_flags & FOLL_WRITE);
665 int foreign = (gup_flags & FOLL_REMOTE);
666
667 if (vm_flags & (VM_IO | VM_PFNMAP))
668 return -EFAULT;
669
670 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
671 return -EFAULT;
672
673 if (write) {
674 if (!(vm_flags & VM_WRITE)) {
675 if (!(gup_flags & FOLL_FORCE))
676 return -EFAULT;
677 /*
678 * We used to let the write,force case do COW in a
679 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
680 * set a breakpoint in a read-only mapping of an
681 * executable, without corrupting the file (yet only
682 * when that file had been opened for writing!).
683 * Anon pages in shared mappings are surprising: now
684 * just reject it.
685 */
686 if (!is_cow_mapping(vm_flags))
687 return -EFAULT;
688 }
689 } else if (!(vm_flags & VM_READ)) {
690 if (!(gup_flags & FOLL_FORCE))
691 return -EFAULT;
692 /*
693 * Is there actually any vma we can reach here which does not
694 * have VM_MAYREAD set?
695 */
696 if (!(vm_flags & VM_MAYREAD))
697 return -EFAULT;
698 }
699 /*
700 * gups are always data accesses, not instruction
701 * fetches, so execute=false here
702 */
703 if (!arch_vma_access_permitted(vma, write, false, foreign))
704 return -EFAULT;
705 return 0;
706 }
707
708 /**
709 * __get_user_pages() - pin user pages in memory
710 * @tsk: task_struct of target task
711 * @mm: mm_struct of target mm
712 * @start: starting user address
713 * @nr_pages: number of pages from start to pin
714 * @gup_flags: flags modifying pin behaviour
715 * @pages: array that receives pointers to the pages pinned.
716 * Should be at least nr_pages long. Or NULL, if caller
717 * only intends to ensure the pages are faulted in.
718 * @vmas: array of pointers to vmas corresponding to each page.
719 * Or NULL if the caller does not require them.
720 * @nonblocking: whether waiting for disk IO or mmap_sem contention
721 *
722 * Returns number of pages pinned. This may be fewer than the number
723 * requested. If nr_pages is 0 or negative, returns 0. If no pages
724 * were pinned, returns -errno. Each page returned must be released
725 * with a put_page() call when it is finished with. vmas will only
726 * remain valid while mmap_sem is held.
727 *
728 * Must be called with mmap_sem held. It may be released. See below.
729 *
730 * __get_user_pages walks a process's page tables and takes a reference to
731 * each struct page that each user address corresponds to at a given
732 * instant. That is, it takes the page that would be accessed if a user
733 * thread accesses the given user virtual address at that instant.
734 *
735 * This does not guarantee that the page exists in the user mappings when
736 * __get_user_pages returns, and there may even be a completely different
737 * page there in some cases (eg. if mmapped pagecache has been invalidated
738 * and subsequently re faulted). However it does guarantee that the page
739 * won't be freed completely. And mostly callers simply care that the page
740 * contains data that was valid *at some point in time*. Typically, an IO
741 * or similar operation cannot guarantee anything stronger anyway because
742 * locks can't be held over the syscall boundary.
743 *
744 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
745 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
746 * appropriate) must be called after the page is finished with, and
747 * before put_page is called.
748 *
749 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
750 * or mmap_sem contention, and if waiting is needed to pin all pages,
751 * *@nonblocking will be set to 0. Further, if @gup_flags does not
752 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
753 * this case.
754 *
755 * A caller using such a combination of @nonblocking and @gup_flags
756 * must therefore hold the mmap_sem for reading only, and recognize
757 * when it's been released. Otherwise, it must be held for either
758 * reading or writing and will not be released.
759 *
760 * In most cases, get_user_pages or get_user_pages_fast should be used
761 * instead of __get_user_pages. __get_user_pages should be used only if
762 * you need some special @gup_flags.
763 */
764 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
765 unsigned long start, unsigned long nr_pages,
766 unsigned int gup_flags, struct page **pages,
767 struct vm_area_struct **vmas, int *nonblocking)
768 {
769 long i = 0;
770 unsigned int page_mask;
771 struct vm_area_struct *vma = NULL;
772
773 if (!nr_pages)
774 return 0;
775
776 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
777
778 /*
779 * If FOLL_FORCE is set then do not force a full fault as the hinting
780 * fault information is unrelated to the reference behaviour of a task
781 * using the address space
782 */
783 if (!(gup_flags & FOLL_FORCE))
784 gup_flags |= FOLL_NUMA;
785
786 if ((gup_flags & FOLL_CMA) != 0)
787 migrate_prep();
788
789 do {
790 struct page *page;
791 unsigned int foll_flags = gup_flags;
792 unsigned int page_increm;
793
794 /* first iteration or cross vma bound */
795 if (!vma || start >= vma->vm_end) {
796 vma = find_extend_vma(mm, start);
797 if (!vma && in_gate_area(mm, start)) {
798 int ret;
799 ret = get_gate_page(mm, start & PAGE_MASK,
800 gup_flags, &vma,
801 pages ? &pages[i] : NULL);
802 if (ret)
803 return i ? : ret;
804 page_mask = 0;
805 goto next_page;
806 }
807
808 if (!vma || check_vma_flags(vma, gup_flags))
809 return i ? : -EFAULT;
810 if (is_vm_hugetlb_page(vma)) {
811 i = follow_hugetlb_page(mm, vma, pages, vmas,
812 &start, &nr_pages, i,
813 gup_flags, nonblocking);
814 continue;
815 }
816 }
817 retry:
818 /*
819 * If we have a pending SIGKILL, don't keep faulting pages and
820 * potentially allocating memory.
821 */
822 if (unlikely(fatal_signal_pending(current)))
823 return i ? i : -ERESTARTSYS;
824 cond_resched();
825 page = follow_page_mask(vma, start, foll_flags, &page_mask);
826 if (!page) {
827 int ret;
828 ret = faultin_page(tsk, vma, start, &foll_flags,
829 nonblocking);
830 switch (ret) {
831 case 0:
832 goto retry;
833 case -EFAULT:
834 case -ENOMEM:
835 case -EHWPOISON:
836 return i ? i : ret;
837 case -EBUSY:
838 return i;
839 case -ENOENT:
840 goto next_page;
841 }
842 BUG();
843 } else if (PTR_ERR(page) == -EEXIST) {
844 /*
845 * Proper page table entry exists, but no corresponding
846 * struct page.
847 */
848 goto next_page;
849 } else if (IS_ERR(page)) {
850 return i ? i : PTR_ERR(page);
851 }
852 if (pages) {
853 pages[i] = page;
854 flush_anon_page(vma, page, start);
855 flush_dcache_page(page);
856 page_mask = 0;
857 }
858 next_page:
859 if (vmas) {
860 vmas[i] = vma;
861 page_mask = 0;
862 }
863 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
864 if (page_increm > nr_pages)
865 page_increm = nr_pages;
866 i += page_increm;
867 start += page_increm * PAGE_SIZE;
868 nr_pages -= page_increm;
869 } while (nr_pages);
870 return i;
871 }
872
873 static bool vma_permits_fault(struct vm_area_struct *vma,
874 unsigned int fault_flags)
875 {
876 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
877 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
878 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
879
880 if (!(vm_flags & vma->vm_flags))
881 return false;
882
883 /*
884 * The architecture might have a hardware protection
885 * mechanism other than read/write that can deny access.
886 *
887 * gup always represents data access, not instruction
888 * fetches, so execute=false here:
889 */
890 if (!arch_vma_access_permitted(vma, write, false, foreign))
891 return false;
892
893 return true;
894 }
895
896 /*
897 * fixup_user_fault() - manually resolve a user page fault
898 * @tsk: the task_struct to use for page fault accounting, or
899 * NULL if faults are not to be recorded.
900 * @mm: mm_struct of target mm
901 * @address: user address
902 * @fault_flags:flags to pass down to handle_mm_fault()
903 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
904 * does not allow retry
905 *
906 * This is meant to be called in the specific scenario where for locking reasons
907 * we try to access user memory in atomic context (within a pagefault_disable()
908 * section), this returns -EFAULT, and we want to resolve the user fault before
909 * trying again.
910 *
911 * Typically this is meant to be used by the futex code.
912 *
913 * The main difference with get_user_pages() is that this function will
914 * unconditionally call handle_mm_fault() which will in turn perform all the
915 * necessary SW fixup of the dirty and young bits in the PTE, while
916 * get_user_pages() only guarantees to update these in the struct page.
917 *
918 * This is important for some architectures where those bits also gate the
919 * access permission to the page because they are maintained in software. On
920 * such architectures, gup() will not be enough to make a subsequent access
921 * succeed.
922 *
923 * This function will not return with an unlocked mmap_sem. So it has not the
924 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
925 */
926 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
927 unsigned long address, unsigned int fault_flags,
928 bool *unlocked)
929 {
930 struct vm_area_struct *vma;
931 int ret, major = 0;
932
933 if (unlocked)
934 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
935
936 retry:
937 vma = find_extend_vma(mm, address);
938 if (!vma || address < vma->vm_start)
939 return -EFAULT;
940
941 if (!vma_permits_fault(vma, fault_flags))
942 return -EFAULT;
943
944 ret = handle_mm_fault(vma, address, fault_flags);
945 major |= ret & VM_FAULT_MAJOR;
946 if (ret & VM_FAULT_ERROR) {
947 int err = vm_fault_to_errno(ret, 0);
948
949 if (err)
950 return err;
951 BUG();
952 }
953
954 if (ret & VM_FAULT_RETRY) {
955 down_read(&mm->mmap_sem);
956 if (!(fault_flags & FAULT_FLAG_TRIED)) {
957 *unlocked = true;
958 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
959 fault_flags |= FAULT_FLAG_TRIED;
960 goto retry;
961 }
962 }
963
964 if (tsk) {
965 if (major)
966 tsk->maj_flt++;
967 else
968 tsk->min_flt++;
969 }
970 return 0;
971 }
972 EXPORT_SYMBOL_GPL(fixup_user_fault);
973
974 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
975 struct mm_struct *mm,
976 unsigned long start,
977 unsigned long nr_pages,
978 struct page **pages,
979 struct vm_area_struct **vmas,
980 int *locked, bool notify_drop,
981 unsigned int flags)
982 {
983 long ret, pages_done;
984 bool lock_dropped;
985
986 if (locked) {
987 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
988 BUG_ON(vmas);
989 /* check caller initialized locked */
990 BUG_ON(*locked != 1);
991 }
992
993 if (pages)
994 flags |= FOLL_GET;
995
996 pages_done = 0;
997 lock_dropped = false;
998 for (;;) {
999 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1000 vmas, locked);
1001 if (!locked)
1002 /* VM_FAULT_RETRY couldn't trigger, bypass */
1003 return ret;
1004
1005 /* VM_FAULT_RETRY cannot return errors */
1006 if (!*locked) {
1007 BUG_ON(ret < 0);
1008 BUG_ON(ret >= nr_pages);
1009 }
1010
1011 if (!pages)
1012 /* If it's a prefault don't insist harder */
1013 return ret;
1014
1015 if (ret > 0) {
1016 nr_pages -= ret;
1017 pages_done += ret;
1018 if (!nr_pages)
1019 break;
1020 }
1021 if (*locked) {
1022 /* VM_FAULT_RETRY didn't trigger */
1023 if (!pages_done)
1024 pages_done = ret;
1025 break;
1026 }
1027 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
1028 pages += ret;
1029 start += ret << PAGE_SHIFT;
1030
1031 /*
1032 * Repeat on the address that fired VM_FAULT_RETRY
1033 * without FAULT_FLAG_ALLOW_RETRY but with
1034 * FAULT_FLAG_TRIED.
1035 */
1036 *locked = 1;
1037 lock_dropped = true;
1038 down_read(&mm->mmap_sem);
1039 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1040 pages, NULL, NULL);
1041 if (ret != 1) {
1042 BUG_ON(ret > 1);
1043 if (!pages_done)
1044 pages_done = ret;
1045 break;
1046 }
1047 nr_pages--;
1048 pages_done++;
1049 if (!nr_pages)
1050 break;
1051 pages++;
1052 start += PAGE_SIZE;
1053 }
1054 if (notify_drop && lock_dropped && *locked) {
1055 /*
1056 * We must let the caller know we temporarily dropped the lock
1057 * and so the critical section protected by it was lost.
1058 */
1059 up_read(&mm->mmap_sem);
1060 *locked = 0;
1061 }
1062 return pages_done;
1063 }
1064
1065 /*
1066 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1067 * paths better by using either get_user_pages_locked() or
1068 * get_user_pages_unlocked().
1069 *
1070 * get_user_pages_locked() is suitable to replace the form:
1071 *
1072 * down_read(&mm->mmap_sem);
1073 * do_something()
1074 * get_user_pages(tsk, mm, ..., pages, NULL);
1075 * up_read(&mm->mmap_sem);
1076 *
1077 * to:
1078 *
1079 * int locked = 1;
1080 * down_read(&mm->mmap_sem);
1081 * do_something()
1082 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1083 * if (locked)
1084 * up_read(&mm->mmap_sem);
1085 */
1086 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1087 unsigned int gup_flags, struct page **pages,
1088 int *locked)
1089 {
1090 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1091 pages, NULL, locked, true,
1092 gup_flags | FOLL_TOUCH);
1093 }
1094 EXPORT_SYMBOL(get_user_pages_locked);
1095
1096 /*
1097 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
1098 * tsk, mm to be specified.
1099 *
1100 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
1101 * caller if required (just like with __get_user_pages). "FOLL_GET"
1102 * is set implicitly if "pages" is non-NULL.
1103 */
1104 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
1105 struct mm_struct *mm, unsigned long start,
1106 unsigned long nr_pages, struct page **pages,
1107 unsigned int gup_flags)
1108 {
1109 long ret;
1110 int locked = 1;
1111
1112 down_read(&mm->mmap_sem);
1113 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
1114 &locked, false, gup_flags);
1115 if (locked)
1116 up_read(&mm->mmap_sem);
1117 return ret;
1118 }
1119
1120 /*
1121 * get_user_pages_unlocked() is suitable to replace the form:
1122 *
1123 * down_read(&mm->mmap_sem);
1124 * get_user_pages(tsk, mm, ..., pages, NULL);
1125 * up_read(&mm->mmap_sem);
1126 *
1127 * with:
1128 *
1129 * get_user_pages_unlocked(tsk, mm, ..., pages);
1130 *
1131 * It is functionally equivalent to get_user_pages_fast so
1132 * get_user_pages_fast should be used instead if specific gup_flags
1133 * (e.g. FOLL_FORCE) are not required.
1134 */
1135 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1136 struct page **pages, unsigned int gup_flags)
1137 {
1138 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
1139 pages, gup_flags | FOLL_TOUCH);
1140 }
1141 EXPORT_SYMBOL(get_user_pages_unlocked);
1142
1143 /*
1144 * get_user_pages_remote() - pin user pages in memory
1145 * @tsk: the task_struct to use for page fault accounting, or
1146 * NULL if faults are not to be recorded.
1147 * @mm: mm_struct of target mm
1148 * @start: starting user address
1149 * @nr_pages: number of pages from start to pin
1150 * @gup_flags: flags modifying lookup behaviour
1151 * @pages: array that receives pointers to the pages pinned.
1152 * Should be at least nr_pages long. Or NULL, if caller
1153 * only intends to ensure the pages are faulted in.
1154 * @vmas: array of pointers to vmas corresponding to each page.
1155 * Or NULL if the caller does not require them.
1156 * @locked: pointer to lock flag indicating whether lock is held and
1157 * subsequently whether VM_FAULT_RETRY functionality can be
1158 * utilised. Lock must initially be held.
1159 *
1160 * Returns number of pages pinned. This may be fewer than the number
1161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1162 * were pinned, returns -errno. Each page returned must be released
1163 * with a put_page() call when it is finished with. vmas will only
1164 * remain valid while mmap_sem is held.
1165 *
1166 * Must be called with mmap_sem held for read or write.
1167 *
1168 * get_user_pages walks a process's page tables and takes a reference to
1169 * each struct page that each user address corresponds to at a given
1170 * instant. That is, it takes the page that would be accessed if a user
1171 * thread accesses the given user virtual address at that instant.
1172 *
1173 * This does not guarantee that the page exists in the user mappings when
1174 * get_user_pages returns, and there may even be a completely different
1175 * page there in some cases (eg. if mmapped pagecache has been invalidated
1176 * and subsequently re faulted). However it does guarantee that the page
1177 * won't be freed completely. And mostly callers simply care that the page
1178 * contains data that was valid *at some point in time*. Typically, an IO
1179 * or similar operation cannot guarantee anything stronger anyway because
1180 * locks can't be held over the syscall boundary.
1181 *
1182 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1183 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1184 * be called after the page is finished with, and before put_page is called.
1185 *
1186 * get_user_pages is typically used for fewer-copy IO operations, to get a
1187 * handle on the memory by some means other than accesses via the user virtual
1188 * addresses. The pages may be submitted for DMA to devices or accessed via
1189 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1190 * use the correct cache flushing APIs.
1191 *
1192 * See also get_user_pages_fast, for performance critical applications.
1193 *
1194 * get_user_pages should be phased out in favor of
1195 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1196 * should use get_user_pages because it cannot pass
1197 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1198 */
1199 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1200 unsigned long start, unsigned long nr_pages,
1201 unsigned int gup_flags, struct page **pages,
1202 struct vm_area_struct **vmas, int *locked)
1203 {
1204 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1205 locked, true,
1206 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1207 }
1208 EXPORT_SYMBOL(get_user_pages_remote);
1209
1210 /*
1211 * This is the same as get_user_pages_remote(), just with a
1212 * less-flexible calling convention where we assume that the task
1213 * and mm being operated on are the current task's and don't allow
1214 * passing of a locked parameter. We also obviously don't pass
1215 * FOLL_REMOTE in here.
1216 */
1217 long get_user_pages(unsigned long start, unsigned long nr_pages,
1218 unsigned int gup_flags, struct page **pages,
1219 struct vm_area_struct **vmas)
1220 {
1221 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1222 pages, vmas, NULL, false,
1223 gup_flags | FOLL_TOUCH);
1224 }
1225 EXPORT_SYMBOL(get_user_pages);
1226
1227 #ifdef CONFIG_FS_DAX
1228 /*
1229 * This is the same as get_user_pages() in that it assumes we are
1230 * operating on the current task's mm, but it goes further to validate
1231 * that the vmas associated with the address range are suitable for
1232 * longterm elevated page reference counts. For example, filesystem-dax
1233 * mappings are subject to the lifetime enforced by the filesystem and
1234 * we need guarantees that longterm users like RDMA and V4L2 only
1235 * establish mappings that have a kernel enforced revocation mechanism.
1236 *
1237 * "longterm" == userspace controlled elevated page count lifetime.
1238 * Contrast this to iov_iter_get_pages() usages which are transient.
1239 */
1240 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1241 unsigned int gup_flags, struct page **pages,
1242 struct vm_area_struct **vmas_arg)
1243 {
1244 struct vm_area_struct **vmas = vmas_arg;
1245 struct vm_area_struct *vma_prev = NULL;
1246 long rc, i;
1247
1248 if (!pages)
1249 return -EINVAL;
1250
1251 if (!vmas) {
1252 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1253 GFP_KERNEL);
1254 if (!vmas)
1255 return -ENOMEM;
1256 }
1257
1258 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1259
1260 for (i = 0; i < rc; i++) {
1261 struct vm_area_struct *vma = vmas[i];
1262
1263 if (vma == vma_prev)
1264 continue;
1265
1266 vma_prev = vma;
1267
1268 if (vma_is_fsdax(vma))
1269 break;
1270 }
1271
1272 /*
1273 * Either get_user_pages() failed, or the vma validation
1274 * succeeded, in either case we don't need to put_page() before
1275 * returning.
1276 */
1277 if (i >= rc)
1278 goto out;
1279
1280 for (i = 0; i < rc; i++)
1281 put_page(pages[i]);
1282 rc = -EOPNOTSUPP;
1283 out:
1284 if (vmas != vmas_arg)
1285 kfree(vmas);
1286 return rc;
1287 }
1288 EXPORT_SYMBOL(get_user_pages_longterm);
1289 #endif /* CONFIG_FS_DAX */
1290
1291 /**
1292 * populate_vma_page_range() - populate a range of pages in the vma.
1293 * @vma: target vma
1294 * @start: start address
1295 * @end: end address
1296 * @nonblocking:
1297 *
1298 * This takes care of mlocking the pages too if VM_LOCKED is set.
1299 *
1300 * return 0 on success, negative error code on error.
1301 *
1302 * vma->vm_mm->mmap_sem must be held.
1303 *
1304 * If @nonblocking is NULL, it may be held for read or write and will
1305 * be unperturbed.
1306 *
1307 * If @nonblocking is non-NULL, it must held for read only and may be
1308 * released. If it's released, *@nonblocking will be set to 0.
1309 */
1310 long populate_vma_page_range(struct vm_area_struct *vma,
1311 unsigned long start, unsigned long end, int *nonblocking)
1312 {
1313 struct mm_struct *mm = vma->vm_mm;
1314 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1315 int gup_flags;
1316
1317 VM_BUG_ON(start & ~PAGE_MASK);
1318 VM_BUG_ON(end & ~PAGE_MASK);
1319 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1320 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1321 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1322
1323 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1324 if (vma->vm_flags & VM_LOCKONFAULT)
1325 gup_flags &= ~FOLL_POPULATE;
1326 /*
1327 * We want to touch writable mappings with a write fault in order
1328 * to break COW, except for shared mappings because these don't COW
1329 * and we would not want to dirty them for nothing.
1330 */
1331 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1332 gup_flags |= FOLL_WRITE;
1333
1334 /*
1335 * We want mlock to succeed for regions that have any permissions
1336 * other than PROT_NONE.
1337 */
1338 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1339 gup_flags |= FOLL_FORCE;
1340
1341 /*
1342 * We made sure addr is within a VMA, so the following will
1343 * not result in a stack expansion that recurses back here.
1344 */
1345 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1346 NULL, NULL, nonblocking);
1347 }
1348
1349 /*
1350 * __mm_populate - populate and/or mlock pages within a range of address space.
1351 *
1352 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1353 * flags. VMAs must be already marked with the desired vm_flags, and
1354 * mmap_sem must not be held.
1355 */
1356 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1357 {
1358 struct mm_struct *mm = current->mm;
1359 unsigned long end, nstart, nend;
1360 struct vm_area_struct *vma = NULL;
1361 int locked = 0;
1362 long ret = 0;
1363
1364 end = start + len;
1365
1366 for (nstart = start; nstart < end; nstart = nend) {
1367 /*
1368 * We want to fault in pages for [nstart; end) address range.
1369 * Find first corresponding VMA.
1370 */
1371 if (!locked) {
1372 locked = 1;
1373 down_read(&mm->mmap_sem);
1374 vma = find_vma(mm, nstart);
1375 } else if (nstart >= vma->vm_end)
1376 vma = vma->vm_next;
1377 if (!vma || vma->vm_start >= end)
1378 break;
1379 /*
1380 * Set [nstart; nend) to intersection of desired address
1381 * range with the first VMA. Also, skip undesirable VMA types.
1382 */
1383 nend = min(end, vma->vm_end);
1384 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1385 continue;
1386 if (nstart < vma->vm_start)
1387 nstart = vma->vm_start;
1388 /*
1389 * Now fault in a range of pages. populate_vma_page_range()
1390 * double checks the vma flags, so that it won't mlock pages
1391 * if the vma was already munlocked.
1392 */
1393 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1394 if (ret < 0) {
1395 if (ignore_errors) {
1396 ret = 0;
1397 continue; /* continue at next VMA */
1398 }
1399 break;
1400 }
1401 nend = nstart + ret * PAGE_SIZE;
1402 ret = 0;
1403 }
1404 if (locked)
1405 up_read(&mm->mmap_sem);
1406 return ret; /* 0 or negative error code */
1407 }
1408
1409 /**
1410 * get_dump_page() - pin user page in memory while writing it to core dump
1411 * @addr: user address
1412 *
1413 * Returns struct page pointer of user page pinned for dump,
1414 * to be freed afterwards by put_page().
1415 *
1416 * Returns NULL on any kind of failure - a hole must then be inserted into
1417 * the corefile, to preserve alignment with its headers; and also returns
1418 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1419 * allowing a hole to be left in the corefile to save diskspace.
1420 *
1421 * Called without mmap_sem, but after all other threads have been killed.
1422 */
1423 #ifdef CONFIG_ELF_CORE
1424 struct page *get_dump_page(unsigned long addr)
1425 {
1426 struct vm_area_struct *vma;
1427 struct page *page;
1428
1429 if (__get_user_pages(current, current->mm, addr, 1,
1430 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1431 NULL) < 1)
1432 return NULL;
1433 flush_cache_page(vma, addr, page_to_pfn(page));
1434 return page;
1435 }
1436 #endif /* CONFIG_ELF_CORE */
1437
1438 /*
1439 * Generic Fast GUP
1440 *
1441 * get_user_pages_fast attempts to pin user pages by walking the page
1442 * tables directly and avoids taking locks. Thus the walker needs to be
1443 * protected from page table pages being freed from under it, and should
1444 * block any THP splits.
1445 *
1446 * One way to achieve this is to have the walker disable interrupts, and
1447 * rely on IPIs from the TLB flushing code blocking before the page table
1448 * pages are freed. This is unsuitable for architectures that do not need
1449 * to broadcast an IPI when invalidating TLBs.
1450 *
1451 * Another way to achieve this is to batch up page table containing pages
1452 * belonging to more than one mm_user, then rcu_sched a callback to free those
1453 * pages. Disabling interrupts will allow the fast_gup walker to both block
1454 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1455 * (which is a relatively rare event). The code below adopts this strategy.
1456 *
1457 * Before activating this code, please be aware that the following assumptions
1458 * are currently made:
1459 *
1460 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1461 * free pages containing page tables or TLB flushing requires IPI broadcast.
1462 *
1463 * *) ptes can be read atomically by the architecture.
1464 *
1465 * *) access_ok is sufficient to validate userspace address ranges.
1466 *
1467 * The last two assumptions can be relaxed by the addition of helper functions.
1468 *
1469 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1470 */
1471 #ifdef CONFIG_HAVE_GENERIC_GUP
1472
1473 #ifndef gup_get_pte
1474 /*
1475 * We assume that the PTE can be read atomically. If this is not the case for
1476 * your architecture, please provide the helper.
1477 */
1478 static inline pte_t gup_get_pte(pte_t *ptep)
1479 {
1480 return READ_ONCE(*ptep);
1481 }
1482 #endif
1483
1484 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1485 {
1486 while ((*nr) - nr_start) {
1487 struct page *page = pages[--(*nr)];
1488
1489 ClearPageReferenced(page);
1490 put_page(page);
1491 }
1492 }
1493
1494 #ifdef __HAVE_ARCH_PTE_SPECIAL
1495 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1496 int write, struct page **pages, int *nr)
1497 {
1498 struct dev_pagemap *pgmap = NULL;
1499 int nr_start = *nr, ret = 0;
1500 pte_t *ptep, *ptem;
1501
1502 ptem = ptep = pte_offset_map(&pmd, addr);
1503 do {
1504 pte_t pte = gup_get_pte(ptep);
1505 struct page *head, *page;
1506
1507 /*
1508 * Similar to the PMD case below, NUMA hinting must take slow
1509 * path using the pte_protnone check.
1510 */
1511 if (pte_protnone(pte))
1512 goto pte_unmap;
1513
1514 if (!pte_access_permitted(pte, write))
1515 goto pte_unmap;
1516
1517 if (pte_devmap(pte)) {
1518 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1519 if (unlikely(!pgmap)) {
1520 undo_dev_pagemap(nr, nr_start, pages);
1521 goto pte_unmap;
1522 }
1523 } else if (pte_special(pte))
1524 goto pte_unmap;
1525
1526 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1527 page = pte_page(pte);
1528 head = compound_head(page);
1529
1530 if (!page_cache_get_speculative(head))
1531 goto pte_unmap;
1532
1533 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1534 put_page(head);
1535 goto pte_unmap;
1536 }
1537
1538 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1539
1540 put_dev_pagemap(pgmap);
1541 SetPageReferenced(page);
1542 pages[*nr] = page;
1543 (*nr)++;
1544
1545 } while (ptep++, addr += PAGE_SIZE, addr != end);
1546
1547 ret = 1;
1548
1549 pte_unmap:
1550 pte_unmap(ptem);
1551 return ret;
1552 }
1553 #else
1554
1555 /*
1556 * If we can't determine whether or not a pte is special, then fail immediately
1557 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1558 * to be special.
1559 *
1560 * For a futex to be placed on a THP tail page, get_futex_key requires a
1561 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1562 * useful to have gup_huge_pmd even if we can't operate on ptes.
1563 */
1564 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1565 int write, struct page **pages, int *nr)
1566 {
1567 return 0;
1568 }
1569 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1570
1571 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1572 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1573 unsigned long end, struct page **pages, int *nr)
1574 {
1575 int nr_start = *nr;
1576 struct dev_pagemap *pgmap = NULL;
1577
1578 do {
1579 struct page *page = pfn_to_page(pfn);
1580
1581 pgmap = get_dev_pagemap(pfn, pgmap);
1582 if (unlikely(!pgmap)) {
1583 undo_dev_pagemap(nr, nr_start, pages);
1584 return 0;
1585 }
1586 SetPageReferenced(page);
1587 pages[*nr] = page;
1588 get_page(page);
1589 put_dev_pagemap(pgmap);
1590 (*nr)++;
1591 pfn++;
1592 } while (addr += PAGE_SIZE, addr != end);
1593 return 1;
1594 }
1595
1596 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1597 unsigned long end, struct page **pages, int *nr)
1598 {
1599 unsigned long fault_pfn;
1600 int nr_start = *nr;
1601
1602 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1603 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1604 return 0;
1605
1606 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1607 undo_dev_pagemap(nr, nr_start, pages);
1608 return 0;
1609 }
1610 return 1;
1611 }
1612
1613 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1614 unsigned long end, struct page **pages, int *nr)
1615 {
1616 unsigned long fault_pfn;
1617 int nr_start = *nr;
1618
1619 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1620 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1621 return 0;
1622
1623 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1624 undo_dev_pagemap(nr, nr_start, pages);
1625 return 0;
1626 }
1627 return 1;
1628 }
1629 #else
1630 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1631 unsigned long end, struct page **pages, int *nr)
1632 {
1633 BUILD_BUG();
1634 return 0;
1635 }
1636
1637 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1638 unsigned long end, struct page **pages, int *nr)
1639 {
1640 BUILD_BUG();
1641 return 0;
1642 }
1643 #endif
1644
1645 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1646 unsigned long end, int write, struct page **pages, int *nr)
1647 {
1648 struct page *head, *page;
1649 int refs;
1650
1651 if (!pmd_access_permitted(orig, write))
1652 return 0;
1653
1654 if (pmd_devmap(orig))
1655 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1656
1657 refs = 0;
1658 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1659 do {
1660 pages[*nr] = page;
1661 (*nr)++;
1662 page++;
1663 refs++;
1664 } while (addr += PAGE_SIZE, addr != end);
1665
1666 head = compound_head(pmd_page(orig));
1667 if (!page_cache_add_speculative(head, refs)) {
1668 *nr -= refs;
1669 return 0;
1670 }
1671
1672 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1673 *nr -= refs;
1674 while (refs--)
1675 put_page(head);
1676 return 0;
1677 }
1678
1679 SetPageReferenced(head);
1680 return 1;
1681 }
1682
1683 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1684 unsigned long end, int write, struct page **pages, int *nr)
1685 {
1686 struct page *head, *page;
1687 int refs;
1688
1689 if (!pud_access_permitted(orig, write))
1690 return 0;
1691
1692 if (pud_devmap(orig))
1693 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1694
1695 refs = 0;
1696 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1697 do {
1698 pages[*nr] = page;
1699 (*nr)++;
1700 page++;
1701 refs++;
1702 } while (addr += PAGE_SIZE, addr != end);
1703
1704 head = compound_head(pud_page(orig));
1705 if (!page_cache_add_speculative(head, refs)) {
1706 *nr -= refs;
1707 return 0;
1708 }
1709
1710 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1711 *nr -= refs;
1712 while (refs--)
1713 put_page(head);
1714 return 0;
1715 }
1716
1717 SetPageReferenced(head);
1718 return 1;
1719 }
1720
1721 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1722 unsigned long end, int write,
1723 struct page **pages, int *nr)
1724 {
1725 int refs;
1726 struct page *head, *page;
1727
1728 if (!pgd_access_permitted(orig, write))
1729 return 0;
1730
1731 BUILD_BUG_ON(pgd_devmap(orig));
1732 refs = 0;
1733 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1734 do {
1735 pages[*nr] = page;
1736 (*nr)++;
1737 page++;
1738 refs++;
1739 } while (addr += PAGE_SIZE, addr != end);
1740
1741 head = compound_head(pgd_page(orig));
1742 if (!page_cache_add_speculative(head, refs)) {
1743 *nr -= refs;
1744 return 0;
1745 }
1746
1747 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1748 *nr -= refs;
1749 while (refs--)
1750 put_page(head);
1751 return 0;
1752 }
1753
1754 SetPageReferenced(head);
1755 return 1;
1756 }
1757
1758 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1759 int write, struct page **pages, int *nr)
1760 {
1761 unsigned long next;
1762 pmd_t *pmdp;
1763
1764 pmdp = pmd_offset(&pud, addr);
1765 do {
1766 pmd_t pmd = READ_ONCE(*pmdp);
1767
1768 next = pmd_addr_end(addr, end);
1769 if (!pmd_present(pmd))
1770 return 0;
1771
1772 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
1773 pmd_devmap(pmd))) {
1774 /*
1775 * NUMA hinting faults need to be handled in the GUP
1776 * slowpath for accounting purposes and so that they
1777 * can be serialised against THP migration.
1778 */
1779 if (pmd_protnone(pmd))
1780 return 0;
1781
1782 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1783 pages, nr))
1784 return 0;
1785
1786 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1787 /*
1788 * architecture have different format for hugetlbfs
1789 * pmd format and THP pmd format
1790 */
1791 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1792 PMD_SHIFT, next, write, pages, nr))
1793 return 0;
1794 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1795 return 0;
1796 } while (pmdp++, addr = next, addr != end);
1797
1798 return 1;
1799 }
1800
1801 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1802 int write, struct page **pages, int *nr)
1803 {
1804 unsigned long next;
1805 pud_t *pudp;
1806
1807 pudp = pud_offset(&p4d, addr);
1808 do {
1809 pud_t pud = READ_ONCE(*pudp);
1810
1811 next = pud_addr_end(addr, end);
1812 if (pud_none(pud))
1813 return 0;
1814 if (unlikely(pud_huge(pud))) {
1815 if (!gup_huge_pud(pud, pudp, addr, next, write,
1816 pages, nr))
1817 return 0;
1818 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1819 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1820 PUD_SHIFT, next, write, pages, nr))
1821 return 0;
1822 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1823 return 0;
1824 } while (pudp++, addr = next, addr != end);
1825
1826 return 1;
1827 }
1828
1829 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1830 int write, struct page **pages, int *nr)
1831 {
1832 unsigned long next;
1833 p4d_t *p4dp;
1834
1835 p4dp = p4d_offset(&pgd, addr);
1836 do {
1837 p4d_t p4d = READ_ONCE(*p4dp);
1838
1839 next = p4d_addr_end(addr, end);
1840 if (p4d_none(p4d))
1841 return 0;
1842 BUILD_BUG_ON(p4d_huge(p4d));
1843 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1844 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1845 P4D_SHIFT, next, write, pages, nr))
1846 return 0;
1847 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1848 return 0;
1849 } while (p4dp++, addr = next, addr != end);
1850
1851 return 1;
1852 }
1853
1854 static void gup_pgd_range(unsigned long addr, unsigned long end,
1855 int write, struct page **pages, int *nr)
1856 {
1857 unsigned long next;
1858 pgd_t *pgdp;
1859
1860 pgdp = pgd_offset(current->mm, addr);
1861 do {
1862 pgd_t pgd = READ_ONCE(*pgdp);
1863
1864 next = pgd_addr_end(addr, end);
1865 if (pgd_none(pgd))
1866 return;
1867 if (unlikely(pgd_huge(pgd))) {
1868 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1869 pages, nr))
1870 return;
1871 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1872 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1873 PGDIR_SHIFT, next, write, pages, nr))
1874 return;
1875 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1876 return;
1877 } while (pgdp++, addr = next, addr != end);
1878 }
1879
1880 #ifndef gup_fast_permitted
1881 /*
1882 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1883 * we need to fall back to the slow version:
1884 */
1885 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1886 {
1887 unsigned long len, end;
1888
1889 len = (unsigned long) nr_pages << PAGE_SHIFT;
1890 end = start + len;
1891 return end >= start;
1892 }
1893 #endif
1894
1895 /*
1896 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1897 * the regular GUP. It will only return non-negative values.
1898 */
1899 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1900 struct page **pages)
1901 {
1902 unsigned long addr, len, end;
1903 unsigned long flags;
1904 int nr = 0;
1905
1906 start &= PAGE_MASK;
1907 addr = start;
1908 len = (unsigned long) nr_pages << PAGE_SHIFT;
1909 end = start + len;
1910
1911 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1912 (void __user *)start, len)))
1913 return 0;
1914
1915 /*
1916 * Disable interrupts. We use the nested form as we can already have
1917 * interrupts disabled by get_futex_key.
1918 *
1919 * With interrupts disabled, we block page table pages from being
1920 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1921 * for more details.
1922 *
1923 * We do not adopt an rcu_read_lock(.) here as we also want to
1924 * block IPIs that come from THPs splitting.
1925 */
1926
1927 if (gup_fast_permitted(start, nr_pages, write)) {
1928 local_irq_save(flags);
1929 gup_pgd_range(addr, end, write, pages, &nr);
1930 local_irq_restore(flags);
1931 }
1932
1933 return nr;
1934 }
1935
1936 /**
1937 * get_user_pages_fast() - pin user pages in memory
1938 * @start: starting user address
1939 * @nr_pages: number of pages from start to pin
1940 * @write: whether pages will be written to
1941 * @pages: array that receives pointers to the pages pinned.
1942 * Should be at least nr_pages long.
1943 *
1944 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1945 * If not successful, it will fall back to taking the lock and
1946 * calling get_user_pages().
1947 *
1948 * Returns number of pages pinned. This may be fewer than the number
1949 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1950 * were pinned, returns -errno.
1951 */
1952 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1953 struct page **pages)
1954 {
1955 unsigned long addr, len, end;
1956 int nr = 0, ret = 0;
1957
1958 start &= PAGE_MASK;
1959 addr = start;
1960 len = (unsigned long) nr_pages << PAGE_SHIFT;
1961 end = start + len;
1962
1963 if (nr_pages <= 0)
1964 return 0;
1965
1966 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1967 (void __user *)start, len)))
1968 return -EFAULT;
1969
1970 if (gup_fast_permitted(start, nr_pages, write)) {
1971 local_irq_disable();
1972 gup_pgd_range(addr, end, write, pages, &nr);
1973 local_irq_enable();
1974 ret = nr;
1975 }
1976
1977 if (nr < nr_pages) {
1978 /* Try to get the remaining pages with get_user_pages */
1979 start += nr << PAGE_SHIFT;
1980 pages += nr;
1981
1982 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1983 write ? FOLL_WRITE : 0);
1984
1985 /* Have to be a bit careful with return values */
1986 if (nr > 0) {
1987 if (ret < 0)
1988 ret = nr;
1989 else
1990 ret += nr;
1991 }
1992 }
1993
1994 return ret;
1995 }
1996
1997 #endif /* CONFIG_HAVE_GENERIC_GUP */