Merge 4.14.72 into android-4.14-p
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286 u64 time_stamp; /* page time stamp */
287 local_t commit; /* write committed index */
288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
289 };
290
291 /*
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
298 */
299 struct buffer_page {
300 struct list_head list; /* list of buffer pages */
301 local_t write; /* index for next write */
302 unsigned read; /* index for next read */
303 local_t entries; /* entries on this page */
304 unsigned long real_end; /* real end of data */
305 struct buffer_data_page *page; /* Actual data page */
306 };
307
308 /*
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
313 *
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
317 *
318 * The counter is 20 bits, and the state data is 12.
319 */
320 #define RB_WRITE_MASK 0xfffff
321 #define RB_WRITE_INTCNT (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 local_set(&bpage->commit, 0);
326 }
327
328 /**
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
331 *
332 * Returns the amount of data on the page, including buffer page header.
333 */
334 size_t ring_buffer_page_len(void *page)
335 {
336 struct buffer_data_page *bpage = page;
337
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
345 */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 free_page((unsigned long)bpage->page);
349 kfree(bpage);
350 }
351
352 /*
353 * We need to fit the time_stamp delta into 27 bits.
354 */
355 static inline int test_time_stamp(u64 delta)
356 {
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 struct buffer_data_page field;
370
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
375
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
381
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 1,
386 (unsigned int)is_signed_type(long));
387
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
393
394 return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
400 wait_queue_head_t full_waiters;
401 bool waiters_pending;
402 bool full_waiters_pending;
403 bool wakeup_full;
404 };
405
406 /*
407 * Structure to hold event state and handle nested events.
408 */
409 struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
415 };
416
417 /*
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
423 *
424 * See trace_recursive_lock() comment below for more details.
425 */
426 enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
432 };
433
434 /*
435 * head_page == tail_page && head == tail then buffer is empty.
436 */
437 struct ring_buffer_per_cpu {
438 int cpu;
439 atomic_t record_disabled;
440 struct ring_buffer *buffer;
441 raw_spinlock_t reader_lock; /* serialize readers */
442 arch_spinlock_t lock;
443 struct lock_class_key lock_key;
444 struct buffer_data_page *free_page;
445 unsigned long nr_pages;
446 unsigned int current_context;
447 struct list_head *pages;
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
450 struct buffer_page *commit_page; /* committed pages */
451 struct buffer_page *reader_page;
452 unsigned long lost_events;
453 unsigned long last_overrun;
454 local_t entries_bytes;
455 local_t entries;
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
459 local_t committing;
460 local_t commits;
461 unsigned long read;
462 unsigned long read_bytes;
463 u64 write_stamp;
464 u64 read_stamp;
465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
466 long nr_pages_to_update;
467 struct list_head new_pages; /* new pages to add */
468 struct work_struct update_pages_work;
469 struct completion update_done;
470
471 struct rb_irq_work irq_work;
472 };
473
474 struct ring_buffer {
475 unsigned flags;
476 int cpus;
477 atomic_t record_disabled;
478 atomic_t resize_disabled;
479 cpumask_var_t cpumask;
480
481 struct lock_class_key *reader_lock_key;
482
483 struct mutex mutex;
484
485 struct ring_buffer_per_cpu **buffers;
486
487 struct hlist_node node;
488 u64 (*clock)(void);
489
490 struct rb_irq_work irq_work;
491 };
492
493 struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
499 u64 read_stamp;
500 };
501
502 /*
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504 *
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
507 */
508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512 wake_up_all(&rbwork->waiters);
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
516 }
517 }
518
519 /**
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524 *
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
528 */
529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
534 int ret = 0;
535
536 /*
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
540 */
541 if (cpu == RING_BUFFER_ALL_CPUS) {
542 work = &buffer->irq_work;
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
550 }
551
552
553 while (true) {
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558
559 /*
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
565 *
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
572 *
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
578 */
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
583
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
587 }
588
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
591
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
596
597 if (!full)
598 break;
599
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604 if (!pagebusy)
605 break;
606 }
607
608 schedule();
609 }
610
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
615
616 return ret;
617 }
618
619 /**
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
625 *
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
629 *
630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631 * zero otherwise.
632 */
633 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
635 {
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
638
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
644
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
647 }
648
649 poll_wait(filp, &work->waiters, poll_table);
650 work->waiters_pending = true;
651 /*
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
656 *
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
663 */
664 smp_mb();
665
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return POLLIN | POLLRDNORM;
669 return 0;
670 }
671
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
684 } \
685 _____ret; \
686 })
687
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690
691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
695 }
696
697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699 u64 time;
700
701 preempt_disable_notrace();
702 time = rb_time_stamp(buffer);
703 preempt_enable_no_resched_notrace();
704
705 return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
711 {
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
717 /*
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
722 *
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
728 *
729 * Here lies the problem.
730 *
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
737 *
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
740 *
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
744 *
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
748 *
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
754 *
755 * Note we can not trust the prev pointer of the head page, because:
756 *
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
766 *
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
771 *
772 * (see __rb_reserve_next() to see where this happens)
773 *
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
780 *
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
784 */
785
786 #define RB_PAGE_NORMAL 0UL
787 #define RB_PAGE_HEAD 1UL
788 #define RB_PAGE_UPDATE 2UL
789
790
791 #define RB_FLAG_MASK 3UL
792
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED 4UL
795
796 /*
797 * rb_list_head - remove any bit
798 */
799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801 unsigned long val = (unsigned long)list;
802
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805
806 /*
807 * rb_is_head_page - test if the given page is the head page
808 *
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
813 */
814 static inline int
815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
817 {
818 unsigned long val;
819
820 val = (unsigned long)list->next;
821
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
824
825 return val & RB_FLAG_MASK;
826 }
827
828 /*
829 * rb_is_reader_page
830 *
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
834 */
835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837 struct list_head *list = page->list.prev;
838
839 return rb_list_head(list->next) != &page->list;
840 }
841
842 /*
843 * rb_set_list_to_head - set a list_head to be pointing to head.
844 */
845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
847 {
848 unsigned long *ptr;
849
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
853 }
854
855 /*
856 * rb_head_page_activate - sets up head page
857 */
858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860 struct buffer_page *head;
861
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
865
866 /*
867 * Set the previous list pointer to have the HEAD flag.
868 */
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871
872 static void rb_list_head_clear(struct list_head *list)
873 {
874 unsigned long *ptr = (unsigned long *)&list->next;
875
876 *ptr &= ~RB_FLAG_MASK;
877 }
878
879 /*
880 * rb_head_page_dactivate - clears head page ptr (for free list)
881 */
882 static void
883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885 struct list_head *hd;
886
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
889
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
892 }
893
894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
898 {
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
902
903 list = &prev->list;
904
905 val &= ~RB_FLAG_MASK;
906
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
909
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
913
914 return ret & RB_FLAG_MASK;
915 }
916
917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
921 {
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
924 }
925
926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
930 {
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
933 }
934
935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
939 {
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
942 }
943
944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
946 {
947 struct list_head *p = rb_list_head((*bpage)->list.next);
948
949 *bpage = list_entry(p, struct buffer_page, list);
950 }
951
952 static struct buffer_page *
953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
959
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
962
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
967
968 page = head = cpu_buffer->head_page;
969 /*
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
974 */
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
980 }
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
983 }
984
985 RB_WARN_ON(cpu_buffer, 1);
986
987 return NULL;
988 }
989
990 static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
992 {
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
996
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
999
1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001
1002 return ret == val;
1003 }
1004
1005 /*
1006 * rb_tail_page_update - move the tail page forward
1007 */
1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1011 {
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014
1015 /*
1016 * The tail page now needs to be moved forward.
1017 *
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1021 *
1022 * We add a counter to the write field to denote this.
1023 */
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027 /*
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1030 */
1031 barrier();
1032
1033 /*
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1037 */
1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043 /*
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
1047 *
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
1052 */
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055
1056 /*
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1060 */
1061 local_set(&next_page->page->commit, 0);
1062
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 }
1066 }
1067
1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1070 {
1071 unsigned long val = (unsigned long)bpage;
1072
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1084 {
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1090 }
1091
1092 /**
1093 * rb_check_pages - integrity check of buffer pages
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
1096 * As a safety measure we check to make sure the data pages have not
1097 * been corrupted.
1098 */
1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 struct list_head *head = cpu_buffer->pages;
1102 struct buffer_page *bpage, *tmp;
1103
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1107
1108 rb_head_page_deactivate(cpu_buffer);
1109
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
1114
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1117
1118 list_for_each_entry_safe(bpage, tmp, head, list) {
1119 if (RB_WARN_ON(cpu_buffer,
1120 bpage->list.next->prev != &bpage->list))
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
1123 bpage->list.prev->next != &bpage->list))
1124 return -1;
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
1127 }
1128
1129 rb_head_page_activate(cpu_buffer);
1130
1131 return 0;
1132 }
1133
1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136 struct buffer_page *bpage, *tmp;
1137 long i;
1138
1139 /* Check if the available memory is there first */
1140 i = si_mem_available();
1141 if (i < nr_pages)
1142 return -ENOMEM;
1143
1144 for (i = 0; i < nr_pages; i++) {
1145 struct page *page;
1146 /*
1147 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1148 * gracefully without invoking oom-killer and the system is not
1149 * destabilized.
1150 */
1151 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1152 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1153 cpu_to_node(cpu));
1154 if (!bpage)
1155 goto free_pages;
1156
1157 list_add(&bpage->list, pages);
1158
1159 page = alloc_pages_node(cpu_to_node(cpu),
1160 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1161 if (!page)
1162 goto free_pages;
1163 bpage->page = page_address(page);
1164 rb_init_page(bpage->page);
1165 }
1166
1167 return 0;
1168
1169 free_pages:
1170 list_for_each_entry_safe(bpage, tmp, pages, list) {
1171 list_del_init(&bpage->list);
1172 free_buffer_page(bpage);
1173 }
1174
1175 return -ENOMEM;
1176 }
1177
1178 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1179 unsigned long nr_pages)
1180 {
1181 LIST_HEAD(pages);
1182
1183 WARN_ON(!nr_pages);
1184
1185 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1186 return -ENOMEM;
1187
1188 /*
1189 * The ring buffer page list is a circular list that does not
1190 * start and end with a list head. All page list items point to
1191 * other pages.
1192 */
1193 cpu_buffer->pages = pages.next;
1194 list_del(&pages);
1195
1196 cpu_buffer->nr_pages = nr_pages;
1197
1198 rb_check_pages(cpu_buffer);
1199
1200 return 0;
1201 }
1202
1203 static struct ring_buffer_per_cpu *
1204 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1205 {
1206 struct ring_buffer_per_cpu *cpu_buffer;
1207 struct buffer_page *bpage;
1208 struct page *page;
1209 int ret;
1210
1211 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1212 GFP_KERNEL, cpu_to_node(cpu));
1213 if (!cpu_buffer)
1214 return NULL;
1215
1216 cpu_buffer->cpu = cpu;
1217 cpu_buffer->buffer = buffer;
1218 raw_spin_lock_init(&cpu_buffer->reader_lock);
1219 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1220 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1221 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1222 init_completion(&cpu_buffer->update_done);
1223 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1224 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1225 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1226
1227 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228 GFP_KERNEL, cpu_to_node(cpu));
1229 if (!bpage)
1230 goto fail_free_buffer;
1231
1232 rb_check_bpage(cpu_buffer, bpage);
1233
1234 cpu_buffer->reader_page = bpage;
1235 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1236 if (!page)
1237 goto fail_free_reader;
1238 bpage->page = page_address(page);
1239 rb_init_page(bpage->page);
1240
1241 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1242 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1243
1244 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1245 if (ret < 0)
1246 goto fail_free_reader;
1247
1248 cpu_buffer->head_page
1249 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1250 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1251
1252 rb_head_page_activate(cpu_buffer);
1253
1254 return cpu_buffer;
1255
1256 fail_free_reader:
1257 free_buffer_page(cpu_buffer->reader_page);
1258
1259 fail_free_buffer:
1260 kfree(cpu_buffer);
1261 return NULL;
1262 }
1263
1264 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1265 {
1266 struct list_head *head = cpu_buffer->pages;
1267 struct buffer_page *bpage, *tmp;
1268
1269 free_buffer_page(cpu_buffer->reader_page);
1270
1271 rb_head_page_deactivate(cpu_buffer);
1272
1273 if (head) {
1274 list_for_each_entry_safe(bpage, tmp, head, list) {
1275 list_del_init(&bpage->list);
1276 free_buffer_page(bpage);
1277 }
1278 bpage = list_entry(head, struct buffer_page, list);
1279 free_buffer_page(bpage);
1280 }
1281
1282 kfree(cpu_buffer);
1283 }
1284
1285 /**
1286 * __ring_buffer_alloc - allocate a new ring_buffer
1287 * @size: the size in bytes per cpu that is needed.
1288 * @flags: attributes to set for the ring buffer.
1289 *
1290 * Currently the only flag that is available is the RB_FL_OVERWRITE
1291 * flag. This flag means that the buffer will overwrite old data
1292 * when the buffer wraps. If this flag is not set, the buffer will
1293 * drop data when the tail hits the head.
1294 */
1295 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1296 struct lock_class_key *key)
1297 {
1298 struct ring_buffer *buffer;
1299 long nr_pages;
1300 int bsize;
1301 int cpu;
1302 int ret;
1303
1304 /* keep it in its own cache line */
1305 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1306 GFP_KERNEL);
1307 if (!buffer)
1308 return NULL;
1309
1310 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1311 goto fail_free_buffer;
1312
1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314 buffer->flags = flags;
1315 buffer->clock = trace_clock_local;
1316 buffer->reader_lock_key = key;
1317
1318 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1319 init_waitqueue_head(&buffer->irq_work.waiters);
1320
1321 /* need at least two pages */
1322 if (nr_pages < 2)
1323 nr_pages = 2;
1324
1325 buffer->cpus = nr_cpu_ids;
1326
1327 bsize = sizeof(void *) * nr_cpu_ids;
1328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1329 GFP_KERNEL);
1330 if (!buffer->buffers)
1331 goto fail_free_cpumask;
1332
1333 cpu = raw_smp_processor_id();
1334 cpumask_set_cpu(cpu, buffer->cpumask);
1335 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1336 if (!buffer->buffers[cpu])
1337 goto fail_free_buffers;
1338
1339 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1340 if (ret < 0)
1341 goto fail_free_buffers;
1342
1343 mutex_init(&buffer->mutex);
1344
1345 return buffer;
1346
1347 fail_free_buffers:
1348 for_each_buffer_cpu(buffer, cpu) {
1349 if (buffer->buffers[cpu])
1350 rb_free_cpu_buffer(buffer->buffers[cpu]);
1351 }
1352 kfree(buffer->buffers);
1353
1354 fail_free_cpumask:
1355 free_cpumask_var(buffer->cpumask);
1356
1357 fail_free_buffer:
1358 kfree(buffer);
1359 return NULL;
1360 }
1361 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1362
1363 /**
1364 * ring_buffer_free - free a ring buffer.
1365 * @buffer: the buffer to free.
1366 */
1367 void
1368 ring_buffer_free(struct ring_buffer *buffer)
1369 {
1370 int cpu;
1371
1372 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1373
1374 for_each_buffer_cpu(buffer, cpu)
1375 rb_free_cpu_buffer(buffer->buffers[cpu]);
1376
1377 kfree(buffer->buffers);
1378 free_cpumask_var(buffer->cpumask);
1379
1380 kfree(buffer);
1381 }
1382 EXPORT_SYMBOL_GPL(ring_buffer_free);
1383
1384 void ring_buffer_set_clock(struct ring_buffer *buffer,
1385 u64 (*clock)(void))
1386 {
1387 buffer->clock = clock;
1388 }
1389
1390 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1391
1392 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1393 {
1394 return local_read(&bpage->entries) & RB_WRITE_MASK;
1395 }
1396
1397 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 {
1399 return local_read(&bpage->write) & RB_WRITE_MASK;
1400 }
1401
1402 static int
1403 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1404 {
1405 struct list_head *tail_page, *to_remove, *next_page;
1406 struct buffer_page *to_remove_page, *tmp_iter_page;
1407 struct buffer_page *last_page, *first_page;
1408 unsigned long nr_removed;
1409 unsigned long head_bit;
1410 int page_entries;
1411
1412 head_bit = 0;
1413
1414 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1415 atomic_inc(&cpu_buffer->record_disabled);
1416 /*
1417 * We don't race with the readers since we have acquired the reader
1418 * lock. We also don't race with writers after disabling recording.
1419 * This makes it easy to figure out the first and the last page to be
1420 * removed from the list. We unlink all the pages in between including
1421 * the first and last pages. This is done in a busy loop so that we
1422 * lose the least number of traces.
1423 * The pages are freed after we restart recording and unlock readers.
1424 */
1425 tail_page = &cpu_buffer->tail_page->list;
1426
1427 /*
1428 * tail page might be on reader page, we remove the next page
1429 * from the ring buffer
1430 */
1431 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1432 tail_page = rb_list_head(tail_page->next);
1433 to_remove = tail_page;
1434
1435 /* start of pages to remove */
1436 first_page = list_entry(rb_list_head(to_remove->next),
1437 struct buffer_page, list);
1438
1439 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1440 to_remove = rb_list_head(to_remove)->next;
1441 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1442 }
1443
1444 next_page = rb_list_head(to_remove)->next;
1445
1446 /*
1447 * Now we remove all pages between tail_page and next_page.
1448 * Make sure that we have head_bit value preserved for the
1449 * next page
1450 */
1451 tail_page->next = (struct list_head *)((unsigned long)next_page |
1452 head_bit);
1453 next_page = rb_list_head(next_page);
1454 next_page->prev = tail_page;
1455
1456 /* make sure pages points to a valid page in the ring buffer */
1457 cpu_buffer->pages = next_page;
1458
1459 /* update head page */
1460 if (head_bit)
1461 cpu_buffer->head_page = list_entry(next_page,
1462 struct buffer_page, list);
1463
1464 /*
1465 * change read pointer to make sure any read iterators reset
1466 * themselves
1467 */
1468 cpu_buffer->read = 0;
1469
1470 /* pages are removed, resume tracing and then free the pages */
1471 atomic_dec(&cpu_buffer->record_disabled);
1472 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1473
1474 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1475
1476 /* last buffer page to remove */
1477 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1478 list);
1479 tmp_iter_page = first_page;
1480
1481 do {
1482 to_remove_page = tmp_iter_page;
1483 rb_inc_page(cpu_buffer, &tmp_iter_page);
1484
1485 /* update the counters */
1486 page_entries = rb_page_entries(to_remove_page);
1487 if (page_entries) {
1488 /*
1489 * If something was added to this page, it was full
1490 * since it is not the tail page. So we deduct the
1491 * bytes consumed in ring buffer from here.
1492 * Increment overrun to account for the lost events.
1493 */
1494 local_add(page_entries, &cpu_buffer->overrun);
1495 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1496 }
1497
1498 /*
1499 * We have already removed references to this list item, just
1500 * free up the buffer_page and its page
1501 */
1502 free_buffer_page(to_remove_page);
1503 nr_removed--;
1504
1505 } while (to_remove_page != last_page);
1506
1507 RB_WARN_ON(cpu_buffer, nr_removed);
1508
1509 return nr_removed == 0;
1510 }
1511
1512 static int
1513 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1514 {
1515 struct list_head *pages = &cpu_buffer->new_pages;
1516 int retries, success;
1517
1518 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1519 /*
1520 * We are holding the reader lock, so the reader page won't be swapped
1521 * in the ring buffer. Now we are racing with the writer trying to
1522 * move head page and the tail page.
1523 * We are going to adapt the reader page update process where:
1524 * 1. We first splice the start and end of list of new pages between
1525 * the head page and its previous page.
1526 * 2. We cmpxchg the prev_page->next to point from head page to the
1527 * start of new pages list.
1528 * 3. Finally, we update the head->prev to the end of new list.
1529 *
1530 * We will try this process 10 times, to make sure that we don't keep
1531 * spinning.
1532 */
1533 retries = 10;
1534 success = 0;
1535 while (retries--) {
1536 struct list_head *head_page, *prev_page, *r;
1537 struct list_head *last_page, *first_page;
1538 struct list_head *head_page_with_bit;
1539
1540 head_page = &rb_set_head_page(cpu_buffer)->list;
1541 if (!head_page)
1542 break;
1543 prev_page = head_page->prev;
1544
1545 first_page = pages->next;
1546 last_page = pages->prev;
1547
1548 head_page_with_bit = (struct list_head *)
1549 ((unsigned long)head_page | RB_PAGE_HEAD);
1550
1551 last_page->next = head_page_with_bit;
1552 first_page->prev = prev_page;
1553
1554 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1555
1556 if (r == head_page_with_bit) {
1557 /*
1558 * yay, we replaced the page pointer to our new list,
1559 * now, we just have to update to head page's prev
1560 * pointer to point to end of list
1561 */
1562 head_page->prev = last_page;
1563 success = 1;
1564 break;
1565 }
1566 }
1567
1568 if (success)
1569 INIT_LIST_HEAD(pages);
1570 /*
1571 * If we weren't successful in adding in new pages, warn and stop
1572 * tracing
1573 */
1574 RB_WARN_ON(cpu_buffer, !success);
1575 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1576
1577 /* free pages if they weren't inserted */
1578 if (!success) {
1579 struct buffer_page *bpage, *tmp;
1580 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1581 list) {
1582 list_del_init(&bpage->list);
1583 free_buffer_page(bpage);
1584 }
1585 }
1586 return success;
1587 }
1588
1589 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1590 {
1591 int success;
1592
1593 if (cpu_buffer->nr_pages_to_update > 0)
1594 success = rb_insert_pages(cpu_buffer);
1595 else
1596 success = rb_remove_pages(cpu_buffer,
1597 -cpu_buffer->nr_pages_to_update);
1598
1599 if (success)
1600 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1601 }
1602
1603 static void update_pages_handler(struct work_struct *work)
1604 {
1605 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1606 struct ring_buffer_per_cpu, update_pages_work);
1607 rb_update_pages(cpu_buffer);
1608 complete(&cpu_buffer->update_done);
1609 }
1610
1611 /**
1612 * ring_buffer_resize - resize the ring buffer
1613 * @buffer: the buffer to resize.
1614 * @size: the new size.
1615 * @cpu_id: the cpu buffer to resize
1616 *
1617 * Minimum size is 2 * BUF_PAGE_SIZE.
1618 *
1619 * Returns 0 on success and < 0 on failure.
1620 */
1621 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1622 int cpu_id)
1623 {
1624 struct ring_buffer_per_cpu *cpu_buffer;
1625 unsigned long nr_pages;
1626 int cpu, err = 0;
1627
1628 /*
1629 * Always succeed at resizing a non-existent buffer:
1630 */
1631 if (!buffer)
1632 return size;
1633
1634 /* Make sure the requested buffer exists */
1635 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1636 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1637 return size;
1638
1639 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1640
1641 /* we need a minimum of two pages */
1642 if (nr_pages < 2)
1643 nr_pages = 2;
1644
1645 size = nr_pages * BUF_PAGE_SIZE;
1646
1647 /*
1648 * Don't succeed if resizing is disabled, as a reader might be
1649 * manipulating the ring buffer and is expecting a sane state while
1650 * this is true.
1651 */
1652 if (atomic_read(&buffer->resize_disabled))
1653 return -EBUSY;
1654
1655 /* prevent another thread from changing buffer sizes */
1656 mutex_lock(&buffer->mutex);
1657
1658 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1659 /* calculate the pages to update */
1660 for_each_buffer_cpu(buffer, cpu) {
1661 cpu_buffer = buffer->buffers[cpu];
1662
1663 cpu_buffer->nr_pages_to_update = nr_pages -
1664 cpu_buffer->nr_pages;
1665 /*
1666 * nothing more to do for removing pages or no update
1667 */
1668 if (cpu_buffer->nr_pages_to_update <= 0)
1669 continue;
1670 /*
1671 * to add pages, make sure all new pages can be
1672 * allocated without receiving ENOMEM
1673 */
1674 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1675 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1676 &cpu_buffer->new_pages, cpu)) {
1677 /* not enough memory for new pages */
1678 err = -ENOMEM;
1679 goto out_err;
1680 }
1681 }
1682
1683 get_online_cpus();
1684 /*
1685 * Fire off all the required work handlers
1686 * We can't schedule on offline CPUs, but it's not necessary
1687 * since we can change their buffer sizes without any race.
1688 */
1689 for_each_buffer_cpu(buffer, cpu) {
1690 cpu_buffer = buffer->buffers[cpu];
1691 if (!cpu_buffer->nr_pages_to_update)
1692 continue;
1693
1694 /* Can't run something on an offline CPU. */
1695 if (!cpu_online(cpu)) {
1696 rb_update_pages(cpu_buffer);
1697 cpu_buffer->nr_pages_to_update = 0;
1698 } else {
1699 schedule_work_on(cpu,
1700 &cpu_buffer->update_pages_work);
1701 }
1702 }
1703
1704 /* wait for all the updates to complete */
1705 for_each_buffer_cpu(buffer, cpu) {
1706 cpu_buffer = buffer->buffers[cpu];
1707 if (!cpu_buffer->nr_pages_to_update)
1708 continue;
1709
1710 if (cpu_online(cpu))
1711 wait_for_completion(&cpu_buffer->update_done);
1712 cpu_buffer->nr_pages_to_update = 0;
1713 }
1714
1715 put_online_cpus();
1716 } else {
1717 /* Make sure this CPU has been intitialized */
1718 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1719 goto out;
1720
1721 cpu_buffer = buffer->buffers[cpu_id];
1722
1723 if (nr_pages == cpu_buffer->nr_pages)
1724 goto out;
1725
1726 cpu_buffer->nr_pages_to_update = nr_pages -
1727 cpu_buffer->nr_pages;
1728
1729 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1730 if (cpu_buffer->nr_pages_to_update > 0 &&
1731 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1732 &cpu_buffer->new_pages, cpu_id)) {
1733 err = -ENOMEM;
1734 goto out_err;
1735 }
1736
1737 get_online_cpus();
1738
1739 /* Can't run something on an offline CPU. */
1740 if (!cpu_online(cpu_id))
1741 rb_update_pages(cpu_buffer);
1742 else {
1743 schedule_work_on(cpu_id,
1744 &cpu_buffer->update_pages_work);
1745 wait_for_completion(&cpu_buffer->update_done);
1746 }
1747
1748 cpu_buffer->nr_pages_to_update = 0;
1749 put_online_cpus();
1750 }
1751
1752 out:
1753 /*
1754 * The ring buffer resize can happen with the ring buffer
1755 * enabled, so that the update disturbs the tracing as little
1756 * as possible. But if the buffer is disabled, we do not need
1757 * to worry about that, and we can take the time to verify
1758 * that the buffer is not corrupt.
1759 */
1760 if (atomic_read(&buffer->record_disabled)) {
1761 atomic_inc(&buffer->record_disabled);
1762 /*
1763 * Even though the buffer was disabled, we must make sure
1764 * that it is truly disabled before calling rb_check_pages.
1765 * There could have been a race between checking
1766 * record_disable and incrementing it.
1767 */
1768 synchronize_sched();
1769 for_each_buffer_cpu(buffer, cpu) {
1770 cpu_buffer = buffer->buffers[cpu];
1771 rb_check_pages(cpu_buffer);
1772 }
1773 atomic_dec(&buffer->record_disabled);
1774 }
1775
1776 mutex_unlock(&buffer->mutex);
1777 return size;
1778
1779 out_err:
1780 for_each_buffer_cpu(buffer, cpu) {
1781 struct buffer_page *bpage, *tmp;
1782
1783 cpu_buffer = buffer->buffers[cpu];
1784 cpu_buffer->nr_pages_to_update = 0;
1785
1786 if (list_empty(&cpu_buffer->new_pages))
1787 continue;
1788
1789 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1790 list) {
1791 list_del_init(&bpage->list);
1792 free_buffer_page(bpage);
1793 }
1794 }
1795 mutex_unlock(&buffer->mutex);
1796 return err;
1797 }
1798 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1799
1800 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1801 {
1802 mutex_lock(&buffer->mutex);
1803 if (val)
1804 buffer->flags |= RB_FL_OVERWRITE;
1805 else
1806 buffer->flags &= ~RB_FL_OVERWRITE;
1807 mutex_unlock(&buffer->mutex);
1808 }
1809 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1810
1811 static __always_inline void *
1812 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1813 {
1814 return bpage->data + index;
1815 }
1816
1817 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1818 {
1819 return bpage->page->data + index;
1820 }
1821
1822 static __always_inline struct ring_buffer_event *
1823 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1824 {
1825 return __rb_page_index(cpu_buffer->reader_page,
1826 cpu_buffer->reader_page->read);
1827 }
1828
1829 static __always_inline struct ring_buffer_event *
1830 rb_iter_head_event(struct ring_buffer_iter *iter)
1831 {
1832 return __rb_page_index(iter->head_page, iter->head);
1833 }
1834
1835 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1836 {
1837 return local_read(&bpage->page->commit);
1838 }
1839
1840 /* Size is determined by what has been committed */
1841 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1842 {
1843 return rb_page_commit(bpage);
1844 }
1845
1846 static __always_inline unsigned
1847 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1848 {
1849 return rb_page_commit(cpu_buffer->commit_page);
1850 }
1851
1852 static __always_inline unsigned
1853 rb_event_index(struct ring_buffer_event *event)
1854 {
1855 unsigned long addr = (unsigned long)event;
1856
1857 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1858 }
1859
1860 static void rb_inc_iter(struct ring_buffer_iter *iter)
1861 {
1862 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1863
1864 /*
1865 * The iterator could be on the reader page (it starts there).
1866 * But the head could have moved, since the reader was
1867 * found. Check for this case and assign the iterator
1868 * to the head page instead of next.
1869 */
1870 if (iter->head_page == cpu_buffer->reader_page)
1871 iter->head_page = rb_set_head_page(cpu_buffer);
1872 else
1873 rb_inc_page(cpu_buffer, &iter->head_page);
1874
1875 iter->read_stamp = iter->head_page->page->time_stamp;
1876 iter->head = 0;
1877 }
1878
1879 /*
1880 * rb_handle_head_page - writer hit the head page
1881 *
1882 * Returns: +1 to retry page
1883 * 0 to continue
1884 * -1 on error
1885 */
1886 static int
1887 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1888 struct buffer_page *tail_page,
1889 struct buffer_page *next_page)
1890 {
1891 struct buffer_page *new_head;
1892 int entries;
1893 int type;
1894 int ret;
1895
1896 entries = rb_page_entries(next_page);
1897
1898 /*
1899 * The hard part is here. We need to move the head
1900 * forward, and protect against both readers on
1901 * other CPUs and writers coming in via interrupts.
1902 */
1903 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1904 RB_PAGE_HEAD);
1905
1906 /*
1907 * type can be one of four:
1908 * NORMAL - an interrupt already moved it for us
1909 * HEAD - we are the first to get here.
1910 * UPDATE - we are the interrupt interrupting
1911 * a current move.
1912 * MOVED - a reader on another CPU moved the next
1913 * pointer to its reader page. Give up
1914 * and try again.
1915 */
1916
1917 switch (type) {
1918 case RB_PAGE_HEAD:
1919 /*
1920 * We changed the head to UPDATE, thus
1921 * it is our responsibility to update
1922 * the counters.
1923 */
1924 local_add(entries, &cpu_buffer->overrun);
1925 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1926
1927 /*
1928 * The entries will be zeroed out when we move the
1929 * tail page.
1930 */
1931
1932 /* still more to do */
1933 break;
1934
1935 case RB_PAGE_UPDATE:
1936 /*
1937 * This is an interrupt that interrupt the
1938 * previous update. Still more to do.
1939 */
1940 break;
1941 case RB_PAGE_NORMAL:
1942 /*
1943 * An interrupt came in before the update
1944 * and processed this for us.
1945 * Nothing left to do.
1946 */
1947 return 1;
1948 case RB_PAGE_MOVED:
1949 /*
1950 * The reader is on another CPU and just did
1951 * a swap with our next_page.
1952 * Try again.
1953 */
1954 return 1;
1955 default:
1956 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1957 return -1;
1958 }
1959
1960 /*
1961 * Now that we are here, the old head pointer is
1962 * set to UPDATE. This will keep the reader from
1963 * swapping the head page with the reader page.
1964 * The reader (on another CPU) will spin till
1965 * we are finished.
1966 *
1967 * We just need to protect against interrupts
1968 * doing the job. We will set the next pointer
1969 * to HEAD. After that, we set the old pointer
1970 * to NORMAL, but only if it was HEAD before.
1971 * otherwise we are an interrupt, and only
1972 * want the outer most commit to reset it.
1973 */
1974 new_head = next_page;
1975 rb_inc_page(cpu_buffer, &new_head);
1976
1977 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1978 RB_PAGE_NORMAL);
1979
1980 /*
1981 * Valid returns are:
1982 * HEAD - an interrupt came in and already set it.
1983 * NORMAL - One of two things:
1984 * 1) We really set it.
1985 * 2) A bunch of interrupts came in and moved
1986 * the page forward again.
1987 */
1988 switch (ret) {
1989 case RB_PAGE_HEAD:
1990 case RB_PAGE_NORMAL:
1991 /* OK */
1992 break;
1993 default:
1994 RB_WARN_ON(cpu_buffer, 1);
1995 return -1;
1996 }
1997
1998 /*
1999 * It is possible that an interrupt came in,
2000 * set the head up, then more interrupts came in
2001 * and moved it again. When we get back here,
2002 * the page would have been set to NORMAL but we
2003 * just set it back to HEAD.
2004 *
2005 * How do you detect this? Well, if that happened
2006 * the tail page would have moved.
2007 */
2008 if (ret == RB_PAGE_NORMAL) {
2009 struct buffer_page *buffer_tail_page;
2010
2011 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2012 /*
2013 * If the tail had moved passed next, then we need
2014 * to reset the pointer.
2015 */
2016 if (buffer_tail_page != tail_page &&
2017 buffer_tail_page != next_page)
2018 rb_head_page_set_normal(cpu_buffer, new_head,
2019 next_page,
2020 RB_PAGE_HEAD);
2021 }
2022
2023 /*
2024 * If this was the outer most commit (the one that
2025 * changed the original pointer from HEAD to UPDATE),
2026 * then it is up to us to reset it to NORMAL.
2027 */
2028 if (type == RB_PAGE_HEAD) {
2029 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2030 tail_page,
2031 RB_PAGE_UPDATE);
2032 if (RB_WARN_ON(cpu_buffer,
2033 ret != RB_PAGE_UPDATE))
2034 return -1;
2035 }
2036
2037 return 0;
2038 }
2039
2040 static inline void
2041 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2042 unsigned long tail, struct rb_event_info *info)
2043 {
2044 struct buffer_page *tail_page = info->tail_page;
2045 struct ring_buffer_event *event;
2046 unsigned long length = info->length;
2047
2048 /*
2049 * Only the event that crossed the page boundary
2050 * must fill the old tail_page with padding.
2051 */
2052 if (tail >= BUF_PAGE_SIZE) {
2053 /*
2054 * If the page was filled, then we still need
2055 * to update the real_end. Reset it to zero
2056 * and the reader will ignore it.
2057 */
2058 if (tail == BUF_PAGE_SIZE)
2059 tail_page->real_end = 0;
2060
2061 local_sub(length, &tail_page->write);
2062 return;
2063 }
2064
2065 event = __rb_page_index(tail_page, tail);
2066
2067 /* account for padding bytes */
2068 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2069
2070 /*
2071 * Save the original length to the meta data.
2072 * This will be used by the reader to add lost event
2073 * counter.
2074 */
2075 tail_page->real_end = tail;
2076
2077 /*
2078 * If this event is bigger than the minimum size, then
2079 * we need to be careful that we don't subtract the
2080 * write counter enough to allow another writer to slip
2081 * in on this page.
2082 * We put in a discarded commit instead, to make sure
2083 * that this space is not used again.
2084 *
2085 * If we are less than the minimum size, we don't need to
2086 * worry about it.
2087 */
2088 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2089 /* No room for any events */
2090
2091 /* Mark the rest of the page with padding */
2092 rb_event_set_padding(event);
2093
2094 /* Set the write back to the previous setting */
2095 local_sub(length, &tail_page->write);
2096 return;
2097 }
2098
2099 /* Put in a discarded event */
2100 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2101 event->type_len = RINGBUF_TYPE_PADDING;
2102 /* time delta must be non zero */
2103 event->time_delta = 1;
2104
2105 /* Set write to end of buffer */
2106 length = (tail + length) - BUF_PAGE_SIZE;
2107 local_sub(length, &tail_page->write);
2108 }
2109
2110 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2111
2112 /*
2113 * This is the slow path, force gcc not to inline it.
2114 */
2115 static noinline struct ring_buffer_event *
2116 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2117 unsigned long tail, struct rb_event_info *info)
2118 {
2119 struct buffer_page *tail_page = info->tail_page;
2120 struct buffer_page *commit_page = cpu_buffer->commit_page;
2121 struct ring_buffer *buffer = cpu_buffer->buffer;
2122 struct buffer_page *next_page;
2123 int ret;
2124
2125 next_page = tail_page;
2126
2127 rb_inc_page(cpu_buffer, &next_page);
2128
2129 /*
2130 * If for some reason, we had an interrupt storm that made
2131 * it all the way around the buffer, bail, and warn
2132 * about it.
2133 */
2134 if (unlikely(next_page == commit_page)) {
2135 local_inc(&cpu_buffer->commit_overrun);
2136 goto out_reset;
2137 }
2138
2139 /*
2140 * This is where the fun begins!
2141 *
2142 * We are fighting against races between a reader that
2143 * could be on another CPU trying to swap its reader
2144 * page with the buffer head.
2145 *
2146 * We are also fighting against interrupts coming in and
2147 * moving the head or tail on us as well.
2148 *
2149 * If the next page is the head page then we have filled
2150 * the buffer, unless the commit page is still on the
2151 * reader page.
2152 */
2153 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2154
2155 /*
2156 * If the commit is not on the reader page, then
2157 * move the header page.
2158 */
2159 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2160 /*
2161 * If we are not in overwrite mode,
2162 * this is easy, just stop here.
2163 */
2164 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2165 local_inc(&cpu_buffer->dropped_events);
2166 goto out_reset;
2167 }
2168
2169 ret = rb_handle_head_page(cpu_buffer,
2170 tail_page,
2171 next_page);
2172 if (ret < 0)
2173 goto out_reset;
2174 if (ret)
2175 goto out_again;
2176 } else {
2177 /*
2178 * We need to be careful here too. The
2179 * commit page could still be on the reader
2180 * page. We could have a small buffer, and
2181 * have filled up the buffer with events
2182 * from interrupts and such, and wrapped.
2183 *
2184 * Note, if the tail page is also the on the
2185 * reader_page, we let it move out.
2186 */
2187 if (unlikely((cpu_buffer->commit_page !=
2188 cpu_buffer->tail_page) &&
2189 (cpu_buffer->commit_page ==
2190 cpu_buffer->reader_page))) {
2191 local_inc(&cpu_buffer->commit_overrun);
2192 goto out_reset;
2193 }
2194 }
2195 }
2196
2197 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2198
2199 out_again:
2200
2201 rb_reset_tail(cpu_buffer, tail, info);
2202
2203 /* Commit what we have for now. */
2204 rb_end_commit(cpu_buffer);
2205 /* rb_end_commit() decs committing */
2206 local_inc(&cpu_buffer->committing);
2207
2208 /* fail and let the caller try again */
2209 return ERR_PTR(-EAGAIN);
2210
2211 out_reset:
2212 /* reset write */
2213 rb_reset_tail(cpu_buffer, tail, info);
2214
2215 return NULL;
2216 }
2217
2218 /* Slow path, do not inline */
2219 static noinline struct ring_buffer_event *
2220 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2221 {
2222 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2223
2224 /* Not the first event on the page? */
2225 if (rb_event_index(event)) {
2226 event->time_delta = delta & TS_MASK;
2227 event->array[0] = delta >> TS_SHIFT;
2228 } else {
2229 /* nope, just zero it */
2230 event->time_delta = 0;
2231 event->array[0] = 0;
2232 }
2233
2234 return skip_time_extend(event);
2235 }
2236
2237 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2238 struct ring_buffer_event *event);
2239
2240 /**
2241 * rb_update_event - update event type and data
2242 * @event: the event to update
2243 * @type: the type of event
2244 * @length: the size of the event field in the ring buffer
2245 *
2246 * Update the type and data fields of the event. The length
2247 * is the actual size that is written to the ring buffer,
2248 * and with this, we can determine what to place into the
2249 * data field.
2250 */
2251 static void
2252 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2253 struct ring_buffer_event *event,
2254 struct rb_event_info *info)
2255 {
2256 unsigned length = info->length;
2257 u64 delta = info->delta;
2258
2259 /* Only a commit updates the timestamp */
2260 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2261 delta = 0;
2262
2263 /*
2264 * If we need to add a timestamp, then we
2265 * add it to the start of the resevered space.
2266 */
2267 if (unlikely(info->add_timestamp)) {
2268 event = rb_add_time_stamp(event, delta);
2269 length -= RB_LEN_TIME_EXTEND;
2270 delta = 0;
2271 }
2272
2273 event->time_delta = delta;
2274 length -= RB_EVNT_HDR_SIZE;
2275 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2276 event->type_len = 0;
2277 event->array[0] = length;
2278 } else
2279 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2280 }
2281
2282 static unsigned rb_calculate_event_length(unsigned length)
2283 {
2284 struct ring_buffer_event event; /* Used only for sizeof array */
2285
2286 /* zero length can cause confusions */
2287 if (!length)
2288 length++;
2289
2290 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2291 length += sizeof(event.array[0]);
2292
2293 length += RB_EVNT_HDR_SIZE;
2294 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2295
2296 /*
2297 * In case the time delta is larger than the 27 bits for it
2298 * in the header, we need to add a timestamp. If another
2299 * event comes in when trying to discard this one to increase
2300 * the length, then the timestamp will be added in the allocated
2301 * space of this event. If length is bigger than the size needed
2302 * for the TIME_EXTEND, then padding has to be used. The events
2303 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2304 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2305 * As length is a multiple of 4, we only need to worry if it
2306 * is 12 (RB_LEN_TIME_EXTEND + 4).
2307 */
2308 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2309 length += RB_ALIGNMENT;
2310
2311 return length;
2312 }
2313
2314 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2315 static inline bool sched_clock_stable(void)
2316 {
2317 return true;
2318 }
2319 #endif
2320
2321 static inline int
2322 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2323 struct ring_buffer_event *event)
2324 {
2325 unsigned long new_index, old_index;
2326 struct buffer_page *bpage;
2327 unsigned long index;
2328 unsigned long addr;
2329
2330 new_index = rb_event_index(event);
2331 old_index = new_index + rb_event_ts_length(event);
2332 addr = (unsigned long)event;
2333 addr &= PAGE_MASK;
2334
2335 bpage = READ_ONCE(cpu_buffer->tail_page);
2336
2337 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2338 unsigned long write_mask =
2339 local_read(&bpage->write) & ~RB_WRITE_MASK;
2340 unsigned long event_length = rb_event_length(event);
2341 /*
2342 * This is on the tail page. It is possible that
2343 * a write could come in and move the tail page
2344 * and write to the next page. That is fine
2345 * because we just shorten what is on this page.
2346 */
2347 old_index += write_mask;
2348 new_index += write_mask;
2349 index = local_cmpxchg(&bpage->write, old_index, new_index);
2350 if (index == old_index) {
2351 /* update counters */
2352 local_sub(event_length, &cpu_buffer->entries_bytes);
2353 return 1;
2354 }
2355 }
2356
2357 /* could not discard */
2358 return 0;
2359 }
2360
2361 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2362 {
2363 local_inc(&cpu_buffer->committing);
2364 local_inc(&cpu_buffer->commits);
2365 }
2366
2367 static __always_inline void
2368 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2369 {
2370 unsigned long max_count;
2371
2372 /*
2373 * We only race with interrupts and NMIs on this CPU.
2374 * If we own the commit event, then we can commit
2375 * all others that interrupted us, since the interruptions
2376 * are in stack format (they finish before they come
2377 * back to us). This allows us to do a simple loop to
2378 * assign the commit to the tail.
2379 */
2380 again:
2381 max_count = cpu_buffer->nr_pages * 100;
2382
2383 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2384 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2385 return;
2386 if (RB_WARN_ON(cpu_buffer,
2387 rb_is_reader_page(cpu_buffer->tail_page)))
2388 return;
2389 local_set(&cpu_buffer->commit_page->page->commit,
2390 rb_page_write(cpu_buffer->commit_page));
2391 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2392 /* Only update the write stamp if the page has an event */
2393 if (rb_page_write(cpu_buffer->commit_page))
2394 cpu_buffer->write_stamp =
2395 cpu_buffer->commit_page->page->time_stamp;
2396 /* add barrier to keep gcc from optimizing too much */
2397 barrier();
2398 }
2399 while (rb_commit_index(cpu_buffer) !=
2400 rb_page_write(cpu_buffer->commit_page)) {
2401
2402 local_set(&cpu_buffer->commit_page->page->commit,
2403 rb_page_write(cpu_buffer->commit_page));
2404 RB_WARN_ON(cpu_buffer,
2405 local_read(&cpu_buffer->commit_page->page->commit) &
2406 ~RB_WRITE_MASK);
2407 barrier();
2408 }
2409
2410 /* again, keep gcc from optimizing */
2411 barrier();
2412
2413 /*
2414 * If an interrupt came in just after the first while loop
2415 * and pushed the tail page forward, we will be left with
2416 * a dangling commit that will never go forward.
2417 */
2418 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2419 goto again;
2420 }
2421
2422 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2423 {
2424 unsigned long commits;
2425
2426 if (RB_WARN_ON(cpu_buffer,
2427 !local_read(&cpu_buffer->committing)))
2428 return;
2429
2430 again:
2431 commits = local_read(&cpu_buffer->commits);
2432 /* synchronize with interrupts */
2433 barrier();
2434 if (local_read(&cpu_buffer->committing) == 1)
2435 rb_set_commit_to_write(cpu_buffer);
2436
2437 local_dec(&cpu_buffer->committing);
2438
2439 /* synchronize with interrupts */
2440 barrier();
2441
2442 /*
2443 * Need to account for interrupts coming in between the
2444 * updating of the commit page and the clearing of the
2445 * committing counter.
2446 */
2447 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2448 !local_read(&cpu_buffer->committing)) {
2449 local_inc(&cpu_buffer->committing);
2450 goto again;
2451 }
2452 }
2453
2454 static inline void rb_event_discard(struct ring_buffer_event *event)
2455 {
2456 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2457 event = skip_time_extend(event);
2458
2459 /* array[0] holds the actual length for the discarded event */
2460 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2461 event->type_len = RINGBUF_TYPE_PADDING;
2462 /* time delta must be non zero */
2463 if (!event->time_delta)
2464 event->time_delta = 1;
2465 }
2466
2467 static __always_inline bool
2468 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2469 struct ring_buffer_event *event)
2470 {
2471 unsigned long addr = (unsigned long)event;
2472 unsigned long index;
2473
2474 index = rb_event_index(event);
2475 addr &= PAGE_MASK;
2476
2477 return cpu_buffer->commit_page->page == (void *)addr &&
2478 rb_commit_index(cpu_buffer) == index;
2479 }
2480
2481 static __always_inline void
2482 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2483 struct ring_buffer_event *event)
2484 {
2485 u64 delta;
2486
2487 /*
2488 * The event first in the commit queue updates the
2489 * time stamp.
2490 */
2491 if (rb_event_is_commit(cpu_buffer, event)) {
2492 /*
2493 * A commit event that is first on a page
2494 * updates the write timestamp with the page stamp
2495 */
2496 if (!rb_event_index(event))
2497 cpu_buffer->write_stamp =
2498 cpu_buffer->commit_page->page->time_stamp;
2499 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2500 delta = event->array[0];
2501 delta <<= TS_SHIFT;
2502 delta += event->time_delta;
2503 cpu_buffer->write_stamp += delta;
2504 } else
2505 cpu_buffer->write_stamp += event->time_delta;
2506 }
2507 }
2508
2509 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2510 struct ring_buffer_event *event)
2511 {
2512 local_inc(&cpu_buffer->entries);
2513 rb_update_write_stamp(cpu_buffer, event);
2514 rb_end_commit(cpu_buffer);
2515 }
2516
2517 static __always_inline void
2518 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2519 {
2520 bool pagebusy;
2521
2522 if (buffer->irq_work.waiters_pending) {
2523 buffer->irq_work.waiters_pending = false;
2524 /* irq_work_queue() supplies it's own memory barriers */
2525 irq_work_queue(&buffer->irq_work.work);
2526 }
2527
2528 if (cpu_buffer->irq_work.waiters_pending) {
2529 cpu_buffer->irq_work.waiters_pending = false;
2530 /* irq_work_queue() supplies it's own memory barriers */
2531 irq_work_queue(&cpu_buffer->irq_work.work);
2532 }
2533
2534 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2535
2536 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2537 cpu_buffer->irq_work.wakeup_full = true;
2538 cpu_buffer->irq_work.full_waiters_pending = false;
2539 /* irq_work_queue() supplies it's own memory barriers */
2540 irq_work_queue(&cpu_buffer->irq_work.work);
2541 }
2542 }
2543
2544 /*
2545 * The lock and unlock are done within a preempt disable section.
2546 * The current_context per_cpu variable can only be modified
2547 * by the current task between lock and unlock. But it can
2548 * be modified more than once via an interrupt. To pass this
2549 * information from the lock to the unlock without having to
2550 * access the 'in_interrupt()' functions again (which do show
2551 * a bit of overhead in something as critical as function tracing,
2552 * we use a bitmask trick.
2553 *
2554 * bit 0 = NMI context
2555 * bit 1 = IRQ context
2556 * bit 2 = SoftIRQ context
2557 * bit 3 = normal context.
2558 *
2559 * This works because this is the order of contexts that can
2560 * preempt other contexts. A SoftIRQ never preempts an IRQ
2561 * context.
2562 *
2563 * When the context is determined, the corresponding bit is
2564 * checked and set (if it was set, then a recursion of that context
2565 * happened).
2566 *
2567 * On unlock, we need to clear this bit. To do so, just subtract
2568 * 1 from the current_context and AND it to itself.
2569 *
2570 * (binary)
2571 * 101 - 1 = 100
2572 * 101 & 100 = 100 (clearing bit zero)
2573 *
2574 * 1010 - 1 = 1001
2575 * 1010 & 1001 = 1000 (clearing bit 1)
2576 *
2577 * The least significant bit can be cleared this way, and it
2578 * just so happens that it is the same bit corresponding to
2579 * the current context.
2580 */
2581
2582 static __always_inline int
2583 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2584 {
2585 unsigned int val = cpu_buffer->current_context;
2586 int bit;
2587
2588 if (in_interrupt()) {
2589 if (in_nmi())
2590 bit = RB_CTX_NMI;
2591 else if (in_irq())
2592 bit = RB_CTX_IRQ;
2593 else
2594 bit = RB_CTX_SOFTIRQ;
2595 } else
2596 bit = RB_CTX_NORMAL;
2597
2598 if (unlikely(val & (1 << bit)))
2599 return 1;
2600
2601 val |= (1 << bit);
2602 cpu_buffer->current_context = val;
2603
2604 return 0;
2605 }
2606
2607 static __always_inline void
2608 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2609 {
2610 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2611 }
2612
2613 /**
2614 * ring_buffer_unlock_commit - commit a reserved
2615 * @buffer: The buffer to commit to
2616 * @event: The event pointer to commit.
2617 *
2618 * This commits the data to the ring buffer, and releases any locks held.
2619 *
2620 * Must be paired with ring_buffer_lock_reserve.
2621 */
2622 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2623 struct ring_buffer_event *event)
2624 {
2625 struct ring_buffer_per_cpu *cpu_buffer;
2626 int cpu = raw_smp_processor_id();
2627
2628 cpu_buffer = buffer->buffers[cpu];
2629
2630 rb_commit(cpu_buffer, event);
2631
2632 rb_wakeups(buffer, cpu_buffer);
2633
2634 trace_recursive_unlock(cpu_buffer);
2635
2636 preempt_enable_notrace();
2637
2638 return 0;
2639 }
2640 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2641
2642 static noinline void
2643 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2644 struct rb_event_info *info)
2645 {
2646 WARN_ONCE(info->delta > (1ULL << 59),
2647 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2648 (unsigned long long)info->delta,
2649 (unsigned long long)info->ts,
2650 (unsigned long long)cpu_buffer->write_stamp,
2651 sched_clock_stable() ? "" :
2652 "If you just came from a suspend/resume,\n"
2653 "please switch to the trace global clock:\n"
2654 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2655 info->add_timestamp = 1;
2656 }
2657
2658 static struct ring_buffer_event *
2659 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2660 struct rb_event_info *info)
2661 {
2662 struct ring_buffer_event *event;
2663 struct buffer_page *tail_page;
2664 unsigned long tail, write;
2665
2666 /*
2667 * If the time delta since the last event is too big to
2668 * hold in the time field of the event, then we append a
2669 * TIME EXTEND event ahead of the data event.
2670 */
2671 if (unlikely(info->add_timestamp))
2672 info->length += RB_LEN_TIME_EXTEND;
2673
2674 /* Don't let the compiler play games with cpu_buffer->tail_page */
2675 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2676 write = local_add_return(info->length, &tail_page->write);
2677
2678 /* set write to only the index of the write */
2679 write &= RB_WRITE_MASK;
2680 tail = write - info->length;
2681
2682 /*
2683 * If this is the first commit on the page, then it has the same
2684 * timestamp as the page itself.
2685 */
2686 if (!tail)
2687 info->delta = 0;
2688
2689 /* See if we shot pass the end of this buffer page */
2690 if (unlikely(write > BUF_PAGE_SIZE))
2691 return rb_move_tail(cpu_buffer, tail, info);
2692
2693 /* We reserved something on the buffer */
2694
2695 event = __rb_page_index(tail_page, tail);
2696 rb_update_event(cpu_buffer, event, info);
2697
2698 local_inc(&tail_page->entries);
2699
2700 /*
2701 * If this is the first commit on the page, then update
2702 * its timestamp.
2703 */
2704 if (!tail)
2705 tail_page->page->time_stamp = info->ts;
2706
2707 /* account for these added bytes */
2708 local_add(info->length, &cpu_buffer->entries_bytes);
2709
2710 return event;
2711 }
2712
2713 static __always_inline struct ring_buffer_event *
2714 rb_reserve_next_event(struct ring_buffer *buffer,
2715 struct ring_buffer_per_cpu *cpu_buffer,
2716 unsigned long length)
2717 {
2718 struct ring_buffer_event *event;
2719 struct rb_event_info info;
2720 int nr_loops = 0;
2721 u64 diff;
2722
2723 rb_start_commit(cpu_buffer);
2724
2725 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2726 /*
2727 * Due to the ability to swap a cpu buffer from a buffer
2728 * it is possible it was swapped before we committed.
2729 * (committing stops a swap). We check for it here and
2730 * if it happened, we have to fail the write.
2731 */
2732 barrier();
2733 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2734 local_dec(&cpu_buffer->committing);
2735 local_dec(&cpu_buffer->commits);
2736 return NULL;
2737 }
2738 #endif
2739
2740 info.length = rb_calculate_event_length(length);
2741 again:
2742 info.add_timestamp = 0;
2743 info.delta = 0;
2744
2745 /*
2746 * We allow for interrupts to reenter here and do a trace.
2747 * If one does, it will cause this original code to loop
2748 * back here. Even with heavy interrupts happening, this
2749 * should only happen a few times in a row. If this happens
2750 * 1000 times in a row, there must be either an interrupt
2751 * storm or we have something buggy.
2752 * Bail!
2753 */
2754 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2755 goto out_fail;
2756
2757 info.ts = rb_time_stamp(cpu_buffer->buffer);
2758 diff = info.ts - cpu_buffer->write_stamp;
2759
2760 /* make sure this diff is calculated here */
2761 barrier();
2762
2763 /* Did the write stamp get updated already? */
2764 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2765 info.delta = diff;
2766 if (unlikely(test_time_stamp(info.delta)))
2767 rb_handle_timestamp(cpu_buffer, &info);
2768 }
2769
2770 event = __rb_reserve_next(cpu_buffer, &info);
2771
2772 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2773 if (info.add_timestamp)
2774 info.length -= RB_LEN_TIME_EXTEND;
2775 goto again;
2776 }
2777
2778 if (!event)
2779 goto out_fail;
2780
2781 return event;
2782
2783 out_fail:
2784 rb_end_commit(cpu_buffer);
2785 return NULL;
2786 }
2787
2788 /**
2789 * ring_buffer_lock_reserve - reserve a part of the buffer
2790 * @buffer: the ring buffer to reserve from
2791 * @length: the length of the data to reserve (excluding event header)
2792 *
2793 * Returns a reseverd event on the ring buffer to copy directly to.
2794 * The user of this interface will need to get the body to write into
2795 * and can use the ring_buffer_event_data() interface.
2796 *
2797 * The length is the length of the data needed, not the event length
2798 * which also includes the event header.
2799 *
2800 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2801 * If NULL is returned, then nothing has been allocated or locked.
2802 */
2803 struct ring_buffer_event *
2804 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2805 {
2806 struct ring_buffer_per_cpu *cpu_buffer;
2807 struct ring_buffer_event *event;
2808 int cpu;
2809
2810 /* If we are tracing schedule, we don't want to recurse */
2811 preempt_disable_notrace();
2812
2813 if (unlikely(atomic_read(&buffer->record_disabled)))
2814 goto out;
2815
2816 cpu = raw_smp_processor_id();
2817
2818 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2819 goto out;
2820
2821 cpu_buffer = buffer->buffers[cpu];
2822
2823 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2824 goto out;
2825
2826 if (unlikely(length > BUF_MAX_DATA_SIZE))
2827 goto out;
2828
2829 if (unlikely(trace_recursive_lock(cpu_buffer)))
2830 goto out;
2831
2832 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2833 if (!event)
2834 goto out_unlock;
2835
2836 return event;
2837
2838 out_unlock:
2839 trace_recursive_unlock(cpu_buffer);
2840 out:
2841 preempt_enable_notrace();
2842 return NULL;
2843 }
2844 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2845
2846 /*
2847 * Decrement the entries to the page that an event is on.
2848 * The event does not even need to exist, only the pointer
2849 * to the page it is on. This may only be called before the commit
2850 * takes place.
2851 */
2852 static inline void
2853 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2854 struct ring_buffer_event *event)
2855 {
2856 unsigned long addr = (unsigned long)event;
2857 struct buffer_page *bpage = cpu_buffer->commit_page;
2858 struct buffer_page *start;
2859
2860 addr &= PAGE_MASK;
2861
2862 /* Do the likely case first */
2863 if (likely(bpage->page == (void *)addr)) {
2864 local_dec(&bpage->entries);
2865 return;
2866 }
2867
2868 /*
2869 * Because the commit page may be on the reader page we
2870 * start with the next page and check the end loop there.
2871 */
2872 rb_inc_page(cpu_buffer, &bpage);
2873 start = bpage;
2874 do {
2875 if (bpage->page == (void *)addr) {
2876 local_dec(&bpage->entries);
2877 return;
2878 }
2879 rb_inc_page(cpu_buffer, &bpage);
2880 } while (bpage != start);
2881
2882 /* commit not part of this buffer?? */
2883 RB_WARN_ON(cpu_buffer, 1);
2884 }
2885
2886 /**
2887 * ring_buffer_commit_discard - discard an event that has not been committed
2888 * @buffer: the ring buffer
2889 * @event: non committed event to discard
2890 *
2891 * Sometimes an event that is in the ring buffer needs to be ignored.
2892 * This function lets the user discard an event in the ring buffer
2893 * and then that event will not be read later.
2894 *
2895 * This function only works if it is called before the the item has been
2896 * committed. It will try to free the event from the ring buffer
2897 * if another event has not been added behind it.
2898 *
2899 * If another event has been added behind it, it will set the event
2900 * up as discarded, and perform the commit.
2901 *
2902 * If this function is called, do not call ring_buffer_unlock_commit on
2903 * the event.
2904 */
2905 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2906 struct ring_buffer_event *event)
2907 {
2908 struct ring_buffer_per_cpu *cpu_buffer;
2909 int cpu;
2910
2911 /* The event is discarded regardless */
2912 rb_event_discard(event);
2913
2914 cpu = smp_processor_id();
2915 cpu_buffer = buffer->buffers[cpu];
2916
2917 /*
2918 * This must only be called if the event has not been
2919 * committed yet. Thus we can assume that preemption
2920 * is still disabled.
2921 */
2922 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2923
2924 rb_decrement_entry(cpu_buffer, event);
2925 if (rb_try_to_discard(cpu_buffer, event))
2926 goto out;
2927
2928 /*
2929 * The commit is still visible by the reader, so we
2930 * must still update the timestamp.
2931 */
2932 rb_update_write_stamp(cpu_buffer, event);
2933 out:
2934 rb_end_commit(cpu_buffer);
2935
2936 trace_recursive_unlock(cpu_buffer);
2937
2938 preempt_enable_notrace();
2939
2940 }
2941 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2942
2943 /**
2944 * ring_buffer_write - write data to the buffer without reserving
2945 * @buffer: The ring buffer to write to.
2946 * @length: The length of the data being written (excluding the event header)
2947 * @data: The data to write to the buffer.
2948 *
2949 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2950 * one function. If you already have the data to write to the buffer, it
2951 * may be easier to simply call this function.
2952 *
2953 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2954 * and not the length of the event which would hold the header.
2955 */
2956 int ring_buffer_write(struct ring_buffer *buffer,
2957 unsigned long length,
2958 void *data)
2959 {
2960 struct ring_buffer_per_cpu *cpu_buffer;
2961 struct ring_buffer_event *event;
2962 void *body;
2963 int ret = -EBUSY;
2964 int cpu;
2965
2966 preempt_disable_notrace();
2967
2968 if (atomic_read(&buffer->record_disabled))
2969 goto out;
2970
2971 cpu = raw_smp_processor_id();
2972
2973 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2974 goto out;
2975
2976 cpu_buffer = buffer->buffers[cpu];
2977
2978 if (atomic_read(&cpu_buffer->record_disabled))
2979 goto out;
2980
2981 if (length > BUF_MAX_DATA_SIZE)
2982 goto out;
2983
2984 if (unlikely(trace_recursive_lock(cpu_buffer)))
2985 goto out;
2986
2987 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2988 if (!event)
2989 goto out_unlock;
2990
2991 body = rb_event_data(event);
2992
2993 memcpy(body, data, length);
2994
2995 rb_commit(cpu_buffer, event);
2996
2997 rb_wakeups(buffer, cpu_buffer);
2998
2999 ret = 0;
3000
3001 out_unlock:
3002 trace_recursive_unlock(cpu_buffer);
3003
3004 out:
3005 preempt_enable_notrace();
3006
3007 return ret;
3008 }
3009 EXPORT_SYMBOL_GPL(ring_buffer_write);
3010
3011 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3012 {
3013 struct buffer_page *reader = cpu_buffer->reader_page;
3014 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3015 struct buffer_page *commit = cpu_buffer->commit_page;
3016
3017 /* In case of error, head will be NULL */
3018 if (unlikely(!head))
3019 return true;
3020
3021 return reader->read == rb_page_commit(reader) &&
3022 (commit == reader ||
3023 (commit == head &&
3024 head->read == rb_page_commit(commit)));
3025 }
3026
3027 /**
3028 * ring_buffer_record_disable - stop all writes into the buffer
3029 * @buffer: The ring buffer to stop writes to.
3030 *
3031 * This prevents all writes to the buffer. Any attempt to write
3032 * to the buffer after this will fail and return NULL.
3033 *
3034 * The caller should call synchronize_sched() after this.
3035 */
3036 void ring_buffer_record_disable(struct ring_buffer *buffer)
3037 {
3038 atomic_inc(&buffer->record_disabled);
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3041
3042 /**
3043 * ring_buffer_record_enable - enable writes to the buffer
3044 * @buffer: The ring buffer to enable writes
3045 *
3046 * Note, multiple disables will need the same number of enables
3047 * to truly enable the writing (much like preempt_disable).
3048 */
3049 void ring_buffer_record_enable(struct ring_buffer *buffer)
3050 {
3051 atomic_dec(&buffer->record_disabled);
3052 }
3053 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3054
3055 /**
3056 * ring_buffer_record_off - stop all writes into the buffer
3057 * @buffer: The ring buffer to stop writes to.
3058 *
3059 * This prevents all writes to the buffer. Any attempt to write
3060 * to the buffer after this will fail and return NULL.
3061 *
3062 * This is different than ring_buffer_record_disable() as
3063 * it works like an on/off switch, where as the disable() version
3064 * must be paired with a enable().
3065 */
3066 void ring_buffer_record_off(struct ring_buffer *buffer)
3067 {
3068 unsigned int rd;
3069 unsigned int new_rd;
3070
3071 do {
3072 rd = atomic_read(&buffer->record_disabled);
3073 new_rd = rd | RB_BUFFER_OFF;
3074 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3075 }
3076 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3077
3078 /**
3079 * ring_buffer_record_on - restart writes into the buffer
3080 * @buffer: The ring buffer to start writes to.
3081 *
3082 * This enables all writes to the buffer that was disabled by
3083 * ring_buffer_record_off().
3084 *
3085 * This is different than ring_buffer_record_enable() as
3086 * it works like an on/off switch, where as the enable() version
3087 * must be paired with a disable().
3088 */
3089 void ring_buffer_record_on(struct ring_buffer *buffer)
3090 {
3091 unsigned int rd;
3092 unsigned int new_rd;
3093
3094 do {
3095 rd = atomic_read(&buffer->record_disabled);
3096 new_rd = rd & ~RB_BUFFER_OFF;
3097 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3098 }
3099 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3100
3101 /**
3102 * ring_buffer_record_is_on - return true if the ring buffer can write
3103 * @buffer: The ring buffer to see if write is enabled
3104 *
3105 * Returns true if the ring buffer is in a state that it accepts writes.
3106 */
3107 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3108 {
3109 return !atomic_read(&buffer->record_disabled);
3110 }
3111
3112 /**
3113 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3114 * @buffer: The ring buffer to see if write is set enabled
3115 *
3116 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3117 * Note that this does NOT mean it is in a writable state.
3118 *
3119 * It may return true when the ring buffer has been disabled by
3120 * ring_buffer_record_disable(), as that is a temporary disabling of
3121 * the ring buffer.
3122 */
3123 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3124 {
3125 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3126 }
3127
3128 /**
3129 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3130 * @buffer: The ring buffer to stop writes to.
3131 * @cpu: The CPU buffer to stop
3132 *
3133 * This prevents all writes to the buffer. Any attempt to write
3134 * to the buffer after this will fail and return NULL.
3135 *
3136 * The caller should call synchronize_sched() after this.
3137 */
3138 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3139 {
3140 struct ring_buffer_per_cpu *cpu_buffer;
3141
3142 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3143 return;
3144
3145 cpu_buffer = buffer->buffers[cpu];
3146 atomic_inc(&cpu_buffer->record_disabled);
3147 }
3148 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3149
3150 /**
3151 * ring_buffer_record_enable_cpu - enable writes to the buffer
3152 * @buffer: The ring buffer to enable writes
3153 * @cpu: The CPU to enable.
3154 *
3155 * Note, multiple disables will need the same number of enables
3156 * to truly enable the writing (much like preempt_disable).
3157 */
3158 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3159 {
3160 struct ring_buffer_per_cpu *cpu_buffer;
3161
3162 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3163 return;
3164
3165 cpu_buffer = buffer->buffers[cpu];
3166 atomic_dec(&cpu_buffer->record_disabled);
3167 }
3168 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3169
3170 /*
3171 * The total entries in the ring buffer is the running counter
3172 * of entries entered into the ring buffer, minus the sum of
3173 * the entries read from the ring buffer and the number of
3174 * entries that were overwritten.
3175 */
3176 static inline unsigned long
3177 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3178 {
3179 return local_read(&cpu_buffer->entries) -
3180 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3181 }
3182
3183 /**
3184 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3185 * @buffer: The ring buffer
3186 * @cpu: The per CPU buffer to read from.
3187 */
3188 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3189 {
3190 unsigned long flags;
3191 struct ring_buffer_per_cpu *cpu_buffer;
3192 struct buffer_page *bpage;
3193 u64 ret = 0;
3194
3195 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3196 return 0;
3197
3198 cpu_buffer = buffer->buffers[cpu];
3199 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3200 /*
3201 * if the tail is on reader_page, oldest time stamp is on the reader
3202 * page
3203 */
3204 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3205 bpage = cpu_buffer->reader_page;
3206 else
3207 bpage = rb_set_head_page(cpu_buffer);
3208 if (bpage)
3209 ret = bpage->page->time_stamp;
3210 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3211
3212 return ret;
3213 }
3214 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3215
3216 /**
3217 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3218 * @buffer: The ring buffer
3219 * @cpu: The per CPU buffer to read from.
3220 */
3221 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3222 {
3223 struct ring_buffer_per_cpu *cpu_buffer;
3224 unsigned long ret;
3225
3226 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3227 return 0;
3228
3229 cpu_buffer = buffer->buffers[cpu];
3230 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3231
3232 return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3235
3236 /**
3237 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3238 * @buffer: The ring buffer
3239 * @cpu: The per CPU buffer to get the entries from.
3240 */
3241 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3242 {
3243 struct ring_buffer_per_cpu *cpu_buffer;
3244
3245 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3246 return 0;
3247
3248 cpu_buffer = buffer->buffers[cpu];
3249
3250 return rb_num_of_entries(cpu_buffer);
3251 }
3252 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3253
3254 /**
3255 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3256 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3257 * @buffer: The ring buffer
3258 * @cpu: The per CPU buffer to get the number of overruns from
3259 */
3260 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3261 {
3262 struct ring_buffer_per_cpu *cpu_buffer;
3263 unsigned long ret;
3264
3265 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266 return 0;
3267
3268 cpu_buffer = buffer->buffers[cpu];
3269 ret = local_read(&cpu_buffer->overrun);
3270
3271 return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3274
3275 /**
3276 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3277 * commits failing due to the buffer wrapping around while there are uncommitted
3278 * events, such as during an interrupt storm.
3279 * @buffer: The ring buffer
3280 * @cpu: The per CPU buffer to get the number of overruns from
3281 */
3282 unsigned long
3283 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3284 {
3285 struct ring_buffer_per_cpu *cpu_buffer;
3286 unsigned long ret;
3287
3288 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3289 return 0;
3290
3291 cpu_buffer = buffer->buffers[cpu];
3292 ret = local_read(&cpu_buffer->commit_overrun);
3293
3294 return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3297
3298 /**
3299 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3300 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3301 * @buffer: The ring buffer
3302 * @cpu: The per CPU buffer to get the number of overruns from
3303 */
3304 unsigned long
3305 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3306 {
3307 struct ring_buffer_per_cpu *cpu_buffer;
3308 unsigned long ret;
3309
3310 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3311 return 0;
3312
3313 cpu_buffer = buffer->buffers[cpu];
3314 ret = local_read(&cpu_buffer->dropped_events);
3315
3316 return ret;
3317 }
3318 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3319
3320 /**
3321 * ring_buffer_read_events_cpu - get the number of events successfully read
3322 * @buffer: The ring buffer
3323 * @cpu: The per CPU buffer to get the number of events read
3324 */
3325 unsigned long
3326 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3327 {
3328 struct ring_buffer_per_cpu *cpu_buffer;
3329
3330 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3331 return 0;
3332
3333 cpu_buffer = buffer->buffers[cpu];
3334 return cpu_buffer->read;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3337
3338 /**
3339 * ring_buffer_entries - get the number of entries in a buffer
3340 * @buffer: The ring buffer
3341 *
3342 * Returns the total number of entries in the ring buffer
3343 * (all CPU entries)
3344 */
3345 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3346 {
3347 struct ring_buffer_per_cpu *cpu_buffer;
3348 unsigned long entries = 0;
3349 int cpu;
3350
3351 /* if you care about this being correct, lock the buffer */
3352 for_each_buffer_cpu(buffer, cpu) {
3353 cpu_buffer = buffer->buffers[cpu];
3354 entries += rb_num_of_entries(cpu_buffer);
3355 }
3356
3357 return entries;
3358 }
3359 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3360
3361 /**
3362 * ring_buffer_overruns - get the number of overruns in buffer
3363 * @buffer: The ring buffer
3364 *
3365 * Returns the total number of overruns in the ring buffer
3366 * (all CPU entries)
3367 */
3368 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3369 {
3370 struct ring_buffer_per_cpu *cpu_buffer;
3371 unsigned long overruns = 0;
3372 int cpu;
3373
3374 /* if you care about this being correct, lock the buffer */
3375 for_each_buffer_cpu(buffer, cpu) {
3376 cpu_buffer = buffer->buffers[cpu];
3377 overruns += local_read(&cpu_buffer->overrun);
3378 }
3379
3380 return overruns;
3381 }
3382 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3383
3384 static void rb_iter_reset(struct ring_buffer_iter *iter)
3385 {
3386 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3387
3388 /* Iterator usage is expected to have record disabled */
3389 iter->head_page = cpu_buffer->reader_page;
3390 iter->head = cpu_buffer->reader_page->read;
3391
3392 iter->cache_reader_page = iter->head_page;
3393 iter->cache_read = cpu_buffer->read;
3394
3395 if (iter->head)
3396 iter->read_stamp = cpu_buffer->read_stamp;
3397 else
3398 iter->read_stamp = iter->head_page->page->time_stamp;
3399 }
3400
3401 /**
3402 * ring_buffer_iter_reset - reset an iterator
3403 * @iter: The iterator to reset
3404 *
3405 * Resets the iterator, so that it will start from the beginning
3406 * again.
3407 */
3408 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3409 {
3410 struct ring_buffer_per_cpu *cpu_buffer;
3411 unsigned long flags;
3412
3413 if (!iter)
3414 return;
3415
3416 cpu_buffer = iter->cpu_buffer;
3417
3418 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3419 rb_iter_reset(iter);
3420 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3421 }
3422 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3423
3424 /**
3425 * ring_buffer_iter_empty - check if an iterator has no more to read
3426 * @iter: The iterator to check
3427 */
3428 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3429 {
3430 struct ring_buffer_per_cpu *cpu_buffer;
3431 struct buffer_page *reader;
3432 struct buffer_page *head_page;
3433 struct buffer_page *commit_page;
3434 unsigned commit;
3435
3436 cpu_buffer = iter->cpu_buffer;
3437
3438 /* Remember, trace recording is off when iterator is in use */
3439 reader = cpu_buffer->reader_page;
3440 head_page = cpu_buffer->head_page;
3441 commit_page = cpu_buffer->commit_page;
3442 commit = rb_page_commit(commit_page);
3443
3444 return ((iter->head_page == commit_page && iter->head == commit) ||
3445 (iter->head_page == reader && commit_page == head_page &&
3446 head_page->read == commit &&
3447 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3448 }
3449 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3450
3451 static void
3452 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3453 struct ring_buffer_event *event)
3454 {
3455 u64 delta;
3456
3457 switch (event->type_len) {
3458 case RINGBUF_TYPE_PADDING:
3459 return;
3460
3461 case RINGBUF_TYPE_TIME_EXTEND:
3462 delta = event->array[0];
3463 delta <<= TS_SHIFT;
3464 delta += event->time_delta;
3465 cpu_buffer->read_stamp += delta;
3466 return;
3467
3468 case RINGBUF_TYPE_TIME_STAMP:
3469 /* FIXME: not implemented */
3470 return;
3471
3472 case RINGBUF_TYPE_DATA:
3473 cpu_buffer->read_stamp += event->time_delta;
3474 return;
3475
3476 default:
3477 BUG();
3478 }
3479 return;
3480 }
3481
3482 static void
3483 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3484 struct ring_buffer_event *event)
3485 {
3486 u64 delta;
3487
3488 switch (event->type_len) {
3489 case RINGBUF_TYPE_PADDING:
3490 return;
3491
3492 case RINGBUF_TYPE_TIME_EXTEND:
3493 delta = event->array[0];
3494 delta <<= TS_SHIFT;
3495 delta += event->time_delta;
3496 iter->read_stamp += delta;
3497 return;
3498
3499 case RINGBUF_TYPE_TIME_STAMP:
3500 /* FIXME: not implemented */
3501 return;
3502
3503 case RINGBUF_TYPE_DATA:
3504 iter->read_stamp += event->time_delta;
3505 return;
3506
3507 default:
3508 BUG();
3509 }
3510 return;
3511 }
3512
3513 static struct buffer_page *
3514 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3515 {
3516 struct buffer_page *reader = NULL;
3517 unsigned long overwrite;
3518 unsigned long flags;
3519 int nr_loops = 0;
3520 int ret;
3521
3522 local_irq_save(flags);
3523 arch_spin_lock(&cpu_buffer->lock);
3524
3525 again:
3526 /*
3527 * This should normally only loop twice. But because the
3528 * start of the reader inserts an empty page, it causes
3529 * a case where we will loop three times. There should be no
3530 * reason to loop four times (that I know of).
3531 */
3532 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3533 reader = NULL;
3534 goto out;
3535 }
3536
3537 reader = cpu_buffer->reader_page;
3538
3539 /* If there's more to read, return this page */
3540 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3541 goto out;
3542
3543 /* Never should we have an index greater than the size */
3544 if (RB_WARN_ON(cpu_buffer,
3545 cpu_buffer->reader_page->read > rb_page_size(reader)))
3546 goto out;
3547
3548 /* check if we caught up to the tail */
3549 reader = NULL;
3550 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3551 goto out;
3552
3553 /* Don't bother swapping if the ring buffer is empty */
3554 if (rb_num_of_entries(cpu_buffer) == 0)
3555 goto out;
3556
3557 /*
3558 * Reset the reader page to size zero.
3559 */
3560 local_set(&cpu_buffer->reader_page->write, 0);
3561 local_set(&cpu_buffer->reader_page->entries, 0);
3562 local_set(&cpu_buffer->reader_page->page->commit, 0);
3563 cpu_buffer->reader_page->real_end = 0;
3564
3565 spin:
3566 /*
3567 * Splice the empty reader page into the list around the head.
3568 */
3569 reader = rb_set_head_page(cpu_buffer);
3570 if (!reader)
3571 goto out;
3572 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3573 cpu_buffer->reader_page->list.prev = reader->list.prev;
3574
3575 /*
3576 * cpu_buffer->pages just needs to point to the buffer, it
3577 * has no specific buffer page to point to. Lets move it out
3578 * of our way so we don't accidentally swap it.
3579 */
3580 cpu_buffer->pages = reader->list.prev;
3581
3582 /* The reader page will be pointing to the new head */
3583 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3584
3585 /*
3586 * We want to make sure we read the overruns after we set up our
3587 * pointers to the next object. The writer side does a
3588 * cmpxchg to cross pages which acts as the mb on the writer
3589 * side. Note, the reader will constantly fail the swap
3590 * while the writer is updating the pointers, so this
3591 * guarantees that the overwrite recorded here is the one we
3592 * want to compare with the last_overrun.
3593 */
3594 smp_mb();
3595 overwrite = local_read(&(cpu_buffer->overrun));
3596
3597 /*
3598 * Here's the tricky part.
3599 *
3600 * We need to move the pointer past the header page.
3601 * But we can only do that if a writer is not currently
3602 * moving it. The page before the header page has the
3603 * flag bit '1' set if it is pointing to the page we want.
3604 * but if the writer is in the process of moving it
3605 * than it will be '2' or already moved '0'.
3606 */
3607
3608 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3609
3610 /*
3611 * If we did not convert it, then we must try again.
3612 */
3613 if (!ret)
3614 goto spin;
3615
3616 /*
3617 * Yeah! We succeeded in replacing the page.
3618 *
3619 * Now make the new head point back to the reader page.
3620 */
3621 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3622 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3623
3624 /* Finally update the reader page to the new head */
3625 cpu_buffer->reader_page = reader;
3626 cpu_buffer->reader_page->read = 0;
3627
3628 if (overwrite != cpu_buffer->last_overrun) {
3629 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3630 cpu_buffer->last_overrun = overwrite;
3631 }
3632
3633 goto again;
3634
3635 out:
3636 /* Update the read_stamp on the first event */
3637 if (reader && reader->read == 0)
3638 cpu_buffer->read_stamp = reader->page->time_stamp;
3639
3640 arch_spin_unlock(&cpu_buffer->lock);
3641 local_irq_restore(flags);
3642
3643 return reader;
3644 }
3645
3646 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3647 {
3648 struct ring_buffer_event *event;
3649 struct buffer_page *reader;
3650 unsigned length;
3651
3652 reader = rb_get_reader_page(cpu_buffer);
3653
3654 /* This function should not be called when buffer is empty */
3655 if (RB_WARN_ON(cpu_buffer, !reader))
3656 return;
3657
3658 event = rb_reader_event(cpu_buffer);
3659
3660 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3661 cpu_buffer->read++;
3662
3663 rb_update_read_stamp(cpu_buffer, event);
3664
3665 length = rb_event_length(event);
3666 cpu_buffer->reader_page->read += length;
3667 }
3668
3669 static void rb_advance_iter(struct ring_buffer_iter *iter)
3670 {
3671 struct ring_buffer_per_cpu *cpu_buffer;
3672 struct ring_buffer_event *event;
3673 unsigned length;
3674
3675 cpu_buffer = iter->cpu_buffer;
3676
3677 /*
3678 * Check if we are at the end of the buffer.
3679 */
3680 if (iter->head >= rb_page_size(iter->head_page)) {
3681 /* discarded commits can make the page empty */
3682 if (iter->head_page == cpu_buffer->commit_page)
3683 return;
3684 rb_inc_iter(iter);
3685 return;
3686 }
3687
3688 event = rb_iter_head_event(iter);
3689
3690 length = rb_event_length(event);
3691
3692 /*
3693 * This should not be called to advance the header if we are
3694 * at the tail of the buffer.
3695 */
3696 if (RB_WARN_ON(cpu_buffer,
3697 (iter->head_page == cpu_buffer->commit_page) &&
3698 (iter->head + length > rb_commit_index(cpu_buffer))))
3699 return;
3700
3701 rb_update_iter_read_stamp(iter, event);
3702
3703 iter->head += length;
3704
3705 /* check for end of page padding */
3706 if ((iter->head >= rb_page_size(iter->head_page)) &&
3707 (iter->head_page != cpu_buffer->commit_page))
3708 rb_inc_iter(iter);
3709 }
3710
3711 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3712 {
3713 return cpu_buffer->lost_events;
3714 }
3715
3716 static struct ring_buffer_event *
3717 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3718 unsigned long *lost_events)
3719 {
3720 struct ring_buffer_event *event;
3721 struct buffer_page *reader;
3722 int nr_loops = 0;
3723
3724 again:
3725 /*
3726 * We repeat when a time extend is encountered.
3727 * Since the time extend is always attached to a data event,
3728 * we should never loop more than once.
3729 * (We never hit the following condition more than twice).
3730 */
3731 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3732 return NULL;
3733
3734 reader = rb_get_reader_page(cpu_buffer);
3735 if (!reader)
3736 return NULL;
3737
3738 event = rb_reader_event(cpu_buffer);
3739
3740 switch (event->type_len) {
3741 case RINGBUF_TYPE_PADDING:
3742 if (rb_null_event(event))
3743 RB_WARN_ON(cpu_buffer, 1);
3744 /*
3745 * Because the writer could be discarding every
3746 * event it creates (which would probably be bad)
3747 * if we were to go back to "again" then we may never
3748 * catch up, and will trigger the warn on, or lock
3749 * the box. Return the padding, and we will release
3750 * the current locks, and try again.
3751 */
3752 return event;
3753
3754 case RINGBUF_TYPE_TIME_EXTEND:
3755 /* Internal data, OK to advance */
3756 rb_advance_reader(cpu_buffer);
3757 goto again;
3758
3759 case RINGBUF_TYPE_TIME_STAMP:
3760 /* FIXME: not implemented */
3761 rb_advance_reader(cpu_buffer);
3762 goto again;
3763
3764 case RINGBUF_TYPE_DATA:
3765 if (ts) {
3766 *ts = cpu_buffer->read_stamp + event->time_delta;
3767 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3768 cpu_buffer->cpu, ts);
3769 }
3770 if (lost_events)
3771 *lost_events = rb_lost_events(cpu_buffer);
3772 return event;
3773
3774 default:
3775 BUG();
3776 }
3777
3778 return NULL;
3779 }
3780 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3781
3782 static struct ring_buffer_event *
3783 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3784 {
3785 struct ring_buffer *buffer;
3786 struct ring_buffer_per_cpu *cpu_buffer;
3787 struct ring_buffer_event *event;
3788 int nr_loops = 0;
3789
3790 cpu_buffer = iter->cpu_buffer;
3791 buffer = cpu_buffer->buffer;
3792
3793 /*
3794 * Check if someone performed a consuming read to
3795 * the buffer. A consuming read invalidates the iterator
3796 * and we need to reset the iterator in this case.
3797 */
3798 if (unlikely(iter->cache_read != cpu_buffer->read ||
3799 iter->cache_reader_page != cpu_buffer->reader_page))
3800 rb_iter_reset(iter);
3801
3802 again:
3803 if (ring_buffer_iter_empty(iter))
3804 return NULL;
3805
3806 /*
3807 * We repeat when a time extend is encountered or we hit
3808 * the end of the page. Since the time extend is always attached
3809 * to a data event, we should never loop more than three times.
3810 * Once for going to next page, once on time extend, and
3811 * finally once to get the event.
3812 * (We never hit the following condition more than thrice).
3813 */
3814 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3815 return NULL;
3816
3817 if (rb_per_cpu_empty(cpu_buffer))
3818 return NULL;
3819
3820 if (iter->head >= rb_page_size(iter->head_page)) {
3821 rb_inc_iter(iter);
3822 goto again;
3823 }
3824
3825 event = rb_iter_head_event(iter);
3826
3827 switch (event->type_len) {
3828 case RINGBUF_TYPE_PADDING:
3829 if (rb_null_event(event)) {
3830 rb_inc_iter(iter);
3831 goto again;
3832 }
3833 rb_advance_iter(iter);
3834 return event;
3835
3836 case RINGBUF_TYPE_TIME_EXTEND:
3837 /* Internal data, OK to advance */
3838 rb_advance_iter(iter);
3839 goto again;
3840
3841 case RINGBUF_TYPE_TIME_STAMP:
3842 /* FIXME: not implemented */
3843 rb_advance_iter(iter);
3844 goto again;
3845
3846 case RINGBUF_TYPE_DATA:
3847 if (ts) {
3848 *ts = iter->read_stamp + event->time_delta;
3849 ring_buffer_normalize_time_stamp(buffer,
3850 cpu_buffer->cpu, ts);
3851 }
3852 return event;
3853
3854 default:
3855 BUG();
3856 }
3857
3858 return NULL;
3859 }
3860 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3861
3862 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3863 {
3864 if (likely(!in_nmi())) {
3865 raw_spin_lock(&cpu_buffer->reader_lock);
3866 return true;
3867 }
3868
3869 /*
3870 * If an NMI die dumps out the content of the ring buffer
3871 * trylock must be used to prevent a deadlock if the NMI
3872 * preempted a task that holds the ring buffer locks. If
3873 * we get the lock then all is fine, if not, then continue
3874 * to do the read, but this can corrupt the ring buffer,
3875 * so it must be permanently disabled from future writes.
3876 * Reading from NMI is a oneshot deal.
3877 */
3878 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3879 return true;
3880
3881 /* Continue without locking, but disable the ring buffer */
3882 atomic_inc(&cpu_buffer->record_disabled);
3883 return false;
3884 }
3885
3886 static inline void
3887 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3888 {
3889 if (likely(locked))
3890 raw_spin_unlock(&cpu_buffer->reader_lock);
3891 return;
3892 }
3893
3894 /**
3895 * ring_buffer_peek - peek at the next event to be read
3896 * @buffer: The ring buffer to read
3897 * @cpu: The cpu to peak at
3898 * @ts: The timestamp counter of this event.
3899 * @lost_events: a variable to store if events were lost (may be NULL)
3900 *
3901 * This will return the event that will be read next, but does
3902 * not consume the data.
3903 */
3904 struct ring_buffer_event *
3905 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3906 unsigned long *lost_events)
3907 {
3908 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3909 struct ring_buffer_event *event;
3910 unsigned long flags;
3911 bool dolock;
3912
3913 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3914 return NULL;
3915
3916 again:
3917 local_irq_save(flags);
3918 dolock = rb_reader_lock(cpu_buffer);
3919 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3920 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921 rb_advance_reader(cpu_buffer);
3922 rb_reader_unlock(cpu_buffer, dolock);
3923 local_irq_restore(flags);
3924
3925 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3926 goto again;
3927
3928 return event;
3929 }
3930
3931 /**
3932 * ring_buffer_iter_peek - peek at the next event to be read
3933 * @iter: The ring buffer iterator
3934 * @ts: The timestamp counter of this event.
3935 *
3936 * This will return the event that will be read next, but does
3937 * not increment the iterator.
3938 */
3939 struct ring_buffer_event *
3940 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3941 {
3942 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3943 struct ring_buffer_event *event;
3944 unsigned long flags;
3945
3946 again:
3947 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3948 event = rb_iter_peek(iter, ts);
3949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3950
3951 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3952 goto again;
3953
3954 return event;
3955 }
3956
3957 /**
3958 * ring_buffer_consume - return an event and consume it
3959 * @buffer: The ring buffer to get the next event from
3960 * @cpu: the cpu to read the buffer from
3961 * @ts: a variable to store the timestamp (may be NULL)
3962 * @lost_events: a variable to store if events were lost (may be NULL)
3963 *
3964 * Returns the next event in the ring buffer, and that event is consumed.
3965 * Meaning, that sequential reads will keep returning a different event,
3966 * and eventually empty the ring buffer if the producer is slower.
3967 */
3968 struct ring_buffer_event *
3969 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3970 unsigned long *lost_events)
3971 {
3972 struct ring_buffer_per_cpu *cpu_buffer;
3973 struct ring_buffer_event *event = NULL;
3974 unsigned long flags;
3975 bool dolock;
3976
3977 again:
3978 /* might be called in atomic */
3979 preempt_disable();
3980
3981 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982 goto out;
3983
3984 cpu_buffer = buffer->buffers[cpu];
3985 local_irq_save(flags);
3986 dolock = rb_reader_lock(cpu_buffer);
3987
3988 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3989 if (event) {
3990 cpu_buffer->lost_events = 0;
3991 rb_advance_reader(cpu_buffer);
3992 }
3993
3994 rb_reader_unlock(cpu_buffer, dolock);
3995 local_irq_restore(flags);
3996
3997 out:
3998 preempt_enable();
3999
4000 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4001 goto again;
4002
4003 return event;
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4006
4007 /**
4008 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4009 * @buffer: The ring buffer to read from
4010 * @cpu: The cpu buffer to iterate over
4011 *
4012 * This performs the initial preparations necessary to iterate
4013 * through the buffer. Memory is allocated, buffer recording
4014 * is disabled, and the iterator pointer is returned to the caller.
4015 *
4016 * Disabling buffer recordng prevents the reading from being
4017 * corrupted. This is not a consuming read, so a producer is not
4018 * expected.
4019 *
4020 * After a sequence of ring_buffer_read_prepare calls, the user is
4021 * expected to make at least one call to ring_buffer_read_prepare_sync.
4022 * Afterwards, ring_buffer_read_start is invoked to get things going
4023 * for real.
4024 *
4025 * This overall must be paired with ring_buffer_read_finish.
4026 */
4027 struct ring_buffer_iter *
4028 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4029 {
4030 struct ring_buffer_per_cpu *cpu_buffer;
4031 struct ring_buffer_iter *iter;
4032
4033 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4034 return NULL;
4035
4036 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4037 if (!iter)
4038 return NULL;
4039
4040 cpu_buffer = buffer->buffers[cpu];
4041
4042 iter->cpu_buffer = cpu_buffer;
4043
4044 atomic_inc(&buffer->resize_disabled);
4045 atomic_inc(&cpu_buffer->record_disabled);
4046
4047 return iter;
4048 }
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4050
4051 /**
4052 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4053 *
4054 * All previously invoked ring_buffer_read_prepare calls to prepare
4055 * iterators will be synchronized. Afterwards, read_buffer_read_start
4056 * calls on those iterators are allowed.
4057 */
4058 void
4059 ring_buffer_read_prepare_sync(void)
4060 {
4061 synchronize_sched();
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4064
4065 /**
4066 * ring_buffer_read_start - start a non consuming read of the buffer
4067 * @iter: The iterator returned by ring_buffer_read_prepare
4068 *
4069 * This finalizes the startup of an iteration through the buffer.
4070 * The iterator comes from a call to ring_buffer_read_prepare and
4071 * an intervening ring_buffer_read_prepare_sync must have been
4072 * performed.
4073 *
4074 * Must be paired with ring_buffer_read_finish.
4075 */
4076 void
4077 ring_buffer_read_start(struct ring_buffer_iter *iter)
4078 {
4079 struct ring_buffer_per_cpu *cpu_buffer;
4080 unsigned long flags;
4081
4082 if (!iter)
4083 return;
4084
4085 cpu_buffer = iter->cpu_buffer;
4086
4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088 arch_spin_lock(&cpu_buffer->lock);
4089 rb_iter_reset(iter);
4090 arch_spin_unlock(&cpu_buffer->lock);
4091 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4094
4095 /**
4096 * ring_buffer_read_finish - finish reading the iterator of the buffer
4097 * @iter: The iterator retrieved by ring_buffer_start
4098 *
4099 * This re-enables the recording to the buffer, and frees the
4100 * iterator.
4101 */
4102 void
4103 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4104 {
4105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106 unsigned long flags;
4107
4108 /*
4109 * Ring buffer is disabled from recording, here's a good place
4110 * to check the integrity of the ring buffer.
4111 * Must prevent readers from trying to read, as the check
4112 * clears the HEAD page and readers require it.
4113 */
4114 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4115 rb_check_pages(cpu_buffer);
4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118 atomic_dec(&cpu_buffer->record_disabled);
4119 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4120 kfree(iter);
4121 }
4122 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4123
4124 /**
4125 * ring_buffer_read - read the next item in the ring buffer by the iterator
4126 * @iter: The ring buffer iterator
4127 * @ts: The time stamp of the event read.
4128 *
4129 * This reads the next event in the ring buffer and increments the iterator.
4130 */
4131 struct ring_buffer_event *
4132 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4133 {
4134 struct ring_buffer_event *event;
4135 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4136 unsigned long flags;
4137
4138 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4139 again:
4140 event = rb_iter_peek(iter, ts);
4141 if (!event)
4142 goto out;
4143
4144 if (event->type_len == RINGBUF_TYPE_PADDING)
4145 goto again;
4146
4147 rb_advance_iter(iter);
4148 out:
4149 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150
4151 return event;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_read);
4154
4155 /**
4156 * ring_buffer_size - return the size of the ring buffer (in bytes)
4157 * @buffer: The ring buffer.
4158 */
4159 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4160 {
4161 /*
4162 * Earlier, this method returned
4163 * BUF_PAGE_SIZE * buffer->nr_pages
4164 * Since the nr_pages field is now removed, we have converted this to
4165 * return the per cpu buffer value.
4166 */
4167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168 return 0;
4169
4170 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_size);
4173
4174 static void
4175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4176 {
4177 rb_head_page_deactivate(cpu_buffer);
4178
4179 cpu_buffer->head_page
4180 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4181 local_set(&cpu_buffer->head_page->write, 0);
4182 local_set(&cpu_buffer->head_page->entries, 0);
4183 local_set(&cpu_buffer->head_page->page->commit, 0);
4184
4185 cpu_buffer->head_page->read = 0;
4186
4187 cpu_buffer->tail_page = cpu_buffer->head_page;
4188 cpu_buffer->commit_page = cpu_buffer->head_page;
4189
4190 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4191 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4192 local_set(&cpu_buffer->reader_page->write, 0);
4193 local_set(&cpu_buffer->reader_page->entries, 0);
4194 local_set(&cpu_buffer->reader_page->page->commit, 0);
4195 cpu_buffer->reader_page->read = 0;
4196
4197 local_set(&cpu_buffer->entries_bytes, 0);
4198 local_set(&cpu_buffer->overrun, 0);
4199 local_set(&cpu_buffer->commit_overrun, 0);
4200 local_set(&cpu_buffer->dropped_events, 0);
4201 local_set(&cpu_buffer->entries, 0);
4202 local_set(&cpu_buffer->committing, 0);
4203 local_set(&cpu_buffer->commits, 0);
4204 cpu_buffer->read = 0;
4205 cpu_buffer->read_bytes = 0;
4206
4207 cpu_buffer->write_stamp = 0;
4208 cpu_buffer->read_stamp = 0;
4209
4210 cpu_buffer->lost_events = 0;
4211 cpu_buffer->last_overrun = 0;
4212
4213 rb_head_page_activate(cpu_buffer);
4214 }
4215
4216 /**
4217 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4218 * @buffer: The ring buffer to reset a per cpu buffer of
4219 * @cpu: The CPU buffer to be reset
4220 */
4221 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4222 {
4223 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4224 unsigned long flags;
4225
4226 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4227 return;
4228
4229 atomic_inc(&buffer->resize_disabled);
4230 atomic_inc(&cpu_buffer->record_disabled);
4231
4232 /* Make sure all commits have finished */
4233 synchronize_sched();
4234
4235 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4236
4237 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4238 goto out;
4239
4240 arch_spin_lock(&cpu_buffer->lock);
4241
4242 rb_reset_cpu(cpu_buffer);
4243
4244 arch_spin_unlock(&cpu_buffer->lock);
4245
4246 out:
4247 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4248
4249 atomic_dec(&cpu_buffer->record_disabled);
4250 atomic_dec(&buffer->resize_disabled);
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4253
4254 /**
4255 * ring_buffer_reset - reset a ring buffer
4256 * @buffer: The ring buffer to reset all cpu buffers
4257 */
4258 void ring_buffer_reset(struct ring_buffer *buffer)
4259 {
4260 int cpu;
4261
4262 for_each_buffer_cpu(buffer, cpu)
4263 ring_buffer_reset_cpu(buffer, cpu);
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4266
4267 /**
4268 * rind_buffer_empty - is the ring buffer empty?
4269 * @buffer: The ring buffer to test
4270 */
4271 bool ring_buffer_empty(struct ring_buffer *buffer)
4272 {
4273 struct ring_buffer_per_cpu *cpu_buffer;
4274 unsigned long flags;
4275 bool dolock;
4276 int cpu;
4277 int ret;
4278
4279 /* yes this is racy, but if you don't like the race, lock the buffer */
4280 for_each_buffer_cpu(buffer, cpu) {
4281 cpu_buffer = buffer->buffers[cpu];
4282 local_irq_save(flags);
4283 dolock = rb_reader_lock(cpu_buffer);
4284 ret = rb_per_cpu_empty(cpu_buffer);
4285 rb_reader_unlock(cpu_buffer, dolock);
4286 local_irq_restore(flags);
4287
4288 if (!ret)
4289 return false;
4290 }
4291
4292 return true;
4293 }
4294 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4295
4296 /**
4297 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4298 * @buffer: The ring buffer
4299 * @cpu: The CPU buffer to test
4300 */
4301 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4302 {
4303 struct ring_buffer_per_cpu *cpu_buffer;
4304 unsigned long flags;
4305 bool dolock;
4306 int ret;
4307
4308 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4309 return true;
4310
4311 cpu_buffer = buffer->buffers[cpu];
4312 local_irq_save(flags);
4313 dolock = rb_reader_lock(cpu_buffer);
4314 ret = rb_per_cpu_empty(cpu_buffer);
4315 rb_reader_unlock(cpu_buffer, dolock);
4316 local_irq_restore(flags);
4317
4318 return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323 /**
4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325 * @buffer_a: One buffer to swap with
4326 * @buffer_b: The other buffer to swap with
4327 *
4328 * This function is useful for tracers that want to take a "snapshot"
4329 * of a CPU buffer and has another back up buffer lying around.
4330 * it is expected that the tracer handles the cpu buffer not being
4331 * used at the moment.
4332 */
4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334 struct ring_buffer *buffer_b, int cpu)
4335 {
4336 struct ring_buffer_per_cpu *cpu_buffer_a;
4337 struct ring_buffer_per_cpu *cpu_buffer_b;
4338 int ret = -EINVAL;
4339
4340 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342 goto out;
4343
4344 cpu_buffer_a = buffer_a->buffers[cpu];
4345 cpu_buffer_b = buffer_b->buffers[cpu];
4346
4347 /* At least make sure the two buffers are somewhat the same */
4348 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349 goto out;
4350
4351 ret = -EAGAIN;
4352
4353 if (atomic_read(&buffer_a->record_disabled))
4354 goto out;
4355
4356 if (atomic_read(&buffer_b->record_disabled))
4357 goto out;
4358
4359 if (atomic_read(&cpu_buffer_a->record_disabled))
4360 goto out;
4361
4362 if (atomic_read(&cpu_buffer_b->record_disabled))
4363 goto out;
4364
4365 /*
4366 * We can't do a synchronize_sched here because this
4367 * function can be called in atomic context.
4368 * Normally this will be called from the same CPU as cpu.
4369 * If not it's up to the caller to protect this.
4370 */
4371 atomic_inc(&cpu_buffer_a->record_disabled);
4372 atomic_inc(&cpu_buffer_b->record_disabled);
4373
4374 ret = -EBUSY;
4375 if (local_read(&cpu_buffer_a->committing))
4376 goto out_dec;
4377 if (local_read(&cpu_buffer_b->committing))
4378 goto out_dec;
4379
4380 buffer_a->buffers[cpu] = cpu_buffer_b;
4381 buffer_b->buffers[cpu] = cpu_buffer_a;
4382
4383 cpu_buffer_b->buffer = buffer_a;
4384 cpu_buffer_a->buffer = buffer_b;
4385
4386 ret = 0;
4387
4388 out_dec:
4389 atomic_dec(&cpu_buffer_a->record_disabled);
4390 atomic_dec(&cpu_buffer_b->record_disabled);
4391 out:
4392 return ret;
4393 }
4394 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4395 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4396
4397 /**
4398 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4399 * @buffer: the buffer to allocate for.
4400 * @cpu: the cpu buffer to allocate.
4401 *
4402 * This function is used in conjunction with ring_buffer_read_page.
4403 * When reading a full page from the ring buffer, these functions
4404 * can be used to speed up the process. The calling function should
4405 * allocate a few pages first with this function. Then when it
4406 * needs to get pages from the ring buffer, it passes the result
4407 * of this function into ring_buffer_read_page, which will swap
4408 * the page that was allocated, with the read page of the buffer.
4409 *
4410 * Returns:
4411 * The page allocated, or ERR_PTR
4412 */
4413 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4414 {
4415 struct ring_buffer_per_cpu *cpu_buffer;
4416 struct buffer_data_page *bpage = NULL;
4417 unsigned long flags;
4418 struct page *page;
4419
4420 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4421 return ERR_PTR(-ENODEV);
4422
4423 cpu_buffer = buffer->buffers[cpu];
4424 local_irq_save(flags);
4425 arch_spin_lock(&cpu_buffer->lock);
4426
4427 if (cpu_buffer->free_page) {
4428 bpage = cpu_buffer->free_page;
4429 cpu_buffer->free_page = NULL;
4430 }
4431
4432 arch_spin_unlock(&cpu_buffer->lock);
4433 local_irq_restore(flags);
4434
4435 if (bpage)
4436 goto out;
4437
4438 page = alloc_pages_node(cpu_to_node(cpu),
4439 GFP_KERNEL | __GFP_NORETRY, 0);
4440 if (!page)
4441 return ERR_PTR(-ENOMEM);
4442
4443 bpage = page_address(page);
4444
4445 out:
4446 rb_init_page(bpage);
4447
4448 return bpage;
4449 }
4450 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4451
4452 /**
4453 * ring_buffer_free_read_page - free an allocated read page
4454 * @buffer: the buffer the page was allocate for
4455 * @cpu: the cpu buffer the page came from
4456 * @data: the page to free
4457 *
4458 * Free a page allocated from ring_buffer_alloc_read_page.
4459 */
4460 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4461 {
4462 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4463 struct buffer_data_page *bpage = data;
4464 struct page *page = virt_to_page(bpage);
4465 unsigned long flags;
4466
4467 /* If the page is still in use someplace else, we can't reuse it */
4468 if (page_ref_count(page) > 1)
4469 goto out;
4470
4471 local_irq_save(flags);
4472 arch_spin_lock(&cpu_buffer->lock);
4473
4474 if (!cpu_buffer->free_page) {
4475 cpu_buffer->free_page = bpage;
4476 bpage = NULL;
4477 }
4478
4479 arch_spin_unlock(&cpu_buffer->lock);
4480 local_irq_restore(flags);
4481
4482 out:
4483 free_page((unsigned long)bpage);
4484 }
4485 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4486
4487 /**
4488 * ring_buffer_read_page - extract a page from the ring buffer
4489 * @buffer: buffer to extract from
4490 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4491 * @len: amount to extract
4492 * @cpu: the cpu of the buffer to extract
4493 * @full: should the extraction only happen when the page is full.
4494 *
4495 * This function will pull out a page from the ring buffer and consume it.
4496 * @data_page must be the address of the variable that was returned
4497 * from ring_buffer_alloc_read_page. This is because the page might be used
4498 * to swap with a page in the ring buffer.
4499 *
4500 * for example:
4501 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4502 * if (IS_ERR(rpage))
4503 * return PTR_ERR(rpage);
4504 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4505 * if (ret >= 0)
4506 * process_page(rpage, ret);
4507 *
4508 * When @full is set, the function will not return true unless
4509 * the writer is off the reader page.
4510 *
4511 * Note: it is up to the calling functions to handle sleeps and wakeups.
4512 * The ring buffer can be used anywhere in the kernel and can not
4513 * blindly call wake_up. The layer that uses the ring buffer must be
4514 * responsible for that.
4515 *
4516 * Returns:
4517 * >=0 if data has been transferred, returns the offset of consumed data.
4518 * <0 if no data has been transferred.
4519 */
4520 int ring_buffer_read_page(struct ring_buffer *buffer,
4521 void **data_page, size_t len, int cpu, int full)
4522 {
4523 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4524 struct ring_buffer_event *event;
4525 struct buffer_data_page *bpage;
4526 struct buffer_page *reader;
4527 unsigned long missed_events;
4528 unsigned long flags;
4529 unsigned int commit;
4530 unsigned int read;
4531 u64 save_timestamp;
4532 int ret = -1;
4533
4534 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4535 goto out;
4536
4537 /*
4538 * If len is not big enough to hold the page header, then
4539 * we can not copy anything.
4540 */
4541 if (len <= BUF_PAGE_HDR_SIZE)
4542 goto out;
4543
4544 len -= BUF_PAGE_HDR_SIZE;
4545
4546 if (!data_page)
4547 goto out;
4548
4549 bpage = *data_page;
4550 if (!bpage)
4551 goto out;
4552
4553 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4554
4555 reader = rb_get_reader_page(cpu_buffer);
4556 if (!reader)
4557 goto out_unlock;
4558
4559 event = rb_reader_event(cpu_buffer);
4560
4561 read = reader->read;
4562 commit = rb_page_commit(reader);
4563
4564 /* Check if any events were dropped */
4565 missed_events = cpu_buffer->lost_events;
4566
4567 /*
4568 * If this page has been partially read or
4569 * if len is not big enough to read the rest of the page or
4570 * a writer is still on the page, then
4571 * we must copy the data from the page to the buffer.
4572 * Otherwise, we can simply swap the page with the one passed in.
4573 */
4574 if (read || (len < (commit - read)) ||
4575 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4576 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4577 unsigned int rpos = read;
4578 unsigned int pos = 0;
4579 unsigned int size;
4580
4581 if (full)
4582 goto out_unlock;
4583
4584 if (len > (commit - read))
4585 len = (commit - read);
4586
4587 /* Always keep the time extend and data together */
4588 size = rb_event_ts_length(event);
4589
4590 if (len < size)
4591 goto out_unlock;
4592
4593 /* save the current timestamp, since the user will need it */
4594 save_timestamp = cpu_buffer->read_stamp;
4595
4596 /* Need to copy one event at a time */
4597 do {
4598 /* We need the size of one event, because
4599 * rb_advance_reader only advances by one event,
4600 * whereas rb_event_ts_length may include the size of
4601 * one or two events.
4602 * We have already ensured there's enough space if this
4603 * is a time extend. */
4604 size = rb_event_length(event);
4605 memcpy(bpage->data + pos, rpage->data + rpos, size);
4606
4607 len -= size;
4608
4609 rb_advance_reader(cpu_buffer);
4610 rpos = reader->read;
4611 pos += size;
4612
4613 if (rpos >= commit)
4614 break;
4615
4616 event = rb_reader_event(cpu_buffer);
4617 /* Always keep the time extend and data together */
4618 size = rb_event_ts_length(event);
4619 } while (len >= size);
4620
4621 /* update bpage */
4622 local_set(&bpage->commit, pos);
4623 bpage->time_stamp = save_timestamp;
4624
4625 /* we copied everything to the beginning */
4626 read = 0;
4627 } else {
4628 /* update the entry counter */
4629 cpu_buffer->read += rb_page_entries(reader);
4630 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4631
4632 /* swap the pages */
4633 rb_init_page(bpage);
4634 bpage = reader->page;
4635 reader->page = *data_page;
4636 local_set(&reader->write, 0);
4637 local_set(&reader->entries, 0);
4638 reader->read = 0;
4639 *data_page = bpage;
4640
4641 /*
4642 * Use the real_end for the data size,
4643 * This gives us a chance to store the lost events
4644 * on the page.
4645 */
4646 if (reader->real_end)
4647 local_set(&bpage->commit, reader->real_end);
4648 }
4649 ret = read;
4650
4651 cpu_buffer->lost_events = 0;
4652
4653 commit = local_read(&bpage->commit);
4654 /*
4655 * Set a flag in the commit field if we lost events
4656 */
4657 if (missed_events) {
4658 /* If there is room at the end of the page to save the
4659 * missed events, then record it there.
4660 */
4661 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4662 memcpy(&bpage->data[commit], &missed_events,
4663 sizeof(missed_events));
4664 local_add(RB_MISSED_STORED, &bpage->commit);
4665 commit += sizeof(missed_events);
4666 }
4667 local_add(RB_MISSED_EVENTS, &bpage->commit);
4668 }
4669
4670 /*
4671 * This page may be off to user land. Zero it out here.
4672 */
4673 if (commit < BUF_PAGE_SIZE)
4674 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4675
4676 out_unlock:
4677 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4678
4679 out:
4680 return ret;
4681 }
4682 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4683
4684 /*
4685 * We only allocate new buffers, never free them if the CPU goes down.
4686 * If we were to free the buffer, then the user would lose any trace that was in
4687 * the buffer.
4688 */
4689 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4690 {
4691 struct ring_buffer *buffer;
4692 long nr_pages_same;
4693 int cpu_i;
4694 unsigned long nr_pages;
4695
4696 buffer = container_of(node, struct ring_buffer, node);
4697 if (cpumask_test_cpu(cpu, buffer->cpumask))
4698 return 0;
4699
4700 nr_pages = 0;
4701 nr_pages_same = 1;
4702 /* check if all cpu sizes are same */
4703 for_each_buffer_cpu(buffer, cpu_i) {
4704 /* fill in the size from first enabled cpu */
4705 if (nr_pages == 0)
4706 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4707 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4708 nr_pages_same = 0;
4709 break;
4710 }
4711 }
4712 /* allocate minimum pages, user can later expand it */
4713 if (!nr_pages_same)
4714 nr_pages = 2;
4715 buffer->buffers[cpu] =
4716 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4717 if (!buffer->buffers[cpu]) {
4718 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4719 cpu);
4720 return -ENOMEM;
4721 }
4722 smp_wmb();
4723 cpumask_set_cpu(cpu, buffer->cpumask);
4724 return 0;
4725 }
4726
4727 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4728 /*
4729 * This is a basic integrity check of the ring buffer.
4730 * Late in the boot cycle this test will run when configured in.
4731 * It will kick off a thread per CPU that will go into a loop
4732 * writing to the per cpu ring buffer various sizes of data.
4733 * Some of the data will be large items, some small.
4734 *
4735 * Another thread is created that goes into a spin, sending out
4736 * IPIs to the other CPUs to also write into the ring buffer.
4737 * this is to test the nesting ability of the buffer.
4738 *
4739 * Basic stats are recorded and reported. If something in the
4740 * ring buffer should happen that's not expected, a big warning
4741 * is displayed and all ring buffers are disabled.
4742 */
4743 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4744
4745 struct rb_test_data {
4746 struct ring_buffer *buffer;
4747 unsigned long events;
4748 unsigned long bytes_written;
4749 unsigned long bytes_alloc;
4750 unsigned long bytes_dropped;
4751 unsigned long events_nested;
4752 unsigned long bytes_written_nested;
4753 unsigned long bytes_alloc_nested;
4754 unsigned long bytes_dropped_nested;
4755 int min_size_nested;
4756 int max_size_nested;
4757 int max_size;
4758 int min_size;
4759 int cpu;
4760 int cnt;
4761 };
4762
4763 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4764
4765 /* 1 meg per cpu */
4766 #define RB_TEST_BUFFER_SIZE 1048576
4767
4768 static char rb_string[] __initdata =
4769 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4770 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4771 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4772
4773 static bool rb_test_started __initdata;
4774
4775 struct rb_item {
4776 int size;
4777 char str[];
4778 };
4779
4780 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4781 {
4782 struct ring_buffer_event *event;
4783 struct rb_item *item;
4784 bool started;
4785 int event_len;
4786 int size;
4787 int len;
4788 int cnt;
4789
4790 /* Have nested writes different that what is written */
4791 cnt = data->cnt + (nested ? 27 : 0);
4792
4793 /* Multiply cnt by ~e, to make some unique increment */
4794 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4795
4796 len = size + sizeof(struct rb_item);
4797
4798 started = rb_test_started;
4799 /* read rb_test_started before checking buffer enabled */
4800 smp_rmb();
4801
4802 event = ring_buffer_lock_reserve(data->buffer, len);
4803 if (!event) {
4804 /* Ignore dropped events before test starts. */
4805 if (started) {
4806 if (nested)
4807 data->bytes_dropped += len;
4808 else
4809 data->bytes_dropped_nested += len;
4810 }
4811 return len;
4812 }
4813
4814 event_len = ring_buffer_event_length(event);
4815
4816 if (RB_WARN_ON(data->buffer, event_len < len))
4817 goto out;
4818
4819 item = ring_buffer_event_data(event);
4820 item->size = size;
4821 memcpy(item->str, rb_string, size);
4822
4823 if (nested) {
4824 data->bytes_alloc_nested += event_len;
4825 data->bytes_written_nested += len;
4826 data->events_nested++;
4827 if (!data->min_size_nested || len < data->min_size_nested)
4828 data->min_size_nested = len;
4829 if (len > data->max_size_nested)
4830 data->max_size_nested = len;
4831 } else {
4832 data->bytes_alloc += event_len;
4833 data->bytes_written += len;
4834 data->events++;
4835 if (!data->min_size || len < data->min_size)
4836 data->max_size = len;
4837 if (len > data->max_size)
4838 data->max_size = len;
4839 }
4840
4841 out:
4842 ring_buffer_unlock_commit(data->buffer, event);
4843
4844 return 0;
4845 }
4846
4847 static __init int rb_test(void *arg)
4848 {
4849 struct rb_test_data *data = arg;
4850
4851 while (!kthread_should_stop()) {
4852 rb_write_something(data, false);
4853 data->cnt++;
4854
4855 set_current_state(TASK_INTERRUPTIBLE);
4856 /* Now sleep between a min of 100-300us and a max of 1ms */
4857 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4858 }
4859
4860 return 0;
4861 }
4862
4863 static __init void rb_ipi(void *ignore)
4864 {
4865 struct rb_test_data *data;
4866 int cpu = smp_processor_id();
4867
4868 data = &rb_data[cpu];
4869 rb_write_something(data, true);
4870 }
4871
4872 static __init int rb_hammer_test(void *arg)
4873 {
4874 while (!kthread_should_stop()) {
4875
4876 /* Send an IPI to all cpus to write data! */
4877 smp_call_function(rb_ipi, NULL, 1);
4878 /* No sleep, but for non preempt, let others run */
4879 schedule();
4880 }
4881
4882 return 0;
4883 }
4884
4885 static __init int test_ringbuffer(void)
4886 {
4887 struct task_struct *rb_hammer;
4888 struct ring_buffer *buffer;
4889 int cpu;
4890 int ret = 0;
4891
4892 pr_info("Running ring buffer tests...\n");
4893
4894 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4895 if (WARN_ON(!buffer))
4896 return 0;
4897
4898 /* Disable buffer so that threads can't write to it yet */
4899 ring_buffer_record_off(buffer);
4900
4901 for_each_online_cpu(cpu) {
4902 rb_data[cpu].buffer = buffer;
4903 rb_data[cpu].cpu = cpu;
4904 rb_data[cpu].cnt = cpu;
4905 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4906 "rbtester/%d", cpu);
4907 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4908 pr_cont("FAILED\n");
4909 ret = PTR_ERR(rb_threads[cpu]);
4910 goto out_free;
4911 }
4912
4913 kthread_bind(rb_threads[cpu], cpu);
4914 wake_up_process(rb_threads[cpu]);
4915 }
4916
4917 /* Now create the rb hammer! */
4918 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4919 if (WARN_ON(IS_ERR(rb_hammer))) {
4920 pr_cont("FAILED\n");
4921 ret = PTR_ERR(rb_hammer);
4922 goto out_free;
4923 }
4924
4925 ring_buffer_record_on(buffer);
4926 /*
4927 * Show buffer is enabled before setting rb_test_started.
4928 * Yes there's a small race window where events could be
4929 * dropped and the thread wont catch it. But when a ring
4930 * buffer gets enabled, there will always be some kind of
4931 * delay before other CPUs see it. Thus, we don't care about
4932 * those dropped events. We care about events dropped after
4933 * the threads see that the buffer is active.
4934 */
4935 smp_wmb();
4936 rb_test_started = true;
4937
4938 set_current_state(TASK_INTERRUPTIBLE);
4939 /* Just run for 10 seconds */;
4940 schedule_timeout(10 * HZ);
4941
4942 kthread_stop(rb_hammer);
4943
4944 out_free:
4945 for_each_online_cpu(cpu) {
4946 if (!rb_threads[cpu])
4947 break;
4948 kthread_stop(rb_threads[cpu]);
4949 }
4950 if (ret) {
4951 ring_buffer_free(buffer);
4952 return ret;
4953 }
4954
4955 /* Report! */
4956 pr_info("finished\n");
4957 for_each_online_cpu(cpu) {
4958 struct ring_buffer_event *event;
4959 struct rb_test_data *data = &rb_data[cpu];
4960 struct rb_item *item;
4961 unsigned long total_events;
4962 unsigned long total_dropped;
4963 unsigned long total_written;
4964 unsigned long total_alloc;
4965 unsigned long total_read = 0;
4966 unsigned long total_size = 0;
4967 unsigned long total_len = 0;
4968 unsigned long total_lost = 0;
4969 unsigned long lost;
4970 int big_event_size;
4971 int small_event_size;
4972
4973 ret = -1;
4974
4975 total_events = data->events + data->events_nested;
4976 total_written = data->bytes_written + data->bytes_written_nested;
4977 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4978 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4979
4980 big_event_size = data->max_size + data->max_size_nested;
4981 small_event_size = data->min_size + data->min_size_nested;
4982
4983 pr_info("CPU %d:\n", cpu);
4984 pr_info(" events: %ld\n", total_events);
4985 pr_info(" dropped bytes: %ld\n", total_dropped);
4986 pr_info(" alloced bytes: %ld\n", total_alloc);
4987 pr_info(" written bytes: %ld\n", total_written);
4988 pr_info(" biggest event: %d\n", big_event_size);
4989 pr_info(" smallest event: %d\n", small_event_size);
4990
4991 if (RB_WARN_ON(buffer, total_dropped))
4992 break;
4993
4994 ret = 0;
4995
4996 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4997 total_lost += lost;
4998 item = ring_buffer_event_data(event);
4999 total_len += ring_buffer_event_length(event);
5000 total_size += item->size + sizeof(struct rb_item);
5001 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5002 pr_info("FAILED!\n");
5003 pr_info("buffer had: %.*s\n", item->size, item->str);
5004 pr_info("expected: %.*s\n", item->size, rb_string);
5005 RB_WARN_ON(buffer, 1);
5006 ret = -1;
5007 break;
5008 }
5009 total_read++;
5010 }
5011 if (ret)
5012 break;
5013
5014 ret = -1;
5015
5016 pr_info(" read events: %ld\n", total_read);
5017 pr_info(" lost events: %ld\n", total_lost);
5018 pr_info(" total events: %ld\n", total_lost + total_read);
5019 pr_info(" recorded len bytes: %ld\n", total_len);
5020 pr_info(" recorded size bytes: %ld\n", total_size);
5021 if (total_lost)
5022 pr_info(" With dropped events, record len and size may not match\n"
5023 " alloced and written from above\n");
5024 if (!total_lost) {
5025 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5026 total_size != total_written))
5027 break;
5028 }
5029 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5030 break;
5031
5032 ret = 0;
5033 }
5034 if (!ret)
5035 pr_info("Ring buffer PASSED!\n");
5036
5037 ring_buffer_free(buffer);
5038 return 0;
5039 }
5040
5041 late_initcall(test_ringbuffer);
5042 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */