[ERD][NEUS7920-76] [COMMON] lib: dss: support to output notifier call functions
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / resource.c
1 /*
2 * linux/kernel/resource.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27
28
29 struct resource ioport_resource = {
30 .name = "PCI IO",
31 .start = 0,
32 .end = IO_SPACE_LIMIT,
33 .flags = IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36
37 struct resource iomem_resource = {
38 .name = "PCI mem",
39 .start = 0,
40 .end = -1,
41 .flags = IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 resource_size_t min, max, align;
48 resource_size_t (*alignf)(void *, const struct resource *,
49 resource_size_t, resource_size_t);
50 void *alignf_data;
51 };
52
53 static DEFINE_RWLOCK(resource_lock);
54
55 /*
56 * For memory hotplug, there is no way to free resource entries allocated
57 * by boot mem after the system is up. So for reusing the resource entry
58 * we need to remember the resource.
59 */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 /* Caller wants to traverse through siblings only */
66 if (sibling_only)
67 return p->sibling;
68
69 if (p->child)
70 return p->child;
71 while (!p->sibling && p->parent)
72 p = p->parent;
73 return p->sibling;
74 }
75
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 struct resource *p = v;
79 (*pos)++;
80 return (void *)next_resource(p, false);
81 }
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *p = m->private;
91 loff_t l = 0;
92 read_lock(&resource_lock);
93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 ;
95 return p;
96 }
97
98 static void r_stop(struct seq_file *m, void *v)
99 __releases(resource_lock)
100 {
101 read_unlock(&resource_lock);
102 }
103
104 static int r_show(struct seq_file *m, void *v)
105 {
106 struct resource *root = m->private;
107 struct resource *r = v, *p;
108 unsigned long long start, end;
109 int width = root->end < 0x10000 ? 4 : 8;
110 int depth;
111
112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 if (p->parent == root)
114 break;
115
116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 start = r->start;
118 end = r->end;
119 } else {
120 start = end = 0;
121 }
122
123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 depth * 2, "",
125 width, start,
126 width, end,
127 r->name ? r->name : "<BAD>");
128 return 0;
129 }
130
131 static const struct seq_operations resource_op = {
132 .start = r_start,
133 .next = r_next,
134 .stop = r_stop,
135 .show = r_show,
136 };
137
138 static int ioports_open(struct inode *inode, struct file *file)
139 {
140 int res = seq_open(file, &resource_op);
141 if (!res) {
142 struct seq_file *m = file->private_data;
143 m->private = &ioport_resource;
144 }
145 return res;
146 }
147
148 static int iomem_open(struct inode *inode, struct file *file)
149 {
150 int res = seq_open(file, &resource_op);
151 if (!res) {
152 struct seq_file *m = file->private_data;
153 m->private = &iomem_resource;
154 }
155 return res;
156 }
157
158 static const struct file_operations proc_ioports_operations = {
159 .open = ioports_open,
160 .read = seq_read,
161 .llseek = seq_lseek,
162 .release = seq_release,
163 };
164
165 static const struct file_operations proc_iomem_operations = {
166 .open = iomem_open,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = seq_release,
170 };
171
172 static int __init ioresources_init(void)
173 {
174 proc_create("ioports", 0, NULL, &proc_ioports_operations);
175 proc_create("iomem", 0, NULL, &proc_iomem_operations);
176 return 0;
177 }
178 __initcall(ioresources_init);
179
180 #endif /* CONFIG_PROC_FS */
181
182 static void free_resource(struct resource *res)
183 {
184 if (!res)
185 return;
186
187 if (!PageSlab(virt_to_head_page(res))) {
188 spin_lock(&bootmem_resource_lock);
189 res->sibling = bootmem_resource_free;
190 bootmem_resource_free = res;
191 spin_unlock(&bootmem_resource_lock);
192 } else {
193 kfree(res);
194 }
195 }
196
197 static struct resource *alloc_resource(gfp_t flags)
198 {
199 struct resource *res = NULL;
200
201 spin_lock(&bootmem_resource_lock);
202 if (bootmem_resource_free) {
203 res = bootmem_resource_free;
204 bootmem_resource_free = res->sibling;
205 }
206 spin_unlock(&bootmem_resource_lock);
207
208 if (res)
209 memset(res, 0, sizeof(struct resource));
210 else
211 res = kzalloc(sizeof(struct resource), flags);
212
213 return res;
214 }
215
216 /* Return the conflict entry if you can't request it */
217 static struct resource * __request_resource(struct resource *root, struct resource *new)
218 {
219 resource_size_t start = new->start;
220 resource_size_t end = new->end;
221 struct resource *tmp, **p;
222
223 if (end < start)
224 return root;
225 if (start < root->start)
226 return root;
227 if (end > root->end)
228 return root;
229 p = &root->child;
230 for (;;) {
231 tmp = *p;
232 if (!tmp || tmp->start > end) {
233 new->sibling = tmp;
234 *p = new;
235 new->parent = root;
236 return NULL;
237 }
238 p = &tmp->sibling;
239 if (tmp->end < start)
240 continue;
241 return tmp;
242 }
243 }
244
245 static int __release_resource(struct resource *old, bool release_child)
246 {
247 struct resource *tmp, **p, *chd;
248
249 p = &old->parent->child;
250 for (;;) {
251 tmp = *p;
252 if (!tmp)
253 break;
254 if (tmp == old) {
255 if (release_child || !(tmp->child)) {
256 *p = tmp->sibling;
257 } else {
258 for (chd = tmp->child;; chd = chd->sibling) {
259 chd->parent = tmp->parent;
260 if (!(chd->sibling))
261 break;
262 }
263 *p = tmp->child;
264 chd->sibling = tmp->sibling;
265 }
266 old->parent = NULL;
267 return 0;
268 }
269 p = &tmp->sibling;
270 }
271 return -EINVAL;
272 }
273
274 static void __release_child_resources(struct resource *r)
275 {
276 struct resource *tmp, *p;
277 resource_size_t size;
278
279 p = r->child;
280 r->child = NULL;
281 while (p) {
282 tmp = p;
283 p = p->sibling;
284
285 tmp->parent = NULL;
286 tmp->sibling = NULL;
287 __release_child_resources(tmp);
288
289 printk(KERN_DEBUG "release child resource %pR\n", tmp);
290 /* need to restore size, and keep flags */
291 size = resource_size(tmp);
292 tmp->start = 0;
293 tmp->end = size - 1;
294 }
295 }
296
297 void release_child_resources(struct resource *r)
298 {
299 write_lock(&resource_lock);
300 __release_child_resources(r);
301 write_unlock(&resource_lock);
302 }
303
304 /**
305 * request_resource_conflict - request and reserve an I/O or memory resource
306 * @root: root resource descriptor
307 * @new: resource descriptor desired by caller
308 *
309 * Returns 0 for success, conflict resource on error.
310 */
311 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
312 {
313 struct resource *conflict;
314
315 write_lock(&resource_lock);
316 conflict = __request_resource(root, new);
317 write_unlock(&resource_lock);
318 return conflict;
319 }
320
321 /**
322 * request_resource - request and reserve an I/O or memory resource
323 * @root: root resource descriptor
324 * @new: resource descriptor desired by caller
325 *
326 * Returns 0 for success, negative error code on error.
327 */
328 int request_resource(struct resource *root, struct resource *new)
329 {
330 struct resource *conflict;
331
332 conflict = request_resource_conflict(root, new);
333 return conflict ? -EBUSY : 0;
334 }
335
336 EXPORT_SYMBOL(request_resource);
337
338 /**
339 * release_resource - release a previously reserved resource
340 * @old: resource pointer
341 */
342 int release_resource(struct resource *old)
343 {
344 int retval;
345
346 write_lock(&resource_lock);
347 retval = __release_resource(old, true);
348 write_unlock(&resource_lock);
349 return retval;
350 }
351
352 EXPORT_SYMBOL(release_resource);
353
354 /*
355 * Finds the lowest iomem resource existing within [res->start.res->end).
356 * The caller must specify res->start, res->end, res->flags, and optionally
357 * desc. If found, returns 0, res is overwritten, if not found, returns -1.
358 * This function walks the whole tree and not just first level children until
359 * and unless first_level_children_only is true.
360 */
361 static int find_next_iomem_res(struct resource *res, unsigned long desc,
362 bool first_level_children_only)
363 {
364 resource_size_t start, end;
365 struct resource *p;
366 bool sibling_only = false;
367
368 BUG_ON(!res);
369
370 start = res->start;
371 end = res->end;
372 BUG_ON(start >= end);
373
374 if (first_level_children_only)
375 sibling_only = true;
376
377 read_lock(&resource_lock);
378
379 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
380 if ((p->flags & res->flags) != res->flags)
381 continue;
382 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
383 continue;
384 if (p->start > end) {
385 p = NULL;
386 break;
387 }
388 if ((p->end >= start) && (p->start < end))
389 break;
390 }
391
392 read_unlock(&resource_lock);
393 if (!p)
394 return -1;
395 /* copy data */
396 if (res->start < p->start)
397 res->start = p->start;
398 if (res->end > p->end)
399 res->end = p->end;
400 return 0;
401 }
402
403 /*
404 * Walks through iomem resources and calls func() with matching resource
405 * ranges. This walks through whole tree and not just first level children.
406 * All the memory ranges which overlap start,end and also match flags and
407 * desc are valid candidates.
408 *
409 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
410 * @flags: I/O resource flags
411 * @start: start addr
412 * @end: end addr
413 *
414 * NOTE: For a new descriptor search, define a new IORES_DESC in
415 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
416 */
417 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
418 u64 end, void *arg, int (*func)(u64, u64, void *))
419 {
420 struct resource res;
421 u64 orig_end;
422 int ret = -1;
423
424 res.start = start;
425 res.end = end;
426 res.flags = flags;
427 orig_end = res.end;
428
429 while ((res.start < res.end) &&
430 (!find_next_iomem_res(&res, desc, false))) {
431
432 ret = (*func)(res.start, res.end, arg);
433 if (ret)
434 break;
435
436 res.start = res.end + 1;
437 res.end = orig_end;
438 }
439
440 return ret;
441 }
442
443 /*
444 * This function calls the @func callback against all memory ranges of type
445 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
446 * Now, this function is only for System RAM, it deals with full ranges and
447 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
448 * ranges.
449 */
450 int walk_system_ram_res(u64 start, u64 end, void *arg,
451 int (*func)(u64, u64, void *))
452 {
453 struct resource res;
454 u64 orig_end;
455 int ret = -1;
456
457 res.start = start;
458 res.end = end;
459 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
460 orig_end = res.end;
461 while ((res.start < res.end) &&
462 (!find_next_iomem_res(&res, IORES_DESC_NONE, true))) {
463 ret = (*func)(res.start, res.end, arg);
464 if (ret)
465 break;
466 res.start = res.end + 1;
467 res.end = orig_end;
468 }
469 return ret;
470 }
471
472 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
473
474 /*
475 * This function calls the @func callback against all memory ranges of type
476 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
477 * It is to be used only for System RAM.
478 */
479 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
480 void *arg, int (*func)(unsigned long, unsigned long, void *))
481 {
482 struct resource res;
483 unsigned long pfn, end_pfn;
484 u64 orig_end;
485 int ret = -1;
486
487 res.start = (u64) start_pfn << PAGE_SHIFT;
488 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
489 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
490 orig_end = res.end;
491 while ((res.start < res.end) &&
492 (find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) {
493 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
494 end_pfn = (res.end + 1) >> PAGE_SHIFT;
495 if (end_pfn > pfn)
496 ret = (*func)(pfn, end_pfn - pfn, arg);
497 if (ret)
498 break;
499 res.start = res.end + 1;
500 res.end = orig_end;
501 }
502 return ret;
503 }
504
505 #endif
506
507 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
508 {
509 return 1;
510 }
511 /*
512 * This generic page_is_ram() returns true if specified address is
513 * registered as System RAM in iomem_resource list.
514 */
515 int __weak page_is_ram(unsigned long pfn)
516 {
517 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
518 }
519 EXPORT_SYMBOL_GPL(page_is_ram);
520
521 /**
522 * region_intersects() - determine intersection of region with known resources
523 * @start: region start address
524 * @size: size of region
525 * @flags: flags of resource (in iomem_resource)
526 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
527 *
528 * Check if the specified region partially overlaps or fully eclipses a
529 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
530 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
531 * return REGION_MIXED if the region overlaps @flags/@desc and another
532 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
533 * and no other defined resource. Note that REGION_INTERSECTS is also
534 * returned in the case when the specified region overlaps RAM and undefined
535 * memory holes.
536 *
537 * region_intersect() is used by memory remapping functions to ensure
538 * the user is not remapping RAM and is a vast speed up over walking
539 * through the resource table page by page.
540 */
541 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
542 unsigned long desc)
543 {
544 resource_size_t end = start + size - 1;
545 int type = 0; int other = 0;
546 struct resource *p;
547
548 read_lock(&resource_lock);
549 for (p = iomem_resource.child; p ; p = p->sibling) {
550 bool is_type = (((p->flags & flags) == flags) &&
551 ((desc == IORES_DESC_NONE) ||
552 (desc == p->desc)));
553
554 if (start >= p->start && start <= p->end)
555 is_type ? type++ : other++;
556 if (end >= p->start && end <= p->end)
557 is_type ? type++ : other++;
558 if (p->start >= start && p->end <= end)
559 is_type ? type++ : other++;
560 }
561 read_unlock(&resource_lock);
562
563 if (other == 0)
564 return type ? REGION_INTERSECTS : REGION_DISJOINT;
565
566 if (type)
567 return REGION_MIXED;
568
569 return REGION_DISJOINT;
570 }
571 EXPORT_SYMBOL_GPL(region_intersects);
572
573 void __weak arch_remove_reservations(struct resource *avail)
574 {
575 }
576
577 static resource_size_t simple_align_resource(void *data,
578 const struct resource *avail,
579 resource_size_t size,
580 resource_size_t align)
581 {
582 return avail->start;
583 }
584
585 static void resource_clip(struct resource *res, resource_size_t min,
586 resource_size_t max)
587 {
588 if (res->start < min)
589 res->start = min;
590 if (res->end > max)
591 res->end = max;
592 }
593
594 /*
595 * Find empty slot in the resource tree with the given range and
596 * alignment constraints
597 */
598 static int __find_resource(struct resource *root, struct resource *old,
599 struct resource *new,
600 resource_size_t size,
601 struct resource_constraint *constraint)
602 {
603 struct resource *this = root->child;
604 struct resource tmp = *new, avail, alloc;
605
606 tmp.start = root->start;
607 /*
608 * Skip past an allocated resource that starts at 0, since the assignment
609 * of this->start - 1 to tmp->end below would cause an underflow.
610 */
611 if (this && this->start == root->start) {
612 tmp.start = (this == old) ? old->start : this->end + 1;
613 this = this->sibling;
614 }
615 for(;;) {
616 if (this)
617 tmp.end = (this == old) ? this->end : this->start - 1;
618 else
619 tmp.end = root->end;
620
621 if (tmp.end < tmp.start)
622 goto next;
623
624 resource_clip(&tmp, constraint->min, constraint->max);
625 arch_remove_reservations(&tmp);
626
627 /* Check for overflow after ALIGN() */
628 avail.start = ALIGN(tmp.start, constraint->align);
629 avail.end = tmp.end;
630 avail.flags = new->flags & ~IORESOURCE_UNSET;
631 if (avail.start >= tmp.start) {
632 alloc.flags = avail.flags;
633 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
634 size, constraint->align);
635 alloc.end = alloc.start + size - 1;
636 if (alloc.start <= alloc.end &&
637 resource_contains(&avail, &alloc)) {
638 new->start = alloc.start;
639 new->end = alloc.end;
640 return 0;
641 }
642 }
643
644 next: if (!this || this->end == root->end)
645 break;
646
647 if (this != old)
648 tmp.start = this->end + 1;
649 this = this->sibling;
650 }
651 return -EBUSY;
652 }
653
654 /*
655 * Find empty slot in the resource tree given range and alignment.
656 */
657 static int find_resource(struct resource *root, struct resource *new,
658 resource_size_t size,
659 struct resource_constraint *constraint)
660 {
661 return __find_resource(root, NULL, new, size, constraint);
662 }
663
664 /**
665 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
666 * The resource will be relocated if the new size cannot be reallocated in the
667 * current location.
668 *
669 * @root: root resource descriptor
670 * @old: resource descriptor desired by caller
671 * @newsize: new size of the resource descriptor
672 * @constraint: the size and alignment constraints to be met.
673 */
674 static int reallocate_resource(struct resource *root, struct resource *old,
675 resource_size_t newsize,
676 struct resource_constraint *constraint)
677 {
678 int err=0;
679 struct resource new = *old;
680 struct resource *conflict;
681
682 write_lock(&resource_lock);
683
684 if ((err = __find_resource(root, old, &new, newsize, constraint)))
685 goto out;
686
687 if (resource_contains(&new, old)) {
688 old->start = new.start;
689 old->end = new.end;
690 goto out;
691 }
692
693 if (old->child) {
694 err = -EBUSY;
695 goto out;
696 }
697
698 if (resource_contains(old, &new)) {
699 old->start = new.start;
700 old->end = new.end;
701 } else {
702 __release_resource(old, true);
703 *old = new;
704 conflict = __request_resource(root, old);
705 BUG_ON(conflict);
706 }
707 out:
708 write_unlock(&resource_lock);
709 return err;
710 }
711
712
713 /**
714 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
715 * The resource will be reallocated with a new size if it was already allocated
716 * @root: root resource descriptor
717 * @new: resource descriptor desired by caller
718 * @size: requested resource region size
719 * @min: minimum boundary to allocate
720 * @max: maximum boundary to allocate
721 * @align: alignment requested, in bytes
722 * @alignf: alignment function, optional, called if not NULL
723 * @alignf_data: arbitrary data to pass to the @alignf function
724 */
725 int allocate_resource(struct resource *root, struct resource *new,
726 resource_size_t size, resource_size_t min,
727 resource_size_t max, resource_size_t align,
728 resource_size_t (*alignf)(void *,
729 const struct resource *,
730 resource_size_t,
731 resource_size_t),
732 void *alignf_data)
733 {
734 int err;
735 struct resource_constraint constraint;
736
737 if (!alignf)
738 alignf = simple_align_resource;
739
740 constraint.min = min;
741 constraint.max = max;
742 constraint.align = align;
743 constraint.alignf = alignf;
744 constraint.alignf_data = alignf_data;
745
746 if ( new->parent ) {
747 /* resource is already allocated, try reallocating with
748 the new constraints */
749 return reallocate_resource(root, new, size, &constraint);
750 }
751
752 write_lock(&resource_lock);
753 err = find_resource(root, new, size, &constraint);
754 if (err >= 0 && __request_resource(root, new))
755 err = -EBUSY;
756 write_unlock(&resource_lock);
757 return err;
758 }
759
760 EXPORT_SYMBOL(allocate_resource);
761
762 /**
763 * lookup_resource - find an existing resource by a resource start address
764 * @root: root resource descriptor
765 * @start: resource start address
766 *
767 * Returns a pointer to the resource if found, NULL otherwise
768 */
769 struct resource *lookup_resource(struct resource *root, resource_size_t start)
770 {
771 struct resource *res;
772
773 read_lock(&resource_lock);
774 for (res = root->child; res; res = res->sibling) {
775 if (res->start == start)
776 break;
777 }
778 read_unlock(&resource_lock);
779
780 return res;
781 }
782
783 /*
784 * Insert a resource into the resource tree. If successful, return NULL,
785 * otherwise return the conflicting resource (compare to __request_resource())
786 */
787 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
788 {
789 struct resource *first, *next;
790
791 for (;; parent = first) {
792 first = __request_resource(parent, new);
793 if (!first)
794 return first;
795
796 if (first == parent)
797 return first;
798 if (WARN_ON(first == new)) /* duplicated insertion */
799 return first;
800
801 if ((first->start > new->start) || (first->end < new->end))
802 break;
803 if ((first->start == new->start) && (first->end == new->end))
804 break;
805 }
806
807 for (next = first; ; next = next->sibling) {
808 /* Partial overlap? Bad, and unfixable */
809 if (next->start < new->start || next->end > new->end)
810 return next;
811 if (!next->sibling)
812 break;
813 if (next->sibling->start > new->end)
814 break;
815 }
816
817 new->parent = parent;
818 new->sibling = next->sibling;
819 new->child = first;
820
821 next->sibling = NULL;
822 for (next = first; next; next = next->sibling)
823 next->parent = new;
824
825 if (parent->child == first) {
826 parent->child = new;
827 } else {
828 next = parent->child;
829 while (next->sibling != first)
830 next = next->sibling;
831 next->sibling = new;
832 }
833 return NULL;
834 }
835
836 /**
837 * insert_resource_conflict - Inserts resource in the resource tree
838 * @parent: parent of the new resource
839 * @new: new resource to insert
840 *
841 * Returns 0 on success, conflict resource if the resource can't be inserted.
842 *
843 * This function is equivalent to request_resource_conflict when no conflict
844 * happens. If a conflict happens, and the conflicting resources
845 * entirely fit within the range of the new resource, then the new
846 * resource is inserted and the conflicting resources become children of
847 * the new resource.
848 *
849 * This function is intended for producers of resources, such as FW modules
850 * and bus drivers.
851 */
852 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
853 {
854 struct resource *conflict;
855
856 write_lock(&resource_lock);
857 conflict = __insert_resource(parent, new);
858 write_unlock(&resource_lock);
859 return conflict;
860 }
861
862 /**
863 * insert_resource - Inserts a resource in the resource tree
864 * @parent: parent of the new resource
865 * @new: new resource to insert
866 *
867 * Returns 0 on success, -EBUSY if the resource can't be inserted.
868 *
869 * This function is intended for producers of resources, such as FW modules
870 * and bus drivers.
871 */
872 int insert_resource(struct resource *parent, struct resource *new)
873 {
874 struct resource *conflict;
875
876 conflict = insert_resource_conflict(parent, new);
877 return conflict ? -EBUSY : 0;
878 }
879 EXPORT_SYMBOL_GPL(insert_resource);
880
881 /**
882 * insert_resource_expand_to_fit - Insert a resource into the resource tree
883 * @root: root resource descriptor
884 * @new: new resource to insert
885 *
886 * Insert a resource into the resource tree, possibly expanding it in order
887 * to make it encompass any conflicting resources.
888 */
889 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
890 {
891 if (new->parent)
892 return;
893
894 write_lock(&resource_lock);
895 for (;;) {
896 struct resource *conflict;
897
898 conflict = __insert_resource(root, new);
899 if (!conflict)
900 break;
901 if (conflict == root)
902 break;
903
904 /* Ok, expand resource to cover the conflict, then try again .. */
905 if (conflict->start < new->start)
906 new->start = conflict->start;
907 if (conflict->end > new->end)
908 new->end = conflict->end;
909
910 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
911 }
912 write_unlock(&resource_lock);
913 }
914
915 /**
916 * remove_resource - Remove a resource in the resource tree
917 * @old: resource to remove
918 *
919 * Returns 0 on success, -EINVAL if the resource is not valid.
920 *
921 * This function removes a resource previously inserted by insert_resource()
922 * or insert_resource_conflict(), and moves the children (if any) up to
923 * where they were before. insert_resource() and insert_resource_conflict()
924 * insert a new resource, and move any conflicting resources down to the
925 * children of the new resource.
926 *
927 * insert_resource(), insert_resource_conflict() and remove_resource() are
928 * intended for producers of resources, such as FW modules and bus drivers.
929 */
930 int remove_resource(struct resource *old)
931 {
932 int retval;
933
934 write_lock(&resource_lock);
935 retval = __release_resource(old, false);
936 write_unlock(&resource_lock);
937 return retval;
938 }
939 EXPORT_SYMBOL_GPL(remove_resource);
940
941 static int __adjust_resource(struct resource *res, resource_size_t start,
942 resource_size_t size)
943 {
944 struct resource *tmp, *parent = res->parent;
945 resource_size_t end = start + size - 1;
946 int result = -EBUSY;
947
948 if (!parent)
949 goto skip;
950
951 if ((start < parent->start) || (end > parent->end))
952 goto out;
953
954 if (res->sibling && (res->sibling->start <= end))
955 goto out;
956
957 tmp = parent->child;
958 if (tmp != res) {
959 while (tmp->sibling != res)
960 tmp = tmp->sibling;
961 if (start <= tmp->end)
962 goto out;
963 }
964
965 skip:
966 for (tmp = res->child; tmp; tmp = tmp->sibling)
967 if ((tmp->start < start) || (tmp->end > end))
968 goto out;
969
970 res->start = start;
971 res->end = end;
972 result = 0;
973
974 out:
975 return result;
976 }
977
978 /**
979 * adjust_resource - modify a resource's start and size
980 * @res: resource to modify
981 * @start: new start value
982 * @size: new size
983 *
984 * Given an existing resource, change its start and size to match the
985 * arguments. Returns 0 on success, -EBUSY if it can't fit.
986 * Existing children of the resource are assumed to be immutable.
987 */
988 int adjust_resource(struct resource *res, resource_size_t start,
989 resource_size_t size)
990 {
991 int result;
992
993 write_lock(&resource_lock);
994 result = __adjust_resource(res, start, size);
995 write_unlock(&resource_lock);
996 return result;
997 }
998 EXPORT_SYMBOL(adjust_resource);
999
1000 static void __init __reserve_region_with_split(struct resource *root,
1001 resource_size_t start, resource_size_t end,
1002 const char *name)
1003 {
1004 struct resource *parent = root;
1005 struct resource *conflict;
1006 struct resource *res = alloc_resource(GFP_ATOMIC);
1007 struct resource *next_res = NULL;
1008
1009 if (!res)
1010 return;
1011
1012 res->name = name;
1013 res->start = start;
1014 res->end = end;
1015 res->flags = IORESOURCE_BUSY;
1016 res->desc = IORES_DESC_NONE;
1017
1018 while (1) {
1019
1020 conflict = __request_resource(parent, res);
1021 if (!conflict) {
1022 if (!next_res)
1023 break;
1024 res = next_res;
1025 next_res = NULL;
1026 continue;
1027 }
1028
1029 /* conflict covered whole area */
1030 if (conflict->start <= res->start &&
1031 conflict->end >= res->end) {
1032 free_resource(res);
1033 WARN_ON(next_res);
1034 break;
1035 }
1036
1037 /* failed, split and try again */
1038 if (conflict->start > res->start) {
1039 end = res->end;
1040 res->end = conflict->start - 1;
1041 if (conflict->end < end) {
1042 next_res = alloc_resource(GFP_ATOMIC);
1043 if (!next_res) {
1044 free_resource(res);
1045 break;
1046 }
1047 next_res->name = name;
1048 next_res->start = conflict->end + 1;
1049 next_res->end = end;
1050 next_res->flags = IORESOURCE_BUSY;
1051 next_res->desc = IORES_DESC_NONE;
1052 }
1053 } else {
1054 res->start = conflict->end + 1;
1055 }
1056 }
1057
1058 }
1059
1060 void __init reserve_region_with_split(struct resource *root,
1061 resource_size_t start, resource_size_t end,
1062 const char *name)
1063 {
1064 int abort = 0;
1065
1066 write_lock(&resource_lock);
1067 if (root->start > start || root->end < end) {
1068 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1069 (unsigned long long)start, (unsigned long long)end,
1070 root);
1071 if (start > root->end || end < root->start)
1072 abort = 1;
1073 else {
1074 if (end > root->end)
1075 end = root->end;
1076 if (start < root->start)
1077 start = root->start;
1078 pr_err("fixing request to [0x%llx-0x%llx]\n",
1079 (unsigned long long)start,
1080 (unsigned long long)end);
1081 }
1082 dump_stack();
1083 }
1084 if (!abort)
1085 __reserve_region_with_split(root, start, end, name);
1086 write_unlock(&resource_lock);
1087 }
1088
1089 /**
1090 * resource_alignment - calculate resource's alignment
1091 * @res: resource pointer
1092 *
1093 * Returns alignment on success, 0 (invalid alignment) on failure.
1094 */
1095 resource_size_t resource_alignment(struct resource *res)
1096 {
1097 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1098 case IORESOURCE_SIZEALIGN:
1099 return resource_size(res);
1100 case IORESOURCE_STARTALIGN:
1101 return res->start;
1102 default:
1103 return 0;
1104 }
1105 }
1106
1107 /*
1108 * This is compatibility stuff for IO resources.
1109 *
1110 * Note how this, unlike the above, knows about
1111 * the IO flag meanings (busy etc).
1112 *
1113 * request_region creates a new busy region.
1114 *
1115 * release_region releases a matching busy region.
1116 */
1117
1118 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1119
1120 /**
1121 * __request_region - create a new busy resource region
1122 * @parent: parent resource descriptor
1123 * @start: resource start address
1124 * @n: resource region size
1125 * @name: reserving caller's ID string
1126 * @flags: IO resource flags
1127 */
1128 struct resource * __request_region(struct resource *parent,
1129 resource_size_t start, resource_size_t n,
1130 const char *name, int flags)
1131 {
1132 DECLARE_WAITQUEUE(wait, current);
1133 struct resource *res = alloc_resource(GFP_KERNEL);
1134
1135 if (!res)
1136 return NULL;
1137
1138 res->name = name;
1139 res->start = start;
1140 res->end = start + n - 1;
1141
1142 write_lock(&resource_lock);
1143
1144 for (;;) {
1145 struct resource *conflict;
1146
1147 res->flags = resource_type(parent) | resource_ext_type(parent);
1148 res->flags |= IORESOURCE_BUSY | flags;
1149 res->desc = parent->desc;
1150
1151 conflict = __request_resource(parent, res);
1152 if (!conflict)
1153 break;
1154 if (conflict != parent) {
1155 if (!(conflict->flags & IORESOURCE_BUSY)) {
1156 parent = conflict;
1157 continue;
1158 }
1159 }
1160 if (conflict->flags & flags & IORESOURCE_MUXED) {
1161 add_wait_queue(&muxed_resource_wait, &wait);
1162 write_unlock(&resource_lock);
1163 set_current_state(TASK_UNINTERRUPTIBLE);
1164 schedule();
1165 remove_wait_queue(&muxed_resource_wait, &wait);
1166 write_lock(&resource_lock);
1167 continue;
1168 }
1169 /* Uhhuh, that didn't work out.. */
1170 free_resource(res);
1171 res = NULL;
1172 break;
1173 }
1174 write_unlock(&resource_lock);
1175 return res;
1176 }
1177 EXPORT_SYMBOL(__request_region);
1178
1179 /**
1180 * __release_region - release a previously reserved resource region
1181 * @parent: parent resource descriptor
1182 * @start: resource start address
1183 * @n: resource region size
1184 *
1185 * The described resource region must match a currently busy region.
1186 */
1187 void __release_region(struct resource *parent, resource_size_t start,
1188 resource_size_t n)
1189 {
1190 struct resource **p;
1191 resource_size_t end;
1192
1193 p = &parent->child;
1194 end = start + n - 1;
1195
1196 write_lock(&resource_lock);
1197
1198 for (;;) {
1199 struct resource *res = *p;
1200
1201 if (!res)
1202 break;
1203 if (res->start <= start && res->end >= end) {
1204 if (!(res->flags & IORESOURCE_BUSY)) {
1205 p = &res->child;
1206 continue;
1207 }
1208 if (res->start != start || res->end != end)
1209 break;
1210 *p = res->sibling;
1211 write_unlock(&resource_lock);
1212 if (res->flags & IORESOURCE_MUXED)
1213 wake_up(&muxed_resource_wait);
1214 free_resource(res);
1215 return;
1216 }
1217 p = &res->sibling;
1218 }
1219
1220 write_unlock(&resource_lock);
1221
1222 printk(KERN_WARNING "Trying to free nonexistent resource "
1223 "<%016llx-%016llx>\n", (unsigned long long)start,
1224 (unsigned long long)end);
1225 }
1226 EXPORT_SYMBOL(__release_region);
1227
1228 #ifdef CONFIG_MEMORY_HOTREMOVE
1229 /**
1230 * release_mem_region_adjustable - release a previously reserved memory region
1231 * @parent: parent resource descriptor
1232 * @start: resource start address
1233 * @size: resource region size
1234 *
1235 * This interface is intended for memory hot-delete. The requested region
1236 * is released from a currently busy memory resource. The requested region
1237 * must either match exactly or fit into a single busy resource entry. In
1238 * the latter case, the remaining resource is adjusted accordingly.
1239 * Existing children of the busy memory resource must be immutable in the
1240 * request.
1241 *
1242 * Note:
1243 * - Additional release conditions, such as overlapping region, can be
1244 * supported after they are confirmed as valid cases.
1245 * - When a busy memory resource gets split into two entries, the code
1246 * assumes that all children remain in the lower address entry for
1247 * simplicity. Enhance this logic when necessary.
1248 */
1249 int release_mem_region_adjustable(struct resource *parent,
1250 resource_size_t start, resource_size_t size)
1251 {
1252 struct resource **p;
1253 struct resource *res;
1254 struct resource *new_res;
1255 resource_size_t end;
1256 int ret = -EINVAL;
1257
1258 end = start + size - 1;
1259 if ((start < parent->start) || (end > parent->end))
1260 return ret;
1261
1262 /* The alloc_resource() result gets checked later */
1263 new_res = alloc_resource(GFP_KERNEL);
1264
1265 p = &parent->child;
1266 write_lock(&resource_lock);
1267
1268 while ((res = *p)) {
1269 if (res->start >= end)
1270 break;
1271
1272 /* look for the next resource if it does not fit into */
1273 if (res->start > start || res->end < end) {
1274 p = &res->sibling;
1275 continue;
1276 }
1277
1278 if (!(res->flags & IORESOURCE_MEM))
1279 break;
1280
1281 if (!(res->flags & IORESOURCE_BUSY)) {
1282 p = &res->child;
1283 continue;
1284 }
1285
1286 /* found the target resource; let's adjust accordingly */
1287 if (res->start == start && res->end == end) {
1288 /* free the whole entry */
1289 *p = res->sibling;
1290 free_resource(res);
1291 ret = 0;
1292 } else if (res->start == start && res->end != end) {
1293 /* adjust the start */
1294 ret = __adjust_resource(res, end + 1,
1295 res->end - end);
1296 } else if (res->start != start && res->end == end) {
1297 /* adjust the end */
1298 ret = __adjust_resource(res, res->start,
1299 start - res->start);
1300 } else {
1301 /* split into two entries */
1302 if (!new_res) {
1303 ret = -ENOMEM;
1304 break;
1305 }
1306 new_res->name = res->name;
1307 new_res->start = end + 1;
1308 new_res->end = res->end;
1309 new_res->flags = res->flags;
1310 new_res->desc = res->desc;
1311 new_res->parent = res->parent;
1312 new_res->sibling = res->sibling;
1313 new_res->child = NULL;
1314
1315 ret = __adjust_resource(res, res->start,
1316 start - res->start);
1317 if (ret)
1318 break;
1319 res->sibling = new_res;
1320 new_res = NULL;
1321 }
1322
1323 break;
1324 }
1325
1326 write_unlock(&resource_lock);
1327 free_resource(new_res);
1328 return ret;
1329 }
1330 #endif /* CONFIG_MEMORY_HOTREMOVE */
1331
1332 /*
1333 * Managed region resource
1334 */
1335 static void devm_resource_release(struct device *dev, void *ptr)
1336 {
1337 struct resource **r = ptr;
1338
1339 release_resource(*r);
1340 }
1341
1342 /**
1343 * devm_request_resource() - request and reserve an I/O or memory resource
1344 * @dev: device for which to request the resource
1345 * @root: root of the resource tree from which to request the resource
1346 * @new: descriptor of the resource to request
1347 *
1348 * This is a device-managed version of request_resource(). There is usually
1349 * no need to release resources requested by this function explicitly since
1350 * that will be taken care of when the device is unbound from its driver.
1351 * If for some reason the resource needs to be released explicitly, because
1352 * of ordering issues for example, drivers must call devm_release_resource()
1353 * rather than the regular release_resource().
1354 *
1355 * When a conflict is detected between any existing resources and the newly
1356 * requested resource, an error message will be printed.
1357 *
1358 * Returns 0 on success or a negative error code on failure.
1359 */
1360 int devm_request_resource(struct device *dev, struct resource *root,
1361 struct resource *new)
1362 {
1363 struct resource *conflict, **ptr;
1364
1365 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1366 if (!ptr)
1367 return -ENOMEM;
1368
1369 *ptr = new;
1370
1371 conflict = request_resource_conflict(root, new);
1372 if (conflict) {
1373 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1374 new, conflict->name, conflict);
1375 devres_free(ptr);
1376 return -EBUSY;
1377 }
1378
1379 devres_add(dev, ptr);
1380 return 0;
1381 }
1382 EXPORT_SYMBOL(devm_request_resource);
1383
1384 static int devm_resource_match(struct device *dev, void *res, void *data)
1385 {
1386 struct resource **ptr = res;
1387
1388 return *ptr == data;
1389 }
1390
1391 /**
1392 * devm_release_resource() - release a previously requested resource
1393 * @dev: device for which to release the resource
1394 * @new: descriptor of the resource to release
1395 *
1396 * Releases a resource previously requested using devm_request_resource().
1397 */
1398 void devm_release_resource(struct device *dev, struct resource *new)
1399 {
1400 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1401 new));
1402 }
1403 EXPORT_SYMBOL(devm_release_resource);
1404
1405 struct region_devres {
1406 struct resource *parent;
1407 resource_size_t start;
1408 resource_size_t n;
1409 };
1410
1411 static void devm_region_release(struct device *dev, void *res)
1412 {
1413 struct region_devres *this = res;
1414
1415 __release_region(this->parent, this->start, this->n);
1416 }
1417
1418 static int devm_region_match(struct device *dev, void *res, void *match_data)
1419 {
1420 struct region_devres *this = res, *match = match_data;
1421
1422 return this->parent == match->parent &&
1423 this->start == match->start && this->n == match->n;
1424 }
1425
1426 struct resource * __devm_request_region(struct device *dev,
1427 struct resource *parent, resource_size_t start,
1428 resource_size_t n, const char *name)
1429 {
1430 struct region_devres *dr = NULL;
1431 struct resource *res;
1432
1433 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1434 GFP_KERNEL);
1435 if (!dr)
1436 return NULL;
1437
1438 dr->parent = parent;
1439 dr->start = start;
1440 dr->n = n;
1441
1442 res = __request_region(parent, start, n, name, 0);
1443 if (res)
1444 devres_add(dev, dr);
1445 else
1446 devres_free(dr);
1447
1448 return res;
1449 }
1450 EXPORT_SYMBOL(__devm_request_region);
1451
1452 void __devm_release_region(struct device *dev, struct resource *parent,
1453 resource_size_t start, resource_size_t n)
1454 {
1455 struct region_devres match_data = { parent, start, n };
1456
1457 __release_region(parent, start, n);
1458 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1459 &match_data));
1460 }
1461 EXPORT_SYMBOL(__devm_release_region);
1462
1463 /*
1464 * Called from init/main.c to reserve IO ports.
1465 */
1466 #define MAXRESERVE 4
1467 static int __init reserve_setup(char *str)
1468 {
1469 static int reserved;
1470 static struct resource reserve[MAXRESERVE];
1471
1472 for (;;) {
1473 unsigned int io_start, io_num;
1474 int x = reserved;
1475
1476 if (get_option (&str, &io_start) != 2)
1477 break;
1478 if (get_option (&str, &io_num) == 0)
1479 break;
1480 if (x < MAXRESERVE) {
1481 struct resource *res = reserve + x;
1482 res->name = "reserved";
1483 res->start = io_start;
1484 res->end = io_start + io_num - 1;
1485 res->flags = IORESOURCE_BUSY;
1486 res->desc = IORES_DESC_NONE;
1487 res->child = NULL;
1488 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1489 reserved = x+1;
1490 }
1491 }
1492 return 1;
1493 }
1494
1495 __setup("reserve=", reserve_setup);
1496
1497 /*
1498 * Check if the requested addr and size spans more than any slot in the
1499 * iomem resource tree.
1500 */
1501 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1502 {
1503 struct resource *p = &iomem_resource;
1504 int err = 0;
1505 loff_t l;
1506
1507 read_lock(&resource_lock);
1508 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1509 /*
1510 * We can probably skip the resources without
1511 * IORESOURCE_IO attribute?
1512 */
1513 if (p->start >= addr + size)
1514 continue;
1515 if (p->end < addr)
1516 continue;
1517 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1518 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1519 continue;
1520 /*
1521 * if a resource is "BUSY", it's not a hardware resource
1522 * but a driver mapping of such a resource; we don't want
1523 * to warn for those; some drivers legitimately map only
1524 * partial hardware resources. (example: vesafb)
1525 */
1526 if (p->flags & IORESOURCE_BUSY)
1527 continue;
1528
1529 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1530 (unsigned long long)addr,
1531 (unsigned long long)(addr + size - 1),
1532 p->name, p);
1533 err = -1;
1534 break;
1535 }
1536 read_unlock(&resource_lock);
1537
1538 return err;
1539 }
1540
1541 #ifdef CONFIG_STRICT_DEVMEM
1542 static int strict_iomem_checks = 1;
1543 #else
1544 static int strict_iomem_checks;
1545 #endif
1546
1547 /*
1548 * check if an address is reserved in the iomem resource tree
1549 * returns 1 if reserved, 0 if not reserved.
1550 */
1551 int iomem_is_exclusive(u64 addr)
1552 {
1553 struct resource *p = &iomem_resource;
1554 int err = 0;
1555 loff_t l;
1556 int size = PAGE_SIZE;
1557
1558 if (!strict_iomem_checks)
1559 return 0;
1560
1561 addr = addr & PAGE_MASK;
1562
1563 read_lock(&resource_lock);
1564 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1565 /*
1566 * We can probably skip the resources without
1567 * IORESOURCE_IO attribute?
1568 */
1569 if (p->start >= addr + size)
1570 break;
1571 if (p->end < addr)
1572 continue;
1573 /*
1574 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1575 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1576 * resource is busy.
1577 */
1578 if ((p->flags & IORESOURCE_BUSY) == 0)
1579 continue;
1580 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1581 || p->flags & IORESOURCE_EXCLUSIVE) {
1582 err = 1;
1583 break;
1584 }
1585 }
1586 read_unlock(&resource_lock);
1587
1588 return err;
1589 }
1590
1591 struct resource_entry *resource_list_create_entry(struct resource *res,
1592 size_t extra_size)
1593 {
1594 struct resource_entry *entry;
1595
1596 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1597 if (entry) {
1598 INIT_LIST_HEAD(&entry->node);
1599 entry->res = res ? res : &entry->__res;
1600 }
1601
1602 return entry;
1603 }
1604 EXPORT_SYMBOL(resource_list_create_entry);
1605
1606 void resource_list_free(struct list_head *head)
1607 {
1608 struct resource_entry *entry, *tmp;
1609
1610 list_for_each_entry_safe(entry, tmp, head, node)
1611 resource_list_destroy_entry(entry);
1612 }
1613 EXPORT_SYMBOL(resource_list_free);
1614
1615 static int __init strict_iomem(char *str)
1616 {
1617 if (strstr(str, "relaxed"))
1618 strict_iomem_checks = 0;
1619 if (strstr(str, "strict"))
1620 strict_iomem_checks = 1;
1621 return 1;
1622 }
1623
1624 __setup("iomem=", strict_iomem);