Merge 4.14.74 into android-4.14-p
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /* Block module loading/unloading? */
282 int modules_disabled = 0;
283 core_param(nomodule, modules_disabled, bint, 0);
284
285 /* Waiting for a module to finish initializing? */
286 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
287
288 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
289
290 int register_module_notifier(struct notifier_block *nb)
291 {
292 return blocking_notifier_chain_register(&module_notify_list, nb);
293 }
294 EXPORT_SYMBOL(register_module_notifier);
295
296 int unregister_module_notifier(struct notifier_block *nb)
297 {
298 return blocking_notifier_chain_unregister(&module_notify_list, nb);
299 }
300 EXPORT_SYMBOL(unregister_module_notifier);
301
302 struct load_info {
303 const char *name;
304 Elf_Ehdr *hdr;
305 unsigned long len;
306 Elf_Shdr *sechdrs;
307 char *secstrings, *strtab;
308 unsigned long symoffs, stroffs;
309 struct _ddebug *debug;
310 unsigned int num_debug;
311 bool sig_ok;
312 #ifdef CONFIG_KALLSYMS
313 unsigned long mod_kallsyms_init_off;
314 #endif
315 struct {
316 unsigned int sym, str, mod, vers, info, pcpu;
317 } index;
318 };
319
320 /*
321 * We require a truly strong try_module_get(): 0 means success.
322 * Otherwise an error is returned due to ongoing or failed
323 * initialization etc.
324 */
325 static inline int strong_try_module_get(struct module *mod)
326 {
327 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
328 if (mod && mod->state == MODULE_STATE_COMING)
329 return -EBUSY;
330 if (try_module_get(mod))
331 return 0;
332 else
333 return -ENOENT;
334 }
335
336 static inline void add_taint_module(struct module *mod, unsigned flag,
337 enum lockdep_ok lockdep_ok)
338 {
339 add_taint(flag, lockdep_ok);
340 set_bit(flag, &mod->taints);
341 }
342
343 /*
344 * A thread that wants to hold a reference to a module only while it
345 * is running can call this to safely exit. nfsd and lockd use this.
346 */
347 void __noreturn __module_put_and_exit(struct module *mod, long code)
348 {
349 module_put(mod);
350 do_exit(code);
351 }
352 EXPORT_SYMBOL(__module_put_and_exit);
353
354 /* Find a module section: 0 means not found. */
355 static unsigned int find_sec(const struct load_info *info, const char *name)
356 {
357 unsigned int i;
358
359 for (i = 1; i < info->hdr->e_shnum; i++) {
360 Elf_Shdr *shdr = &info->sechdrs[i];
361 /* Alloc bit cleared means "ignore it." */
362 if ((shdr->sh_flags & SHF_ALLOC)
363 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
364 return i;
365 }
366 return 0;
367 }
368
369 /* Find a module section, or NULL. */
370 static void *section_addr(const struct load_info *info, const char *name)
371 {
372 /* Section 0 has sh_addr 0. */
373 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
374 }
375
376 /* Find a module section, or NULL. Fill in number of "objects" in section. */
377 static void *section_objs(const struct load_info *info,
378 const char *name,
379 size_t object_size,
380 unsigned int *num)
381 {
382 unsigned int sec = find_sec(info, name);
383
384 /* Section 0 has sh_addr 0 and sh_size 0. */
385 *num = info->sechdrs[sec].sh_size / object_size;
386 return (void *)info->sechdrs[sec].sh_addr;
387 }
388
389 /* Provided by the linker */
390 extern const struct kernel_symbol __start___ksymtab[];
391 extern const struct kernel_symbol __stop___ksymtab[];
392 extern const struct kernel_symbol __start___ksymtab_gpl[];
393 extern const struct kernel_symbol __stop___ksymtab_gpl[];
394 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
395 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
396 extern const s32 __start___kcrctab[];
397 extern const s32 __start___kcrctab_gpl[];
398 extern const s32 __start___kcrctab_gpl_future[];
399 #ifdef CONFIG_UNUSED_SYMBOLS
400 extern const struct kernel_symbol __start___ksymtab_unused[];
401 extern const struct kernel_symbol __stop___ksymtab_unused[];
402 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
404 extern const s32 __start___kcrctab_unused[];
405 extern const s32 __start___kcrctab_unused_gpl[];
406 #endif
407
408 #ifndef CONFIG_MODVERSIONS
409 #define symversion(base, idx) NULL
410 #else
411 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
412 #endif
413
414 static bool each_symbol_in_section(const struct symsearch *arr,
415 unsigned int arrsize,
416 struct module *owner,
417 bool (*fn)(const struct symsearch *syms,
418 struct module *owner,
419 void *data),
420 void *data)
421 {
422 unsigned int j;
423
424 for (j = 0; j < arrsize; j++) {
425 if (fn(&arr[j], owner, data))
426 return true;
427 }
428
429 return false;
430 }
431
432 /* Returns true as soon as fn returns true, otherwise false. */
433 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
434 struct module *owner,
435 void *data),
436 void *data)
437 {
438 struct module *mod;
439 static const struct symsearch arr[] = {
440 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
441 NOT_GPL_ONLY, false },
442 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
443 __start___kcrctab_gpl,
444 GPL_ONLY, false },
445 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
446 __start___kcrctab_gpl_future,
447 WILL_BE_GPL_ONLY, false },
448 #ifdef CONFIG_UNUSED_SYMBOLS
449 { __start___ksymtab_unused, __stop___ksymtab_unused,
450 __start___kcrctab_unused,
451 NOT_GPL_ONLY, true },
452 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
453 __start___kcrctab_unused_gpl,
454 GPL_ONLY, true },
455 #endif
456 };
457
458 module_assert_mutex_or_preempt();
459
460 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
461 return true;
462
463 list_for_each_entry_rcu(mod, &modules, list) {
464 struct symsearch arr[] = {
465 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
466 NOT_GPL_ONLY, false },
467 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
468 mod->gpl_crcs,
469 GPL_ONLY, false },
470 { mod->gpl_future_syms,
471 mod->gpl_future_syms + mod->num_gpl_future_syms,
472 mod->gpl_future_crcs,
473 WILL_BE_GPL_ONLY, false },
474 #ifdef CONFIG_UNUSED_SYMBOLS
475 { mod->unused_syms,
476 mod->unused_syms + mod->num_unused_syms,
477 mod->unused_crcs,
478 NOT_GPL_ONLY, true },
479 { mod->unused_gpl_syms,
480 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
481 mod->unused_gpl_crcs,
482 GPL_ONLY, true },
483 #endif
484 };
485
486 if (mod->state == MODULE_STATE_UNFORMED)
487 continue;
488
489 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
490 return true;
491 }
492 return false;
493 }
494 EXPORT_SYMBOL_GPL(each_symbol_section);
495
496 struct find_symbol_arg {
497 /* Input */
498 const char *name;
499 bool gplok;
500 bool warn;
501
502 /* Output */
503 struct module *owner;
504 const s32 *crc;
505 const struct kernel_symbol *sym;
506 };
507
508 static bool check_symbol(const struct symsearch *syms,
509 struct module *owner,
510 unsigned int symnum, void *data)
511 {
512 struct find_symbol_arg *fsa = data;
513
514 if (!fsa->gplok) {
515 if (syms->licence == GPL_ONLY)
516 return false;
517 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
518 pr_warn("Symbol %s is being used by a non-GPL module, "
519 "which will not be allowed in the future\n",
520 fsa->name);
521 }
522 }
523
524 #ifdef CONFIG_UNUSED_SYMBOLS
525 if (syms->unused && fsa->warn) {
526 pr_warn("Symbol %s is marked as UNUSED, however this module is "
527 "using it.\n", fsa->name);
528 pr_warn("This symbol will go away in the future.\n");
529 pr_warn("Please evaluate if this is the right api to use and "
530 "if it really is, submit a report to the linux kernel "
531 "mailing list together with submitting your code for "
532 "inclusion.\n");
533 }
534 #endif
535
536 fsa->owner = owner;
537 fsa->crc = symversion(syms->crcs, symnum);
538 fsa->sym = &syms->start[symnum];
539 return true;
540 }
541
542 static int cmp_name(const void *va, const void *vb)
543 {
544 const char *a;
545 const struct kernel_symbol *b;
546 a = va; b = vb;
547 return strcmp(a, b->name);
548 }
549
550 static bool find_symbol_in_section(const struct symsearch *syms,
551 struct module *owner,
552 void *data)
553 {
554 struct find_symbol_arg *fsa = data;
555 struct kernel_symbol *sym;
556
557 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
558 sizeof(struct kernel_symbol), cmp_name);
559
560 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
561 return true;
562
563 return false;
564 }
565
566 /* Find a symbol and return it, along with, (optional) crc and
567 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
568 const struct kernel_symbol *find_symbol(const char *name,
569 struct module **owner,
570 const s32 **crc,
571 bool gplok,
572 bool warn)
573 {
574 struct find_symbol_arg fsa;
575
576 fsa.name = name;
577 fsa.gplok = gplok;
578 fsa.warn = warn;
579
580 if (each_symbol_section(find_symbol_in_section, &fsa)) {
581 if (owner)
582 *owner = fsa.owner;
583 if (crc)
584 *crc = fsa.crc;
585 return fsa.sym;
586 }
587
588 pr_debug("Failed to find symbol %s\n", name);
589 return NULL;
590 }
591 EXPORT_SYMBOL_GPL(find_symbol);
592
593 /*
594 * Search for module by name: must hold module_mutex (or preempt disabled
595 * for read-only access).
596 */
597 static struct module *find_module_all(const char *name, size_t len,
598 bool even_unformed)
599 {
600 struct module *mod;
601
602 module_assert_mutex_or_preempt();
603
604 list_for_each_entry_rcu(mod, &modules, list) {
605 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
606 continue;
607 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
608 return mod;
609 }
610 return NULL;
611 }
612
613 struct module *find_module(const char *name)
614 {
615 module_assert_mutex();
616 return find_module_all(name, strlen(name), false);
617 }
618 EXPORT_SYMBOL_GPL(find_module);
619
620 #ifdef CONFIG_SMP
621
622 static inline void __percpu *mod_percpu(struct module *mod)
623 {
624 return mod->percpu;
625 }
626
627 static int percpu_modalloc(struct module *mod, struct load_info *info)
628 {
629 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
630 unsigned long align = pcpusec->sh_addralign;
631
632 if (!pcpusec->sh_size)
633 return 0;
634
635 if (align > PAGE_SIZE) {
636 pr_warn("%s: per-cpu alignment %li > %li\n",
637 mod->name, align, PAGE_SIZE);
638 align = PAGE_SIZE;
639 }
640
641 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
642 if (!mod->percpu) {
643 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
644 mod->name, (unsigned long)pcpusec->sh_size);
645 return -ENOMEM;
646 }
647 mod->percpu_size = pcpusec->sh_size;
648 return 0;
649 }
650
651 static void percpu_modfree(struct module *mod)
652 {
653 free_percpu(mod->percpu);
654 }
655
656 static unsigned int find_pcpusec(struct load_info *info)
657 {
658 return find_sec(info, ".data..percpu");
659 }
660
661 static void percpu_modcopy(struct module *mod,
662 const void *from, unsigned long size)
663 {
664 int cpu;
665
666 for_each_possible_cpu(cpu)
667 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
668 }
669
670 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
671 {
672 struct module *mod;
673 unsigned int cpu;
674
675 preempt_disable();
676
677 list_for_each_entry_rcu(mod, &modules, list) {
678 if (mod->state == MODULE_STATE_UNFORMED)
679 continue;
680 if (!mod->percpu_size)
681 continue;
682 for_each_possible_cpu(cpu) {
683 void *start = per_cpu_ptr(mod->percpu, cpu);
684 void *va = (void *)addr;
685
686 if (va >= start && va < start + mod->percpu_size) {
687 if (can_addr) {
688 *can_addr = (unsigned long) (va - start);
689 *can_addr += (unsigned long)
690 per_cpu_ptr(mod->percpu,
691 get_boot_cpu_id());
692 }
693 preempt_enable();
694 return true;
695 }
696 }
697 }
698
699 preempt_enable();
700 return false;
701 }
702
703 /**
704 * is_module_percpu_address - test whether address is from module static percpu
705 * @addr: address to test
706 *
707 * Test whether @addr belongs to module static percpu area.
708 *
709 * RETURNS:
710 * %true if @addr is from module static percpu area
711 */
712 bool is_module_percpu_address(unsigned long addr)
713 {
714 return __is_module_percpu_address(addr, NULL);
715 }
716
717 #else /* ... !CONFIG_SMP */
718
719 static inline void __percpu *mod_percpu(struct module *mod)
720 {
721 return NULL;
722 }
723 static int percpu_modalloc(struct module *mod, struct load_info *info)
724 {
725 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
726 if (info->sechdrs[info->index.pcpu].sh_size != 0)
727 return -ENOMEM;
728 return 0;
729 }
730 static inline void percpu_modfree(struct module *mod)
731 {
732 }
733 static unsigned int find_pcpusec(struct load_info *info)
734 {
735 return 0;
736 }
737 static inline void percpu_modcopy(struct module *mod,
738 const void *from, unsigned long size)
739 {
740 /* pcpusec should be 0, and size of that section should be 0. */
741 BUG_ON(size != 0);
742 }
743 bool is_module_percpu_address(unsigned long addr)
744 {
745 return false;
746 }
747
748 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
749 {
750 return false;
751 }
752
753 #endif /* CONFIG_SMP */
754
755 #define MODINFO_ATTR(field) \
756 static void setup_modinfo_##field(struct module *mod, const char *s) \
757 { \
758 mod->field = kstrdup(s, GFP_KERNEL); \
759 } \
760 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
761 struct module_kobject *mk, char *buffer) \
762 { \
763 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
764 } \
765 static int modinfo_##field##_exists(struct module *mod) \
766 { \
767 return mod->field != NULL; \
768 } \
769 static void free_modinfo_##field(struct module *mod) \
770 { \
771 kfree(mod->field); \
772 mod->field = NULL; \
773 } \
774 static struct module_attribute modinfo_##field = { \
775 .attr = { .name = __stringify(field), .mode = 0444 }, \
776 .show = show_modinfo_##field, \
777 .setup = setup_modinfo_##field, \
778 .test = modinfo_##field##_exists, \
779 .free = free_modinfo_##field, \
780 };
781
782 MODINFO_ATTR(version);
783 MODINFO_ATTR(srcversion);
784
785 static char last_unloaded_module[MODULE_NAME_LEN+1];
786
787 #ifdef CONFIG_MODULE_UNLOAD
788
789 EXPORT_TRACEPOINT_SYMBOL(module_get);
790
791 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
792 #define MODULE_REF_BASE 1
793
794 /* Init the unload section of the module. */
795 static int module_unload_init(struct module *mod)
796 {
797 /*
798 * Initialize reference counter to MODULE_REF_BASE.
799 * refcnt == 0 means module is going.
800 */
801 atomic_set(&mod->refcnt, MODULE_REF_BASE);
802
803 INIT_LIST_HEAD(&mod->source_list);
804 INIT_LIST_HEAD(&mod->target_list);
805
806 /* Hold reference count during initialization. */
807 atomic_inc(&mod->refcnt);
808
809 return 0;
810 }
811
812 /* Does a already use b? */
813 static int already_uses(struct module *a, struct module *b)
814 {
815 struct module_use *use;
816
817 list_for_each_entry(use, &b->source_list, source_list) {
818 if (use->source == a) {
819 pr_debug("%s uses %s!\n", a->name, b->name);
820 return 1;
821 }
822 }
823 pr_debug("%s does not use %s!\n", a->name, b->name);
824 return 0;
825 }
826
827 /*
828 * Module a uses b
829 * - we add 'a' as a "source", 'b' as a "target" of module use
830 * - the module_use is added to the list of 'b' sources (so
831 * 'b' can walk the list to see who sourced them), and of 'a'
832 * targets (so 'a' can see what modules it targets).
833 */
834 static int add_module_usage(struct module *a, struct module *b)
835 {
836 struct module_use *use;
837
838 pr_debug("Allocating new usage for %s.\n", a->name);
839 use = kmalloc(sizeof(*use), GFP_ATOMIC);
840 if (!use) {
841 pr_warn("%s: out of memory loading\n", a->name);
842 return -ENOMEM;
843 }
844
845 use->source = a;
846 use->target = b;
847 list_add(&use->source_list, &b->source_list);
848 list_add(&use->target_list, &a->target_list);
849 return 0;
850 }
851
852 /* Module a uses b: caller needs module_mutex() */
853 int ref_module(struct module *a, struct module *b)
854 {
855 int err;
856
857 if (b == NULL || already_uses(a, b))
858 return 0;
859
860 /* If module isn't available, we fail. */
861 err = strong_try_module_get(b);
862 if (err)
863 return err;
864
865 err = add_module_usage(a, b);
866 if (err) {
867 module_put(b);
868 return err;
869 }
870 return 0;
871 }
872 EXPORT_SYMBOL_GPL(ref_module);
873
874 /* Clear the unload stuff of the module. */
875 static void module_unload_free(struct module *mod)
876 {
877 struct module_use *use, *tmp;
878
879 mutex_lock(&module_mutex);
880 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
881 struct module *i = use->target;
882 pr_debug("%s unusing %s\n", mod->name, i->name);
883 module_put(i);
884 list_del(&use->source_list);
885 list_del(&use->target_list);
886 kfree(use);
887 }
888 mutex_unlock(&module_mutex);
889 }
890
891 #ifdef CONFIG_MODULE_FORCE_UNLOAD
892 static inline int try_force_unload(unsigned int flags)
893 {
894 int ret = (flags & O_TRUNC);
895 if (ret)
896 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
897 return ret;
898 }
899 #else
900 static inline int try_force_unload(unsigned int flags)
901 {
902 return 0;
903 }
904 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
905
906 /* Try to release refcount of module, 0 means success. */
907 static int try_release_module_ref(struct module *mod)
908 {
909 int ret;
910
911 /* Try to decrement refcnt which we set at loading */
912 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
913 BUG_ON(ret < 0);
914 if (ret)
915 /* Someone can put this right now, recover with checking */
916 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
917
918 return ret;
919 }
920
921 static int try_stop_module(struct module *mod, int flags, int *forced)
922 {
923 /* If it's not unused, quit unless we're forcing. */
924 if (try_release_module_ref(mod) != 0) {
925 *forced = try_force_unload(flags);
926 if (!(*forced))
927 return -EWOULDBLOCK;
928 }
929
930 /* Mark it as dying. */
931 mod->state = MODULE_STATE_GOING;
932
933 return 0;
934 }
935
936 /**
937 * module_refcount - return the refcount or -1 if unloading
938 *
939 * @mod: the module we're checking
940 *
941 * Returns:
942 * -1 if the module is in the process of unloading
943 * otherwise the number of references in the kernel to the module
944 */
945 int module_refcount(struct module *mod)
946 {
947 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
948 }
949 EXPORT_SYMBOL(module_refcount);
950
951 /* This exists whether we can unload or not */
952 static void free_module(struct module *mod);
953
954 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
955 unsigned int, flags)
956 {
957 struct module *mod;
958 char name[MODULE_NAME_LEN];
959 int ret, forced = 0;
960
961 if (!capable(CAP_SYS_MODULE) || modules_disabled)
962 return -EPERM;
963
964 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
965 return -EFAULT;
966 name[MODULE_NAME_LEN-1] = '\0';
967
968 audit_log_kern_module(name);
969
970 if (mutex_lock_interruptible(&module_mutex) != 0)
971 return -EINTR;
972
973 mod = find_module(name);
974 if (!mod) {
975 ret = -ENOENT;
976 goto out;
977 }
978
979 if (!list_empty(&mod->source_list)) {
980 /* Other modules depend on us: get rid of them first. */
981 ret = -EWOULDBLOCK;
982 goto out;
983 }
984
985 /* Doing init or already dying? */
986 if (mod->state != MODULE_STATE_LIVE) {
987 /* FIXME: if (force), slam module count damn the torpedoes */
988 pr_debug("%s already dying\n", mod->name);
989 ret = -EBUSY;
990 goto out;
991 }
992
993 /* If it has an init func, it must have an exit func to unload */
994 if (mod->init && !mod->exit) {
995 forced = try_force_unload(flags);
996 if (!forced) {
997 /* This module can't be removed */
998 ret = -EBUSY;
999 goto out;
1000 }
1001 }
1002
1003 /* Stop the machine so refcounts can't move and disable module. */
1004 ret = try_stop_module(mod, flags, &forced);
1005 if (ret != 0)
1006 goto out;
1007
1008 mutex_unlock(&module_mutex);
1009 /* Final destruction now no one is using it. */
1010 if (mod->exit != NULL)
1011 mod->exit();
1012 blocking_notifier_call_chain(&module_notify_list,
1013 MODULE_STATE_GOING, mod);
1014 klp_module_going(mod);
1015 ftrace_release_mod(mod);
1016
1017 async_synchronize_full();
1018
1019 /* Store the name of the last unloaded module for diagnostic purposes */
1020 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1021
1022 free_module(mod);
1023 return 0;
1024 out:
1025 mutex_unlock(&module_mutex);
1026 return ret;
1027 }
1028
1029 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1030 {
1031 struct module_use *use;
1032 int printed_something = 0;
1033
1034 seq_printf(m, " %i ", module_refcount(mod));
1035
1036 /*
1037 * Always include a trailing , so userspace can differentiate
1038 * between this and the old multi-field proc format.
1039 */
1040 list_for_each_entry(use, &mod->source_list, source_list) {
1041 printed_something = 1;
1042 seq_printf(m, "%s,", use->source->name);
1043 }
1044
1045 if (mod->init != NULL && mod->exit == NULL) {
1046 printed_something = 1;
1047 seq_puts(m, "[permanent],");
1048 }
1049
1050 if (!printed_something)
1051 seq_puts(m, "-");
1052 }
1053
1054 void __symbol_put(const char *symbol)
1055 {
1056 struct module *owner;
1057
1058 preempt_disable();
1059 if (!find_symbol(symbol, &owner, NULL, true, false))
1060 BUG();
1061 module_put(owner);
1062 preempt_enable();
1063 }
1064 EXPORT_SYMBOL(__symbol_put);
1065
1066 /* Note this assumes addr is a function, which it currently always is. */
1067 void symbol_put_addr(void *addr)
1068 {
1069 struct module *modaddr;
1070 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1071
1072 if (core_kernel_text(a))
1073 return;
1074
1075 /*
1076 * Even though we hold a reference on the module; we still need to
1077 * disable preemption in order to safely traverse the data structure.
1078 */
1079 preempt_disable();
1080 modaddr = __module_text_address(a);
1081 BUG_ON(!modaddr);
1082 module_put(modaddr);
1083 preempt_enable();
1084 }
1085 EXPORT_SYMBOL_GPL(symbol_put_addr);
1086
1087 static ssize_t show_refcnt(struct module_attribute *mattr,
1088 struct module_kobject *mk, char *buffer)
1089 {
1090 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1091 }
1092
1093 static struct module_attribute modinfo_refcnt =
1094 __ATTR(refcnt, 0444, show_refcnt, NULL);
1095
1096 void __module_get(struct module *module)
1097 {
1098 if (module) {
1099 preempt_disable();
1100 atomic_inc(&module->refcnt);
1101 trace_module_get(module, _RET_IP_);
1102 preempt_enable();
1103 }
1104 }
1105 EXPORT_SYMBOL(__module_get);
1106
1107 bool try_module_get(struct module *module)
1108 {
1109 bool ret = true;
1110
1111 if (module) {
1112 preempt_disable();
1113 /* Note: here, we can fail to get a reference */
1114 if (likely(module_is_live(module) &&
1115 atomic_inc_not_zero(&module->refcnt) != 0))
1116 trace_module_get(module, _RET_IP_);
1117 else
1118 ret = false;
1119
1120 preempt_enable();
1121 }
1122 return ret;
1123 }
1124 EXPORT_SYMBOL(try_module_get);
1125
1126 void module_put(struct module *module)
1127 {
1128 int ret;
1129
1130 if (module) {
1131 preempt_disable();
1132 ret = atomic_dec_if_positive(&module->refcnt);
1133 WARN_ON(ret < 0); /* Failed to put refcount */
1134 trace_module_put(module, _RET_IP_);
1135 preempt_enable();
1136 }
1137 }
1138 EXPORT_SYMBOL(module_put);
1139
1140 #else /* !CONFIG_MODULE_UNLOAD */
1141 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1142 {
1143 /* We don't know the usage count, or what modules are using. */
1144 seq_puts(m, " - -");
1145 }
1146
1147 static inline void module_unload_free(struct module *mod)
1148 {
1149 }
1150
1151 int ref_module(struct module *a, struct module *b)
1152 {
1153 return strong_try_module_get(b);
1154 }
1155 EXPORT_SYMBOL_GPL(ref_module);
1156
1157 static inline int module_unload_init(struct module *mod)
1158 {
1159 return 0;
1160 }
1161 #endif /* CONFIG_MODULE_UNLOAD */
1162
1163 static size_t module_flags_taint(struct module *mod, char *buf)
1164 {
1165 size_t l = 0;
1166 int i;
1167
1168 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1169 if (taint_flags[i].module && test_bit(i, &mod->taints))
1170 buf[l++] = taint_flags[i].c_true;
1171 }
1172
1173 return l;
1174 }
1175
1176 static ssize_t show_initstate(struct module_attribute *mattr,
1177 struct module_kobject *mk, char *buffer)
1178 {
1179 const char *state = "unknown";
1180
1181 switch (mk->mod->state) {
1182 case MODULE_STATE_LIVE:
1183 state = "live";
1184 break;
1185 case MODULE_STATE_COMING:
1186 state = "coming";
1187 break;
1188 case MODULE_STATE_GOING:
1189 state = "going";
1190 break;
1191 default:
1192 BUG();
1193 }
1194 return sprintf(buffer, "%s\n", state);
1195 }
1196
1197 static struct module_attribute modinfo_initstate =
1198 __ATTR(initstate, 0444, show_initstate, NULL);
1199
1200 static ssize_t store_uevent(struct module_attribute *mattr,
1201 struct module_kobject *mk,
1202 const char *buffer, size_t count)
1203 {
1204 kobject_synth_uevent(&mk->kobj, buffer, count);
1205 return count;
1206 }
1207
1208 struct module_attribute module_uevent =
1209 __ATTR(uevent, 0200, NULL, store_uevent);
1210
1211 static ssize_t show_coresize(struct module_attribute *mattr,
1212 struct module_kobject *mk, char *buffer)
1213 {
1214 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1215 }
1216
1217 static struct module_attribute modinfo_coresize =
1218 __ATTR(coresize, 0444, show_coresize, NULL);
1219
1220 static ssize_t show_initsize(struct module_attribute *mattr,
1221 struct module_kobject *mk, char *buffer)
1222 {
1223 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1224 }
1225
1226 static struct module_attribute modinfo_initsize =
1227 __ATTR(initsize, 0444, show_initsize, NULL);
1228
1229 static ssize_t show_taint(struct module_attribute *mattr,
1230 struct module_kobject *mk, char *buffer)
1231 {
1232 size_t l;
1233
1234 l = module_flags_taint(mk->mod, buffer);
1235 buffer[l++] = '\n';
1236 return l;
1237 }
1238
1239 static struct module_attribute modinfo_taint =
1240 __ATTR(taint, 0444, show_taint, NULL);
1241
1242 static struct module_attribute *modinfo_attrs[] = {
1243 &module_uevent,
1244 &modinfo_version,
1245 &modinfo_srcversion,
1246 &modinfo_initstate,
1247 &modinfo_coresize,
1248 &modinfo_initsize,
1249 &modinfo_taint,
1250 #ifdef CONFIG_MODULE_UNLOAD
1251 &modinfo_refcnt,
1252 #endif
1253 NULL,
1254 };
1255
1256 static const char vermagic[] = VERMAGIC_STRING;
1257
1258 static int try_to_force_load(struct module *mod, const char *reason)
1259 {
1260 #ifdef CONFIG_MODULE_FORCE_LOAD
1261 if (!test_taint(TAINT_FORCED_MODULE))
1262 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1263 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1264 return 0;
1265 #else
1266 return -ENOEXEC;
1267 #endif
1268 }
1269
1270 #ifdef CONFIG_MODVERSIONS
1271
1272 static u32 resolve_rel_crc(const s32 *crc)
1273 {
1274 return *(u32 *)((void *)crc + *crc);
1275 }
1276
1277 static int check_version(const struct load_info *info,
1278 const char *symname,
1279 struct module *mod,
1280 const s32 *crc)
1281 {
1282 Elf_Shdr *sechdrs = info->sechdrs;
1283 unsigned int versindex = info->index.vers;
1284 unsigned int i, num_versions;
1285 struct modversion_info *versions;
1286
1287 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1288 if (!crc)
1289 return 1;
1290
1291 /* No versions at all? modprobe --force does this. */
1292 if (versindex == 0)
1293 return try_to_force_load(mod, symname) == 0;
1294
1295 versions = (void *) sechdrs[versindex].sh_addr;
1296 num_versions = sechdrs[versindex].sh_size
1297 / sizeof(struct modversion_info);
1298
1299 for (i = 0; i < num_versions; i++) {
1300 u32 crcval;
1301
1302 if (strcmp(versions[i].name, symname) != 0)
1303 continue;
1304
1305 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1306 crcval = resolve_rel_crc(crc);
1307 else
1308 crcval = *crc;
1309 if (versions[i].crc == crcval)
1310 return 1;
1311 pr_debug("Found checksum %X vs module %lX\n",
1312 crcval, versions[i].crc);
1313 goto bad_version;
1314 }
1315
1316 /* Broken toolchain. Warn once, then let it go.. */
1317 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1318 return 1;
1319
1320 bad_version:
1321 pr_warn("%s: disagrees about version of symbol %s\n",
1322 info->name, symname);
1323 return 0;
1324 }
1325
1326 static inline int check_modstruct_version(const struct load_info *info,
1327 struct module *mod)
1328 {
1329 const s32 *crc;
1330
1331 /*
1332 * Since this should be found in kernel (which can't be removed), no
1333 * locking is necessary -- use preempt_disable() to placate lockdep.
1334 */
1335 preempt_disable();
1336 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1337 &crc, true, false)) {
1338 preempt_enable();
1339 BUG();
1340 }
1341 preempt_enable();
1342 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1343 mod, crc);
1344 }
1345
1346 /* First part is kernel version, which we ignore if module has crcs. */
1347 static inline int same_magic(const char *amagic, const char *bmagic,
1348 bool has_crcs)
1349 {
1350 if (has_crcs) {
1351 amagic += strcspn(amagic, " ");
1352 bmagic += strcspn(bmagic, " ");
1353 }
1354 return strcmp(amagic, bmagic) == 0;
1355 }
1356 #else
1357 static inline int check_version(const struct load_info *info,
1358 const char *symname,
1359 struct module *mod,
1360 const s32 *crc)
1361 {
1362 return 1;
1363 }
1364
1365 static inline int check_modstruct_version(const struct load_info *info,
1366 struct module *mod)
1367 {
1368 return 1;
1369 }
1370
1371 static inline int same_magic(const char *amagic, const char *bmagic,
1372 bool has_crcs)
1373 {
1374 return strcmp(amagic, bmagic) == 0;
1375 }
1376 #endif /* CONFIG_MODVERSIONS */
1377
1378 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1379 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1380 const struct load_info *info,
1381 const char *name,
1382 char ownername[])
1383 {
1384 struct module *owner;
1385 const struct kernel_symbol *sym;
1386 const s32 *crc;
1387 int err;
1388
1389 /*
1390 * The module_mutex should not be a heavily contended lock;
1391 * if we get the occasional sleep here, we'll go an extra iteration
1392 * in the wait_event_interruptible(), which is harmless.
1393 */
1394 sched_annotate_sleep();
1395 mutex_lock(&module_mutex);
1396 sym = find_symbol(name, &owner, &crc,
1397 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1398 if (!sym)
1399 goto unlock;
1400
1401 if (!check_version(info, name, mod, crc)) {
1402 sym = ERR_PTR(-EINVAL);
1403 goto getname;
1404 }
1405
1406 err = ref_module(mod, owner);
1407 if (err) {
1408 sym = ERR_PTR(err);
1409 goto getname;
1410 }
1411
1412 getname:
1413 /* We must make copy under the lock if we failed to get ref. */
1414 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1415 unlock:
1416 mutex_unlock(&module_mutex);
1417 return sym;
1418 }
1419
1420 static const struct kernel_symbol *
1421 resolve_symbol_wait(struct module *mod,
1422 const struct load_info *info,
1423 const char *name)
1424 {
1425 const struct kernel_symbol *ksym;
1426 char owner[MODULE_NAME_LEN];
1427
1428 if (wait_event_interruptible_timeout(module_wq,
1429 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1430 || PTR_ERR(ksym) != -EBUSY,
1431 30 * HZ) <= 0) {
1432 pr_warn("%s: gave up waiting for init of module %s.\n",
1433 mod->name, owner);
1434 }
1435 return ksym;
1436 }
1437
1438 /*
1439 * /sys/module/foo/sections stuff
1440 * J. Corbet <corbet@lwn.net>
1441 */
1442 #ifdef CONFIG_SYSFS
1443
1444 #ifdef CONFIG_KALLSYMS
1445 static inline bool sect_empty(const Elf_Shdr *sect)
1446 {
1447 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1448 }
1449
1450 struct module_sect_attr {
1451 struct module_attribute mattr;
1452 char *name;
1453 unsigned long address;
1454 };
1455
1456 struct module_sect_attrs {
1457 struct attribute_group grp;
1458 unsigned int nsections;
1459 struct module_sect_attr attrs[0];
1460 };
1461
1462 static ssize_t module_sect_show(struct module_attribute *mattr,
1463 struct module_kobject *mk, char *buf)
1464 {
1465 struct module_sect_attr *sattr =
1466 container_of(mattr, struct module_sect_attr, mattr);
1467 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1468 }
1469
1470 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1471 {
1472 unsigned int section;
1473
1474 for (section = 0; section < sect_attrs->nsections; section++)
1475 kfree(sect_attrs->attrs[section].name);
1476 kfree(sect_attrs);
1477 }
1478
1479 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1480 {
1481 unsigned int nloaded = 0, i, size[2];
1482 struct module_sect_attrs *sect_attrs;
1483 struct module_sect_attr *sattr;
1484 struct attribute **gattr;
1485
1486 /* Count loaded sections and allocate structures */
1487 for (i = 0; i < info->hdr->e_shnum; i++)
1488 if (!sect_empty(&info->sechdrs[i]))
1489 nloaded++;
1490 size[0] = ALIGN(sizeof(*sect_attrs)
1491 + nloaded * sizeof(sect_attrs->attrs[0]),
1492 sizeof(sect_attrs->grp.attrs[0]));
1493 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1494 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1495 if (sect_attrs == NULL)
1496 return;
1497
1498 /* Setup section attributes. */
1499 sect_attrs->grp.name = "sections";
1500 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1501
1502 sect_attrs->nsections = 0;
1503 sattr = &sect_attrs->attrs[0];
1504 gattr = &sect_attrs->grp.attrs[0];
1505 for (i = 0; i < info->hdr->e_shnum; i++) {
1506 Elf_Shdr *sec = &info->sechdrs[i];
1507 if (sect_empty(sec))
1508 continue;
1509 sattr->address = sec->sh_addr;
1510 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1511 GFP_KERNEL);
1512 if (sattr->name == NULL)
1513 goto out;
1514 sect_attrs->nsections++;
1515 sysfs_attr_init(&sattr->mattr.attr);
1516 sattr->mattr.show = module_sect_show;
1517 sattr->mattr.store = NULL;
1518 sattr->mattr.attr.name = sattr->name;
1519 sattr->mattr.attr.mode = S_IRUGO;
1520 *(gattr++) = &(sattr++)->mattr.attr;
1521 }
1522 *gattr = NULL;
1523
1524 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1525 goto out;
1526
1527 mod->sect_attrs = sect_attrs;
1528 return;
1529 out:
1530 free_sect_attrs(sect_attrs);
1531 }
1532
1533 static void remove_sect_attrs(struct module *mod)
1534 {
1535 if (mod->sect_attrs) {
1536 sysfs_remove_group(&mod->mkobj.kobj,
1537 &mod->sect_attrs->grp);
1538 /* We are positive that no one is using any sect attrs
1539 * at this point. Deallocate immediately. */
1540 free_sect_attrs(mod->sect_attrs);
1541 mod->sect_attrs = NULL;
1542 }
1543 }
1544
1545 /*
1546 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1547 */
1548
1549 struct module_notes_attrs {
1550 struct kobject *dir;
1551 unsigned int notes;
1552 struct bin_attribute attrs[0];
1553 };
1554
1555 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1556 struct bin_attribute *bin_attr,
1557 char *buf, loff_t pos, size_t count)
1558 {
1559 /*
1560 * The caller checked the pos and count against our size.
1561 */
1562 memcpy(buf, bin_attr->private + pos, count);
1563 return count;
1564 }
1565
1566 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1567 unsigned int i)
1568 {
1569 if (notes_attrs->dir) {
1570 while (i-- > 0)
1571 sysfs_remove_bin_file(notes_attrs->dir,
1572 &notes_attrs->attrs[i]);
1573 kobject_put(notes_attrs->dir);
1574 }
1575 kfree(notes_attrs);
1576 }
1577
1578 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1579 {
1580 unsigned int notes, loaded, i;
1581 struct module_notes_attrs *notes_attrs;
1582 struct bin_attribute *nattr;
1583
1584 /* failed to create section attributes, so can't create notes */
1585 if (!mod->sect_attrs)
1586 return;
1587
1588 /* Count notes sections and allocate structures. */
1589 notes = 0;
1590 for (i = 0; i < info->hdr->e_shnum; i++)
1591 if (!sect_empty(&info->sechdrs[i]) &&
1592 (info->sechdrs[i].sh_type == SHT_NOTE))
1593 ++notes;
1594
1595 if (notes == 0)
1596 return;
1597
1598 notes_attrs = kzalloc(sizeof(*notes_attrs)
1599 + notes * sizeof(notes_attrs->attrs[0]),
1600 GFP_KERNEL);
1601 if (notes_attrs == NULL)
1602 return;
1603
1604 notes_attrs->notes = notes;
1605 nattr = &notes_attrs->attrs[0];
1606 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1607 if (sect_empty(&info->sechdrs[i]))
1608 continue;
1609 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1610 sysfs_bin_attr_init(nattr);
1611 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1612 nattr->attr.mode = S_IRUGO;
1613 nattr->size = info->sechdrs[i].sh_size;
1614 nattr->private = (void *) info->sechdrs[i].sh_addr;
1615 nattr->read = module_notes_read;
1616 ++nattr;
1617 }
1618 ++loaded;
1619 }
1620
1621 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1622 if (!notes_attrs->dir)
1623 goto out;
1624
1625 for (i = 0; i < notes; ++i)
1626 if (sysfs_create_bin_file(notes_attrs->dir,
1627 &notes_attrs->attrs[i]))
1628 goto out;
1629
1630 mod->notes_attrs = notes_attrs;
1631 return;
1632
1633 out:
1634 free_notes_attrs(notes_attrs, i);
1635 }
1636
1637 static void remove_notes_attrs(struct module *mod)
1638 {
1639 if (mod->notes_attrs)
1640 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1641 }
1642
1643 #else
1644
1645 static inline void add_sect_attrs(struct module *mod,
1646 const struct load_info *info)
1647 {
1648 }
1649
1650 static inline void remove_sect_attrs(struct module *mod)
1651 {
1652 }
1653
1654 static inline void add_notes_attrs(struct module *mod,
1655 const struct load_info *info)
1656 {
1657 }
1658
1659 static inline void remove_notes_attrs(struct module *mod)
1660 {
1661 }
1662 #endif /* CONFIG_KALLSYMS */
1663
1664 static void del_usage_links(struct module *mod)
1665 {
1666 #ifdef CONFIG_MODULE_UNLOAD
1667 struct module_use *use;
1668
1669 mutex_lock(&module_mutex);
1670 list_for_each_entry(use, &mod->target_list, target_list)
1671 sysfs_remove_link(use->target->holders_dir, mod->name);
1672 mutex_unlock(&module_mutex);
1673 #endif
1674 }
1675
1676 static int add_usage_links(struct module *mod)
1677 {
1678 int ret = 0;
1679 #ifdef CONFIG_MODULE_UNLOAD
1680 struct module_use *use;
1681
1682 mutex_lock(&module_mutex);
1683 list_for_each_entry(use, &mod->target_list, target_list) {
1684 ret = sysfs_create_link(use->target->holders_dir,
1685 &mod->mkobj.kobj, mod->name);
1686 if (ret)
1687 break;
1688 }
1689 mutex_unlock(&module_mutex);
1690 if (ret)
1691 del_usage_links(mod);
1692 #endif
1693 return ret;
1694 }
1695
1696 static int module_add_modinfo_attrs(struct module *mod)
1697 {
1698 struct module_attribute *attr;
1699 struct module_attribute *temp_attr;
1700 int error = 0;
1701 int i;
1702
1703 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1704 (ARRAY_SIZE(modinfo_attrs) + 1)),
1705 GFP_KERNEL);
1706 if (!mod->modinfo_attrs)
1707 return -ENOMEM;
1708
1709 temp_attr = mod->modinfo_attrs;
1710 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1711 if (!attr->test || attr->test(mod)) {
1712 memcpy(temp_attr, attr, sizeof(*temp_attr));
1713 sysfs_attr_init(&temp_attr->attr);
1714 error = sysfs_create_file(&mod->mkobj.kobj,
1715 &temp_attr->attr);
1716 ++temp_attr;
1717 }
1718 }
1719 return error;
1720 }
1721
1722 static void module_remove_modinfo_attrs(struct module *mod)
1723 {
1724 struct module_attribute *attr;
1725 int i;
1726
1727 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1728 /* pick a field to test for end of list */
1729 if (!attr->attr.name)
1730 break;
1731 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1732 if (attr->free)
1733 attr->free(mod);
1734 }
1735 kfree(mod->modinfo_attrs);
1736 }
1737
1738 static void mod_kobject_put(struct module *mod)
1739 {
1740 DECLARE_COMPLETION_ONSTACK(c);
1741 mod->mkobj.kobj_completion = &c;
1742 kobject_put(&mod->mkobj.kobj);
1743 wait_for_completion(&c);
1744 }
1745
1746 static int mod_sysfs_init(struct module *mod)
1747 {
1748 int err;
1749 struct kobject *kobj;
1750
1751 if (!module_sysfs_initialized) {
1752 pr_err("%s: module sysfs not initialized\n", mod->name);
1753 err = -EINVAL;
1754 goto out;
1755 }
1756
1757 kobj = kset_find_obj(module_kset, mod->name);
1758 if (kobj) {
1759 pr_err("%s: module is already loaded\n", mod->name);
1760 kobject_put(kobj);
1761 err = -EINVAL;
1762 goto out;
1763 }
1764
1765 mod->mkobj.mod = mod;
1766
1767 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1768 mod->mkobj.kobj.kset = module_kset;
1769 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1770 "%s", mod->name);
1771 if (err)
1772 mod_kobject_put(mod);
1773
1774 /* delay uevent until full sysfs population */
1775 out:
1776 return err;
1777 }
1778
1779 static int mod_sysfs_setup(struct module *mod,
1780 const struct load_info *info,
1781 struct kernel_param *kparam,
1782 unsigned int num_params)
1783 {
1784 int err;
1785
1786 err = mod_sysfs_init(mod);
1787 if (err)
1788 goto out;
1789
1790 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1791 if (!mod->holders_dir) {
1792 err = -ENOMEM;
1793 goto out_unreg;
1794 }
1795
1796 err = module_param_sysfs_setup(mod, kparam, num_params);
1797 if (err)
1798 goto out_unreg_holders;
1799
1800 err = module_add_modinfo_attrs(mod);
1801 if (err)
1802 goto out_unreg_param;
1803
1804 err = add_usage_links(mod);
1805 if (err)
1806 goto out_unreg_modinfo_attrs;
1807
1808 add_sect_attrs(mod, info);
1809 add_notes_attrs(mod, info);
1810
1811 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1812 return 0;
1813
1814 out_unreg_modinfo_attrs:
1815 module_remove_modinfo_attrs(mod);
1816 out_unreg_param:
1817 module_param_sysfs_remove(mod);
1818 out_unreg_holders:
1819 kobject_put(mod->holders_dir);
1820 out_unreg:
1821 mod_kobject_put(mod);
1822 out:
1823 return err;
1824 }
1825
1826 static void mod_sysfs_fini(struct module *mod)
1827 {
1828 remove_notes_attrs(mod);
1829 remove_sect_attrs(mod);
1830 mod_kobject_put(mod);
1831 }
1832
1833 static void init_param_lock(struct module *mod)
1834 {
1835 mutex_init(&mod->param_lock);
1836 }
1837 #else /* !CONFIG_SYSFS */
1838
1839 static int mod_sysfs_setup(struct module *mod,
1840 const struct load_info *info,
1841 struct kernel_param *kparam,
1842 unsigned int num_params)
1843 {
1844 return 0;
1845 }
1846
1847 static void mod_sysfs_fini(struct module *mod)
1848 {
1849 }
1850
1851 static void module_remove_modinfo_attrs(struct module *mod)
1852 {
1853 }
1854
1855 static void del_usage_links(struct module *mod)
1856 {
1857 }
1858
1859 static void init_param_lock(struct module *mod)
1860 {
1861 }
1862 #endif /* CONFIG_SYSFS */
1863
1864 static void mod_sysfs_teardown(struct module *mod)
1865 {
1866 del_usage_links(mod);
1867 module_remove_modinfo_attrs(mod);
1868 module_param_sysfs_remove(mod);
1869 kobject_put(mod->mkobj.drivers_dir);
1870 kobject_put(mod->holders_dir);
1871 mod_sysfs_fini(mod);
1872 }
1873
1874 #ifdef CONFIG_STRICT_MODULE_RWX
1875 /*
1876 * LKM RO/NX protection: protect module's text/ro-data
1877 * from modification and any data from execution.
1878 *
1879 * General layout of module is:
1880 * [text] [read-only-data] [ro-after-init] [writable data]
1881 * text_size -----^ ^ ^ ^
1882 * ro_size ------------------------| | |
1883 * ro_after_init_size -----------------------------| |
1884 * size -----------------------------------------------------------|
1885 *
1886 * These values are always page-aligned (as is base)
1887 */
1888 static void frob_text(const struct module_layout *layout,
1889 int (*set_memory)(unsigned long start, int num_pages))
1890 {
1891 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1892 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1893 set_memory((unsigned long)layout->base,
1894 layout->text_size >> PAGE_SHIFT);
1895 }
1896
1897 static void frob_rodata(const struct module_layout *layout,
1898 int (*set_memory)(unsigned long start, int num_pages))
1899 {
1900 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1901 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1902 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1903 set_memory((unsigned long)layout->base + layout->text_size,
1904 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1905 }
1906
1907 static void frob_ro_after_init(const struct module_layout *layout,
1908 int (*set_memory)(unsigned long start, int num_pages))
1909 {
1910 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1911 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1912 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1913 set_memory((unsigned long)layout->base + layout->ro_size,
1914 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1915 }
1916
1917 static void frob_writable_data(const struct module_layout *layout,
1918 int (*set_memory)(unsigned long start, int num_pages))
1919 {
1920 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1921 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1922 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1923 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1924 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1925 }
1926
1927 /* livepatching wants to disable read-only so it can frob module. */
1928 void module_disable_ro(const struct module *mod)
1929 {
1930 if (!rodata_enabled)
1931 return;
1932
1933 frob_text(&mod->core_layout, set_memory_rw);
1934 frob_rodata(&mod->core_layout, set_memory_rw);
1935 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1936 frob_text(&mod->init_layout, set_memory_rw);
1937 frob_rodata(&mod->init_layout, set_memory_rw);
1938 }
1939
1940 void module_enable_ro(const struct module *mod, bool after_init)
1941 {
1942 if (!rodata_enabled)
1943 return;
1944
1945 frob_text(&mod->core_layout, set_memory_ro);
1946 frob_rodata(&mod->core_layout, set_memory_ro);
1947 frob_text(&mod->init_layout, set_memory_ro);
1948 frob_rodata(&mod->init_layout, set_memory_ro);
1949
1950 if (after_init)
1951 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1952 }
1953
1954 static void module_enable_nx(const struct module *mod)
1955 {
1956 frob_rodata(&mod->core_layout, set_memory_nx);
1957 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1958 frob_writable_data(&mod->core_layout, set_memory_nx);
1959 frob_rodata(&mod->init_layout, set_memory_nx);
1960 frob_writable_data(&mod->init_layout, set_memory_nx);
1961 }
1962
1963 static void module_disable_nx(const struct module *mod)
1964 {
1965 frob_rodata(&mod->core_layout, set_memory_x);
1966 frob_ro_after_init(&mod->core_layout, set_memory_x);
1967 frob_writable_data(&mod->core_layout, set_memory_x);
1968 frob_rodata(&mod->init_layout, set_memory_x);
1969 frob_writable_data(&mod->init_layout, set_memory_x);
1970 }
1971
1972 /* Iterate through all modules and set each module's text as RW */
1973 void set_all_modules_text_rw(void)
1974 {
1975 struct module *mod;
1976
1977 if (!rodata_enabled)
1978 return;
1979
1980 mutex_lock(&module_mutex);
1981 list_for_each_entry_rcu(mod, &modules, list) {
1982 if (mod->state == MODULE_STATE_UNFORMED)
1983 continue;
1984
1985 frob_text(&mod->core_layout, set_memory_rw);
1986 frob_text(&mod->init_layout, set_memory_rw);
1987 }
1988 mutex_unlock(&module_mutex);
1989 }
1990
1991 /* Iterate through all modules and set each module's text as RO */
1992 void set_all_modules_text_ro(void)
1993 {
1994 struct module *mod;
1995
1996 if (!rodata_enabled)
1997 return;
1998
1999 mutex_lock(&module_mutex);
2000 list_for_each_entry_rcu(mod, &modules, list) {
2001 /*
2002 * Ignore going modules since it's possible that ro
2003 * protection has already been disabled, otherwise we'll
2004 * run into protection faults at module deallocation.
2005 */
2006 if (mod->state == MODULE_STATE_UNFORMED ||
2007 mod->state == MODULE_STATE_GOING)
2008 continue;
2009
2010 frob_text(&mod->core_layout, set_memory_ro);
2011 frob_text(&mod->init_layout, set_memory_ro);
2012 }
2013 mutex_unlock(&module_mutex);
2014 }
2015
2016 static void disable_ro_nx(const struct module_layout *layout)
2017 {
2018 if (rodata_enabled) {
2019 frob_text(layout, set_memory_rw);
2020 frob_rodata(layout, set_memory_rw);
2021 frob_ro_after_init(layout, set_memory_rw);
2022 }
2023 frob_rodata(layout, set_memory_x);
2024 frob_ro_after_init(layout, set_memory_x);
2025 frob_writable_data(layout, set_memory_x);
2026 }
2027
2028 #else
2029 static void disable_ro_nx(const struct module_layout *layout) { }
2030 static void module_enable_nx(const struct module *mod) { }
2031 static void module_disable_nx(const struct module *mod) { }
2032 #endif
2033
2034 #ifdef CONFIG_LIVEPATCH
2035 /*
2036 * Persist Elf information about a module. Copy the Elf header,
2037 * section header table, section string table, and symtab section
2038 * index from info to mod->klp_info.
2039 */
2040 static int copy_module_elf(struct module *mod, struct load_info *info)
2041 {
2042 unsigned int size, symndx;
2043 int ret;
2044
2045 size = sizeof(*mod->klp_info);
2046 mod->klp_info = kmalloc(size, GFP_KERNEL);
2047 if (mod->klp_info == NULL)
2048 return -ENOMEM;
2049
2050 /* Elf header */
2051 size = sizeof(mod->klp_info->hdr);
2052 memcpy(&mod->klp_info->hdr, info->hdr, size);
2053
2054 /* Elf section header table */
2055 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2056 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2057 if (mod->klp_info->sechdrs == NULL) {
2058 ret = -ENOMEM;
2059 goto free_info;
2060 }
2061 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2062
2063 /* Elf section name string table */
2064 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2065 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2066 if (mod->klp_info->secstrings == NULL) {
2067 ret = -ENOMEM;
2068 goto free_sechdrs;
2069 }
2070 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2071
2072 /* Elf symbol section index */
2073 symndx = info->index.sym;
2074 mod->klp_info->symndx = symndx;
2075
2076 /*
2077 * For livepatch modules, core_kallsyms.symtab is a complete
2078 * copy of the original symbol table. Adjust sh_addr to point
2079 * to core_kallsyms.symtab since the copy of the symtab in module
2080 * init memory is freed at the end of do_init_module().
2081 */
2082 mod->klp_info->sechdrs[symndx].sh_addr = \
2083 (unsigned long) mod->core_kallsyms.symtab;
2084
2085 return 0;
2086
2087 free_sechdrs:
2088 kfree(mod->klp_info->sechdrs);
2089 free_info:
2090 kfree(mod->klp_info);
2091 return ret;
2092 }
2093
2094 static void free_module_elf(struct module *mod)
2095 {
2096 kfree(mod->klp_info->sechdrs);
2097 kfree(mod->klp_info->secstrings);
2098 kfree(mod->klp_info);
2099 }
2100 #else /* !CONFIG_LIVEPATCH */
2101 static int copy_module_elf(struct module *mod, struct load_info *info)
2102 {
2103 return 0;
2104 }
2105
2106 static void free_module_elf(struct module *mod)
2107 {
2108 }
2109 #endif /* CONFIG_LIVEPATCH */
2110
2111 void __weak module_memfree(void *module_region)
2112 {
2113 vfree(module_region);
2114 }
2115
2116 void __weak module_arch_cleanup(struct module *mod)
2117 {
2118 }
2119
2120 void __weak module_arch_freeing_init(struct module *mod)
2121 {
2122 }
2123
2124 static void cfi_cleanup(struct module *mod);
2125
2126 /* Free a module, remove from lists, etc. */
2127 static void free_module(struct module *mod)
2128 {
2129 trace_module_free(mod);
2130
2131 mod_sysfs_teardown(mod);
2132
2133 /* We leave it in list to prevent duplicate loads, but make sure
2134 * that noone uses it while it's being deconstructed. */
2135 mutex_lock(&module_mutex);
2136 mod->state = MODULE_STATE_UNFORMED;
2137 mutex_unlock(&module_mutex);
2138
2139 /* Remove dynamic debug info */
2140 ddebug_remove_module(mod->name);
2141
2142 /* Arch-specific cleanup. */
2143 module_arch_cleanup(mod);
2144
2145 /* Module unload stuff */
2146 module_unload_free(mod);
2147
2148 /* Free any allocated parameters. */
2149 destroy_params(mod->kp, mod->num_kp);
2150
2151 if (is_livepatch_module(mod))
2152 free_module_elf(mod);
2153
2154 /* Now we can delete it from the lists */
2155 mutex_lock(&module_mutex);
2156 /* Unlink carefully: kallsyms could be walking list. */
2157 list_del_rcu(&mod->list);
2158 mod_tree_remove(mod);
2159 /* Remove this module from bug list, this uses list_del_rcu */
2160 module_bug_cleanup(mod);
2161 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2162 synchronize_sched();
2163 mutex_unlock(&module_mutex);
2164
2165 /* This may be empty, but that's OK */
2166 disable_ro_nx(&mod->init_layout);
2167
2168 /* Clean up CFI for the module. */
2169 cfi_cleanup(mod);
2170
2171 module_arch_freeing_init(mod);
2172 module_memfree(mod->init_layout.base);
2173 kfree(mod->args);
2174 percpu_modfree(mod);
2175
2176 /* Free lock-classes; relies on the preceding sync_rcu(). */
2177 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2178
2179 /* Finally, free the core (containing the module structure) */
2180 disable_ro_nx(&mod->core_layout);
2181 module_memfree(mod->core_layout.base);
2182
2183 #ifdef CONFIG_MPU
2184 update_protections(current->mm);
2185 #endif
2186 }
2187
2188 void *__symbol_get(const char *symbol)
2189 {
2190 struct module *owner;
2191 const struct kernel_symbol *sym;
2192
2193 preempt_disable();
2194 sym = find_symbol(symbol, &owner, NULL, true, true);
2195 if (sym && strong_try_module_get(owner))
2196 sym = NULL;
2197 preempt_enable();
2198
2199 return sym ? (void *)sym->value : NULL;
2200 }
2201 EXPORT_SYMBOL_GPL(__symbol_get);
2202
2203 /*
2204 * Ensure that an exported symbol [global namespace] does not already exist
2205 * in the kernel or in some other module's exported symbol table.
2206 *
2207 * You must hold the module_mutex.
2208 */
2209 static int verify_export_symbols(struct module *mod)
2210 {
2211 unsigned int i;
2212 struct module *owner;
2213 const struct kernel_symbol *s;
2214 struct {
2215 const struct kernel_symbol *sym;
2216 unsigned int num;
2217 } arr[] = {
2218 { mod->syms, mod->num_syms },
2219 { mod->gpl_syms, mod->num_gpl_syms },
2220 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2221 #ifdef CONFIG_UNUSED_SYMBOLS
2222 { mod->unused_syms, mod->num_unused_syms },
2223 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2224 #endif
2225 };
2226
2227 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2228 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2229 if (find_symbol(s->name, &owner, NULL, true, false)) {
2230 pr_err("%s: exports duplicate symbol %s"
2231 " (owned by %s)\n",
2232 mod->name, s->name, module_name(owner));
2233 return -ENOEXEC;
2234 }
2235 }
2236 }
2237 return 0;
2238 }
2239
2240 /* Change all symbols so that st_value encodes the pointer directly. */
2241 static int simplify_symbols(struct module *mod, const struct load_info *info)
2242 {
2243 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2244 Elf_Sym *sym = (void *)symsec->sh_addr;
2245 unsigned long secbase;
2246 unsigned int i;
2247 int ret = 0;
2248 const struct kernel_symbol *ksym;
2249
2250 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2251 const char *name = info->strtab + sym[i].st_name;
2252
2253 switch (sym[i].st_shndx) {
2254 case SHN_COMMON:
2255 /* Ignore common symbols */
2256 if (!strncmp(name, "__gnu_lto", 9))
2257 break;
2258
2259 /* We compiled with -fno-common. These are not
2260 supposed to happen. */
2261 pr_debug("Common symbol: %s\n", name);
2262 pr_warn("%s: please compile with -fno-common\n",
2263 mod->name);
2264 ret = -ENOEXEC;
2265 break;
2266
2267 case SHN_ABS:
2268 /* Don't need to do anything */
2269 pr_debug("Absolute symbol: 0x%08lx\n",
2270 (long)sym[i].st_value);
2271 break;
2272
2273 case SHN_LIVEPATCH:
2274 /* Livepatch symbols are resolved by livepatch */
2275 break;
2276
2277 case SHN_UNDEF:
2278 ksym = resolve_symbol_wait(mod, info, name);
2279 /* Ok if resolved. */
2280 if (ksym && !IS_ERR(ksym)) {
2281 sym[i].st_value = ksym->value;
2282 break;
2283 }
2284
2285 /* Ok if weak. */
2286 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2287 break;
2288
2289 pr_warn("%s: Unknown symbol %s (err %li)\n",
2290 mod->name, name, PTR_ERR(ksym));
2291 ret = PTR_ERR(ksym) ?: -ENOENT;
2292 break;
2293
2294 default:
2295 /* Divert to percpu allocation if a percpu var. */
2296 if (sym[i].st_shndx == info->index.pcpu)
2297 secbase = (unsigned long)mod_percpu(mod);
2298 else
2299 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2300 sym[i].st_value += secbase;
2301 break;
2302 }
2303 }
2304
2305 return ret;
2306 }
2307
2308 static int apply_relocations(struct module *mod, const struct load_info *info)
2309 {
2310 unsigned int i;
2311 int err = 0;
2312
2313 /* Now do relocations. */
2314 for (i = 1; i < info->hdr->e_shnum; i++) {
2315 unsigned int infosec = info->sechdrs[i].sh_info;
2316
2317 /* Not a valid relocation section? */
2318 if (infosec >= info->hdr->e_shnum)
2319 continue;
2320
2321 /* Don't bother with non-allocated sections */
2322 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2323 continue;
2324
2325 /* Livepatch relocation sections are applied by livepatch */
2326 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2327 continue;
2328
2329 if (info->sechdrs[i].sh_type == SHT_REL)
2330 err = apply_relocate(info->sechdrs, info->strtab,
2331 info->index.sym, i, mod);
2332 else if (info->sechdrs[i].sh_type == SHT_RELA)
2333 err = apply_relocate_add(info->sechdrs, info->strtab,
2334 info->index.sym, i, mod);
2335 if (err < 0)
2336 break;
2337 }
2338 return err;
2339 }
2340
2341 /* Additional bytes needed by arch in front of individual sections */
2342 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2343 unsigned int section)
2344 {
2345 /* default implementation just returns zero */
2346 return 0;
2347 }
2348
2349 /* Update size with this section: return offset. */
2350 static long get_offset(struct module *mod, unsigned int *size,
2351 Elf_Shdr *sechdr, unsigned int section)
2352 {
2353 long ret;
2354
2355 *size += arch_mod_section_prepend(mod, section);
2356 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2357 *size = ret + sechdr->sh_size;
2358 return ret;
2359 }
2360
2361 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2362 might -- code, read-only data, read-write data, small data. Tally
2363 sizes, and place the offsets into sh_entsize fields: high bit means it
2364 belongs in init. */
2365 static void layout_sections(struct module *mod, struct load_info *info)
2366 {
2367 static unsigned long const masks[][2] = {
2368 /* NOTE: all executable code must be the first section
2369 * in this array; otherwise modify the text_size
2370 * finder in the two loops below */
2371 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2372 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2373 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2374 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2375 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2376 };
2377 unsigned int m, i;
2378
2379 for (i = 0; i < info->hdr->e_shnum; i++)
2380 info->sechdrs[i].sh_entsize = ~0UL;
2381
2382 pr_debug("Core section allocation order:\n");
2383 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2384 for (i = 0; i < info->hdr->e_shnum; ++i) {
2385 Elf_Shdr *s = &info->sechdrs[i];
2386 const char *sname = info->secstrings + s->sh_name;
2387
2388 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2389 || (s->sh_flags & masks[m][1])
2390 || s->sh_entsize != ~0UL
2391 || strstarts(sname, ".init"))
2392 continue;
2393 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2394 pr_debug("\t%s\n", sname);
2395 }
2396 switch (m) {
2397 case 0: /* executable */
2398 mod->core_layout.size = debug_align(mod->core_layout.size);
2399 mod->core_layout.text_size = mod->core_layout.size;
2400 break;
2401 case 1: /* RO: text and ro-data */
2402 mod->core_layout.size = debug_align(mod->core_layout.size);
2403 mod->core_layout.ro_size = mod->core_layout.size;
2404 break;
2405 case 2: /* RO after init */
2406 mod->core_layout.size = debug_align(mod->core_layout.size);
2407 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2408 break;
2409 case 4: /* whole core */
2410 mod->core_layout.size = debug_align(mod->core_layout.size);
2411 break;
2412 }
2413 }
2414
2415 pr_debug("Init section allocation order:\n");
2416 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2417 for (i = 0; i < info->hdr->e_shnum; ++i) {
2418 Elf_Shdr *s = &info->sechdrs[i];
2419 const char *sname = info->secstrings + s->sh_name;
2420
2421 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2422 || (s->sh_flags & masks[m][1])
2423 || s->sh_entsize != ~0UL
2424 || !strstarts(sname, ".init"))
2425 continue;
2426 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2427 | INIT_OFFSET_MASK);
2428 pr_debug("\t%s\n", sname);
2429 }
2430 switch (m) {
2431 case 0: /* executable */
2432 mod->init_layout.size = debug_align(mod->init_layout.size);
2433 mod->init_layout.text_size = mod->init_layout.size;
2434 break;
2435 case 1: /* RO: text and ro-data */
2436 mod->init_layout.size = debug_align(mod->init_layout.size);
2437 mod->init_layout.ro_size = mod->init_layout.size;
2438 break;
2439 case 2:
2440 /*
2441 * RO after init doesn't apply to init_layout (only
2442 * core_layout), so it just takes the value of ro_size.
2443 */
2444 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2445 break;
2446 case 4: /* whole init */
2447 mod->init_layout.size = debug_align(mod->init_layout.size);
2448 break;
2449 }
2450 }
2451 }
2452
2453 static void set_license(struct module *mod, const char *license)
2454 {
2455 if (!license)
2456 license = "unspecified";
2457
2458 if (!license_is_gpl_compatible(license)) {
2459 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2460 pr_warn("%s: module license '%s' taints kernel.\n",
2461 mod->name, license);
2462 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2463 LOCKDEP_NOW_UNRELIABLE);
2464 }
2465 }
2466
2467 /* Parse tag=value strings from .modinfo section */
2468 static char *next_string(char *string, unsigned long *secsize)
2469 {
2470 /* Skip non-zero chars */
2471 while (string[0]) {
2472 string++;
2473 if ((*secsize)-- <= 1)
2474 return NULL;
2475 }
2476
2477 /* Skip any zero padding. */
2478 while (!string[0]) {
2479 string++;
2480 if ((*secsize)-- <= 1)
2481 return NULL;
2482 }
2483 return string;
2484 }
2485
2486 static char *get_modinfo(struct load_info *info, const char *tag)
2487 {
2488 char *p;
2489 unsigned int taglen = strlen(tag);
2490 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2491 unsigned long size = infosec->sh_size;
2492
2493 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2494 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2495 return p + taglen + 1;
2496 }
2497 return NULL;
2498 }
2499
2500 static void setup_modinfo(struct module *mod, struct load_info *info)
2501 {
2502 struct module_attribute *attr;
2503 int i;
2504
2505 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2506 if (attr->setup)
2507 attr->setup(mod, get_modinfo(info, attr->attr.name));
2508 }
2509 }
2510
2511 static void free_modinfo(struct module *mod)
2512 {
2513 struct module_attribute *attr;
2514 int i;
2515
2516 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2517 if (attr->free)
2518 attr->free(mod);
2519 }
2520 }
2521
2522 #ifdef CONFIG_KALLSYMS
2523
2524 /* lookup symbol in given range of kernel_symbols */
2525 static const struct kernel_symbol *lookup_symbol(const char *name,
2526 const struct kernel_symbol *start,
2527 const struct kernel_symbol *stop)
2528 {
2529 return bsearch(name, start, stop - start,
2530 sizeof(struct kernel_symbol), cmp_name);
2531 }
2532
2533 static int is_exported(const char *name, unsigned long value,
2534 const struct module *mod)
2535 {
2536 const struct kernel_symbol *ks;
2537 if (!mod)
2538 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2539 else
2540 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2541 return ks != NULL && ks->value == value;
2542 }
2543
2544 /* As per nm */
2545 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2546 {
2547 const Elf_Shdr *sechdrs = info->sechdrs;
2548
2549 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2550 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2551 return 'v';
2552 else
2553 return 'w';
2554 }
2555 if (sym->st_shndx == SHN_UNDEF)
2556 return 'U';
2557 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2558 return 'a';
2559 if (sym->st_shndx >= SHN_LORESERVE)
2560 return '?';
2561 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2562 return 't';
2563 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2564 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2565 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2566 return 'r';
2567 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2568 return 'g';
2569 else
2570 return 'd';
2571 }
2572 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2573 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2574 return 's';
2575 else
2576 return 'b';
2577 }
2578 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2579 ".debug")) {
2580 return 'n';
2581 }
2582 return '?';
2583 }
2584
2585 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2586 unsigned int shnum, unsigned int pcpundx)
2587 {
2588 const Elf_Shdr *sec;
2589
2590 if (src->st_shndx == SHN_UNDEF
2591 || src->st_shndx >= shnum
2592 || !src->st_name)
2593 return false;
2594
2595 #ifdef CONFIG_KALLSYMS_ALL
2596 if (src->st_shndx == pcpundx)
2597 return true;
2598 #endif
2599
2600 sec = sechdrs + src->st_shndx;
2601 if (!(sec->sh_flags & SHF_ALLOC)
2602 #ifndef CONFIG_KALLSYMS_ALL
2603 || !(sec->sh_flags & SHF_EXECINSTR)
2604 #endif
2605 || (sec->sh_entsize & INIT_OFFSET_MASK))
2606 return false;
2607
2608 return true;
2609 }
2610
2611 /*
2612 * We only allocate and copy the strings needed by the parts of symtab
2613 * we keep. This is simple, but has the effect of making multiple
2614 * copies of duplicates. We could be more sophisticated, see
2615 * linux-kernel thread starting with
2616 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2617 */
2618 static void layout_symtab(struct module *mod, struct load_info *info)
2619 {
2620 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2621 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2622 const Elf_Sym *src;
2623 unsigned int i, nsrc, ndst, strtab_size = 0;
2624
2625 /* Put symbol section at end of init part of module. */
2626 symsect->sh_flags |= SHF_ALLOC;
2627 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2628 info->index.sym) | INIT_OFFSET_MASK;
2629 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2630
2631 src = (void *)info->hdr + symsect->sh_offset;
2632 nsrc = symsect->sh_size / sizeof(*src);
2633
2634 /* Compute total space required for the core symbols' strtab. */
2635 for (ndst = i = 0; i < nsrc; i++) {
2636 if (i == 0 || is_livepatch_module(mod) ||
2637 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2638 info->index.pcpu)) {
2639 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2640 ndst++;
2641 }
2642 }
2643
2644 /* Append room for core symbols at end of core part. */
2645 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2646 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2647 mod->core_layout.size += strtab_size;
2648 mod->core_layout.size = debug_align(mod->core_layout.size);
2649
2650 /* Put string table section at end of init part of module. */
2651 strsect->sh_flags |= SHF_ALLOC;
2652 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2653 info->index.str) | INIT_OFFSET_MASK;
2654 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2655
2656 /* We'll tack temporary mod_kallsyms on the end. */
2657 mod->init_layout.size = ALIGN(mod->init_layout.size,
2658 __alignof__(struct mod_kallsyms));
2659 info->mod_kallsyms_init_off = mod->init_layout.size;
2660 mod->init_layout.size += sizeof(struct mod_kallsyms);
2661 mod->init_layout.size = debug_align(mod->init_layout.size);
2662 }
2663
2664 /*
2665 * We use the full symtab and strtab which layout_symtab arranged to
2666 * be appended to the init section. Later we switch to the cut-down
2667 * core-only ones.
2668 */
2669 static void add_kallsyms(struct module *mod, const struct load_info *info)
2670 {
2671 unsigned int i, ndst;
2672 const Elf_Sym *src;
2673 Elf_Sym *dst;
2674 char *s;
2675 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2676
2677 /* Set up to point into init section. */
2678 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2679
2680 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2681 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2682 /* Make sure we get permanent strtab: don't use info->strtab. */
2683 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2684
2685 /* Set types up while we still have access to sections. */
2686 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2687 mod->kallsyms->symtab[i].st_info
2688 = elf_type(&mod->kallsyms->symtab[i], info);
2689
2690 /* Now populate the cut down core kallsyms for after init. */
2691 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2692 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2693 src = mod->kallsyms->symtab;
2694 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2695 if (i == 0 || is_livepatch_module(mod) ||
2696 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2697 info->index.pcpu)) {
2698 dst[ndst] = src[i];
2699 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2700 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2701 KSYM_NAME_LEN) + 1;
2702 }
2703 }
2704 mod->core_kallsyms.num_symtab = ndst;
2705 }
2706 #else
2707 static inline void layout_symtab(struct module *mod, struct load_info *info)
2708 {
2709 }
2710
2711 static void add_kallsyms(struct module *mod, const struct load_info *info)
2712 {
2713 }
2714 #endif /* CONFIG_KALLSYMS */
2715
2716 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2717 {
2718 if (!debug)
2719 return;
2720 #ifdef CONFIG_DYNAMIC_DEBUG
2721 if (ddebug_add_module(debug, num, mod->name))
2722 pr_err("dynamic debug error adding module: %s\n",
2723 debug->modname);
2724 #endif
2725 }
2726
2727 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2728 {
2729 if (debug)
2730 ddebug_remove_module(mod->name);
2731 }
2732
2733 void * __weak module_alloc(unsigned long size)
2734 {
2735 return vmalloc_exec(size);
2736 }
2737
2738 #ifdef CONFIG_DEBUG_KMEMLEAK
2739 static void kmemleak_load_module(const struct module *mod,
2740 const struct load_info *info)
2741 {
2742 unsigned int i;
2743
2744 /* only scan the sections containing data */
2745 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2746
2747 for (i = 1; i < info->hdr->e_shnum; i++) {
2748 /* Scan all writable sections that's not executable */
2749 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2750 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2751 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2752 continue;
2753
2754 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2755 info->sechdrs[i].sh_size, GFP_KERNEL);
2756 }
2757 }
2758 #else
2759 static inline void kmemleak_load_module(const struct module *mod,
2760 const struct load_info *info)
2761 {
2762 }
2763 #endif
2764
2765 #ifdef CONFIG_MODULE_SIG
2766 static int module_sig_check(struct load_info *info, int flags)
2767 {
2768 int err = -ENOKEY;
2769 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2770 const void *mod = info->hdr;
2771
2772 /*
2773 * Require flags == 0, as a module with version information
2774 * removed is no longer the module that was signed
2775 */
2776 if (flags == 0 &&
2777 info->len > markerlen &&
2778 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2779 /* We truncate the module to discard the signature */
2780 info->len -= markerlen;
2781 err = mod_verify_sig(mod, &info->len);
2782 }
2783
2784 if (!err) {
2785 info->sig_ok = true;
2786 return 0;
2787 }
2788
2789 /* Not having a signature is only an error if we're strict. */
2790 if (err == -ENOKEY && !sig_enforce)
2791 err = 0;
2792
2793 return err;
2794 }
2795 #else /* !CONFIG_MODULE_SIG */
2796 static int module_sig_check(struct load_info *info, int flags)
2797 {
2798 return 0;
2799 }
2800 #endif /* !CONFIG_MODULE_SIG */
2801
2802 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2803 static int elf_header_check(struct load_info *info)
2804 {
2805 if (info->len < sizeof(*(info->hdr)))
2806 return -ENOEXEC;
2807
2808 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2809 || info->hdr->e_type != ET_REL
2810 || !elf_check_arch(info->hdr)
2811 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2812 return -ENOEXEC;
2813
2814 if (info->hdr->e_shoff >= info->len
2815 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2816 info->len - info->hdr->e_shoff))
2817 return -ENOEXEC;
2818
2819 return 0;
2820 }
2821
2822 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2823
2824 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2825 {
2826 do {
2827 unsigned long n = min(len, COPY_CHUNK_SIZE);
2828
2829 if (copy_from_user(dst, usrc, n) != 0)
2830 return -EFAULT;
2831 cond_resched();
2832 dst += n;
2833 usrc += n;
2834 len -= n;
2835 } while (len);
2836 return 0;
2837 }
2838
2839 #ifdef CONFIG_LIVEPATCH
2840 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2841 {
2842 if (get_modinfo(info, "livepatch")) {
2843 mod->klp = true;
2844 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2845 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2846 mod->name);
2847 }
2848
2849 return 0;
2850 }
2851 #else /* !CONFIG_LIVEPATCH */
2852 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2853 {
2854 if (get_modinfo(info, "livepatch")) {
2855 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2856 mod->name);
2857 return -ENOEXEC;
2858 }
2859
2860 return 0;
2861 }
2862 #endif /* CONFIG_LIVEPATCH */
2863
2864 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2865 {
2866 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2867 return;
2868
2869 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2870 mod->name);
2871 }
2872
2873 /* Sets info->hdr and info->len. */
2874 static int copy_module_from_user(const void __user *umod, unsigned long len,
2875 struct load_info *info)
2876 {
2877 int err;
2878
2879 info->len = len;
2880 if (info->len < sizeof(*(info->hdr)))
2881 return -ENOEXEC;
2882
2883 err = security_kernel_read_file(NULL, READING_MODULE);
2884 if (err)
2885 return err;
2886
2887 /* Suck in entire file: we'll want most of it. */
2888 info->hdr = __vmalloc(info->len,
2889 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2890 if (!info->hdr)
2891 return -ENOMEM;
2892
2893 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2894 vfree(info->hdr);
2895 return -EFAULT;
2896 }
2897
2898 return 0;
2899 }
2900
2901 static void free_copy(struct load_info *info)
2902 {
2903 vfree(info->hdr);
2904 }
2905
2906 static int rewrite_section_headers(struct load_info *info, int flags)
2907 {
2908 unsigned int i;
2909
2910 /* This should always be true, but let's be sure. */
2911 info->sechdrs[0].sh_addr = 0;
2912
2913 for (i = 1; i < info->hdr->e_shnum; i++) {
2914 Elf_Shdr *shdr = &info->sechdrs[i];
2915 if (shdr->sh_type != SHT_NOBITS
2916 && info->len < shdr->sh_offset + shdr->sh_size) {
2917 pr_err("Module len %lu truncated\n", info->len);
2918 return -ENOEXEC;
2919 }
2920
2921 /* Mark all sections sh_addr with their address in the
2922 temporary image. */
2923 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2924
2925 #ifndef CONFIG_MODULE_UNLOAD
2926 /* Don't load .exit sections */
2927 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2928 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2929 #endif
2930 }
2931
2932 /* Track but don't keep modinfo and version sections. */
2933 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2934 info->index.vers = 0; /* Pretend no __versions section! */
2935 else
2936 info->index.vers = find_sec(info, "__versions");
2937 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2938
2939 info->index.info = find_sec(info, ".modinfo");
2940 if (!info->index.info)
2941 info->name = "(missing .modinfo section)";
2942 else
2943 info->name = get_modinfo(info, "name");
2944 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2945
2946 return 0;
2947 }
2948
2949 /*
2950 * Set up our basic convenience variables (pointers to section headers,
2951 * search for module section index etc), and do some basic section
2952 * verification.
2953 *
2954 * Return the temporary module pointer (we'll replace it with the final
2955 * one when we move the module sections around).
2956 */
2957 static struct module *setup_load_info(struct load_info *info, int flags)
2958 {
2959 unsigned int i;
2960 int err;
2961 struct module *mod;
2962
2963 /* Set up the convenience variables */
2964 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2965 info->secstrings = (void *)info->hdr
2966 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2967
2968 err = rewrite_section_headers(info, flags);
2969 if (err)
2970 return ERR_PTR(err);
2971
2972 /* Find internal symbols and strings. */
2973 for (i = 1; i < info->hdr->e_shnum; i++) {
2974 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2975 info->index.sym = i;
2976 info->index.str = info->sechdrs[i].sh_link;
2977 info->strtab = (char *)info->hdr
2978 + info->sechdrs[info->index.str].sh_offset;
2979 break;
2980 }
2981 }
2982
2983 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2984 if (!info->index.mod) {
2985 pr_warn("%s: No module found in object\n",
2986 info->name ?: "(missing .modinfo name field)");
2987 return ERR_PTR(-ENOEXEC);
2988 }
2989 /* This is temporary: point mod into copy of data. */
2990 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2991
2992 /*
2993 * If we didn't load the .modinfo 'name' field, fall back to
2994 * on-disk struct mod 'name' field.
2995 */
2996 if (!info->name)
2997 info->name = mod->name;
2998
2999 if (info->index.sym == 0) {
3000 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3001 return ERR_PTR(-ENOEXEC);
3002 }
3003
3004 info->index.pcpu = find_pcpusec(info);
3005
3006 /* Check module struct version now, before we try to use module. */
3007 if (!check_modstruct_version(info, mod))
3008 return ERR_PTR(-ENOEXEC);
3009
3010 return mod;
3011 }
3012
3013 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3014 {
3015 const char *modmagic = get_modinfo(info, "vermagic");
3016 int err;
3017
3018 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3019 modmagic = NULL;
3020
3021 /* This is allowed: modprobe --force will invalidate it. */
3022 if (!modmagic) {
3023 err = try_to_force_load(mod, "bad vermagic");
3024 if (err)
3025 return err;
3026 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3027 pr_err("%s: version magic '%s' should be '%s'\n",
3028 info->name, modmagic, vermagic);
3029 return -ENOEXEC;
3030 }
3031
3032 if (!get_modinfo(info, "intree")) {
3033 if (!test_taint(TAINT_OOT_MODULE))
3034 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3035 mod->name);
3036 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3037 }
3038
3039 check_modinfo_retpoline(mod, info);
3040
3041 if (get_modinfo(info, "staging")) {
3042 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3043 pr_warn("%s: module is from the staging directory, the quality "
3044 "is unknown, you have been warned.\n", mod->name);
3045 }
3046
3047 err = check_modinfo_livepatch(mod, info);
3048 if (err)
3049 return err;
3050
3051 /* Set up license info based on the info section */
3052 set_license(mod, get_modinfo(info, "license"));
3053
3054 return 0;
3055 }
3056
3057 static int find_module_sections(struct module *mod, struct load_info *info)
3058 {
3059 mod->kp = section_objs(info, "__param",
3060 sizeof(*mod->kp), &mod->num_kp);
3061 mod->syms = section_objs(info, "__ksymtab",
3062 sizeof(*mod->syms), &mod->num_syms);
3063 mod->crcs = section_addr(info, "__kcrctab");
3064 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3065 sizeof(*mod->gpl_syms),
3066 &mod->num_gpl_syms);
3067 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3068 mod->gpl_future_syms = section_objs(info,
3069 "__ksymtab_gpl_future",
3070 sizeof(*mod->gpl_future_syms),
3071 &mod->num_gpl_future_syms);
3072 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3073
3074 #ifdef CONFIG_UNUSED_SYMBOLS
3075 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3076 sizeof(*mod->unused_syms),
3077 &mod->num_unused_syms);
3078 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3079 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3080 sizeof(*mod->unused_gpl_syms),
3081 &mod->num_unused_gpl_syms);
3082 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3083 #endif
3084 #ifdef CONFIG_CONSTRUCTORS
3085 mod->ctors = section_objs(info, ".ctors",
3086 sizeof(*mod->ctors), &mod->num_ctors);
3087 if (!mod->ctors)
3088 mod->ctors = section_objs(info, ".init_array",
3089 sizeof(*mod->ctors), &mod->num_ctors);
3090 else if (find_sec(info, ".init_array")) {
3091 /*
3092 * This shouldn't happen with same compiler and binutils
3093 * building all parts of the module.
3094 */
3095 pr_warn("%s: has both .ctors and .init_array.\n",
3096 mod->name);
3097 return -EINVAL;
3098 }
3099 #endif
3100
3101 #ifdef CONFIG_TRACEPOINTS
3102 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3103 sizeof(*mod->tracepoints_ptrs),
3104 &mod->num_tracepoints);
3105 #endif
3106 #ifdef HAVE_JUMP_LABEL
3107 mod->jump_entries = section_objs(info, "__jump_table",
3108 sizeof(*mod->jump_entries),
3109 &mod->num_jump_entries);
3110 #endif
3111 #ifdef CONFIG_EVENT_TRACING
3112 mod->trace_events = section_objs(info, "_ftrace_events",
3113 sizeof(*mod->trace_events),
3114 &mod->num_trace_events);
3115 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3116 sizeof(*mod->trace_evals),
3117 &mod->num_trace_evals);
3118 #endif
3119 #ifdef CONFIG_TRACING
3120 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3121 sizeof(*mod->trace_bprintk_fmt_start),
3122 &mod->num_trace_bprintk_fmt);
3123 #endif
3124 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3125 /* sechdrs[0].sh_size is always zero */
3126 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3127 sizeof(*mod->ftrace_callsites),
3128 &mod->num_ftrace_callsites);
3129 #endif
3130
3131 mod->extable = section_objs(info, "__ex_table",
3132 sizeof(*mod->extable), &mod->num_exentries);
3133
3134 if (section_addr(info, "__obsparm"))
3135 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3136
3137 info->debug = section_objs(info, "__verbose",
3138 sizeof(*info->debug), &info->num_debug);
3139
3140 return 0;
3141 }
3142
3143 static int move_module(struct module *mod, struct load_info *info)
3144 {
3145 int i;
3146 void *ptr;
3147
3148 /* Do the allocs. */
3149 ptr = module_alloc(mod->core_layout.size);
3150 /*
3151 * The pointer to this block is stored in the module structure
3152 * which is inside the block. Just mark it as not being a
3153 * leak.
3154 */
3155 kmemleak_not_leak(ptr);
3156 if (!ptr)
3157 return -ENOMEM;
3158
3159 memset(ptr, 0, mod->core_layout.size);
3160 mod->core_layout.base = ptr;
3161
3162 if (mod->init_layout.size) {
3163 ptr = module_alloc(mod->init_layout.size);
3164 /*
3165 * The pointer to this block is stored in the module structure
3166 * which is inside the block. This block doesn't need to be
3167 * scanned as it contains data and code that will be freed
3168 * after the module is initialized.
3169 */
3170 kmemleak_ignore(ptr);
3171 if (!ptr) {
3172 module_memfree(mod->core_layout.base);
3173 return -ENOMEM;
3174 }
3175 memset(ptr, 0, mod->init_layout.size);
3176 mod->init_layout.base = ptr;
3177 } else
3178 mod->init_layout.base = NULL;
3179
3180 /* Transfer each section which specifies SHF_ALLOC */
3181 pr_debug("final section addresses:\n");
3182 for (i = 0; i < info->hdr->e_shnum; i++) {
3183 void *dest;
3184 Elf_Shdr *shdr = &info->sechdrs[i];
3185
3186 if (!(shdr->sh_flags & SHF_ALLOC))
3187 continue;
3188
3189 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3190 dest = mod->init_layout.base
3191 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3192 else
3193 dest = mod->core_layout.base + shdr->sh_entsize;
3194
3195 if (shdr->sh_type != SHT_NOBITS)
3196 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3197 /* Update sh_addr to point to copy in image. */
3198 shdr->sh_addr = (unsigned long)dest;
3199 pr_debug("\t0x%lx %s\n",
3200 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3201 }
3202
3203 return 0;
3204 }
3205
3206 static int check_module_license_and_versions(struct module *mod)
3207 {
3208 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3209
3210 /*
3211 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3212 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3213 * using GPL-only symbols it needs.
3214 */
3215 if (strcmp(mod->name, "ndiswrapper") == 0)
3216 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3217
3218 /* driverloader was caught wrongly pretending to be under GPL */
3219 if (strcmp(mod->name, "driverloader") == 0)
3220 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3221 LOCKDEP_NOW_UNRELIABLE);
3222
3223 /* lve claims to be GPL but upstream won't provide source */
3224 if (strcmp(mod->name, "lve") == 0)
3225 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3226 LOCKDEP_NOW_UNRELIABLE);
3227
3228 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3229 pr_warn("%s: module license taints kernel.\n", mod->name);
3230
3231 #ifdef CONFIG_MODVERSIONS
3232 if ((mod->num_syms && !mod->crcs)
3233 || (mod->num_gpl_syms && !mod->gpl_crcs)
3234 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3235 #ifdef CONFIG_UNUSED_SYMBOLS
3236 || (mod->num_unused_syms && !mod->unused_crcs)
3237 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3238 #endif
3239 ) {
3240 return try_to_force_load(mod,
3241 "no versions for exported symbols");
3242 }
3243 #endif
3244 return 0;
3245 }
3246
3247 static void flush_module_icache(const struct module *mod)
3248 {
3249 mm_segment_t old_fs;
3250
3251 /* flush the icache in correct context */
3252 old_fs = get_fs();
3253 set_fs(KERNEL_DS);
3254
3255 /*
3256 * Flush the instruction cache, since we've played with text.
3257 * Do it before processing of module parameters, so the module
3258 * can provide parameter accessor functions of its own.
3259 */
3260 if (mod->init_layout.base)
3261 flush_icache_range((unsigned long)mod->init_layout.base,
3262 (unsigned long)mod->init_layout.base
3263 + mod->init_layout.size);
3264 flush_icache_range((unsigned long)mod->core_layout.base,
3265 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3266
3267 set_fs(old_fs);
3268 }
3269
3270 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3271 Elf_Shdr *sechdrs,
3272 char *secstrings,
3273 struct module *mod)
3274 {
3275 return 0;
3276 }
3277
3278 /* module_blacklist is a comma-separated list of module names */
3279 static char *module_blacklist;
3280 static bool blacklisted(const char *module_name)
3281 {
3282 const char *p;
3283 size_t len;
3284
3285 if (!module_blacklist)
3286 return false;
3287
3288 for (p = module_blacklist; *p; p += len) {
3289 len = strcspn(p, ",");
3290 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3291 return true;
3292 if (p[len] == ',')
3293 len++;
3294 }
3295 return false;
3296 }
3297 core_param(module_blacklist, module_blacklist, charp, 0400);
3298
3299 static struct module *layout_and_allocate(struct load_info *info, int flags)
3300 {
3301 /* Module within temporary copy. */
3302 struct module *mod;
3303 unsigned int ndx;
3304 int err;
3305
3306 mod = setup_load_info(info, flags);
3307 if (IS_ERR(mod))
3308 return mod;
3309
3310 if (blacklisted(info->name))
3311 return ERR_PTR(-EPERM);
3312
3313 err = check_modinfo(mod, info, flags);
3314 if (err)
3315 return ERR_PTR(err);
3316
3317 /* Allow arches to frob section contents and sizes. */
3318 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3319 info->secstrings, mod);
3320 if (err < 0)
3321 return ERR_PTR(err);
3322
3323 /* We will do a special allocation for per-cpu sections later. */
3324 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3325
3326 /*
3327 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3328 * layout_sections() can put it in the right place.
3329 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3330 */
3331 ndx = find_sec(info, ".data..ro_after_init");
3332 if (ndx)
3333 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3334
3335 /* Determine total sizes, and put offsets in sh_entsize. For now
3336 this is done generically; there doesn't appear to be any
3337 special cases for the architectures. */
3338 layout_sections(mod, info);
3339 layout_symtab(mod, info);
3340
3341 /* Allocate and move to the final place */
3342 err = move_module(mod, info);
3343 if (err)
3344 return ERR_PTR(err);
3345
3346 /* Module has been copied to its final place now: return it. */
3347 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3348 kmemleak_load_module(mod, info);
3349 return mod;
3350 }
3351
3352 /* mod is no longer valid after this! */
3353 static void module_deallocate(struct module *mod, struct load_info *info)
3354 {
3355 percpu_modfree(mod);
3356 module_arch_freeing_init(mod);
3357 module_memfree(mod->init_layout.base);
3358 module_memfree(mod->core_layout.base);
3359 }
3360
3361 int __weak module_finalize(const Elf_Ehdr *hdr,
3362 const Elf_Shdr *sechdrs,
3363 struct module *me)
3364 {
3365 return 0;
3366 }
3367
3368 static void cfi_init(struct module *mod);
3369
3370 static int post_relocation(struct module *mod, const struct load_info *info)
3371 {
3372 /* Sort exception table now relocations are done. */
3373 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3374
3375 /* Copy relocated percpu area over. */
3376 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3377 info->sechdrs[info->index.pcpu].sh_size);
3378
3379 /* Setup kallsyms-specific fields. */
3380 add_kallsyms(mod, info);
3381
3382 /* Setup CFI for the module. */
3383 cfi_init(mod);
3384
3385 /* Arch-specific module finalizing. */
3386 return module_finalize(info->hdr, info->sechdrs, mod);
3387 }
3388
3389 /* Is this module of this name done loading? No locks held. */
3390 static bool finished_loading(const char *name)
3391 {
3392 struct module *mod;
3393 bool ret;
3394
3395 /*
3396 * The module_mutex should not be a heavily contended lock;
3397 * if we get the occasional sleep here, we'll go an extra iteration
3398 * in the wait_event_interruptible(), which is harmless.
3399 */
3400 sched_annotate_sleep();
3401 mutex_lock(&module_mutex);
3402 mod = find_module_all(name, strlen(name), true);
3403 ret = !mod || mod->state == MODULE_STATE_LIVE
3404 || mod->state == MODULE_STATE_GOING;
3405 mutex_unlock(&module_mutex);
3406
3407 return ret;
3408 }
3409
3410 /* Call module constructors. */
3411 static void do_mod_ctors(struct module *mod)
3412 {
3413 #ifdef CONFIG_CONSTRUCTORS
3414 unsigned long i;
3415
3416 for (i = 0; i < mod->num_ctors; i++)
3417 mod->ctors[i]();
3418 #endif
3419 }
3420
3421 /* For freeing module_init on success, in case kallsyms traversing */
3422 struct mod_initfree {
3423 struct rcu_head rcu;
3424 void *module_init;
3425 };
3426
3427 static void do_free_init(struct rcu_head *head)
3428 {
3429 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3430 module_memfree(m->module_init);
3431 kfree(m);
3432 }
3433
3434 /*
3435 * This is where the real work happens.
3436 *
3437 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3438 * helper command 'lx-symbols'.
3439 */
3440 static noinline int do_init_module(struct module *mod)
3441 {
3442 int ret = 0;
3443 struct mod_initfree *freeinit;
3444
3445 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3446 if (!freeinit) {
3447 ret = -ENOMEM;
3448 goto fail;
3449 }
3450 freeinit->module_init = mod->init_layout.base;
3451
3452 /*
3453 * We want to find out whether @mod uses async during init. Clear
3454 * PF_USED_ASYNC. async_schedule*() will set it.
3455 */
3456 current->flags &= ~PF_USED_ASYNC;
3457
3458 do_mod_ctors(mod);
3459 /* Start the module */
3460 if (mod->init != NULL)
3461 ret = do_one_initcall(mod->init);
3462 if (ret < 0) {
3463 goto fail_free_freeinit;
3464 }
3465 if (ret > 0) {
3466 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3467 "follow 0/-E convention\n"
3468 "%s: loading module anyway...\n",
3469 __func__, mod->name, ret, __func__);
3470 dump_stack();
3471 }
3472
3473 /* Now it's a first class citizen! */
3474 mod->state = MODULE_STATE_LIVE;
3475 blocking_notifier_call_chain(&module_notify_list,
3476 MODULE_STATE_LIVE, mod);
3477
3478 /*
3479 * We need to finish all async code before the module init sequence
3480 * is done. This has potential to deadlock. For example, a newly
3481 * detected block device can trigger request_module() of the
3482 * default iosched from async probing task. Once userland helper
3483 * reaches here, async_synchronize_full() will wait on the async
3484 * task waiting on request_module() and deadlock.
3485 *
3486 * This deadlock is avoided by perfomring async_synchronize_full()
3487 * iff module init queued any async jobs. This isn't a full
3488 * solution as it will deadlock the same if module loading from
3489 * async jobs nests more than once; however, due to the various
3490 * constraints, this hack seems to be the best option for now.
3491 * Please refer to the following thread for details.
3492 *
3493 * http://thread.gmane.org/gmane.linux.kernel/1420814
3494 */
3495 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3496 async_synchronize_full();
3497
3498 mutex_lock(&module_mutex);
3499 /* Drop initial reference. */
3500 module_put(mod);
3501 trim_init_extable(mod);
3502 #ifdef CONFIG_KALLSYMS
3503 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3504 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3505 #endif
3506 module_enable_ro(mod, true);
3507 mod_tree_remove_init(mod);
3508 disable_ro_nx(&mod->init_layout);
3509 module_arch_freeing_init(mod);
3510 mod->init_layout.base = NULL;
3511 mod->init_layout.size = 0;
3512 mod->init_layout.ro_size = 0;
3513 mod->init_layout.ro_after_init_size = 0;
3514 mod->init_layout.text_size = 0;
3515 /*
3516 * We want to free module_init, but be aware that kallsyms may be
3517 * walking this with preempt disabled. In all the failure paths, we
3518 * call synchronize_sched(), but we don't want to slow down the success
3519 * path, so use actual RCU here.
3520 * Note that module_alloc() on most architectures creates W+X page
3521 * mappings which won't be cleaned up until do_free_init() runs. Any
3522 * code such as mark_rodata_ro() which depends on those mappings to
3523 * be cleaned up needs to sync with the queued work - ie
3524 * rcu_barrier_sched()
3525 */
3526 call_rcu_sched(&freeinit->rcu, do_free_init);
3527 mutex_unlock(&module_mutex);
3528 wake_up_all(&module_wq);
3529
3530 return 0;
3531
3532 fail_free_freeinit:
3533 kfree(freeinit);
3534 fail:
3535 /* Try to protect us from buggy refcounters. */
3536 mod->state = MODULE_STATE_GOING;
3537 synchronize_sched();
3538 module_put(mod);
3539 blocking_notifier_call_chain(&module_notify_list,
3540 MODULE_STATE_GOING, mod);
3541 klp_module_going(mod);
3542 ftrace_release_mod(mod);
3543 free_module(mod);
3544 wake_up_all(&module_wq);
3545 return ret;
3546 }
3547
3548 static int may_init_module(void)
3549 {
3550 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3551 return -EPERM;
3552
3553 return 0;
3554 }
3555
3556 /*
3557 * We try to place it in the list now to make sure it's unique before
3558 * we dedicate too many resources. In particular, temporary percpu
3559 * memory exhaustion.
3560 */
3561 static int add_unformed_module(struct module *mod)
3562 {
3563 int err;
3564 struct module *old;
3565
3566 mod->state = MODULE_STATE_UNFORMED;
3567
3568 again:
3569 mutex_lock(&module_mutex);
3570 old = find_module_all(mod->name, strlen(mod->name), true);
3571 if (old != NULL) {
3572 if (old->state == MODULE_STATE_COMING
3573 || old->state == MODULE_STATE_UNFORMED) {
3574 /* Wait in case it fails to load. */
3575 mutex_unlock(&module_mutex);
3576 err = wait_event_interruptible(module_wq,
3577 finished_loading(mod->name));
3578 if (err)
3579 goto out_unlocked;
3580 goto again;
3581 }
3582 err = -EEXIST;
3583 goto out;
3584 }
3585 mod_update_bounds(mod);
3586 list_add_rcu(&mod->list, &modules);
3587 mod_tree_insert(mod);
3588 err = 0;
3589
3590 out:
3591 mutex_unlock(&module_mutex);
3592 out_unlocked:
3593 return err;
3594 }
3595
3596 static int complete_formation(struct module *mod, struct load_info *info)
3597 {
3598 int err;
3599
3600 mutex_lock(&module_mutex);
3601
3602 /* Find duplicate symbols (must be called under lock). */
3603 err = verify_export_symbols(mod);
3604 if (err < 0)
3605 goto out;
3606
3607 /* This relies on module_mutex for list integrity. */
3608 module_bug_finalize(info->hdr, info->sechdrs, mod);
3609
3610 module_enable_ro(mod, false);
3611 module_enable_nx(mod);
3612
3613 /* Mark state as coming so strong_try_module_get() ignores us,
3614 * but kallsyms etc. can see us. */
3615 mod->state = MODULE_STATE_COMING;
3616 mutex_unlock(&module_mutex);
3617
3618 return 0;
3619
3620 out:
3621 mutex_unlock(&module_mutex);
3622 return err;
3623 }
3624
3625 static int prepare_coming_module(struct module *mod)
3626 {
3627 int err;
3628
3629 ftrace_module_enable(mod);
3630 err = klp_module_coming(mod);
3631 if (err)
3632 return err;
3633
3634 blocking_notifier_call_chain(&module_notify_list,
3635 MODULE_STATE_COMING, mod);
3636 return 0;
3637 }
3638
3639 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3640 void *arg)
3641 {
3642 struct module *mod = arg;
3643 int ret;
3644
3645 if (strcmp(param, "async_probe") == 0) {
3646 mod->async_probe_requested = true;
3647 return 0;
3648 }
3649
3650 /* Check for magic 'dyndbg' arg */
3651 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3652 if (ret != 0)
3653 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3654 return 0;
3655 }
3656
3657 /* Allocate and load the module: note that size of section 0 is always
3658 zero, and we rely on this for optional sections. */
3659 static int load_module(struct load_info *info, const char __user *uargs,
3660 int flags)
3661 {
3662 struct module *mod;
3663 long err;
3664 char *after_dashes;
3665
3666 err = module_sig_check(info, flags);
3667 if (err)
3668 goto free_copy;
3669
3670 err = elf_header_check(info);
3671 if (err)
3672 goto free_copy;
3673
3674 /* Figure out module layout, and allocate all the memory. */
3675 mod = layout_and_allocate(info, flags);
3676 if (IS_ERR(mod)) {
3677 err = PTR_ERR(mod);
3678 goto free_copy;
3679 }
3680
3681 audit_log_kern_module(mod->name);
3682
3683 /* Reserve our place in the list. */
3684 err = add_unformed_module(mod);
3685 if (err)
3686 goto free_module;
3687
3688 #ifdef CONFIG_MODULE_SIG
3689 mod->sig_ok = info->sig_ok;
3690 if (!mod->sig_ok) {
3691 pr_notice_once("%s: module verification failed: signature "
3692 "and/or required key missing - tainting "
3693 "kernel\n", mod->name);
3694 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3695 }
3696 #endif
3697
3698 /* To avoid stressing percpu allocator, do this once we're unique. */
3699 err = percpu_modalloc(mod, info);
3700 if (err)
3701 goto unlink_mod;
3702
3703 /* Now module is in final location, initialize linked lists, etc. */
3704 err = module_unload_init(mod);
3705 if (err)
3706 goto unlink_mod;
3707
3708 init_param_lock(mod);
3709
3710 /* Now we've got everything in the final locations, we can
3711 * find optional sections. */
3712 err = find_module_sections(mod, info);
3713 if (err)
3714 goto free_unload;
3715
3716 err = check_module_license_and_versions(mod);
3717 if (err)
3718 goto free_unload;
3719
3720 /* Set up MODINFO_ATTR fields */
3721 setup_modinfo(mod, info);
3722
3723 /* Fix up syms, so that st_value is a pointer to location. */
3724 err = simplify_symbols(mod, info);
3725 if (err < 0)
3726 goto free_modinfo;
3727
3728 err = apply_relocations(mod, info);
3729 if (err < 0)
3730 goto free_modinfo;
3731
3732 err = post_relocation(mod, info);
3733 if (err < 0)
3734 goto free_modinfo;
3735
3736 flush_module_icache(mod);
3737
3738 /* Now copy in args */
3739 mod->args = strndup_user(uargs, ~0UL >> 1);
3740 if (IS_ERR(mod->args)) {
3741 err = PTR_ERR(mod->args);
3742 goto free_arch_cleanup;
3743 }
3744
3745 dynamic_debug_setup(mod, info->debug, info->num_debug);
3746
3747 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3748 ftrace_module_init(mod);
3749
3750 /* Finally it's fully formed, ready to start executing. */
3751 err = complete_formation(mod, info);
3752 if (err)
3753 goto ddebug_cleanup;
3754
3755 err = prepare_coming_module(mod);
3756 if (err)
3757 goto bug_cleanup;
3758
3759 /* Module is ready to execute: parsing args may do that. */
3760 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3761 -32768, 32767, mod,
3762 unknown_module_param_cb);
3763 if (IS_ERR(after_dashes)) {
3764 err = PTR_ERR(after_dashes);
3765 goto coming_cleanup;
3766 } else if (after_dashes) {
3767 pr_warn("%s: parameters '%s' after `--' ignored\n",
3768 mod->name, after_dashes);
3769 }
3770
3771 /* Link in to sysfs. */
3772 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3773 if (err < 0)
3774 goto coming_cleanup;
3775
3776 if (is_livepatch_module(mod)) {
3777 err = copy_module_elf(mod, info);
3778 if (err < 0)
3779 goto sysfs_cleanup;
3780 }
3781
3782 /* Get rid of temporary copy. */
3783 free_copy(info);
3784
3785 /* Done! */
3786 trace_module_load(mod);
3787
3788 return do_init_module(mod);
3789
3790 sysfs_cleanup:
3791 mod_sysfs_teardown(mod);
3792 coming_cleanup:
3793 mod->state = MODULE_STATE_GOING;
3794 destroy_params(mod->kp, mod->num_kp);
3795 blocking_notifier_call_chain(&module_notify_list,
3796 MODULE_STATE_GOING, mod);
3797 klp_module_going(mod);
3798 bug_cleanup:
3799 /* module_bug_cleanup needs module_mutex protection */
3800 mutex_lock(&module_mutex);
3801 module_bug_cleanup(mod);
3802 mutex_unlock(&module_mutex);
3803
3804 /* we can't deallocate the module until we clear memory protection */
3805 module_disable_ro(mod);
3806 module_disable_nx(mod);
3807
3808 ddebug_cleanup:
3809 dynamic_debug_remove(mod, info->debug);
3810 synchronize_sched();
3811 kfree(mod->args);
3812 free_arch_cleanup:
3813 module_arch_cleanup(mod);
3814 free_modinfo:
3815 free_modinfo(mod);
3816 free_unload:
3817 module_unload_free(mod);
3818 unlink_mod:
3819 mutex_lock(&module_mutex);
3820 /* Unlink carefully: kallsyms could be walking list. */
3821 list_del_rcu(&mod->list);
3822 mod_tree_remove(mod);
3823 wake_up_all(&module_wq);
3824 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3825 synchronize_sched();
3826 mutex_unlock(&module_mutex);
3827 free_module:
3828 /*
3829 * Ftrace needs to clean up what it initialized.
3830 * This does nothing if ftrace_module_init() wasn't called,
3831 * but it must be called outside of module_mutex.
3832 */
3833 ftrace_release_mod(mod);
3834 /* Free lock-classes; relies on the preceding sync_rcu() */
3835 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3836
3837 module_deallocate(mod, info);
3838 free_copy:
3839 free_copy(info);
3840 return err;
3841 }
3842
3843 SYSCALL_DEFINE3(init_module, void __user *, umod,
3844 unsigned long, len, const char __user *, uargs)
3845 {
3846 int err;
3847 struct load_info info = { };
3848
3849 err = may_init_module();
3850 if (err)
3851 return err;
3852
3853 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3854 umod, len, uargs);
3855
3856 err = copy_module_from_user(umod, len, &info);
3857 if (err)
3858 return err;
3859
3860 return load_module(&info, uargs, 0);
3861 }
3862
3863 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3864 {
3865 struct load_info info = { };
3866 loff_t size;
3867 void *hdr;
3868 int err;
3869
3870 err = may_init_module();
3871 if (err)
3872 return err;
3873
3874 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3875
3876 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3877 |MODULE_INIT_IGNORE_VERMAGIC))
3878 return -EINVAL;
3879
3880 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3881 READING_MODULE);
3882 if (err)
3883 return err;
3884 info.hdr = hdr;
3885 info.len = size;
3886
3887 return load_module(&info, uargs, flags);
3888 }
3889
3890 static inline int within(unsigned long addr, void *start, unsigned long size)
3891 {
3892 return ((void *)addr >= start && (void *)addr < start + size);
3893 }
3894
3895 #ifdef CONFIG_KALLSYMS
3896 /*
3897 * This ignores the intensely annoying "mapping symbols" found
3898 * in ARM ELF files: $a, $t and $d.
3899 */
3900 static inline int is_arm_mapping_symbol(const char *str)
3901 {
3902 if (str[0] == '.' && str[1] == 'L')
3903 return true;
3904 return str[0] == '$' && strchr("axtd", str[1])
3905 && (str[2] == '\0' || str[2] == '.');
3906 }
3907
3908 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3909 {
3910 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3911 }
3912
3913 static const char *get_ksymbol(struct module *mod,
3914 unsigned long addr,
3915 unsigned long *size,
3916 unsigned long *offset)
3917 {
3918 unsigned int i, best = 0;
3919 unsigned long nextval;
3920 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3921
3922 /* At worse, next value is at end of module */
3923 if (within_module_init(addr, mod))
3924 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3925 else
3926 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3927
3928 /* Scan for closest preceding symbol, and next symbol. (ELF
3929 starts real symbols at 1). */
3930 for (i = 1; i < kallsyms->num_symtab; i++) {
3931 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3932 continue;
3933
3934 /* We ignore unnamed symbols: they're uninformative
3935 * and inserted at a whim. */
3936 if (*symname(kallsyms, i) == '\0'
3937 || is_arm_mapping_symbol(symname(kallsyms, i)))
3938 continue;
3939
3940 if (kallsyms->symtab[i].st_value <= addr
3941 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3942 best = i;
3943 if (kallsyms->symtab[i].st_value > addr
3944 && kallsyms->symtab[i].st_value < nextval)
3945 nextval = kallsyms->symtab[i].st_value;
3946 }
3947
3948 if (!best)
3949 return NULL;
3950
3951 if (size)
3952 *size = nextval - kallsyms->symtab[best].st_value;
3953 if (offset)
3954 *offset = addr - kallsyms->symtab[best].st_value;
3955 return symname(kallsyms, best);
3956 }
3957
3958 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3959 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3960 const char *module_address_lookup(unsigned long addr,
3961 unsigned long *size,
3962 unsigned long *offset,
3963 char **modname,
3964 char *namebuf)
3965 {
3966 const char *ret = NULL;
3967 struct module *mod;
3968
3969 preempt_disable();
3970 mod = __module_address(addr);
3971 if (mod) {
3972 if (modname)
3973 *modname = mod->name;
3974 ret = get_ksymbol(mod, addr, size, offset);
3975 }
3976 /* Make a copy in here where it's safe */
3977 if (ret) {
3978 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3979 ret = namebuf;
3980 }
3981 preempt_enable();
3982
3983 return ret;
3984 }
3985
3986 int lookup_module_symbol_name(unsigned long addr, char *symname)
3987 {
3988 struct module *mod;
3989
3990 preempt_disable();
3991 list_for_each_entry_rcu(mod, &modules, list) {
3992 if (mod->state == MODULE_STATE_UNFORMED)
3993 continue;
3994 if (within_module(addr, mod)) {
3995 const char *sym;
3996
3997 sym = get_ksymbol(mod, addr, NULL, NULL);
3998 if (!sym)
3999 goto out;
4000 strlcpy(symname, sym, KSYM_NAME_LEN);
4001 preempt_enable();
4002 return 0;
4003 }
4004 }
4005 out:
4006 preempt_enable();
4007 return -ERANGE;
4008 }
4009
4010 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4011 unsigned long *offset, char *modname, char *name)
4012 {
4013 struct module *mod;
4014
4015 preempt_disable();
4016 list_for_each_entry_rcu(mod, &modules, list) {
4017 if (mod->state == MODULE_STATE_UNFORMED)
4018 continue;
4019 if (within_module(addr, mod)) {
4020 const char *sym;
4021
4022 sym = get_ksymbol(mod, addr, size, offset);
4023 if (!sym)
4024 goto out;
4025 if (modname)
4026 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4027 if (name)
4028 strlcpy(name, sym, KSYM_NAME_LEN);
4029 preempt_enable();
4030 return 0;
4031 }
4032 }
4033 out:
4034 preempt_enable();
4035 return -ERANGE;
4036 }
4037
4038 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4039 char *name, char *module_name, int *exported)
4040 {
4041 struct module *mod;
4042
4043 preempt_disable();
4044 list_for_each_entry_rcu(mod, &modules, list) {
4045 struct mod_kallsyms *kallsyms;
4046
4047 if (mod->state == MODULE_STATE_UNFORMED)
4048 continue;
4049 kallsyms = rcu_dereference_sched(mod->kallsyms);
4050 if (symnum < kallsyms->num_symtab) {
4051 *value = kallsyms->symtab[symnum].st_value;
4052 *type = kallsyms->symtab[symnum].st_info;
4053 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4054 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4055 *exported = is_exported(name, *value, mod);
4056 preempt_enable();
4057 return 0;
4058 }
4059 symnum -= kallsyms->num_symtab;
4060 }
4061 preempt_enable();
4062 return -ERANGE;
4063 }
4064
4065 static unsigned long mod_find_symname(struct module *mod, const char *name)
4066 {
4067 unsigned int i;
4068 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4069
4070 for (i = 0; i < kallsyms->num_symtab; i++)
4071 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4072 kallsyms->symtab[i].st_shndx != SHN_UNDEF)
4073 return kallsyms->symtab[i].st_value;
4074 return 0;
4075 }
4076
4077 /* Look for this name: can be of form module:name. */
4078 unsigned long module_kallsyms_lookup_name(const char *name)
4079 {
4080 struct module *mod;
4081 char *colon;
4082 unsigned long ret = 0;
4083
4084 /* Don't lock: we're in enough trouble already. */
4085 preempt_disable();
4086 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4087 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4088 ret = mod_find_symname(mod, colon+1);
4089 } else {
4090 list_for_each_entry_rcu(mod, &modules, list) {
4091 if (mod->state == MODULE_STATE_UNFORMED)
4092 continue;
4093 if ((ret = mod_find_symname(mod, name)) != 0)
4094 break;
4095 }
4096 }
4097 preempt_enable();
4098 return ret;
4099 }
4100
4101 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4102 struct module *, unsigned long),
4103 void *data)
4104 {
4105 struct module *mod;
4106 unsigned int i;
4107 int ret;
4108
4109 module_assert_mutex();
4110
4111 list_for_each_entry(mod, &modules, list) {
4112 /* We hold module_mutex: no need for rcu_dereference_sched */
4113 struct mod_kallsyms *kallsyms = mod->kallsyms;
4114
4115 if (mod->state == MODULE_STATE_UNFORMED)
4116 continue;
4117 for (i = 0; i < kallsyms->num_symtab; i++) {
4118
4119 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
4120 continue;
4121
4122 ret = fn(data, symname(kallsyms, i),
4123 mod, kallsyms->symtab[i].st_value);
4124 if (ret != 0)
4125 return ret;
4126 }
4127 }
4128 return 0;
4129 }
4130 #endif /* CONFIG_KALLSYMS */
4131
4132 static void cfi_init(struct module *mod)
4133 {
4134 #ifdef CONFIG_CFI_CLANG
4135 mod->cfi_check =
4136 (cfi_check_fn)mod_find_symname(mod, CFI_CHECK_FN_NAME);
4137 cfi_module_add(mod, module_addr_min, module_addr_max);
4138 #endif
4139 }
4140
4141 static void cfi_cleanup(struct module *mod)
4142 {
4143 #ifdef CONFIG_CFI_CLANG
4144 cfi_module_remove(mod, module_addr_min, module_addr_max);
4145 #endif
4146 }
4147
4148 /* Maximum number of characters written by module_flags() */
4149 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4150
4151 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4152 static char *module_flags(struct module *mod, char *buf)
4153 {
4154 int bx = 0;
4155
4156 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4157 if (mod->taints ||
4158 mod->state == MODULE_STATE_GOING ||
4159 mod->state == MODULE_STATE_COMING) {
4160 buf[bx++] = '(';
4161 bx += module_flags_taint(mod, buf + bx);
4162 /* Show a - for module-is-being-unloaded */
4163 if (mod->state == MODULE_STATE_GOING)
4164 buf[bx++] = '-';
4165 /* Show a + for module-is-being-loaded */
4166 if (mod->state == MODULE_STATE_COMING)
4167 buf[bx++] = '+';
4168 buf[bx++] = ')';
4169 }
4170 buf[bx] = '\0';
4171
4172 return buf;
4173 }
4174
4175 #ifdef CONFIG_PROC_FS
4176 /* Called by the /proc file system to return a list of modules. */
4177 static void *m_start(struct seq_file *m, loff_t *pos)
4178 {
4179 mutex_lock(&module_mutex);
4180 return seq_list_start(&modules, *pos);
4181 }
4182
4183 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4184 {
4185 return seq_list_next(p, &modules, pos);
4186 }
4187
4188 static void m_stop(struct seq_file *m, void *p)
4189 {
4190 mutex_unlock(&module_mutex);
4191 }
4192
4193 static int m_show(struct seq_file *m, void *p)
4194 {
4195 struct module *mod = list_entry(p, struct module, list);
4196 char buf[MODULE_FLAGS_BUF_SIZE];
4197
4198 /* We always ignore unformed modules. */
4199 if (mod->state == MODULE_STATE_UNFORMED)
4200 return 0;
4201
4202 seq_printf(m, "%s %u",
4203 mod->name, mod->init_layout.size + mod->core_layout.size);
4204 print_unload_info(m, mod);
4205
4206 /* Informative for users. */
4207 seq_printf(m, " %s",
4208 mod->state == MODULE_STATE_GOING ? "Unloading" :
4209 mod->state == MODULE_STATE_COMING ? "Loading" :
4210 "Live");
4211 /* Used by oprofile and other similar tools. */
4212 seq_printf(m, " 0x%pK", mod->core_layout.base);
4213
4214 /* Taints info */
4215 if (mod->taints)
4216 seq_printf(m, " %s", module_flags(mod, buf));
4217
4218 seq_puts(m, "\n");
4219 return 0;
4220 }
4221
4222 /* Format: modulename size refcount deps address
4223
4224 Where refcount is a number or -, and deps is a comma-separated list
4225 of depends or -.
4226 */
4227 static const struct seq_operations modules_op = {
4228 .start = m_start,
4229 .next = m_next,
4230 .stop = m_stop,
4231 .show = m_show
4232 };
4233
4234 static int modules_open(struct inode *inode, struct file *file)
4235 {
4236 return seq_open(file, &modules_op);
4237 }
4238
4239 static const struct file_operations proc_modules_operations = {
4240 .open = modules_open,
4241 .read = seq_read,
4242 .llseek = seq_lseek,
4243 .release = seq_release,
4244 };
4245
4246 static int __init proc_modules_init(void)
4247 {
4248 proc_create("modules", 0, NULL, &proc_modules_operations);
4249 return 0;
4250 }
4251 module_init(proc_modules_init);
4252 #endif
4253
4254 /* Given an address, look for it in the module exception tables. */
4255 const struct exception_table_entry *search_module_extables(unsigned long addr)
4256 {
4257 const struct exception_table_entry *e = NULL;
4258 struct module *mod;
4259
4260 preempt_disable();
4261 mod = __module_address(addr);
4262 if (!mod)
4263 goto out;
4264
4265 if (!mod->num_exentries)
4266 goto out;
4267
4268 e = search_extable(mod->extable,
4269 mod->num_exentries,
4270 addr);
4271 out:
4272 preempt_enable();
4273
4274 /*
4275 * Now, if we found one, we are running inside it now, hence
4276 * we cannot unload the module, hence no refcnt needed.
4277 */
4278 return e;
4279 }
4280
4281 /*
4282 * is_module_address - is this address inside a module?
4283 * @addr: the address to check.
4284 *
4285 * See is_module_text_address() if you simply want to see if the address
4286 * is code (not data).
4287 */
4288 bool is_module_address(unsigned long addr)
4289 {
4290 bool ret;
4291
4292 preempt_disable();
4293 ret = __module_address(addr) != NULL;
4294 preempt_enable();
4295
4296 return ret;
4297 }
4298
4299 /*
4300 * __module_address - get the module which contains an address.
4301 * @addr: the address.
4302 *
4303 * Must be called with preempt disabled or module mutex held so that
4304 * module doesn't get freed during this.
4305 */
4306 struct module *__module_address(unsigned long addr)
4307 {
4308 struct module *mod;
4309
4310 if (addr < module_addr_min || addr > module_addr_max)
4311 return NULL;
4312
4313 module_assert_mutex_or_preempt();
4314
4315 mod = mod_find(addr);
4316 if (mod) {
4317 BUG_ON(!within_module(addr, mod));
4318 if (mod->state == MODULE_STATE_UNFORMED)
4319 mod = NULL;
4320 }
4321 return mod;
4322 }
4323 EXPORT_SYMBOL_GPL(__module_address);
4324
4325 /*
4326 * is_module_text_address - is this address inside module code?
4327 * @addr: the address to check.
4328 *
4329 * See is_module_address() if you simply want to see if the address is
4330 * anywhere in a module. See kernel_text_address() for testing if an
4331 * address corresponds to kernel or module code.
4332 */
4333 bool is_module_text_address(unsigned long addr)
4334 {
4335 bool ret;
4336
4337 preempt_disable();
4338 ret = __module_text_address(addr) != NULL;
4339 preempt_enable();
4340
4341 return ret;
4342 }
4343
4344 /*
4345 * __module_text_address - get the module whose code contains an address.
4346 * @addr: the address.
4347 *
4348 * Must be called with preempt disabled or module mutex held so that
4349 * module doesn't get freed during this.
4350 */
4351 struct module *__module_text_address(unsigned long addr)
4352 {
4353 struct module *mod = __module_address(addr);
4354 if (mod) {
4355 /* Make sure it's within the text section. */
4356 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4357 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4358 mod = NULL;
4359 }
4360 return mod;
4361 }
4362 EXPORT_SYMBOL_GPL(__module_text_address);
4363
4364 /* Don't grab lock, we're oopsing. */
4365 void print_modules(void)
4366 {
4367 struct module *mod;
4368 char buf[MODULE_FLAGS_BUF_SIZE];
4369
4370 printk(KERN_DEFAULT "Modules linked in:");
4371 /* Most callers should already have preempt disabled, but make sure */
4372 preempt_disable();
4373 list_for_each_entry_rcu(mod, &modules, list) {
4374 if (mod->state == MODULE_STATE_UNFORMED)
4375 continue;
4376 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4377 }
4378 preempt_enable();
4379 if (last_unloaded_module[0])
4380 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4381 pr_cont("\n");
4382 }
4383
4384 #ifdef CONFIG_MODVERSIONS
4385 /* Generate the signature for all relevant module structures here.
4386 * If these change, we don't want to try to parse the module. */
4387 void module_layout(struct module *mod,
4388 struct modversion_info *ver,
4389 struct kernel_param *kp,
4390 struct kernel_symbol *ks,
4391 struct tracepoint * const *tp)
4392 {
4393 }
4394 EXPORT_SYMBOL(module_layout);
4395 #endif