sched/cpufreq/schedutil: Fix error path mutex unlock
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 /*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
869 static struct task_struct *futex_find_get_task(pid_t pid)
870 {
871 struct task_struct *p;
872
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
877
878 rcu_read_unlock();
879
880 return p;
881 }
882
883 #ifdef CONFIG_FUTEX_PI
884
885 /*
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 */
890 void exit_pi_state_list(struct task_struct *curr)
891 {
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
894 struct futex_hash_bucket *hb;
895 union futex_key key = FUTEX_KEY_INIT;
896
897 if (!futex_cmpxchg_enabled)
898 return;
899 /*
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
902 * versus waiters unqueueing themselves:
903 */
904 raw_spin_lock_irq(&curr->pi_lock);
905 while (!list_empty(head)) {
906 next = head->next;
907 pi_state = list_entry(next, struct futex_pi_state, list);
908 key = pi_state->key;
909 hb = hash_futex(&key);
910
911 /*
912 * We can race against put_pi_state() removing itself from the
913 * list (a waiter going away). put_pi_state() will first
914 * decrement the reference count and then modify the list, so
915 * its possible to see the list entry but fail this reference
916 * acquire.
917 *
918 * In that case; drop the locks to let put_pi_state() make
919 * progress and retry the loop.
920 */
921 if (!atomic_inc_not_zero(&pi_state->refcount)) {
922 raw_spin_unlock_irq(&curr->pi_lock);
923 cpu_relax();
924 raw_spin_lock_irq(&curr->pi_lock);
925 continue;
926 }
927 raw_spin_unlock_irq(&curr->pi_lock);
928
929 spin_lock(&hb->lock);
930 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
931 raw_spin_lock(&curr->pi_lock);
932 /*
933 * We dropped the pi-lock, so re-check whether this
934 * task still owns the PI-state:
935 */
936 if (head->next != next) {
937 /* retain curr->pi_lock for the loop invariant */
938 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
939 spin_unlock(&hb->lock);
940 put_pi_state(pi_state);
941 continue;
942 }
943
944 WARN_ON(pi_state->owner != curr);
945 WARN_ON(list_empty(&pi_state->list));
946 list_del_init(&pi_state->list);
947 pi_state->owner = NULL;
948
949 raw_spin_unlock(&curr->pi_lock);
950 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
951 spin_unlock(&hb->lock);
952
953 rt_mutex_futex_unlock(&pi_state->pi_mutex);
954 put_pi_state(pi_state);
955
956 raw_spin_lock_irq(&curr->pi_lock);
957 }
958 raw_spin_unlock_irq(&curr->pi_lock);
959 }
960
961 #endif
962
963 /*
964 * We need to check the following states:
965 *
966 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
967 *
968 * [1] NULL | --- | --- | 0 | 0/1 | Valid
969 * [2] NULL | --- | --- | >0 | 0/1 | Valid
970 *
971 * [3] Found | NULL | -- | Any | 0/1 | Invalid
972 *
973 * [4] Found | Found | NULL | 0 | 1 | Valid
974 * [5] Found | Found | NULL | >0 | 1 | Invalid
975 *
976 * [6] Found | Found | task | 0 | 1 | Valid
977 *
978 * [7] Found | Found | NULL | Any | 0 | Invalid
979 *
980 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
981 * [9] Found | Found | task | 0 | 0 | Invalid
982 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
983 *
984 * [1] Indicates that the kernel can acquire the futex atomically. We
985 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
986 *
987 * [2] Valid, if TID does not belong to a kernel thread. If no matching
988 * thread is found then it indicates that the owner TID has died.
989 *
990 * [3] Invalid. The waiter is queued on a non PI futex
991 *
992 * [4] Valid state after exit_robust_list(), which sets the user space
993 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
994 *
995 * [5] The user space value got manipulated between exit_robust_list()
996 * and exit_pi_state_list()
997 *
998 * [6] Valid state after exit_pi_state_list() which sets the new owner in
999 * the pi_state but cannot access the user space value.
1000 *
1001 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1002 *
1003 * [8] Owner and user space value match
1004 *
1005 * [9] There is no transient state which sets the user space TID to 0
1006 * except exit_robust_list(), but this is indicated by the
1007 * FUTEX_OWNER_DIED bit. See [4]
1008 *
1009 * [10] There is no transient state which leaves owner and user space
1010 * TID out of sync.
1011 *
1012 *
1013 * Serialization and lifetime rules:
1014 *
1015 * hb->lock:
1016 *
1017 * hb -> futex_q, relation
1018 * futex_q -> pi_state, relation
1019 *
1020 * (cannot be raw because hb can contain arbitrary amount
1021 * of futex_q's)
1022 *
1023 * pi_mutex->wait_lock:
1024 *
1025 * {uval, pi_state}
1026 *
1027 * (and pi_mutex 'obviously')
1028 *
1029 * p->pi_lock:
1030 *
1031 * p->pi_state_list -> pi_state->list, relation
1032 *
1033 * pi_state->refcount:
1034 *
1035 * pi_state lifetime
1036 *
1037 *
1038 * Lock order:
1039 *
1040 * hb->lock
1041 * pi_mutex->wait_lock
1042 * p->pi_lock
1043 *
1044 */
1045
1046 /*
1047 * Validate that the existing waiter has a pi_state and sanity check
1048 * the pi_state against the user space value. If correct, attach to
1049 * it.
1050 */
1051 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1052 struct futex_pi_state *pi_state,
1053 struct futex_pi_state **ps)
1054 {
1055 pid_t pid = uval & FUTEX_TID_MASK;
1056 u32 uval2;
1057 int ret;
1058
1059 /*
1060 * Userspace might have messed up non-PI and PI futexes [3]
1061 */
1062 if (unlikely(!pi_state))
1063 return -EINVAL;
1064
1065 /*
1066 * We get here with hb->lock held, and having found a
1067 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1068 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1069 * which in turn means that futex_lock_pi() still has a reference on
1070 * our pi_state.
1071 *
1072 * The waiter holding a reference on @pi_state also protects against
1073 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1074 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1075 * free pi_state before we can take a reference ourselves.
1076 */
1077 WARN_ON(!atomic_read(&pi_state->refcount));
1078
1079 /*
1080 * Now that we have a pi_state, we can acquire wait_lock
1081 * and do the state validation.
1082 */
1083 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1084
1085 /*
1086 * Since {uval, pi_state} is serialized by wait_lock, and our current
1087 * uval was read without holding it, it can have changed. Verify it
1088 * still is what we expect it to be, otherwise retry the entire
1089 * operation.
1090 */
1091 if (get_futex_value_locked(&uval2, uaddr))
1092 goto out_efault;
1093
1094 if (uval != uval2)
1095 goto out_eagain;
1096
1097 /*
1098 * Handle the owner died case:
1099 */
1100 if (uval & FUTEX_OWNER_DIED) {
1101 /*
1102 * exit_pi_state_list sets owner to NULL and wakes the
1103 * topmost waiter. The task which acquires the
1104 * pi_state->rt_mutex will fixup owner.
1105 */
1106 if (!pi_state->owner) {
1107 /*
1108 * No pi state owner, but the user space TID
1109 * is not 0. Inconsistent state. [5]
1110 */
1111 if (pid)
1112 goto out_einval;
1113 /*
1114 * Take a ref on the state and return success. [4]
1115 */
1116 goto out_attach;
1117 }
1118
1119 /*
1120 * If TID is 0, then either the dying owner has not
1121 * yet executed exit_pi_state_list() or some waiter
1122 * acquired the rtmutex in the pi state, but did not
1123 * yet fixup the TID in user space.
1124 *
1125 * Take a ref on the state and return success. [6]
1126 */
1127 if (!pid)
1128 goto out_attach;
1129 } else {
1130 /*
1131 * If the owner died bit is not set, then the pi_state
1132 * must have an owner. [7]
1133 */
1134 if (!pi_state->owner)
1135 goto out_einval;
1136 }
1137
1138 /*
1139 * Bail out if user space manipulated the futex value. If pi
1140 * state exists then the owner TID must be the same as the
1141 * user space TID. [9/10]
1142 */
1143 if (pid != task_pid_vnr(pi_state->owner))
1144 goto out_einval;
1145
1146 out_attach:
1147 get_pi_state(pi_state);
1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149 *ps = pi_state;
1150 return 0;
1151
1152 out_einval:
1153 ret = -EINVAL;
1154 goto out_error;
1155
1156 out_eagain:
1157 ret = -EAGAIN;
1158 goto out_error;
1159
1160 out_efault:
1161 ret = -EFAULT;
1162 goto out_error;
1163
1164 out_error:
1165 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166 return ret;
1167 }
1168
1169 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1170 struct task_struct *tsk)
1171 {
1172 u32 uval2;
1173
1174 /*
1175 * If PF_EXITPIDONE is not yet set, then try again.
1176 */
1177 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1178 return -EAGAIN;
1179
1180 /*
1181 * Reread the user space value to handle the following situation:
1182 *
1183 * CPU0 CPU1
1184 *
1185 * sys_exit() sys_futex()
1186 * do_exit() futex_lock_pi()
1187 * futex_lock_pi_atomic()
1188 * exit_signals(tsk) No waiters:
1189 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1190 * mm_release(tsk) Set waiter bit
1191 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1192 * Set owner died attach_to_pi_owner() {
1193 * *uaddr = 0xC0000000; tsk = get_task(PID);
1194 * } if (!tsk->flags & PF_EXITING) {
1195 * ... attach();
1196 * tsk->flags |= PF_EXITPIDONE; } else {
1197 * if (!(tsk->flags & PF_EXITPIDONE))
1198 * return -EAGAIN;
1199 * return -ESRCH; <--- FAIL
1200 * }
1201 *
1202 * Returning ESRCH unconditionally is wrong here because the
1203 * user space value has been changed by the exiting task.
1204 *
1205 * The same logic applies to the case where the exiting task is
1206 * already gone.
1207 */
1208 if (get_futex_value_locked(&uval2, uaddr))
1209 return -EFAULT;
1210
1211 /* If the user space value has changed, try again. */
1212 if (uval2 != uval)
1213 return -EAGAIN;
1214
1215 /*
1216 * The exiting task did not have a robust list, the robust list was
1217 * corrupted or the user space value in *uaddr is simply bogus.
1218 * Give up and tell user space.
1219 */
1220 return -ESRCH;
1221 }
1222
1223 /*
1224 * Lookup the task for the TID provided from user space and attach to
1225 * it after doing proper sanity checks.
1226 */
1227 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1228 struct futex_pi_state **ps)
1229 {
1230 pid_t pid = uval & FUTEX_TID_MASK;
1231 struct futex_pi_state *pi_state;
1232 struct task_struct *p;
1233
1234 /*
1235 * We are the first waiter - try to look up the real owner and attach
1236 * the new pi_state to it, but bail out when TID = 0 [1]
1237 *
1238 * The !pid check is paranoid. None of the call sites should end up
1239 * with pid == 0, but better safe than sorry. Let the caller retry
1240 */
1241 if (!pid)
1242 return -EAGAIN;
1243 p = futex_find_get_task(pid);
1244 if (!p)
1245 return handle_exit_race(uaddr, uval, NULL);
1246
1247 if (unlikely(p->flags & PF_KTHREAD)) {
1248 put_task_struct(p);
1249 return -EPERM;
1250 }
1251
1252 /*
1253 * We need to look at the task state flags to figure out,
1254 * whether the task is exiting. To protect against the do_exit
1255 * change of the task flags, we do this protected by
1256 * p->pi_lock:
1257 */
1258 raw_spin_lock_irq(&p->pi_lock);
1259 if (unlikely(p->flags & PF_EXITING)) {
1260 /*
1261 * The task is on the way out. When PF_EXITPIDONE is
1262 * set, we know that the task has finished the
1263 * cleanup:
1264 */
1265 int ret = handle_exit_race(uaddr, uval, p);
1266
1267 raw_spin_unlock_irq(&p->pi_lock);
1268 put_task_struct(p);
1269 return ret;
1270 }
1271
1272 /*
1273 * No existing pi state. First waiter. [2]
1274 *
1275 * This creates pi_state, we have hb->lock held, this means nothing can
1276 * observe this state, wait_lock is irrelevant.
1277 */
1278 pi_state = alloc_pi_state();
1279
1280 /*
1281 * Initialize the pi_mutex in locked state and make @p
1282 * the owner of it:
1283 */
1284 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1285
1286 /* Store the key for possible exit cleanups: */
1287 pi_state->key = *key;
1288
1289 WARN_ON(!list_empty(&pi_state->list));
1290 list_add(&pi_state->list, &p->pi_state_list);
1291 /*
1292 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1293 * because there is no concurrency as the object is not published yet.
1294 */
1295 pi_state->owner = p;
1296 raw_spin_unlock_irq(&p->pi_lock);
1297
1298 put_task_struct(p);
1299
1300 *ps = pi_state;
1301
1302 return 0;
1303 }
1304
1305 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1306 struct futex_hash_bucket *hb,
1307 union futex_key *key, struct futex_pi_state **ps)
1308 {
1309 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1310
1311 /*
1312 * If there is a waiter on that futex, validate it and
1313 * attach to the pi_state when the validation succeeds.
1314 */
1315 if (top_waiter)
1316 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318 /*
1319 * We are the first waiter - try to look up the owner based on
1320 * @uval and attach to it.
1321 */
1322 return attach_to_pi_owner(uaddr, uval, key, ps);
1323 }
1324
1325 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1326 {
1327 u32 uninitialized_var(curval);
1328
1329 if (unlikely(should_fail_futex(true)))
1330 return -EFAULT;
1331
1332 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1333 return -EFAULT;
1334
1335 /* If user space value changed, let the caller retry */
1336 return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341 * @uaddr: the pi futex user address
1342 * @hb: the pi futex hash bucket
1343 * @key: the futex key associated with uaddr and hb
1344 * @ps: the pi_state pointer where we store the result of the
1345 * lookup
1346 * @task: the task to perform the atomic lock work for. This will
1347 * be "current" except in the case of requeue pi.
1348 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1349 *
1350 * Return:
1351 * - 0 - ready to wait;
1352 * - 1 - acquired the lock;
1353 * - <0 - error
1354 *
1355 * The hb->lock and futex_key refs shall be held by the caller.
1356 */
1357 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1358 union futex_key *key,
1359 struct futex_pi_state **ps,
1360 struct task_struct *task, int set_waiters)
1361 {
1362 u32 uval, newval, vpid = task_pid_vnr(task);
1363 struct futex_q *top_waiter;
1364 int ret;
1365
1366 /*
1367 * Read the user space value first so we can validate a few
1368 * things before proceeding further.
1369 */
1370 if (get_futex_value_locked(&uval, uaddr))
1371 return -EFAULT;
1372
1373 if (unlikely(should_fail_futex(true)))
1374 return -EFAULT;
1375
1376 /*
1377 * Detect deadlocks.
1378 */
1379 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1380 return -EDEADLK;
1381
1382 if ((unlikely(should_fail_futex(true))))
1383 return -EDEADLK;
1384
1385 /*
1386 * Lookup existing state first. If it exists, try to attach to
1387 * its pi_state.
1388 */
1389 top_waiter = futex_top_waiter(hb, key);
1390 if (top_waiter)
1391 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1392
1393 /*
1394 * No waiter and user TID is 0. We are here because the
1395 * waiters or the owner died bit is set or called from
1396 * requeue_cmp_pi or for whatever reason something took the
1397 * syscall.
1398 */
1399 if (!(uval & FUTEX_TID_MASK)) {
1400 /*
1401 * We take over the futex. No other waiters and the user space
1402 * TID is 0. We preserve the owner died bit.
1403 */
1404 newval = uval & FUTEX_OWNER_DIED;
1405 newval |= vpid;
1406
1407 /* The futex requeue_pi code can enforce the waiters bit */
1408 if (set_waiters)
1409 newval |= FUTEX_WAITERS;
1410
1411 ret = lock_pi_update_atomic(uaddr, uval, newval);
1412 /* If the take over worked, return 1 */
1413 return ret < 0 ? ret : 1;
1414 }
1415
1416 /*
1417 * First waiter. Set the waiters bit before attaching ourself to
1418 * the owner. If owner tries to unlock, it will be forced into
1419 * the kernel and blocked on hb->lock.
1420 */
1421 newval = uval | FUTEX_WAITERS;
1422 ret = lock_pi_update_atomic(uaddr, uval, newval);
1423 if (ret)
1424 return ret;
1425 /*
1426 * If the update of the user space value succeeded, we try to
1427 * attach to the owner. If that fails, no harm done, we only
1428 * set the FUTEX_WAITERS bit in the user space variable.
1429 */
1430 return attach_to_pi_owner(uaddr, newval, key, ps);
1431 }
1432
1433 /**
1434 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1435 * @q: The futex_q to unqueue
1436 *
1437 * The q->lock_ptr must not be NULL and must be held by the caller.
1438 */
1439 static void __unqueue_futex(struct futex_q *q)
1440 {
1441 struct futex_hash_bucket *hb;
1442
1443 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1444 || WARN_ON(plist_node_empty(&q->list)))
1445 return;
1446
1447 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1448 plist_del(&q->list, &hb->chain);
1449 hb_waiters_dec(hb);
1450 }
1451
1452 /*
1453 * The hash bucket lock must be held when this is called.
1454 * Afterwards, the futex_q must not be accessed. Callers
1455 * must ensure to later call wake_up_q() for the actual
1456 * wakeups to occur.
1457 */
1458 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1459 {
1460 struct task_struct *p = q->task;
1461
1462 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1463 return;
1464
1465 get_task_struct(p);
1466 __unqueue_futex(q);
1467 /*
1468 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1469 * is written, without taking any locks. This is possible in the event
1470 * of a spurious wakeup, for example. A memory barrier is required here
1471 * to prevent the following store to lock_ptr from getting ahead of the
1472 * plist_del in __unqueue_futex().
1473 */
1474 smp_store_release(&q->lock_ptr, NULL);
1475
1476 /*
1477 * Queue the task for later wakeup for after we've released
1478 * the hb->lock. wake_q_add() grabs reference to p.
1479 */
1480 wake_q_add(wake_q, p);
1481 put_task_struct(p);
1482 }
1483
1484 /*
1485 * Caller must hold a reference on @pi_state.
1486 */
1487 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1488 {
1489 u32 uninitialized_var(curval), newval;
1490 struct task_struct *new_owner;
1491 bool postunlock = false;
1492 DEFINE_WAKE_Q(wake_q);
1493 int ret = 0;
1494
1495 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1496 if (WARN_ON_ONCE(!new_owner)) {
1497 /*
1498 * As per the comment in futex_unlock_pi() this should not happen.
1499 *
1500 * When this happens, give up our locks and try again, giving
1501 * the futex_lock_pi() instance time to complete, either by
1502 * waiting on the rtmutex or removing itself from the futex
1503 * queue.
1504 */
1505 ret = -EAGAIN;
1506 goto out_unlock;
1507 }
1508
1509 /*
1510 * We pass it to the next owner. The WAITERS bit is always kept
1511 * enabled while there is PI state around. We cleanup the owner
1512 * died bit, because we are the owner.
1513 */
1514 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1515
1516 if (unlikely(should_fail_futex(true)))
1517 ret = -EFAULT;
1518
1519 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1520 ret = -EFAULT;
1521
1522 } else if (curval != uval) {
1523 /*
1524 * If a unconditional UNLOCK_PI operation (user space did not
1525 * try the TID->0 transition) raced with a waiter setting the
1526 * FUTEX_WAITERS flag between get_user() and locking the hash
1527 * bucket lock, retry the operation.
1528 */
1529 if ((FUTEX_TID_MASK & curval) == uval)
1530 ret = -EAGAIN;
1531 else
1532 ret = -EINVAL;
1533 }
1534
1535 if (ret)
1536 goto out_unlock;
1537
1538 /*
1539 * This is a point of no return; once we modify the uval there is no
1540 * going back and subsequent operations must not fail.
1541 */
1542
1543 raw_spin_lock(&pi_state->owner->pi_lock);
1544 WARN_ON(list_empty(&pi_state->list));
1545 list_del_init(&pi_state->list);
1546 raw_spin_unlock(&pi_state->owner->pi_lock);
1547
1548 raw_spin_lock(&new_owner->pi_lock);
1549 WARN_ON(!list_empty(&pi_state->list));
1550 list_add(&pi_state->list, &new_owner->pi_state_list);
1551 pi_state->owner = new_owner;
1552 raw_spin_unlock(&new_owner->pi_lock);
1553
1554 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1555
1556 out_unlock:
1557 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1558
1559 if (postunlock)
1560 rt_mutex_postunlock(&wake_q);
1561
1562 return ret;
1563 }
1564
1565 /*
1566 * Express the locking dependencies for lockdep:
1567 */
1568 static inline void
1569 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570 {
1571 if (hb1 <= hb2) {
1572 spin_lock(&hb1->lock);
1573 if (hb1 < hb2)
1574 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1575 } else { /* hb1 > hb2 */
1576 spin_lock(&hb2->lock);
1577 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1578 }
1579 }
1580
1581 static inline void
1582 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1583 {
1584 spin_unlock(&hb1->lock);
1585 if (hb1 != hb2)
1586 spin_unlock(&hb2->lock);
1587 }
1588
1589 /*
1590 * Wake up waiters matching bitset queued on this futex (uaddr).
1591 */
1592 static int
1593 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1594 {
1595 struct futex_hash_bucket *hb;
1596 struct futex_q *this, *next;
1597 union futex_key key = FUTEX_KEY_INIT;
1598 int ret;
1599 DEFINE_WAKE_Q(wake_q);
1600
1601 if (!bitset)
1602 return -EINVAL;
1603
1604 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1605 if (unlikely(ret != 0))
1606 goto out;
1607
1608 hb = hash_futex(&key);
1609
1610 /* Make sure we really have tasks to wakeup */
1611 if (!hb_waiters_pending(hb))
1612 goto out_put_key;
1613
1614 spin_lock(&hb->lock);
1615
1616 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1617 if (match_futex (&this->key, &key)) {
1618 if (this->pi_state || this->rt_waiter) {
1619 ret = -EINVAL;
1620 break;
1621 }
1622
1623 /* Check if one of the bits is set in both bitsets */
1624 if (!(this->bitset & bitset))
1625 continue;
1626
1627 mark_wake_futex(&wake_q, this);
1628 if (++ret >= nr_wake)
1629 break;
1630 }
1631 }
1632
1633 spin_unlock(&hb->lock);
1634 wake_up_q(&wake_q);
1635 out_put_key:
1636 put_futex_key(&key);
1637 out:
1638 return ret;
1639 }
1640
1641 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1642 {
1643 unsigned int op = (encoded_op & 0x70000000) >> 28;
1644 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1645 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1646 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1647 int oldval, ret;
1648
1649 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1650 if (oparg < 0 || oparg > 31) {
1651 char comm[sizeof(current->comm)];
1652 /*
1653 * kill this print and return -EINVAL when userspace
1654 * is sane again
1655 */
1656 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1657 get_task_comm(comm, current), oparg);
1658 oparg &= 31;
1659 }
1660 oparg = 1 << oparg;
1661 }
1662
1663 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1664 return -EFAULT;
1665
1666 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1667 if (ret)
1668 return ret;
1669
1670 switch (cmp) {
1671 case FUTEX_OP_CMP_EQ:
1672 return oldval == cmparg;
1673 case FUTEX_OP_CMP_NE:
1674 return oldval != cmparg;
1675 case FUTEX_OP_CMP_LT:
1676 return oldval < cmparg;
1677 case FUTEX_OP_CMP_GE:
1678 return oldval >= cmparg;
1679 case FUTEX_OP_CMP_LE:
1680 return oldval <= cmparg;
1681 case FUTEX_OP_CMP_GT:
1682 return oldval > cmparg;
1683 default:
1684 return -ENOSYS;
1685 }
1686 }
1687
1688 /*
1689 * Wake up all waiters hashed on the physical page that is mapped
1690 * to this virtual address:
1691 */
1692 static int
1693 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1694 int nr_wake, int nr_wake2, int op)
1695 {
1696 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1697 struct futex_hash_bucket *hb1, *hb2;
1698 struct futex_q *this, *next;
1699 int ret, op_ret;
1700 DEFINE_WAKE_Q(wake_q);
1701
1702 retry:
1703 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1704 if (unlikely(ret != 0))
1705 goto out;
1706 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1707 if (unlikely(ret != 0))
1708 goto out_put_key1;
1709
1710 hb1 = hash_futex(&key1);
1711 hb2 = hash_futex(&key2);
1712
1713 retry_private:
1714 double_lock_hb(hb1, hb2);
1715 op_ret = futex_atomic_op_inuser(op, uaddr2);
1716 if (unlikely(op_ret < 0)) {
1717
1718 double_unlock_hb(hb1, hb2);
1719
1720 #ifndef CONFIG_MMU
1721 /*
1722 * we don't get EFAULT from MMU faults if we don't have an MMU,
1723 * but we might get them from range checking
1724 */
1725 ret = op_ret;
1726 goto out_put_keys;
1727 #endif
1728
1729 if (unlikely(op_ret != -EFAULT)) {
1730 ret = op_ret;
1731 goto out_put_keys;
1732 }
1733
1734 ret = fault_in_user_writeable(uaddr2);
1735 if (ret)
1736 goto out_put_keys;
1737
1738 if (!(flags & FLAGS_SHARED))
1739 goto retry_private;
1740
1741 put_futex_key(&key2);
1742 put_futex_key(&key1);
1743 goto retry;
1744 }
1745
1746 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1747 if (match_futex (&this->key, &key1)) {
1748 if (this->pi_state || this->rt_waiter) {
1749 ret = -EINVAL;
1750 goto out_unlock;
1751 }
1752 mark_wake_futex(&wake_q, this);
1753 if (++ret >= nr_wake)
1754 break;
1755 }
1756 }
1757
1758 if (op_ret > 0) {
1759 op_ret = 0;
1760 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1761 if (match_futex (&this->key, &key2)) {
1762 if (this->pi_state || this->rt_waiter) {
1763 ret = -EINVAL;
1764 goto out_unlock;
1765 }
1766 mark_wake_futex(&wake_q, this);
1767 if (++op_ret >= nr_wake2)
1768 break;
1769 }
1770 }
1771 ret += op_ret;
1772 }
1773
1774 out_unlock:
1775 double_unlock_hb(hb1, hb2);
1776 wake_up_q(&wake_q);
1777 out_put_keys:
1778 put_futex_key(&key2);
1779 out_put_key1:
1780 put_futex_key(&key1);
1781 out:
1782 return ret;
1783 }
1784
1785 /**
1786 * requeue_futex() - Requeue a futex_q from one hb to another
1787 * @q: the futex_q to requeue
1788 * @hb1: the source hash_bucket
1789 * @hb2: the target hash_bucket
1790 * @key2: the new key for the requeued futex_q
1791 */
1792 static inline
1793 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1794 struct futex_hash_bucket *hb2, union futex_key *key2)
1795 {
1796
1797 /*
1798 * If key1 and key2 hash to the same bucket, no need to
1799 * requeue.
1800 */
1801 if (likely(&hb1->chain != &hb2->chain)) {
1802 plist_del(&q->list, &hb1->chain);
1803 hb_waiters_dec(hb1);
1804 hb_waiters_inc(hb2);
1805 plist_add(&q->list, &hb2->chain);
1806 q->lock_ptr = &hb2->lock;
1807 }
1808 get_futex_key_refs(key2);
1809 q->key = *key2;
1810 }
1811
1812 /**
1813 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1814 * @q: the futex_q
1815 * @key: the key of the requeue target futex
1816 * @hb: the hash_bucket of the requeue target futex
1817 *
1818 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1819 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1820 * to the requeue target futex so the waiter can detect the wakeup on the right
1821 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1822 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1823 * to protect access to the pi_state to fixup the owner later. Must be called
1824 * with both q->lock_ptr and hb->lock held.
1825 */
1826 static inline
1827 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1828 struct futex_hash_bucket *hb)
1829 {
1830 get_futex_key_refs(key);
1831 q->key = *key;
1832
1833 __unqueue_futex(q);
1834
1835 WARN_ON(!q->rt_waiter);
1836 q->rt_waiter = NULL;
1837
1838 q->lock_ptr = &hb->lock;
1839
1840 wake_up_state(q->task, TASK_NORMAL);
1841 }
1842
1843 /**
1844 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1845 * @pifutex: the user address of the to futex
1846 * @hb1: the from futex hash bucket, must be locked by the caller
1847 * @hb2: the to futex hash bucket, must be locked by the caller
1848 * @key1: the from futex key
1849 * @key2: the to futex key
1850 * @ps: address to store the pi_state pointer
1851 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1852 *
1853 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1854 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1855 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1856 * hb1 and hb2 must be held by the caller.
1857 *
1858 * Return:
1859 * - 0 - failed to acquire the lock atomically;
1860 * - >0 - acquired the lock, return value is vpid of the top_waiter
1861 * - <0 - error
1862 */
1863 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1864 struct futex_hash_bucket *hb1,
1865 struct futex_hash_bucket *hb2,
1866 union futex_key *key1, union futex_key *key2,
1867 struct futex_pi_state **ps, int set_waiters)
1868 {
1869 struct futex_q *top_waiter = NULL;
1870 u32 curval;
1871 int ret, vpid;
1872
1873 if (get_futex_value_locked(&curval, pifutex))
1874 return -EFAULT;
1875
1876 if (unlikely(should_fail_futex(true)))
1877 return -EFAULT;
1878
1879 /*
1880 * Find the top_waiter and determine if there are additional waiters.
1881 * If the caller intends to requeue more than 1 waiter to pifutex,
1882 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1883 * as we have means to handle the possible fault. If not, don't set
1884 * the bit unecessarily as it will force the subsequent unlock to enter
1885 * the kernel.
1886 */
1887 top_waiter = futex_top_waiter(hb1, key1);
1888
1889 /* There are no waiters, nothing for us to do. */
1890 if (!top_waiter)
1891 return 0;
1892
1893 /* Ensure we requeue to the expected futex. */
1894 if (!match_futex(top_waiter->requeue_pi_key, key2))
1895 return -EINVAL;
1896
1897 /*
1898 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1899 * the contended case or if set_waiters is 1. The pi_state is returned
1900 * in ps in contended cases.
1901 */
1902 vpid = task_pid_vnr(top_waiter->task);
1903 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1904 set_waiters);
1905 if (ret == 1) {
1906 requeue_pi_wake_futex(top_waiter, key2, hb2);
1907 return vpid;
1908 }
1909 return ret;
1910 }
1911
1912 /**
1913 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1914 * @uaddr1: source futex user address
1915 * @flags: futex flags (FLAGS_SHARED, etc.)
1916 * @uaddr2: target futex user address
1917 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1918 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1919 * @cmpval: @uaddr1 expected value (or %NULL)
1920 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1921 * pi futex (pi to pi requeue is not supported)
1922 *
1923 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1924 * uaddr2 atomically on behalf of the top waiter.
1925 *
1926 * Return:
1927 * - >=0 - on success, the number of tasks requeued or woken;
1928 * - <0 - on error
1929 */
1930 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1931 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1932 u32 *cmpval, int requeue_pi)
1933 {
1934 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1935 int drop_count = 0, task_count = 0, ret;
1936 struct futex_pi_state *pi_state = NULL;
1937 struct futex_hash_bucket *hb1, *hb2;
1938 struct futex_q *this, *next;
1939 DEFINE_WAKE_Q(wake_q);
1940
1941 if (nr_wake < 0 || nr_requeue < 0)
1942 return -EINVAL;
1943
1944 /*
1945 * When PI not supported: return -ENOSYS if requeue_pi is true,
1946 * consequently the compiler knows requeue_pi is always false past
1947 * this point which will optimize away all the conditional code
1948 * further down.
1949 */
1950 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1951 return -ENOSYS;
1952
1953 if (requeue_pi) {
1954 /*
1955 * Requeue PI only works on two distinct uaddrs. This
1956 * check is only valid for private futexes. See below.
1957 */
1958 if (uaddr1 == uaddr2)
1959 return -EINVAL;
1960
1961 /*
1962 * requeue_pi requires a pi_state, try to allocate it now
1963 * without any locks in case it fails.
1964 */
1965 if (refill_pi_state_cache())
1966 return -ENOMEM;
1967 /*
1968 * requeue_pi must wake as many tasks as it can, up to nr_wake
1969 * + nr_requeue, since it acquires the rt_mutex prior to
1970 * returning to userspace, so as to not leave the rt_mutex with
1971 * waiters and no owner. However, second and third wake-ups
1972 * cannot be predicted as they involve race conditions with the
1973 * first wake and a fault while looking up the pi_state. Both
1974 * pthread_cond_signal() and pthread_cond_broadcast() should
1975 * use nr_wake=1.
1976 */
1977 if (nr_wake != 1)
1978 return -EINVAL;
1979 }
1980
1981 retry:
1982 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1983 if (unlikely(ret != 0))
1984 goto out;
1985 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1986 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1987 if (unlikely(ret != 0))
1988 goto out_put_key1;
1989
1990 /*
1991 * The check above which compares uaddrs is not sufficient for
1992 * shared futexes. We need to compare the keys:
1993 */
1994 if (requeue_pi && match_futex(&key1, &key2)) {
1995 ret = -EINVAL;
1996 goto out_put_keys;
1997 }
1998
1999 hb1 = hash_futex(&key1);
2000 hb2 = hash_futex(&key2);
2001
2002 retry_private:
2003 hb_waiters_inc(hb2);
2004 double_lock_hb(hb1, hb2);
2005
2006 if (likely(cmpval != NULL)) {
2007 u32 curval;
2008
2009 ret = get_futex_value_locked(&curval, uaddr1);
2010
2011 if (unlikely(ret)) {
2012 double_unlock_hb(hb1, hb2);
2013 hb_waiters_dec(hb2);
2014
2015 ret = get_user(curval, uaddr1);
2016 if (ret)
2017 goto out_put_keys;
2018
2019 if (!(flags & FLAGS_SHARED))
2020 goto retry_private;
2021
2022 put_futex_key(&key2);
2023 put_futex_key(&key1);
2024 goto retry;
2025 }
2026 if (curval != *cmpval) {
2027 ret = -EAGAIN;
2028 goto out_unlock;
2029 }
2030 }
2031
2032 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2033 /*
2034 * Attempt to acquire uaddr2 and wake the top waiter. If we
2035 * intend to requeue waiters, force setting the FUTEX_WAITERS
2036 * bit. We force this here where we are able to easily handle
2037 * faults rather in the requeue loop below.
2038 */
2039 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2040 &key2, &pi_state, nr_requeue);
2041
2042 /*
2043 * At this point the top_waiter has either taken uaddr2 or is
2044 * waiting on it. If the former, then the pi_state will not
2045 * exist yet, look it up one more time to ensure we have a
2046 * reference to it. If the lock was taken, ret contains the
2047 * vpid of the top waiter task.
2048 * If the lock was not taken, we have pi_state and an initial
2049 * refcount on it. In case of an error we have nothing.
2050 */
2051 if (ret > 0) {
2052 WARN_ON(pi_state);
2053 drop_count++;
2054 task_count++;
2055 /*
2056 * If we acquired the lock, then the user space value
2057 * of uaddr2 should be vpid. It cannot be changed by
2058 * the top waiter as it is blocked on hb2 lock if it
2059 * tries to do so. If something fiddled with it behind
2060 * our back the pi state lookup might unearth it. So
2061 * we rather use the known value than rereading and
2062 * handing potential crap to lookup_pi_state.
2063 *
2064 * If that call succeeds then we have pi_state and an
2065 * initial refcount on it.
2066 */
2067 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2068 }
2069
2070 switch (ret) {
2071 case 0:
2072 /* We hold a reference on the pi state. */
2073 break;
2074
2075 /* If the above failed, then pi_state is NULL */
2076 case -EFAULT:
2077 double_unlock_hb(hb1, hb2);
2078 hb_waiters_dec(hb2);
2079 put_futex_key(&key2);
2080 put_futex_key(&key1);
2081 ret = fault_in_user_writeable(uaddr2);
2082 if (!ret)
2083 goto retry;
2084 goto out;
2085 case -EAGAIN:
2086 /*
2087 * Two reasons for this:
2088 * - Owner is exiting and we just wait for the
2089 * exit to complete.
2090 * - The user space value changed.
2091 */
2092 double_unlock_hb(hb1, hb2);
2093 hb_waiters_dec(hb2);
2094 put_futex_key(&key2);
2095 put_futex_key(&key1);
2096 cond_resched();
2097 goto retry;
2098 default:
2099 goto out_unlock;
2100 }
2101 }
2102
2103 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2104 if (task_count - nr_wake >= nr_requeue)
2105 break;
2106
2107 if (!match_futex(&this->key, &key1))
2108 continue;
2109
2110 /*
2111 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2112 * be paired with each other and no other futex ops.
2113 *
2114 * We should never be requeueing a futex_q with a pi_state,
2115 * which is awaiting a futex_unlock_pi().
2116 */
2117 if ((requeue_pi && !this->rt_waiter) ||
2118 (!requeue_pi && this->rt_waiter) ||
2119 this->pi_state) {
2120 ret = -EINVAL;
2121 break;
2122 }
2123
2124 /*
2125 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2126 * lock, we already woke the top_waiter. If not, it will be
2127 * woken by futex_unlock_pi().
2128 */
2129 if (++task_count <= nr_wake && !requeue_pi) {
2130 mark_wake_futex(&wake_q, this);
2131 continue;
2132 }
2133
2134 /* Ensure we requeue to the expected futex for requeue_pi. */
2135 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2136 ret = -EINVAL;
2137 break;
2138 }
2139
2140 /*
2141 * Requeue nr_requeue waiters and possibly one more in the case
2142 * of requeue_pi if we couldn't acquire the lock atomically.
2143 */
2144 if (requeue_pi) {
2145 /*
2146 * Prepare the waiter to take the rt_mutex. Take a
2147 * refcount on the pi_state and store the pointer in
2148 * the futex_q object of the waiter.
2149 */
2150 get_pi_state(pi_state);
2151 this->pi_state = pi_state;
2152 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2153 this->rt_waiter,
2154 this->task);
2155 if (ret == 1) {
2156 /*
2157 * We got the lock. We do neither drop the
2158 * refcount on pi_state nor clear
2159 * this->pi_state because the waiter needs the
2160 * pi_state for cleaning up the user space
2161 * value. It will drop the refcount after
2162 * doing so.
2163 */
2164 requeue_pi_wake_futex(this, &key2, hb2);
2165 drop_count++;
2166 continue;
2167 } else if (ret) {
2168 /*
2169 * rt_mutex_start_proxy_lock() detected a
2170 * potential deadlock when we tried to queue
2171 * that waiter. Drop the pi_state reference
2172 * which we took above and remove the pointer
2173 * to the state from the waiters futex_q
2174 * object.
2175 */
2176 this->pi_state = NULL;
2177 put_pi_state(pi_state);
2178 /*
2179 * We stop queueing more waiters and let user
2180 * space deal with the mess.
2181 */
2182 break;
2183 }
2184 }
2185 requeue_futex(this, hb1, hb2, &key2);
2186 drop_count++;
2187 }
2188
2189 /*
2190 * We took an extra initial reference to the pi_state either
2191 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2192 * need to drop it here again.
2193 */
2194 put_pi_state(pi_state);
2195
2196 out_unlock:
2197 double_unlock_hb(hb1, hb2);
2198 wake_up_q(&wake_q);
2199 hb_waiters_dec(hb2);
2200
2201 /*
2202 * drop_futex_key_refs() must be called outside the spinlocks. During
2203 * the requeue we moved futex_q's from the hash bucket at key1 to the
2204 * one at key2 and updated their key pointer. We no longer need to
2205 * hold the references to key1.
2206 */
2207 while (--drop_count >= 0)
2208 drop_futex_key_refs(&key1);
2209
2210 out_put_keys:
2211 put_futex_key(&key2);
2212 out_put_key1:
2213 put_futex_key(&key1);
2214 out:
2215 return ret ? ret : task_count;
2216 }
2217
2218 /* The key must be already stored in q->key. */
2219 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2220 __acquires(&hb->lock)
2221 {
2222 struct futex_hash_bucket *hb;
2223
2224 hb = hash_futex(&q->key);
2225
2226 /*
2227 * Increment the counter before taking the lock so that
2228 * a potential waker won't miss a to-be-slept task that is
2229 * waiting for the spinlock. This is safe as all queue_lock()
2230 * users end up calling queue_me(). Similarly, for housekeeping,
2231 * decrement the counter at queue_unlock() when some error has
2232 * occurred and we don't end up adding the task to the list.
2233 */
2234 hb_waiters_inc(hb);
2235
2236 q->lock_ptr = &hb->lock;
2237
2238 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2239 return hb;
2240 }
2241
2242 static inline void
2243 queue_unlock(struct futex_hash_bucket *hb)
2244 __releases(&hb->lock)
2245 {
2246 spin_unlock(&hb->lock);
2247 hb_waiters_dec(hb);
2248 }
2249
2250 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2251 {
2252 int prio;
2253
2254 /*
2255 * The priority used to register this element is
2256 * - either the real thread-priority for the real-time threads
2257 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2258 * - or MAX_RT_PRIO for non-RT threads.
2259 * Thus, all RT-threads are woken first in priority order, and
2260 * the others are woken last, in FIFO order.
2261 */
2262 prio = min(current->normal_prio, MAX_RT_PRIO);
2263
2264 plist_node_init(&q->list, prio);
2265 plist_add(&q->list, &hb->chain);
2266 q->task = current;
2267 }
2268
2269 /**
2270 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2271 * @q: The futex_q to enqueue
2272 * @hb: The destination hash bucket
2273 *
2274 * The hb->lock must be held by the caller, and is released here. A call to
2275 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2276 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2277 * or nothing if the unqueue is done as part of the wake process and the unqueue
2278 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2279 * an example).
2280 */
2281 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2282 __releases(&hb->lock)
2283 {
2284 __queue_me(q, hb);
2285 spin_unlock(&hb->lock);
2286 }
2287
2288 /**
2289 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2290 * @q: The futex_q to unqueue
2291 *
2292 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2293 * be paired with exactly one earlier call to queue_me().
2294 *
2295 * Return:
2296 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2297 * - 0 - if the futex_q was already removed by the waking thread
2298 */
2299 static int unqueue_me(struct futex_q *q)
2300 {
2301 spinlock_t *lock_ptr;
2302 int ret = 0;
2303
2304 /* In the common case we don't take the spinlock, which is nice. */
2305 retry:
2306 /*
2307 * q->lock_ptr can change between this read and the following spin_lock.
2308 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2309 * optimizing lock_ptr out of the logic below.
2310 */
2311 lock_ptr = READ_ONCE(q->lock_ptr);
2312 if (lock_ptr != NULL) {
2313 spin_lock(lock_ptr);
2314 /*
2315 * q->lock_ptr can change between reading it and
2316 * spin_lock(), causing us to take the wrong lock. This
2317 * corrects the race condition.
2318 *
2319 * Reasoning goes like this: if we have the wrong lock,
2320 * q->lock_ptr must have changed (maybe several times)
2321 * between reading it and the spin_lock(). It can
2322 * change again after the spin_lock() but only if it was
2323 * already changed before the spin_lock(). It cannot,
2324 * however, change back to the original value. Therefore
2325 * we can detect whether we acquired the correct lock.
2326 */
2327 if (unlikely(lock_ptr != q->lock_ptr)) {
2328 spin_unlock(lock_ptr);
2329 goto retry;
2330 }
2331 __unqueue_futex(q);
2332
2333 BUG_ON(q->pi_state);
2334
2335 spin_unlock(lock_ptr);
2336 ret = 1;
2337 }
2338
2339 drop_futex_key_refs(&q->key);
2340 return ret;
2341 }
2342
2343 /*
2344 * PI futexes can not be requeued and must remove themself from the
2345 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2346 * and dropped here.
2347 */
2348 static void unqueue_me_pi(struct futex_q *q)
2349 __releases(q->lock_ptr)
2350 {
2351 __unqueue_futex(q);
2352
2353 BUG_ON(!q->pi_state);
2354 put_pi_state(q->pi_state);
2355 q->pi_state = NULL;
2356
2357 spin_unlock(q->lock_ptr);
2358 }
2359
2360 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2361 struct task_struct *argowner)
2362 {
2363 struct futex_pi_state *pi_state = q->pi_state;
2364 u32 uval, uninitialized_var(curval), newval;
2365 struct task_struct *oldowner, *newowner;
2366 u32 newtid;
2367 int ret;
2368
2369 lockdep_assert_held(q->lock_ptr);
2370
2371 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2372
2373 oldowner = pi_state->owner;
2374
2375 /*
2376 * We are here because either:
2377 *
2378 * - we stole the lock and pi_state->owner needs updating to reflect
2379 * that (@argowner == current),
2380 *
2381 * or:
2382 *
2383 * - someone stole our lock and we need to fix things to point to the
2384 * new owner (@argowner == NULL).
2385 *
2386 * Either way, we have to replace the TID in the user space variable.
2387 * This must be atomic as we have to preserve the owner died bit here.
2388 *
2389 * Note: We write the user space value _before_ changing the pi_state
2390 * because we can fault here. Imagine swapped out pages or a fork
2391 * that marked all the anonymous memory readonly for cow.
2392 *
2393 * Modifying pi_state _before_ the user space value would leave the
2394 * pi_state in an inconsistent state when we fault here, because we
2395 * need to drop the locks to handle the fault. This might be observed
2396 * in the PID check in lookup_pi_state.
2397 */
2398 retry:
2399 if (!argowner) {
2400 if (oldowner != current) {
2401 /*
2402 * We raced against a concurrent self; things are
2403 * already fixed up. Nothing to do.
2404 */
2405 ret = 0;
2406 goto out_unlock;
2407 }
2408
2409 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2410 /* We got the lock after all, nothing to fix. */
2411 ret = 0;
2412 goto out_unlock;
2413 }
2414
2415 /*
2416 * Since we just failed the trylock; there must be an owner.
2417 */
2418 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2419 BUG_ON(!newowner);
2420 } else {
2421 WARN_ON_ONCE(argowner != current);
2422 if (oldowner == current) {
2423 /*
2424 * We raced against a concurrent self; things are
2425 * already fixed up. Nothing to do.
2426 */
2427 ret = 0;
2428 goto out_unlock;
2429 }
2430 newowner = argowner;
2431 }
2432
2433 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2434 /* Owner died? */
2435 if (!pi_state->owner)
2436 newtid |= FUTEX_OWNER_DIED;
2437
2438 if (get_futex_value_locked(&uval, uaddr))
2439 goto handle_fault;
2440
2441 for (;;) {
2442 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2443
2444 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2445 goto handle_fault;
2446 if (curval == uval)
2447 break;
2448 uval = curval;
2449 }
2450
2451 /*
2452 * We fixed up user space. Now we need to fix the pi_state
2453 * itself.
2454 */
2455 if (pi_state->owner != NULL) {
2456 raw_spin_lock(&pi_state->owner->pi_lock);
2457 WARN_ON(list_empty(&pi_state->list));
2458 list_del_init(&pi_state->list);
2459 raw_spin_unlock(&pi_state->owner->pi_lock);
2460 }
2461
2462 pi_state->owner = newowner;
2463
2464 raw_spin_lock(&newowner->pi_lock);
2465 WARN_ON(!list_empty(&pi_state->list));
2466 list_add(&pi_state->list, &newowner->pi_state_list);
2467 raw_spin_unlock(&newowner->pi_lock);
2468 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2469
2470 return 0;
2471
2472 /*
2473 * To handle the page fault we need to drop the locks here. That gives
2474 * the other task (either the highest priority waiter itself or the
2475 * task which stole the rtmutex) the chance to try the fixup of the
2476 * pi_state. So once we are back from handling the fault we need to
2477 * check the pi_state after reacquiring the locks and before trying to
2478 * do another fixup. When the fixup has been done already we simply
2479 * return.
2480 *
2481 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2482 * drop hb->lock since the caller owns the hb -> futex_q relation.
2483 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2484 */
2485 handle_fault:
2486 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2487 spin_unlock(q->lock_ptr);
2488
2489 ret = fault_in_user_writeable(uaddr);
2490
2491 spin_lock(q->lock_ptr);
2492 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2493
2494 /*
2495 * Check if someone else fixed it for us:
2496 */
2497 if (pi_state->owner != oldowner) {
2498 ret = 0;
2499 goto out_unlock;
2500 }
2501
2502 if (ret)
2503 goto out_unlock;
2504
2505 goto retry;
2506
2507 out_unlock:
2508 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2509 return ret;
2510 }
2511
2512 static long futex_wait_restart(struct restart_block *restart);
2513
2514 /**
2515 * fixup_owner() - Post lock pi_state and corner case management
2516 * @uaddr: user address of the futex
2517 * @q: futex_q (contains pi_state and access to the rt_mutex)
2518 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2519 *
2520 * After attempting to lock an rt_mutex, this function is called to cleanup
2521 * the pi_state owner as well as handle race conditions that may allow us to
2522 * acquire the lock. Must be called with the hb lock held.
2523 *
2524 * Return:
2525 * - 1 - success, lock taken;
2526 * - 0 - success, lock not taken;
2527 * - <0 - on error (-EFAULT)
2528 */
2529 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2530 {
2531 int ret = 0;
2532
2533 if (locked) {
2534 /*
2535 * Got the lock. We might not be the anticipated owner if we
2536 * did a lock-steal - fix up the PI-state in that case:
2537 *
2538 * Speculative pi_state->owner read (we don't hold wait_lock);
2539 * since we own the lock pi_state->owner == current is the
2540 * stable state, anything else needs more attention.
2541 */
2542 if (q->pi_state->owner != current)
2543 ret = fixup_pi_state_owner(uaddr, q, current);
2544 goto out;
2545 }
2546
2547 /*
2548 * If we didn't get the lock; check if anybody stole it from us. In
2549 * that case, we need to fix up the uval to point to them instead of
2550 * us, otherwise bad things happen. [10]
2551 *
2552 * Another speculative read; pi_state->owner == current is unstable
2553 * but needs our attention.
2554 */
2555 if (q->pi_state->owner == current) {
2556 ret = fixup_pi_state_owner(uaddr, q, NULL);
2557 goto out;
2558 }
2559
2560 /*
2561 * Paranoia check. If we did not take the lock, then we should not be
2562 * the owner of the rt_mutex.
2563 */
2564 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2565 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2566 "pi-state %p\n", ret,
2567 q->pi_state->pi_mutex.owner,
2568 q->pi_state->owner);
2569 }
2570
2571 out:
2572 return ret ? ret : locked;
2573 }
2574
2575 /**
2576 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2577 * @hb: the futex hash bucket, must be locked by the caller
2578 * @q: the futex_q to queue up on
2579 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2580 */
2581 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2582 struct hrtimer_sleeper *timeout)
2583 {
2584 /*
2585 * The task state is guaranteed to be set before another task can
2586 * wake it. set_current_state() is implemented using smp_store_mb() and
2587 * queue_me() calls spin_unlock() upon completion, both serializing
2588 * access to the hash list and forcing another memory barrier.
2589 */
2590 set_current_state(TASK_INTERRUPTIBLE);
2591 queue_me(q, hb);
2592
2593 /* Arm the timer */
2594 if (timeout)
2595 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2596
2597 /*
2598 * If we have been removed from the hash list, then another task
2599 * has tried to wake us, and we can skip the call to schedule().
2600 */
2601 if (likely(!plist_node_empty(&q->list))) {
2602 /*
2603 * If the timer has already expired, current will already be
2604 * flagged for rescheduling. Only call schedule if there
2605 * is no timeout, or if it has yet to expire.
2606 */
2607 if (!timeout || timeout->task)
2608 freezable_schedule();
2609 }
2610 __set_current_state(TASK_RUNNING);
2611 }
2612
2613 /**
2614 * futex_wait_setup() - Prepare to wait on a futex
2615 * @uaddr: the futex userspace address
2616 * @val: the expected value
2617 * @flags: futex flags (FLAGS_SHARED, etc.)
2618 * @q: the associated futex_q
2619 * @hb: storage for hash_bucket pointer to be returned to caller
2620 *
2621 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2622 * compare it with the expected value. Handle atomic faults internally.
2623 * Return with the hb lock held and a q.key reference on success, and unlocked
2624 * with no q.key reference on failure.
2625 *
2626 * Return:
2627 * - 0 - uaddr contains val and hb has been locked;
2628 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2629 */
2630 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2631 struct futex_q *q, struct futex_hash_bucket **hb)
2632 {
2633 u32 uval;
2634 int ret;
2635
2636 /*
2637 * Access the page AFTER the hash-bucket is locked.
2638 * Order is important:
2639 *
2640 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2641 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2642 *
2643 * The basic logical guarantee of a futex is that it blocks ONLY
2644 * if cond(var) is known to be true at the time of blocking, for
2645 * any cond. If we locked the hash-bucket after testing *uaddr, that
2646 * would open a race condition where we could block indefinitely with
2647 * cond(var) false, which would violate the guarantee.
2648 *
2649 * On the other hand, we insert q and release the hash-bucket only
2650 * after testing *uaddr. This guarantees that futex_wait() will NOT
2651 * absorb a wakeup if *uaddr does not match the desired values
2652 * while the syscall executes.
2653 */
2654 retry:
2655 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2656 if (unlikely(ret != 0))
2657 return ret;
2658
2659 retry_private:
2660 *hb = queue_lock(q);
2661
2662 ret = get_futex_value_locked(&uval, uaddr);
2663
2664 if (ret) {
2665 queue_unlock(*hb);
2666
2667 ret = get_user(uval, uaddr);
2668 if (ret)
2669 goto out;
2670
2671 if (!(flags & FLAGS_SHARED))
2672 goto retry_private;
2673
2674 put_futex_key(&q->key);
2675 goto retry;
2676 }
2677
2678 if (uval != val) {
2679 queue_unlock(*hb);
2680 ret = -EWOULDBLOCK;
2681 }
2682
2683 out:
2684 if (ret)
2685 put_futex_key(&q->key);
2686 return ret;
2687 }
2688
2689 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2690 ktime_t *abs_time, u32 bitset)
2691 {
2692 struct hrtimer_sleeper timeout, *to = NULL;
2693 struct restart_block *restart;
2694 struct futex_hash_bucket *hb;
2695 struct futex_q q = futex_q_init;
2696 int ret;
2697
2698 if (!bitset)
2699 return -EINVAL;
2700 q.bitset = bitset;
2701
2702 if (abs_time) {
2703 to = &timeout;
2704
2705 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2706 CLOCK_REALTIME : CLOCK_MONOTONIC,
2707 HRTIMER_MODE_ABS);
2708 hrtimer_init_sleeper(to, current);
2709 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2710 current->timer_slack_ns);
2711 }
2712
2713 retry:
2714 /*
2715 * Prepare to wait on uaddr. On success, holds hb lock and increments
2716 * q.key refs.
2717 */
2718 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2719 if (ret)
2720 goto out;
2721
2722 /* queue_me and wait for wakeup, timeout, or a signal. */
2723 futex_wait_queue_me(hb, &q, to);
2724
2725 /* If we were woken (and unqueued), we succeeded, whatever. */
2726 ret = 0;
2727 /* unqueue_me() drops q.key ref */
2728 if (!unqueue_me(&q))
2729 goto out;
2730 ret = -ETIMEDOUT;
2731 if (to && !to->task)
2732 goto out;
2733
2734 /*
2735 * We expect signal_pending(current), but we might be the
2736 * victim of a spurious wakeup as well.
2737 */
2738 if (!signal_pending(current))
2739 goto retry;
2740
2741 ret = -ERESTARTSYS;
2742 if (!abs_time)
2743 goto out;
2744
2745 restart = &current->restart_block;
2746 restart->fn = futex_wait_restart;
2747 restart->futex.uaddr = uaddr;
2748 restart->futex.val = val;
2749 restart->futex.time = *abs_time;
2750 restart->futex.bitset = bitset;
2751 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2752
2753 ret = -ERESTART_RESTARTBLOCK;
2754
2755 out:
2756 if (to) {
2757 hrtimer_cancel(&to->timer);
2758 destroy_hrtimer_on_stack(&to->timer);
2759 }
2760 return ret;
2761 }
2762
2763
2764 static long futex_wait_restart(struct restart_block *restart)
2765 {
2766 u32 __user *uaddr = restart->futex.uaddr;
2767 ktime_t t, *tp = NULL;
2768
2769 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2770 t = restart->futex.time;
2771 tp = &t;
2772 }
2773 restart->fn = do_no_restart_syscall;
2774
2775 return (long)futex_wait(uaddr, restart->futex.flags,
2776 restart->futex.val, tp, restart->futex.bitset);
2777 }
2778
2779
2780 /*
2781 * Userspace tried a 0 -> TID atomic transition of the futex value
2782 * and failed. The kernel side here does the whole locking operation:
2783 * if there are waiters then it will block as a consequence of relying
2784 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2785 * a 0 value of the futex too.).
2786 *
2787 * Also serves as futex trylock_pi()'ing, and due semantics.
2788 */
2789 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2790 ktime_t *time, int trylock)
2791 {
2792 struct hrtimer_sleeper timeout, *to = NULL;
2793 struct futex_pi_state *pi_state = NULL;
2794 struct rt_mutex_waiter rt_waiter;
2795 struct futex_hash_bucket *hb;
2796 struct futex_q q = futex_q_init;
2797 int res, ret;
2798
2799 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2800 return -ENOSYS;
2801
2802 if (refill_pi_state_cache())
2803 return -ENOMEM;
2804
2805 if (time) {
2806 to = &timeout;
2807 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2808 HRTIMER_MODE_ABS);
2809 hrtimer_init_sleeper(to, current);
2810 hrtimer_set_expires(&to->timer, *time);
2811 }
2812
2813 retry:
2814 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2815 if (unlikely(ret != 0))
2816 goto out;
2817
2818 retry_private:
2819 hb = queue_lock(&q);
2820
2821 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2822 if (unlikely(ret)) {
2823 /*
2824 * Atomic work succeeded and we got the lock,
2825 * or failed. Either way, we do _not_ block.
2826 */
2827 switch (ret) {
2828 case 1:
2829 /* We got the lock. */
2830 ret = 0;
2831 goto out_unlock_put_key;
2832 case -EFAULT:
2833 goto uaddr_faulted;
2834 case -EAGAIN:
2835 /*
2836 * Two reasons for this:
2837 * - Task is exiting and we just wait for the
2838 * exit to complete.
2839 * - The user space value changed.
2840 */
2841 queue_unlock(hb);
2842 put_futex_key(&q.key);
2843 cond_resched();
2844 goto retry;
2845 default:
2846 goto out_unlock_put_key;
2847 }
2848 }
2849
2850 WARN_ON(!q.pi_state);
2851
2852 /*
2853 * Only actually queue now that the atomic ops are done:
2854 */
2855 __queue_me(&q, hb);
2856
2857 if (trylock) {
2858 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2859 /* Fixup the trylock return value: */
2860 ret = ret ? 0 : -EWOULDBLOCK;
2861 goto no_block;
2862 }
2863
2864 rt_mutex_init_waiter(&rt_waiter);
2865
2866 /*
2867 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2868 * hold it while doing rt_mutex_start_proxy(), because then it will
2869 * include hb->lock in the blocking chain, even through we'll not in
2870 * fact hold it while blocking. This will lead it to report -EDEADLK
2871 * and BUG when futex_unlock_pi() interleaves with this.
2872 *
2873 * Therefore acquire wait_lock while holding hb->lock, but drop the
2874 * latter before calling __rt_mutex_start_proxy_lock(). This
2875 * interleaves with futex_unlock_pi() -- which does a similar lock
2876 * handoff -- such that the latter can observe the futex_q::pi_state
2877 * before __rt_mutex_start_proxy_lock() is done.
2878 */
2879 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2880 spin_unlock(q.lock_ptr);
2881 /*
2882 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2883 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2884 * it sees the futex_q::pi_state.
2885 */
2886 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2887 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2888
2889 if (ret) {
2890 if (ret == 1)
2891 ret = 0;
2892 goto cleanup;
2893 }
2894
2895 if (unlikely(to))
2896 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2897
2898 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2899
2900 cleanup:
2901 spin_lock(q.lock_ptr);
2902 /*
2903 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2904 * first acquire the hb->lock before removing the lock from the
2905 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2906 * lists consistent.
2907 *
2908 * In particular; it is important that futex_unlock_pi() can not
2909 * observe this inconsistency.
2910 */
2911 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2912 ret = 0;
2913
2914 no_block:
2915 /*
2916 * Fixup the pi_state owner and possibly acquire the lock if we
2917 * haven't already.
2918 */
2919 res = fixup_owner(uaddr, &q, !ret);
2920 /*
2921 * If fixup_owner() returned an error, proprogate that. If it acquired
2922 * the lock, clear our -ETIMEDOUT or -EINTR.
2923 */
2924 if (res)
2925 ret = (res < 0) ? res : 0;
2926
2927 /*
2928 * If fixup_owner() faulted and was unable to handle the fault, unlock
2929 * it and return the fault to userspace.
2930 */
2931 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2932 pi_state = q.pi_state;
2933 get_pi_state(pi_state);
2934 }
2935
2936 /* Unqueue and drop the lock */
2937 unqueue_me_pi(&q);
2938
2939 if (pi_state) {
2940 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2941 put_pi_state(pi_state);
2942 }
2943
2944 goto out_put_key;
2945
2946 out_unlock_put_key:
2947 queue_unlock(hb);
2948
2949 out_put_key:
2950 put_futex_key(&q.key);
2951 out:
2952 if (to) {
2953 hrtimer_cancel(&to->timer);
2954 destroy_hrtimer_on_stack(&to->timer);
2955 }
2956 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2957
2958 uaddr_faulted:
2959 queue_unlock(hb);
2960
2961 ret = fault_in_user_writeable(uaddr);
2962 if (ret)
2963 goto out_put_key;
2964
2965 if (!(flags & FLAGS_SHARED))
2966 goto retry_private;
2967
2968 put_futex_key(&q.key);
2969 goto retry;
2970 }
2971
2972 /*
2973 * Userspace attempted a TID -> 0 atomic transition, and failed.
2974 * This is the in-kernel slowpath: we look up the PI state (if any),
2975 * and do the rt-mutex unlock.
2976 */
2977 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2978 {
2979 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2980 union futex_key key = FUTEX_KEY_INIT;
2981 struct futex_hash_bucket *hb;
2982 struct futex_q *top_waiter;
2983 int ret;
2984
2985 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2986 return -ENOSYS;
2987
2988 retry:
2989 if (get_user(uval, uaddr))
2990 return -EFAULT;
2991 /*
2992 * We release only a lock we actually own:
2993 */
2994 if ((uval & FUTEX_TID_MASK) != vpid)
2995 return -EPERM;
2996
2997 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2998 if (ret)
2999 return ret;
3000
3001 hb = hash_futex(&key);
3002 spin_lock(&hb->lock);
3003
3004 /*
3005 * Check waiters first. We do not trust user space values at
3006 * all and we at least want to know if user space fiddled
3007 * with the futex value instead of blindly unlocking.
3008 */
3009 top_waiter = futex_top_waiter(hb, &key);
3010 if (top_waiter) {
3011 struct futex_pi_state *pi_state = top_waiter->pi_state;
3012
3013 ret = -EINVAL;
3014 if (!pi_state)
3015 goto out_unlock;
3016
3017 /*
3018 * If current does not own the pi_state then the futex is
3019 * inconsistent and user space fiddled with the futex value.
3020 */
3021 if (pi_state->owner != current)
3022 goto out_unlock;
3023
3024 get_pi_state(pi_state);
3025 /*
3026 * By taking wait_lock while still holding hb->lock, we ensure
3027 * there is no point where we hold neither; and therefore
3028 * wake_futex_pi() must observe a state consistent with what we
3029 * observed.
3030 *
3031 * In particular; this forces __rt_mutex_start_proxy() to
3032 * complete such that we're guaranteed to observe the
3033 * rt_waiter. Also see the WARN in wake_futex_pi().
3034 */
3035 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3036 spin_unlock(&hb->lock);
3037
3038 /* drops pi_state->pi_mutex.wait_lock */
3039 ret = wake_futex_pi(uaddr, uval, pi_state);
3040
3041 put_pi_state(pi_state);
3042
3043 /*
3044 * Success, we're done! No tricky corner cases.
3045 */
3046 if (!ret)
3047 goto out_putkey;
3048 /*
3049 * The atomic access to the futex value generated a
3050 * pagefault, so retry the user-access and the wakeup:
3051 */
3052 if (ret == -EFAULT)
3053 goto pi_faulted;
3054 /*
3055 * A unconditional UNLOCK_PI op raced against a waiter
3056 * setting the FUTEX_WAITERS bit. Try again.
3057 */
3058 if (ret == -EAGAIN) {
3059 put_futex_key(&key);
3060 goto retry;
3061 }
3062 /*
3063 * wake_futex_pi has detected invalid state. Tell user
3064 * space.
3065 */
3066 goto out_putkey;
3067 }
3068
3069 /*
3070 * We have no kernel internal state, i.e. no waiters in the
3071 * kernel. Waiters which are about to queue themselves are stuck
3072 * on hb->lock. So we can safely ignore them. We do neither
3073 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3074 * owner.
3075 */
3076 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3077 spin_unlock(&hb->lock);
3078 goto pi_faulted;
3079 }
3080
3081 /*
3082 * If uval has changed, let user space handle it.
3083 */
3084 ret = (curval == uval) ? 0 : -EAGAIN;
3085
3086 out_unlock:
3087 spin_unlock(&hb->lock);
3088 out_putkey:
3089 put_futex_key(&key);
3090 return ret;
3091
3092 pi_faulted:
3093 put_futex_key(&key);
3094
3095 ret = fault_in_user_writeable(uaddr);
3096 if (!ret)
3097 goto retry;
3098
3099 return ret;
3100 }
3101
3102 /**
3103 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3104 * @hb: the hash_bucket futex_q was original enqueued on
3105 * @q: the futex_q woken while waiting to be requeued
3106 * @key2: the futex_key of the requeue target futex
3107 * @timeout: the timeout associated with the wait (NULL if none)
3108 *
3109 * Detect if the task was woken on the initial futex as opposed to the requeue
3110 * target futex. If so, determine if it was a timeout or a signal that caused
3111 * the wakeup and return the appropriate error code to the caller. Must be
3112 * called with the hb lock held.
3113 *
3114 * Return:
3115 * - 0 = no early wakeup detected;
3116 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3117 */
3118 static inline
3119 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3120 struct futex_q *q, union futex_key *key2,
3121 struct hrtimer_sleeper *timeout)
3122 {
3123 int ret = 0;
3124
3125 /*
3126 * With the hb lock held, we avoid races while we process the wakeup.
3127 * We only need to hold hb (and not hb2) to ensure atomicity as the
3128 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3129 * It can't be requeued from uaddr2 to something else since we don't
3130 * support a PI aware source futex for requeue.
3131 */
3132 if (!match_futex(&q->key, key2)) {
3133 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3134 /*
3135 * We were woken prior to requeue by a timeout or a signal.
3136 * Unqueue the futex_q and determine which it was.
3137 */
3138 plist_del(&q->list, &hb->chain);
3139 hb_waiters_dec(hb);
3140
3141 /* Handle spurious wakeups gracefully */
3142 ret = -EWOULDBLOCK;
3143 if (timeout && !timeout->task)
3144 ret = -ETIMEDOUT;
3145 else if (signal_pending(current))
3146 ret = -ERESTARTNOINTR;
3147 }
3148 return ret;
3149 }
3150
3151 /**
3152 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3153 * @uaddr: the futex we initially wait on (non-pi)
3154 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3155 * the same type, no requeueing from private to shared, etc.
3156 * @val: the expected value of uaddr
3157 * @abs_time: absolute timeout
3158 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3159 * @uaddr2: the pi futex we will take prior to returning to user-space
3160 *
3161 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3162 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3163 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3164 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3165 * without one, the pi logic would not know which task to boost/deboost, if
3166 * there was a need to.
3167 *
3168 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3169 * via the following--
3170 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3171 * 2) wakeup on uaddr2 after a requeue
3172 * 3) signal
3173 * 4) timeout
3174 *
3175 * If 3, cleanup and return -ERESTARTNOINTR.
3176 *
3177 * If 2, we may then block on trying to take the rt_mutex and return via:
3178 * 5) successful lock
3179 * 6) signal
3180 * 7) timeout
3181 * 8) other lock acquisition failure
3182 *
3183 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3184 *
3185 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3186 *
3187 * Return:
3188 * - 0 - On success;
3189 * - <0 - On error
3190 */
3191 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3192 u32 val, ktime_t *abs_time, u32 bitset,
3193 u32 __user *uaddr2)
3194 {
3195 struct hrtimer_sleeper timeout, *to = NULL;
3196 struct futex_pi_state *pi_state = NULL;
3197 struct rt_mutex_waiter rt_waiter;
3198 struct futex_hash_bucket *hb;
3199 union futex_key key2 = FUTEX_KEY_INIT;
3200 struct futex_q q = futex_q_init;
3201 int res, ret;
3202
3203 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3204 return -ENOSYS;
3205
3206 if (uaddr == uaddr2)
3207 return -EINVAL;
3208
3209 if (!bitset)
3210 return -EINVAL;
3211
3212 if (abs_time) {
3213 to = &timeout;
3214 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3215 CLOCK_REALTIME : CLOCK_MONOTONIC,
3216 HRTIMER_MODE_ABS);
3217 hrtimer_init_sleeper(to, current);
3218 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3219 current->timer_slack_ns);
3220 }
3221
3222 /*
3223 * The waiter is allocated on our stack, manipulated by the requeue
3224 * code while we sleep on uaddr.
3225 */
3226 rt_mutex_init_waiter(&rt_waiter);
3227
3228 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3229 if (unlikely(ret != 0))
3230 goto out;
3231
3232 q.bitset = bitset;
3233 q.rt_waiter = &rt_waiter;
3234 q.requeue_pi_key = &key2;
3235
3236 /*
3237 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3238 * count.
3239 */
3240 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3241 if (ret)
3242 goto out_key2;
3243
3244 /*
3245 * The check above which compares uaddrs is not sufficient for
3246 * shared futexes. We need to compare the keys:
3247 */
3248 if (match_futex(&q.key, &key2)) {
3249 queue_unlock(hb);
3250 ret = -EINVAL;
3251 goto out_put_keys;
3252 }
3253
3254 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3255 futex_wait_queue_me(hb, &q, to);
3256
3257 spin_lock(&hb->lock);
3258 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3259 spin_unlock(&hb->lock);
3260 if (ret)
3261 goto out_put_keys;
3262
3263 /*
3264 * In order for us to be here, we know our q.key == key2, and since
3265 * we took the hb->lock above, we also know that futex_requeue() has
3266 * completed and we no longer have to concern ourselves with a wakeup
3267 * race with the atomic proxy lock acquisition by the requeue code. The
3268 * futex_requeue dropped our key1 reference and incremented our key2
3269 * reference count.
3270 */
3271
3272 /* Check if the requeue code acquired the second futex for us. */
3273 if (!q.rt_waiter) {
3274 /*
3275 * Got the lock. We might not be the anticipated owner if we
3276 * did a lock-steal - fix up the PI-state in that case.
3277 */
3278 if (q.pi_state && (q.pi_state->owner != current)) {
3279 spin_lock(q.lock_ptr);
3280 ret = fixup_pi_state_owner(uaddr2, &q, current);
3281 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3282 pi_state = q.pi_state;
3283 get_pi_state(pi_state);
3284 }
3285 /*
3286 * Drop the reference to the pi state which
3287 * the requeue_pi() code acquired for us.
3288 */
3289 put_pi_state(q.pi_state);
3290 spin_unlock(q.lock_ptr);
3291 }
3292 } else {
3293 struct rt_mutex *pi_mutex;
3294
3295 /*
3296 * We have been woken up by futex_unlock_pi(), a timeout, or a
3297 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3298 * the pi_state.
3299 */
3300 WARN_ON(!q.pi_state);
3301 pi_mutex = &q.pi_state->pi_mutex;
3302 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3303
3304 spin_lock(q.lock_ptr);
3305 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3306 ret = 0;
3307
3308 debug_rt_mutex_free_waiter(&rt_waiter);
3309 /*
3310 * Fixup the pi_state owner and possibly acquire the lock if we
3311 * haven't already.
3312 */
3313 res = fixup_owner(uaddr2, &q, !ret);
3314 /*
3315 * If fixup_owner() returned an error, proprogate that. If it
3316 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3317 */
3318 if (res)
3319 ret = (res < 0) ? res : 0;
3320
3321 /*
3322 * If fixup_pi_state_owner() faulted and was unable to handle
3323 * the fault, unlock the rt_mutex and return the fault to
3324 * userspace.
3325 */
3326 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3327 pi_state = q.pi_state;
3328 get_pi_state(pi_state);
3329 }
3330
3331 /* Unqueue and drop the lock. */
3332 unqueue_me_pi(&q);
3333 }
3334
3335 if (pi_state) {
3336 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3337 put_pi_state(pi_state);
3338 }
3339
3340 if (ret == -EINTR) {
3341 /*
3342 * We've already been requeued, but cannot restart by calling
3343 * futex_lock_pi() directly. We could restart this syscall, but
3344 * it would detect that the user space "val" changed and return
3345 * -EWOULDBLOCK. Save the overhead of the restart and return
3346 * -EWOULDBLOCK directly.
3347 */
3348 ret = -EWOULDBLOCK;
3349 }
3350
3351 out_put_keys:
3352 put_futex_key(&q.key);
3353 out_key2:
3354 put_futex_key(&key2);
3355
3356 out:
3357 if (to) {
3358 hrtimer_cancel(&to->timer);
3359 destroy_hrtimer_on_stack(&to->timer);
3360 }
3361 return ret;
3362 }
3363
3364 /*
3365 * Support for robust futexes: the kernel cleans up held futexes at
3366 * thread exit time.
3367 *
3368 * Implementation: user-space maintains a per-thread list of locks it
3369 * is holding. Upon do_exit(), the kernel carefully walks this list,
3370 * and marks all locks that are owned by this thread with the
3371 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3372 * always manipulated with the lock held, so the list is private and
3373 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3374 * field, to allow the kernel to clean up if the thread dies after
3375 * acquiring the lock, but just before it could have added itself to
3376 * the list. There can only be one such pending lock.
3377 */
3378
3379 /**
3380 * sys_set_robust_list() - Set the robust-futex list head of a task
3381 * @head: pointer to the list-head
3382 * @len: length of the list-head, as userspace expects
3383 */
3384 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3385 size_t, len)
3386 {
3387 if (!futex_cmpxchg_enabled)
3388 return -ENOSYS;
3389 /*
3390 * The kernel knows only one size for now:
3391 */
3392 if (unlikely(len != sizeof(*head)))
3393 return -EINVAL;
3394
3395 current->robust_list = head;
3396
3397 return 0;
3398 }
3399
3400 /**
3401 * sys_get_robust_list() - Get the robust-futex list head of a task
3402 * @pid: pid of the process [zero for current task]
3403 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3404 * @len_ptr: pointer to a length field, the kernel fills in the header size
3405 */
3406 SYSCALL_DEFINE3(get_robust_list, int, pid,
3407 struct robust_list_head __user * __user *, head_ptr,
3408 size_t __user *, len_ptr)
3409 {
3410 struct robust_list_head __user *head;
3411 unsigned long ret;
3412 struct task_struct *p;
3413
3414 if (!futex_cmpxchg_enabled)
3415 return -ENOSYS;
3416
3417 rcu_read_lock();
3418
3419 ret = -ESRCH;
3420 if (!pid)
3421 p = current;
3422 else {
3423 p = find_task_by_vpid(pid);
3424 if (!p)
3425 goto err_unlock;
3426 }
3427
3428 ret = -EPERM;
3429 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3430 goto err_unlock;
3431
3432 head = p->robust_list;
3433 rcu_read_unlock();
3434
3435 if (put_user(sizeof(*head), len_ptr))
3436 return -EFAULT;
3437 return put_user(head, head_ptr);
3438
3439 err_unlock:
3440 rcu_read_unlock();
3441
3442 return ret;
3443 }
3444
3445 /*
3446 * Process a futex-list entry, check whether it's owned by the
3447 * dying task, and do notification if so:
3448 */
3449 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3450 {
3451 u32 uval, uninitialized_var(nval), mval;
3452
3453 /* Futex address must be 32bit aligned */
3454 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3455 return -1;
3456
3457 retry:
3458 if (get_user(uval, uaddr))
3459 return -1;
3460
3461 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3462 /*
3463 * Ok, this dying thread is truly holding a futex
3464 * of interest. Set the OWNER_DIED bit atomically
3465 * via cmpxchg, and if the value had FUTEX_WAITERS
3466 * set, wake up a waiter (if any). (We have to do a
3467 * futex_wake() even if OWNER_DIED is already set -
3468 * to handle the rare but possible case of recursive
3469 * thread-death.) The rest of the cleanup is done in
3470 * userspace.
3471 */
3472 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3473 /*
3474 * We are not holding a lock here, but we want to have
3475 * the pagefault_disable/enable() protection because
3476 * we want to handle the fault gracefully. If the
3477 * access fails we try to fault in the futex with R/W
3478 * verification via get_user_pages. get_user() above
3479 * does not guarantee R/W access. If that fails we
3480 * give up and leave the futex locked.
3481 */
3482 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3483 if (fault_in_user_writeable(uaddr))
3484 return -1;
3485 goto retry;
3486 }
3487 if (nval != uval)
3488 goto retry;
3489
3490 /*
3491 * Wake robust non-PI futexes here. The wakeup of
3492 * PI futexes happens in exit_pi_state():
3493 */
3494 if (!pi && (uval & FUTEX_WAITERS))
3495 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3496 }
3497 return 0;
3498 }
3499
3500 /*
3501 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3502 */
3503 static inline int fetch_robust_entry(struct robust_list __user **entry,
3504 struct robust_list __user * __user *head,
3505 unsigned int *pi)
3506 {
3507 unsigned long uentry;
3508
3509 if (get_user(uentry, (unsigned long __user *)head))
3510 return -EFAULT;
3511
3512 *entry = (void __user *)(uentry & ~1UL);
3513 *pi = uentry & 1;
3514
3515 return 0;
3516 }
3517
3518 /*
3519 * Walk curr->robust_list (very carefully, it's a userspace list!)
3520 * and mark any locks found there dead, and notify any waiters.
3521 *
3522 * We silently return on any sign of list-walking problem.
3523 */
3524 void exit_robust_list(struct task_struct *curr)
3525 {
3526 struct robust_list_head __user *head = curr->robust_list;
3527 struct robust_list __user *entry, *next_entry, *pending;
3528 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3529 unsigned int uninitialized_var(next_pi);
3530 unsigned long futex_offset;
3531 int rc;
3532
3533 if (!futex_cmpxchg_enabled)
3534 return;
3535
3536 /*
3537 * Fetch the list head (which was registered earlier, via
3538 * sys_set_robust_list()):
3539 */
3540 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3541 return;
3542 /*
3543 * Fetch the relative futex offset:
3544 */
3545 if (get_user(futex_offset, &head->futex_offset))
3546 return;
3547 /*
3548 * Fetch any possibly pending lock-add first, and handle it
3549 * if it exists:
3550 */
3551 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3552 return;
3553
3554 next_entry = NULL; /* avoid warning with gcc */
3555 while (entry != &head->list) {
3556 /*
3557 * Fetch the next entry in the list before calling
3558 * handle_futex_death:
3559 */
3560 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3561 /*
3562 * A pending lock might already be on the list, so
3563 * don't process it twice:
3564 */
3565 if (entry != pending)
3566 if (handle_futex_death((void __user *)entry + futex_offset,
3567 curr, pi))
3568 return;
3569 if (rc)
3570 return;
3571 entry = next_entry;
3572 pi = next_pi;
3573 /*
3574 * Avoid excessively long or circular lists:
3575 */
3576 if (!--limit)
3577 break;
3578
3579 cond_resched();
3580 }
3581
3582 if (pending)
3583 handle_futex_death((void __user *)pending + futex_offset,
3584 curr, pip);
3585 }
3586
3587 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3588 u32 __user *uaddr2, u32 val2, u32 val3)
3589 {
3590 int cmd = op & FUTEX_CMD_MASK;
3591 unsigned int flags = 0;
3592
3593 if (!(op & FUTEX_PRIVATE_FLAG))
3594 flags |= FLAGS_SHARED;
3595
3596 if (op & FUTEX_CLOCK_REALTIME) {
3597 flags |= FLAGS_CLOCKRT;
3598 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3599 cmd != FUTEX_WAIT_REQUEUE_PI)
3600 return -ENOSYS;
3601 }
3602
3603 switch (cmd) {
3604 case FUTEX_LOCK_PI:
3605 case FUTEX_UNLOCK_PI:
3606 case FUTEX_TRYLOCK_PI:
3607 case FUTEX_WAIT_REQUEUE_PI:
3608 case FUTEX_CMP_REQUEUE_PI:
3609 if (!futex_cmpxchg_enabled)
3610 return -ENOSYS;
3611 }
3612
3613 switch (cmd) {
3614 case FUTEX_WAIT:
3615 val3 = FUTEX_BITSET_MATCH_ANY;
3616 case FUTEX_WAIT_BITSET:
3617 return futex_wait(uaddr, flags, val, timeout, val3);
3618 case FUTEX_WAKE:
3619 val3 = FUTEX_BITSET_MATCH_ANY;
3620 case FUTEX_WAKE_BITSET:
3621 return futex_wake(uaddr, flags, val, val3);
3622 case FUTEX_REQUEUE:
3623 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3624 case FUTEX_CMP_REQUEUE:
3625 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3626 case FUTEX_WAKE_OP:
3627 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3628 case FUTEX_LOCK_PI:
3629 return futex_lock_pi(uaddr, flags, timeout, 0);
3630 case FUTEX_UNLOCK_PI:
3631 return futex_unlock_pi(uaddr, flags);
3632 case FUTEX_TRYLOCK_PI:
3633 return futex_lock_pi(uaddr, flags, NULL, 1);
3634 case FUTEX_WAIT_REQUEUE_PI:
3635 val3 = FUTEX_BITSET_MATCH_ANY;
3636 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3637 uaddr2);
3638 case FUTEX_CMP_REQUEUE_PI:
3639 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3640 }
3641 return -ENOSYS;
3642 }
3643
3644
3645 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3646 struct timespec __user *, utime, u32 __user *, uaddr2,
3647 u32, val3)
3648 {
3649 struct timespec ts;
3650 ktime_t t, *tp = NULL;
3651 u32 val2 = 0;
3652 int cmd = op & FUTEX_CMD_MASK;
3653
3654 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3655 cmd == FUTEX_WAIT_BITSET ||
3656 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3657 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3658 return -EFAULT;
3659 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3660 return -EFAULT;
3661 if (!timespec_valid(&ts))
3662 return -EINVAL;
3663
3664 t = timespec_to_ktime(ts);
3665 if (cmd == FUTEX_WAIT)
3666 t = ktime_add_safe(ktime_get(), t);
3667 tp = &t;
3668 }
3669 /*
3670 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3671 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3672 */
3673 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3674 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3675 val2 = (u32) (unsigned long) utime;
3676
3677 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3678 }
3679
3680 static void __init futex_detect_cmpxchg(void)
3681 {
3682 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3683 u32 curval;
3684
3685 /*
3686 * This will fail and we want it. Some arch implementations do
3687 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3688 * functionality. We want to know that before we call in any
3689 * of the complex code paths. Also we want to prevent
3690 * registration of robust lists in that case. NULL is
3691 * guaranteed to fault and we get -EFAULT on functional
3692 * implementation, the non-functional ones will return
3693 * -ENOSYS.
3694 */
3695 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3696 futex_cmpxchg_enabled = 1;
3697 #endif
3698 }
3699
3700 static int __init futex_init(void)
3701 {
3702 unsigned int futex_shift;
3703 unsigned long i;
3704
3705 #if CONFIG_BASE_SMALL
3706 futex_hashsize = 16;
3707 #else
3708 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3709 #endif
3710
3711 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3712 futex_hashsize, 0,
3713 futex_hashsize < 256 ? HASH_SMALL : 0,
3714 &futex_shift, NULL,
3715 futex_hashsize, futex_hashsize);
3716 futex_hashsize = 1UL << futex_shift;
3717
3718 futex_detect_cmpxchg();
3719
3720 for (i = 0; i < futex_hashsize; i++) {
3721 atomic_set(&futex_queues[i].waiters, 0);
3722 plist_head_init(&futex_queues[i].chain);
3723 spin_lock_init(&futex_queues[i].lock);
3724 }
3725
3726 return 0;
3727 }
3728 core_initcall(futex_init);