fix cgroup_do_mount() handling of failure exits
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
64
65 /*
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
68 *
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
71 *
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
74 */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82
83 /*
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
86 */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88
89 /*
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
92 */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 /*
146 * The default hierarchy, reserved for the subsystems that are otherwise
147 * unattached - it never has more than a single cgroup, and all tasks are
148 * part of that cgroup.
149 */
150 struct cgroup_root cgrp_dfl_root;
151 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
152
153 /*
154 * The default hierarchy always exists but is hidden until mounted for the
155 * first time. This is for backward compatibility.
156 */
157 static bool cgrp_dfl_visible;
158
159 /* some controllers are not supported in the default hierarchy */
160 static u16 cgrp_dfl_inhibit_ss_mask;
161
162 /* some controllers are implicitly enabled on the default hierarchy */
163 static u16 cgrp_dfl_implicit_ss_mask;
164
165 /* some controllers can be threaded on the default hierarchy */
166 static u16 cgrp_dfl_threaded_ss_mask;
167
168 /* The list of hierarchy roots */
169 LIST_HEAD(cgroup_roots);
170 static int cgroup_root_count;
171
172 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
173 static DEFINE_IDR(cgroup_hierarchy_idr);
174
175 /*
176 * Assign a monotonically increasing serial number to csses. It guarantees
177 * cgroups with bigger numbers are newer than those with smaller numbers.
178 * Also, as csses are always appended to the parent's ->children list, it
179 * guarantees that sibling csses are always sorted in the ascending serial
180 * number order on the list. Protected by cgroup_mutex.
181 */
182 static u64 css_serial_nr_next = 1;
183
184 /*
185 * These bitmasks identify subsystems with specific features to avoid
186 * having to do iterative checks repeatedly.
187 */
188 static u16 have_fork_callback __read_mostly;
189 static u16 have_exit_callback __read_mostly;
190 static u16 have_free_callback __read_mostly;
191 static u16 have_canfork_callback __read_mostly;
192
193 /* cgroup namespace for init task */
194 struct cgroup_namespace init_cgroup_ns = {
195 .count = REFCOUNT_INIT(2),
196 .user_ns = &init_user_ns,
197 .ns.ops = &cgroupns_operations,
198 .ns.inum = PROC_CGROUP_INIT_INO,
199 .root_cset = &init_css_set,
200 };
201
202 static struct file_system_type cgroup2_fs_type;
203 static struct cftype cgroup_base_files[];
204
205 static int cgroup_apply_control(struct cgroup *cgrp);
206 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
207 static void css_task_iter_advance(struct css_task_iter *it);
208 static int cgroup_destroy_locked(struct cgroup *cgrp);
209 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
210 struct cgroup_subsys *ss);
211 static void css_release(struct percpu_ref *ref);
212 static void kill_css(struct cgroup_subsys_state *css);
213 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
214 struct cgroup *cgrp, struct cftype cfts[],
215 bool is_add);
216
217 /**
218 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
219 * @ssid: subsys ID of interest
220 *
221 * cgroup_subsys_enabled() can only be used with literal subsys names which
222 * is fine for individual subsystems but unsuitable for cgroup core. This
223 * is slower static_key_enabled() based test indexed by @ssid.
224 */
225 bool cgroup_ssid_enabled(int ssid)
226 {
227 if (CGROUP_SUBSYS_COUNT == 0)
228 return false;
229
230 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
231 }
232
233 /**
234 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
235 * @cgrp: the cgroup of interest
236 *
237 * The default hierarchy is the v2 interface of cgroup and this function
238 * can be used to test whether a cgroup is on the default hierarchy for
239 * cases where a subsystem should behave differnetly depending on the
240 * interface version.
241 *
242 * The set of behaviors which change on the default hierarchy are still
243 * being determined and the mount option is prefixed with __DEVEL__.
244 *
245 * List of changed behaviors:
246 *
247 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
248 * and "name" are disallowed.
249 *
250 * - When mounting an existing superblock, mount options should match.
251 *
252 * - Remount is disallowed.
253 *
254 * - rename(2) is disallowed.
255 *
256 * - "tasks" is removed. Everything should be at process granularity. Use
257 * "cgroup.procs" instead.
258 *
259 * - "cgroup.procs" is not sorted. pids will be unique unless they got
260 * recycled inbetween reads.
261 *
262 * - "release_agent" and "notify_on_release" are removed. Replacement
263 * notification mechanism will be implemented.
264 *
265 * - "cgroup.clone_children" is removed.
266 *
267 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
268 * and its descendants contain no task; otherwise, 1. The file also
269 * generates kernfs notification which can be monitored through poll and
270 * [di]notify when the value of the file changes.
271 *
272 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
273 * take masks of ancestors with non-empty cpus/mems, instead of being
274 * moved to an ancestor.
275 *
276 * - cpuset: a task can be moved into an empty cpuset, and again it takes
277 * masks of ancestors.
278 *
279 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
280 * is not created.
281 *
282 * - blkcg: blk-throttle becomes properly hierarchical.
283 *
284 * - debug: disallowed on the default hierarchy.
285 */
286 bool cgroup_on_dfl(const struct cgroup *cgrp)
287 {
288 return cgrp->root == &cgrp_dfl_root;
289 }
290
291 /* IDR wrappers which synchronize using cgroup_idr_lock */
292 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
293 gfp_t gfp_mask)
294 {
295 int ret;
296
297 idr_preload(gfp_mask);
298 spin_lock_bh(&cgroup_idr_lock);
299 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
300 spin_unlock_bh(&cgroup_idr_lock);
301 idr_preload_end();
302 return ret;
303 }
304
305 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
306 {
307 void *ret;
308
309 spin_lock_bh(&cgroup_idr_lock);
310 ret = idr_replace(idr, ptr, id);
311 spin_unlock_bh(&cgroup_idr_lock);
312 return ret;
313 }
314
315 static void cgroup_idr_remove(struct idr *idr, int id)
316 {
317 spin_lock_bh(&cgroup_idr_lock);
318 idr_remove(idr, id);
319 spin_unlock_bh(&cgroup_idr_lock);
320 }
321
322 static bool cgroup_has_tasks(struct cgroup *cgrp)
323 {
324 return cgrp->nr_populated_csets;
325 }
326
327 bool cgroup_is_threaded(struct cgroup *cgrp)
328 {
329 return cgrp->dom_cgrp != cgrp;
330 }
331
332 /* can @cgrp host both domain and threaded children? */
333 static bool cgroup_is_mixable(struct cgroup *cgrp)
334 {
335 /*
336 * Root isn't under domain level resource control exempting it from
337 * the no-internal-process constraint, so it can serve as a thread
338 * root and a parent of resource domains at the same time.
339 */
340 return !cgroup_parent(cgrp);
341 }
342
343 /* can @cgrp become a thread root? should always be true for a thread root */
344 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
345 {
346 /* mixables don't care */
347 if (cgroup_is_mixable(cgrp))
348 return true;
349
350 /* domain roots can't be nested under threaded */
351 if (cgroup_is_threaded(cgrp))
352 return false;
353
354 /* can only have either domain or threaded children */
355 if (cgrp->nr_populated_domain_children)
356 return false;
357
358 /* and no domain controllers can be enabled */
359 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
360 return false;
361
362 return true;
363 }
364
365 /* is @cgrp root of a threaded subtree? */
366 bool cgroup_is_thread_root(struct cgroup *cgrp)
367 {
368 /* thread root should be a domain */
369 if (cgroup_is_threaded(cgrp))
370 return false;
371
372 /* a domain w/ threaded children is a thread root */
373 if (cgrp->nr_threaded_children)
374 return true;
375
376 /*
377 * A domain which has tasks and explicit threaded controllers
378 * enabled is a thread root.
379 */
380 if (cgroup_has_tasks(cgrp) &&
381 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
382 return true;
383
384 return false;
385 }
386
387 /* a domain which isn't connected to the root w/o brekage can't be used */
388 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
389 {
390 /* the cgroup itself can be a thread root */
391 if (cgroup_is_threaded(cgrp))
392 return false;
393
394 /* but the ancestors can't be unless mixable */
395 while ((cgrp = cgroup_parent(cgrp))) {
396 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
397 return false;
398 if (cgroup_is_threaded(cgrp))
399 return false;
400 }
401
402 return true;
403 }
404
405 /* subsystems visibly enabled on a cgroup */
406 static u16 cgroup_control(struct cgroup *cgrp)
407 {
408 struct cgroup *parent = cgroup_parent(cgrp);
409 u16 root_ss_mask = cgrp->root->subsys_mask;
410
411 if (parent) {
412 u16 ss_mask = parent->subtree_control;
413
414 /* threaded cgroups can only have threaded controllers */
415 if (cgroup_is_threaded(cgrp))
416 ss_mask &= cgrp_dfl_threaded_ss_mask;
417 return ss_mask;
418 }
419
420 if (cgroup_on_dfl(cgrp))
421 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
422 cgrp_dfl_implicit_ss_mask);
423 return root_ss_mask;
424 }
425
426 /* subsystems enabled on a cgroup */
427 static u16 cgroup_ss_mask(struct cgroup *cgrp)
428 {
429 struct cgroup *parent = cgroup_parent(cgrp);
430
431 if (parent) {
432 u16 ss_mask = parent->subtree_ss_mask;
433
434 /* threaded cgroups can only have threaded controllers */
435 if (cgroup_is_threaded(cgrp))
436 ss_mask &= cgrp_dfl_threaded_ss_mask;
437 return ss_mask;
438 }
439
440 return cgrp->root->subsys_mask;
441 }
442
443 /**
444 * cgroup_css - obtain a cgroup's css for the specified subsystem
445 * @cgrp: the cgroup of interest
446 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
447 *
448 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
449 * function must be called either under cgroup_mutex or rcu_read_lock() and
450 * the caller is responsible for pinning the returned css if it wants to
451 * keep accessing it outside the said locks. This function may return
452 * %NULL if @cgrp doesn't have @subsys_id enabled.
453 */
454 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
455 struct cgroup_subsys *ss)
456 {
457 if (ss)
458 return rcu_dereference_check(cgrp->subsys[ss->id],
459 lockdep_is_held(&cgroup_mutex));
460 else
461 return &cgrp->self;
462 }
463
464 /**
465 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
466 * @cgrp: the cgroup of interest
467 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
468 *
469 * Similar to cgroup_css() but returns the effective css, which is defined
470 * as the matching css of the nearest ancestor including self which has @ss
471 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
472 * function is guaranteed to return non-NULL css.
473 */
474 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
475 struct cgroup_subsys *ss)
476 {
477 lockdep_assert_held(&cgroup_mutex);
478
479 if (!ss)
480 return &cgrp->self;
481
482 /*
483 * This function is used while updating css associations and thus
484 * can't test the csses directly. Test ss_mask.
485 */
486 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
487 cgrp = cgroup_parent(cgrp);
488 if (!cgrp)
489 return NULL;
490 }
491
492 return cgroup_css(cgrp, ss);
493 }
494
495 /**
496 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
497 * @cgrp: the cgroup of interest
498 * @ss: the subsystem of interest
499 *
500 * Find and get the effective css of @cgrp for @ss. The effective css is
501 * defined as the matching css of the nearest ancestor including self which
502 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
503 * the root css is returned, so this function always returns a valid css.
504 * The returned css must be put using css_put().
505 */
506 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
507 struct cgroup_subsys *ss)
508 {
509 struct cgroup_subsys_state *css;
510
511 rcu_read_lock();
512
513 do {
514 css = cgroup_css(cgrp, ss);
515
516 if (css && css_tryget_online(css))
517 goto out_unlock;
518 cgrp = cgroup_parent(cgrp);
519 } while (cgrp);
520
521 css = init_css_set.subsys[ss->id];
522 css_get(css);
523 out_unlock:
524 rcu_read_unlock();
525 return css;
526 }
527
528 static void cgroup_get_live(struct cgroup *cgrp)
529 {
530 WARN_ON_ONCE(cgroup_is_dead(cgrp));
531 css_get(&cgrp->self);
532 }
533
534 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
535 {
536 struct cgroup *cgrp = of->kn->parent->priv;
537 struct cftype *cft = of_cft(of);
538
539 /*
540 * This is open and unprotected implementation of cgroup_css().
541 * seq_css() is only called from a kernfs file operation which has
542 * an active reference on the file. Because all the subsystem
543 * files are drained before a css is disassociated with a cgroup,
544 * the matching css from the cgroup's subsys table is guaranteed to
545 * be and stay valid until the enclosing operation is complete.
546 */
547 if (cft->ss)
548 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
549 else
550 return &cgrp->self;
551 }
552 EXPORT_SYMBOL_GPL(of_css);
553
554 /**
555 * for_each_css - iterate all css's of a cgroup
556 * @css: the iteration cursor
557 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
558 * @cgrp: the target cgroup to iterate css's of
559 *
560 * Should be called under cgroup_[tree_]mutex.
561 */
562 #define for_each_css(css, ssid, cgrp) \
563 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
564 if (!((css) = rcu_dereference_check( \
565 (cgrp)->subsys[(ssid)], \
566 lockdep_is_held(&cgroup_mutex)))) { } \
567 else
568
569 /**
570 * for_each_e_css - iterate all effective css's of a cgroup
571 * @css: the iteration cursor
572 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
573 * @cgrp: the target cgroup to iterate css's of
574 *
575 * Should be called under cgroup_[tree_]mutex.
576 */
577 #define for_each_e_css(css, ssid, cgrp) \
578 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
579 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
580 ; \
581 else
582
583 /**
584 * do_each_subsys_mask - filter for_each_subsys with a bitmask
585 * @ss: the iteration cursor
586 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
587 * @ss_mask: the bitmask
588 *
589 * The block will only run for cases where the ssid-th bit (1 << ssid) of
590 * @ss_mask is set.
591 */
592 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
593 unsigned long __ss_mask = (ss_mask); \
594 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
595 (ssid) = 0; \
596 break; \
597 } \
598 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
599 (ss) = cgroup_subsys[ssid]; \
600 {
601
602 #define while_each_subsys_mask() \
603 } \
604 } \
605 } while (false)
606
607 /* iterate over child cgrps, lock should be held throughout iteration */
608 #define cgroup_for_each_live_child(child, cgrp) \
609 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
610 if (({ lockdep_assert_held(&cgroup_mutex); \
611 cgroup_is_dead(child); })) \
612 ; \
613 else
614
615 /* walk live descendants in preorder */
616 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
617 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
618 if (({ lockdep_assert_held(&cgroup_mutex); \
619 (dsct) = (d_css)->cgroup; \
620 cgroup_is_dead(dsct); })) \
621 ; \
622 else
623
624 /* walk live descendants in postorder */
625 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
626 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
627 if (({ lockdep_assert_held(&cgroup_mutex); \
628 (dsct) = (d_css)->cgroup; \
629 cgroup_is_dead(dsct); })) \
630 ; \
631 else
632
633 /*
634 * The default css_set - used by init and its children prior to any
635 * hierarchies being mounted. It contains a pointer to the root state
636 * for each subsystem. Also used to anchor the list of css_sets. Not
637 * reference-counted, to improve performance when child cgroups
638 * haven't been created.
639 */
640 struct css_set init_css_set = {
641 .refcount = REFCOUNT_INIT(1),
642 .dom_cset = &init_css_set,
643 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
644 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
645 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
646 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
648 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
649 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
650 };
651
652 static int css_set_count = 1; /* 1 for init_css_set */
653
654 static bool css_set_threaded(struct css_set *cset)
655 {
656 return cset->dom_cset != cset;
657 }
658
659 /**
660 * css_set_populated - does a css_set contain any tasks?
661 * @cset: target css_set
662 *
663 * css_set_populated() should be the same as !!cset->nr_tasks at steady
664 * state. However, css_set_populated() can be called while a task is being
665 * added to or removed from the linked list before the nr_tasks is
666 * properly updated. Hence, we can't just look at ->nr_tasks here.
667 */
668 static bool css_set_populated(struct css_set *cset)
669 {
670 lockdep_assert_held(&css_set_lock);
671
672 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
673 }
674
675 /**
676 * cgroup_update_populated - update the populated count of a cgroup
677 * @cgrp: the target cgroup
678 * @populated: inc or dec populated count
679 *
680 * One of the css_sets associated with @cgrp is either getting its first
681 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
682 * count is propagated towards root so that a given cgroup's
683 * nr_populated_children is zero iff none of its descendants contain any
684 * tasks.
685 *
686 * @cgrp's interface file "cgroup.populated" is zero if both
687 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
688 * 1 otherwise. When the sum changes from or to zero, userland is notified
689 * that the content of the interface file has changed. This can be used to
690 * detect when @cgrp and its descendants become populated or empty.
691 */
692 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
693 {
694 struct cgroup *child = NULL;
695 int adj = populated ? 1 : -1;
696
697 lockdep_assert_held(&css_set_lock);
698
699 do {
700 bool was_populated = cgroup_is_populated(cgrp);
701
702 if (!child) {
703 cgrp->nr_populated_csets += adj;
704 } else {
705 if (cgroup_is_threaded(child))
706 cgrp->nr_populated_threaded_children += adj;
707 else
708 cgrp->nr_populated_domain_children += adj;
709 }
710
711 if (was_populated == cgroup_is_populated(cgrp))
712 break;
713
714 cgroup1_check_for_release(cgrp);
715 cgroup_file_notify(&cgrp->events_file);
716
717 child = cgrp;
718 cgrp = cgroup_parent(cgrp);
719 } while (cgrp);
720 }
721
722 /**
723 * css_set_update_populated - update populated state of a css_set
724 * @cset: target css_set
725 * @populated: whether @cset is populated or depopulated
726 *
727 * @cset is either getting the first task or losing the last. Update the
728 * populated counters of all associated cgroups accordingly.
729 */
730 static void css_set_update_populated(struct css_set *cset, bool populated)
731 {
732 struct cgrp_cset_link *link;
733
734 lockdep_assert_held(&css_set_lock);
735
736 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
737 cgroup_update_populated(link->cgrp, populated);
738 }
739
740 /**
741 * css_set_move_task - move a task from one css_set to another
742 * @task: task being moved
743 * @from_cset: css_set @task currently belongs to (may be NULL)
744 * @to_cset: new css_set @task is being moved to (may be NULL)
745 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
746 *
747 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
748 * css_set, @from_cset can be NULL. If @task is being disassociated
749 * instead of moved, @to_cset can be NULL.
750 *
751 * This function automatically handles populated counter updates and
752 * css_task_iter adjustments but the caller is responsible for managing
753 * @from_cset and @to_cset's reference counts.
754 */
755 static void css_set_move_task(struct task_struct *task,
756 struct css_set *from_cset, struct css_set *to_cset,
757 bool use_mg_tasks)
758 {
759 lockdep_assert_held(&css_set_lock);
760
761 if (to_cset && !css_set_populated(to_cset))
762 css_set_update_populated(to_cset, true);
763
764 if (from_cset) {
765 struct css_task_iter *it, *pos;
766
767 WARN_ON_ONCE(list_empty(&task->cg_list));
768
769 /*
770 * @task is leaving, advance task iterators which are
771 * pointing to it so that they can resume at the next
772 * position. Advancing an iterator might remove it from
773 * the list, use safe walk. See css_task_iter_advance*()
774 * for details.
775 */
776 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
777 iters_node)
778 if (it->task_pos == &task->cg_list)
779 css_task_iter_advance(it);
780
781 list_del_init(&task->cg_list);
782 if (!css_set_populated(from_cset))
783 css_set_update_populated(from_cset, false);
784 } else {
785 WARN_ON_ONCE(!list_empty(&task->cg_list));
786 }
787
788 if (to_cset) {
789 /*
790 * We are synchronized through cgroup_threadgroup_rwsem
791 * against PF_EXITING setting such that we can't race
792 * against cgroup_exit() changing the css_set to
793 * init_css_set and dropping the old one.
794 */
795 WARN_ON_ONCE(task->flags & PF_EXITING);
796
797 rcu_assign_pointer(task->cgroups, to_cset);
798 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
799 &to_cset->tasks);
800 }
801 }
802
803 /*
804 * hash table for cgroup groups. This improves the performance to find
805 * an existing css_set. This hash doesn't (currently) take into
806 * account cgroups in empty hierarchies.
807 */
808 #define CSS_SET_HASH_BITS 7
809 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
810
811 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
812 {
813 unsigned long key = 0UL;
814 struct cgroup_subsys *ss;
815 int i;
816
817 for_each_subsys(ss, i)
818 key += (unsigned long)css[i];
819 key = (key >> 16) ^ key;
820
821 return key;
822 }
823
824 void put_css_set_locked(struct css_set *cset)
825 {
826 struct cgrp_cset_link *link, *tmp_link;
827 struct cgroup_subsys *ss;
828 int ssid;
829
830 lockdep_assert_held(&css_set_lock);
831
832 if (!refcount_dec_and_test(&cset->refcount))
833 return;
834
835 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
836
837 /* This css_set is dead. unlink it and release cgroup and css refs */
838 for_each_subsys(ss, ssid) {
839 list_del(&cset->e_cset_node[ssid]);
840 css_put(cset->subsys[ssid]);
841 }
842 hash_del(&cset->hlist);
843 css_set_count--;
844
845 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
846 list_del(&link->cset_link);
847 list_del(&link->cgrp_link);
848 if (cgroup_parent(link->cgrp))
849 cgroup_put(link->cgrp);
850 kfree(link);
851 }
852
853 if (css_set_threaded(cset)) {
854 list_del(&cset->threaded_csets_node);
855 put_css_set_locked(cset->dom_cset);
856 }
857
858 kfree_rcu(cset, rcu_head);
859 }
860
861 /**
862 * compare_css_sets - helper function for find_existing_css_set().
863 * @cset: candidate css_set being tested
864 * @old_cset: existing css_set for a task
865 * @new_cgrp: cgroup that's being entered by the task
866 * @template: desired set of css pointers in css_set (pre-calculated)
867 *
868 * Returns true if "cset" matches "old_cset" except for the hierarchy
869 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
870 */
871 static bool compare_css_sets(struct css_set *cset,
872 struct css_set *old_cset,
873 struct cgroup *new_cgrp,
874 struct cgroup_subsys_state *template[])
875 {
876 struct cgroup *new_dfl_cgrp;
877 struct list_head *l1, *l2;
878
879 /*
880 * On the default hierarchy, there can be csets which are
881 * associated with the same set of cgroups but different csses.
882 * Let's first ensure that csses match.
883 */
884 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
885 return false;
886
887
888 /* @cset's domain should match the default cgroup's */
889 if (cgroup_on_dfl(new_cgrp))
890 new_dfl_cgrp = new_cgrp;
891 else
892 new_dfl_cgrp = old_cset->dfl_cgrp;
893
894 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
895 return false;
896
897 /*
898 * Compare cgroup pointers in order to distinguish between
899 * different cgroups in hierarchies. As different cgroups may
900 * share the same effective css, this comparison is always
901 * necessary.
902 */
903 l1 = &cset->cgrp_links;
904 l2 = &old_cset->cgrp_links;
905 while (1) {
906 struct cgrp_cset_link *link1, *link2;
907 struct cgroup *cgrp1, *cgrp2;
908
909 l1 = l1->next;
910 l2 = l2->next;
911 /* See if we reached the end - both lists are equal length. */
912 if (l1 == &cset->cgrp_links) {
913 BUG_ON(l2 != &old_cset->cgrp_links);
914 break;
915 } else {
916 BUG_ON(l2 == &old_cset->cgrp_links);
917 }
918 /* Locate the cgroups associated with these links. */
919 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
920 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
921 cgrp1 = link1->cgrp;
922 cgrp2 = link2->cgrp;
923 /* Hierarchies should be linked in the same order. */
924 BUG_ON(cgrp1->root != cgrp2->root);
925
926 /*
927 * If this hierarchy is the hierarchy of the cgroup
928 * that's changing, then we need to check that this
929 * css_set points to the new cgroup; if it's any other
930 * hierarchy, then this css_set should point to the
931 * same cgroup as the old css_set.
932 */
933 if (cgrp1->root == new_cgrp->root) {
934 if (cgrp1 != new_cgrp)
935 return false;
936 } else {
937 if (cgrp1 != cgrp2)
938 return false;
939 }
940 }
941 return true;
942 }
943
944 /**
945 * find_existing_css_set - init css array and find the matching css_set
946 * @old_cset: the css_set that we're using before the cgroup transition
947 * @cgrp: the cgroup that we're moving into
948 * @template: out param for the new set of csses, should be clear on entry
949 */
950 static struct css_set *find_existing_css_set(struct css_set *old_cset,
951 struct cgroup *cgrp,
952 struct cgroup_subsys_state *template[])
953 {
954 struct cgroup_root *root = cgrp->root;
955 struct cgroup_subsys *ss;
956 struct css_set *cset;
957 unsigned long key;
958 int i;
959
960 /*
961 * Build the set of subsystem state objects that we want to see in the
962 * new css_set. while subsystems can change globally, the entries here
963 * won't change, so no need for locking.
964 */
965 for_each_subsys(ss, i) {
966 if (root->subsys_mask & (1UL << i)) {
967 /*
968 * @ss is in this hierarchy, so we want the
969 * effective css from @cgrp.
970 */
971 template[i] = cgroup_e_css(cgrp, ss);
972 } else {
973 /*
974 * @ss is not in this hierarchy, so we don't want
975 * to change the css.
976 */
977 template[i] = old_cset->subsys[i];
978 }
979 }
980
981 key = css_set_hash(template);
982 hash_for_each_possible(css_set_table, cset, hlist, key) {
983 if (!compare_css_sets(cset, old_cset, cgrp, template))
984 continue;
985
986 /* This css_set matches what we need */
987 return cset;
988 }
989
990 /* No existing cgroup group matched */
991 return NULL;
992 }
993
994 static void free_cgrp_cset_links(struct list_head *links_to_free)
995 {
996 struct cgrp_cset_link *link, *tmp_link;
997
998 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
999 list_del(&link->cset_link);
1000 kfree(link);
1001 }
1002 }
1003
1004 /**
1005 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1006 * @count: the number of links to allocate
1007 * @tmp_links: list_head the allocated links are put on
1008 *
1009 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1010 * through ->cset_link. Returns 0 on success or -errno.
1011 */
1012 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1013 {
1014 struct cgrp_cset_link *link;
1015 int i;
1016
1017 INIT_LIST_HEAD(tmp_links);
1018
1019 for (i = 0; i < count; i++) {
1020 link = kzalloc(sizeof(*link), GFP_KERNEL);
1021 if (!link) {
1022 free_cgrp_cset_links(tmp_links);
1023 return -ENOMEM;
1024 }
1025 list_add(&link->cset_link, tmp_links);
1026 }
1027 return 0;
1028 }
1029
1030 /**
1031 * link_css_set - a helper function to link a css_set to a cgroup
1032 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1033 * @cset: the css_set to be linked
1034 * @cgrp: the destination cgroup
1035 */
1036 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1037 struct cgroup *cgrp)
1038 {
1039 struct cgrp_cset_link *link;
1040
1041 BUG_ON(list_empty(tmp_links));
1042
1043 if (cgroup_on_dfl(cgrp))
1044 cset->dfl_cgrp = cgrp;
1045
1046 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1047 link->cset = cset;
1048 link->cgrp = cgrp;
1049
1050 /*
1051 * Always add links to the tail of the lists so that the lists are
1052 * in choronological order.
1053 */
1054 list_move_tail(&link->cset_link, &cgrp->cset_links);
1055 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1056
1057 if (cgroup_parent(cgrp))
1058 cgroup_get_live(cgrp);
1059 }
1060
1061 /**
1062 * find_css_set - return a new css_set with one cgroup updated
1063 * @old_cset: the baseline css_set
1064 * @cgrp: the cgroup to be updated
1065 *
1066 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1067 * substituted into the appropriate hierarchy.
1068 */
1069 static struct css_set *find_css_set(struct css_set *old_cset,
1070 struct cgroup *cgrp)
1071 {
1072 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1073 struct css_set *cset;
1074 struct list_head tmp_links;
1075 struct cgrp_cset_link *link;
1076 struct cgroup_subsys *ss;
1077 unsigned long key;
1078 int ssid;
1079
1080 lockdep_assert_held(&cgroup_mutex);
1081
1082 /* First see if we already have a cgroup group that matches
1083 * the desired set */
1084 spin_lock_irq(&css_set_lock);
1085 cset = find_existing_css_set(old_cset, cgrp, template);
1086 if (cset)
1087 get_css_set(cset);
1088 spin_unlock_irq(&css_set_lock);
1089
1090 if (cset)
1091 return cset;
1092
1093 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1094 if (!cset)
1095 return NULL;
1096
1097 /* Allocate all the cgrp_cset_link objects that we'll need */
1098 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1099 kfree(cset);
1100 return NULL;
1101 }
1102
1103 refcount_set(&cset->refcount, 1);
1104 cset->dom_cset = cset;
1105 INIT_LIST_HEAD(&cset->tasks);
1106 INIT_LIST_HEAD(&cset->mg_tasks);
1107 INIT_LIST_HEAD(&cset->task_iters);
1108 INIT_LIST_HEAD(&cset->threaded_csets);
1109 INIT_HLIST_NODE(&cset->hlist);
1110 INIT_LIST_HEAD(&cset->cgrp_links);
1111 INIT_LIST_HEAD(&cset->mg_preload_node);
1112 INIT_LIST_HEAD(&cset->mg_node);
1113
1114 /* Copy the set of subsystem state objects generated in
1115 * find_existing_css_set() */
1116 memcpy(cset->subsys, template, sizeof(cset->subsys));
1117
1118 spin_lock_irq(&css_set_lock);
1119 /* Add reference counts and links from the new css_set. */
1120 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1121 struct cgroup *c = link->cgrp;
1122
1123 if (c->root == cgrp->root)
1124 c = cgrp;
1125 link_css_set(&tmp_links, cset, c);
1126 }
1127
1128 BUG_ON(!list_empty(&tmp_links));
1129
1130 css_set_count++;
1131
1132 /* Add @cset to the hash table */
1133 key = css_set_hash(cset->subsys);
1134 hash_add(css_set_table, &cset->hlist, key);
1135
1136 for_each_subsys(ss, ssid) {
1137 struct cgroup_subsys_state *css = cset->subsys[ssid];
1138
1139 list_add_tail(&cset->e_cset_node[ssid],
1140 &css->cgroup->e_csets[ssid]);
1141 css_get(css);
1142 }
1143
1144 spin_unlock_irq(&css_set_lock);
1145
1146 /*
1147 * If @cset should be threaded, look up the matching dom_cset and
1148 * link them up. We first fully initialize @cset then look for the
1149 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1150 * to stay empty until we return.
1151 */
1152 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1153 struct css_set *dcset;
1154
1155 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1156 if (!dcset) {
1157 put_css_set(cset);
1158 return NULL;
1159 }
1160
1161 spin_lock_irq(&css_set_lock);
1162 cset->dom_cset = dcset;
1163 list_add_tail(&cset->threaded_csets_node,
1164 &dcset->threaded_csets);
1165 spin_unlock_irq(&css_set_lock);
1166 }
1167
1168 return cset;
1169 }
1170
1171 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1172 {
1173 struct cgroup *root_cgrp = kf_root->kn->priv;
1174
1175 return root_cgrp->root;
1176 }
1177
1178 static int cgroup_init_root_id(struct cgroup_root *root)
1179 {
1180 int id;
1181
1182 lockdep_assert_held(&cgroup_mutex);
1183
1184 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1185 if (id < 0)
1186 return id;
1187
1188 root->hierarchy_id = id;
1189 return 0;
1190 }
1191
1192 static void cgroup_exit_root_id(struct cgroup_root *root)
1193 {
1194 lockdep_assert_held(&cgroup_mutex);
1195
1196 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1197 }
1198
1199 void cgroup_free_root(struct cgroup_root *root)
1200 {
1201 if (root) {
1202 idr_destroy(&root->cgroup_idr);
1203 kfree(root);
1204 }
1205 }
1206
1207 static void cgroup_destroy_root(struct cgroup_root *root)
1208 {
1209 struct cgroup *cgrp = &root->cgrp;
1210 struct cgrp_cset_link *link, *tmp_link;
1211
1212 trace_cgroup_destroy_root(root);
1213
1214 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1215
1216 BUG_ON(atomic_read(&root->nr_cgrps));
1217 BUG_ON(!list_empty(&cgrp->self.children));
1218
1219 /* Rebind all subsystems back to the default hierarchy */
1220 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1221
1222 /*
1223 * Release all the links from cset_links to this hierarchy's
1224 * root cgroup
1225 */
1226 spin_lock_irq(&css_set_lock);
1227
1228 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1229 list_del(&link->cset_link);
1230 list_del(&link->cgrp_link);
1231 kfree(link);
1232 }
1233
1234 spin_unlock_irq(&css_set_lock);
1235
1236 if (!list_empty(&root->root_list)) {
1237 list_del(&root->root_list);
1238 cgroup_root_count--;
1239 }
1240
1241 cgroup_exit_root_id(root);
1242
1243 mutex_unlock(&cgroup_mutex);
1244
1245 kernfs_destroy_root(root->kf_root);
1246 cgroup_free_root(root);
1247 }
1248
1249 /*
1250 * look up cgroup associated with current task's cgroup namespace on the
1251 * specified hierarchy
1252 */
1253 static struct cgroup *
1254 current_cgns_cgroup_from_root(struct cgroup_root *root)
1255 {
1256 struct cgroup *res = NULL;
1257 struct css_set *cset;
1258
1259 lockdep_assert_held(&css_set_lock);
1260
1261 rcu_read_lock();
1262
1263 cset = current->nsproxy->cgroup_ns->root_cset;
1264 if (cset == &init_css_set) {
1265 res = &root->cgrp;
1266 } else {
1267 struct cgrp_cset_link *link;
1268
1269 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1270 struct cgroup *c = link->cgrp;
1271
1272 if (c->root == root) {
1273 res = c;
1274 break;
1275 }
1276 }
1277 }
1278 rcu_read_unlock();
1279
1280 BUG_ON(!res);
1281 return res;
1282 }
1283
1284 /* look up cgroup associated with given css_set on the specified hierarchy */
1285 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1286 struct cgroup_root *root)
1287 {
1288 struct cgroup *res = NULL;
1289
1290 lockdep_assert_held(&cgroup_mutex);
1291 lockdep_assert_held(&css_set_lock);
1292
1293 if (cset == &init_css_set) {
1294 res = &root->cgrp;
1295 } else if (root == &cgrp_dfl_root) {
1296 res = cset->dfl_cgrp;
1297 } else {
1298 struct cgrp_cset_link *link;
1299
1300 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1301 struct cgroup *c = link->cgrp;
1302
1303 if (c->root == root) {
1304 res = c;
1305 break;
1306 }
1307 }
1308 }
1309
1310 BUG_ON(!res);
1311 return res;
1312 }
1313
1314 /*
1315 * Return the cgroup for "task" from the given hierarchy. Must be
1316 * called with cgroup_mutex and css_set_lock held.
1317 */
1318 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1319 struct cgroup_root *root)
1320 {
1321 /*
1322 * No need to lock the task - since we hold cgroup_mutex the
1323 * task can't change groups, so the only thing that can happen
1324 * is that it exits and its css is set back to init_css_set.
1325 */
1326 return cset_cgroup_from_root(task_css_set(task), root);
1327 }
1328
1329 /*
1330 * A task must hold cgroup_mutex to modify cgroups.
1331 *
1332 * Any task can increment and decrement the count field without lock.
1333 * So in general, code holding cgroup_mutex can't rely on the count
1334 * field not changing. However, if the count goes to zero, then only
1335 * cgroup_attach_task() can increment it again. Because a count of zero
1336 * means that no tasks are currently attached, therefore there is no
1337 * way a task attached to that cgroup can fork (the other way to
1338 * increment the count). So code holding cgroup_mutex can safely
1339 * assume that if the count is zero, it will stay zero. Similarly, if
1340 * a task holds cgroup_mutex on a cgroup with zero count, it
1341 * knows that the cgroup won't be removed, as cgroup_rmdir()
1342 * needs that mutex.
1343 *
1344 * A cgroup can only be deleted if both its 'count' of using tasks
1345 * is zero, and its list of 'children' cgroups is empty. Since all
1346 * tasks in the system use _some_ cgroup, and since there is always at
1347 * least one task in the system (init, pid == 1), therefore, root cgroup
1348 * always has either children cgroups and/or using tasks. So we don't
1349 * need a special hack to ensure that root cgroup cannot be deleted.
1350 *
1351 * P.S. One more locking exception. RCU is used to guard the
1352 * update of a tasks cgroup pointer by cgroup_attach_task()
1353 */
1354
1355 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1356
1357 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1358 char *buf)
1359 {
1360 struct cgroup_subsys *ss = cft->ss;
1361
1362 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1363 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1364 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1365 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1366 cft->name);
1367 else
1368 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1369 return buf;
1370 }
1371
1372 /**
1373 * cgroup_file_mode - deduce file mode of a control file
1374 * @cft: the control file in question
1375 *
1376 * S_IRUGO for read, S_IWUSR for write.
1377 */
1378 static umode_t cgroup_file_mode(const struct cftype *cft)
1379 {
1380 umode_t mode = 0;
1381
1382 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1383 mode |= S_IRUGO;
1384
1385 if (cft->write_u64 || cft->write_s64 || cft->write) {
1386 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1387 mode |= S_IWUGO;
1388 else
1389 mode |= S_IWUSR;
1390 }
1391
1392 return mode;
1393 }
1394
1395 /**
1396 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1397 * @subtree_control: the new subtree_control mask to consider
1398 * @this_ss_mask: available subsystems
1399 *
1400 * On the default hierarchy, a subsystem may request other subsystems to be
1401 * enabled together through its ->depends_on mask. In such cases, more
1402 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1403 *
1404 * This function calculates which subsystems need to be enabled if
1405 * @subtree_control is to be applied while restricted to @this_ss_mask.
1406 */
1407 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1408 {
1409 u16 cur_ss_mask = subtree_control;
1410 struct cgroup_subsys *ss;
1411 int ssid;
1412
1413 lockdep_assert_held(&cgroup_mutex);
1414
1415 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1416
1417 while (true) {
1418 u16 new_ss_mask = cur_ss_mask;
1419
1420 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1421 new_ss_mask |= ss->depends_on;
1422 } while_each_subsys_mask();
1423
1424 /*
1425 * Mask out subsystems which aren't available. This can
1426 * happen only if some depended-upon subsystems were bound
1427 * to non-default hierarchies.
1428 */
1429 new_ss_mask &= this_ss_mask;
1430
1431 if (new_ss_mask == cur_ss_mask)
1432 break;
1433 cur_ss_mask = new_ss_mask;
1434 }
1435
1436 return cur_ss_mask;
1437 }
1438
1439 /**
1440 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1441 * @kn: the kernfs_node being serviced
1442 *
1443 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1444 * the method finishes if locking succeeded. Note that once this function
1445 * returns the cgroup returned by cgroup_kn_lock_live() may become
1446 * inaccessible any time. If the caller intends to continue to access the
1447 * cgroup, it should pin it before invoking this function.
1448 */
1449 void cgroup_kn_unlock(struct kernfs_node *kn)
1450 {
1451 struct cgroup *cgrp;
1452
1453 if (kernfs_type(kn) == KERNFS_DIR)
1454 cgrp = kn->priv;
1455 else
1456 cgrp = kn->parent->priv;
1457
1458 mutex_unlock(&cgroup_mutex);
1459
1460 kernfs_unbreak_active_protection(kn);
1461 cgroup_put(cgrp);
1462 }
1463
1464 /**
1465 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1466 * @kn: the kernfs_node being serviced
1467 * @drain_offline: perform offline draining on the cgroup
1468 *
1469 * This helper is to be used by a cgroup kernfs method currently servicing
1470 * @kn. It breaks the active protection, performs cgroup locking and
1471 * verifies that the associated cgroup is alive. Returns the cgroup if
1472 * alive; otherwise, %NULL. A successful return should be undone by a
1473 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1474 * cgroup is drained of offlining csses before return.
1475 *
1476 * Any cgroup kernfs method implementation which requires locking the
1477 * associated cgroup should use this helper. It avoids nesting cgroup
1478 * locking under kernfs active protection and allows all kernfs operations
1479 * including self-removal.
1480 */
1481 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1482 {
1483 struct cgroup *cgrp;
1484
1485 if (kernfs_type(kn) == KERNFS_DIR)
1486 cgrp = kn->priv;
1487 else
1488 cgrp = kn->parent->priv;
1489
1490 /*
1491 * We're gonna grab cgroup_mutex which nests outside kernfs
1492 * active_ref. cgroup liveliness check alone provides enough
1493 * protection against removal. Ensure @cgrp stays accessible and
1494 * break the active_ref protection.
1495 */
1496 if (!cgroup_tryget(cgrp))
1497 return NULL;
1498 kernfs_break_active_protection(kn);
1499
1500 if (drain_offline)
1501 cgroup_lock_and_drain_offline(cgrp);
1502 else
1503 mutex_lock(&cgroup_mutex);
1504
1505 if (!cgroup_is_dead(cgrp))
1506 return cgrp;
1507
1508 cgroup_kn_unlock(kn);
1509 return NULL;
1510 }
1511
1512 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1513 {
1514 char name[CGROUP_FILE_NAME_MAX];
1515
1516 lockdep_assert_held(&cgroup_mutex);
1517
1518 if (cft->file_offset) {
1519 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1520 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1521
1522 spin_lock_irq(&cgroup_file_kn_lock);
1523 cfile->kn = NULL;
1524 spin_unlock_irq(&cgroup_file_kn_lock);
1525 }
1526
1527 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1528 }
1529
1530 /**
1531 * css_clear_dir - remove subsys files in a cgroup directory
1532 * @css: taget css
1533 */
1534 static void css_clear_dir(struct cgroup_subsys_state *css)
1535 {
1536 struct cgroup *cgrp = css->cgroup;
1537 struct cftype *cfts;
1538
1539 if (!(css->flags & CSS_VISIBLE))
1540 return;
1541
1542 css->flags &= ~CSS_VISIBLE;
1543
1544 list_for_each_entry(cfts, &css->ss->cfts, node)
1545 cgroup_addrm_files(css, cgrp, cfts, false);
1546 }
1547
1548 /**
1549 * css_populate_dir - create subsys files in a cgroup directory
1550 * @css: target css
1551 *
1552 * On failure, no file is added.
1553 */
1554 static int css_populate_dir(struct cgroup_subsys_state *css)
1555 {
1556 struct cgroup *cgrp = css->cgroup;
1557 struct cftype *cfts, *failed_cfts;
1558 int ret;
1559
1560 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1561 return 0;
1562
1563 if (!css->ss) {
1564 if (cgroup_on_dfl(cgrp))
1565 cfts = cgroup_base_files;
1566 else
1567 cfts = cgroup1_base_files;
1568
1569 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1570 }
1571
1572 list_for_each_entry(cfts, &css->ss->cfts, node) {
1573 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1574 if (ret < 0) {
1575 failed_cfts = cfts;
1576 goto err;
1577 }
1578 }
1579
1580 css->flags |= CSS_VISIBLE;
1581
1582 return 0;
1583 err:
1584 list_for_each_entry(cfts, &css->ss->cfts, node) {
1585 if (cfts == failed_cfts)
1586 break;
1587 cgroup_addrm_files(css, cgrp, cfts, false);
1588 }
1589 return ret;
1590 }
1591
1592 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1593 {
1594 struct cgroup *dcgrp = &dst_root->cgrp;
1595 struct cgroup_subsys *ss;
1596 int ssid, i, ret;
1597
1598 lockdep_assert_held(&cgroup_mutex);
1599
1600 do_each_subsys_mask(ss, ssid, ss_mask) {
1601 /*
1602 * If @ss has non-root csses attached to it, can't move.
1603 * If @ss is an implicit controller, it is exempt from this
1604 * rule and can be stolen.
1605 */
1606 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1607 !ss->implicit_on_dfl)
1608 return -EBUSY;
1609
1610 /* can't move between two non-dummy roots either */
1611 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1612 return -EBUSY;
1613 } while_each_subsys_mask();
1614
1615 do_each_subsys_mask(ss, ssid, ss_mask) {
1616 struct cgroup_root *src_root = ss->root;
1617 struct cgroup *scgrp = &src_root->cgrp;
1618 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1619 struct css_set *cset;
1620
1621 WARN_ON(!css || cgroup_css(dcgrp, ss));
1622
1623 /* disable from the source */
1624 src_root->subsys_mask &= ~(1 << ssid);
1625 WARN_ON(cgroup_apply_control(scgrp));
1626 cgroup_finalize_control(scgrp, 0);
1627
1628 /* rebind */
1629 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1630 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1631 ss->root = dst_root;
1632 css->cgroup = dcgrp;
1633
1634 spin_lock_irq(&css_set_lock);
1635 hash_for_each(css_set_table, i, cset, hlist)
1636 list_move_tail(&cset->e_cset_node[ss->id],
1637 &dcgrp->e_csets[ss->id]);
1638 spin_unlock_irq(&css_set_lock);
1639
1640 /* default hierarchy doesn't enable controllers by default */
1641 dst_root->subsys_mask |= 1 << ssid;
1642 if (dst_root == &cgrp_dfl_root) {
1643 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1644 } else {
1645 dcgrp->subtree_control |= 1 << ssid;
1646 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1647 }
1648
1649 ret = cgroup_apply_control(dcgrp);
1650 if (ret)
1651 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1652 ss->name, ret);
1653
1654 if (ss->bind)
1655 ss->bind(css);
1656 } while_each_subsys_mask();
1657
1658 kernfs_activate(dcgrp->kn);
1659 return 0;
1660 }
1661
1662 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1663 struct kernfs_root *kf_root)
1664 {
1665 int len = 0;
1666 char *buf = NULL;
1667 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1668 struct cgroup *ns_cgroup;
1669
1670 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1671 if (!buf)
1672 return -ENOMEM;
1673
1674 spin_lock_irq(&css_set_lock);
1675 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1676 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1677 spin_unlock_irq(&css_set_lock);
1678
1679 if (len >= PATH_MAX)
1680 len = -ERANGE;
1681 else if (len > 0) {
1682 seq_escape(sf, buf, " \t\n\\");
1683 len = 0;
1684 }
1685 kfree(buf);
1686 return len;
1687 }
1688
1689 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1690 {
1691 char *token;
1692
1693 *root_flags = 0;
1694
1695 if (!data || *data == '\0')
1696 return 0;
1697
1698 while ((token = strsep(&data, ",")) != NULL) {
1699 if (!strcmp(token, "nsdelegate")) {
1700 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1701 continue;
1702 }
1703
1704 pr_err("cgroup2: unknown option \"%s\"\n", token);
1705 return -EINVAL;
1706 }
1707
1708 return 0;
1709 }
1710
1711 static void apply_cgroup_root_flags(unsigned int root_flags)
1712 {
1713 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1714 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1715 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1716 else
1717 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1718 }
1719 }
1720
1721 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1722 {
1723 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1724 seq_puts(seq, ",nsdelegate");
1725 return 0;
1726 }
1727
1728 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1729 {
1730 unsigned int root_flags;
1731 int ret;
1732
1733 ret = parse_cgroup_root_flags(data, &root_flags);
1734 if (ret)
1735 return ret;
1736
1737 apply_cgroup_root_flags(root_flags);
1738 return 0;
1739 }
1740
1741 /*
1742 * To reduce the fork() overhead for systems that are not actually using
1743 * their cgroups capability, we don't maintain the lists running through
1744 * each css_set to its tasks until we see the list actually used - in other
1745 * words after the first mount.
1746 */
1747 static bool use_task_css_set_links __read_mostly;
1748
1749 static void cgroup_enable_task_cg_lists(void)
1750 {
1751 struct task_struct *p, *g;
1752
1753 spin_lock_irq(&css_set_lock);
1754
1755 if (use_task_css_set_links)
1756 goto out_unlock;
1757
1758 use_task_css_set_links = true;
1759
1760 /*
1761 * We need tasklist_lock because RCU is not safe against
1762 * while_each_thread(). Besides, a forking task that has passed
1763 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1764 * is not guaranteed to have its child immediately visible in the
1765 * tasklist if we walk through it with RCU.
1766 */
1767 read_lock(&tasklist_lock);
1768 do_each_thread(g, p) {
1769 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1770 task_css_set(p) != &init_css_set);
1771
1772 /*
1773 * We should check if the process is exiting, otherwise
1774 * it will race with cgroup_exit() in that the list
1775 * entry won't be deleted though the process has exited.
1776 * Do it while holding siglock so that we don't end up
1777 * racing against cgroup_exit().
1778 *
1779 * Interrupts were already disabled while acquiring
1780 * the css_set_lock, so we do not need to disable it
1781 * again when acquiring the sighand->siglock here.
1782 */
1783 spin_lock(&p->sighand->siglock);
1784 if (!(p->flags & PF_EXITING)) {
1785 struct css_set *cset = task_css_set(p);
1786
1787 if (!css_set_populated(cset))
1788 css_set_update_populated(cset, true);
1789 list_add_tail(&p->cg_list, &cset->tasks);
1790 get_css_set(cset);
1791 cset->nr_tasks++;
1792 }
1793 spin_unlock(&p->sighand->siglock);
1794 } while_each_thread(g, p);
1795 read_unlock(&tasklist_lock);
1796 out_unlock:
1797 spin_unlock_irq(&css_set_lock);
1798 }
1799
1800 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1801 {
1802 struct cgroup_subsys *ss;
1803 int ssid;
1804
1805 INIT_LIST_HEAD(&cgrp->self.sibling);
1806 INIT_LIST_HEAD(&cgrp->self.children);
1807 INIT_LIST_HEAD(&cgrp->cset_links);
1808 INIT_LIST_HEAD(&cgrp->pidlists);
1809 mutex_init(&cgrp->pidlist_mutex);
1810 cgrp->self.cgroup = cgrp;
1811 cgrp->self.flags |= CSS_ONLINE;
1812 cgrp->dom_cgrp = cgrp;
1813 cgrp->max_descendants = INT_MAX;
1814 cgrp->max_depth = INT_MAX;
1815
1816 for_each_subsys(ss, ssid)
1817 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1818
1819 init_waitqueue_head(&cgrp->offline_waitq);
1820 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1821 }
1822
1823 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1824 {
1825 struct cgroup *cgrp = &root->cgrp;
1826
1827 INIT_LIST_HEAD(&root->root_list);
1828 atomic_set(&root->nr_cgrps, 1);
1829 cgrp->root = root;
1830 init_cgroup_housekeeping(cgrp);
1831 idr_init(&root->cgroup_idr);
1832
1833 root->flags = opts->flags;
1834 if (opts->release_agent)
1835 strcpy(root->release_agent_path, opts->release_agent);
1836 if (opts->name)
1837 strcpy(root->name, opts->name);
1838 if (opts->cpuset_clone_children)
1839 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1840 }
1841
1842 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1843 {
1844 LIST_HEAD(tmp_links);
1845 struct cgroup *root_cgrp = &root->cgrp;
1846 struct kernfs_syscall_ops *kf_sops;
1847 struct css_set *cset;
1848 int i, ret;
1849
1850 lockdep_assert_held(&cgroup_mutex);
1851
1852 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1853 if (ret < 0)
1854 goto out;
1855 root_cgrp->id = ret;
1856 root_cgrp->ancestor_ids[0] = ret;
1857
1858 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1859 ref_flags, GFP_KERNEL);
1860 if (ret)
1861 goto out;
1862
1863 /*
1864 * We're accessing css_set_count without locking css_set_lock here,
1865 * but that's OK - it can only be increased by someone holding
1866 * cgroup_lock, and that's us. Later rebinding may disable
1867 * controllers on the default hierarchy and thus create new csets,
1868 * which can't be more than the existing ones. Allocate 2x.
1869 */
1870 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1871 if (ret)
1872 goto cancel_ref;
1873
1874 ret = cgroup_init_root_id(root);
1875 if (ret)
1876 goto cancel_ref;
1877
1878 kf_sops = root == &cgrp_dfl_root ?
1879 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1880
1881 root->kf_root = kernfs_create_root(kf_sops,
1882 KERNFS_ROOT_CREATE_DEACTIVATED |
1883 KERNFS_ROOT_SUPPORT_EXPORTOP,
1884 root_cgrp);
1885 if (IS_ERR(root->kf_root)) {
1886 ret = PTR_ERR(root->kf_root);
1887 goto exit_root_id;
1888 }
1889 root_cgrp->kn = root->kf_root->kn;
1890
1891 ret = css_populate_dir(&root_cgrp->self);
1892 if (ret)
1893 goto destroy_root;
1894
1895 ret = rebind_subsystems(root, ss_mask);
1896 if (ret)
1897 goto destroy_root;
1898
1899 trace_cgroup_setup_root(root);
1900
1901 /*
1902 * There must be no failure case after here, since rebinding takes
1903 * care of subsystems' refcounts, which are explicitly dropped in
1904 * the failure exit path.
1905 */
1906 list_add(&root->root_list, &cgroup_roots);
1907 cgroup_root_count++;
1908
1909 /*
1910 * Link the root cgroup in this hierarchy into all the css_set
1911 * objects.
1912 */
1913 spin_lock_irq(&css_set_lock);
1914 hash_for_each(css_set_table, i, cset, hlist) {
1915 link_css_set(&tmp_links, cset, root_cgrp);
1916 if (css_set_populated(cset))
1917 cgroup_update_populated(root_cgrp, true);
1918 }
1919 spin_unlock_irq(&css_set_lock);
1920
1921 BUG_ON(!list_empty(&root_cgrp->self.children));
1922 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1923
1924 kernfs_activate(root_cgrp->kn);
1925 ret = 0;
1926 goto out;
1927
1928 destroy_root:
1929 kernfs_destroy_root(root->kf_root);
1930 root->kf_root = NULL;
1931 exit_root_id:
1932 cgroup_exit_root_id(root);
1933 cancel_ref:
1934 percpu_ref_exit(&root_cgrp->self.refcnt);
1935 out:
1936 free_cgrp_cset_links(&tmp_links);
1937 return ret;
1938 }
1939
1940 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1941 struct cgroup_root *root, unsigned long magic,
1942 struct cgroup_namespace *ns)
1943 {
1944 struct dentry *dentry;
1945 bool new_sb = false;
1946
1947 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1948
1949 /*
1950 * In non-init cgroup namespace, instead of root cgroup's dentry,
1951 * we return the dentry corresponding to the cgroupns->root_cgrp.
1952 */
1953 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1954 struct dentry *nsdentry;
1955 struct super_block *sb = dentry->d_sb;
1956 struct cgroup *cgrp;
1957
1958 mutex_lock(&cgroup_mutex);
1959 spin_lock_irq(&css_set_lock);
1960
1961 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1962
1963 spin_unlock_irq(&css_set_lock);
1964 mutex_unlock(&cgroup_mutex);
1965
1966 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
1967 dput(dentry);
1968 if (IS_ERR(nsdentry))
1969 deactivate_locked_super(sb);
1970 dentry = nsdentry;
1971 }
1972
1973 if (!new_sb)
1974 cgroup_put(&root->cgrp);
1975
1976 return dentry;
1977 }
1978
1979 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1980 int flags, const char *unused_dev_name,
1981 void *data)
1982 {
1983 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
1984 struct dentry *dentry;
1985 int ret;
1986
1987 get_cgroup_ns(ns);
1988
1989 /* Check if the caller has permission to mount. */
1990 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
1991 put_cgroup_ns(ns);
1992 return ERR_PTR(-EPERM);
1993 }
1994
1995 /*
1996 * The first time anyone tries to mount a cgroup, enable the list
1997 * linking each css_set to its tasks and fix up all existing tasks.
1998 */
1999 if (!use_task_css_set_links)
2000 cgroup_enable_task_cg_lists();
2001
2002 if (fs_type == &cgroup2_fs_type) {
2003 unsigned int root_flags;
2004
2005 ret = parse_cgroup_root_flags(data, &root_flags);
2006 if (ret) {
2007 put_cgroup_ns(ns);
2008 return ERR_PTR(ret);
2009 }
2010
2011 cgrp_dfl_visible = true;
2012 cgroup_get_live(&cgrp_dfl_root.cgrp);
2013
2014 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2015 CGROUP2_SUPER_MAGIC, ns);
2016 if (!IS_ERR(dentry))
2017 apply_cgroup_root_flags(root_flags);
2018 } else {
2019 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2020 CGROUP_SUPER_MAGIC, ns);
2021 }
2022
2023 put_cgroup_ns(ns);
2024 return dentry;
2025 }
2026
2027 static void cgroup_kill_sb(struct super_block *sb)
2028 {
2029 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2030 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2031
2032 /*
2033 * If @root doesn't have any mounts or children, start killing it.
2034 * This prevents new mounts by disabling percpu_ref_tryget_live().
2035 * cgroup_mount() may wait for @root's release.
2036 *
2037 * And don't kill the default root.
2038 */
2039 if (!list_empty(&root->cgrp.self.children) ||
2040 root == &cgrp_dfl_root)
2041 cgroup_put(&root->cgrp);
2042 else
2043 percpu_ref_kill(&root->cgrp.self.refcnt);
2044
2045 kernfs_kill_sb(sb);
2046 }
2047
2048 struct file_system_type cgroup_fs_type = {
2049 .name = "cgroup",
2050 .mount = cgroup_mount,
2051 .kill_sb = cgroup_kill_sb,
2052 .fs_flags = FS_USERNS_MOUNT,
2053 };
2054
2055 static struct file_system_type cgroup2_fs_type = {
2056 .name = "cgroup2",
2057 .mount = cgroup_mount,
2058 .kill_sb = cgroup_kill_sb,
2059 .fs_flags = FS_USERNS_MOUNT,
2060 };
2061
2062 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2063 struct cgroup_namespace *ns)
2064 {
2065 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2066
2067 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2068 }
2069
2070 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2071 struct cgroup_namespace *ns)
2072 {
2073 int ret;
2074
2075 mutex_lock(&cgroup_mutex);
2076 spin_lock_irq(&css_set_lock);
2077
2078 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2079
2080 spin_unlock_irq(&css_set_lock);
2081 mutex_unlock(&cgroup_mutex);
2082
2083 return ret;
2084 }
2085 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2086
2087 /**
2088 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2089 * @task: target task
2090 * @buf: the buffer to write the path into
2091 * @buflen: the length of the buffer
2092 *
2093 * Determine @task's cgroup on the first (the one with the lowest non-zero
2094 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2095 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2096 * cgroup controller callbacks.
2097 *
2098 * Return value is the same as kernfs_path().
2099 */
2100 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2101 {
2102 struct cgroup_root *root;
2103 struct cgroup *cgrp;
2104 int hierarchy_id = 1;
2105 int ret;
2106
2107 mutex_lock(&cgroup_mutex);
2108 spin_lock_irq(&css_set_lock);
2109
2110 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2111
2112 if (root) {
2113 cgrp = task_cgroup_from_root(task, root);
2114 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2115 } else {
2116 /* if no hierarchy exists, everyone is in "/" */
2117 ret = strlcpy(buf, "/", buflen);
2118 }
2119
2120 spin_unlock_irq(&css_set_lock);
2121 mutex_unlock(&cgroup_mutex);
2122 return ret;
2123 }
2124 EXPORT_SYMBOL_GPL(task_cgroup_path);
2125
2126 /**
2127 * cgroup_migrate_add_task - add a migration target task to a migration context
2128 * @task: target task
2129 * @mgctx: target migration context
2130 *
2131 * Add @task, which is a migration target, to @mgctx->tset. This function
2132 * becomes noop if @task doesn't need to be migrated. @task's css_set
2133 * should have been added as a migration source and @task->cg_list will be
2134 * moved from the css_set's tasks list to mg_tasks one.
2135 */
2136 static void cgroup_migrate_add_task(struct task_struct *task,
2137 struct cgroup_mgctx *mgctx)
2138 {
2139 struct css_set *cset;
2140
2141 lockdep_assert_held(&css_set_lock);
2142
2143 /* @task either already exited or can't exit until the end */
2144 if (task->flags & PF_EXITING)
2145 return;
2146
2147 /* leave @task alone if post_fork() hasn't linked it yet */
2148 if (list_empty(&task->cg_list))
2149 return;
2150
2151 cset = task_css_set(task);
2152 if (!cset->mg_src_cgrp)
2153 return;
2154
2155 mgctx->tset.nr_tasks++;
2156
2157 list_move_tail(&task->cg_list, &cset->mg_tasks);
2158 if (list_empty(&cset->mg_node))
2159 list_add_tail(&cset->mg_node,
2160 &mgctx->tset.src_csets);
2161 if (list_empty(&cset->mg_dst_cset->mg_node))
2162 list_add_tail(&cset->mg_dst_cset->mg_node,
2163 &mgctx->tset.dst_csets);
2164 }
2165
2166 /**
2167 * cgroup_taskset_first - reset taskset and return the first task
2168 * @tset: taskset of interest
2169 * @dst_cssp: output variable for the destination css
2170 *
2171 * @tset iteration is initialized and the first task is returned.
2172 */
2173 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2174 struct cgroup_subsys_state **dst_cssp)
2175 {
2176 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2177 tset->cur_task = NULL;
2178
2179 return cgroup_taskset_next(tset, dst_cssp);
2180 }
2181
2182 /**
2183 * cgroup_taskset_next - iterate to the next task in taskset
2184 * @tset: taskset of interest
2185 * @dst_cssp: output variable for the destination css
2186 *
2187 * Return the next task in @tset. Iteration must have been initialized
2188 * with cgroup_taskset_first().
2189 */
2190 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2191 struct cgroup_subsys_state **dst_cssp)
2192 {
2193 struct css_set *cset = tset->cur_cset;
2194 struct task_struct *task = tset->cur_task;
2195
2196 while (&cset->mg_node != tset->csets) {
2197 if (!task)
2198 task = list_first_entry(&cset->mg_tasks,
2199 struct task_struct, cg_list);
2200 else
2201 task = list_next_entry(task, cg_list);
2202
2203 if (&task->cg_list != &cset->mg_tasks) {
2204 tset->cur_cset = cset;
2205 tset->cur_task = task;
2206
2207 /*
2208 * This function may be called both before and
2209 * after cgroup_taskset_migrate(). The two cases
2210 * can be distinguished by looking at whether @cset
2211 * has its ->mg_dst_cset set.
2212 */
2213 if (cset->mg_dst_cset)
2214 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2215 else
2216 *dst_cssp = cset->subsys[tset->ssid];
2217
2218 return task;
2219 }
2220
2221 cset = list_next_entry(cset, mg_node);
2222 task = NULL;
2223 }
2224
2225 return NULL;
2226 }
2227
2228 /**
2229 * cgroup_taskset_migrate - migrate a taskset
2230 * @mgctx: migration context
2231 *
2232 * Migrate tasks in @mgctx as setup by migration preparation functions.
2233 * This function fails iff one of the ->can_attach callbacks fails and
2234 * guarantees that either all or none of the tasks in @mgctx are migrated.
2235 * @mgctx is consumed regardless of success.
2236 */
2237 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2238 {
2239 struct cgroup_taskset *tset = &mgctx->tset;
2240 struct cgroup_subsys *ss;
2241 struct task_struct *task, *tmp_task;
2242 struct css_set *cset, *tmp_cset;
2243 int ssid, failed_ssid, ret;
2244
2245 /* check that we can legitimately attach to the cgroup */
2246 if (tset->nr_tasks) {
2247 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2248 if (ss->can_attach) {
2249 tset->ssid = ssid;
2250 ret = ss->can_attach(tset);
2251 if (ret) {
2252 failed_ssid = ssid;
2253 goto out_cancel_attach;
2254 }
2255 }
2256 } while_each_subsys_mask();
2257 }
2258
2259 /*
2260 * Now that we're guaranteed success, proceed to move all tasks to
2261 * the new cgroup. There are no failure cases after here, so this
2262 * is the commit point.
2263 */
2264 spin_lock_irq(&css_set_lock);
2265 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2266 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2267 struct css_set *from_cset = task_css_set(task);
2268 struct css_set *to_cset = cset->mg_dst_cset;
2269
2270 get_css_set(to_cset);
2271 to_cset->nr_tasks++;
2272 css_set_move_task(task, from_cset, to_cset, true);
2273 put_css_set_locked(from_cset);
2274 from_cset->nr_tasks--;
2275 }
2276 }
2277 spin_unlock_irq(&css_set_lock);
2278
2279 /*
2280 * Migration is committed, all target tasks are now on dst_csets.
2281 * Nothing is sensitive to fork() after this point. Notify
2282 * controllers that migration is complete.
2283 */
2284 tset->csets = &tset->dst_csets;
2285
2286 if (tset->nr_tasks) {
2287 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2288 if (ss->attach) {
2289 tset->ssid = ssid;
2290 ss->attach(tset);
2291 }
2292 } while_each_subsys_mask();
2293 }
2294
2295 ret = 0;
2296 goto out_release_tset;
2297
2298 out_cancel_attach:
2299 if (tset->nr_tasks) {
2300 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2301 if (ssid == failed_ssid)
2302 break;
2303 if (ss->cancel_attach) {
2304 tset->ssid = ssid;
2305 ss->cancel_attach(tset);
2306 }
2307 } while_each_subsys_mask();
2308 }
2309 out_release_tset:
2310 spin_lock_irq(&css_set_lock);
2311 list_splice_init(&tset->dst_csets, &tset->src_csets);
2312 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2313 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2314 list_del_init(&cset->mg_node);
2315 }
2316 spin_unlock_irq(&css_set_lock);
2317
2318 /*
2319 * Re-initialize the cgroup_taskset structure in case it is reused
2320 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2321 * iteration.
2322 */
2323 tset->nr_tasks = 0;
2324 tset->csets = &tset->src_csets;
2325 return ret;
2326 }
2327
2328 /**
2329 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2330 * @dst_cgrp: destination cgroup to test
2331 *
2332 * On the default hierarchy, except for the mixable, (possible) thread root
2333 * and threaded cgroups, subtree_control must be zero for migration
2334 * destination cgroups with tasks so that child cgroups don't compete
2335 * against tasks.
2336 */
2337 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2338 {
2339 /* v1 doesn't have any restriction */
2340 if (!cgroup_on_dfl(dst_cgrp))
2341 return 0;
2342
2343 /* verify @dst_cgrp can host resources */
2344 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2345 return -EOPNOTSUPP;
2346
2347 /* mixables don't care */
2348 if (cgroup_is_mixable(dst_cgrp))
2349 return 0;
2350
2351 /*
2352 * If @dst_cgrp is already or can become a thread root or is
2353 * threaded, it doesn't matter.
2354 */
2355 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2356 return 0;
2357
2358 /* apply no-internal-process constraint */
2359 if (dst_cgrp->subtree_control)
2360 return -EBUSY;
2361
2362 return 0;
2363 }
2364
2365 /**
2366 * cgroup_migrate_finish - cleanup after attach
2367 * @mgctx: migration context
2368 *
2369 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2370 * those functions for details.
2371 */
2372 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2373 {
2374 LIST_HEAD(preloaded);
2375 struct css_set *cset, *tmp_cset;
2376
2377 lockdep_assert_held(&cgroup_mutex);
2378
2379 spin_lock_irq(&css_set_lock);
2380
2381 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2382 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2383
2384 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2385 cset->mg_src_cgrp = NULL;
2386 cset->mg_dst_cgrp = NULL;
2387 cset->mg_dst_cset = NULL;
2388 list_del_init(&cset->mg_preload_node);
2389 put_css_set_locked(cset);
2390 }
2391
2392 spin_unlock_irq(&css_set_lock);
2393 }
2394
2395 /**
2396 * cgroup_migrate_add_src - add a migration source css_set
2397 * @src_cset: the source css_set to add
2398 * @dst_cgrp: the destination cgroup
2399 * @mgctx: migration context
2400 *
2401 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2402 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2403 * up by cgroup_migrate_finish().
2404 *
2405 * This function may be called without holding cgroup_threadgroup_rwsem
2406 * even if the target is a process. Threads may be created and destroyed
2407 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2408 * into play and the preloaded css_sets are guaranteed to cover all
2409 * migrations.
2410 */
2411 void cgroup_migrate_add_src(struct css_set *src_cset,
2412 struct cgroup *dst_cgrp,
2413 struct cgroup_mgctx *mgctx)
2414 {
2415 struct cgroup *src_cgrp;
2416
2417 lockdep_assert_held(&cgroup_mutex);
2418 lockdep_assert_held(&css_set_lock);
2419
2420 /*
2421 * If ->dead, @src_set is associated with one or more dead cgroups
2422 * and doesn't contain any migratable tasks. Ignore it early so
2423 * that the rest of migration path doesn't get confused by it.
2424 */
2425 if (src_cset->dead)
2426 return;
2427
2428 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2429
2430 if (!list_empty(&src_cset->mg_preload_node))
2431 return;
2432
2433 WARN_ON(src_cset->mg_src_cgrp);
2434 WARN_ON(src_cset->mg_dst_cgrp);
2435 WARN_ON(!list_empty(&src_cset->mg_tasks));
2436 WARN_ON(!list_empty(&src_cset->mg_node));
2437
2438 src_cset->mg_src_cgrp = src_cgrp;
2439 src_cset->mg_dst_cgrp = dst_cgrp;
2440 get_css_set(src_cset);
2441 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2442 }
2443
2444 /**
2445 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2446 * @mgctx: migration context
2447 *
2448 * Tasks are about to be moved and all the source css_sets have been
2449 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2450 * pins all destination css_sets, links each to its source, and append them
2451 * to @mgctx->preloaded_dst_csets.
2452 *
2453 * This function must be called after cgroup_migrate_add_src() has been
2454 * called on each migration source css_set. After migration is performed
2455 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2456 * @mgctx.
2457 */
2458 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2459 {
2460 struct css_set *src_cset, *tmp_cset;
2461
2462 lockdep_assert_held(&cgroup_mutex);
2463
2464 /* look up the dst cset for each src cset and link it to src */
2465 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2466 mg_preload_node) {
2467 struct css_set *dst_cset;
2468 struct cgroup_subsys *ss;
2469 int ssid;
2470
2471 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2472 if (!dst_cset)
2473 goto err;
2474
2475 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2476
2477 /*
2478 * If src cset equals dst, it's noop. Drop the src.
2479 * cgroup_migrate() will skip the cset too. Note that we
2480 * can't handle src == dst as some nodes are used by both.
2481 */
2482 if (src_cset == dst_cset) {
2483 src_cset->mg_src_cgrp = NULL;
2484 src_cset->mg_dst_cgrp = NULL;
2485 list_del_init(&src_cset->mg_preload_node);
2486 put_css_set(src_cset);
2487 put_css_set(dst_cset);
2488 continue;
2489 }
2490
2491 src_cset->mg_dst_cset = dst_cset;
2492
2493 if (list_empty(&dst_cset->mg_preload_node))
2494 list_add_tail(&dst_cset->mg_preload_node,
2495 &mgctx->preloaded_dst_csets);
2496 else
2497 put_css_set(dst_cset);
2498
2499 for_each_subsys(ss, ssid)
2500 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2501 mgctx->ss_mask |= 1 << ssid;
2502 }
2503
2504 return 0;
2505 err:
2506 cgroup_migrate_finish(mgctx);
2507 return -ENOMEM;
2508 }
2509
2510 /**
2511 * cgroup_migrate - migrate a process or task to a cgroup
2512 * @leader: the leader of the process or the task to migrate
2513 * @threadgroup: whether @leader points to the whole process or a single task
2514 * @mgctx: migration context
2515 *
2516 * Migrate a process or task denoted by @leader. If migrating a process,
2517 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2518 * responsible for invoking cgroup_migrate_add_src() and
2519 * cgroup_migrate_prepare_dst() on the targets before invoking this
2520 * function and following up with cgroup_migrate_finish().
2521 *
2522 * As long as a controller's ->can_attach() doesn't fail, this function is
2523 * guaranteed to succeed. This means that, excluding ->can_attach()
2524 * failure, when migrating multiple targets, the success or failure can be
2525 * decided for all targets by invoking group_migrate_prepare_dst() before
2526 * actually starting migrating.
2527 */
2528 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2529 struct cgroup_mgctx *mgctx)
2530 {
2531 struct task_struct *task;
2532
2533 /*
2534 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2535 * already PF_EXITING could be freed from underneath us unless we
2536 * take an rcu_read_lock.
2537 */
2538 spin_lock_irq(&css_set_lock);
2539 rcu_read_lock();
2540 task = leader;
2541 do {
2542 cgroup_migrate_add_task(task, mgctx);
2543 if (!threadgroup)
2544 break;
2545 } while_each_thread(leader, task);
2546 rcu_read_unlock();
2547 spin_unlock_irq(&css_set_lock);
2548
2549 return cgroup_migrate_execute(mgctx);
2550 }
2551
2552 /**
2553 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2554 * @dst_cgrp: the cgroup to attach to
2555 * @leader: the task or the leader of the threadgroup to be attached
2556 * @threadgroup: attach the whole threadgroup?
2557 *
2558 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2559 */
2560 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2561 bool threadgroup)
2562 {
2563 DEFINE_CGROUP_MGCTX(mgctx);
2564 struct task_struct *task;
2565 int ret;
2566
2567 ret = cgroup_migrate_vet_dst(dst_cgrp);
2568 if (ret)
2569 return ret;
2570
2571 /* look up all src csets */
2572 spin_lock_irq(&css_set_lock);
2573 rcu_read_lock();
2574 task = leader;
2575 do {
2576 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2577 if (!threadgroup)
2578 break;
2579 } while_each_thread(leader, task);
2580 rcu_read_unlock();
2581 spin_unlock_irq(&css_set_lock);
2582
2583 /* prepare dst csets and commit */
2584 ret = cgroup_migrate_prepare_dst(&mgctx);
2585 if (!ret)
2586 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2587
2588 cgroup_migrate_finish(&mgctx);
2589
2590 if (!ret)
2591 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2592
2593 return ret;
2594 }
2595
2596 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2597 __acquires(&cgroup_threadgroup_rwsem)
2598 {
2599 struct task_struct *tsk;
2600 pid_t pid;
2601
2602 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2603 return ERR_PTR(-EINVAL);
2604
2605 percpu_down_write(&cgroup_threadgroup_rwsem);
2606
2607 rcu_read_lock();
2608 if (pid) {
2609 tsk = find_task_by_vpid(pid);
2610 if (!tsk) {
2611 tsk = ERR_PTR(-ESRCH);
2612 goto out_unlock_threadgroup;
2613 }
2614 } else {
2615 tsk = current;
2616 }
2617
2618 if (threadgroup)
2619 tsk = tsk->group_leader;
2620
2621 /*
2622 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2623 * If userland migrates such a kthread to a non-root cgroup, it can
2624 * become trapped in a cpuset, or RT kthread may be born in a
2625 * cgroup with no rt_runtime allocated. Just say no.
2626 */
2627 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2628 tsk = ERR_PTR(-EINVAL);
2629 goto out_unlock_threadgroup;
2630 }
2631
2632 get_task_struct(tsk);
2633 goto out_unlock_rcu;
2634
2635 out_unlock_threadgroup:
2636 percpu_up_write(&cgroup_threadgroup_rwsem);
2637 out_unlock_rcu:
2638 rcu_read_unlock();
2639 return tsk;
2640 }
2641
2642 void cgroup_procs_write_finish(struct task_struct *task)
2643 __releases(&cgroup_threadgroup_rwsem)
2644 {
2645 struct cgroup_subsys *ss;
2646 int ssid;
2647
2648 /* release reference from cgroup_procs_write_start() */
2649 put_task_struct(task);
2650
2651 percpu_up_write(&cgroup_threadgroup_rwsem);
2652 for_each_subsys(ss, ssid)
2653 if (ss->post_attach)
2654 ss->post_attach();
2655 }
2656
2657 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2658 {
2659 struct cgroup_subsys *ss;
2660 bool printed = false;
2661 int ssid;
2662
2663 do_each_subsys_mask(ss, ssid, ss_mask) {
2664 if (printed)
2665 seq_putc(seq, ' ');
2666 seq_printf(seq, "%s", ss->name);
2667 printed = true;
2668 } while_each_subsys_mask();
2669 if (printed)
2670 seq_putc(seq, '\n');
2671 }
2672
2673 /* show controllers which are enabled from the parent */
2674 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2675 {
2676 struct cgroup *cgrp = seq_css(seq)->cgroup;
2677
2678 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2679 return 0;
2680 }
2681
2682 /* show controllers which are enabled for a given cgroup's children */
2683 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2684 {
2685 struct cgroup *cgrp = seq_css(seq)->cgroup;
2686
2687 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2688 return 0;
2689 }
2690
2691 /**
2692 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2693 * @cgrp: root of the subtree to update csses for
2694 *
2695 * @cgrp's control masks have changed and its subtree's css associations
2696 * need to be updated accordingly. This function looks up all css_sets
2697 * which are attached to the subtree, creates the matching updated css_sets
2698 * and migrates the tasks to the new ones.
2699 */
2700 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2701 {
2702 DEFINE_CGROUP_MGCTX(mgctx);
2703 struct cgroup_subsys_state *d_css;
2704 struct cgroup *dsct;
2705 struct css_set *src_cset;
2706 int ret;
2707
2708 lockdep_assert_held(&cgroup_mutex);
2709
2710 percpu_down_write(&cgroup_threadgroup_rwsem);
2711
2712 /* look up all csses currently attached to @cgrp's subtree */
2713 spin_lock_irq(&css_set_lock);
2714 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2715 struct cgrp_cset_link *link;
2716
2717 list_for_each_entry(link, &dsct->cset_links, cset_link)
2718 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2719 }
2720 spin_unlock_irq(&css_set_lock);
2721
2722 /* NULL dst indicates self on default hierarchy */
2723 ret = cgroup_migrate_prepare_dst(&mgctx);
2724 if (ret)
2725 goto out_finish;
2726
2727 spin_lock_irq(&css_set_lock);
2728 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2729 struct task_struct *task, *ntask;
2730
2731 /* all tasks in src_csets need to be migrated */
2732 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2733 cgroup_migrate_add_task(task, &mgctx);
2734 }
2735 spin_unlock_irq(&css_set_lock);
2736
2737 ret = cgroup_migrate_execute(&mgctx);
2738 out_finish:
2739 cgroup_migrate_finish(&mgctx);
2740 percpu_up_write(&cgroup_threadgroup_rwsem);
2741 return ret;
2742 }
2743
2744 /**
2745 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2746 * @cgrp: root of the target subtree
2747 *
2748 * Because css offlining is asynchronous, userland may try to re-enable a
2749 * controller while the previous css is still around. This function grabs
2750 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2751 */
2752 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2753 __acquires(&cgroup_mutex)
2754 {
2755 struct cgroup *dsct;
2756 struct cgroup_subsys_state *d_css;
2757 struct cgroup_subsys *ss;
2758 int ssid;
2759
2760 restart:
2761 mutex_lock(&cgroup_mutex);
2762
2763 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2764 for_each_subsys(ss, ssid) {
2765 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2766 DEFINE_WAIT(wait);
2767
2768 if (!css || !percpu_ref_is_dying(&css->refcnt))
2769 continue;
2770
2771 cgroup_get_live(dsct);
2772 prepare_to_wait(&dsct->offline_waitq, &wait,
2773 TASK_UNINTERRUPTIBLE);
2774
2775 mutex_unlock(&cgroup_mutex);
2776 schedule();
2777 finish_wait(&dsct->offline_waitq, &wait);
2778
2779 cgroup_put(dsct);
2780 goto restart;
2781 }
2782 }
2783 }
2784
2785 /**
2786 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2787 * @cgrp: root of the target subtree
2788 *
2789 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2790 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2791 * itself.
2792 */
2793 static void cgroup_save_control(struct cgroup *cgrp)
2794 {
2795 struct cgroup *dsct;
2796 struct cgroup_subsys_state *d_css;
2797
2798 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2799 dsct->old_subtree_control = dsct->subtree_control;
2800 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2801 dsct->old_dom_cgrp = dsct->dom_cgrp;
2802 }
2803 }
2804
2805 /**
2806 * cgroup_propagate_control - refresh control masks of a subtree
2807 * @cgrp: root of the target subtree
2808 *
2809 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2810 * ->subtree_control and propagate controller availability through the
2811 * subtree so that descendants don't have unavailable controllers enabled.
2812 */
2813 static void cgroup_propagate_control(struct cgroup *cgrp)
2814 {
2815 struct cgroup *dsct;
2816 struct cgroup_subsys_state *d_css;
2817
2818 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2819 dsct->subtree_control &= cgroup_control(dsct);
2820 dsct->subtree_ss_mask =
2821 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2822 cgroup_ss_mask(dsct));
2823 }
2824 }
2825
2826 /**
2827 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2828 * @cgrp: root of the target subtree
2829 *
2830 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2831 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2832 * itself.
2833 */
2834 static void cgroup_restore_control(struct cgroup *cgrp)
2835 {
2836 struct cgroup *dsct;
2837 struct cgroup_subsys_state *d_css;
2838
2839 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2840 dsct->subtree_control = dsct->old_subtree_control;
2841 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2842 dsct->dom_cgrp = dsct->old_dom_cgrp;
2843 }
2844 }
2845
2846 static bool css_visible(struct cgroup_subsys_state *css)
2847 {
2848 struct cgroup_subsys *ss = css->ss;
2849 struct cgroup *cgrp = css->cgroup;
2850
2851 if (cgroup_control(cgrp) & (1 << ss->id))
2852 return true;
2853 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2854 return false;
2855 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2856 }
2857
2858 /**
2859 * cgroup_apply_control_enable - enable or show csses according to control
2860 * @cgrp: root of the target subtree
2861 *
2862 * Walk @cgrp's subtree and create new csses or make the existing ones
2863 * visible. A css is created invisible if it's being implicitly enabled
2864 * through dependency. An invisible css is made visible when the userland
2865 * explicitly enables it.
2866 *
2867 * Returns 0 on success, -errno on failure. On failure, csses which have
2868 * been processed already aren't cleaned up. The caller is responsible for
2869 * cleaning up with cgroup_apply_control_disable().
2870 */
2871 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2872 {
2873 struct cgroup *dsct;
2874 struct cgroup_subsys_state *d_css;
2875 struct cgroup_subsys *ss;
2876 int ssid, ret;
2877
2878 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2879 for_each_subsys(ss, ssid) {
2880 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2881
2882 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2883
2884 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2885 continue;
2886
2887 if (!css) {
2888 css = css_create(dsct, ss);
2889 if (IS_ERR(css))
2890 return PTR_ERR(css);
2891 }
2892
2893 if (css_visible(css)) {
2894 ret = css_populate_dir(css);
2895 if (ret)
2896 return ret;
2897 }
2898 }
2899 }
2900
2901 return 0;
2902 }
2903
2904 /**
2905 * cgroup_apply_control_disable - kill or hide csses according to control
2906 * @cgrp: root of the target subtree
2907 *
2908 * Walk @cgrp's subtree and kill and hide csses so that they match
2909 * cgroup_ss_mask() and cgroup_visible_mask().
2910 *
2911 * A css is hidden when the userland requests it to be disabled while other
2912 * subsystems are still depending on it. The css must not actively control
2913 * resources and be in the vanilla state if it's made visible again later.
2914 * Controllers which may be depended upon should provide ->css_reset() for
2915 * this purpose.
2916 */
2917 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2918 {
2919 struct cgroup *dsct;
2920 struct cgroup_subsys_state *d_css;
2921 struct cgroup_subsys *ss;
2922 int ssid;
2923
2924 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2925 for_each_subsys(ss, ssid) {
2926 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2927
2928 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2929
2930 if (!css)
2931 continue;
2932
2933 if (css->parent &&
2934 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2935 kill_css(css);
2936 } else if (!css_visible(css)) {
2937 css_clear_dir(css);
2938 if (ss->css_reset)
2939 ss->css_reset(css);
2940 }
2941 }
2942 }
2943 }
2944
2945 /**
2946 * cgroup_apply_control - apply control mask updates to the subtree
2947 * @cgrp: root of the target subtree
2948 *
2949 * subsystems can be enabled and disabled in a subtree using the following
2950 * steps.
2951 *
2952 * 1. Call cgroup_save_control() to stash the current state.
2953 * 2. Update ->subtree_control masks in the subtree as desired.
2954 * 3. Call cgroup_apply_control() to apply the changes.
2955 * 4. Optionally perform other related operations.
2956 * 5. Call cgroup_finalize_control() to finish up.
2957 *
2958 * This function implements step 3 and propagates the mask changes
2959 * throughout @cgrp's subtree, updates csses accordingly and perform
2960 * process migrations.
2961 */
2962 static int cgroup_apply_control(struct cgroup *cgrp)
2963 {
2964 int ret;
2965
2966 cgroup_propagate_control(cgrp);
2967
2968 ret = cgroup_apply_control_enable(cgrp);
2969 if (ret)
2970 return ret;
2971
2972 /*
2973 * At this point, cgroup_e_css() results reflect the new csses
2974 * making the following cgroup_update_dfl_csses() properly update
2975 * css associations of all tasks in the subtree.
2976 */
2977 ret = cgroup_update_dfl_csses(cgrp);
2978 if (ret)
2979 return ret;
2980
2981 return 0;
2982 }
2983
2984 /**
2985 * cgroup_finalize_control - finalize control mask update
2986 * @cgrp: root of the target subtree
2987 * @ret: the result of the update
2988 *
2989 * Finalize control mask update. See cgroup_apply_control() for more info.
2990 */
2991 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
2992 {
2993 if (ret) {
2994 cgroup_restore_control(cgrp);
2995 cgroup_propagate_control(cgrp);
2996 }
2997
2998 cgroup_apply_control_disable(cgrp);
2999 }
3000
3001 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3002 {
3003 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3004
3005 /* if nothing is getting enabled, nothing to worry about */
3006 if (!enable)
3007 return 0;
3008
3009 /* can @cgrp host any resources? */
3010 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3011 return -EOPNOTSUPP;
3012
3013 /* mixables don't care */
3014 if (cgroup_is_mixable(cgrp))
3015 return 0;
3016
3017 if (domain_enable) {
3018 /* can't enable domain controllers inside a thread subtree */
3019 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3020 return -EOPNOTSUPP;
3021 } else {
3022 /*
3023 * Threaded controllers can handle internal competitions
3024 * and are always allowed inside a (prospective) thread
3025 * subtree.
3026 */
3027 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3028 return 0;
3029 }
3030
3031 /*
3032 * Controllers can't be enabled for a cgroup with tasks to avoid
3033 * child cgroups competing against tasks.
3034 */
3035 if (cgroup_has_tasks(cgrp))
3036 return -EBUSY;
3037
3038 return 0;
3039 }
3040
3041 /* change the enabled child controllers for a cgroup in the default hierarchy */
3042 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3043 char *buf, size_t nbytes,
3044 loff_t off)
3045 {
3046 u16 enable = 0, disable = 0;
3047 struct cgroup *cgrp, *child;
3048 struct cgroup_subsys *ss;
3049 char *tok;
3050 int ssid, ret;
3051
3052 /*
3053 * Parse input - space separated list of subsystem names prefixed
3054 * with either + or -.
3055 */
3056 buf = strstrip(buf);
3057 while ((tok = strsep(&buf, " "))) {
3058 if (tok[0] == '\0')
3059 continue;
3060 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3061 if (!cgroup_ssid_enabled(ssid) ||
3062 strcmp(tok + 1, ss->name))
3063 continue;
3064
3065 if (*tok == '+') {
3066 enable |= 1 << ssid;
3067 disable &= ~(1 << ssid);
3068 } else if (*tok == '-') {
3069 disable |= 1 << ssid;
3070 enable &= ~(1 << ssid);
3071 } else {
3072 return -EINVAL;
3073 }
3074 break;
3075 } while_each_subsys_mask();
3076 if (ssid == CGROUP_SUBSYS_COUNT)
3077 return -EINVAL;
3078 }
3079
3080 cgrp = cgroup_kn_lock_live(of->kn, true);
3081 if (!cgrp)
3082 return -ENODEV;
3083
3084 for_each_subsys(ss, ssid) {
3085 if (enable & (1 << ssid)) {
3086 if (cgrp->subtree_control & (1 << ssid)) {
3087 enable &= ~(1 << ssid);
3088 continue;
3089 }
3090
3091 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3092 ret = -ENOENT;
3093 goto out_unlock;
3094 }
3095 } else if (disable & (1 << ssid)) {
3096 if (!(cgrp->subtree_control & (1 << ssid))) {
3097 disable &= ~(1 << ssid);
3098 continue;
3099 }
3100
3101 /* a child has it enabled? */
3102 cgroup_for_each_live_child(child, cgrp) {
3103 if (child->subtree_control & (1 << ssid)) {
3104 ret = -EBUSY;
3105 goto out_unlock;
3106 }
3107 }
3108 }
3109 }
3110
3111 if (!enable && !disable) {
3112 ret = 0;
3113 goto out_unlock;
3114 }
3115
3116 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3117 if (ret)
3118 goto out_unlock;
3119
3120 /* save and update control masks and prepare csses */
3121 cgroup_save_control(cgrp);
3122
3123 cgrp->subtree_control |= enable;
3124 cgrp->subtree_control &= ~disable;
3125
3126 ret = cgroup_apply_control(cgrp);
3127 cgroup_finalize_control(cgrp, ret);
3128 if (ret)
3129 goto out_unlock;
3130
3131 kernfs_activate(cgrp->kn);
3132 out_unlock:
3133 cgroup_kn_unlock(of->kn);
3134 return ret ?: nbytes;
3135 }
3136
3137 /**
3138 * cgroup_enable_threaded - make @cgrp threaded
3139 * @cgrp: the target cgroup
3140 *
3141 * Called when "threaded" is written to the cgroup.type interface file and
3142 * tries to make @cgrp threaded and join the parent's resource domain.
3143 * This function is never called on the root cgroup as cgroup.type doesn't
3144 * exist on it.
3145 */
3146 static int cgroup_enable_threaded(struct cgroup *cgrp)
3147 {
3148 struct cgroup *parent = cgroup_parent(cgrp);
3149 struct cgroup *dom_cgrp = parent->dom_cgrp;
3150 struct cgroup *dsct;
3151 struct cgroup_subsys_state *d_css;
3152 int ret;
3153
3154 lockdep_assert_held(&cgroup_mutex);
3155
3156 /* noop if already threaded */
3157 if (cgroup_is_threaded(cgrp))
3158 return 0;
3159
3160 /*
3161 * If @cgroup is populated or has domain controllers enabled, it
3162 * can't be switched. While the below cgroup_can_be_thread_root()
3163 * test can catch the same conditions, that's only when @parent is
3164 * not mixable, so let's check it explicitly.
3165 */
3166 if (cgroup_is_populated(cgrp) ||
3167 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3168 return -EOPNOTSUPP;
3169
3170 /* we're joining the parent's domain, ensure its validity */
3171 if (!cgroup_is_valid_domain(dom_cgrp) ||
3172 !cgroup_can_be_thread_root(dom_cgrp))
3173 return -EOPNOTSUPP;
3174
3175 /*
3176 * The following shouldn't cause actual migrations and should
3177 * always succeed.
3178 */
3179 cgroup_save_control(cgrp);
3180
3181 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3182 if (dsct == cgrp || cgroup_is_threaded(dsct))
3183 dsct->dom_cgrp = dom_cgrp;
3184
3185 ret = cgroup_apply_control(cgrp);
3186 if (!ret)
3187 parent->nr_threaded_children++;
3188
3189 cgroup_finalize_control(cgrp, ret);
3190 return ret;
3191 }
3192
3193 static int cgroup_type_show(struct seq_file *seq, void *v)
3194 {
3195 struct cgroup *cgrp = seq_css(seq)->cgroup;
3196
3197 if (cgroup_is_threaded(cgrp))
3198 seq_puts(seq, "threaded\n");
3199 else if (!cgroup_is_valid_domain(cgrp))
3200 seq_puts(seq, "domain invalid\n");
3201 else if (cgroup_is_thread_root(cgrp))
3202 seq_puts(seq, "domain threaded\n");
3203 else
3204 seq_puts(seq, "domain\n");
3205
3206 return 0;
3207 }
3208
3209 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3210 size_t nbytes, loff_t off)
3211 {
3212 struct cgroup *cgrp;
3213 int ret;
3214
3215 /* only switching to threaded mode is supported */
3216 if (strcmp(strstrip(buf), "threaded"))
3217 return -EINVAL;
3218
3219 cgrp = cgroup_kn_lock_live(of->kn, false);
3220 if (!cgrp)
3221 return -ENOENT;
3222
3223 /* threaded can only be enabled */
3224 ret = cgroup_enable_threaded(cgrp);
3225
3226 cgroup_kn_unlock(of->kn);
3227 return ret ?: nbytes;
3228 }
3229
3230 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3231 {
3232 struct cgroup *cgrp = seq_css(seq)->cgroup;
3233 int descendants = READ_ONCE(cgrp->max_descendants);
3234
3235 if (descendants == INT_MAX)
3236 seq_puts(seq, "max\n");
3237 else
3238 seq_printf(seq, "%d\n", descendants);
3239
3240 return 0;
3241 }
3242
3243 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3244 char *buf, size_t nbytes, loff_t off)
3245 {
3246 struct cgroup *cgrp;
3247 int descendants;
3248 ssize_t ret;
3249
3250 buf = strstrip(buf);
3251 if (!strcmp(buf, "max")) {
3252 descendants = INT_MAX;
3253 } else {
3254 ret = kstrtoint(buf, 0, &descendants);
3255 if (ret)
3256 return ret;
3257 }
3258
3259 if (descendants < 0)
3260 return -ERANGE;
3261
3262 cgrp = cgroup_kn_lock_live(of->kn, false);
3263 if (!cgrp)
3264 return -ENOENT;
3265
3266 cgrp->max_descendants = descendants;
3267
3268 cgroup_kn_unlock(of->kn);
3269
3270 return nbytes;
3271 }
3272
3273 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3274 {
3275 struct cgroup *cgrp = seq_css(seq)->cgroup;
3276 int depth = READ_ONCE(cgrp->max_depth);
3277
3278 if (depth == INT_MAX)
3279 seq_puts(seq, "max\n");
3280 else
3281 seq_printf(seq, "%d\n", depth);
3282
3283 return 0;
3284 }
3285
3286 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3287 char *buf, size_t nbytes, loff_t off)
3288 {
3289 struct cgroup *cgrp;
3290 ssize_t ret;
3291 int depth;
3292
3293 buf = strstrip(buf);
3294 if (!strcmp(buf, "max")) {
3295 depth = INT_MAX;
3296 } else {
3297 ret = kstrtoint(buf, 0, &depth);
3298 if (ret)
3299 return ret;
3300 }
3301
3302 if (depth < 0)
3303 return -ERANGE;
3304
3305 cgrp = cgroup_kn_lock_live(of->kn, false);
3306 if (!cgrp)
3307 return -ENOENT;
3308
3309 cgrp->max_depth = depth;
3310
3311 cgroup_kn_unlock(of->kn);
3312
3313 return nbytes;
3314 }
3315
3316 static int cgroup_events_show(struct seq_file *seq, void *v)
3317 {
3318 seq_printf(seq, "populated %d\n",
3319 cgroup_is_populated(seq_css(seq)->cgroup));
3320 return 0;
3321 }
3322
3323 static int cgroup_stat_show(struct seq_file *seq, void *v)
3324 {
3325 struct cgroup *cgroup = seq_css(seq)->cgroup;
3326
3327 seq_printf(seq, "nr_descendants %d\n",
3328 cgroup->nr_descendants);
3329 seq_printf(seq, "nr_dying_descendants %d\n",
3330 cgroup->nr_dying_descendants);
3331
3332 return 0;
3333 }
3334
3335 static int cgroup_file_open(struct kernfs_open_file *of)
3336 {
3337 struct cftype *cft = of->kn->priv;
3338
3339 if (cft->open)
3340 return cft->open(of);
3341 return 0;
3342 }
3343
3344 static void cgroup_file_release(struct kernfs_open_file *of)
3345 {
3346 struct cftype *cft = of->kn->priv;
3347
3348 if (cft->release)
3349 cft->release(of);
3350 }
3351
3352 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3353 size_t nbytes, loff_t off)
3354 {
3355 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3356 struct cgroup *cgrp = of->kn->parent->priv;
3357 struct cftype *cft = of->kn->priv;
3358 struct cgroup_subsys_state *css;
3359 int ret;
3360
3361 /*
3362 * If namespaces are delegation boundaries, disallow writes to
3363 * files in an non-init namespace root from inside the namespace
3364 * except for the files explicitly marked delegatable -
3365 * cgroup.procs and cgroup.subtree_control.
3366 */
3367 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3368 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3369 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3370 return -EPERM;
3371
3372 if (cft->write)
3373 return cft->write(of, buf, nbytes, off);
3374
3375 /*
3376 * kernfs guarantees that a file isn't deleted with operations in
3377 * flight, which means that the matching css is and stays alive and
3378 * doesn't need to be pinned. The RCU locking is not necessary
3379 * either. It's just for the convenience of using cgroup_css().
3380 */
3381 rcu_read_lock();
3382 css = cgroup_css(cgrp, cft->ss);
3383 rcu_read_unlock();
3384
3385 if (cft->write_u64) {
3386 unsigned long long v;
3387 ret = kstrtoull(buf, 0, &v);
3388 if (!ret)
3389 ret = cft->write_u64(css, cft, v);
3390 } else if (cft->write_s64) {
3391 long long v;
3392 ret = kstrtoll(buf, 0, &v);
3393 if (!ret)
3394 ret = cft->write_s64(css, cft, v);
3395 } else {
3396 ret = -EINVAL;
3397 }
3398
3399 return ret ?: nbytes;
3400 }
3401
3402 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3403 {
3404 return seq_cft(seq)->seq_start(seq, ppos);
3405 }
3406
3407 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3408 {
3409 return seq_cft(seq)->seq_next(seq, v, ppos);
3410 }
3411
3412 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3413 {
3414 if (seq_cft(seq)->seq_stop)
3415 seq_cft(seq)->seq_stop(seq, v);
3416 }
3417
3418 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3419 {
3420 struct cftype *cft = seq_cft(m);
3421 struct cgroup_subsys_state *css = seq_css(m);
3422
3423 if (cft->seq_show)
3424 return cft->seq_show(m, arg);
3425
3426 if (cft->read_u64)
3427 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3428 else if (cft->read_s64)
3429 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3430 else
3431 return -EINVAL;
3432 return 0;
3433 }
3434
3435 static struct kernfs_ops cgroup_kf_single_ops = {
3436 .atomic_write_len = PAGE_SIZE,
3437 .open = cgroup_file_open,
3438 .release = cgroup_file_release,
3439 .write = cgroup_file_write,
3440 .seq_show = cgroup_seqfile_show,
3441 };
3442
3443 static struct kernfs_ops cgroup_kf_ops = {
3444 .atomic_write_len = PAGE_SIZE,
3445 .open = cgroup_file_open,
3446 .release = cgroup_file_release,
3447 .write = cgroup_file_write,
3448 .seq_start = cgroup_seqfile_start,
3449 .seq_next = cgroup_seqfile_next,
3450 .seq_stop = cgroup_seqfile_stop,
3451 .seq_show = cgroup_seqfile_show,
3452 };
3453
3454 /* set uid and gid of cgroup dirs and files to that of the creator */
3455 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3456 {
3457 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3458 .ia_uid = current_fsuid(),
3459 .ia_gid = current_fsgid(), };
3460
3461 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3462 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3463 return 0;
3464
3465 return kernfs_setattr(kn, &iattr);
3466 }
3467
3468 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3469 struct cftype *cft)
3470 {
3471 char name[CGROUP_FILE_NAME_MAX];
3472 struct kernfs_node *kn;
3473 struct lock_class_key *key = NULL;
3474 int ret;
3475
3476 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3477 key = &cft->lockdep_key;
3478 #endif
3479 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3480 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3481 NULL, key);
3482 if (IS_ERR(kn))
3483 return PTR_ERR(kn);
3484
3485 ret = cgroup_kn_set_ugid(kn);
3486 if (ret) {
3487 kernfs_remove(kn);
3488 return ret;
3489 }
3490
3491 if (cft->file_offset) {
3492 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3493
3494 spin_lock_irq(&cgroup_file_kn_lock);
3495 cfile->kn = kn;
3496 spin_unlock_irq(&cgroup_file_kn_lock);
3497 }
3498
3499 return 0;
3500 }
3501
3502 /**
3503 * cgroup_addrm_files - add or remove files to a cgroup directory
3504 * @css: the target css
3505 * @cgrp: the target cgroup (usually css->cgroup)
3506 * @cfts: array of cftypes to be added
3507 * @is_add: whether to add or remove
3508 *
3509 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3510 * For removals, this function never fails.
3511 */
3512 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3513 struct cgroup *cgrp, struct cftype cfts[],
3514 bool is_add)
3515 {
3516 struct cftype *cft, *cft_end = NULL;
3517 int ret = 0;
3518
3519 lockdep_assert_held(&cgroup_mutex);
3520
3521 restart:
3522 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3523 /* does cft->flags tell us to skip this file on @cgrp? */
3524 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3525 continue;
3526 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3527 continue;
3528 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3529 continue;
3530 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3531 continue;
3532
3533 if (is_add) {
3534 ret = cgroup_add_file(css, cgrp, cft);
3535 if (ret) {
3536 pr_warn("%s: failed to add %s, err=%d\n",
3537 __func__, cft->name, ret);
3538 cft_end = cft;
3539 is_add = false;
3540 goto restart;
3541 }
3542 } else {
3543 cgroup_rm_file(cgrp, cft);
3544 }
3545 }
3546 return ret;
3547 }
3548
3549 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3550 {
3551 struct cgroup_subsys *ss = cfts[0].ss;
3552 struct cgroup *root = &ss->root->cgrp;
3553 struct cgroup_subsys_state *css;
3554 int ret = 0;
3555
3556 lockdep_assert_held(&cgroup_mutex);
3557
3558 /* add/rm files for all cgroups created before */
3559 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3560 struct cgroup *cgrp = css->cgroup;
3561
3562 if (!(css->flags & CSS_VISIBLE))
3563 continue;
3564
3565 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3566 if (ret)
3567 break;
3568 }
3569
3570 if (is_add && !ret)
3571 kernfs_activate(root->kn);
3572 return ret;
3573 }
3574
3575 static void cgroup_exit_cftypes(struct cftype *cfts)
3576 {
3577 struct cftype *cft;
3578
3579 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3580 /* free copy for custom atomic_write_len, see init_cftypes() */
3581 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3582 kfree(cft->kf_ops);
3583 cft->kf_ops = NULL;
3584 cft->ss = NULL;
3585
3586 /* revert flags set by cgroup core while adding @cfts */
3587 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3588 }
3589 }
3590
3591 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3592 {
3593 struct cftype *cft;
3594
3595 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3596 struct kernfs_ops *kf_ops;
3597
3598 WARN_ON(cft->ss || cft->kf_ops);
3599
3600 if (cft->seq_start)
3601 kf_ops = &cgroup_kf_ops;
3602 else
3603 kf_ops = &cgroup_kf_single_ops;
3604
3605 /*
3606 * Ugh... if @cft wants a custom max_write_len, we need to
3607 * make a copy of kf_ops to set its atomic_write_len.
3608 */
3609 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3610 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3611 if (!kf_ops) {
3612 cgroup_exit_cftypes(cfts);
3613 return -ENOMEM;
3614 }
3615 kf_ops->atomic_write_len = cft->max_write_len;
3616 }
3617
3618 cft->kf_ops = kf_ops;
3619 cft->ss = ss;
3620 }
3621
3622 return 0;
3623 }
3624
3625 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3626 {
3627 lockdep_assert_held(&cgroup_mutex);
3628
3629 if (!cfts || !cfts[0].ss)
3630 return -ENOENT;
3631
3632 list_del(&cfts->node);
3633 cgroup_apply_cftypes(cfts, false);
3634 cgroup_exit_cftypes(cfts);
3635 return 0;
3636 }
3637
3638 /**
3639 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3640 * @cfts: zero-length name terminated array of cftypes
3641 *
3642 * Unregister @cfts. Files described by @cfts are removed from all
3643 * existing cgroups and all future cgroups won't have them either. This
3644 * function can be called anytime whether @cfts' subsys is attached or not.
3645 *
3646 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3647 * registered.
3648 */
3649 int cgroup_rm_cftypes(struct cftype *cfts)
3650 {
3651 int ret;
3652
3653 mutex_lock(&cgroup_mutex);
3654 ret = cgroup_rm_cftypes_locked(cfts);
3655 mutex_unlock(&cgroup_mutex);
3656 return ret;
3657 }
3658
3659 /**
3660 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3661 * @ss: target cgroup subsystem
3662 * @cfts: zero-length name terminated array of cftypes
3663 *
3664 * Register @cfts to @ss. Files described by @cfts are created for all
3665 * existing cgroups to which @ss is attached and all future cgroups will
3666 * have them too. This function can be called anytime whether @ss is
3667 * attached or not.
3668 *
3669 * Returns 0 on successful registration, -errno on failure. Note that this
3670 * function currently returns 0 as long as @cfts registration is successful
3671 * even if some file creation attempts on existing cgroups fail.
3672 */
3673 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3674 {
3675 int ret;
3676
3677 if (!cgroup_ssid_enabled(ss->id))
3678 return 0;
3679
3680 if (!cfts || cfts[0].name[0] == '\0')
3681 return 0;
3682
3683 ret = cgroup_init_cftypes(ss, cfts);
3684 if (ret)
3685 return ret;
3686
3687 mutex_lock(&cgroup_mutex);
3688
3689 list_add_tail(&cfts->node, &ss->cfts);
3690 ret = cgroup_apply_cftypes(cfts, true);
3691 if (ret)
3692 cgroup_rm_cftypes_locked(cfts);
3693
3694 mutex_unlock(&cgroup_mutex);
3695 return ret;
3696 }
3697
3698 /**
3699 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3700 * @ss: target cgroup subsystem
3701 * @cfts: zero-length name terminated array of cftypes
3702 *
3703 * Similar to cgroup_add_cftypes() but the added files are only used for
3704 * the default hierarchy.
3705 */
3706 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3707 {
3708 struct cftype *cft;
3709
3710 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3711 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3712 return cgroup_add_cftypes(ss, cfts);
3713 }
3714
3715 /**
3716 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3717 * @ss: target cgroup subsystem
3718 * @cfts: zero-length name terminated array of cftypes
3719 *
3720 * Similar to cgroup_add_cftypes() but the added files are only used for
3721 * the legacy hierarchies.
3722 */
3723 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3724 {
3725 struct cftype *cft;
3726
3727 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3728 cft->flags |= __CFTYPE_NOT_ON_DFL;
3729 return cgroup_add_cftypes(ss, cfts);
3730 }
3731
3732 /**
3733 * cgroup_file_notify - generate a file modified event for a cgroup_file
3734 * @cfile: target cgroup_file
3735 *
3736 * @cfile must have been obtained by setting cftype->file_offset.
3737 */
3738 void cgroup_file_notify(struct cgroup_file *cfile)
3739 {
3740 unsigned long flags;
3741
3742 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3743 if (cfile->kn)
3744 kernfs_notify(cfile->kn);
3745 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3746 }
3747
3748 /**
3749 * css_next_child - find the next child of a given css
3750 * @pos: the current position (%NULL to initiate traversal)
3751 * @parent: css whose children to walk
3752 *
3753 * This function returns the next child of @parent and should be called
3754 * under either cgroup_mutex or RCU read lock. The only requirement is
3755 * that @parent and @pos are accessible. The next sibling is guaranteed to
3756 * be returned regardless of their states.
3757 *
3758 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3759 * css which finished ->css_online() is guaranteed to be visible in the
3760 * future iterations and will stay visible until the last reference is put.
3761 * A css which hasn't finished ->css_online() or already finished
3762 * ->css_offline() may show up during traversal. It's each subsystem's
3763 * responsibility to synchronize against on/offlining.
3764 */
3765 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3766 struct cgroup_subsys_state *parent)
3767 {
3768 struct cgroup_subsys_state *next;
3769
3770 cgroup_assert_mutex_or_rcu_locked();
3771
3772 /*
3773 * @pos could already have been unlinked from the sibling list.
3774 * Once a cgroup is removed, its ->sibling.next is no longer
3775 * updated when its next sibling changes. CSS_RELEASED is set when
3776 * @pos is taken off list, at which time its next pointer is valid,
3777 * and, as releases are serialized, the one pointed to by the next
3778 * pointer is guaranteed to not have started release yet. This
3779 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3780 * critical section, the one pointed to by its next pointer is
3781 * guaranteed to not have finished its RCU grace period even if we
3782 * have dropped rcu_read_lock() inbetween iterations.
3783 *
3784 * If @pos has CSS_RELEASED set, its next pointer can't be
3785 * dereferenced; however, as each css is given a monotonically
3786 * increasing unique serial number and always appended to the
3787 * sibling list, the next one can be found by walking the parent's
3788 * children until the first css with higher serial number than
3789 * @pos's. While this path can be slower, it happens iff iteration
3790 * races against release and the race window is very small.
3791 */
3792 if (!pos) {
3793 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3794 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3795 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3796 } else {
3797 list_for_each_entry_rcu(next, &parent->children, sibling)
3798 if (next->serial_nr > pos->serial_nr)
3799 break;
3800 }
3801
3802 /*
3803 * @next, if not pointing to the head, can be dereferenced and is
3804 * the next sibling.
3805 */
3806 if (&next->sibling != &parent->children)
3807 return next;
3808 return NULL;
3809 }
3810
3811 /**
3812 * css_next_descendant_pre - find the next descendant for pre-order walk
3813 * @pos: the current position (%NULL to initiate traversal)
3814 * @root: css whose descendants to walk
3815 *
3816 * To be used by css_for_each_descendant_pre(). Find the next descendant
3817 * to visit for pre-order traversal of @root's descendants. @root is
3818 * included in the iteration and the first node to be visited.
3819 *
3820 * While this function requires cgroup_mutex or RCU read locking, it
3821 * doesn't require the whole traversal to be contained in a single critical
3822 * section. This function will return the correct next descendant as long
3823 * as both @pos and @root are accessible and @pos is a descendant of @root.
3824 *
3825 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3826 * css which finished ->css_online() is guaranteed to be visible in the
3827 * future iterations and will stay visible until the last reference is put.
3828 * A css which hasn't finished ->css_online() or already finished
3829 * ->css_offline() may show up during traversal. It's each subsystem's
3830 * responsibility to synchronize against on/offlining.
3831 */
3832 struct cgroup_subsys_state *
3833 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3834 struct cgroup_subsys_state *root)
3835 {
3836 struct cgroup_subsys_state *next;
3837
3838 cgroup_assert_mutex_or_rcu_locked();
3839
3840 /* if first iteration, visit @root */
3841 if (!pos)
3842 return root;
3843
3844 /* visit the first child if exists */
3845 next = css_next_child(NULL, pos);
3846 if (next)
3847 return next;
3848
3849 /* no child, visit my or the closest ancestor's next sibling */
3850 while (pos != root) {
3851 next = css_next_child(pos, pos->parent);
3852 if (next)
3853 return next;
3854 pos = pos->parent;
3855 }
3856
3857 return NULL;
3858 }
3859
3860 /**
3861 * css_rightmost_descendant - return the rightmost descendant of a css
3862 * @pos: css of interest
3863 *
3864 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3865 * is returned. This can be used during pre-order traversal to skip
3866 * subtree of @pos.
3867 *
3868 * While this function requires cgroup_mutex or RCU read locking, it
3869 * doesn't require the whole traversal to be contained in a single critical
3870 * section. This function will return the correct rightmost descendant as
3871 * long as @pos is accessible.
3872 */
3873 struct cgroup_subsys_state *
3874 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3875 {
3876 struct cgroup_subsys_state *last, *tmp;
3877
3878 cgroup_assert_mutex_or_rcu_locked();
3879
3880 do {
3881 last = pos;
3882 /* ->prev isn't RCU safe, walk ->next till the end */
3883 pos = NULL;
3884 css_for_each_child(tmp, last)
3885 pos = tmp;
3886 } while (pos);
3887
3888 return last;
3889 }
3890
3891 static struct cgroup_subsys_state *
3892 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3893 {
3894 struct cgroup_subsys_state *last;
3895
3896 do {
3897 last = pos;
3898 pos = css_next_child(NULL, pos);
3899 } while (pos);
3900
3901 return last;
3902 }
3903
3904 /**
3905 * css_next_descendant_post - find the next descendant for post-order walk
3906 * @pos: the current position (%NULL to initiate traversal)
3907 * @root: css whose descendants to walk
3908 *
3909 * To be used by css_for_each_descendant_post(). Find the next descendant
3910 * to visit for post-order traversal of @root's descendants. @root is
3911 * included in the iteration and the last node to be visited.
3912 *
3913 * While this function requires cgroup_mutex or RCU read locking, it
3914 * doesn't require the whole traversal to be contained in a single critical
3915 * section. This function will return the correct next descendant as long
3916 * as both @pos and @cgroup are accessible and @pos is a descendant of
3917 * @cgroup.
3918 *
3919 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3920 * css which finished ->css_online() is guaranteed to be visible in the
3921 * future iterations and will stay visible until the last reference is put.
3922 * A css which hasn't finished ->css_online() or already finished
3923 * ->css_offline() may show up during traversal. It's each subsystem's
3924 * responsibility to synchronize against on/offlining.
3925 */
3926 struct cgroup_subsys_state *
3927 css_next_descendant_post(struct cgroup_subsys_state *pos,
3928 struct cgroup_subsys_state *root)
3929 {
3930 struct cgroup_subsys_state *next;
3931
3932 cgroup_assert_mutex_or_rcu_locked();
3933
3934 /* if first iteration, visit leftmost descendant which may be @root */
3935 if (!pos)
3936 return css_leftmost_descendant(root);
3937
3938 /* if we visited @root, we're done */
3939 if (pos == root)
3940 return NULL;
3941
3942 /* if there's an unvisited sibling, visit its leftmost descendant */
3943 next = css_next_child(pos, pos->parent);
3944 if (next)
3945 return css_leftmost_descendant(next);
3946
3947 /* no sibling left, visit parent */
3948 return pos->parent;
3949 }
3950
3951 /**
3952 * css_has_online_children - does a css have online children
3953 * @css: the target css
3954 *
3955 * Returns %true if @css has any online children; otherwise, %false. This
3956 * function can be called from any context but the caller is responsible
3957 * for synchronizing against on/offlining as necessary.
3958 */
3959 bool css_has_online_children(struct cgroup_subsys_state *css)
3960 {
3961 struct cgroup_subsys_state *child;
3962 bool ret = false;
3963
3964 rcu_read_lock();
3965 css_for_each_child(child, css) {
3966 if (child->flags & CSS_ONLINE) {
3967 ret = true;
3968 break;
3969 }
3970 }
3971 rcu_read_unlock();
3972 return ret;
3973 }
3974
3975 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
3976 {
3977 struct list_head *l;
3978 struct cgrp_cset_link *link;
3979 struct css_set *cset;
3980
3981 lockdep_assert_held(&css_set_lock);
3982
3983 /* find the next threaded cset */
3984 if (it->tcset_pos) {
3985 l = it->tcset_pos->next;
3986
3987 if (l != it->tcset_head) {
3988 it->tcset_pos = l;
3989 return container_of(l, struct css_set,
3990 threaded_csets_node);
3991 }
3992
3993 it->tcset_pos = NULL;
3994 }
3995
3996 /* find the next cset */
3997 l = it->cset_pos;
3998 l = l->next;
3999 if (l == it->cset_head) {
4000 it->cset_pos = NULL;
4001 return NULL;
4002 }
4003
4004 if (it->ss) {
4005 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4006 } else {
4007 link = list_entry(l, struct cgrp_cset_link, cset_link);
4008 cset = link->cset;
4009 }
4010
4011 it->cset_pos = l;
4012
4013 /* initialize threaded css_set walking */
4014 if (it->flags & CSS_TASK_ITER_THREADED) {
4015 if (it->cur_dcset)
4016 put_css_set_locked(it->cur_dcset);
4017 it->cur_dcset = cset;
4018 get_css_set(cset);
4019
4020 it->tcset_head = &cset->threaded_csets;
4021 it->tcset_pos = &cset->threaded_csets;
4022 }
4023
4024 return cset;
4025 }
4026
4027 /**
4028 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4029 * @it: the iterator to advance
4030 *
4031 * Advance @it to the next css_set to walk.
4032 */
4033 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4034 {
4035 struct css_set *cset;
4036
4037 lockdep_assert_held(&css_set_lock);
4038
4039 /* Advance to the next non-empty css_set */
4040 do {
4041 cset = css_task_iter_next_css_set(it);
4042 if (!cset) {
4043 it->task_pos = NULL;
4044 return;
4045 }
4046 } while (!css_set_populated(cset));
4047
4048 if (!list_empty(&cset->tasks))
4049 it->task_pos = cset->tasks.next;
4050 else
4051 it->task_pos = cset->mg_tasks.next;
4052
4053 it->tasks_head = &cset->tasks;
4054 it->mg_tasks_head = &cset->mg_tasks;
4055
4056 /*
4057 * We don't keep css_sets locked across iteration steps and thus
4058 * need to take steps to ensure that iteration can be resumed after
4059 * the lock is re-acquired. Iteration is performed at two levels -
4060 * css_sets and tasks in them.
4061 *
4062 * Once created, a css_set never leaves its cgroup lists, so a
4063 * pinned css_set is guaranteed to stay put and we can resume
4064 * iteration afterwards.
4065 *
4066 * Tasks may leave @cset across iteration steps. This is resolved
4067 * by registering each iterator with the css_set currently being
4068 * walked and making css_set_move_task() advance iterators whose
4069 * next task is leaving.
4070 */
4071 if (it->cur_cset) {
4072 list_del(&it->iters_node);
4073 put_css_set_locked(it->cur_cset);
4074 }
4075 get_css_set(cset);
4076 it->cur_cset = cset;
4077 list_add(&it->iters_node, &cset->task_iters);
4078 }
4079
4080 static void css_task_iter_advance(struct css_task_iter *it)
4081 {
4082 struct list_head *next;
4083
4084 lockdep_assert_held(&css_set_lock);
4085 repeat:
4086 if (it->task_pos) {
4087 /*
4088 * Advance iterator to find next entry. cset->tasks is
4089 * consumed first and then ->mg_tasks. After ->mg_tasks,
4090 * we move onto the next cset.
4091 */
4092 next = it->task_pos->next;
4093
4094 if (next == it->tasks_head)
4095 next = it->mg_tasks_head->next;
4096
4097 if (next == it->mg_tasks_head)
4098 css_task_iter_advance_css_set(it);
4099 else
4100 it->task_pos = next;
4101 } else {
4102 /* called from start, proceed to the first cset */
4103 css_task_iter_advance_css_set(it);
4104 }
4105
4106 /* if PROCS, skip over tasks which aren't group leaders */
4107 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4108 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4109 cg_list)))
4110 goto repeat;
4111 }
4112
4113 /**
4114 * css_task_iter_start - initiate task iteration
4115 * @css: the css to walk tasks of
4116 * @flags: CSS_TASK_ITER_* flags
4117 * @it: the task iterator to use
4118 *
4119 * Initiate iteration through the tasks of @css. The caller can call
4120 * css_task_iter_next() to walk through the tasks until the function
4121 * returns NULL. On completion of iteration, css_task_iter_end() must be
4122 * called.
4123 */
4124 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4125 struct css_task_iter *it)
4126 {
4127 /* no one should try to iterate before mounting cgroups */
4128 WARN_ON_ONCE(!use_task_css_set_links);
4129
4130 memset(it, 0, sizeof(*it));
4131
4132 spin_lock_irq(&css_set_lock);
4133
4134 it->ss = css->ss;
4135 it->flags = flags;
4136
4137 if (it->ss)
4138 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4139 else
4140 it->cset_pos = &css->cgroup->cset_links;
4141
4142 it->cset_head = it->cset_pos;
4143
4144 css_task_iter_advance(it);
4145
4146 spin_unlock_irq(&css_set_lock);
4147 }
4148
4149 /**
4150 * css_task_iter_next - return the next task for the iterator
4151 * @it: the task iterator being iterated
4152 *
4153 * The "next" function for task iteration. @it should have been
4154 * initialized via css_task_iter_start(). Returns NULL when the iteration
4155 * reaches the end.
4156 */
4157 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4158 {
4159 if (it->cur_task) {
4160 put_task_struct(it->cur_task);
4161 it->cur_task = NULL;
4162 }
4163
4164 spin_lock_irq(&css_set_lock);
4165
4166 if (it->task_pos) {
4167 it->cur_task = list_entry(it->task_pos, struct task_struct,
4168 cg_list);
4169 get_task_struct(it->cur_task);
4170 css_task_iter_advance(it);
4171 }
4172
4173 spin_unlock_irq(&css_set_lock);
4174
4175 return it->cur_task;
4176 }
4177
4178 /**
4179 * css_task_iter_end - finish task iteration
4180 * @it: the task iterator to finish
4181 *
4182 * Finish task iteration started by css_task_iter_start().
4183 */
4184 void css_task_iter_end(struct css_task_iter *it)
4185 {
4186 if (it->cur_cset) {
4187 spin_lock_irq(&css_set_lock);
4188 list_del(&it->iters_node);
4189 put_css_set_locked(it->cur_cset);
4190 spin_unlock_irq(&css_set_lock);
4191 }
4192
4193 if (it->cur_dcset)
4194 put_css_set(it->cur_dcset);
4195
4196 if (it->cur_task)
4197 put_task_struct(it->cur_task);
4198 }
4199
4200 static void cgroup_procs_release(struct kernfs_open_file *of)
4201 {
4202 if (of->priv) {
4203 css_task_iter_end(of->priv);
4204 kfree(of->priv);
4205 }
4206 }
4207
4208 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4209 {
4210 struct kernfs_open_file *of = s->private;
4211 struct css_task_iter *it = of->priv;
4212
4213 return css_task_iter_next(it);
4214 }
4215
4216 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4217 unsigned int iter_flags)
4218 {
4219 struct kernfs_open_file *of = s->private;
4220 struct cgroup *cgrp = seq_css(s)->cgroup;
4221 struct css_task_iter *it = of->priv;
4222
4223 /*
4224 * When a seq_file is seeked, it's always traversed sequentially
4225 * from position 0, so we can simply keep iterating on !0 *pos.
4226 */
4227 if (!it) {
4228 if (WARN_ON_ONCE((*pos)++))
4229 return ERR_PTR(-EINVAL);
4230
4231 it = kzalloc(sizeof(*it), GFP_KERNEL);
4232 if (!it)
4233 return ERR_PTR(-ENOMEM);
4234 of->priv = it;
4235 css_task_iter_start(&cgrp->self, iter_flags, it);
4236 } else if (!(*pos)++) {
4237 css_task_iter_end(it);
4238 css_task_iter_start(&cgrp->self, iter_flags, it);
4239 }
4240
4241 return cgroup_procs_next(s, NULL, NULL);
4242 }
4243
4244 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4245 {
4246 struct cgroup *cgrp = seq_css(s)->cgroup;
4247
4248 /*
4249 * All processes of a threaded subtree belong to the domain cgroup
4250 * of the subtree. Only threads can be distributed across the
4251 * subtree. Reject reads on cgroup.procs in the subtree proper.
4252 * They're always empty anyway.
4253 */
4254 if (cgroup_is_threaded(cgrp))
4255 return ERR_PTR(-EOPNOTSUPP);
4256
4257 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4258 CSS_TASK_ITER_THREADED);
4259 }
4260
4261 static int cgroup_procs_show(struct seq_file *s, void *v)
4262 {
4263 seq_printf(s, "%d\n", task_pid_vnr(v));
4264 return 0;
4265 }
4266
4267 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4268 struct cgroup *dst_cgrp,
4269 struct super_block *sb)
4270 {
4271 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4272 struct cgroup *com_cgrp = src_cgrp;
4273 struct inode *inode;
4274 int ret;
4275
4276 lockdep_assert_held(&cgroup_mutex);
4277
4278 /* find the common ancestor */
4279 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4280 com_cgrp = cgroup_parent(com_cgrp);
4281
4282 /* %current should be authorized to migrate to the common ancestor */
4283 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4284 if (!inode)
4285 return -ENOMEM;
4286
4287 ret = inode_permission(inode, MAY_WRITE);
4288 iput(inode);
4289 if (ret)
4290 return ret;
4291
4292 /*
4293 * If namespaces are delegation boundaries, %current must be able
4294 * to see both source and destination cgroups from its namespace.
4295 */
4296 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4297 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4298 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4299 return -ENOENT;
4300
4301 return 0;
4302 }
4303
4304 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4305 char *buf, size_t nbytes, loff_t off)
4306 {
4307 struct cgroup *src_cgrp, *dst_cgrp;
4308 struct task_struct *task;
4309 ssize_t ret;
4310
4311 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4312 if (!dst_cgrp)
4313 return -ENODEV;
4314
4315 task = cgroup_procs_write_start(buf, true);
4316 ret = PTR_ERR_OR_ZERO(task);
4317 if (ret)
4318 goto out_unlock;
4319
4320 /* find the source cgroup */
4321 spin_lock_irq(&css_set_lock);
4322 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4323 spin_unlock_irq(&css_set_lock);
4324
4325 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4326 of->file->f_path.dentry->d_sb);
4327 if (ret)
4328 goto out_finish;
4329
4330 ret = cgroup_attach_task(dst_cgrp, task, true);
4331
4332 out_finish:
4333 cgroup_procs_write_finish(task);
4334 out_unlock:
4335 cgroup_kn_unlock(of->kn);
4336
4337 return ret ?: nbytes;
4338 }
4339
4340 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4341 {
4342 return __cgroup_procs_start(s, pos, 0);
4343 }
4344
4345 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4346 char *buf, size_t nbytes, loff_t off)
4347 {
4348 struct cgroup *src_cgrp, *dst_cgrp;
4349 struct task_struct *task;
4350 ssize_t ret;
4351
4352 buf = strstrip(buf);
4353
4354 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4355 if (!dst_cgrp)
4356 return -ENODEV;
4357
4358 task = cgroup_procs_write_start(buf, false);
4359 ret = PTR_ERR_OR_ZERO(task);
4360 if (ret)
4361 goto out_unlock;
4362
4363 /* find the source cgroup */
4364 spin_lock_irq(&css_set_lock);
4365 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4366 spin_unlock_irq(&css_set_lock);
4367
4368 /* thread migrations follow the cgroup.procs delegation rule */
4369 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4370 of->file->f_path.dentry->d_sb);
4371 if (ret)
4372 goto out_finish;
4373
4374 /* and must be contained in the same domain */
4375 ret = -EOPNOTSUPP;
4376 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4377 goto out_finish;
4378
4379 ret = cgroup_attach_task(dst_cgrp, task, false);
4380
4381 out_finish:
4382 cgroup_procs_write_finish(task);
4383 out_unlock:
4384 cgroup_kn_unlock(of->kn);
4385
4386 return ret ?: nbytes;
4387 }
4388
4389 /* cgroup core interface files for the default hierarchy */
4390 static struct cftype cgroup_base_files[] = {
4391 {
4392 .name = "cgroup.type",
4393 .flags = CFTYPE_NOT_ON_ROOT,
4394 .seq_show = cgroup_type_show,
4395 .write = cgroup_type_write,
4396 },
4397 {
4398 .name = "cgroup.procs",
4399 .flags = CFTYPE_NS_DELEGATABLE,
4400 .file_offset = offsetof(struct cgroup, procs_file),
4401 .release = cgroup_procs_release,
4402 .seq_start = cgroup_procs_start,
4403 .seq_next = cgroup_procs_next,
4404 .seq_show = cgroup_procs_show,
4405 .write = cgroup_procs_write,
4406 },
4407 {
4408 .name = "cgroup.threads",
4409 .release = cgroup_procs_release,
4410 .seq_start = cgroup_threads_start,
4411 .seq_next = cgroup_procs_next,
4412 .seq_show = cgroup_procs_show,
4413 .write = cgroup_threads_write,
4414 },
4415 {
4416 .name = "cgroup.controllers",
4417 .seq_show = cgroup_controllers_show,
4418 },
4419 {
4420 .name = "cgroup.subtree_control",
4421 .flags = CFTYPE_NS_DELEGATABLE,
4422 .seq_show = cgroup_subtree_control_show,
4423 .write = cgroup_subtree_control_write,
4424 },
4425 {
4426 .name = "cgroup.events",
4427 .flags = CFTYPE_NOT_ON_ROOT,
4428 .file_offset = offsetof(struct cgroup, events_file),
4429 .seq_show = cgroup_events_show,
4430 },
4431 {
4432 .name = "cgroup.max.descendants",
4433 .seq_show = cgroup_max_descendants_show,
4434 .write = cgroup_max_descendants_write,
4435 },
4436 {
4437 .name = "cgroup.max.depth",
4438 .seq_show = cgroup_max_depth_show,
4439 .write = cgroup_max_depth_write,
4440 },
4441 {
4442 .name = "cgroup.stat",
4443 .seq_show = cgroup_stat_show,
4444 },
4445 { } /* terminate */
4446 };
4447
4448 /*
4449 * css destruction is four-stage process.
4450 *
4451 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4452 * Implemented in kill_css().
4453 *
4454 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4455 * and thus css_tryget_online() is guaranteed to fail, the css can be
4456 * offlined by invoking offline_css(). After offlining, the base ref is
4457 * put. Implemented in css_killed_work_fn().
4458 *
4459 * 3. When the percpu_ref reaches zero, the only possible remaining
4460 * accessors are inside RCU read sections. css_release() schedules the
4461 * RCU callback.
4462 *
4463 * 4. After the grace period, the css can be freed. Implemented in
4464 * css_free_work_fn().
4465 *
4466 * It is actually hairier because both step 2 and 4 require process context
4467 * and thus involve punting to css->destroy_work adding two additional
4468 * steps to the already complex sequence.
4469 */
4470 static void css_free_work_fn(struct work_struct *work)
4471 {
4472 struct cgroup_subsys_state *css =
4473 container_of(work, struct cgroup_subsys_state, destroy_work);
4474 struct cgroup_subsys *ss = css->ss;
4475 struct cgroup *cgrp = css->cgroup;
4476
4477 percpu_ref_exit(&css->refcnt);
4478
4479 if (ss) {
4480 /* css free path */
4481 struct cgroup_subsys_state *parent = css->parent;
4482 int id = css->id;
4483
4484 ss->css_free(css);
4485 cgroup_idr_remove(&ss->css_idr, id);
4486 cgroup_put(cgrp);
4487
4488 if (parent)
4489 css_put(parent);
4490 } else {
4491 /* cgroup free path */
4492 atomic_dec(&cgrp->root->nr_cgrps);
4493 cgroup1_pidlist_destroy_all(cgrp);
4494 cancel_work_sync(&cgrp->release_agent_work);
4495
4496 if (cgroup_parent(cgrp)) {
4497 /*
4498 * We get a ref to the parent, and put the ref when
4499 * this cgroup is being freed, so it's guaranteed
4500 * that the parent won't be destroyed before its
4501 * children.
4502 */
4503 cgroup_put(cgroup_parent(cgrp));
4504 kernfs_put(cgrp->kn);
4505 kfree(cgrp);
4506 } else {
4507 /*
4508 * This is root cgroup's refcnt reaching zero,
4509 * which indicates that the root should be
4510 * released.
4511 */
4512 cgroup_destroy_root(cgrp->root);
4513 }
4514 }
4515 }
4516
4517 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4518 {
4519 struct cgroup_subsys_state *css =
4520 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4521
4522 INIT_WORK(&css->destroy_work, css_free_work_fn);
4523 queue_work(cgroup_destroy_wq, &css->destroy_work);
4524 }
4525
4526 static void css_release_work_fn(struct work_struct *work)
4527 {
4528 struct cgroup_subsys_state *css =
4529 container_of(work, struct cgroup_subsys_state, destroy_work);
4530 struct cgroup_subsys *ss = css->ss;
4531 struct cgroup *cgrp = css->cgroup;
4532
4533 mutex_lock(&cgroup_mutex);
4534
4535 css->flags |= CSS_RELEASED;
4536 list_del_rcu(&css->sibling);
4537
4538 if (ss) {
4539 /* css release path */
4540 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4541 if (ss->css_released)
4542 ss->css_released(css);
4543 } else {
4544 struct cgroup *tcgrp;
4545
4546 /* cgroup release path */
4547 trace_cgroup_release(cgrp);
4548
4549 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4550 tcgrp = cgroup_parent(tcgrp))
4551 tcgrp->nr_dying_descendants--;
4552
4553 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4554 cgrp->id = -1;
4555
4556 /*
4557 * There are two control paths which try to determine
4558 * cgroup from dentry without going through kernfs -
4559 * cgroupstats_build() and css_tryget_online_from_dir().
4560 * Those are supported by RCU protecting clearing of
4561 * cgrp->kn->priv backpointer.
4562 */
4563 if (cgrp->kn)
4564 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4565 NULL);
4566
4567 cgroup_bpf_put(cgrp);
4568 }
4569
4570 mutex_unlock(&cgroup_mutex);
4571
4572 call_rcu(&css->rcu_head, css_free_rcu_fn);
4573 }
4574
4575 static void css_release(struct percpu_ref *ref)
4576 {
4577 struct cgroup_subsys_state *css =
4578 container_of(ref, struct cgroup_subsys_state, refcnt);
4579
4580 INIT_WORK(&css->destroy_work, css_release_work_fn);
4581 queue_work(cgroup_destroy_wq, &css->destroy_work);
4582 }
4583
4584 static void init_and_link_css(struct cgroup_subsys_state *css,
4585 struct cgroup_subsys *ss, struct cgroup *cgrp)
4586 {
4587 lockdep_assert_held(&cgroup_mutex);
4588
4589 cgroup_get_live(cgrp);
4590
4591 memset(css, 0, sizeof(*css));
4592 css->cgroup = cgrp;
4593 css->ss = ss;
4594 css->id = -1;
4595 INIT_LIST_HEAD(&css->sibling);
4596 INIT_LIST_HEAD(&css->children);
4597 css->serial_nr = css_serial_nr_next++;
4598 atomic_set(&css->online_cnt, 0);
4599
4600 if (cgroup_parent(cgrp)) {
4601 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4602 css_get(css->parent);
4603 }
4604
4605 BUG_ON(cgroup_css(cgrp, ss));
4606 }
4607
4608 /* invoke ->css_online() on a new CSS and mark it online if successful */
4609 static int online_css(struct cgroup_subsys_state *css)
4610 {
4611 struct cgroup_subsys *ss = css->ss;
4612 int ret = 0;
4613
4614 lockdep_assert_held(&cgroup_mutex);
4615
4616 if (ss->css_online)
4617 ret = ss->css_online(css);
4618 if (!ret) {
4619 css->flags |= CSS_ONLINE;
4620 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4621
4622 atomic_inc(&css->online_cnt);
4623 if (css->parent)
4624 atomic_inc(&css->parent->online_cnt);
4625 }
4626 return ret;
4627 }
4628
4629 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4630 static void offline_css(struct cgroup_subsys_state *css)
4631 {
4632 struct cgroup_subsys *ss = css->ss;
4633
4634 lockdep_assert_held(&cgroup_mutex);
4635
4636 if (!(css->flags & CSS_ONLINE))
4637 return;
4638
4639 if (ss->css_offline)
4640 ss->css_offline(css);
4641
4642 css->flags &= ~CSS_ONLINE;
4643 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4644
4645 wake_up_all(&css->cgroup->offline_waitq);
4646 }
4647
4648 /**
4649 * css_create - create a cgroup_subsys_state
4650 * @cgrp: the cgroup new css will be associated with
4651 * @ss: the subsys of new css
4652 *
4653 * Create a new css associated with @cgrp - @ss pair. On success, the new
4654 * css is online and installed in @cgrp. This function doesn't create the
4655 * interface files. Returns 0 on success, -errno on failure.
4656 */
4657 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4658 struct cgroup_subsys *ss)
4659 {
4660 struct cgroup *parent = cgroup_parent(cgrp);
4661 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4662 struct cgroup_subsys_state *css;
4663 int err;
4664
4665 lockdep_assert_held(&cgroup_mutex);
4666
4667 css = ss->css_alloc(parent_css);
4668 if (!css)
4669 css = ERR_PTR(-ENOMEM);
4670 if (IS_ERR(css))
4671 return css;
4672
4673 init_and_link_css(css, ss, cgrp);
4674
4675 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4676 if (err)
4677 goto err_free_css;
4678
4679 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4680 if (err < 0)
4681 goto err_free_css;
4682 css->id = err;
4683
4684 /* @css is ready to be brought online now, make it visible */
4685 list_add_tail_rcu(&css->sibling, &parent_css->children);
4686 cgroup_idr_replace(&ss->css_idr, css, css->id);
4687
4688 err = online_css(css);
4689 if (err)
4690 goto err_list_del;
4691
4692 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4693 cgroup_parent(parent)) {
4694 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4695 current->comm, current->pid, ss->name);
4696 if (!strcmp(ss->name, "memory"))
4697 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4698 ss->warned_broken_hierarchy = true;
4699 }
4700
4701 return css;
4702
4703 err_list_del:
4704 list_del_rcu(&css->sibling);
4705 err_free_css:
4706 call_rcu(&css->rcu_head, css_free_rcu_fn);
4707 return ERR_PTR(err);
4708 }
4709
4710 /*
4711 * The returned cgroup is fully initialized including its control mask, but
4712 * it isn't associated with its kernfs_node and doesn't have the control
4713 * mask applied.
4714 */
4715 static struct cgroup *cgroup_create(struct cgroup *parent)
4716 {
4717 struct cgroup_root *root = parent->root;
4718 struct cgroup *cgrp, *tcgrp;
4719 int level = parent->level + 1;
4720 int ret;
4721
4722 /* allocate the cgroup and its ID, 0 is reserved for the root */
4723 cgrp = kzalloc(sizeof(*cgrp) +
4724 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4725 if (!cgrp)
4726 return ERR_PTR(-ENOMEM);
4727
4728 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4729 if (ret)
4730 goto out_free_cgrp;
4731
4732 /*
4733 * Temporarily set the pointer to NULL, so idr_find() won't return
4734 * a half-baked cgroup.
4735 */
4736 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4737 if (cgrp->id < 0) {
4738 ret = -ENOMEM;
4739 goto out_cancel_ref;
4740 }
4741
4742 init_cgroup_housekeeping(cgrp);
4743
4744 cgrp->self.parent = &parent->self;
4745 cgrp->root = root;
4746 cgrp->level = level;
4747
4748 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4749 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4750
4751 if (tcgrp != cgrp)
4752 tcgrp->nr_descendants++;
4753 }
4754
4755 if (notify_on_release(parent))
4756 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4757
4758 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4759 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4760
4761 cgrp->self.serial_nr = css_serial_nr_next++;
4762
4763 /* allocation complete, commit to creation */
4764 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4765 atomic_inc(&root->nr_cgrps);
4766 cgroup_get_live(parent);
4767
4768 /*
4769 * @cgrp is now fully operational. If something fails after this
4770 * point, it'll be released via the normal destruction path.
4771 */
4772 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4773
4774 /*
4775 * On the default hierarchy, a child doesn't automatically inherit
4776 * subtree_control from the parent. Each is configured manually.
4777 */
4778 if (!cgroup_on_dfl(cgrp))
4779 cgrp->subtree_control = cgroup_control(cgrp);
4780
4781 if (parent)
4782 cgroup_bpf_inherit(cgrp, parent);
4783
4784 cgroup_propagate_control(cgrp);
4785
4786 return cgrp;
4787
4788 out_cancel_ref:
4789 percpu_ref_exit(&cgrp->self.refcnt);
4790 out_free_cgrp:
4791 kfree(cgrp);
4792 return ERR_PTR(ret);
4793 }
4794
4795 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4796 {
4797 struct cgroup *cgroup;
4798 int ret = false;
4799 int level = 1;
4800
4801 lockdep_assert_held(&cgroup_mutex);
4802
4803 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4804 if (cgroup->nr_descendants >= cgroup->max_descendants)
4805 goto fail;
4806
4807 if (level > cgroup->max_depth)
4808 goto fail;
4809
4810 level++;
4811 }
4812
4813 ret = true;
4814 fail:
4815 return ret;
4816 }
4817
4818 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4819 {
4820 struct cgroup *parent, *cgrp;
4821 struct kernfs_node *kn;
4822 int ret;
4823
4824 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4825 if (strchr(name, '\n'))
4826 return -EINVAL;
4827
4828 parent = cgroup_kn_lock_live(parent_kn, false);
4829 if (!parent)
4830 return -ENODEV;
4831
4832 if (!cgroup_check_hierarchy_limits(parent)) {
4833 ret = -EAGAIN;
4834 goto out_unlock;
4835 }
4836
4837 cgrp = cgroup_create(parent);
4838 if (IS_ERR(cgrp)) {
4839 ret = PTR_ERR(cgrp);
4840 goto out_unlock;
4841 }
4842
4843 /* create the directory */
4844 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4845 if (IS_ERR(kn)) {
4846 ret = PTR_ERR(kn);
4847 goto out_destroy;
4848 }
4849 cgrp->kn = kn;
4850
4851 /*
4852 * This extra ref will be put in cgroup_free_fn() and guarantees
4853 * that @cgrp->kn is always accessible.
4854 */
4855 kernfs_get(kn);
4856
4857 ret = cgroup_kn_set_ugid(kn);
4858 if (ret)
4859 goto out_destroy;
4860
4861 ret = css_populate_dir(&cgrp->self);
4862 if (ret)
4863 goto out_destroy;
4864
4865 ret = cgroup_apply_control_enable(cgrp);
4866 if (ret)
4867 goto out_destroy;
4868
4869 trace_cgroup_mkdir(cgrp);
4870
4871 /* let's create and online css's */
4872 kernfs_activate(kn);
4873
4874 ret = 0;
4875 goto out_unlock;
4876
4877 out_destroy:
4878 cgroup_destroy_locked(cgrp);
4879 out_unlock:
4880 cgroup_kn_unlock(parent_kn);
4881 return ret;
4882 }
4883
4884 /*
4885 * This is called when the refcnt of a css is confirmed to be killed.
4886 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4887 * initate destruction and put the css ref from kill_css().
4888 */
4889 static void css_killed_work_fn(struct work_struct *work)
4890 {
4891 struct cgroup_subsys_state *css =
4892 container_of(work, struct cgroup_subsys_state, destroy_work);
4893
4894 mutex_lock(&cgroup_mutex);
4895
4896 do {
4897 offline_css(css);
4898 css_put(css);
4899 /* @css can't go away while we're holding cgroup_mutex */
4900 css = css->parent;
4901 } while (css && atomic_dec_and_test(&css->online_cnt));
4902
4903 mutex_unlock(&cgroup_mutex);
4904 }
4905
4906 /* css kill confirmation processing requires process context, bounce */
4907 static void css_killed_ref_fn(struct percpu_ref *ref)
4908 {
4909 struct cgroup_subsys_state *css =
4910 container_of(ref, struct cgroup_subsys_state, refcnt);
4911
4912 if (atomic_dec_and_test(&css->online_cnt)) {
4913 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4914 queue_work(cgroup_destroy_wq, &css->destroy_work);
4915 }
4916 }
4917
4918 /**
4919 * kill_css - destroy a css
4920 * @css: css to destroy
4921 *
4922 * This function initiates destruction of @css by removing cgroup interface
4923 * files and putting its base reference. ->css_offline() will be invoked
4924 * asynchronously once css_tryget_online() is guaranteed to fail and when
4925 * the reference count reaches zero, @css will be released.
4926 */
4927 static void kill_css(struct cgroup_subsys_state *css)
4928 {
4929 lockdep_assert_held(&cgroup_mutex);
4930
4931 if (css->flags & CSS_DYING)
4932 return;
4933
4934 css->flags |= CSS_DYING;
4935
4936 /*
4937 * This must happen before css is disassociated with its cgroup.
4938 * See seq_css() for details.
4939 */
4940 css_clear_dir(css);
4941
4942 /*
4943 * Killing would put the base ref, but we need to keep it alive
4944 * until after ->css_offline().
4945 */
4946 css_get(css);
4947
4948 /*
4949 * cgroup core guarantees that, by the time ->css_offline() is
4950 * invoked, no new css reference will be given out via
4951 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4952 * proceed to offlining css's because percpu_ref_kill() doesn't
4953 * guarantee that the ref is seen as killed on all CPUs on return.
4954 *
4955 * Use percpu_ref_kill_and_confirm() to get notifications as each
4956 * css is confirmed to be seen as killed on all CPUs.
4957 */
4958 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4959 }
4960
4961 /**
4962 * cgroup_destroy_locked - the first stage of cgroup destruction
4963 * @cgrp: cgroup to be destroyed
4964 *
4965 * css's make use of percpu refcnts whose killing latency shouldn't be
4966 * exposed to userland and are RCU protected. Also, cgroup core needs to
4967 * guarantee that css_tryget_online() won't succeed by the time
4968 * ->css_offline() is invoked. To satisfy all the requirements,
4969 * destruction is implemented in the following two steps.
4970 *
4971 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4972 * userland visible parts and start killing the percpu refcnts of
4973 * css's. Set up so that the next stage will be kicked off once all
4974 * the percpu refcnts are confirmed to be killed.
4975 *
4976 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4977 * rest of destruction. Once all cgroup references are gone, the
4978 * cgroup is RCU-freed.
4979 *
4980 * This function implements s1. After this step, @cgrp is gone as far as
4981 * the userland is concerned and a new cgroup with the same name may be
4982 * created. As cgroup doesn't care about the names internally, this
4983 * doesn't cause any problem.
4984 */
4985 static int cgroup_destroy_locked(struct cgroup *cgrp)
4986 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4987 {
4988 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
4989 struct cgroup_subsys_state *css;
4990 struct cgrp_cset_link *link;
4991 int ssid;
4992
4993 lockdep_assert_held(&cgroup_mutex);
4994
4995 /*
4996 * Only migration can raise populated from zero and we're already
4997 * holding cgroup_mutex.
4998 */
4999 if (cgroup_is_populated(cgrp))
5000 return -EBUSY;
5001
5002 /*
5003 * Make sure there's no live children. We can't test emptiness of
5004 * ->self.children as dead children linger on it while being
5005 * drained; otherwise, "rmdir parent/child parent" may fail.
5006 */
5007 if (css_has_online_children(&cgrp->self))
5008 return -EBUSY;
5009
5010 /*
5011 * Mark @cgrp and the associated csets dead. The former prevents
5012 * further task migration and child creation by disabling
5013 * cgroup_lock_live_group(). The latter makes the csets ignored by
5014 * the migration path.
5015 */
5016 cgrp->self.flags &= ~CSS_ONLINE;
5017
5018 spin_lock_irq(&css_set_lock);
5019 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5020 link->cset->dead = true;
5021 spin_unlock_irq(&css_set_lock);
5022
5023 /* initiate massacre of all css's */
5024 for_each_css(css, ssid, cgrp)
5025 kill_css(css);
5026
5027 /*
5028 * Remove @cgrp directory along with the base files. @cgrp has an
5029 * extra ref on its kn.
5030 */
5031 kernfs_remove(cgrp->kn);
5032
5033 if (parent && cgroup_is_threaded(cgrp))
5034 parent->nr_threaded_children--;
5035
5036 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5037 tcgrp->nr_descendants--;
5038 tcgrp->nr_dying_descendants++;
5039 }
5040
5041 cgroup1_check_for_release(parent);
5042
5043 /* put the base reference */
5044 percpu_ref_kill(&cgrp->self.refcnt);
5045
5046 return 0;
5047 };
5048
5049 int cgroup_rmdir(struct kernfs_node *kn)
5050 {
5051 struct cgroup *cgrp;
5052 int ret = 0;
5053
5054 cgrp = cgroup_kn_lock_live(kn, false);
5055 if (!cgrp)
5056 return 0;
5057
5058 ret = cgroup_destroy_locked(cgrp);
5059
5060 if (!ret)
5061 trace_cgroup_rmdir(cgrp);
5062
5063 cgroup_kn_unlock(kn);
5064 return ret;
5065 }
5066
5067 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5068 .show_options = cgroup_show_options,
5069 .remount_fs = cgroup_remount,
5070 .mkdir = cgroup_mkdir,
5071 .rmdir = cgroup_rmdir,
5072 .show_path = cgroup_show_path,
5073 };
5074
5075 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5076 {
5077 struct cgroup_subsys_state *css;
5078
5079 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5080
5081 mutex_lock(&cgroup_mutex);
5082
5083 idr_init(&ss->css_idr);
5084 INIT_LIST_HEAD(&ss->cfts);
5085
5086 /* Create the root cgroup state for this subsystem */
5087 ss->root = &cgrp_dfl_root;
5088 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5089 /* We don't handle early failures gracefully */
5090 BUG_ON(IS_ERR(css));
5091 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5092
5093 /*
5094 * Root csses are never destroyed and we can't initialize
5095 * percpu_ref during early init. Disable refcnting.
5096 */
5097 css->flags |= CSS_NO_REF;
5098
5099 if (early) {
5100 /* allocation can't be done safely during early init */
5101 css->id = 1;
5102 } else {
5103 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5104 BUG_ON(css->id < 0);
5105 }
5106
5107 /* Update the init_css_set to contain a subsys
5108 * pointer to this state - since the subsystem is
5109 * newly registered, all tasks and hence the
5110 * init_css_set is in the subsystem's root cgroup. */
5111 init_css_set.subsys[ss->id] = css;
5112
5113 have_fork_callback |= (bool)ss->fork << ss->id;
5114 have_exit_callback |= (bool)ss->exit << ss->id;
5115 have_free_callback |= (bool)ss->free << ss->id;
5116 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5117
5118 /* At system boot, before all subsystems have been
5119 * registered, no tasks have been forked, so we don't
5120 * need to invoke fork callbacks here. */
5121 BUG_ON(!list_empty(&init_task.tasks));
5122
5123 BUG_ON(online_css(css));
5124
5125 mutex_unlock(&cgroup_mutex);
5126 }
5127
5128 /**
5129 * cgroup_init_early - cgroup initialization at system boot
5130 *
5131 * Initialize cgroups at system boot, and initialize any
5132 * subsystems that request early init.
5133 */
5134 int __init cgroup_init_early(void)
5135 {
5136 static struct cgroup_sb_opts __initdata opts;
5137 struct cgroup_subsys *ss;
5138 int i;
5139
5140 init_cgroup_root(&cgrp_dfl_root, &opts);
5141 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5142
5143 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5144
5145 for_each_subsys(ss, i) {
5146 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5147 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5148 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5149 ss->id, ss->name);
5150 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5151 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5152
5153 ss->id = i;
5154 ss->name = cgroup_subsys_name[i];
5155 if (!ss->legacy_name)
5156 ss->legacy_name = cgroup_subsys_name[i];
5157
5158 if (ss->early_init)
5159 cgroup_init_subsys(ss, true);
5160 }
5161 return 0;
5162 }
5163
5164 static u16 cgroup_disable_mask __initdata;
5165
5166 /**
5167 * cgroup_init - cgroup initialization
5168 *
5169 * Register cgroup filesystem and /proc file, and initialize
5170 * any subsystems that didn't request early init.
5171 */
5172 int __init cgroup_init(void)
5173 {
5174 struct cgroup_subsys *ss;
5175 int ssid;
5176
5177 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5178 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5179 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5180 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5181
5182 /*
5183 * The latency of the synchronize_sched() is too high for cgroups,
5184 * avoid it at the cost of forcing all readers into the slow path.
5185 */
5186 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5187
5188 get_user_ns(init_cgroup_ns.user_ns);
5189
5190 mutex_lock(&cgroup_mutex);
5191
5192 /*
5193 * Add init_css_set to the hash table so that dfl_root can link to
5194 * it during init.
5195 */
5196 hash_add(css_set_table, &init_css_set.hlist,
5197 css_set_hash(init_css_set.subsys));
5198
5199 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5200
5201 mutex_unlock(&cgroup_mutex);
5202
5203 for_each_subsys(ss, ssid) {
5204 if (ss->early_init) {
5205 struct cgroup_subsys_state *css =
5206 init_css_set.subsys[ss->id];
5207
5208 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5209 GFP_KERNEL);
5210 BUG_ON(css->id < 0);
5211 } else {
5212 cgroup_init_subsys(ss, false);
5213 }
5214
5215 list_add_tail(&init_css_set.e_cset_node[ssid],
5216 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5217
5218 /*
5219 * Setting dfl_root subsys_mask needs to consider the
5220 * disabled flag and cftype registration needs kmalloc,
5221 * both of which aren't available during early_init.
5222 */
5223 if (cgroup_disable_mask & (1 << ssid)) {
5224 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5225 printk(KERN_INFO "Disabling %s control group subsystem\n",
5226 ss->name);
5227 continue;
5228 }
5229
5230 if (cgroup1_ssid_disabled(ssid))
5231 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5232 ss->name);
5233
5234 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5235
5236 /* implicit controllers must be threaded too */
5237 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5238
5239 if (ss->implicit_on_dfl)
5240 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5241 else if (!ss->dfl_cftypes)
5242 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5243
5244 if (ss->threaded)
5245 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5246
5247 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5248 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5249 } else {
5250 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5251 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5252 }
5253
5254 if (ss->bind)
5255 ss->bind(init_css_set.subsys[ssid]);
5256
5257 mutex_lock(&cgroup_mutex);
5258 css_populate_dir(init_css_set.subsys[ssid]);
5259 mutex_unlock(&cgroup_mutex);
5260 }
5261
5262 /* init_css_set.subsys[] has been updated, re-hash */
5263 hash_del(&init_css_set.hlist);
5264 hash_add(css_set_table, &init_css_set.hlist,
5265 css_set_hash(init_css_set.subsys));
5266
5267 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5268 WARN_ON(register_filesystem(&cgroup_fs_type));
5269 WARN_ON(register_filesystem(&cgroup2_fs_type));
5270 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5271
5272 return 0;
5273 }
5274
5275 static int __init cgroup_wq_init(void)
5276 {
5277 /*
5278 * There isn't much point in executing destruction path in
5279 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5280 * Use 1 for @max_active.
5281 *
5282 * We would prefer to do this in cgroup_init() above, but that
5283 * is called before init_workqueues(): so leave this until after.
5284 */
5285 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5286 BUG_ON(!cgroup_destroy_wq);
5287 return 0;
5288 }
5289 core_initcall(cgroup_wq_init);
5290
5291 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5292 char *buf, size_t buflen)
5293 {
5294 struct kernfs_node *kn;
5295
5296 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5297 if (!kn)
5298 return;
5299 kernfs_path(kn, buf, buflen);
5300 kernfs_put(kn);
5301 }
5302
5303 /*
5304 * proc_cgroup_show()
5305 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5306 * - Used for /proc/<pid>/cgroup.
5307 */
5308 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5309 struct pid *pid, struct task_struct *tsk)
5310 {
5311 char *buf;
5312 int retval;
5313 struct cgroup_root *root;
5314
5315 retval = -ENOMEM;
5316 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5317 if (!buf)
5318 goto out;
5319
5320 mutex_lock(&cgroup_mutex);
5321 spin_lock_irq(&css_set_lock);
5322
5323 for_each_root(root) {
5324 struct cgroup_subsys *ss;
5325 struct cgroup *cgrp;
5326 int ssid, count = 0;
5327
5328 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5329 continue;
5330
5331 seq_printf(m, "%d:", root->hierarchy_id);
5332 if (root != &cgrp_dfl_root)
5333 for_each_subsys(ss, ssid)
5334 if (root->subsys_mask & (1 << ssid))
5335 seq_printf(m, "%s%s", count++ ? "," : "",
5336 ss->legacy_name);
5337 if (strlen(root->name))
5338 seq_printf(m, "%sname=%s", count ? "," : "",
5339 root->name);
5340 seq_putc(m, ':');
5341
5342 cgrp = task_cgroup_from_root(tsk, root);
5343
5344 /*
5345 * On traditional hierarchies, all zombie tasks show up as
5346 * belonging to the root cgroup. On the default hierarchy,
5347 * while a zombie doesn't show up in "cgroup.procs" and
5348 * thus can't be migrated, its /proc/PID/cgroup keeps
5349 * reporting the cgroup it belonged to before exiting. If
5350 * the cgroup is removed before the zombie is reaped,
5351 * " (deleted)" is appended to the cgroup path.
5352 */
5353 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5354 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5355 current->nsproxy->cgroup_ns);
5356 if (retval >= PATH_MAX)
5357 retval = -ENAMETOOLONG;
5358 if (retval < 0)
5359 goto out_unlock;
5360
5361 seq_puts(m, buf);
5362 } else {
5363 seq_puts(m, "/");
5364 }
5365
5366 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5367 seq_puts(m, " (deleted)\n");
5368 else
5369 seq_putc(m, '\n');
5370 }
5371
5372 retval = 0;
5373 out_unlock:
5374 spin_unlock_irq(&css_set_lock);
5375 mutex_unlock(&cgroup_mutex);
5376 kfree(buf);
5377 out:
5378 return retval;
5379 }
5380
5381 /**
5382 * cgroup_fork - initialize cgroup related fields during copy_process()
5383 * @child: pointer to task_struct of forking parent process.
5384 *
5385 * A task is associated with the init_css_set until cgroup_post_fork()
5386 * attaches it to the parent's css_set. Empty cg_list indicates that
5387 * @child isn't holding reference to its css_set.
5388 */
5389 void cgroup_fork(struct task_struct *child)
5390 {
5391 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5392 INIT_LIST_HEAD(&child->cg_list);
5393 }
5394
5395 /**
5396 * cgroup_can_fork - called on a new task before the process is exposed
5397 * @child: the task in question.
5398 *
5399 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5400 * returns an error, the fork aborts with that error code. This allows for
5401 * a cgroup subsystem to conditionally allow or deny new forks.
5402 */
5403 int cgroup_can_fork(struct task_struct *child)
5404 {
5405 struct cgroup_subsys *ss;
5406 int i, j, ret;
5407
5408 do_each_subsys_mask(ss, i, have_canfork_callback) {
5409 ret = ss->can_fork(child);
5410 if (ret)
5411 goto out_revert;
5412 } while_each_subsys_mask();
5413
5414 return 0;
5415
5416 out_revert:
5417 for_each_subsys(ss, j) {
5418 if (j >= i)
5419 break;
5420 if (ss->cancel_fork)
5421 ss->cancel_fork(child);
5422 }
5423
5424 return ret;
5425 }
5426
5427 /**
5428 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5429 * @child: the task in question
5430 *
5431 * This calls the cancel_fork() callbacks if a fork failed *after*
5432 * cgroup_can_fork() succeded.
5433 */
5434 void cgroup_cancel_fork(struct task_struct *child)
5435 {
5436 struct cgroup_subsys *ss;
5437 int i;
5438
5439 for_each_subsys(ss, i)
5440 if (ss->cancel_fork)
5441 ss->cancel_fork(child);
5442 }
5443
5444 /**
5445 * cgroup_post_fork - called on a new task after adding it to the task list
5446 * @child: the task in question
5447 *
5448 * Adds the task to the list running through its css_set if necessary and
5449 * call the subsystem fork() callbacks. Has to be after the task is
5450 * visible on the task list in case we race with the first call to
5451 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5452 * list.
5453 */
5454 void cgroup_post_fork(struct task_struct *child)
5455 {
5456 struct cgroup_subsys *ss;
5457 int i;
5458
5459 /*
5460 * This may race against cgroup_enable_task_cg_lists(). As that
5461 * function sets use_task_css_set_links before grabbing
5462 * tasklist_lock and we just went through tasklist_lock to add
5463 * @child, it's guaranteed that either we see the set
5464 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5465 * @child during its iteration.
5466 *
5467 * If we won the race, @child is associated with %current's
5468 * css_set. Grabbing css_set_lock guarantees both that the
5469 * association is stable, and, on completion of the parent's
5470 * migration, @child is visible in the source of migration or
5471 * already in the destination cgroup. This guarantee is necessary
5472 * when implementing operations which need to migrate all tasks of
5473 * a cgroup to another.
5474 *
5475 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5476 * will remain in init_css_set. This is safe because all tasks are
5477 * in the init_css_set before cg_links is enabled and there's no
5478 * operation which transfers all tasks out of init_css_set.
5479 */
5480 if (use_task_css_set_links) {
5481 struct css_set *cset;
5482
5483 spin_lock_irq(&css_set_lock);
5484 cset = task_css_set(current);
5485 if (list_empty(&child->cg_list)) {
5486 get_css_set(cset);
5487 cset->nr_tasks++;
5488 css_set_move_task(child, NULL, cset, false);
5489 }
5490 spin_unlock_irq(&css_set_lock);
5491 }
5492
5493 /*
5494 * Call ss->fork(). This must happen after @child is linked on
5495 * css_set; otherwise, @child might change state between ->fork()
5496 * and addition to css_set.
5497 */
5498 do_each_subsys_mask(ss, i, have_fork_callback) {
5499 ss->fork(child);
5500 } while_each_subsys_mask();
5501 }
5502
5503 /**
5504 * cgroup_exit - detach cgroup from exiting task
5505 * @tsk: pointer to task_struct of exiting process
5506 *
5507 * Description: Detach cgroup from @tsk and release it.
5508 *
5509 * Note that cgroups marked notify_on_release force every task in
5510 * them to take the global cgroup_mutex mutex when exiting.
5511 * This could impact scaling on very large systems. Be reluctant to
5512 * use notify_on_release cgroups where very high task exit scaling
5513 * is required on large systems.
5514 *
5515 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5516 * call cgroup_exit() while the task is still competent to handle
5517 * notify_on_release(), then leave the task attached to the root cgroup in
5518 * each hierarchy for the remainder of its exit. No need to bother with
5519 * init_css_set refcnting. init_css_set never goes away and we can't race
5520 * with migration path - PF_EXITING is visible to migration path.
5521 */
5522 void cgroup_exit(struct task_struct *tsk)
5523 {
5524 struct cgroup_subsys *ss;
5525 struct css_set *cset;
5526 int i;
5527
5528 /*
5529 * Unlink from @tsk from its css_set. As migration path can't race
5530 * with us, we can check css_set and cg_list without synchronization.
5531 */
5532 cset = task_css_set(tsk);
5533
5534 if (!list_empty(&tsk->cg_list)) {
5535 spin_lock_irq(&css_set_lock);
5536 css_set_move_task(tsk, cset, NULL, false);
5537 cset->nr_tasks--;
5538 spin_unlock_irq(&css_set_lock);
5539 } else {
5540 get_css_set(cset);
5541 }
5542
5543 /* see cgroup_post_fork() for details */
5544 do_each_subsys_mask(ss, i, have_exit_callback) {
5545 ss->exit(tsk);
5546 } while_each_subsys_mask();
5547 }
5548
5549 void cgroup_free(struct task_struct *task)
5550 {
5551 struct css_set *cset = task_css_set(task);
5552 struct cgroup_subsys *ss;
5553 int ssid;
5554
5555 do_each_subsys_mask(ss, ssid, have_free_callback) {
5556 ss->free(task);
5557 } while_each_subsys_mask();
5558
5559 put_css_set(cset);
5560 }
5561
5562 static int __init cgroup_disable(char *str)
5563 {
5564 struct cgroup_subsys *ss;
5565 char *token;
5566 int i;
5567
5568 while ((token = strsep(&str, ",")) != NULL) {
5569 if (!*token)
5570 continue;
5571
5572 for_each_subsys(ss, i) {
5573 if (strcmp(token, ss->name) &&
5574 strcmp(token, ss->legacy_name))
5575 continue;
5576 cgroup_disable_mask |= 1 << i;
5577 }
5578 }
5579 return 1;
5580 }
5581 __setup("cgroup_disable=", cgroup_disable);
5582
5583 /**
5584 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5585 * @dentry: directory dentry of interest
5586 * @ss: subsystem of interest
5587 *
5588 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5589 * to get the corresponding css and return it. If such css doesn't exist
5590 * or can't be pinned, an ERR_PTR value is returned.
5591 */
5592 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5593 struct cgroup_subsys *ss)
5594 {
5595 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5596 struct file_system_type *s_type = dentry->d_sb->s_type;
5597 struct cgroup_subsys_state *css = NULL;
5598 struct cgroup *cgrp;
5599
5600 /* is @dentry a cgroup dir? */
5601 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5602 !kn || kernfs_type(kn) != KERNFS_DIR)
5603 return ERR_PTR(-EBADF);
5604
5605 rcu_read_lock();
5606
5607 /*
5608 * This path doesn't originate from kernfs and @kn could already
5609 * have been or be removed at any point. @kn->priv is RCU
5610 * protected for this access. See css_release_work_fn() for details.
5611 */
5612 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5613 if (cgrp)
5614 css = cgroup_css(cgrp, ss);
5615
5616 if (!css || !css_tryget_online(css))
5617 css = ERR_PTR(-ENOENT);
5618
5619 rcu_read_unlock();
5620 return css;
5621 }
5622
5623 /**
5624 * css_from_id - lookup css by id
5625 * @id: the cgroup id
5626 * @ss: cgroup subsys to be looked into
5627 *
5628 * Returns the css if there's valid one with @id, otherwise returns NULL.
5629 * Should be called under rcu_read_lock().
5630 */
5631 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5632 {
5633 WARN_ON_ONCE(!rcu_read_lock_held());
5634 return idr_find(&ss->css_idr, id);
5635 }
5636
5637 /**
5638 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5639 * @path: path on the default hierarchy
5640 *
5641 * Find the cgroup at @path on the default hierarchy, increment its
5642 * reference count and return it. Returns pointer to the found cgroup on
5643 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5644 * if @path points to a non-directory.
5645 */
5646 struct cgroup *cgroup_get_from_path(const char *path)
5647 {
5648 struct kernfs_node *kn;
5649 struct cgroup *cgrp;
5650
5651 mutex_lock(&cgroup_mutex);
5652
5653 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5654 if (kn) {
5655 if (kernfs_type(kn) == KERNFS_DIR) {
5656 cgrp = kn->priv;
5657 cgroup_get_live(cgrp);
5658 } else {
5659 cgrp = ERR_PTR(-ENOTDIR);
5660 }
5661 kernfs_put(kn);
5662 } else {
5663 cgrp = ERR_PTR(-ENOENT);
5664 }
5665
5666 mutex_unlock(&cgroup_mutex);
5667 return cgrp;
5668 }
5669 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5670
5671 /**
5672 * cgroup_get_from_fd - get a cgroup pointer from a fd
5673 * @fd: fd obtained by open(cgroup2_dir)
5674 *
5675 * Find the cgroup from a fd which should be obtained
5676 * by opening a cgroup directory. Returns a pointer to the
5677 * cgroup on success. ERR_PTR is returned if the cgroup
5678 * cannot be found.
5679 */
5680 struct cgroup *cgroup_get_from_fd(int fd)
5681 {
5682 struct cgroup_subsys_state *css;
5683 struct cgroup *cgrp;
5684 struct file *f;
5685
5686 f = fget_raw(fd);
5687 if (!f)
5688 return ERR_PTR(-EBADF);
5689
5690 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5691 fput(f);
5692 if (IS_ERR(css))
5693 return ERR_CAST(css);
5694
5695 cgrp = css->cgroup;
5696 if (!cgroup_on_dfl(cgrp)) {
5697 cgroup_put(cgrp);
5698 return ERR_PTR(-EBADF);
5699 }
5700
5701 return cgrp;
5702 }
5703 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5704
5705 /*
5706 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5707 * definition in cgroup-defs.h.
5708 */
5709 #ifdef CONFIG_SOCK_CGROUP_DATA
5710
5711 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5712
5713 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5714 static bool cgroup_sk_alloc_disabled __read_mostly;
5715
5716 void cgroup_sk_alloc_disable(void)
5717 {
5718 if (cgroup_sk_alloc_disabled)
5719 return;
5720 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5721 cgroup_sk_alloc_disabled = true;
5722 }
5723
5724 #else
5725
5726 #define cgroup_sk_alloc_disabled false
5727
5728 #endif
5729
5730 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5731 {
5732 if (cgroup_sk_alloc_disabled)
5733 return;
5734
5735 /* Socket clone path */
5736 if (skcd->val) {
5737 /*
5738 * We might be cloning a socket which is left in an empty
5739 * cgroup and the cgroup might have already been rmdir'd.
5740 * Don't use cgroup_get_live().
5741 */
5742 cgroup_get(sock_cgroup_ptr(skcd));
5743 return;
5744 }
5745
5746 rcu_read_lock();
5747
5748 while (true) {
5749 struct css_set *cset;
5750
5751 cset = task_css_set(current);
5752 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5753 skcd->val = (unsigned long)cset->dfl_cgrp;
5754 break;
5755 }
5756 cpu_relax();
5757 }
5758
5759 rcu_read_unlock();
5760 }
5761
5762 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5763 {
5764 cgroup_put(sock_cgroup_ptr(skcd));
5765 }
5766
5767 #endif /* CONFIG_SOCK_CGROUP_DATA */
5768
5769 #ifdef CONFIG_CGROUP_BPF
5770 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
5771 enum bpf_attach_type type, bool overridable)
5772 {
5773 struct cgroup *parent = cgroup_parent(cgrp);
5774 int ret;
5775
5776 mutex_lock(&cgroup_mutex);
5777 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
5778 mutex_unlock(&cgroup_mutex);
5779 return ret;
5780 }
5781 #endif /* CONFIG_CGROUP_BPF */