cpu/hotplug: Mute hotplug lockdep during init
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210 }
211
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231 }
232
233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247 }
248 #endif
249
250 static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277 #endif
278 }
279
280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287 }
288
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308 #endif
309 return 0;
310 }
311
312 static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316 {
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334 }
335
336 static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340 {
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358 }
359
360 static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365 {
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 case AUDIT_COMPARE_UID_TO_EUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 case AUDIT_COMPARE_UID_TO_SUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 case AUDIT_COMPARE_UID_TO_FSUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 case AUDIT_COMPARE_AUID_TO_SUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 case AUDIT_COMPARE_AUID_TO_FSUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 case AUDIT_COMPARE_EUID_TO_FSUID:
406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID:
409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 case AUDIT_COMPARE_GID_TO_SGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 case AUDIT_COMPARE_GID_TO_FSGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 case AUDIT_COMPARE_EGID_TO_FSGID:
421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID:
424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 default:
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
427 return 0;
428 }
429 return 0;
430 }
431
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * otherwise.
435 *
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 */
440 static int audit_filter_rules(struct task_struct *tsk,
441 struct audit_krule *rule,
442 struct audit_context *ctx,
443 struct audit_names *name,
444 enum audit_state *state,
445 bool task_creation)
446 {
447 const struct cred *cred;
448 int i, need_sid = 1;
449 u32 sid;
450 unsigned int sessionid;
451
452 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 struct audit_names *n;
457 int result = 0;
458 pid_t pid;
459
460 switch (f->type) {
461 case AUDIT_PID:
462 pid = task_tgid_nr(tsk);
463 result = audit_comparator(pid, f->op, f->val);
464 break;
465 case AUDIT_PPID:
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = task_ppid_nr(tsk);
469 result = audit_comparator(ctx->ppid, f->op, f->val);
470 }
471 break;
472 case AUDIT_EXE:
473 result = audit_exe_compare(tsk, rule->exe);
474 if (f->op == Audit_not_equal)
475 result = !result;
476 break;
477 case AUDIT_UID:
478 result = audit_uid_comparator(cred->uid, f->op, f->uid);
479 break;
480 case AUDIT_EUID:
481 result = audit_uid_comparator(cred->euid, f->op, f->uid);
482 break;
483 case AUDIT_SUID:
484 result = audit_uid_comparator(cred->suid, f->op, f->uid);
485 break;
486 case AUDIT_FSUID:
487 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
488 break;
489 case AUDIT_GID:
490 result = audit_gid_comparator(cred->gid, f->op, f->gid);
491 if (f->op == Audit_equal) {
492 if (!result)
493 result = in_group_p(f->gid);
494 } else if (f->op == Audit_not_equal) {
495 if (result)
496 result = !in_group_p(f->gid);
497 }
498 break;
499 case AUDIT_EGID:
500 result = audit_gid_comparator(cred->egid, f->op, f->gid);
501 if (f->op == Audit_equal) {
502 if (!result)
503 result = in_egroup_p(f->gid);
504 } else if (f->op == Audit_not_equal) {
505 if (result)
506 result = !in_egroup_p(f->gid);
507 }
508 break;
509 case AUDIT_SGID:
510 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
511 break;
512 case AUDIT_FSGID:
513 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
514 break;
515 case AUDIT_SESSIONID:
516 sessionid = audit_get_sessionid(current);
517 result = audit_comparator(sessionid, f->op, f->val);
518 break;
519 case AUDIT_PERS:
520 result = audit_comparator(tsk->personality, f->op, f->val);
521 break;
522 case AUDIT_ARCH:
523 if (ctx)
524 result = audit_comparator(ctx->arch, f->op, f->val);
525 break;
526
527 case AUDIT_EXIT:
528 if (ctx && ctx->return_valid)
529 result = audit_comparator(ctx->return_code, f->op, f->val);
530 break;
531 case AUDIT_SUCCESS:
532 if (ctx && ctx->return_valid) {
533 if (f->val)
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
535 else
536 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
537 }
538 break;
539 case AUDIT_DEVMAJOR:
540 if (name) {
541 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
542 audit_comparator(MAJOR(name->rdev), f->op, f->val))
543 ++result;
544 } else if (ctx) {
545 list_for_each_entry(n, &ctx->names_list, list) {
546 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
547 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
548 ++result;
549 break;
550 }
551 }
552 }
553 break;
554 case AUDIT_DEVMINOR:
555 if (name) {
556 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
557 audit_comparator(MINOR(name->rdev), f->op, f->val))
558 ++result;
559 } else if (ctx) {
560 list_for_each_entry(n, &ctx->names_list, list) {
561 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
562 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
563 ++result;
564 break;
565 }
566 }
567 }
568 break;
569 case AUDIT_INODE:
570 if (name)
571 result = audit_comparator(name->ino, f->op, f->val);
572 else if (ctx) {
573 list_for_each_entry(n, &ctx->names_list, list) {
574 if (audit_comparator(n->ino, f->op, f->val)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_OBJ_UID:
582 if (name) {
583 result = audit_uid_comparator(name->uid, f->op, f->uid);
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_OBJ_GID:
594 if (name) {
595 result = audit_gid_comparator(name->gid, f->op, f->gid);
596 } else if (ctx) {
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
605 case AUDIT_WATCH:
606 if (name)
607 result = audit_watch_compare(rule->watch, name->ino, name->dev);
608 break;
609 case AUDIT_DIR:
610 if (ctx)
611 result = match_tree_refs(ctx, rule->tree);
612 break;
613 case AUDIT_LOGINUID:
614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
615 break;
616 case AUDIT_LOGINUID_SET:
617 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
618 break;
619 case AUDIT_SUBJ_USER:
620 case AUDIT_SUBJ_ROLE:
621 case AUDIT_SUBJ_TYPE:
622 case AUDIT_SUBJ_SEN:
623 case AUDIT_SUBJ_CLR:
624 /* NOTE: this may return negative values indicating
625 a temporary error. We simply treat this as a
626 match for now to avoid losing information that
627 may be wanted. An error message will also be
628 logged upon error */
629 if (f->lsm_rule) {
630 if (need_sid) {
631 security_task_getsecid(tsk, &sid);
632 need_sid = 0;
633 }
634 result = security_audit_rule_match(sid, f->type,
635 f->op,
636 f->lsm_rule,
637 ctx);
638 }
639 break;
640 case AUDIT_OBJ_USER:
641 case AUDIT_OBJ_ROLE:
642 case AUDIT_OBJ_TYPE:
643 case AUDIT_OBJ_LEV_LOW:
644 case AUDIT_OBJ_LEV_HIGH:
645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
646 also applies here */
647 if (f->lsm_rule) {
648 /* Find files that match */
649 if (name) {
650 result = security_audit_rule_match(
651 name->osid, f->type, f->op,
652 f->lsm_rule, ctx);
653 } else if (ctx) {
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(n->osid, f->type,
656 f->op, f->lsm_rule,
657 ctx)) {
658 ++result;
659 break;
660 }
661 }
662 }
663 /* Find ipc objects that match */
664 if (!ctx || ctx->type != AUDIT_IPC)
665 break;
666 if (security_audit_rule_match(ctx->ipc.osid,
667 f->type, f->op,
668 f->lsm_rule, ctx))
669 ++result;
670 }
671 break;
672 case AUDIT_ARG0:
673 case AUDIT_ARG1:
674 case AUDIT_ARG2:
675 case AUDIT_ARG3:
676 if (ctx)
677 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
678 break;
679 case AUDIT_FILTERKEY:
680 /* ignore this field for filtering */
681 result = 1;
682 break;
683 case AUDIT_PERM:
684 result = audit_match_perm(ctx, f->val);
685 break;
686 case AUDIT_FILETYPE:
687 result = audit_match_filetype(ctx, f->val);
688 break;
689 case AUDIT_FIELD_COMPARE:
690 result = audit_field_compare(tsk, cred, f, ctx, name);
691 break;
692 }
693 if (!result)
694 return 0;
695 }
696
697 if (ctx) {
698 if (rule->prio <= ctx->prio)
699 return 0;
700 if (rule->filterkey) {
701 kfree(ctx->filterkey);
702 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
703 }
704 ctx->prio = rule->prio;
705 }
706 switch (rule->action) {
707 case AUDIT_NEVER:
708 *state = AUDIT_DISABLED;
709 break;
710 case AUDIT_ALWAYS:
711 *state = AUDIT_RECORD_CONTEXT;
712 break;
713 }
714 return 1;
715 }
716
717 /* At process creation time, we can determine if system-call auditing is
718 * completely disabled for this task. Since we only have the task
719 * structure at this point, we can only check uid and gid.
720 */
721 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
722 {
723 struct audit_entry *e;
724 enum audit_state state;
725
726 rcu_read_lock();
727 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
728 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
729 &state, true)) {
730 if (state == AUDIT_RECORD_CONTEXT)
731 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
732 rcu_read_unlock();
733 return state;
734 }
735 }
736 rcu_read_unlock();
737 return AUDIT_BUILD_CONTEXT;
738 }
739
740 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
741 {
742 int word, bit;
743
744 if (val > 0xffffffff)
745 return false;
746
747 word = AUDIT_WORD(val);
748 if (word >= AUDIT_BITMASK_SIZE)
749 return false;
750
751 bit = AUDIT_BIT(val);
752
753 return rule->mask[word] & bit;
754 }
755
756 /* At syscall entry and exit time, this filter is called if the
757 * audit_state is not low enough that auditing cannot take place, but is
758 * also not high enough that we already know we have to write an audit
759 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
760 */
761 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
762 struct audit_context *ctx,
763 struct list_head *list)
764 {
765 struct audit_entry *e;
766 enum audit_state state;
767
768 if (auditd_test_task(tsk))
769 return AUDIT_DISABLED;
770
771 rcu_read_lock();
772 if (!list_empty(list)) {
773 list_for_each_entry_rcu(e, list, list) {
774 if (audit_in_mask(&e->rule, ctx->major) &&
775 audit_filter_rules(tsk, &e->rule, ctx, NULL,
776 &state, false)) {
777 rcu_read_unlock();
778 ctx->current_state = state;
779 return state;
780 }
781 }
782 }
783 rcu_read_unlock();
784 return AUDIT_BUILD_CONTEXT;
785 }
786
787 /*
788 * Given an audit_name check the inode hash table to see if they match.
789 * Called holding the rcu read lock to protect the use of audit_inode_hash
790 */
791 static int audit_filter_inode_name(struct task_struct *tsk,
792 struct audit_names *n,
793 struct audit_context *ctx) {
794 int h = audit_hash_ino((u32)n->ino);
795 struct list_head *list = &audit_inode_hash[h];
796 struct audit_entry *e;
797 enum audit_state state;
798
799 if (list_empty(list))
800 return 0;
801
802 list_for_each_entry_rcu(e, list, list) {
803 if (audit_in_mask(&e->rule, ctx->major) &&
804 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
805 ctx->current_state = state;
806 return 1;
807 }
808 }
809
810 return 0;
811 }
812
813 /* At syscall exit time, this filter is called if any audit_names have been
814 * collected during syscall processing. We only check rules in sublists at hash
815 * buckets applicable to the inode numbers in audit_names.
816 * Regarding audit_state, same rules apply as for audit_filter_syscall().
817 */
818 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
819 {
820 struct audit_names *n;
821
822 if (auditd_test_task(tsk))
823 return;
824
825 rcu_read_lock();
826
827 list_for_each_entry(n, &ctx->names_list, list) {
828 if (audit_filter_inode_name(tsk, n, ctx))
829 break;
830 }
831 rcu_read_unlock();
832 }
833
834 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
835 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
836 int return_valid,
837 long return_code)
838 {
839 struct audit_context *context = tsk->audit_context;
840
841 if (!context)
842 return NULL;
843 context->return_valid = return_valid;
844
845 /*
846 * we need to fix up the return code in the audit logs if the actual
847 * return codes are later going to be fixed up by the arch specific
848 * signal handlers
849 *
850 * This is actually a test for:
851 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
852 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
853 *
854 * but is faster than a bunch of ||
855 */
856 if (unlikely(return_code <= -ERESTARTSYS) &&
857 (return_code >= -ERESTART_RESTARTBLOCK) &&
858 (return_code != -ENOIOCTLCMD))
859 context->return_code = -EINTR;
860 else
861 context->return_code = return_code;
862
863 if (context->in_syscall && !context->dummy) {
864 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
865 audit_filter_inodes(tsk, context);
866 }
867
868 tsk->audit_context = NULL;
869 return context;
870 }
871
872 static inline void audit_proctitle_free(struct audit_context *context)
873 {
874 kfree(context->proctitle.value);
875 context->proctitle.value = NULL;
876 context->proctitle.len = 0;
877 }
878
879 static inline void audit_free_names(struct audit_context *context)
880 {
881 struct audit_names *n, *next;
882
883 list_for_each_entry_safe(n, next, &context->names_list, list) {
884 list_del(&n->list);
885 if (n->name)
886 putname(n->name);
887 if (n->should_free)
888 kfree(n);
889 }
890 context->name_count = 0;
891 path_put(&context->pwd);
892 context->pwd.dentry = NULL;
893 context->pwd.mnt = NULL;
894 }
895
896 static inline void audit_free_aux(struct audit_context *context)
897 {
898 struct audit_aux_data *aux;
899
900 while ((aux = context->aux)) {
901 context->aux = aux->next;
902 kfree(aux);
903 }
904 while ((aux = context->aux_pids)) {
905 context->aux_pids = aux->next;
906 kfree(aux);
907 }
908 }
909
910 static inline struct audit_context *audit_alloc_context(enum audit_state state)
911 {
912 struct audit_context *context;
913
914 context = kzalloc(sizeof(*context), GFP_KERNEL);
915 if (!context)
916 return NULL;
917 context->state = state;
918 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
919 INIT_LIST_HEAD(&context->killed_trees);
920 INIT_LIST_HEAD(&context->names_list);
921 return context;
922 }
923
924 /**
925 * audit_alloc - allocate an audit context block for a task
926 * @tsk: task
927 *
928 * Filter on the task information and allocate a per-task audit context
929 * if necessary. Doing so turns on system call auditing for the
930 * specified task. This is called from copy_process, so no lock is
931 * needed.
932 */
933 int audit_alloc(struct task_struct *tsk)
934 {
935 struct audit_context *context;
936 enum audit_state state;
937 char *key = NULL;
938
939 if (likely(!audit_ever_enabled))
940 return 0; /* Return if not auditing. */
941
942 state = audit_filter_task(tsk, &key);
943 if (state == AUDIT_DISABLED) {
944 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
945 return 0;
946 }
947
948 if (!(context = audit_alloc_context(state))) {
949 kfree(key);
950 audit_log_lost("out of memory in audit_alloc");
951 return -ENOMEM;
952 }
953 context->filterkey = key;
954
955 tsk->audit_context = context;
956 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
957 return 0;
958 }
959
960 static inline void audit_free_context(struct audit_context *context)
961 {
962 audit_free_names(context);
963 unroll_tree_refs(context, NULL, 0);
964 free_tree_refs(context);
965 audit_free_aux(context);
966 kfree(context->filterkey);
967 kfree(context->sockaddr);
968 audit_proctitle_free(context);
969 kfree(context);
970 }
971
972 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
973 kuid_t auid, kuid_t uid, unsigned int sessionid,
974 u32 sid, char *comm)
975 {
976 struct audit_buffer *ab;
977 char *ctx = NULL;
978 u32 len;
979 int rc = 0;
980
981 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
982 if (!ab)
983 return rc;
984
985 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
986 from_kuid(&init_user_ns, auid),
987 from_kuid(&init_user_ns, uid), sessionid);
988 if (sid) {
989 if (security_secid_to_secctx(sid, &ctx, &len)) {
990 audit_log_format(ab, " obj=(none)");
991 rc = 1;
992 } else {
993 audit_log_format(ab, " obj=%s", ctx);
994 security_release_secctx(ctx, len);
995 }
996 }
997 audit_log_format(ab, " ocomm=");
998 audit_log_untrustedstring(ab, comm);
999 audit_log_end(ab);
1000
1001 return rc;
1002 }
1003
1004 static void audit_log_execve_info(struct audit_context *context,
1005 struct audit_buffer **ab)
1006 {
1007 long len_max;
1008 long len_rem;
1009 long len_full;
1010 long len_buf;
1011 long len_abuf = 0;
1012 long len_tmp;
1013 bool require_data;
1014 bool encode;
1015 unsigned int iter;
1016 unsigned int arg;
1017 char *buf_head;
1018 char *buf;
1019 const char __user *p = (const char __user *)current->mm->arg_start;
1020
1021 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1022 * data we put in the audit record for this argument (see the
1023 * code below) ... at this point in time 96 is plenty */
1024 char abuf[96];
1025
1026 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1027 * current value of 7500 is not as important as the fact that it
1028 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1029 * room if we go over a little bit in the logging below */
1030 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1031 len_max = MAX_EXECVE_AUDIT_LEN;
1032
1033 /* scratch buffer to hold the userspace args */
1034 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1035 if (!buf_head) {
1036 audit_panic("out of memory for argv string");
1037 return;
1038 }
1039 buf = buf_head;
1040
1041 audit_log_format(*ab, "argc=%d", context->execve.argc);
1042
1043 len_rem = len_max;
1044 len_buf = 0;
1045 len_full = 0;
1046 require_data = true;
1047 encode = false;
1048 iter = 0;
1049 arg = 0;
1050 do {
1051 /* NOTE: we don't ever want to trust this value for anything
1052 * serious, but the audit record format insists we
1053 * provide an argument length for really long arguments,
1054 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1055 * to use strncpy_from_user() to obtain this value for
1056 * recording in the log, although we don't use it
1057 * anywhere here to avoid a double-fetch problem */
1058 if (len_full == 0)
1059 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1060
1061 /* read more data from userspace */
1062 if (require_data) {
1063 /* can we make more room in the buffer? */
1064 if (buf != buf_head) {
1065 memmove(buf_head, buf, len_buf);
1066 buf = buf_head;
1067 }
1068
1069 /* fetch as much as we can of the argument */
1070 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1071 len_max - len_buf);
1072 if (len_tmp == -EFAULT) {
1073 /* unable to copy from userspace */
1074 send_sig(SIGKILL, current, 0);
1075 goto out;
1076 } else if (len_tmp == (len_max - len_buf)) {
1077 /* buffer is not large enough */
1078 require_data = true;
1079 /* NOTE: if we are going to span multiple
1080 * buffers force the encoding so we stand
1081 * a chance at a sane len_full value and
1082 * consistent record encoding */
1083 encode = true;
1084 len_full = len_full * 2;
1085 p += len_tmp;
1086 } else {
1087 require_data = false;
1088 if (!encode)
1089 encode = audit_string_contains_control(
1090 buf, len_tmp);
1091 /* try to use a trusted value for len_full */
1092 if (len_full < len_max)
1093 len_full = (encode ?
1094 len_tmp * 2 : len_tmp);
1095 p += len_tmp + 1;
1096 }
1097 len_buf += len_tmp;
1098 buf_head[len_buf] = '\0';
1099
1100 /* length of the buffer in the audit record? */
1101 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1102 }
1103
1104 /* write as much as we can to the audit log */
1105 if (len_buf > 0) {
1106 /* NOTE: some magic numbers here - basically if we
1107 * can't fit a reasonable amount of data into the
1108 * existing audit buffer, flush it and start with
1109 * a new buffer */
1110 if ((sizeof(abuf) + 8) > len_rem) {
1111 len_rem = len_max;
1112 audit_log_end(*ab);
1113 *ab = audit_log_start(context,
1114 GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 goto out;
1117 }
1118
1119 /* create the non-arg portion of the arg record */
1120 len_tmp = 0;
1121 if (require_data || (iter > 0) ||
1122 ((len_abuf + sizeof(abuf)) > len_rem)) {
1123 if (iter == 0) {
1124 len_tmp += snprintf(&abuf[len_tmp],
1125 sizeof(abuf) - len_tmp,
1126 " a%d_len=%lu",
1127 arg, len_full);
1128 }
1129 len_tmp += snprintf(&abuf[len_tmp],
1130 sizeof(abuf) - len_tmp,
1131 " a%d[%d]=", arg, iter++);
1132 } else
1133 len_tmp += snprintf(&abuf[len_tmp],
1134 sizeof(abuf) - len_tmp,
1135 " a%d=", arg);
1136 WARN_ON(len_tmp >= sizeof(abuf));
1137 abuf[sizeof(abuf) - 1] = '\0';
1138
1139 /* log the arg in the audit record */
1140 audit_log_format(*ab, "%s", abuf);
1141 len_rem -= len_tmp;
1142 len_tmp = len_buf;
1143 if (encode) {
1144 if (len_abuf > len_rem)
1145 len_tmp = len_rem / 2; /* encoding */
1146 audit_log_n_hex(*ab, buf, len_tmp);
1147 len_rem -= len_tmp * 2;
1148 len_abuf -= len_tmp * 2;
1149 } else {
1150 if (len_abuf > len_rem)
1151 len_tmp = len_rem - 2; /* quotes */
1152 audit_log_n_string(*ab, buf, len_tmp);
1153 len_rem -= len_tmp + 2;
1154 /* don't subtract the "2" because we still need
1155 * to add quotes to the remaining string */
1156 len_abuf -= len_tmp;
1157 }
1158 len_buf -= len_tmp;
1159 buf += len_tmp;
1160 }
1161
1162 /* ready to move to the next argument? */
1163 if ((len_buf == 0) && !require_data) {
1164 arg++;
1165 iter = 0;
1166 len_full = 0;
1167 require_data = true;
1168 encode = false;
1169 }
1170 } while (arg < context->execve.argc);
1171
1172 /* NOTE: the caller handles the final audit_log_end() call */
1173
1174 out:
1175 kfree(buf_head);
1176 }
1177
1178 static void show_special(struct audit_context *context, int *call_panic)
1179 {
1180 struct audit_buffer *ab;
1181 int i;
1182
1183 ab = audit_log_start(context, GFP_KERNEL, context->type);
1184 if (!ab)
1185 return;
1186
1187 switch (context->type) {
1188 case AUDIT_SOCKETCALL: {
1189 int nargs = context->socketcall.nargs;
1190 audit_log_format(ab, "nargs=%d", nargs);
1191 for (i = 0; i < nargs; i++)
1192 audit_log_format(ab, " a%d=%lx", i,
1193 context->socketcall.args[i]);
1194 break; }
1195 case AUDIT_IPC: {
1196 u32 osid = context->ipc.osid;
1197
1198 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1199 from_kuid(&init_user_ns, context->ipc.uid),
1200 from_kgid(&init_user_ns, context->ipc.gid),
1201 context->ipc.mode);
1202 if (osid) {
1203 char *ctx = NULL;
1204 u32 len;
1205 if (security_secid_to_secctx(osid, &ctx, &len)) {
1206 audit_log_format(ab, " osid=%u", osid);
1207 *call_panic = 1;
1208 } else {
1209 audit_log_format(ab, " obj=%s", ctx);
1210 security_release_secctx(ctx, len);
1211 }
1212 }
1213 if (context->ipc.has_perm) {
1214 audit_log_end(ab);
1215 ab = audit_log_start(context, GFP_KERNEL,
1216 AUDIT_IPC_SET_PERM);
1217 if (unlikely(!ab))
1218 return;
1219 audit_log_format(ab,
1220 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1221 context->ipc.qbytes,
1222 context->ipc.perm_uid,
1223 context->ipc.perm_gid,
1224 context->ipc.perm_mode);
1225 }
1226 break; }
1227 case AUDIT_MQ_OPEN:
1228 audit_log_format(ab,
1229 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1230 "mq_msgsize=%ld mq_curmsgs=%ld",
1231 context->mq_open.oflag, context->mq_open.mode,
1232 context->mq_open.attr.mq_flags,
1233 context->mq_open.attr.mq_maxmsg,
1234 context->mq_open.attr.mq_msgsize,
1235 context->mq_open.attr.mq_curmsgs);
1236 break;
1237 case AUDIT_MQ_SENDRECV:
1238 audit_log_format(ab,
1239 "mqdes=%d msg_len=%zd msg_prio=%u "
1240 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1241 context->mq_sendrecv.mqdes,
1242 context->mq_sendrecv.msg_len,
1243 context->mq_sendrecv.msg_prio,
1244 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1245 context->mq_sendrecv.abs_timeout.tv_nsec);
1246 break;
1247 case AUDIT_MQ_NOTIFY:
1248 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1249 context->mq_notify.mqdes,
1250 context->mq_notify.sigev_signo);
1251 break;
1252 case AUDIT_MQ_GETSETATTR: {
1253 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1254 audit_log_format(ab,
1255 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1256 "mq_curmsgs=%ld ",
1257 context->mq_getsetattr.mqdes,
1258 attr->mq_flags, attr->mq_maxmsg,
1259 attr->mq_msgsize, attr->mq_curmsgs);
1260 break; }
1261 case AUDIT_CAPSET:
1262 audit_log_format(ab, "pid=%d", context->capset.pid);
1263 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1264 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1265 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1266 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1267 break;
1268 case AUDIT_MMAP:
1269 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1270 context->mmap.flags);
1271 break;
1272 case AUDIT_EXECVE:
1273 audit_log_execve_info(context, &ab);
1274 break;
1275 case AUDIT_KERN_MODULE:
1276 audit_log_format(ab, "name=");
1277 if (context->module.name) {
1278 audit_log_untrustedstring(ab, context->module.name);
1279 kfree(context->module.name);
1280 } else
1281 audit_log_format(ab, "(null)");
1282
1283 break;
1284 }
1285 audit_log_end(ab);
1286 }
1287
1288 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1289 {
1290 char *end = proctitle + len - 1;
1291 while (end > proctitle && !isprint(*end))
1292 end--;
1293
1294 /* catch the case where proctitle is only 1 non-print character */
1295 len = end - proctitle + 1;
1296 len -= isprint(proctitle[len-1]) == 0;
1297 return len;
1298 }
1299
1300 static void audit_log_proctitle(struct task_struct *tsk,
1301 struct audit_context *context)
1302 {
1303 int res;
1304 char *buf;
1305 char *msg = "(null)";
1306 int len = strlen(msg);
1307 struct audit_buffer *ab;
1308
1309 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1310 if (!ab)
1311 return; /* audit_panic or being filtered */
1312
1313 audit_log_format(ab, "proctitle=");
1314
1315 /* Not cached */
1316 if (!context->proctitle.value) {
1317 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1318 if (!buf)
1319 goto out;
1320 /* Historically called this from procfs naming */
1321 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1322 if (res == 0) {
1323 kfree(buf);
1324 goto out;
1325 }
1326 res = audit_proctitle_rtrim(buf, res);
1327 if (res == 0) {
1328 kfree(buf);
1329 goto out;
1330 }
1331 context->proctitle.value = buf;
1332 context->proctitle.len = res;
1333 }
1334 msg = context->proctitle.value;
1335 len = context->proctitle.len;
1336 out:
1337 audit_log_n_untrustedstring(ab, msg, len);
1338 audit_log_end(ab);
1339 }
1340
1341 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1342 {
1343 int i, call_panic = 0;
1344 struct audit_buffer *ab;
1345 struct audit_aux_data *aux;
1346 struct audit_names *n;
1347
1348 /* tsk == current */
1349 context->personality = tsk->personality;
1350
1351 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1352 if (!ab)
1353 return; /* audit_panic has been called */
1354 audit_log_format(ab, "arch=%x syscall=%d",
1355 context->arch, context->major);
1356 if (context->personality != PER_LINUX)
1357 audit_log_format(ab, " per=%lx", context->personality);
1358 if (context->return_valid)
1359 audit_log_format(ab, " success=%s exit=%ld",
1360 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1361 context->return_code);
1362
1363 audit_log_format(ab,
1364 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1365 context->argv[0],
1366 context->argv[1],
1367 context->argv[2],
1368 context->argv[3],
1369 context->name_count);
1370
1371 audit_log_task_info(ab, tsk);
1372 audit_log_key(ab, context->filterkey);
1373 audit_log_end(ab);
1374
1375 for (aux = context->aux; aux; aux = aux->next) {
1376
1377 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1378 if (!ab)
1379 continue; /* audit_panic has been called */
1380
1381 switch (aux->type) {
1382
1383 case AUDIT_BPRM_FCAPS: {
1384 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1385 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1386 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1387 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1388 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1389 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1390 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1391 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1392 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1393 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1394 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1395 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1396 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1397 break; }
1398
1399 }
1400 audit_log_end(ab);
1401 }
1402
1403 if (context->type)
1404 show_special(context, &call_panic);
1405
1406 if (context->fds[0] >= 0) {
1407 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1408 if (ab) {
1409 audit_log_format(ab, "fd0=%d fd1=%d",
1410 context->fds[0], context->fds[1]);
1411 audit_log_end(ab);
1412 }
1413 }
1414
1415 if (context->sockaddr_len) {
1416 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1417 if (ab) {
1418 audit_log_format(ab, "saddr=");
1419 audit_log_n_hex(ab, (void *)context->sockaddr,
1420 context->sockaddr_len);
1421 audit_log_end(ab);
1422 }
1423 }
1424
1425 for (aux = context->aux_pids; aux; aux = aux->next) {
1426 struct audit_aux_data_pids *axs = (void *)aux;
1427
1428 for (i = 0; i < axs->pid_count; i++)
1429 if (audit_log_pid_context(context, axs->target_pid[i],
1430 axs->target_auid[i],
1431 axs->target_uid[i],
1432 axs->target_sessionid[i],
1433 axs->target_sid[i],
1434 axs->target_comm[i]))
1435 call_panic = 1;
1436 }
1437
1438 if (context->target_pid &&
1439 audit_log_pid_context(context, context->target_pid,
1440 context->target_auid, context->target_uid,
1441 context->target_sessionid,
1442 context->target_sid, context->target_comm))
1443 call_panic = 1;
1444
1445 if (context->pwd.dentry && context->pwd.mnt) {
1446 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1447 if (ab) {
1448 audit_log_d_path(ab, "cwd=", &context->pwd);
1449 audit_log_end(ab);
1450 }
1451 }
1452
1453 i = 0;
1454 list_for_each_entry(n, &context->names_list, list) {
1455 if (n->hidden)
1456 continue;
1457 audit_log_name(context, n, NULL, i++, &call_panic);
1458 }
1459
1460 audit_log_proctitle(tsk, context);
1461
1462 /* Send end of event record to help user space know we are finished */
1463 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1464 if (ab)
1465 audit_log_end(ab);
1466 if (call_panic)
1467 audit_panic("error converting sid to string");
1468 }
1469
1470 /**
1471 * __audit_free - free a per-task audit context
1472 * @tsk: task whose audit context block to free
1473 *
1474 * Called from copy_process and do_exit
1475 */
1476 void __audit_free(struct task_struct *tsk)
1477 {
1478 struct audit_context *context;
1479
1480 context = audit_take_context(tsk, 0, 0);
1481 if (!context)
1482 return;
1483
1484 /* Check for system calls that do not go through the exit
1485 * function (e.g., exit_group), then free context block.
1486 * We use GFP_ATOMIC here because we might be doing this
1487 * in the context of the idle thread */
1488 /* that can happen only if we are called from do_exit() */
1489 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1490 audit_log_exit(context, tsk);
1491 if (!list_empty(&context->killed_trees))
1492 audit_kill_trees(&context->killed_trees);
1493
1494 audit_free_context(context);
1495 }
1496
1497 /**
1498 * __audit_syscall_entry - fill in an audit record at syscall entry
1499 * @major: major syscall type (function)
1500 * @a1: additional syscall register 1
1501 * @a2: additional syscall register 2
1502 * @a3: additional syscall register 3
1503 * @a4: additional syscall register 4
1504 *
1505 * Fill in audit context at syscall entry. This only happens if the
1506 * audit context was created when the task was created and the state or
1507 * filters demand the audit context be built. If the state from the
1508 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1509 * then the record will be written at syscall exit time (otherwise, it
1510 * will only be written if another part of the kernel requests that it
1511 * be written).
1512 */
1513 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1514 unsigned long a3, unsigned long a4)
1515 {
1516 struct task_struct *tsk = current;
1517 struct audit_context *context = tsk->audit_context;
1518 enum audit_state state;
1519
1520 if (!context)
1521 return;
1522
1523 BUG_ON(context->in_syscall || context->name_count);
1524
1525 if (!audit_enabled)
1526 return;
1527
1528 context->arch = syscall_get_arch();
1529 context->major = major;
1530 context->argv[0] = a1;
1531 context->argv[1] = a2;
1532 context->argv[2] = a3;
1533 context->argv[3] = a4;
1534
1535 state = context->state;
1536 context->dummy = !audit_n_rules;
1537 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1538 context->prio = 0;
1539 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1540 }
1541 if (state == AUDIT_DISABLED)
1542 return;
1543
1544 context->serial = 0;
1545 context->ctime = current_kernel_time64();
1546 context->in_syscall = 1;
1547 context->current_state = state;
1548 context->ppid = 0;
1549 }
1550
1551 /**
1552 * __audit_syscall_exit - deallocate audit context after a system call
1553 * @success: success value of the syscall
1554 * @return_code: return value of the syscall
1555 *
1556 * Tear down after system call. If the audit context has been marked as
1557 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1558 * filtering, or because some other part of the kernel wrote an audit
1559 * message), then write out the syscall information. In call cases,
1560 * free the names stored from getname().
1561 */
1562 void __audit_syscall_exit(int success, long return_code)
1563 {
1564 struct task_struct *tsk = current;
1565 struct audit_context *context;
1566
1567 if (success)
1568 success = AUDITSC_SUCCESS;
1569 else
1570 success = AUDITSC_FAILURE;
1571
1572 context = audit_take_context(tsk, success, return_code);
1573 if (!context)
1574 return;
1575
1576 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1577 audit_log_exit(context, tsk);
1578
1579 context->in_syscall = 0;
1580 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1581
1582 if (!list_empty(&context->killed_trees))
1583 audit_kill_trees(&context->killed_trees);
1584
1585 audit_free_names(context);
1586 unroll_tree_refs(context, NULL, 0);
1587 audit_free_aux(context);
1588 context->aux = NULL;
1589 context->aux_pids = NULL;
1590 context->target_pid = 0;
1591 context->target_sid = 0;
1592 context->sockaddr_len = 0;
1593 context->type = 0;
1594 context->fds[0] = -1;
1595 if (context->state != AUDIT_RECORD_CONTEXT) {
1596 kfree(context->filterkey);
1597 context->filterkey = NULL;
1598 }
1599 tsk->audit_context = context;
1600 }
1601
1602 static inline void handle_one(const struct inode *inode)
1603 {
1604 #ifdef CONFIG_AUDIT_TREE
1605 struct audit_context *context;
1606 struct audit_tree_refs *p;
1607 struct audit_chunk *chunk;
1608 int count;
1609 if (likely(!inode->i_fsnotify_marks))
1610 return;
1611 context = current->audit_context;
1612 p = context->trees;
1613 count = context->tree_count;
1614 rcu_read_lock();
1615 chunk = audit_tree_lookup(inode);
1616 rcu_read_unlock();
1617 if (!chunk)
1618 return;
1619 if (likely(put_tree_ref(context, chunk)))
1620 return;
1621 if (unlikely(!grow_tree_refs(context))) {
1622 pr_warn("out of memory, audit has lost a tree reference\n");
1623 audit_set_auditable(context);
1624 audit_put_chunk(chunk);
1625 unroll_tree_refs(context, p, count);
1626 return;
1627 }
1628 put_tree_ref(context, chunk);
1629 #endif
1630 }
1631
1632 static void handle_path(const struct dentry *dentry)
1633 {
1634 #ifdef CONFIG_AUDIT_TREE
1635 struct audit_context *context;
1636 struct audit_tree_refs *p;
1637 const struct dentry *d, *parent;
1638 struct audit_chunk *drop;
1639 unsigned long seq;
1640 int count;
1641
1642 context = current->audit_context;
1643 p = context->trees;
1644 count = context->tree_count;
1645 retry:
1646 drop = NULL;
1647 d = dentry;
1648 rcu_read_lock();
1649 seq = read_seqbegin(&rename_lock);
1650 for(;;) {
1651 struct inode *inode = d_backing_inode(d);
1652 if (inode && unlikely(inode->i_fsnotify_marks)) {
1653 struct audit_chunk *chunk;
1654 chunk = audit_tree_lookup(inode);
1655 if (chunk) {
1656 if (unlikely(!put_tree_ref(context, chunk))) {
1657 drop = chunk;
1658 break;
1659 }
1660 }
1661 }
1662 parent = d->d_parent;
1663 if (parent == d)
1664 break;
1665 d = parent;
1666 }
1667 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1668 rcu_read_unlock();
1669 if (!drop) {
1670 /* just a race with rename */
1671 unroll_tree_refs(context, p, count);
1672 goto retry;
1673 }
1674 audit_put_chunk(drop);
1675 if (grow_tree_refs(context)) {
1676 /* OK, got more space */
1677 unroll_tree_refs(context, p, count);
1678 goto retry;
1679 }
1680 /* too bad */
1681 pr_warn("out of memory, audit has lost a tree reference\n");
1682 unroll_tree_refs(context, p, count);
1683 audit_set_auditable(context);
1684 return;
1685 }
1686 rcu_read_unlock();
1687 #endif
1688 }
1689
1690 static struct audit_names *audit_alloc_name(struct audit_context *context,
1691 unsigned char type)
1692 {
1693 struct audit_names *aname;
1694
1695 if (context->name_count < AUDIT_NAMES) {
1696 aname = &context->preallocated_names[context->name_count];
1697 memset(aname, 0, sizeof(*aname));
1698 } else {
1699 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1700 if (!aname)
1701 return NULL;
1702 aname->should_free = true;
1703 }
1704
1705 aname->ino = AUDIT_INO_UNSET;
1706 aname->type = type;
1707 list_add_tail(&aname->list, &context->names_list);
1708
1709 context->name_count++;
1710 return aname;
1711 }
1712
1713 /**
1714 * __audit_reusename - fill out filename with info from existing entry
1715 * @uptr: userland ptr to pathname
1716 *
1717 * Search the audit_names list for the current audit context. If there is an
1718 * existing entry with a matching "uptr" then return the filename
1719 * associated with that audit_name. If not, return NULL.
1720 */
1721 struct filename *
1722 __audit_reusename(const __user char *uptr)
1723 {
1724 struct audit_context *context = current->audit_context;
1725 struct audit_names *n;
1726
1727 list_for_each_entry(n, &context->names_list, list) {
1728 if (!n->name)
1729 continue;
1730 if (n->name->uptr == uptr) {
1731 n->name->refcnt++;
1732 return n->name;
1733 }
1734 }
1735 return NULL;
1736 }
1737
1738 /**
1739 * __audit_getname - add a name to the list
1740 * @name: name to add
1741 *
1742 * Add a name to the list of audit names for this context.
1743 * Called from fs/namei.c:getname().
1744 */
1745 void __audit_getname(struct filename *name)
1746 {
1747 struct audit_context *context = current->audit_context;
1748 struct audit_names *n;
1749
1750 if (!context->in_syscall)
1751 return;
1752
1753 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1754 if (!n)
1755 return;
1756
1757 n->name = name;
1758 n->name_len = AUDIT_NAME_FULL;
1759 name->aname = n;
1760 name->refcnt++;
1761
1762 if (!context->pwd.dentry)
1763 get_fs_pwd(current->fs, &context->pwd);
1764 }
1765
1766 /**
1767 * __audit_inode - store the inode and device from a lookup
1768 * @name: name being audited
1769 * @dentry: dentry being audited
1770 * @flags: attributes for this particular entry
1771 */
1772 void __audit_inode(struct filename *name, const struct dentry *dentry,
1773 unsigned int flags)
1774 {
1775 struct audit_context *context = current->audit_context;
1776 struct inode *inode = d_backing_inode(dentry);
1777 struct audit_names *n;
1778 bool parent = flags & AUDIT_INODE_PARENT;
1779
1780 if (!context->in_syscall)
1781 return;
1782
1783 if (!name)
1784 goto out_alloc;
1785
1786 /*
1787 * If we have a pointer to an audit_names entry already, then we can
1788 * just use it directly if the type is correct.
1789 */
1790 n = name->aname;
1791 if (n) {
1792 if (parent) {
1793 if (n->type == AUDIT_TYPE_PARENT ||
1794 n->type == AUDIT_TYPE_UNKNOWN)
1795 goto out;
1796 } else {
1797 if (n->type != AUDIT_TYPE_PARENT)
1798 goto out;
1799 }
1800 }
1801
1802 list_for_each_entry_reverse(n, &context->names_list, list) {
1803 if (n->ino) {
1804 /* valid inode number, use that for the comparison */
1805 if (n->ino != inode->i_ino ||
1806 n->dev != inode->i_sb->s_dev)
1807 continue;
1808 } else if (n->name) {
1809 /* inode number has not been set, check the name */
1810 if (strcmp(n->name->name, name->name))
1811 continue;
1812 } else
1813 /* no inode and no name (?!) ... this is odd ... */
1814 continue;
1815
1816 /* match the correct record type */
1817 if (parent) {
1818 if (n->type == AUDIT_TYPE_PARENT ||
1819 n->type == AUDIT_TYPE_UNKNOWN)
1820 goto out;
1821 } else {
1822 if (n->type != AUDIT_TYPE_PARENT)
1823 goto out;
1824 }
1825 }
1826
1827 out_alloc:
1828 /* unable to find an entry with both a matching name and type */
1829 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1830 if (!n)
1831 return;
1832 if (name) {
1833 n->name = name;
1834 name->refcnt++;
1835 }
1836
1837 out:
1838 if (parent) {
1839 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1840 n->type = AUDIT_TYPE_PARENT;
1841 if (flags & AUDIT_INODE_HIDDEN)
1842 n->hidden = true;
1843 } else {
1844 n->name_len = AUDIT_NAME_FULL;
1845 n->type = AUDIT_TYPE_NORMAL;
1846 }
1847 handle_path(dentry);
1848 audit_copy_inode(n, dentry, inode);
1849 }
1850
1851 void __audit_file(const struct file *file)
1852 {
1853 __audit_inode(NULL, file->f_path.dentry, 0);
1854 }
1855
1856 /**
1857 * __audit_inode_child - collect inode info for created/removed objects
1858 * @parent: inode of dentry parent
1859 * @dentry: dentry being audited
1860 * @type: AUDIT_TYPE_* value that we're looking for
1861 *
1862 * For syscalls that create or remove filesystem objects, audit_inode
1863 * can only collect information for the filesystem object's parent.
1864 * This call updates the audit context with the child's information.
1865 * Syscalls that create a new filesystem object must be hooked after
1866 * the object is created. Syscalls that remove a filesystem object
1867 * must be hooked prior, in order to capture the target inode during
1868 * unsuccessful attempts.
1869 */
1870 void __audit_inode_child(struct inode *parent,
1871 const struct dentry *dentry,
1872 const unsigned char type)
1873 {
1874 struct audit_context *context = current->audit_context;
1875 struct inode *inode = d_backing_inode(dentry);
1876 const char *dname = dentry->d_name.name;
1877 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1878
1879 if (!context->in_syscall)
1880 return;
1881
1882 if (inode)
1883 handle_one(inode);
1884
1885 /* look for a parent entry first */
1886 list_for_each_entry(n, &context->names_list, list) {
1887 if (!n->name ||
1888 (n->type != AUDIT_TYPE_PARENT &&
1889 n->type != AUDIT_TYPE_UNKNOWN))
1890 continue;
1891
1892 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1893 !audit_compare_dname_path(dname,
1894 n->name->name, n->name_len)) {
1895 if (n->type == AUDIT_TYPE_UNKNOWN)
1896 n->type = AUDIT_TYPE_PARENT;
1897 found_parent = n;
1898 break;
1899 }
1900 }
1901
1902 /* is there a matching child entry? */
1903 list_for_each_entry(n, &context->names_list, list) {
1904 /* can only match entries that have a name */
1905 if (!n->name ||
1906 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1907 continue;
1908
1909 if (!strcmp(dname, n->name->name) ||
1910 !audit_compare_dname_path(dname, n->name->name,
1911 found_parent ?
1912 found_parent->name_len :
1913 AUDIT_NAME_FULL)) {
1914 if (n->type == AUDIT_TYPE_UNKNOWN)
1915 n->type = type;
1916 found_child = n;
1917 break;
1918 }
1919 }
1920
1921 if (!found_parent) {
1922 /* create a new, "anonymous" parent record */
1923 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1924 if (!n)
1925 return;
1926 audit_copy_inode(n, NULL, parent);
1927 }
1928
1929 if (!found_child) {
1930 found_child = audit_alloc_name(context, type);
1931 if (!found_child)
1932 return;
1933
1934 /* Re-use the name belonging to the slot for a matching parent
1935 * directory. All names for this context are relinquished in
1936 * audit_free_names() */
1937 if (found_parent) {
1938 found_child->name = found_parent->name;
1939 found_child->name_len = AUDIT_NAME_FULL;
1940 found_child->name->refcnt++;
1941 }
1942 }
1943
1944 if (inode)
1945 audit_copy_inode(found_child, dentry, inode);
1946 else
1947 found_child->ino = AUDIT_INO_UNSET;
1948 }
1949 EXPORT_SYMBOL_GPL(__audit_inode_child);
1950
1951 /**
1952 * auditsc_get_stamp - get local copies of audit_context values
1953 * @ctx: audit_context for the task
1954 * @t: timespec64 to store time recorded in the audit_context
1955 * @serial: serial value that is recorded in the audit_context
1956 *
1957 * Also sets the context as auditable.
1958 */
1959 int auditsc_get_stamp(struct audit_context *ctx,
1960 struct timespec64 *t, unsigned int *serial)
1961 {
1962 if (!ctx->in_syscall)
1963 return 0;
1964 if (!ctx->serial)
1965 ctx->serial = audit_serial();
1966 t->tv_sec = ctx->ctime.tv_sec;
1967 t->tv_nsec = ctx->ctime.tv_nsec;
1968 *serial = ctx->serial;
1969 if (!ctx->prio) {
1970 ctx->prio = 1;
1971 ctx->current_state = AUDIT_RECORD_CONTEXT;
1972 }
1973 return 1;
1974 }
1975
1976 /* global counter which is incremented every time something logs in */
1977 static atomic_t session_id = ATOMIC_INIT(0);
1978
1979 static int audit_set_loginuid_perm(kuid_t loginuid)
1980 {
1981 /* if we are unset, we don't need privs */
1982 if (!audit_loginuid_set(current))
1983 return 0;
1984 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1985 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1986 return -EPERM;
1987 /* it is set, you need permission */
1988 if (!capable(CAP_AUDIT_CONTROL))
1989 return -EPERM;
1990 /* reject if this is not an unset and we don't allow that */
1991 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1992 return -EPERM;
1993 return 0;
1994 }
1995
1996 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1997 unsigned int oldsessionid, unsigned int sessionid,
1998 int rc)
1999 {
2000 struct audit_buffer *ab;
2001 uid_t uid, oldloginuid, loginuid;
2002 struct tty_struct *tty;
2003
2004 if (!audit_enabled)
2005 return;
2006
2007 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2008 if (!ab)
2009 return;
2010
2011 uid = from_kuid(&init_user_ns, task_uid(current));
2012 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2013 loginuid = from_kuid(&init_user_ns, kloginuid),
2014 tty = audit_get_tty(current);
2015
2016 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2017 audit_log_task_context(ab);
2018 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2019 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2020 oldsessionid, sessionid, !rc);
2021 audit_put_tty(tty);
2022 audit_log_end(ab);
2023 }
2024
2025 /**
2026 * audit_set_loginuid - set current task's audit_context loginuid
2027 * @loginuid: loginuid value
2028 *
2029 * Returns 0.
2030 *
2031 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2032 */
2033 int audit_set_loginuid(kuid_t loginuid)
2034 {
2035 struct task_struct *task = current;
2036 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2037 kuid_t oldloginuid;
2038 int rc;
2039
2040 oldloginuid = audit_get_loginuid(current);
2041 oldsessionid = audit_get_sessionid(current);
2042
2043 rc = audit_set_loginuid_perm(loginuid);
2044 if (rc)
2045 goto out;
2046
2047 /* are we setting or clearing? */
2048 if (uid_valid(loginuid)) {
2049 sessionid = (unsigned int)atomic_inc_return(&session_id);
2050 if (unlikely(sessionid == (unsigned int)-1))
2051 sessionid = (unsigned int)atomic_inc_return(&session_id);
2052 }
2053
2054 task->sessionid = sessionid;
2055 task->loginuid = loginuid;
2056 out:
2057 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2058 return rc;
2059 }
2060
2061 /**
2062 * __audit_mq_open - record audit data for a POSIX MQ open
2063 * @oflag: open flag
2064 * @mode: mode bits
2065 * @attr: queue attributes
2066 *
2067 */
2068 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2069 {
2070 struct audit_context *context = current->audit_context;
2071
2072 if (attr)
2073 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2074 else
2075 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2076
2077 context->mq_open.oflag = oflag;
2078 context->mq_open.mode = mode;
2079
2080 context->type = AUDIT_MQ_OPEN;
2081 }
2082
2083 /**
2084 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2085 * @mqdes: MQ descriptor
2086 * @msg_len: Message length
2087 * @msg_prio: Message priority
2088 * @abs_timeout: Message timeout in absolute time
2089 *
2090 */
2091 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2092 const struct timespec64 *abs_timeout)
2093 {
2094 struct audit_context *context = current->audit_context;
2095 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2096
2097 if (abs_timeout)
2098 memcpy(p, abs_timeout, sizeof(*p));
2099 else
2100 memset(p, 0, sizeof(*p));
2101
2102 context->mq_sendrecv.mqdes = mqdes;
2103 context->mq_sendrecv.msg_len = msg_len;
2104 context->mq_sendrecv.msg_prio = msg_prio;
2105
2106 context->type = AUDIT_MQ_SENDRECV;
2107 }
2108
2109 /**
2110 * __audit_mq_notify - record audit data for a POSIX MQ notify
2111 * @mqdes: MQ descriptor
2112 * @notification: Notification event
2113 *
2114 */
2115
2116 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2117 {
2118 struct audit_context *context = current->audit_context;
2119
2120 if (notification)
2121 context->mq_notify.sigev_signo = notification->sigev_signo;
2122 else
2123 context->mq_notify.sigev_signo = 0;
2124
2125 context->mq_notify.mqdes = mqdes;
2126 context->type = AUDIT_MQ_NOTIFY;
2127 }
2128
2129 /**
2130 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2131 * @mqdes: MQ descriptor
2132 * @mqstat: MQ flags
2133 *
2134 */
2135 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2136 {
2137 struct audit_context *context = current->audit_context;
2138 context->mq_getsetattr.mqdes = mqdes;
2139 context->mq_getsetattr.mqstat = *mqstat;
2140 context->type = AUDIT_MQ_GETSETATTR;
2141 }
2142
2143 /**
2144 * __audit_ipc_obj - record audit data for ipc object
2145 * @ipcp: ipc permissions
2146 *
2147 */
2148 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2149 {
2150 struct audit_context *context = current->audit_context;
2151 context->ipc.uid = ipcp->uid;
2152 context->ipc.gid = ipcp->gid;
2153 context->ipc.mode = ipcp->mode;
2154 context->ipc.has_perm = 0;
2155 security_ipc_getsecid(ipcp, &context->ipc.osid);
2156 context->type = AUDIT_IPC;
2157 }
2158
2159 /**
2160 * __audit_ipc_set_perm - record audit data for new ipc permissions
2161 * @qbytes: msgq bytes
2162 * @uid: msgq user id
2163 * @gid: msgq group id
2164 * @mode: msgq mode (permissions)
2165 *
2166 * Called only after audit_ipc_obj().
2167 */
2168 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2169 {
2170 struct audit_context *context = current->audit_context;
2171
2172 context->ipc.qbytes = qbytes;
2173 context->ipc.perm_uid = uid;
2174 context->ipc.perm_gid = gid;
2175 context->ipc.perm_mode = mode;
2176 context->ipc.has_perm = 1;
2177 }
2178
2179 void __audit_bprm(struct linux_binprm *bprm)
2180 {
2181 struct audit_context *context = current->audit_context;
2182
2183 context->type = AUDIT_EXECVE;
2184 context->execve.argc = bprm->argc;
2185 }
2186
2187
2188 /**
2189 * __audit_socketcall - record audit data for sys_socketcall
2190 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2191 * @args: args array
2192 *
2193 */
2194 int __audit_socketcall(int nargs, unsigned long *args)
2195 {
2196 struct audit_context *context = current->audit_context;
2197
2198 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2199 return -EINVAL;
2200 context->type = AUDIT_SOCKETCALL;
2201 context->socketcall.nargs = nargs;
2202 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2203 return 0;
2204 }
2205
2206 /**
2207 * __audit_fd_pair - record audit data for pipe and socketpair
2208 * @fd1: the first file descriptor
2209 * @fd2: the second file descriptor
2210 *
2211 */
2212 void __audit_fd_pair(int fd1, int fd2)
2213 {
2214 struct audit_context *context = current->audit_context;
2215 context->fds[0] = fd1;
2216 context->fds[1] = fd2;
2217 }
2218
2219 /**
2220 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2221 * @len: data length in user space
2222 * @a: data address in kernel space
2223 *
2224 * Returns 0 for success or NULL context or < 0 on error.
2225 */
2226 int __audit_sockaddr(int len, void *a)
2227 {
2228 struct audit_context *context = current->audit_context;
2229
2230 if (!context->sockaddr) {
2231 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2232 if (!p)
2233 return -ENOMEM;
2234 context->sockaddr = p;
2235 }
2236
2237 context->sockaddr_len = len;
2238 memcpy(context->sockaddr, a, len);
2239 return 0;
2240 }
2241
2242 void __audit_ptrace(struct task_struct *t)
2243 {
2244 struct audit_context *context = current->audit_context;
2245
2246 context->target_pid = task_tgid_nr(t);
2247 context->target_auid = audit_get_loginuid(t);
2248 context->target_uid = task_uid(t);
2249 context->target_sessionid = audit_get_sessionid(t);
2250 security_task_getsecid(t, &context->target_sid);
2251 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2252 }
2253
2254 /**
2255 * audit_signal_info - record signal info for shutting down audit subsystem
2256 * @sig: signal value
2257 * @t: task being signaled
2258 *
2259 * If the audit subsystem is being terminated, record the task (pid)
2260 * and uid that is doing that.
2261 */
2262 int audit_signal_info(int sig, struct task_struct *t)
2263 {
2264 struct audit_aux_data_pids *axp;
2265 struct task_struct *tsk = current;
2266 struct audit_context *ctx = tsk->audit_context;
2267 kuid_t uid = current_uid(), t_uid = task_uid(t);
2268
2269 if (auditd_test_task(t) &&
2270 (sig == SIGTERM || sig == SIGHUP ||
2271 sig == SIGUSR1 || sig == SIGUSR2)) {
2272 audit_sig_pid = task_tgid_nr(tsk);
2273 if (uid_valid(tsk->loginuid))
2274 audit_sig_uid = tsk->loginuid;
2275 else
2276 audit_sig_uid = uid;
2277 security_task_getsecid(tsk, &audit_sig_sid);
2278 }
2279
2280 if (!audit_signals || audit_dummy_context())
2281 return 0;
2282
2283 /* optimize the common case by putting first signal recipient directly
2284 * in audit_context */
2285 if (!ctx->target_pid) {
2286 ctx->target_pid = task_tgid_nr(t);
2287 ctx->target_auid = audit_get_loginuid(t);
2288 ctx->target_uid = t_uid;
2289 ctx->target_sessionid = audit_get_sessionid(t);
2290 security_task_getsecid(t, &ctx->target_sid);
2291 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2292 return 0;
2293 }
2294
2295 axp = (void *)ctx->aux_pids;
2296 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2297 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2298 if (!axp)
2299 return -ENOMEM;
2300
2301 axp->d.type = AUDIT_OBJ_PID;
2302 axp->d.next = ctx->aux_pids;
2303 ctx->aux_pids = (void *)axp;
2304 }
2305 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2306
2307 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2308 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2309 axp->target_uid[axp->pid_count] = t_uid;
2310 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2311 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2312 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2313 axp->pid_count++;
2314
2315 return 0;
2316 }
2317
2318 /**
2319 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2320 * @bprm: pointer to the bprm being processed
2321 * @new: the proposed new credentials
2322 * @old: the old credentials
2323 *
2324 * Simply check if the proc already has the caps given by the file and if not
2325 * store the priv escalation info for later auditing at the end of the syscall
2326 *
2327 * -Eric
2328 */
2329 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2330 const struct cred *new, const struct cred *old)
2331 {
2332 struct audit_aux_data_bprm_fcaps *ax;
2333 struct audit_context *context = current->audit_context;
2334 struct cpu_vfs_cap_data vcaps;
2335
2336 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2337 if (!ax)
2338 return -ENOMEM;
2339
2340 ax->d.type = AUDIT_BPRM_FCAPS;
2341 ax->d.next = context->aux;
2342 context->aux = (void *)ax;
2343
2344 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2345
2346 ax->fcap.permitted = vcaps.permitted;
2347 ax->fcap.inheritable = vcaps.inheritable;
2348 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2349 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2350
2351 ax->old_pcap.permitted = old->cap_permitted;
2352 ax->old_pcap.inheritable = old->cap_inheritable;
2353 ax->old_pcap.effective = old->cap_effective;
2354 ax->old_pcap.ambient = old->cap_ambient;
2355
2356 ax->new_pcap.permitted = new->cap_permitted;
2357 ax->new_pcap.inheritable = new->cap_inheritable;
2358 ax->new_pcap.effective = new->cap_effective;
2359 ax->new_pcap.ambient = new->cap_ambient;
2360 return 0;
2361 }
2362
2363 /**
2364 * __audit_log_capset - store information about the arguments to the capset syscall
2365 * @new: the new credentials
2366 * @old: the old (current) credentials
2367 *
2368 * Record the arguments userspace sent to sys_capset for later printing by the
2369 * audit system if applicable
2370 */
2371 void __audit_log_capset(const struct cred *new, const struct cred *old)
2372 {
2373 struct audit_context *context = current->audit_context;
2374 context->capset.pid = task_tgid_nr(current);
2375 context->capset.cap.effective = new->cap_effective;
2376 context->capset.cap.inheritable = new->cap_effective;
2377 context->capset.cap.permitted = new->cap_permitted;
2378 context->capset.cap.ambient = new->cap_ambient;
2379 context->type = AUDIT_CAPSET;
2380 }
2381
2382 void __audit_mmap_fd(int fd, int flags)
2383 {
2384 struct audit_context *context = current->audit_context;
2385 context->mmap.fd = fd;
2386 context->mmap.flags = flags;
2387 context->type = AUDIT_MMAP;
2388 }
2389
2390 void __audit_log_kern_module(char *name)
2391 {
2392 struct audit_context *context = current->audit_context;
2393
2394 context->module.name = kstrdup(name, GFP_KERNEL);
2395 if (!context->module.name)
2396 audit_log_lost("out of memory in __audit_log_kern_module");
2397 context->type = AUDIT_KERN_MODULE;
2398 }
2399
2400 static void audit_log_task(struct audit_buffer *ab)
2401 {
2402 kuid_t auid, uid;
2403 kgid_t gid;
2404 unsigned int sessionid;
2405 char comm[sizeof(current->comm)];
2406
2407 auid = audit_get_loginuid(current);
2408 sessionid = audit_get_sessionid(current);
2409 current_uid_gid(&uid, &gid);
2410
2411 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2412 from_kuid(&init_user_ns, auid),
2413 from_kuid(&init_user_ns, uid),
2414 from_kgid(&init_user_ns, gid),
2415 sessionid);
2416 audit_log_task_context(ab);
2417 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2418 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2419 audit_log_d_path_exe(ab, current->mm);
2420 }
2421
2422 /**
2423 * audit_core_dumps - record information about processes that end abnormally
2424 * @signr: signal value
2425 *
2426 * If a process ends with a core dump, something fishy is going on and we
2427 * should record the event for investigation.
2428 */
2429 void audit_core_dumps(long signr)
2430 {
2431 struct audit_buffer *ab;
2432
2433 if (!audit_enabled)
2434 return;
2435
2436 if (signr == SIGQUIT) /* don't care for those */
2437 return;
2438
2439 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2440 if (unlikely(!ab))
2441 return;
2442 audit_log_task(ab);
2443 audit_log_format(ab, " sig=%ld res=1", signr);
2444 audit_log_end(ab);
2445 }
2446
2447 void __audit_seccomp(unsigned long syscall, long signr, int code)
2448 {
2449 struct audit_buffer *ab;
2450
2451 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2452 if (unlikely(!ab))
2453 return;
2454 audit_log_task(ab);
2455 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2456 signr, syscall_get_arch(), syscall,
2457 in_compat_syscall(), KSTK_EIP(current), code);
2458 audit_log_end(ab);
2459 }
2460
2461 struct list_head *audit_killed_trees(void)
2462 {
2463 struct audit_context *ctx = current->audit_context;
2464 if (likely(!ctx || !ctx->in_syscall))
2465 return NULL;
2466 return &ctx->killed_trees;
2467 }