Merge 4.14.23 into android-4.14
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39
40
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 "sb_writers",
46 "sb_pagefaults",
47 "sb_internal",
48 };
49
50 /*
51 * One thing we have to be careful of with a per-sb shrinker is that we don't
52 * drop the last active reference to the superblock from within the shrinker.
53 * If that happens we could trigger unregistering the shrinker from within the
54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55 * take a passive reference to the superblock to avoid this from occurring.
56 */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 struct shrink_control *sc)
59 {
60 struct super_block *sb;
61 long fs_objects = 0;
62 long total_objects;
63 long freed = 0;
64 long dentries;
65 long inodes;
66
67 sb = container_of(shrink, struct super_block, s_shrink);
68
69 /*
70 * Deadlock avoidance. We may hold various FS locks, and we don't want
71 * to recurse into the FS that called us in clear_inode() and friends..
72 */
73 if (!(sc->gfp_mask & __GFP_FS))
74 return SHRINK_STOP;
75
76 if (!trylock_super(sb))
77 return SHRINK_STOP;
78
79 if (sb->s_op->nr_cached_objects)
80 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81
82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 total_objects = dentries + inodes + fs_objects + 1;
85 if (!total_objects)
86 total_objects = 1;
87
88 /* proportion the scan between the caches */
89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92
93 /*
94 * prune the dcache first as the icache is pinned by it, then
95 * prune the icache, followed by the filesystem specific caches
96 *
97 * Ensure that we always scan at least one object - memcg kmem
98 * accounting uses this to fully empty the caches.
99 */
100 sc->nr_to_scan = dentries + 1;
101 freed = prune_dcache_sb(sb, sc);
102 sc->nr_to_scan = inodes + 1;
103 freed += prune_icache_sb(sb, sc);
104
105 if (fs_objects) {
106 sc->nr_to_scan = fs_objects + 1;
107 freed += sb->s_op->free_cached_objects(sb, sc);
108 }
109
110 up_read(&sb->s_umount);
111 return freed;
112 }
113
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 struct shrink_control *sc)
116 {
117 struct super_block *sb;
118 long total_objects = 0;
119
120 sb = container_of(shrink, struct super_block, s_shrink);
121
122 /*
123 * Don't call trylock_super as it is a potential
124 * scalability bottleneck. The counts could get updated
125 * between super_cache_count and super_cache_scan anyway.
126 * Call to super_cache_count with shrinker_rwsem held
127 * ensures the safety of call to list_lru_shrink_count() and
128 * s_op->nr_cached_objects().
129 */
130 if (sb->s_op && sb->s_op->nr_cached_objects)
131 total_objects = sb->s_op->nr_cached_objects(sb, sc);
132
133 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135
136 total_objects = vfs_pressure_ratio(total_objects);
137 return total_objects;
138 }
139
140 static void destroy_super_work(struct work_struct *work)
141 {
142 struct super_block *s = container_of(work, struct super_block,
143 destroy_work);
144 int i;
145
146 for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 kfree(s);
149 }
150
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 struct super_block *s = container_of(head, struct super_block, rcu);
154 INIT_WORK(&s->destroy_work, destroy_super_work);
155 schedule_work(&s->destroy_work);
156 }
157
158 /**
159 * destroy_super - frees a superblock
160 * @s: superblock to free
161 *
162 * Frees a superblock.
163 */
164 static void destroy_super(struct super_block *s)
165 {
166 list_lru_destroy(&s->s_dentry_lru);
167 list_lru_destroy(&s->s_inode_lru);
168 security_sb_free(s);
169 WARN_ON(!list_empty(&s->s_mounts));
170 put_user_ns(s->s_user_ns);
171 kfree(s->s_subtype);
172 call_rcu(&s->rcu, destroy_super_rcu);
173 }
174
175 /**
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
180 *
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
183 */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 struct user_namespace *user_ns)
186 {
187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
188 static const struct super_operations default_op;
189 int i;
190
191 if (!s)
192 return NULL;
193
194 INIT_LIST_HEAD(&s->s_mounts);
195 s->s_user_ns = get_user_ns(user_ns);
196
197 if (security_sb_alloc(s))
198 goto fail;
199
200 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 sb_writers_name[i],
203 &type->s_writers_key[i]))
204 goto fail;
205 }
206 init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 s->s_bdi = &noop_backing_dev_info;
208 s->s_flags = flags;
209 if (s->s_user_ns != &init_user_ns)
210 s->s_iflags |= SB_I_NODEV;
211 INIT_HLIST_NODE(&s->s_instances);
212 INIT_HLIST_BL_HEAD(&s->s_anon);
213 mutex_init(&s->s_sync_lock);
214 INIT_LIST_HEAD(&s->s_inodes);
215 spin_lock_init(&s->s_inode_list_lock);
216 INIT_LIST_HEAD(&s->s_inodes_wb);
217 spin_lock_init(&s->s_inode_wblist_lock);
218
219 if (list_lru_init_memcg(&s->s_dentry_lru))
220 goto fail;
221 if (list_lru_init_memcg(&s->s_inode_lru))
222 goto fail;
223
224 init_rwsem(&s->s_umount);
225 lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 /*
227 * sget() can have s_umount recursion.
228 *
229 * When it cannot find a suitable sb, it allocates a new
230 * one (this one), and tries again to find a suitable old
231 * one.
232 *
233 * In case that succeeds, it will acquire the s_umount
234 * lock of the old one. Since these are clearly distrinct
235 * locks, and this object isn't exposed yet, there's no
236 * risk of deadlocks.
237 *
238 * Annotate this by putting this lock in a different
239 * subclass.
240 */
241 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 s->s_count = 1;
243 atomic_set(&s->s_active, 1);
244 mutex_init(&s->s_vfs_rename_mutex);
245 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 init_rwsem(&s->s_dquot.dqio_sem);
247 s->s_maxbytes = MAX_NON_LFS;
248 s->s_op = &default_op;
249 s->s_time_gran = 1000000000;
250 s->cleancache_poolid = CLEANCACHE_NO_POOL;
251
252 s->s_shrink.seeks = DEFAULT_SEEKS;
253 s->s_shrink.scan_objects = super_cache_scan;
254 s->s_shrink.count_objects = super_cache_count;
255 s->s_shrink.batch = 1024;
256 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
257 return s;
258
259 fail:
260 destroy_super(s);
261 return NULL;
262 }
263
264 /* Superblock refcounting */
265
266 /*
267 * Drop a superblock's refcount. The caller must hold sb_lock.
268 */
269 static void __put_super(struct super_block *sb)
270 {
271 if (!--sb->s_count) {
272 list_del_init(&sb->s_list);
273 destroy_super(sb);
274 }
275 }
276
277 /**
278 * put_super - drop a temporary reference to superblock
279 * @sb: superblock in question
280 *
281 * Drops a temporary reference, frees superblock if there's no
282 * references left.
283 */
284 static void put_super(struct super_block *sb)
285 {
286 spin_lock(&sb_lock);
287 __put_super(sb);
288 spin_unlock(&sb_lock);
289 }
290
291
292 /**
293 * deactivate_locked_super - drop an active reference to superblock
294 * @s: superblock to deactivate
295 *
296 * Drops an active reference to superblock, converting it into a temporary
297 * one if there is no other active references left. In that case we
298 * tell fs driver to shut it down and drop the temporary reference we
299 * had just acquired.
300 *
301 * Caller holds exclusive lock on superblock; that lock is released.
302 */
303 void deactivate_locked_super(struct super_block *s)
304 {
305 struct file_system_type *fs = s->s_type;
306 if (atomic_dec_and_test(&s->s_active)) {
307 cleancache_invalidate_fs(s);
308 unregister_shrinker(&s->s_shrink);
309 fs->kill_sb(s);
310
311 /*
312 * Since list_lru_destroy() may sleep, we cannot call it from
313 * put_super(), where we hold the sb_lock. Therefore we destroy
314 * the lru lists right now.
315 */
316 list_lru_destroy(&s->s_dentry_lru);
317 list_lru_destroy(&s->s_inode_lru);
318
319 put_filesystem(fs);
320 put_super(s);
321 } else {
322 up_write(&s->s_umount);
323 }
324 }
325
326 EXPORT_SYMBOL(deactivate_locked_super);
327
328 /**
329 * deactivate_super - drop an active reference to superblock
330 * @s: superblock to deactivate
331 *
332 * Variant of deactivate_locked_super(), except that superblock is *not*
333 * locked by caller. If we are going to drop the final active reference,
334 * lock will be acquired prior to that.
335 */
336 void deactivate_super(struct super_block *s)
337 {
338 if (!atomic_add_unless(&s->s_active, -1, 1)) {
339 down_write(&s->s_umount);
340 deactivate_locked_super(s);
341 }
342 }
343
344 EXPORT_SYMBOL(deactivate_super);
345
346 /**
347 * grab_super - acquire an active reference
348 * @s: reference we are trying to make active
349 *
350 * Tries to acquire an active reference. grab_super() is used when we
351 * had just found a superblock in super_blocks or fs_type->fs_supers
352 * and want to turn it into a full-blown active reference. grab_super()
353 * is called with sb_lock held and drops it. Returns 1 in case of
354 * success, 0 if we had failed (superblock contents was already dead or
355 * dying when grab_super() had been called). Note that this is only
356 * called for superblocks not in rundown mode (== ones still on ->fs_supers
357 * of their type), so increment of ->s_count is OK here.
358 */
359 static int grab_super(struct super_block *s) __releases(sb_lock)
360 {
361 s->s_count++;
362 spin_unlock(&sb_lock);
363 down_write(&s->s_umount);
364 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
365 put_super(s);
366 return 1;
367 }
368 up_write(&s->s_umount);
369 put_super(s);
370 return 0;
371 }
372
373 /*
374 * trylock_super - try to grab ->s_umount shared
375 * @sb: reference we are trying to grab
376 *
377 * Try to prevent fs shutdown. This is used in places where we
378 * cannot take an active reference but we need to ensure that the
379 * filesystem is not shut down while we are working on it. It returns
380 * false if we cannot acquire s_umount or if we lose the race and
381 * filesystem already got into shutdown, and returns true with the s_umount
382 * lock held in read mode in case of success. On successful return,
383 * the caller must drop the s_umount lock when done.
384 *
385 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
386 * The reason why it's safe is that we are OK with doing trylock instead
387 * of down_read(). There's a couple of places that are OK with that, but
388 * it's very much not a general-purpose interface.
389 */
390 bool trylock_super(struct super_block *sb)
391 {
392 if (down_read_trylock(&sb->s_umount)) {
393 if (!hlist_unhashed(&sb->s_instances) &&
394 sb->s_root && (sb->s_flags & SB_BORN))
395 return true;
396 up_read(&sb->s_umount);
397 }
398
399 return false;
400 }
401
402 /**
403 * generic_shutdown_super - common helper for ->kill_sb()
404 * @sb: superblock to kill
405 *
406 * generic_shutdown_super() does all fs-independent work on superblock
407 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
408 * that need destruction out of superblock, call generic_shutdown_super()
409 * and release aforementioned objects. Note: dentries and inodes _are_
410 * taken care of and do not need specific handling.
411 *
412 * Upon calling this function, the filesystem may no longer alter or
413 * rearrange the set of dentries belonging to this super_block, nor may it
414 * change the attachments of dentries to inodes.
415 */
416 void generic_shutdown_super(struct super_block *sb)
417 {
418 const struct super_operations *sop = sb->s_op;
419
420 if (sb->s_root) {
421 shrink_dcache_for_umount(sb);
422 sync_filesystem(sb);
423 sb->s_flags &= ~SB_ACTIVE;
424
425 fsnotify_unmount_inodes(sb);
426 cgroup_writeback_umount();
427
428 evict_inodes(sb);
429
430 if (sb->s_dio_done_wq) {
431 destroy_workqueue(sb->s_dio_done_wq);
432 sb->s_dio_done_wq = NULL;
433 }
434
435 if (sop->put_super)
436 sop->put_super(sb);
437
438 if (!list_empty(&sb->s_inodes)) {
439 printk("VFS: Busy inodes after unmount of %s. "
440 "Self-destruct in 5 seconds. Have a nice day...\n",
441 sb->s_id);
442 }
443 }
444 spin_lock(&sb_lock);
445 /* should be initialized for __put_super_and_need_restart() */
446 hlist_del_init(&sb->s_instances);
447 spin_unlock(&sb_lock);
448 up_write(&sb->s_umount);
449 if (sb->s_bdi != &noop_backing_dev_info) {
450 bdi_put(sb->s_bdi);
451 sb->s_bdi = &noop_backing_dev_info;
452 }
453 }
454
455 EXPORT_SYMBOL(generic_shutdown_super);
456
457 /**
458 * sget_userns - find or create a superblock
459 * @type: filesystem type superblock should belong to
460 * @test: comparison callback
461 * @set: setup callback
462 * @flags: mount flags
463 * @user_ns: User namespace for the super_block
464 * @data: argument to each of them
465 */
466 struct super_block *sget_userns(struct file_system_type *type,
467 int (*test)(struct super_block *,void *),
468 int (*set)(struct super_block *,void *),
469 int flags, struct user_namespace *user_ns,
470 void *data)
471 {
472 struct super_block *s = NULL;
473 struct super_block *old;
474 int err;
475
476 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
477 !(type->fs_flags & FS_USERNS_MOUNT) &&
478 !capable(CAP_SYS_ADMIN))
479 return ERR_PTR(-EPERM);
480 retry:
481 spin_lock(&sb_lock);
482 if (test) {
483 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
484 if (!test(old, data))
485 continue;
486 if (user_ns != old->s_user_ns) {
487 spin_unlock(&sb_lock);
488 if (s) {
489 up_write(&s->s_umount);
490 destroy_super(s);
491 }
492 return ERR_PTR(-EBUSY);
493 }
494 if (!grab_super(old))
495 goto retry;
496 if (s) {
497 up_write(&s->s_umount);
498 destroy_super(s);
499 s = NULL;
500 }
501 return old;
502 }
503 }
504 if (!s) {
505 spin_unlock(&sb_lock);
506 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
507 if (!s)
508 return ERR_PTR(-ENOMEM);
509 goto retry;
510 }
511
512 err = set(s, data);
513 if (err) {
514 spin_unlock(&sb_lock);
515 up_write(&s->s_umount);
516 destroy_super(s);
517 return ERR_PTR(err);
518 }
519 s->s_type = type;
520 strlcpy(s->s_id, type->name, sizeof(s->s_id));
521 list_add_tail(&s->s_list, &super_blocks);
522 hlist_add_head(&s->s_instances, &type->fs_supers);
523 spin_unlock(&sb_lock);
524 get_filesystem(type);
525 register_shrinker(&s->s_shrink);
526 return s;
527 }
528
529 EXPORT_SYMBOL(sget_userns);
530
531 /**
532 * sget - find or create a superblock
533 * @type: filesystem type superblock should belong to
534 * @test: comparison callback
535 * @set: setup callback
536 * @flags: mount flags
537 * @data: argument to each of them
538 */
539 struct super_block *sget(struct file_system_type *type,
540 int (*test)(struct super_block *,void *),
541 int (*set)(struct super_block *,void *),
542 int flags,
543 void *data)
544 {
545 struct user_namespace *user_ns = current_user_ns();
546
547 /* We don't yet pass the user namespace of the parent
548 * mount through to here so always use &init_user_ns
549 * until that changes.
550 */
551 if (flags & SB_SUBMOUNT)
552 user_ns = &init_user_ns;
553
554 /* Ensure the requestor has permissions over the target filesystem */
555 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
556 return ERR_PTR(-EPERM);
557
558 return sget_userns(type, test, set, flags, user_ns, data);
559 }
560
561 EXPORT_SYMBOL(sget);
562
563 void drop_super(struct super_block *sb)
564 {
565 up_read(&sb->s_umount);
566 put_super(sb);
567 }
568
569 EXPORT_SYMBOL(drop_super);
570
571 void drop_super_exclusive(struct super_block *sb)
572 {
573 up_write(&sb->s_umount);
574 put_super(sb);
575 }
576 EXPORT_SYMBOL(drop_super_exclusive);
577
578 /**
579 * iterate_supers - call function for all active superblocks
580 * @f: function to call
581 * @arg: argument to pass to it
582 *
583 * Scans the superblock list and calls given function, passing it
584 * locked superblock and given argument.
585 */
586 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
587 {
588 struct super_block *sb, *p = NULL;
589
590 spin_lock(&sb_lock);
591 list_for_each_entry(sb, &super_blocks, s_list) {
592 if (hlist_unhashed(&sb->s_instances))
593 continue;
594 sb->s_count++;
595 spin_unlock(&sb_lock);
596
597 down_read(&sb->s_umount);
598 if (sb->s_root && (sb->s_flags & SB_BORN))
599 f(sb, arg);
600 up_read(&sb->s_umount);
601
602 spin_lock(&sb_lock);
603 if (p)
604 __put_super(p);
605 p = sb;
606 }
607 if (p)
608 __put_super(p);
609 spin_unlock(&sb_lock);
610 }
611
612 /**
613 * iterate_supers_type - call function for superblocks of given type
614 * @type: fs type
615 * @f: function to call
616 * @arg: argument to pass to it
617 *
618 * Scans the superblock list and calls given function, passing it
619 * locked superblock and given argument.
620 */
621 void iterate_supers_type(struct file_system_type *type,
622 void (*f)(struct super_block *, void *), void *arg)
623 {
624 struct super_block *sb, *p = NULL;
625
626 spin_lock(&sb_lock);
627 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
628 sb->s_count++;
629 spin_unlock(&sb_lock);
630
631 down_read(&sb->s_umount);
632 if (sb->s_root && (sb->s_flags & SB_BORN))
633 f(sb, arg);
634 up_read(&sb->s_umount);
635
636 spin_lock(&sb_lock);
637 if (p)
638 __put_super(p);
639 p = sb;
640 }
641 if (p)
642 __put_super(p);
643 spin_unlock(&sb_lock);
644 }
645
646 EXPORT_SYMBOL(iterate_supers_type);
647
648 static struct super_block *__get_super(struct block_device *bdev, bool excl)
649 {
650 struct super_block *sb;
651
652 if (!bdev)
653 return NULL;
654
655 spin_lock(&sb_lock);
656 rescan:
657 list_for_each_entry(sb, &super_blocks, s_list) {
658 if (hlist_unhashed(&sb->s_instances))
659 continue;
660 if (sb->s_bdev == bdev) {
661 sb->s_count++;
662 spin_unlock(&sb_lock);
663 if (!excl)
664 down_read(&sb->s_umount);
665 else
666 down_write(&sb->s_umount);
667 /* still alive? */
668 if (sb->s_root && (sb->s_flags & SB_BORN))
669 return sb;
670 if (!excl)
671 up_read(&sb->s_umount);
672 else
673 up_write(&sb->s_umount);
674 /* nope, got unmounted */
675 spin_lock(&sb_lock);
676 __put_super(sb);
677 goto rescan;
678 }
679 }
680 spin_unlock(&sb_lock);
681 return NULL;
682 }
683
684 /**
685 * get_super - get the superblock of a device
686 * @bdev: device to get the superblock for
687 *
688 * Scans the superblock list and finds the superblock of the file system
689 * mounted on the device given. %NULL is returned if no match is found.
690 */
691 struct super_block *get_super(struct block_device *bdev)
692 {
693 return __get_super(bdev, false);
694 }
695 EXPORT_SYMBOL(get_super);
696
697 static struct super_block *__get_super_thawed(struct block_device *bdev,
698 bool excl)
699 {
700 while (1) {
701 struct super_block *s = __get_super(bdev, excl);
702 if (!s || s->s_writers.frozen == SB_UNFROZEN)
703 return s;
704 if (!excl)
705 up_read(&s->s_umount);
706 else
707 up_write(&s->s_umount);
708 wait_event(s->s_writers.wait_unfrozen,
709 s->s_writers.frozen == SB_UNFROZEN);
710 put_super(s);
711 }
712 }
713
714 /**
715 * get_super_thawed - get thawed superblock of a device
716 * @bdev: device to get the superblock for
717 *
718 * Scans the superblock list and finds the superblock of the file system
719 * mounted on the device. The superblock is returned once it is thawed
720 * (or immediately if it was not frozen). %NULL is returned if no match
721 * is found.
722 */
723 struct super_block *get_super_thawed(struct block_device *bdev)
724 {
725 return __get_super_thawed(bdev, false);
726 }
727 EXPORT_SYMBOL(get_super_thawed);
728
729 /**
730 * get_super_exclusive_thawed - get thawed superblock of a device
731 * @bdev: device to get the superblock for
732 *
733 * Scans the superblock list and finds the superblock of the file system
734 * mounted on the device. The superblock is returned once it is thawed
735 * (or immediately if it was not frozen) and s_umount semaphore is held
736 * in exclusive mode. %NULL is returned if no match is found.
737 */
738 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
739 {
740 return __get_super_thawed(bdev, true);
741 }
742 EXPORT_SYMBOL(get_super_exclusive_thawed);
743
744 /**
745 * get_active_super - get an active reference to the superblock of a device
746 * @bdev: device to get the superblock for
747 *
748 * Scans the superblock list and finds the superblock of the file system
749 * mounted on the device given. Returns the superblock with an active
750 * reference or %NULL if none was found.
751 */
752 struct super_block *get_active_super(struct block_device *bdev)
753 {
754 struct super_block *sb;
755
756 if (!bdev)
757 return NULL;
758
759 restart:
760 spin_lock(&sb_lock);
761 list_for_each_entry(sb, &super_blocks, s_list) {
762 if (hlist_unhashed(&sb->s_instances))
763 continue;
764 if (sb->s_bdev == bdev) {
765 if (!grab_super(sb))
766 goto restart;
767 up_write(&sb->s_umount);
768 return sb;
769 }
770 }
771 spin_unlock(&sb_lock);
772 return NULL;
773 }
774
775 struct super_block *user_get_super(dev_t dev)
776 {
777 struct super_block *sb;
778
779 spin_lock(&sb_lock);
780 rescan:
781 list_for_each_entry(sb, &super_blocks, s_list) {
782 if (hlist_unhashed(&sb->s_instances))
783 continue;
784 if (sb->s_dev == dev) {
785 sb->s_count++;
786 spin_unlock(&sb_lock);
787 down_read(&sb->s_umount);
788 /* still alive? */
789 if (sb->s_root && (sb->s_flags & SB_BORN))
790 return sb;
791 up_read(&sb->s_umount);
792 /* nope, got unmounted */
793 spin_lock(&sb_lock);
794 __put_super(sb);
795 goto rescan;
796 }
797 }
798 spin_unlock(&sb_lock);
799 return NULL;
800 }
801
802 /**
803 * do_remount_sb2 - asks filesystem to change mount options.
804 * @mnt: mount we are looking at
805 * @sb: superblock in question
806 * @sb_flags: revised superblock flags
807 * @data: the rest of options
808 * @force: whether or not to force the change
809 *
810 * Alters the mount options of a mounted file system.
811 */
812 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int sb_flags, void *data, int force)
813 {
814 int retval;
815 int remount_ro;
816
817 if (sb->s_writers.frozen != SB_UNFROZEN)
818 return -EBUSY;
819
820 #ifdef CONFIG_BLOCK
821 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
822 return -EACCES;
823 #endif
824
825 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
826
827 if (remount_ro) {
828 if (!hlist_empty(&sb->s_pins)) {
829 up_write(&sb->s_umount);
830 group_pin_kill(&sb->s_pins);
831 down_write(&sb->s_umount);
832 if (!sb->s_root)
833 return 0;
834 if (sb->s_writers.frozen != SB_UNFROZEN)
835 return -EBUSY;
836 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
837 }
838 }
839 shrink_dcache_sb(sb);
840
841 /* If we are remounting RDONLY and current sb is read/write,
842 make sure there are no rw files opened */
843 if (remount_ro) {
844 if (force) {
845 sb->s_readonly_remount = 1;
846 smp_wmb();
847 } else {
848 retval = sb_prepare_remount_readonly(sb);
849 if (retval)
850 return retval;
851 }
852 }
853
854 if (mnt && sb->s_op->remount_fs2) {
855 retval = sb->s_op->remount_fs2(mnt, sb, &sb_flags, data);
856 if (retval) {
857 if (!force)
858 goto cancel_readonly;
859 /* If forced remount, go ahead despite any errors */
860 WARN(1, "forced remount of a %s fs returned %i\n",
861 sb->s_type->name, retval);
862 }
863 } else if (sb->s_op->remount_fs) {
864 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
865 if (retval) {
866 if (!force)
867 goto cancel_readonly;
868 /* If forced remount, go ahead despite any errors */
869 WARN(1, "forced remount of a %s fs returned %i\n",
870 sb->s_type->name, retval);
871 }
872 }
873 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
874 /* Needs to be ordered wrt mnt_is_readonly() */
875 smp_wmb();
876 sb->s_readonly_remount = 0;
877
878 /*
879 * Some filesystems modify their metadata via some other path than the
880 * bdev buffer cache (eg. use a private mapping, or directories in
881 * pagecache, etc). Also file data modifications go via their own
882 * mappings. So If we try to mount readonly then copy the filesystem
883 * from bdev, we could get stale data, so invalidate it to give a best
884 * effort at coherency.
885 */
886 if (remount_ro && sb->s_bdev)
887 invalidate_bdev(sb->s_bdev);
888 return 0;
889
890 cancel_readonly:
891 sb->s_readonly_remount = 0;
892 return retval;
893 }
894
895 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
896 {
897 return do_remount_sb2(NULL, sb, flags, data, force);
898 }
899
900 static void do_emergency_remount(struct work_struct *work)
901 {
902 struct super_block *sb, *p = NULL;
903
904 spin_lock(&sb_lock);
905 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
906 if (hlist_unhashed(&sb->s_instances))
907 continue;
908 sb->s_count++;
909 spin_unlock(&sb_lock);
910 down_write(&sb->s_umount);
911 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
912 !sb_rdonly(sb)) {
913 /*
914 * What lock protects sb->s_flags??
915 */
916 do_remount_sb(sb, SB_RDONLY, NULL, 1);
917 }
918 up_write(&sb->s_umount);
919 spin_lock(&sb_lock);
920 if (p)
921 __put_super(p);
922 p = sb;
923 }
924 if (p)
925 __put_super(p);
926 spin_unlock(&sb_lock);
927 kfree(work);
928 printk("Emergency Remount complete\n");
929 }
930
931 void emergency_remount(void)
932 {
933 struct work_struct *work;
934
935 work = kmalloc(sizeof(*work), GFP_ATOMIC);
936 if (work) {
937 INIT_WORK(work, do_emergency_remount);
938 schedule_work(work);
939 }
940 }
941
942 /*
943 * Unnamed block devices are dummy devices used by virtual
944 * filesystems which don't use real block-devices. -- jrs
945 */
946
947 static DEFINE_IDA(unnamed_dev_ida);
948 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
949 /* Many userspace utilities consider an FSID of 0 invalid.
950 * Always return at least 1 from get_anon_bdev.
951 */
952 static int unnamed_dev_start = 1;
953
954 int get_anon_bdev(dev_t *p)
955 {
956 int dev;
957 int error;
958
959 retry:
960 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
961 return -ENOMEM;
962 spin_lock(&unnamed_dev_lock);
963 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
964 if (!error)
965 unnamed_dev_start = dev + 1;
966 spin_unlock(&unnamed_dev_lock);
967 if (error == -EAGAIN)
968 /* We raced and lost with another CPU. */
969 goto retry;
970 else if (error)
971 return -EAGAIN;
972
973 if (dev >= (1 << MINORBITS)) {
974 spin_lock(&unnamed_dev_lock);
975 ida_remove(&unnamed_dev_ida, dev);
976 if (unnamed_dev_start > dev)
977 unnamed_dev_start = dev;
978 spin_unlock(&unnamed_dev_lock);
979 return -EMFILE;
980 }
981 *p = MKDEV(0, dev & MINORMASK);
982 return 0;
983 }
984 EXPORT_SYMBOL(get_anon_bdev);
985
986 void free_anon_bdev(dev_t dev)
987 {
988 int slot = MINOR(dev);
989 spin_lock(&unnamed_dev_lock);
990 ida_remove(&unnamed_dev_ida, slot);
991 if (slot < unnamed_dev_start)
992 unnamed_dev_start = slot;
993 spin_unlock(&unnamed_dev_lock);
994 }
995 EXPORT_SYMBOL(free_anon_bdev);
996
997 int set_anon_super(struct super_block *s, void *data)
998 {
999 return get_anon_bdev(&s->s_dev);
1000 }
1001
1002 EXPORT_SYMBOL(set_anon_super);
1003
1004 void kill_anon_super(struct super_block *sb)
1005 {
1006 dev_t dev = sb->s_dev;
1007 generic_shutdown_super(sb);
1008 free_anon_bdev(dev);
1009 }
1010
1011 EXPORT_SYMBOL(kill_anon_super);
1012
1013 void kill_litter_super(struct super_block *sb)
1014 {
1015 if (sb->s_root)
1016 d_genocide(sb->s_root);
1017 kill_anon_super(sb);
1018 }
1019
1020 EXPORT_SYMBOL(kill_litter_super);
1021
1022 static int ns_test_super(struct super_block *sb, void *data)
1023 {
1024 return sb->s_fs_info == data;
1025 }
1026
1027 static int ns_set_super(struct super_block *sb, void *data)
1028 {
1029 sb->s_fs_info = data;
1030 return set_anon_super(sb, NULL);
1031 }
1032
1033 struct dentry *mount_ns(struct file_system_type *fs_type,
1034 int flags, void *data, void *ns, struct user_namespace *user_ns,
1035 int (*fill_super)(struct super_block *, void *, int))
1036 {
1037 struct super_block *sb;
1038
1039 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1040 * over the namespace.
1041 */
1042 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1043 return ERR_PTR(-EPERM);
1044
1045 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1046 user_ns, ns);
1047 if (IS_ERR(sb))
1048 return ERR_CAST(sb);
1049
1050 if (!sb->s_root) {
1051 int err;
1052 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1053 if (err) {
1054 deactivate_locked_super(sb);
1055 return ERR_PTR(err);
1056 }
1057
1058 sb->s_flags |= SB_ACTIVE;
1059 }
1060
1061 return dget(sb->s_root);
1062 }
1063
1064 EXPORT_SYMBOL(mount_ns);
1065
1066 #ifdef CONFIG_BLOCK
1067 static int set_bdev_super(struct super_block *s, void *data)
1068 {
1069 s->s_bdev = data;
1070 s->s_dev = s->s_bdev->bd_dev;
1071 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1072
1073 return 0;
1074 }
1075
1076 static int test_bdev_super(struct super_block *s, void *data)
1077 {
1078 return (void *)s->s_bdev == data;
1079 }
1080
1081 struct dentry *mount_bdev(struct file_system_type *fs_type,
1082 int flags, const char *dev_name, void *data,
1083 int (*fill_super)(struct super_block *, void *, int))
1084 {
1085 struct block_device *bdev;
1086 struct super_block *s;
1087 fmode_t mode = FMODE_READ | FMODE_EXCL;
1088 int error = 0;
1089
1090 if (!(flags & SB_RDONLY))
1091 mode |= FMODE_WRITE;
1092
1093 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1094 if (IS_ERR(bdev))
1095 return ERR_CAST(bdev);
1096
1097 /*
1098 * once the super is inserted into the list by sget, s_umount
1099 * will protect the lockfs code from trying to start a snapshot
1100 * while we are mounting
1101 */
1102 mutex_lock(&bdev->bd_fsfreeze_mutex);
1103 if (bdev->bd_fsfreeze_count > 0) {
1104 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1105 error = -EBUSY;
1106 goto error_bdev;
1107 }
1108 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1109 bdev);
1110 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1111 if (IS_ERR(s))
1112 goto error_s;
1113
1114 if (s->s_root) {
1115 if ((flags ^ s->s_flags) & SB_RDONLY) {
1116 deactivate_locked_super(s);
1117 error = -EBUSY;
1118 goto error_bdev;
1119 }
1120
1121 /*
1122 * s_umount nests inside bd_mutex during
1123 * __invalidate_device(). blkdev_put() acquires
1124 * bd_mutex and can't be called under s_umount. Drop
1125 * s_umount temporarily. This is safe as we're
1126 * holding an active reference.
1127 */
1128 up_write(&s->s_umount);
1129 blkdev_put(bdev, mode);
1130 down_write(&s->s_umount);
1131 } else {
1132 s->s_mode = mode;
1133 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1134 sb_set_blocksize(s, block_size(bdev));
1135 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1136 if (error) {
1137 deactivate_locked_super(s);
1138 goto error;
1139 }
1140
1141 s->s_flags |= SB_ACTIVE;
1142 bdev->bd_super = s;
1143 }
1144
1145 return dget(s->s_root);
1146
1147 error_s:
1148 error = PTR_ERR(s);
1149 error_bdev:
1150 blkdev_put(bdev, mode);
1151 error:
1152 return ERR_PTR(error);
1153 }
1154 EXPORT_SYMBOL(mount_bdev);
1155
1156 void kill_block_super(struct super_block *sb)
1157 {
1158 struct block_device *bdev = sb->s_bdev;
1159 fmode_t mode = sb->s_mode;
1160
1161 bdev->bd_super = NULL;
1162 generic_shutdown_super(sb);
1163 sync_blockdev(bdev);
1164 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1165 blkdev_put(bdev, mode | FMODE_EXCL);
1166 }
1167
1168 EXPORT_SYMBOL(kill_block_super);
1169 #endif
1170
1171 struct dentry *mount_nodev(struct file_system_type *fs_type,
1172 int flags, void *data,
1173 int (*fill_super)(struct super_block *, void *, int))
1174 {
1175 int error;
1176 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1177
1178 if (IS_ERR(s))
1179 return ERR_CAST(s);
1180
1181 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1182 if (error) {
1183 deactivate_locked_super(s);
1184 return ERR_PTR(error);
1185 }
1186 s->s_flags |= SB_ACTIVE;
1187 return dget(s->s_root);
1188 }
1189 EXPORT_SYMBOL(mount_nodev);
1190
1191 static int compare_single(struct super_block *s, void *p)
1192 {
1193 return 1;
1194 }
1195
1196 struct dentry *mount_single(struct file_system_type *fs_type,
1197 int flags, void *data,
1198 int (*fill_super)(struct super_block *, void *, int))
1199 {
1200 struct super_block *s;
1201 int error;
1202
1203 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1204 if (IS_ERR(s))
1205 return ERR_CAST(s);
1206 if (!s->s_root) {
1207 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1208 if (error) {
1209 deactivate_locked_super(s);
1210 return ERR_PTR(error);
1211 }
1212 s->s_flags |= SB_ACTIVE;
1213 } else {
1214 do_remount_sb(s, flags, data, 0);
1215 }
1216 return dget(s->s_root);
1217 }
1218 EXPORT_SYMBOL(mount_single);
1219
1220 struct dentry *
1221 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1222 {
1223 struct dentry *root;
1224 struct super_block *sb;
1225 char *secdata = NULL;
1226 int error = -ENOMEM;
1227
1228 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1229 secdata = alloc_secdata();
1230 if (!secdata)
1231 goto out;
1232
1233 error = security_sb_copy_data(data, secdata);
1234 if (error)
1235 goto out_free_secdata;
1236 }
1237
1238 if (type->mount2)
1239 root = type->mount2(mnt, type, flags, name, data);
1240 else
1241 root = type->mount(type, flags, name, data);
1242 if (IS_ERR(root)) {
1243 error = PTR_ERR(root);
1244 goto out_free_secdata;
1245 }
1246 sb = root->d_sb;
1247 BUG_ON(!sb);
1248 WARN_ON(!sb->s_bdi);
1249 sb->s_flags |= SB_BORN;
1250
1251 error = security_sb_kern_mount(sb, flags, secdata);
1252 if (error)
1253 goto out_sb;
1254
1255 /*
1256 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1257 * but s_maxbytes was an unsigned long long for many releases. Throw
1258 * this warning for a little while to try and catch filesystems that
1259 * violate this rule.
1260 */
1261 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1262 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1263
1264 up_write(&sb->s_umount);
1265 free_secdata(secdata);
1266 return root;
1267 out_sb:
1268 dput(root);
1269 deactivate_locked_super(sb);
1270 out_free_secdata:
1271 free_secdata(secdata);
1272 out:
1273 return ERR_PTR(error);
1274 }
1275
1276 /*
1277 * Setup private BDI for given superblock. It gets automatically cleaned up
1278 * in generic_shutdown_super().
1279 */
1280 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1281 {
1282 struct backing_dev_info *bdi;
1283 int err;
1284 va_list args;
1285
1286 bdi = bdi_alloc(GFP_KERNEL);
1287 if (!bdi)
1288 return -ENOMEM;
1289
1290 bdi->name = sb->s_type->name;
1291
1292 va_start(args, fmt);
1293 err = bdi_register_va(bdi, fmt, args);
1294 va_end(args);
1295 if (err) {
1296 bdi_put(bdi);
1297 return err;
1298 }
1299 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1300 sb->s_bdi = bdi;
1301
1302 return 0;
1303 }
1304 EXPORT_SYMBOL(super_setup_bdi_name);
1305
1306 /*
1307 * Setup private BDI for given superblock. I gets automatically cleaned up
1308 * in generic_shutdown_super().
1309 */
1310 int super_setup_bdi(struct super_block *sb)
1311 {
1312 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1313
1314 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1315 atomic_long_inc_return(&bdi_seq));
1316 }
1317 EXPORT_SYMBOL(super_setup_bdi);
1318
1319 /*
1320 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1321 * instead.
1322 */
1323 void __sb_end_write(struct super_block *sb, int level)
1324 {
1325 percpu_up_read(sb->s_writers.rw_sem + level-1);
1326 }
1327 EXPORT_SYMBOL(__sb_end_write);
1328
1329 /*
1330 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1331 * instead.
1332 */
1333 int __sb_start_write(struct super_block *sb, int level, bool wait)
1334 {
1335 bool force_trylock = false;
1336 int ret = 1;
1337
1338 #ifdef CONFIG_LOCKDEP
1339 /*
1340 * We want lockdep to tell us about possible deadlocks with freezing
1341 * but it's it bit tricky to properly instrument it. Getting a freeze
1342 * protection works as getting a read lock but there are subtle
1343 * problems. XFS for example gets freeze protection on internal level
1344 * twice in some cases, which is OK only because we already hold a
1345 * freeze protection also on higher level. Due to these cases we have
1346 * to use wait == F (trylock mode) which must not fail.
1347 */
1348 if (wait) {
1349 int i;
1350
1351 for (i = 0; i < level - 1; i++)
1352 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1353 force_trylock = true;
1354 break;
1355 }
1356 }
1357 #endif
1358 if (wait && !force_trylock)
1359 percpu_down_read(sb->s_writers.rw_sem + level-1);
1360 else
1361 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1362
1363 WARN_ON(force_trylock && !ret);
1364 return ret;
1365 }
1366 EXPORT_SYMBOL(__sb_start_write);
1367
1368 /**
1369 * sb_wait_write - wait until all writers to given file system finish
1370 * @sb: the super for which we wait
1371 * @level: type of writers we wait for (normal vs page fault)
1372 *
1373 * This function waits until there are no writers of given type to given file
1374 * system.
1375 */
1376 static void sb_wait_write(struct super_block *sb, int level)
1377 {
1378 percpu_down_write(sb->s_writers.rw_sem + level-1);
1379 }
1380
1381 /*
1382 * We are going to return to userspace and forget about these locks, the
1383 * ownership goes to the caller of thaw_super() which does unlock().
1384 */
1385 static void lockdep_sb_freeze_release(struct super_block *sb)
1386 {
1387 int level;
1388
1389 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1390 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1391 }
1392
1393 /*
1394 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1395 */
1396 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1397 {
1398 int level;
1399
1400 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1401 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1402 }
1403
1404 static void sb_freeze_unlock(struct super_block *sb)
1405 {
1406 int level;
1407
1408 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1409 percpu_up_write(sb->s_writers.rw_sem + level);
1410 }
1411
1412 /**
1413 * freeze_super - lock the filesystem and force it into a consistent state
1414 * @sb: the super to lock
1415 *
1416 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1417 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1418 * -EBUSY.
1419 *
1420 * During this function, sb->s_writers.frozen goes through these values:
1421 *
1422 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1423 *
1424 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1425 * writes should be blocked, though page faults are still allowed. We wait for
1426 * all writes to complete and then proceed to the next stage.
1427 *
1428 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1429 * but internal fs threads can still modify the filesystem (although they
1430 * should not dirty new pages or inodes), writeback can run etc. After waiting
1431 * for all running page faults we sync the filesystem which will clean all
1432 * dirty pages and inodes (no new dirty pages or inodes can be created when
1433 * sync is running).
1434 *
1435 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1436 * modification are blocked (e.g. XFS preallocation truncation on inode
1437 * reclaim). This is usually implemented by blocking new transactions for
1438 * filesystems that have them and need this additional guard. After all
1439 * internal writers are finished we call ->freeze_fs() to finish filesystem
1440 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1441 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1442 *
1443 * sb->s_writers.frozen is protected by sb->s_umount.
1444 */
1445 int freeze_super(struct super_block *sb)
1446 {
1447 int ret;
1448
1449 atomic_inc(&sb->s_active);
1450 down_write(&sb->s_umount);
1451 if (sb->s_writers.frozen != SB_UNFROZEN) {
1452 deactivate_locked_super(sb);
1453 return -EBUSY;
1454 }
1455
1456 if (!(sb->s_flags & SB_BORN)) {
1457 up_write(&sb->s_umount);
1458 return 0; /* sic - it's "nothing to do" */
1459 }
1460
1461 if (sb_rdonly(sb)) {
1462 /* Nothing to do really... */
1463 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1464 up_write(&sb->s_umount);
1465 return 0;
1466 }
1467
1468 sb->s_writers.frozen = SB_FREEZE_WRITE;
1469 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1470 up_write(&sb->s_umount);
1471 sb_wait_write(sb, SB_FREEZE_WRITE);
1472 down_write(&sb->s_umount);
1473
1474 /* Now we go and block page faults... */
1475 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1476 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1477
1478 /* All writers are done so after syncing there won't be dirty data */
1479 sync_filesystem(sb);
1480
1481 /* Now wait for internal filesystem counter */
1482 sb->s_writers.frozen = SB_FREEZE_FS;
1483 sb_wait_write(sb, SB_FREEZE_FS);
1484
1485 if (sb->s_op->freeze_fs) {
1486 ret = sb->s_op->freeze_fs(sb);
1487 if (ret) {
1488 printk(KERN_ERR
1489 "VFS:Filesystem freeze failed\n");
1490 sb->s_writers.frozen = SB_UNFROZEN;
1491 sb_freeze_unlock(sb);
1492 wake_up(&sb->s_writers.wait_unfrozen);
1493 deactivate_locked_super(sb);
1494 return ret;
1495 }
1496 }
1497 /*
1498 * For debugging purposes so that fs can warn if it sees write activity
1499 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1500 */
1501 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1502 lockdep_sb_freeze_release(sb);
1503 up_write(&sb->s_umount);
1504 return 0;
1505 }
1506 EXPORT_SYMBOL(freeze_super);
1507
1508 /**
1509 * thaw_super -- unlock filesystem
1510 * @sb: the super to thaw
1511 *
1512 * Unlocks the filesystem and marks it writeable again after freeze_super().
1513 */
1514 int thaw_super(struct super_block *sb)
1515 {
1516 int error;
1517
1518 down_write(&sb->s_umount);
1519 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1520 up_write(&sb->s_umount);
1521 return -EINVAL;
1522 }
1523
1524 if (sb_rdonly(sb)) {
1525 sb->s_writers.frozen = SB_UNFROZEN;
1526 goto out;
1527 }
1528
1529 lockdep_sb_freeze_acquire(sb);
1530
1531 if (sb->s_op->unfreeze_fs) {
1532 error = sb->s_op->unfreeze_fs(sb);
1533 if (error) {
1534 printk(KERN_ERR
1535 "VFS:Filesystem thaw failed\n");
1536 lockdep_sb_freeze_release(sb);
1537 up_write(&sb->s_umount);
1538 return error;
1539 }
1540 }
1541
1542 sb->s_writers.frozen = SB_UNFROZEN;
1543 sb_freeze_unlock(sb);
1544 out:
1545 wake_up(&sb->s_writers.wait_unfrozen);
1546 deactivate_locked_super(sb);
1547 return 0;
1548 }
1549 EXPORT_SYMBOL(thaw_super);