jbd2: fix race when writing superblock
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic permission checking
292 */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 unsigned int mode = inode->i_mode;
296
297 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 mode >>= 6;
299 else {
300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 int error = check_acl(inode, mask);
302 if (error != -EAGAIN)
303 return error;
304 }
305
306 if (in_group_p(inode->i_gid))
307 mode >>= 3;
308 }
309
310 /*
311 * If the DACs are ok we don't need any capability check.
312 */
313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 return 0;
315 return -EACCES;
316 }
317
318 /**
319 * generic_permission - check for access rights on a Posix-like filesystem
320 * @inode: inode to check access rights for
321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 *
323 * Used to check for read/write/execute permissions on a file.
324 * We use "fsuid" for this, letting us set arbitrary permissions
325 * for filesystem access without changing the "normal" uids which
326 * are used for other things.
327 *
328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329 * request cannot be satisfied (eg. requires blocking or too much complexity).
330 * It would then be called again in ref-walk mode.
331 */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 int ret;
335
336 /*
337 * Do the basic permission checks.
338 */
339 ret = acl_permission_check(inode, mask);
340 if (ret != -EACCES)
341 return ret;
342
343 if (S_ISDIR(inode->i_mode)) {
344 /* DACs are overridable for directories */
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351 return -EACCES;
352 }
353
354 /*
355 * Searching includes executable on directories, else just read.
356 */
357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 if (mask == MAY_READ)
359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 return 0;
361 /*
362 * Read/write DACs are always overridable.
363 * Executable DACs are overridable when there is
364 * at least one exec bit set.
365 */
366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 return 0;
369
370 return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375 * We _really_ want to just do "generic_permission()" without
376 * even looking at the inode->i_op values. So we keep a cache
377 * flag in inode->i_opflags, that says "this has not special
378 * permission function, use the fast case".
379 */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 if (likely(inode->i_op->permission))
384 return inode->i_op->permission(inode, mask);
385
386 /* This gets set once for the inode lifetime */
387 spin_lock(&inode->i_lock);
388 inode->i_opflags |= IOP_FASTPERM;
389 spin_unlock(&inode->i_lock);
390 }
391 return generic_permission(inode, mask);
392 }
393
394 /**
395 * __inode_permission - Check for access rights to a given inode
396 * @inode: Inode to check permission on
397 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398 *
399 * Check for read/write/execute permissions on an inode.
400 *
401 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
402 *
403 * This does not check for a read-only file system. You probably want
404 * inode_permission().
405 */
406 int __inode_permission(struct inode *inode, int mask)
407 {
408 int retval;
409
410 if (unlikely(mask & MAY_WRITE)) {
411 /*
412 * Nobody gets write access to an immutable file.
413 */
414 if (IS_IMMUTABLE(inode))
415 return -EPERM;
416
417 /*
418 * Updating mtime will likely cause i_uid and i_gid to be
419 * written back improperly if their true value is unknown
420 * to the vfs.
421 */
422 if (HAS_UNMAPPED_ID(inode))
423 return -EACCES;
424 }
425
426 retval = do_inode_permission(inode, mask);
427 if (retval)
428 return retval;
429
430 retval = devcgroup_inode_permission(inode, mask);
431 if (retval)
432 return retval;
433
434 return security_inode_permission(inode, mask);
435 }
436 EXPORT_SYMBOL(__inode_permission);
437
438 /**
439 * sb_permission - Check superblock-level permissions
440 * @sb: Superblock of inode to check permission on
441 * @inode: Inode to check permission on
442 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443 *
444 * Separate out file-system wide checks from inode-specific permission checks.
445 */
446 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
447 {
448 if (unlikely(mask & MAY_WRITE)) {
449 umode_t mode = inode->i_mode;
450
451 /* Nobody gets write access to a read-only fs. */
452 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
453 return -EROFS;
454 }
455 return 0;
456 }
457
458 /**
459 * inode_permission - Check for access rights to a given inode
460 * @inode: Inode to check permission on
461 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462 *
463 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
464 * this, letting us set arbitrary permissions for filesystem access without
465 * changing the "normal" UIDs which are used for other things.
466 *
467 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
468 */
469 int inode_permission(struct inode *inode, int mask)
470 {
471 int retval;
472
473 retval = sb_permission(inode->i_sb, inode, mask);
474 if (retval)
475 return retval;
476 return __inode_permission(inode, mask);
477 }
478 EXPORT_SYMBOL(inode_permission);
479
480 /**
481 * path_get - get a reference to a path
482 * @path: path to get the reference to
483 *
484 * Given a path increment the reference count to the dentry and the vfsmount.
485 */
486 void path_get(const struct path *path)
487 {
488 mntget(path->mnt);
489 dget(path->dentry);
490 }
491 EXPORT_SYMBOL(path_get);
492
493 /**
494 * path_put - put a reference to a path
495 * @path: path to put the reference to
496 *
497 * Given a path decrement the reference count to the dentry and the vfsmount.
498 */
499 void path_put(const struct path *path)
500 {
501 dput(path->dentry);
502 mntput(path->mnt);
503 }
504 EXPORT_SYMBOL(path_put);
505
506 #define EMBEDDED_LEVELS 2
507 struct nameidata {
508 struct path path;
509 struct qstr last;
510 struct path root;
511 struct inode *inode; /* path.dentry.d_inode */
512 unsigned int flags;
513 unsigned seq, m_seq;
514 int last_type;
515 unsigned depth;
516 int total_link_count;
517 struct saved {
518 struct path link;
519 struct delayed_call done;
520 const char *name;
521 unsigned seq;
522 } *stack, internal[EMBEDDED_LEVELS];
523 struct filename *name;
524 struct nameidata *saved;
525 struct inode *link_inode;
526 unsigned root_seq;
527 int dfd;
528 } __randomize_layout;
529
530 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 {
532 struct nameidata *old = current->nameidata;
533 p->stack = p->internal;
534 p->dfd = dfd;
535 p->name = name;
536 p->total_link_count = old ? old->total_link_count : 0;
537 p->saved = old;
538 current->nameidata = p;
539 }
540
541 static void restore_nameidata(void)
542 {
543 struct nameidata *now = current->nameidata, *old = now->saved;
544
545 current->nameidata = old;
546 if (old)
547 old->total_link_count = now->total_link_count;
548 if (now->stack != now->internal)
549 kfree(now->stack);
550 }
551
552 static int __nd_alloc_stack(struct nameidata *nd)
553 {
554 struct saved *p;
555
556 if (nd->flags & LOOKUP_RCU) {
557 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
558 GFP_ATOMIC);
559 if (unlikely(!p))
560 return -ECHILD;
561 } else {
562 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
563 GFP_KERNEL);
564 if (unlikely(!p))
565 return -ENOMEM;
566 }
567 memcpy(p, nd->internal, sizeof(nd->internal));
568 nd->stack = p;
569 return 0;
570 }
571
572 /**
573 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
574 * @path: nameidate to verify
575 *
576 * Rename can sometimes move a file or directory outside of a bind
577 * mount, path_connected allows those cases to be detected.
578 */
579 static bool path_connected(const struct path *path)
580 {
581 struct vfsmount *mnt = path->mnt;
582 struct super_block *sb = mnt->mnt_sb;
583
584 /* Bind mounts and multi-root filesystems can have disconnected paths */
585 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
586 return true;
587
588 return is_subdir(path->dentry, mnt->mnt_root);
589 }
590
591 static inline int nd_alloc_stack(struct nameidata *nd)
592 {
593 if (likely(nd->depth != EMBEDDED_LEVELS))
594 return 0;
595 if (likely(nd->stack != nd->internal))
596 return 0;
597 return __nd_alloc_stack(nd);
598 }
599
600 static void drop_links(struct nameidata *nd)
601 {
602 int i = nd->depth;
603 while (i--) {
604 struct saved *last = nd->stack + i;
605 do_delayed_call(&last->done);
606 clear_delayed_call(&last->done);
607 }
608 }
609
610 static void terminate_walk(struct nameidata *nd)
611 {
612 drop_links(nd);
613 if (!(nd->flags & LOOKUP_RCU)) {
614 int i;
615 path_put(&nd->path);
616 for (i = 0; i < nd->depth; i++)
617 path_put(&nd->stack[i].link);
618 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
619 path_put(&nd->root);
620 nd->root.mnt = NULL;
621 }
622 } else {
623 nd->flags &= ~LOOKUP_RCU;
624 if (!(nd->flags & LOOKUP_ROOT))
625 nd->root.mnt = NULL;
626 rcu_read_unlock();
627 }
628 nd->depth = 0;
629 }
630
631 /* path_put is needed afterwards regardless of success or failure */
632 static bool legitimize_path(struct nameidata *nd,
633 struct path *path, unsigned seq)
634 {
635 int res = __legitimize_mnt(path->mnt, nd->m_seq);
636 if (unlikely(res)) {
637 if (res > 0)
638 path->mnt = NULL;
639 path->dentry = NULL;
640 return false;
641 }
642 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643 path->dentry = NULL;
644 return false;
645 }
646 return !read_seqcount_retry(&path->dentry->d_seq, seq);
647 }
648
649 static bool legitimize_links(struct nameidata *nd)
650 {
651 int i;
652 for (i = 0; i < nd->depth; i++) {
653 struct saved *last = nd->stack + i;
654 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
655 drop_links(nd);
656 nd->depth = i + 1;
657 return false;
658 }
659 }
660 return true;
661 }
662
663 /*
664 * Path walking has 2 modes, rcu-walk and ref-walk (see
665 * Documentation/filesystems/path-lookup.txt). In situations when we can't
666 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
667 * normal reference counts on dentries and vfsmounts to transition to ref-walk
668 * mode. Refcounts are grabbed at the last known good point before rcu-walk
669 * got stuck, so ref-walk may continue from there. If this is not successful
670 * (eg. a seqcount has changed), then failure is returned and it's up to caller
671 * to restart the path walk from the beginning in ref-walk mode.
672 */
673
674 /**
675 * unlazy_walk - try to switch to ref-walk mode.
676 * @nd: nameidata pathwalk data
677 * Returns: 0 on success, -ECHILD on failure
678 *
679 * unlazy_walk attempts to legitimize the current nd->path and nd->root
680 * for ref-walk mode.
681 * Must be called from rcu-walk context.
682 * Nothing should touch nameidata between unlazy_walk() failure and
683 * terminate_walk().
684 */
685 static int unlazy_walk(struct nameidata *nd)
686 {
687 struct dentry *parent = nd->path.dentry;
688
689 BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691 nd->flags &= ~LOOKUP_RCU;
692 if (unlikely(!legitimize_links(nd)))
693 goto out2;
694 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
695 goto out1;
696 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
697 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
698 goto out;
699 }
700 rcu_read_unlock();
701 BUG_ON(nd->inode != parent->d_inode);
702 return 0;
703
704 out2:
705 nd->path.mnt = NULL;
706 nd->path.dentry = NULL;
707 out1:
708 if (!(nd->flags & LOOKUP_ROOT))
709 nd->root.mnt = NULL;
710 out:
711 rcu_read_unlock();
712 return -ECHILD;
713 }
714
715 /**
716 * unlazy_child - try to switch to ref-walk mode.
717 * @nd: nameidata pathwalk data
718 * @dentry: child of nd->path.dentry
719 * @seq: seq number to check dentry against
720 * Returns: 0 on success, -ECHILD on failure
721 *
722 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
723 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
724 * @nd. Must be called from rcu-walk context.
725 * Nothing should touch nameidata between unlazy_child() failure and
726 * terminate_walk().
727 */
728 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
729 {
730 BUG_ON(!(nd->flags & LOOKUP_RCU));
731
732 nd->flags &= ~LOOKUP_RCU;
733 if (unlikely(!legitimize_links(nd)))
734 goto out2;
735 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
736 goto out2;
737 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
738 goto out1;
739
740 /*
741 * We need to move both the parent and the dentry from the RCU domain
742 * to be properly refcounted. And the sequence number in the dentry
743 * validates *both* dentry counters, since we checked the sequence
744 * number of the parent after we got the child sequence number. So we
745 * know the parent must still be valid if the child sequence number is
746 */
747 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
748 goto out;
749 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
750 rcu_read_unlock();
751 dput(dentry);
752 goto drop_root_mnt;
753 }
754 /*
755 * Sequence counts matched. Now make sure that the root is
756 * still valid and get it if required.
757 */
758 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
759 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
760 rcu_read_unlock();
761 dput(dentry);
762 return -ECHILD;
763 }
764 }
765
766 rcu_read_unlock();
767 return 0;
768
769 out2:
770 nd->path.mnt = NULL;
771 out1:
772 nd->path.dentry = NULL;
773 out:
774 rcu_read_unlock();
775 drop_root_mnt:
776 if (!(nd->flags & LOOKUP_ROOT))
777 nd->root.mnt = NULL;
778 return -ECHILD;
779 }
780
781 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
782 {
783 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
784 return dentry->d_op->d_revalidate(dentry, flags);
785 else
786 return 1;
787 }
788
789 /**
790 * complete_walk - successful completion of path walk
791 * @nd: pointer nameidata
792 *
793 * If we had been in RCU mode, drop out of it and legitimize nd->path.
794 * Revalidate the final result, unless we'd already done that during
795 * the path walk or the filesystem doesn't ask for it. Return 0 on
796 * success, -error on failure. In case of failure caller does not
797 * need to drop nd->path.
798 */
799 static int complete_walk(struct nameidata *nd)
800 {
801 struct dentry *dentry = nd->path.dentry;
802 int status;
803
804 if (nd->flags & LOOKUP_RCU) {
805 if (!(nd->flags & LOOKUP_ROOT))
806 nd->root.mnt = NULL;
807 if (unlikely(unlazy_walk(nd)))
808 return -ECHILD;
809 }
810
811 if (likely(!(nd->flags & LOOKUP_JUMPED)))
812 return 0;
813
814 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
815 return 0;
816
817 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
818 if (status > 0)
819 return 0;
820
821 if (!status)
822 status = -ESTALE;
823
824 return status;
825 }
826
827 static void set_root(struct nameidata *nd)
828 {
829 struct fs_struct *fs = current->fs;
830
831 if (nd->flags & LOOKUP_RCU) {
832 unsigned seq;
833
834 do {
835 seq = read_seqcount_begin(&fs->seq);
836 nd->root = fs->root;
837 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
838 } while (read_seqcount_retry(&fs->seq, seq));
839 } else {
840 get_fs_root(fs, &nd->root);
841 }
842 }
843
844 static void path_put_conditional(struct path *path, struct nameidata *nd)
845 {
846 dput(path->dentry);
847 if (path->mnt != nd->path.mnt)
848 mntput(path->mnt);
849 }
850
851 static inline void path_to_nameidata(const struct path *path,
852 struct nameidata *nd)
853 {
854 if (!(nd->flags & LOOKUP_RCU)) {
855 dput(nd->path.dentry);
856 if (nd->path.mnt != path->mnt)
857 mntput(nd->path.mnt);
858 }
859 nd->path.mnt = path->mnt;
860 nd->path.dentry = path->dentry;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 if (nd->flags & LOOKUP_RCU) {
866 struct dentry *d;
867 nd->path = nd->root;
868 d = nd->path.dentry;
869 nd->inode = d->d_inode;
870 nd->seq = nd->root_seq;
871 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
872 return -ECHILD;
873 } else {
874 path_put(&nd->path);
875 nd->path = nd->root;
876 path_get(&nd->path);
877 nd->inode = nd->path.dentry->d_inode;
878 }
879 nd->flags |= LOOKUP_JUMPED;
880 return 0;
881 }
882
883 /*
884 * Helper to directly jump to a known parsed path from ->get_link,
885 * caller must have taken a reference to path beforehand.
886 */
887 void nd_jump_link(struct path *path)
888 {
889 struct nameidata *nd = current->nameidata;
890 path_put(&nd->path);
891
892 nd->path = *path;
893 nd->inode = nd->path.dentry->d_inode;
894 nd->flags |= LOOKUP_JUMPED;
895 }
896
897 static inline void put_link(struct nameidata *nd)
898 {
899 struct saved *last = nd->stack + --nd->depth;
900 do_delayed_call(&last->done);
901 if (!(nd->flags & LOOKUP_RCU))
902 path_put(&last->link);
903 }
904
905 int sysctl_protected_symlinks __read_mostly = 0;
906 int sysctl_protected_hardlinks __read_mostly = 0;
907 int sysctl_protected_fifos __read_mostly;
908 int sysctl_protected_regular __read_mostly;
909
910 /**
911 * may_follow_link - Check symlink following for unsafe situations
912 * @nd: nameidata pathwalk data
913 *
914 * In the case of the sysctl_protected_symlinks sysctl being enabled,
915 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
916 * in a sticky world-writable directory. This is to protect privileged
917 * processes from failing races against path names that may change out
918 * from under them by way of other users creating malicious symlinks.
919 * It will permit symlinks to be followed only when outside a sticky
920 * world-writable directory, or when the uid of the symlink and follower
921 * match, or when the directory owner matches the symlink's owner.
922 *
923 * Returns 0 if following the symlink is allowed, -ve on error.
924 */
925 static inline int may_follow_link(struct nameidata *nd)
926 {
927 const struct inode *inode;
928 const struct inode *parent;
929 kuid_t puid;
930
931 if (!sysctl_protected_symlinks)
932 return 0;
933
934 /* Allowed if owner and follower match. */
935 inode = nd->link_inode;
936 if (uid_eq(current_cred()->fsuid, inode->i_uid))
937 return 0;
938
939 /* Allowed if parent directory not sticky and world-writable. */
940 parent = nd->inode;
941 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
942 return 0;
943
944 /* Allowed if parent directory and link owner match. */
945 puid = parent->i_uid;
946 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
947 return 0;
948
949 if (nd->flags & LOOKUP_RCU)
950 return -ECHILD;
951
952 audit_log_link_denied("follow_link", &nd->stack[0].link);
953 return -EACCES;
954 }
955
956 /**
957 * safe_hardlink_source - Check for safe hardlink conditions
958 * @inode: the source inode to hardlink from
959 *
960 * Return false if at least one of the following conditions:
961 * - inode is not a regular file
962 * - inode is setuid
963 * - inode is setgid and group-exec
964 * - access failure for read and write
965 *
966 * Otherwise returns true.
967 */
968 static bool safe_hardlink_source(struct inode *inode)
969 {
970 umode_t mode = inode->i_mode;
971
972 /* Special files should not get pinned to the filesystem. */
973 if (!S_ISREG(mode))
974 return false;
975
976 /* Setuid files should not get pinned to the filesystem. */
977 if (mode & S_ISUID)
978 return false;
979
980 /* Executable setgid files should not get pinned to the filesystem. */
981 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
982 return false;
983
984 /* Hardlinking to unreadable or unwritable sources is dangerous. */
985 if (inode_permission(inode, MAY_READ | MAY_WRITE))
986 return false;
987
988 return true;
989 }
990
991 /**
992 * may_linkat - Check permissions for creating a hardlink
993 * @link: the source to hardlink from
994 *
995 * Block hardlink when all of:
996 * - sysctl_protected_hardlinks enabled
997 * - fsuid does not match inode
998 * - hardlink source is unsafe (see safe_hardlink_source() above)
999 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1000 *
1001 * Returns 0 if successful, -ve on error.
1002 */
1003 static int may_linkat(struct path *link)
1004 {
1005 struct inode *inode;
1006
1007 if (!sysctl_protected_hardlinks)
1008 return 0;
1009
1010 inode = link->dentry->d_inode;
1011
1012 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1013 * otherwise, it must be a safe source.
1014 */
1015 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1016 return 0;
1017
1018 audit_log_link_denied("linkat", link);
1019 return -EPERM;
1020 }
1021
1022 /**
1023 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1024 * should be allowed, or not, on files that already
1025 * exist.
1026 * @dir: the sticky parent directory
1027 * @inode: the inode of the file to open
1028 *
1029 * Block an O_CREAT open of a FIFO (or a regular file) when:
1030 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1031 * - the file already exists
1032 * - we are in a sticky directory
1033 * - we don't own the file
1034 * - the owner of the directory doesn't own the file
1035 * - the directory is world writable
1036 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1037 * the directory doesn't have to be world writable: being group writable will
1038 * be enough.
1039 *
1040 * Returns 0 if the open is allowed, -ve on error.
1041 */
1042 static int may_create_in_sticky(struct dentry * const dir,
1043 struct inode * const inode)
1044 {
1045 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1046 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1047 likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1048 uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1049 uid_eq(current_fsuid(), inode->i_uid))
1050 return 0;
1051
1052 if (likely(dir->d_inode->i_mode & 0002) ||
1053 (dir->d_inode->i_mode & 0020 &&
1054 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1055 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1056 return -EACCES;
1057 }
1058 return 0;
1059 }
1060
1061 static __always_inline
1062 const char *get_link(struct nameidata *nd)
1063 {
1064 struct saved *last = nd->stack + nd->depth - 1;
1065 struct dentry *dentry = last->link.dentry;
1066 struct inode *inode = nd->link_inode;
1067 int error;
1068 const char *res;
1069
1070 if (!(nd->flags & LOOKUP_RCU)) {
1071 touch_atime(&last->link);
1072 cond_resched();
1073 } else if (atime_needs_update_rcu(&last->link, inode)) {
1074 if (unlikely(unlazy_walk(nd)))
1075 return ERR_PTR(-ECHILD);
1076 touch_atime(&last->link);
1077 }
1078
1079 error = security_inode_follow_link(dentry, inode,
1080 nd->flags & LOOKUP_RCU);
1081 if (unlikely(error))
1082 return ERR_PTR(error);
1083
1084 nd->last_type = LAST_BIND;
1085 res = inode->i_link;
1086 if (!res) {
1087 const char * (*get)(struct dentry *, struct inode *,
1088 struct delayed_call *);
1089 get = inode->i_op->get_link;
1090 if (nd->flags & LOOKUP_RCU) {
1091 res = get(NULL, inode, &last->done);
1092 if (res == ERR_PTR(-ECHILD)) {
1093 if (unlikely(unlazy_walk(nd)))
1094 return ERR_PTR(-ECHILD);
1095 res = get(dentry, inode, &last->done);
1096 }
1097 } else {
1098 res = get(dentry, inode, &last->done);
1099 }
1100 if (IS_ERR_OR_NULL(res))
1101 return res;
1102 }
1103 if (*res == '/') {
1104 if (!nd->root.mnt)
1105 set_root(nd);
1106 if (unlikely(nd_jump_root(nd)))
1107 return ERR_PTR(-ECHILD);
1108 while (unlikely(*++res == '/'))
1109 ;
1110 }
1111 if (!*res)
1112 res = NULL;
1113 return res;
1114 }
1115
1116 /*
1117 * follow_up - Find the mountpoint of path's vfsmount
1118 *
1119 * Given a path, find the mountpoint of its source file system.
1120 * Replace @path with the path of the mountpoint in the parent mount.
1121 * Up is towards /.
1122 *
1123 * Return 1 if we went up a level and 0 if we were already at the
1124 * root.
1125 */
1126 int follow_up(struct path *path)
1127 {
1128 struct mount *mnt = real_mount(path->mnt);
1129 struct mount *parent;
1130 struct dentry *mountpoint;
1131
1132 read_seqlock_excl(&mount_lock);
1133 parent = mnt->mnt_parent;
1134 if (parent == mnt) {
1135 read_sequnlock_excl(&mount_lock);
1136 return 0;
1137 }
1138 mntget(&parent->mnt);
1139 mountpoint = dget(mnt->mnt_mountpoint);
1140 read_sequnlock_excl(&mount_lock);
1141 dput(path->dentry);
1142 path->dentry = mountpoint;
1143 mntput(path->mnt);
1144 path->mnt = &parent->mnt;
1145 return 1;
1146 }
1147 EXPORT_SYMBOL(follow_up);
1148
1149 /*
1150 * Perform an automount
1151 * - return -EISDIR to tell follow_managed() to stop and return the path we
1152 * were called with.
1153 */
1154 static int follow_automount(struct path *path, struct nameidata *nd,
1155 bool *need_mntput)
1156 {
1157 struct vfsmount *mnt;
1158 int err;
1159
1160 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1161 return -EREMOTE;
1162
1163 /* We don't want to mount if someone's just doing a stat -
1164 * unless they're stat'ing a directory and appended a '/' to
1165 * the name.
1166 *
1167 * We do, however, want to mount if someone wants to open or
1168 * create a file of any type under the mountpoint, wants to
1169 * traverse through the mountpoint or wants to open the
1170 * mounted directory. Also, autofs may mark negative dentries
1171 * as being automount points. These will need the attentions
1172 * of the daemon to instantiate them before they can be used.
1173 */
1174 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1175 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1176 path->dentry->d_inode)
1177 return -EISDIR;
1178
1179 nd->total_link_count++;
1180 if (nd->total_link_count >= 40)
1181 return -ELOOP;
1182
1183 mnt = path->dentry->d_op->d_automount(path);
1184 if (IS_ERR(mnt)) {
1185 /*
1186 * The filesystem is allowed to return -EISDIR here to indicate
1187 * it doesn't want to automount. For instance, autofs would do
1188 * this so that its userspace daemon can mount on this dentry.
1189 *
1190 * However, we can only permit this if it's a terminal point in
1191 * the path being looked up; if it wasn't then the remainder of
1192 * the path is inaccessible and we should say so.
1193 */
1194 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1195 return -EREMOTE;
1196 return PTR_ERR(mnt);
1197 }
1198
1199 if (!mnt) /* mount collision */
1200 return 0;
1201
1202 if (!*need_mntput) {
1203 /* lock_mount() may release path->mnt on error */
1204 mntget(path->mnt);
1205 *need_mntput = true;
1206 }
1207 err = finish_automount(mnt, path);
1208
1209 switch (err) {
1210 case -EBUSY:
1211 /* Someone else made a mount here whilst we were busy */
1212 return 0;
1213 case 0:
1214 path_put(path);
1215 path->mnt = mnt;
1216 path->dentry = dget(mnt->mnt_root);
1217 return 0;
1218 default:
1219 return err;
1220 }
1221
1222 }
1223
1224 /*
1225 * Handle a dentry that is managed in some way.
1226 * - Flagged for transit management (autofs)
1227 * - Flagged as mountpoint
1228 * - Flagged as automount point
1229 *
1230 * This may only be called in refwalk mode.
1231 *
1232 * Serialization is taken care of in namespace.c
1233 */
1234 static int follow_managed(struct path *path, struct nameidata *nd)
1235 {
1236 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1237 unsigned managed;
1238 bool need_mntput = false;
1239 int ret = 0;
1240
1241 /* Given that we're not holding a lock here, we retain the value in a
1242 * local variable for each dentry as we look at it so that we don't see
1243 * the components of that value change under us */
1244 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1245 managed &= DCACHE_MANAGED_DENTRY,
1246 unlikely(managed != 0)) {
1247 /* Allow the filesystem to manage the transit without i_mutex
1248 * being held. */
1249 if (managed & DCACHE_MANAGE_TRANSIT) {
1250 BUG_ON(!path->dentry->d_op);
1251 BUG_ON(!path->dentry->d_op->d_manage);
1252 ret = path->dentry->d_op->d_manage(path, false);
1253 if (ret < 0)
1254 break;
1255 }
1256
1257 /* Transit to a mounted filesystem. */
1258 if (managed & DCACHE_MOUNTED) {
1259 struct vfsmount *mounted = lookup_mnt(path);
1260 if (mounted) {
1261 dput(path->dentry);
1262 if (need_mntput)
1263 mntput(path->mnt);
1264 path->mnt = mounted;
1265 path->dentry = dget(mounted->mnt_root);
1266 need_mntput = true;
1267 continue;
1268 }
1269
1270 /* Something is mounted on this dentry in another
1271 * namespace and/or whatever was mounted there in this
1272 * namespace got unmounted before lookup_mnt() could
1273 * get it */
1274 }
1275
1276 /* Handle an automount point */
1277 if (managed & DCACHE_NEED_AUTOMOUNT) {
1278 ret = follow_automount(path, nd, &need_mntput);
1279 if (ret < 0)
1280 break;
1281 continue;
1282 }
1283
1284 /* We didn't change the current path point */
1285 break;
1286 }
1287
1288 if (need_mntput && path->mnt == mnt)
1289 mntput(path->mnt);
1290 if (ret == -EISDIR || !ret)
1291 ret = 1;
1292 if (need_mntput)
1293 nd->flags |= LOOKUP_JUMPED;
1294 if (unlikely(ret < 0))
1295 path_put_conditional(path, nd);
1296 return ret;
1297 }
1298
1299 int follow_down_one(struct path *path)
1300 {
1301 struct vfsmount *mounted;
1302
1303 mounted = lookup_mnt(path);
1304 if (mounted) {
1305 dput(path->dentry);
1306 mntput(path->mnt);
1307 path->mnt = mounted;
1308 path->dentry = dget(mounted->mnt_root);
1309 return 1;
1310 }
1311 return 0;
1312 }
1313 EXPORT_SYMBOL(follow_down_one);
1314
1315 static inline int managed_dentry_rcu(const struct path *path)
1316 {
1317 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1318 path->dentry->d_op->d_manage(path, true) : 0;
1319 }
1320
1321 /*
1322 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1323 * we meet a managed dentry that would need blocking.
1324 */
1325 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1326 struct inode **inode, unsigned *seqp)
1327 {
1328 for (;;) {
1329 struct mount *mounted;
1330 /*
1331 * Don't forget we might have a non-mountpoint managed dentry
1332 * that wants to block transit.
1333 */
1334 switch (managed_dentry_rcu(path)) {
1335 case -ECHILD:
1336 default:
1337 return false;
1338 case -EISDIR:
1339 return true;
1340 case 0:
1341 break;
1342 }
1343
1344 if (!d_mountpoint(path->dentry))
1345 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1346
1347 mounted = __lookup_mnt(path->mnt, path->dentry);
1348 if (!mounted)
1349 break;
1350 path->mnt = &mounted->mnt;
1351 path->dentry = mounted->mnt.mnt_root;
1352 nd->flags |= LOOKUP_JUMPED;
1353 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1354 /*
1355 * Update the inode too. We don't need to re-check the
1356 * dentry sequence number here after this d_inode read,
1357 * because a mount-point is always pinned.
1358 */
1359 *inode = path->dentry->d_inode;
1360 }
1361 return !read_seqretry(&mount_lock, nd->m_seq) &&
1362 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1363 }
1364
1365 static int follow_dotdot_rcu(struct nameidata *nd)
1366 {
1367 struct inode *inode = nd->inode;
1368
1369 while (1) {
1370 if (path_equal(&nd->path, &nd->root))
1371 break;
1372 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1373 struct dentry *old = nd->path.dentry;
1374 struct dentry *parent = old->d_parent;
1375 unsigned seq;
1376
1377 inode = parent->d_inode;
1378 seq = read_seqcount_begin(&parent->d_seq);
1379 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1380 return -ECHILD;
1381 nd->path.dentry = parent;
1382 nd->seq = seq;
1383 if (unlikely(!path_connected(&nd->path)))
1384 return -ENOENT;
1385 break;
1386 } else {
1387 struct mount *mnt = real_mount(nd->path.mnt);
1388 struct mount *mparent = mnt->mnt_parent;
1389 struct dentry *mountpoint = mnt->mnt_mountpoint;
1390 struct inode *inode2 = mountpoint->d_inode;
1391 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1392 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1393 return -ECHILD;
1394 if (&mparent->mnt == nd->path.mnt)
1395 break;
1396 /* we know that mountpoint was pinned */
1397 nd->path.dentry = mountpoint;
1398 nd->path.mnt = &mparent->mnt;
1399 inode = inode2;
1400 nd->seq = seq;
1401 }
1402 }
1403 while (unlikely(d_mountpoint(nd->path.dentry))) {
1404 struct mount *mounted;
1405 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1406 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1407 return -ECHILD;
1408 if (!mounted)
1409 break;
1410 nd->path.mnt = &mounted->mnt;
1411 nd->path.dentry = mounted->mnt.mnt_root;
1412 inode = nd->path.dentry->d_inode;
1413 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1414 }
1415 nd->inode = inode;
1416 return 0;
1417 }
1418
1419 /*
1420 * Follow down to the covering mount currently visible to userspace. At each
1421 * point, the filesystem owning that dentry may be queried as to whether the
1422 * caller is permitted to proceed or not.
1423 */
1424 int follow_down(struct path *path)
1425 {
1426 unsigned managed;
1427 int ret;
1428
1429 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1430 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1431 /* Allow the filesystem to manage the transit without i_mutex
1432 * being held.
1433 *
1434 * We indicate to the filesystem if someone is trying to mount
1435 * something here. This gives autofs the chance to deny anyone
1436 * other than its daemon the right to mount on its
1437 * superstructure.
1438 *
1439 * The filesystem may sleep at this point.
1440 */
1441 if (managed & DCACHE_MANAGE_TRANSIT) {
1442 BUG_ON(!path->dentry->d_op);
1443 BUG_ON(!path->dentry->d_op->d_manage);
1444 ret = path->dentry->d_op->d_manage(path, false);
1445 if (ret < 0)
1446 return ret == -EISDIR ? 0 : ret;
1447 }
1448
1449 /* Transit to a mounted filesystem. */
1450 if (managed & DCACHE_MOUNTED) {
1451 struct vfsmount *mounted = lookup_mnt(path);
1452 if (!mounted)
1453 break;
1454 dput(path->dentry);
1455 mntput(path->mnt);
1456 path->mnt = mounted;
1457 path->dentry = dget(mounted->mnt_root);
1458 continue;
1459 }
1460
1461 /* Don't handle automount points here */
1462 break;
1463 }
1464 return 0;
1465 }
1466 EXPORT_SYMBOL(follow_down);
1467
1468 /*
1469 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1470 */
1471 static void follow_mount(struct path *path)
1472 {
1473 while (d_mountpoint(path->dentry)) {
1474 struct vfsmount *mounted = lookup_mnt(path);
1475 if (!mounted)
1476 break;
1477 dput(path->dentry);
1478 mntput(path->mnt);
1479 path->mnt = mounted;
1480 path->dentry = dget(mounted->mnt_root);
1481 }
1482 }
1483
1484 static int path_parent_directory(struct path *path)
1485 {
1486 struct dentry *old = path->dentry;
1487 /* rare case of legitimate dget_parent()... */
1488 path->dentry = dget_parent(path->dentry);
1489 dput(old);
1490 if (unlikely(!path_connected(path)))
1491 return -ENOENT;
1492 return 0;
1493 }
1494
1495 static int follow_dotdot(struct nameidata *nd)
1496 {
1497 while(1) {
1498 if (nd->path.dentry == nd->root.dentry &&
1499 nd->path.mnt == nd->root.mnt) {
1500 break;
1501 }
1502 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1503 int ret = path_parent_directory(&nd->path);
1504 if (ret)
1505 return ret;
1506 break;
1507 }
1508 if (!follow_up(&nd->path))
1509 break;
1510 }
1511 follow_mount(&nd->path);
1512 nd->inode = nd->path.dentry->d_inode;
1513 return 0;
1514 }
1515
1516 /*
1517 * This looks up the name in dcache and possibly revalidates the found dentry.
1518 * NULL is returned if the dentry does not exist in the cache.
1519 */
1520 static struct dentry *lookup_dcache(const struct qstr *name,
1521 struct dentry *dir,
1522 unsigned int flags)
1523 {
1524 struct dentry *dentry = d_lookup(dir, name);
1525 if (dentry) {
1526 int error = d_revalidate(dentry, flags);
1527 if (unlikely(error <= 0)) {
1528 if (!error)
1529 d_invalidate(dentry);
1530 dput(dentry);
1531 return ERR_PTR(error);
1532 }
1533 }
1534 return dentry;
1535 }
1536
1537 /*
1538 * Call i_op->lookup on the dentry. The dentry must be negative and
1539 * unhashed.
1540 *
1541 * dir->d_inode->i_mutex must be held
1542 */
1543 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1544 unsigned int flags)
1545 {
1546 struct dentry *old;
1547
1548 /* Don't create child dentry for a dead directory. */
1549 if (unlikely(IS_DEADDIR(dir))) {
1550 dput(dentry);
1551 return ERR_PTR(-ENOENT);
1552 }
1553
1554 old = dir->i_op->lookup(dir, dentry, flags);
1555 if (unlikely(old)) {
1556 dput(dentry);
1557 dentry = old;
1558 }
1559 return dentry;
1560 }
1561
1562 static struct dentry *__lookup_hash(const struct qstr *name,
1563 struct dentry *base, unsigned int flags)
1564 {
1565 struct dentry *dentry = lookup_dcache(name, base, flags);
1566
1567 if (dentry)
1568 return dentry;
1569
1570 dentry = d_alloc(base, name);
1571 if (unlikely(!dentry))
1572 return ERR_PTR(-ENOMEM);
1573
1574 return lookup_real(base->d_inode, dentry, flags);
1575 }
1576
1577 static int lookup_fast(struct nameidata *nd,
1578 struct path *path, struct inode **inode,
1579 unsigned *seqp)
1580 {
1581 struct vfsmount *mnt = nd->path.mnt;
1582 struct dentry *dentry, *parent = nd->path.dentry;
1583 int status = 1;
1584 int err;
1585
1586 /*
1587 * Rename seqlock is not required here because in the off chance
1588 * of a false negative due to a concurrent rename, the caller is
1589 * going to fall back to non-racy lookup.
1590 */
1591 if (nd->flags & LOOKUP_RCU) {
1592 unsigned seq;
1593 bool negative;
1594 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1595 if (unlikely(!dentry)) {
1596 if (unlazy_walk(nd))
1597 return -ECHILD;
1598 return 0;
1599 }
1600
1601 /*
1602 * This sequence count validates that the inode matches
1603 * the dentry name information from lookup.
1604 */
1605 *inode = d_backing_inode(dentry);
1606 negative = d_is_negative(dentry);
1607 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1608 return -ECHILD;
1609
1610 /*
1611 * This sequence count validates that the parent had no
1612 * changes while we did the lookup of the dentry above.
1613 *
1614 * The memory barrier in read_seqcount_begin of child is
1615 * enough, we can use __read_seqcount_retry here.
1616 */
1617 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1618 return -ECHILD;
1619
1620 *seqp = seq;
1621 status = d_revalidate(dentry, nd->flags);
1622 if (likely(status > 0)) {
1623 /*
1624 * Note: do negative dentry check after revalidation in
1625 * case that drops it.
1626 */
1627 if (unlikely(negative))
1628 return -ENOENT;
1629 path->mnt = mnt;
1630 path->dentry = dentry;
1631 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1632 return 1;
1633 }
1634 if (unlazy_child(nd, dentry, seq))
1635 return -ECHILD;
1636 if (unlikely(status == -ECHILD))
1637 /* we'd been told to redo it in non-rcu mode */
1638 status = d_revalidate(dentry, nd->flags);
1639 } else {
1640 dentry = __d_lookup(parent, &nd->last);
1641 if (unlikely(!dentry))
1642 return 0;
1643 status = d_revalidate(dentry, nd->flags);
1644 }
1645 if (unlikely(status <= 0)) {
1646 if (!status)
1647 d_invalidate(dentry);
1648 dput(dentry);
1649 return status;
1650 }
1651 if (unlikely(d_is_negative(dentry))) {
1652 dput(dentry);
1653 return -ENOENT;
1654 }
1655
1656 path->mnt = mnt;
1657 path->dentry = dentry;
1658 err = follow_managed(path, nd);
1659 if (likely(err > 0))
1660 *inode = d_backing_inode(path->dentry);
1661 return err;
1662 }
1663
1664 /* Fast lookup failed, do it the slow way */
1665 static struct dentry *lookup_slow(const struct qstr *name,
1666 struct dentry *dir,
1667 unsigned int flags)
1668 {
1669 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1670 struct inode *inode = dir->d_inode;
1671 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1672
1673 inode_lock_shared(inode);
1674 /* Don't go there if it's already dead */
1675 if (unlikely(IS_DEADDIR(inode)))
1676 goto out;
1677 again:
1678 dentry = d_alloc_parallel(dir, name, &wq);
1679 if (IS_ERR(dentry))
1680 goto out;
1681 if (unlikely(!d_in_lookup(dentry))) {
1682 if (!(flags & LOOKUP_NO_REVAL)) {
1683 int error = d_revalidate(dentry, flags);
1684 if (unlikely(error <= 0)) {
1685 if (!error) {
1686 d_invalidate(dentry);
1687 dput(dentry);
1688 goto again;
1689 }
1690 dput(dentry);
1691 dentry = ERR_PTR(error);
1692 }
1693 }
1694 } else {
1695 old = inode->i_op->lookup(inode, dentry, flags);
1696 d_lookup_done(dentry);
1697 if (unlikely(old)) {
1698 dput(dentry);
1699 dentry = old;
1700 }
1701 }
1702 out:
1703 inode_unlock_shared(inode);
1704 return dentry;
1705 }
1706
1707 static inline int may_lookup(struct nameidata *nd)
1708 {
1709 if (nd->flags & LOOKUP_RCU) {
1710 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1711 if (err != -ECHILD)
1712 return err;
1713 if (unlazy_walk(nd))
1714 return -ECHILD;
1715 }
1716 return inode_permission(nd->inode, MAY_EXEC);
1717 }
1718
1719 static inline int handle_dots(struct nameidata *nd, int type)
1720 {
1721 if (type == LAST_DOTDOT) {
1722 if (!nd->root.mnt)
1723 set_root(nd);
1724 if (nd->flags & LOOKUP_RCU) {
1725 return follow_dotdot_rcu(nd);
1726 } else
1727 return follow_dotdot(nd);
1728 }
1729 return 0;
1730 }
1731
1732 static int pick_link(struct nameidata *nd, struct path *link,
1733 struct inode *inode, unsigned seq)
1734 {
1735 int error;
1736 struct saved *last;
1737 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1738 path_to_nameidata(link, nd);
1739 return -ELOOP;
1740 }
1741 if (!(nd->flags & LOOKUP_RCU)) {
1742 if (link->mnt == nd->path.mnt)
1743 mntget(link->mnt);
1744 }
1745 error = nd_alloc_stack(nd);
1746 if (unlikely(error)) {
1747 if (error == -ECHILD) {
1748 if (unlikely(!legitimize_path(nd, link, seq))) {
1749 drop_links(nd);
1750 nd->depth = 0;
1751 nd->flags &= ~LOOKUP_RCU;
1752 nd->path.mnt = NULL;
1753 nd->path.dentry = NULL;
1754 if (!(nd->flags & LOOKUP_ROOT))
1755 nd->root.mnt = NULL;
1756 rcu_read_unlock();
1757 } else if (likely(unlazy_walk(nd)) == 0)
1758 error = nd_alloc_stack(nd);
1759 }
1760 if (error) {
1761 path_put(link);
1762 return error;
1763 }
1764 }
1765
1766 last = nd->stack + nd->depth++;
1767 last->link = *link;
1768 clear_delayed_call(&last->done);
1769 nd->link_inode = inode;
1770 last->seq = seq;
1771 return 1;
1772 }
1773
1774 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1775
1776 /*
1777 * Do we need to follow links? We _really_ want to be able
1778 * to do this check without having to look at inode->i_op,
1779 * so we keep a cache of "no, this doesn't need follow_link"
1780 * for the common case.
1781 */
1782 static inline int step_into(struct nameidata *nd, struct path *path,
1783 int flags, struct inode *inode, unsigned seq)
1784 {
1785 if (!(flags & WALK_MORE) && nd->depth)
1786 put_link(nd);
1787 if (likely(!d_is_symlink(path->dentry)) ||
1788 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1789 /* not a symlink or should not follow */
1790 path_to_nameidata(path, nd);
1791 nd->inode = inode;
1792 nd->seq = seq;
1793 return 0;
1794 }
1795 /* make sure that d_is_symlink above matches inode */
1796 if (nd->flags & LOOKUP_RCU) {
1797 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1798 return -ECHILD;
1799 }
1800 return pick_link(nd, path, inode, seq);
1801 }
1802
1803 static int walk_component(struct nameidata *nd, int flags)
1804 {
1805 struct path path;
1806 struct inode *inode;
1807 unsigned seq;
1808 int err;
1809 /*
1810 * "." and ".." are special - ".." especially so because it has
1811 * to be able to know about the current root directory and
1812 * parent relationships.
1813 */
1814 if (unlikely(nd->last_type != LAST_NORM)) {
1815 err = handle_dots(nd, nd->last_type);
1816 if (!(flags & WALK_MORE) && nd->depth)
1817 put_link(nd);
1818 return err;
1819 }
1820 err = lookup_fast(nd, &path, &inode, &seq);
1821 if (unlikely(err <= 0)) {
1822 if (err < 0)
1823 return err;
1824 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1825 nd->flags);
1826 if (IS_ERR(path.dentry))
1827 return PTR_ERR(path.dentry);
1828
1829 path.mnt = nd->path.mnt;
1830 err = follow_managed(&path, nd);
1831 if (unlikely(err < 0))
1832 return err;
1833
1834 if (unlikely(d_is_negative(path.dentry))) {
1835 path_to_nameidata(&path, nd);
1836 return -ENOENT;
1837 }
1838
1839 seq = 0; /* we are already out of RCU mode */
1840 inode = d_backing_inode(path.dentry);
1841 }
1842
1843 return step_into(nd, &path, flags, inode, seq);
1844 }
1845
1846 /*
1847 * We can do the critical dentry name comparison and hashing
1848 * operations one word at a time, but we are limited to:
1849 *
1850 * - Architectures with fast unaligned word accesses. We could
1851 * do a "get_unaligned()" if this helps and is sufficiently
1852 * fast.
1853 *
1854 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1855 * do not trap on the (extremely unlikely) case of a page
1856 * crossing operation.
1857 *
1858 * - Furthermore, we need an efficient 64-bit compile for the
1859 * 64-bit case in order to generate the "number of bytes in
1860 * the final mask". Again, that could be replaced with a
1861 * efficient population count instruction or similar.
1862 */
1863 #ifdef CONFIG_DCACHE_WORD_ACCESS
1864
1865 #include <asm/word-at-a-time.h>
1866
1867 #ifdef HASH_MIX
1868
1869 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1870
1871 #elif defined(CONFIG_64BIT)
1872 /*
1873 * Register pressure in the mixing function is an issue, particularly
1874 * on 32-bit x86, but almost any function requires one state value and
1875 * one temporary. Instead, use a function designed for two state values
1876 * and no temporaries.
1877 *
1878 * This function cannot create a collision in only two iterations, so
1879 * we have two iterations to achieve avalanche. In those two iterations,
1880 * we have six layers of mixing, which is enough to spread one bit's
1881 * influence out to 2^6 = 64 state bits.
1882 *
1883 * Rotate constants are scored by considering either 64 one-bit input
1884 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1885 * probability of that delta causing a change to each of the 128 output
1886 * bits, using a sample of random initial states.
1887 *
1888 * The Shannon entropy of the computed probabilities is then summed
1889 * to produce a score. Ideally, any input change has a 50% chance of
1890 * toggling any given output bit.
1891 *
1892 * Mixing scores (in bits) for (12,45):
1893 * Input delta: 1-bit 2-bit
1894 * 1 round: 713.3 42542.6
1895 * 2 rounds: 2753.7 140389.8
1896 * 3 rounds: 5954.1 233458.2
1897 * 4 rounds: 7862.6 256672.2
1898 * Perfect: 8192 258048
1899 * (64*128) (64*63/2 * 128)
1900 */
1901 #define HASH_MIX(x, y, a) \
1902 ( x ^= (a), \
1903 y ^= x, x = rol64(x,12),\
1904 x += y, y = rol64(y,45),\
1905 y *= 9 )
1906
1907 /*
1908 * Fold two longs into one 32-bit hash value. This must be fast, but
1909 * latency isn't quite as critical, as there is a fair bit of additional
1910 * work done before the hash value is used.
1911 */
1912 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1913 {
1914 y ^= x * GOLDEN_RATIO_64;
1915 y *= GOLDEN_RATIO_64;
1916 return y >> 32;
1917 }
1918
1919 #else /* 32-bit case */
1920
1921 /*
1922 * Mixing scores (in bits) for (7,20):
1923 * Input delta: 1-bit 2-bit
1924 * 1 round: 330.3 9201.6
1925 * 2 rounds: 1246.4 25475.4
1926 * 3 rounds: 1907.1 31295.1
1927 * 4 rounds: 2042.3 31718.6
1928 * Perfect: 2048 31744
1929 * (32*64) (32*31/2 * 64)
1930 */
1931 #define HASH_MIX(x, y, a) \
1932 ( x ^= (a), \
1933 y ^= x, x = rol32(x, 7),\
1934 x += y, y = rol32(y,20),\
1935 y *= 9 )
1936
1937 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1938 {
1939 /* Use arch-optimized multiply if one exists */
1940 return __hash_32(y ^ __hash_32(x));
1941 }
1942
1943 #endif
1944
1945 /*
1946 * Return the hash of a string of known length. This is carfully
1947 * designed to match hash_name(), which is the more critical function.
1948 * In particular, we must end by hashing a final word containing 0..7
1949 * payload bytes, to match the way that hash_name() iterates until it
1950 * finds the delimiter after the name.
1951 */
1952 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1953 {
1954 unsigned long a, x = 0, y = (unsigned long)salt;
1955
1956 for (;;) {
1957 if (!len)
1958 goto done;
1959 a = load_unaligned_zeropad(name);
1960 if (len < sizeof(unsigned long))
1961 break;
1962 HASH_MIX(x, y, a);
1963 name += sizeof(unsigned long);
1964 len -= sizeof(unsigned long);
1965 }
1966 x ^= a & bytemask_from_count(len);
1967 done:
1968 return fold_hash(x, y);
1969 }
1970 EXPORT_SYMBOL(full_name_hash);
1971
1972 /* Return the "hash_len" (hash and length) of a null-terminated string */
1973 u64 hashlen_string(const void *salt, const char *name)
1974 {
1975 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1976 unsigned long adata, mask, len;
1977 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1978
1979 len = 0;
1980 goto inside;
1981
1982 do {
1983 HASH_MIX(x, y, a);
1984 len += sizeof(unsigned long);
1985 inside:
1986 a = load_unaligned_zeropad(name+len);
1987 } while (!has_zero(a, &adata, &constants));
1988
1989 adata = prep_zero_mask(a, adata, &constants);
1990 mask = create_zero_mask(adata);
1991 x ^= a & zero_bytemask(mask);
1992
1993 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1994 }
1995 EXPORT_SYMBOL(hashlen_string);
1996
1997 /*
1998 * Calculate the length and hash of the path component, and
1999 * return the "hash_len" as the result.
2000 */
2001 static inline u64 hash_name(const void *salt, const char *name)
2002 {
2003 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2004 unsigned long adata, bdata, mask, len;
2005 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2006
2007 len = 0;
2008 goto inside;
2009
2010 do {
2011 HASH_MIX(x, y, a);
2012 len += sizeof(unsigned long);
2013 inside:
2014 a = load_unaligned_zeropad(name+len);
2015 b = a ^ REPEAT_BYTE('/');
2016 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2017
2018 adata = prep_zero_mask(a, adata, &constants);
2019 bdata = prep_zero_mask(b, bdata, &constants);
2020 mask = create_zero_mask(adata | bdata);
2021 x ^= a & zero_bytemask(mask);
2022
2023 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2024 }
2025
2026 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2027
2028 /* Return the hash of a string of known length */
2029 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2030 {
2031 unsigned long hash = init_name_hash(salt);
2032 while (len--)
2033 hash = partial_name_hash((unsigned char)*name++, hash);
2034 return end_name_hash(hash);
2035 }
2036 EXPORT_SYMBOL(full_name_hash);
2037
2038 /* Return the "hash_len" (hash and length) of a null-terminated string */
2039 u64 hashlen_string(const void *salt, const char *name)
2040 {
2041 unsigned long hash = init_name_hash(salt);
2042 unsigned long len = 0, c;
2043
2044 c = (unsigned char)*name;
2045 while (c) {
2046 len++;
2047 hash = partial_name_hash(c, hash);
2048 c = (unsigned char)name[len];
2049 }
2050 return hashlen_create(end_name_hash(hash), len);
2051 }
2052 EXPORT_SYMBOL(hashlen_string);
2053
2054 /*
2055 * We know there's a real path component here of at least
2056 * one character.
2057 */
2058 static inline u64 hash_name(const void *salt, const char *name)
2059 {
2060 unsigned long hash = init_name_hash(salt);
2061 unsigned long len = 0, c;
2062
2063 c = (unsigned char)*name;
2064 do {
2065 len++;
2066 hash = partial_name_hash(c, hash);
2067 c = (unsigned char)name[len];
2068 } while (c && c != '/');
2069 return hashlen_create(end_name_hash(hash), len);
2070 }
2071
2072 #endif
2073
2074 /*
2075 * Name resolution.
2076 * This is the basic name resolution function, turning a pathname into
2077 * the final dentry. We expect 'base' to be positive and a directory.
2078 *
2079 * Returns 0 and nd will have valid dentry and mnt on success.
2080 * Returns error and drops reference to input namei data on failure.
2081 */
2082 static int link_path_walk(const char *name, struct nameidata *nd)
2083 {
2084 int err;
2085
2086 while (*name=='/')
2087 name++;
2088 if (!*name)
2089 return 0;
2090
2091 /* At this point we know we have a real path component. */
2092 for(;;) {
2093 u64 hash_len;
2094 int type;
2095
2096 err = may_lookup(nd);
2097 if (err)
2098 return err;
2099
2100 hash_len = hash_name(nd->path.dentry, name);
2101
2102 type = LAST_NORM;
2103 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2104 case 2:
2105 if (name[1] == '.') {
2106 type = LAST_DOTDOT;
2107 nd->flags |= LOOKUP_JUMPED;
2108 }
2109 break;
2110 case 1:
2111 type = LAST_DOT;
2112 }
2113 if (likely(type == LAST_NORM)) {
2114 struct dentry *parent = nd->path.dentry;
2115 nd->flags &= ~LOOKUP_JUMPED;
2116 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2117 struct qstr this = { { .hash_len = hash_len }, .name = name };
2118 err = parent->d_op->d_hash(parent, &this);
2119 if (err < 0)
2120 return err;
2121 hash_len = this.hash_len;
2122 name = this.name;
2123 }
2124 }
2125
2126 nd->last.hash_len = hash_len;
2127 nd->last.name = name;
2128 nd->last_type = type;
2129
2130 name += hashlen_len(hash_len);
2131 if (!*name)
2132 goto OK;
2133 /*
2134 * If it wasn't NUL, we know it was '/'. Skip that
2135 * slash, and continue until no more slashes.
2136 */
2137 do {
2138 name++;
2139 } while (unlikely(*name == '/'));
2140 if (unlikely(!*name)) {
2141 OK:
2142 /* pathname body, done */
2143 if (!nd->depth)
2144 return 0;
2145 name = nd->stack[nd->depth - 1].name;
2146 /* trailing symlink, done */
2147 if (!name)
2148 return 0;
2149 /* last component of nested symlink */
2150 err = walk_component(nd, WALK_FOLLOW);
2151 } else {
2152 /* not the last component */
2153 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2154 }
2155 if (err < 0)
2156 return err;
2157
2158 if (err) {
2159 const char *s = get_link(nd);
2160
2161 if (IS_ERR(s))
2162 return PTR_ERR(s);
2163 err = 0;
2164 if (unlikely(!s)) {
2165 /* jumped */
2166 put_link(nd);
2167 } else {
2168 nd->stack[nd->depth - 1].name = name;
2169 name = s;
2170 continue;
2171 }
2172 }
2173 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2174 if (nd->flags & LOOKUP_RCU) {
2175 if (unlazy_walk(nd))
2176 return -ECHILD;
2177 }
2178 return -ENOTDIR;
2179 }
2180 }
2181 }
2182
2183 static const char *path_init(struct nameidata *nd, unsigned flags)
2184 {
2185 const char *s = nd->name->name;
2186
2187 if (!*s)
2188 flags &= ~LOOKUP_RCU;
2189
2190 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2191 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2192 nd->depth = 0;
2193 if (flags & LOOKUP_ROOT) {
2194 struct dentry *root = nd->root.dentry;
2195 struct inode *inode = root->d_inode;
2196 if (*s && unlikely(!d_can_lookup(root)))
2197 return ERR_PTR(-ENOTDIR);
2198 nd->path = nd->root;
2199 nd->inode = inode;
2200 if (flags & LOOKUP_RCU) {
2201 rcu_read_lock();
2202 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2203 nd->root_seq = nd->seq;
2204 nd->m_seq = read_seqbegin(&mount_lock);
2205 } else {
2206 path_get(&nd->path);
2207 }
2208 return s;
2209 }
2210
2211 nd->root.mnt = NULL;
2212 nd->path.mnt = NULL;
2213 nd->path.dentry = NULL;
2214
2215 nd->m_seq = read_seqbegin(&mount_lock);
2216 if (*s == '/') {
2217 if (flags & LOOKUP_RCU)
2218 rcu_read_lock();
2219 set_root(nd);
2220 if (likely(!nd_jump_root(nd)))
2221 return s;
2222 nd->root.mnt = NULL;
2223 rcu_read_unlock();
2224 return ERR_PTR(-ECHILD);
2225 } else if (nd->dfd == AT_FDCWD) {
2226 if (flags & LOOKUP_RCU) {
2227 struct fs_struct *fs = current->fs;
2228 unsigned seq;
2229
2230 rcu_read_lock();
2231
2232 do {
2233 seq = read_seqcount_begin(&fs->seq);
2234 nd->path = fs->pwd;
2235 nd->inode = nd->path.dentry->d_inode;
2236 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2237 } while (read_seqcount_retry(&fs->seq, seq));
2238 } else {
2239 get_fs_pwd(current->fs, &nd->path);
2240 nd->inode = nd->path.dentry->d_inode;
2241 }
2242 return s;
2243 } else {
2244 /* Caller must check execute permissions on the starting path component */
2245 struct fd f = fdget_raw(nd->dfd);
2246 struct dentry *dentry;
2247
2248 if (!f.file)
2249 return ERR_PTR(-EBADF);
2250
2251 dentry = f.file->f_path.dentry;
2252
2253 if (*s) {
2254 if (!d_can_lookup(dentry)) {
2255 fdput(f);
2256 return ERR_PTR(-ENOTDIR);
2257 }
2258 }
2259
2260 nd->path = f.file->f_path;
2261 if (flags & LOOKUP_RCU) {
2262 rcu_read_lock();
2263 nd->inode = nd->path.dentry->d_inode;
2264 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2265 } else {
2266 path_get(&nd->path);
2267 nd->inode = nd->path.dentry->d_inode;
2268 }
2269 fdput(f);
2270 return s;
2271 }
2272 }
2273
2274 static const char *trailing_symlink(struct nameidata *nd)
2275 {
2276 const char *s;
2277 int error = may_follow_link(nd);
2278 if (unlikely(error))
2279 return ERR_PTR(error);
2280 nd->flags |= LOOKUP_PARENT;
2281 nd->stack[0].name = NULL;
2282 s = get_link(nd);
2283 return s ? s : "";
2284 }
2285
2286 static inline int lookup_last(struct nameidata *nd)
2287 {
2288 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2289 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2290
2291 nd->flags &= ~LOOKUP_PARENT;
2292 return walk_component(nd, 0);
2293 }
2294
2295 static int handle_lookup_down(struct nameidata *nd)
2296 {
2297 struct path path = nd->path;
2298 struct inode *inode = nd->inode;
2299 unsigned seq = nd->seq;
2300 int err;
2301
2302 if (nd->flags & LOOKUP_RCU) {
2303 /*
2304 * don't bother with unlazy_walk on failure - we are
2305 * at the very beginning of walk, so we lose nothing
2306 * if we simply redo everything in non-RCU mode
2307 */
2308 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2309 return -ECHILD;
2310 } else {
2311 dget(path.dentry);
2312 err = follow_managed(&path, nd);
2313 if (unlikely(err < 0))
2314 return err;
2315 inode = d_backing_inode(path.dentry);
2316 seq = 0;
2317 }
2318 path_to_nameidata(&path, nd);
2319 nd->inode = inode;
2320 nd->seq = seq;
2321 return 0;
2322 }
2323
2324 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2325 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2326 {
2327 const char *s = path_init(nd, flags);
2328 int err;
2329
2330 if (IS_ERR(s))
2331 return PTR_ERR(s);
2332
2333 if (unlikely(flags & LOOKUP_DOWN)) {
2334 err = handle_lookup_down(nd);
2335 if (unlikely(err < 0)) {
2336 terminate_walk(nd);
2337 return err;
2338 }
2339 }
2340
2341 while (!(err = link_path_walk(s, nd))
2342 && ((err = lookup_last(nd)) > 0)) {
2343 s = trailing_symlink(nd);
2344 if (IS_ERR(s)) {
2345 err = PTR_ERR(s);
2346 break;
2347 }
2348 }
2349 if (!err)
2350 err = complete_walk(nd);
2351
2352 if (!err && nd->flags & LOOKUP_DIRECTORY)
2353 if (!d_can_lookup(nd->path.dentry))
2354 err = -ENOTDIR;
2355 if (!err) {
2356 *path = nd->path;
2357 nd->path.mnt = NULL;
2358 nd->path.dentry = NULL;
2359 }
2360 terminate_walk(nd);
2361 return err;
2362 }
2363
2364 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2365 struct path *path, struct path *root)
2366 {
2367 int retval;
2368 struct nameidata nd;
2369 if (IS_ERR(name))
2370 return PTR_ERR(name);
2371 if (unlikely(root)) {
2372 nd.root = *root;
2373 flags |= LOOKUP_ROOT;
2374 }
2375 set_nameidata(&nd, dfd, name);
2376 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2377 if (unlikely(retval == -ECHILD))
2378 retval = path_lookupat(&nd, flags, path);
2379 if (unlikely(retval == -ESTALE))
2380 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2381
2382 if (likely(!retval))
2383 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2384 restore_nameidata();
2385 putname(name);
2386 return retval;
2387 }
2388
2389 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2390 static int path_parentat(struct nameidata *nd, unsigned flags,
2391 struct path *parent)
2392 {
2393 const char *s = path_init(nd, flags);
2394 int err;
2395 if (IS_ERR(s))
2396 return PTR_ERR(s);
2397 err = link_path_walk(s, nd);
2398 if (!err)
2399 err = complete_walk(nd);
2400 if (!err) {
2401 *parent = nd->path;
2402 nd->path.mnt = NULL;
2403 nd->path.dentry = NULL;
2404 }
2405 terminate_walk(nd);
2406 return err;
2407 }
2408
2409 static struct filename *filename_parentat(int dfd, struct filename *name,
2410 unsigned int flags, struct path *parent,
2411 struct qstr *last, int *type)
2412 {
2413 int retval;
2414 struct nameidata nd;
2415
2416 if (IS_ERR(name))
2417 return name;
2418 set_nameidata(&nd, dfd, name);
2419 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2420 if (unlikely(retval == -ECHILD))
2421 retval = path_parentat(&nd, flags, parent);
2422 if (unlikely(retval == -ESTALE))
2423 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2424 if (likely(!retval)) {
2425 *last = nd.last;
2426 *type = nd.last_type;
2427 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2428 } else {
2429 putname(name);
2430 name = ERR_PTR(retval);
2431 }
2432 restore_nameidata();
2433 return name;
2434 }
2435
2436 /* does lookup, returns the object with parent locked */
2437 struct dentry *kern_path_locked(const char *name, struct path *path)
2438 {
2439 struct filename *filename;
2440 struct dentry *d;
2441 struct qstr last;
2442 int type;
2443
2444 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2445 &last, &type);
2446 if (IS_ERR(filename))
2447 return ERR_CAST(filename);
2448 if (unlikely(type != LAST_NORM)) {
2449 path_put(path);
2450 putname(filename);
2451 return ERR_PTR(-EINVAL);
2452 }
2453 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2454 d = __lookup_hash(&last, path->dentry, 0);
2455 if (IS_ERR(d)) {
2456 inode_unlock(path->dentry->d_inode);
2457 path_put(path);
2458 }
2459 putname(filename);
2460 return d;
2461 }
2462
2463 int kern_path(const char *name, unsigned int flags, struct path *path)
2464 {
2465 return filename_lookup(AT_FDCWD, getname_kernel(name),
2466 flags, path, NULL);
2467 }
2468 EXPORT_SYMBOL(kern_path);
2469
2470 /**
2471 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2472 * @dentry: pointer to dentry of the base directory
2473 * @mnt: pointer to vfs mount of the base directory
2474 * @name: pointer to file name
2475 * @flags: lookup flags
2476 * @path: pointer to struct path to fill
2477 */
2478 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2479 const char *name, unsigned int flags,
2480 struct path *path)
2481 {
2482 struct path root = {.mnt = mnt, .dentry = dentry};
2483 /* the first argument of filename_lookup() is ignored with root */
2484 return filename_lookup(AT_FDCWD, getname_kernel(name),
2485 flags , path, &root);
2486 }
2487 EXPORT_SYMBOL(vfs_path_lookup);
2488
2489 /**
2490 * lookup_one_len - filesystem helper to lookup single pathname component
2491 * @name: pathname component to lookup
2492 * @base: base directory to lookup from
2493 * @len: maximum length @len should be interpreted to
2494 *
2495 * Note that this routine is purely a helper for filesystem usage and should
2496 * not be called by generic code.
2497 *
2498 * The caller must hold base->i_mutex.
2499 */
2500 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2501 {
2502 struct qstr this;
2503 unsigned int c;
2504 int err;
2505
2506 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2507
2508 this.name = name;
2509 this.len = len;
2510 this.hash = full_name_hash(base, name, len);
2511 if (!len)
2512 return ERR_PTR(-EACCES);
2513
2514 if (unlikely(name[0] == '.')) {
2515 if (len < 2 || (len == 2 && name[1] == '.'))
2516 return ERR_PTR(-EACCES);
2517 }
2518
2519 while (len--) {
2520 c = *(const unsigned char *)name++;
2521 if (c == '/' || c == '\0')
2522 return ERR_PTR(-EACCES);
2523 }
2524 /*
2525 * See if the low-level filesystem might want
2526 * to use its own hash..
2527 */
2528 if (base->d_flags & DCACHE_OP_HASH) {
2529 int err = base->d_op->d_hash(base, &this);
2530 if (err < 0)
2531 return ERR_PTR(err);
2532 }
2533
2534 err = inode_permission(base->d_inode, MAY_EXEC);
2535 if (err)
2536 return ERR_PTR(err);
2537
2538 return __lookup_hash(&this, base, 0);
2539 }
2540 EXPORT_SYMBOL(lookup_one_len);
2541
2542 /**
2543 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2544 * @name: pathname component to lookup
2545 * @base: base directory to lookup from
2546 * @len: maximum length @len should be interpreted to
2547 *
2548 * Note that this routine is purely a helper for filesystem usage and should
2549 * not be called by generic code.
2550 *
2551 * Unlike lookup_one_len, it should be called without the parent
2552 * i_mutex held, and will take the i_mutex itself if necessary.
2553 */
2554 struct dentry *lookup_one_len_unlocked(const char *name,
2555 struct dentry *base, int len)
2556 {
2557 struct qstr this;
2558 unsigned int c;
2559 int err;
2560 struct dentry *ret;
2561
2562 this.name = name;
2563 this.len = len;
2564 this.hash = full_name_hash(base, name, len);
2565 if (!len)
2566 return ERR_PTR(-EACCES);
2567
2568 if (unlikely(name[0] == '.')) {
2569 if (len < 2 || (len == 2 && name[1] == '.'))
2570 return ERR_PTR(-EACCES);
2571 }
2572
2573 while (len--) {
2574 c = *(const unsigned char *)name++;
2575 if (c == '/' || c == '\0')
2576 return ERR_PTR(-EACCES);
2577 }
2578 /*
2579 * See if the low-level filesystem might want
2580 * to use its own hash..
2581 */
2582 if (base->d_flags & DCACHE_OP_HASH) {
2583 int err = base->d_op->d_hash(base, &this);
2584 if (err < 0)
2585 return ERR_PTR(err);
2586 }
2587
2588 err = inode_permission(base->d_inode, MAY_EXEC);
2589 if (err)
2590 return ERR_PTR(err);
2591
2592 ret = lookup_dcache(&this, base, 0);
2593 if (!ret)
2594 ret = lookup_slow(&this, base, 0);
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(lookup_one_len_unlocked);
2598
2599 #ifdef CONFIG_UNIX98_PTYS
2600 int path_pts(struct path *path)
2601 {
2602 /* Find something mounted on "pts" in the same directory as
2603 * the input path.
2604 */
2605 struct dentry *child, *parent;
2606 struct qstr this;
2607 int ret;
2608
2609 ret = path_parent_directory(path);
2610 if (ret)
2611 return ret;
2612
2613 parent = path->dentry;
2614 this.name = "pts";
2615 this.len = 3;
2616 child = d_hash_and_lookup(parent, &this);
2617 if (!child)
2618 return -ENOENT;
2619
2620 path->dentry = child;
2621 dput(parent);
2622 follow_mount(path);
2623 return 0;
2624 }
2625 #endif
2626
2627 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2628 struct path *path, int *empty)
2629 {
2630 return filename_lookup(dfd, getname_flags(name, flags, empty),
2631 flags, path, NULL);
2632 }
2633 EXPORT_SYMBOL(user_path_at_empty);
2634
2635 /**
2636 * mountpoint_last - look up last component for umount
2637 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2638 *
2639 * This is a special lookup_last function just for umount. In this case, we
2640 * need to resolve the path without doing any revalidation.
2641 *
2642 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2643 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2644 * in almost all cases, this lookup will be served out of the dcache. The only
2645 * cases where it won't are if nd->last refers to a symlink or the path is
2646 * bogus and it doesn't exist.
2647 *
2648 * Returns:
2649 * -error: if there was an error during lookup. This includes -ENOENT if the
2650 * lookup found a negative dentry.
2651 *
2652 * 0: if we successfully resolved nd->last and found it to not to be a
2653 * symlink that needs to be followed.
2654 *
2655 * 1: if we successfully resolved nd->last and found it to be a symlink
2656 * that needs to be followed.
2657 */
2658 static int
2659 mountpoint_last(struct nameidata *nd)
2660 {
2661 int error = 0;
2662 struct dentry *dir = nd->path.dentry;
2663 struct path path;
2664
2665 /* If we're in rcuwalk, drop out of it to handle last component */
2666 if (nd->flags & LOOKUP_RCU) {
2667 if (unlazy_walk(nd))
2668 return -ECHILD;
2669 }
2670
2671 nd->flags &= ~LOOKUP_PARENT;
2672
2673 if (unlikely(nd->last_type != LAST_NORM)) {
2674 error = handle_dots(nd, nd->last_type);
2675 if (error)
2676 return error;
2677 path.dentry = dget(nd->path.dentry);
2678 } else {
2679 path.dentry = d_lookup(dir, &nd->last);
2680 if (!path.dentry) {
2681 /*
2682 * No cached dentry. Mounted dentries are pinned in the
2683 * cache, so that means that this dentry is probably
2684 * a symlink or the path doesn't actually point
2685 * to a mounted dentry.
2686 */
2687 path.dentry = lookup_slow(&nd->last, dir,
2688 nd->flags | LOOKUP_NO_REVAL);
2689 if (IS_ERR(path.dentry))
2690 return PTR_ERR(path.dentry);
2691 }
2692 }
2693 if (d_is_negative(path.dentry)) {
2694 dput(path.dentry);
2695 return -ENOENT;
2696 }
2697 path.mnt = nd->path.mnt;
2698 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2699 }
2700
2701 /**
2702 * path_mountpoint - look up a path to be umounted
2703 * @nd: lookup context
2704 * @flags: lookup flags
2705 * @path: pointer to container for result
2706 *
2707 * Look up the given name, but don't attempt to revalidate the last component.
2708 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2709 */
2710 static int
2711 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2712 {
2713 const char *s = path_init(nd, flags);
2714 int err;
2715 if (IS_ERR(s))
2716 return PTR_ERR(s);
2717 while (!(err = link_path_walk(s, nd)) &&
2718 (err = mountpoint_last(nd)) > 0) {
2719 s = trailing_symlink(nd);
2720 if (IS_ERR(s)) {
2721 err = PTR_ERR(s);
2722 break;
2723 }
2724 }
2725 if (!err) {
2726 *path = nd->path;
2727 nd->path.mnt = NULL;
2728 nd->path.dentry = NULL;
2729 follow_mount(path);
2730 }
2731 terminate_walk(nd);
2732 return err;
2733 }
2734
2735 static int
2736 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2737 unsigned int flags)
2738 {
2739 struct nameidata nd;
2740 int error;
2741 if (IS_ERR(name))
2742 return PTR_ERR(name);
2743 set_nameidata(&nd, dfd, name);
2744 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2745 if (unlikely(error == -ECHILD))
2746 error = path_mountpoint(&nd, flags, path);
2747 if (unlikely(error == -ESTALE))
2748 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2749 if (likely(!error))
2750 audit_inode(name, path->dentry, 0);
2751 restore_nameidata();
2752 putname(name);
2753 return error;
2754 }
2755
2756 /**
2757 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2758 * @dfd: directory file descriptor
2759 * @name: pathname from userland
2760 * @flags: lookup flags
2761 * @path: pointer to container to hold result
2762 *
2763 * A umount is a special case for path walking. We're not actually interested
2764 * in the inode in this situation, and ESTALE errors can be a problem. We
2765 * simply want track down the dentry and vfsmount attached at the mountpoint
2766 * and avoid revalidating the last component.
2767 *
2768 * Returns 0 and populates "path" on success.
2769 */
2770 int
2771 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2772 struct path *path)
2773 {
2774 return filename_mountpoint(dfd, getname(name), path, flags);
2775 }
2776
2777 int
2778 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2779 unsigned int flags)
2780 {
2781 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2782 }
2783 EXPORT_SYMBOL(kern_path_mountpoint);
2784
2785 int __check_sticky(struct inode *dir, struct inode *inode)
2786 {
2787 kuid_t fsuid = current_fsuid();
2788
2789 if (uid_eq(inode->i_uid, fsuid))
2790 return 0;
2791 if (uid_eq(dir->i_uid, fsuid))
2792 return 0;
2793 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2794 }
2795 EXPORT_SYMBOL(__check_sticky);
2796
2797 /*
2798 * Check whether we can remove a link victim from directory dir, check
2799 * whether the type of victim is right.
2800 * 1. We can't do it if dir is read-only (done in permission())
2801 * 2. We should have write and exec permissions on dir
2802 * 3. We can't remove anything from append-only dir
2803 * 4. We can't do anything with immutable dir (done in permission())
2804 * 5. If the sticky bit on dir is set we should either
2805 * a. be owner of dir, or
2806 * b. be owner of victim, or
2807 * c. have CAP_FOWNER capability
2808 * 6. If the victim is append-only or immutable we can't do antyhing with
2809 * links pointing to it.
2810 * 7. If the victim has an unknown uid or gid we can't change the inode.
2811 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2812 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2813 * 10. We can't remove a root or mountpoint.
2814 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2815 * nfs_async_unlink().
2816 */
2817 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2818 {
2819 struct inode *inode = d_backing_inode(victim);
2820 int error;
2821
2822 if (d_is_negative(victim))
2823 return -ENOENT;
2824 BUG_ON(!inode);
2825
2826 BUG_ON(victim->d_parent->d_inode != dir);
2827 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2828
2829 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2830 if (error)
2831 return error;
2832 if (IS_APPEND(dir))
2833 return -EPERM;
2834
2835 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2836 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2837 return -EPERM;
2838 if (isdir) {
2839 if (!d_is_dir(victim))
2840 return -ENOTDIR;
2841 if (IS_ROOT(victim))
2842 return -EBUSY;
2843 } else if (d_is_dir(victim))
2844 return -EISDIR;
2845 if (IS_DEADDIR(dir))
2846 return -ENOENT;
2847 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2848 return -EBUSY;
2849 return 0;
2850 }
2851
2852 /* Check whether we can create an object with dentry child in directory
2853 * dir.
2854 * 1. We can't do it if child already exists (open has special treatment for
2855 * this case, but since we are inlined it's OK)
2856 * 2. We can't do it if dir is read-only (done in permission())
2857 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2858 * 4. We should have write and exec permissions on dir
2859 * 5. We can't do it if dir is immutable (done in permission())
2860 */
2861 static inline int may_create(struct inode *dir, struct dentry *child)
2862 {
2863 struct user_namespace *s_user_ns;
2864 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2865 if (child->d_inode)
2866 return -EEXIST;
2867 if (IS_DEADDIR(dir))
2868 return -ENOENT;
2869 s_user_ns = dir->i_sb->s_user_ns;
2870 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2871 !kgid_has_mapping(s_user_ns, current_fsgid()))
2872 return -EOVERFLOW;
2873 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2874 }
2875
2876 /*
2877 * p1 and p2 should be directories on the same fs.
2878 */
2879 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2880 {
2881 struct dentry *p;
2882
2883 if (p1 == p2) {
2884 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2885 return NULL;
2886 }
2887
2888 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2889
2890 p = d_ancestor(p2, p1);
2891 if (p) {
2892 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2893 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2894 return p;
2895 }
2896
2897 p = d_ancestor(p1, p2);
2898 if (p) {
2899 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2900 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2901 return p;
2902 }
2903
2904 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2905 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2906 return NULL;
2907 }
2908 EXPORT_SYMBOL(lock_rename);
2909
2910 void unlock_rename(struct dentry *p1, struct dentry *p2)
2911 {
2912 inode_unlock(p1->d_inode);
2913 if (p1 != p2) {
2914 inode_unlock(p2->d_inode);
2915 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2916 }
2917 }
2918 EXPORT_SYMBOL(unlock_rename);
2919
2920 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2921 bool want_excl)
2922 {
2923 int error = may_create(dir, dentry);
2924 if (error)
2925 return error;
2926
2927 if (!dir->i_op->create)
2928 return -EACCES; /* shouldn't it be ENOSYS? */
2929 mode &= S_IALLUGO;
2930 mode |= S_IFREG;
2931 error = security_inode_create(dir, dentry, mode);
2932 if (error)
2933 return error;
2934 error = dir->i_op->create(dir, dentry, mode, want_excl);
2935 if (!error)
2936 fsnotify_create(dir, dentry);
2937 return error;
2938 }
2939 EXPORT_SYMBOL(vfs_create);
2940
2941 bool may_open_dev(const struct path *path)
2942 {
2943 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2944 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2945 }
2946
2947 static int may_open(const struct path *path, int acc_mode, int flag)
2948 {
2949 struct dentry *dentry = path->dentry;
2950 struct inode *inode = dentry->d_inode;
2951 int error;
2952
2953 if (!inode)
2954 return -ENOENT;
2955
2956 switch (inode->i_mode & S_IFMT) {
2957 case S_IFLNK:
2958 return -ELOOP;
2959 case S_IFDIR:
2960 if (acc_mode & MAY_WRITE)
2961 return -EISDIR;
2962 break;
2963 case S_IFBLK:
2964 case S_IFCHR:
2965 if (!may_open_dev(path))
2966 return -EACCES;
2967 /*FALLTHRU*/
2968 case S_IFIFO:
2969 case S_IFSOCK:
2970 flag &= ~O_TRUNC;
2971 break;
2972 }
2973
2974 error = inode_permission(inode, MAY_OPEN | acc_mode);
2975 if (error)
2976 return error;
2977
2978 /*
2979 * An append-only file must be opened in append mode for writing.
2980 */
2981 if (IS_APPEND(inode)) {
2982 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2983 return -EPERM;
2984 if (flag & O_TRUNC)
2985 return -EPERM;
2986 }
2987
2988 /* O_NOATIME can only be set by the owner or superuser */
2989 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2990 return -EPERM;
2991
2992 return 0;
2993 }
2994
2995 static int handle_truncate(struct file *filp)
2996 {
2997 const struct path *path = &filp->f_path;
2998 struct inode *inode = path->dentry->d_inode;
2999 int error = get_write_access(inode);
3000 if (error)
3001 return error;
3002 /*
3003 * Refuse to truncate files with mandatory locks held on them.
3004 */
3005 error = locks_verify_locked(filp);
3006 if (!error)
3007 error = security_path_truncate(path);
3008 if (!error) {
3009 error = do_truncate(path->dentry, 0,
3010 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3011 filp);
3012 }
3013 put_write_access(inode);
3014 return error;
3015 }
3016
3017 static inline int open_to_namei_flags(int flag)
3018 {
3019 if ((flag & O_ACCMODE) == 3)
3020 flag--;
3021 return flag;
3022 }
3023
3024 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3025 {
3026 struct user_namespace *s_user_ns;
3027 int error = security_path_mknod(dir, dentry, mode, 0);
3028 if (error)
3029 return error;
3030
3031 s_user_ns = dir->dentry->d_sb->s_user_ns;
3032 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3033 !kgid_has_mapping(s_user_ns, current_fsgid()))
3034 return -EOVERFLOW;
3035
3036 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3037 if (error)
3038 return error;
3039
3040 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3041 }
3042
3043 /*
3044 * Attempt to atomically look up, create and open a file from a negative
3045 * dentry.
3046 *
3047 * Returns 0 if successful. The file will have been created and attached to
3048 * @file by the filesystem calling finish_open().
3049 *
3050 * Returns 1 if the file was looked up only or didn't need creating. The
3051 * caller will need to perform the open themselves. @path will have been
3052 * updated to point to the new dentry. This may be negative.
3053 *
3054 * Returns an error code otherwise.
3055 */
3056 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3057 struct path *path, struct file *file,
3058 const struct open_flags *op,
3059 int open_flag, umode_t mode,
3060 int *opened)
3061 {
3062 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3063 struct inode *dir = nd->path.dentry->d_inode;
3064 int error;
3065
3066 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3067 open_flag &= ~O_TRUNC;
3068
3069 if (nd->flags & LOOKUP_DIRECTORY)
3070 open_flag |= O_DIRECTORY;
3071
3072 file->f_path.dentry = DENTRY_NOT_SET;
3073 file->f_path.mnt = nd->path.mnt;
3074 error = dir->i_op->atomic_open(dir, dentry, file,
3075 open_to_namei_flags(open_flag),
3076 mode, opened);
3077 d_lookup_done(dentry);
3078 if (!error) {
3079 /*
3080 * We didn't have the inode before the open, so check open
3081 * permission here.
3082 */
3083 int acc_mode = op->acc_mode;
3084 if (*opened & FILE_CREATED) {
3085 WARN_ON(!(open_flag & O_CREAT));
3086 fsnotify_create(dir, dentry);
3087 acc_mode = 0;
3088 }
3089 error = may_open(&file->f_path, acc_mode, open_flag);
3090 if (WARN_ON(error > 0))
3091 error = -EINVAL;
3092 } else if (error > 0) {
3093 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3094 error = -EIO;
3095 } else {
3096 if (file->f_path.dentry) {
3097 dput(dentry);
3098 dentry = file->f_path.dentry;
3099 }
3100 if (*opened & FILE_CREATED)
3101 fsnotify_create(dir, dentry);
3102 if (unlikely(d_is_negative(dentry))) {
3103 error = -ENOENT;
3104 } else {
3105 path->dentry = dentry;
3106 path->mnt = nd->path.mnt;
3107 return 1;
3108 }
3109 }
3110 }
3111 dput(dentry);
3112 return error;
3113 }
3114
3115 /*
3116 * Look up and maybe create and open the last component.
3117 *
3118 * Must be called with i_mutex held on parent.
3119 *
3120 * Returns 0 if the file was successfully atomically created (if necessary) and
3121 * opened. In this case the file will be returned attached to @file.
3122 *
3123 * Returns 1 if the file was not completely opened at this time, though lookups
3124 * and creations will have been performed and the dentry returned in @path will
3125 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3126 * specified then a negative dentry may be returned.
3127 *
3128 * An error code is returned otherwise.
3129 *
3130 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3131 * cleared otherwise prior to returning.
3132 */
3133 static int lookup_open(struct nameidata *nd, struct path *path,
3134 struct file *file,
3135 const struct open_flags *op,
3136 bool got_write, int *opened)
3137 {
3138 struct dentry *dir = nd->path.dentry;
3139 struct inode *dir_inode = dir->d_inode;
3140 int open_flag = op->open_flag;
3141 struct dentry *dentry;
3142 int error, create_error = 0;
3143 umode_t mode = op->mode;
3144 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3145
3146 if (unlikely(IS_DEADDIR(dir_inode)))
3147 return -ENOENT;
3148
3149 *opened &= ~FILE_CREATED;
3150 dentry = d_lookup(dir, &nd->last);
3151 for (;;) {
3152 if (!dentry) {
3153 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3154 if (IS_ERR(dentry))
3155 return PTR_ERR(dentry);
3156 }
3157 if (d_in_lookup(dentry))
3158 break;
3159
3160 error = d_revalidate(dentry, nd->flags);
3161 if (likely(error > 0))
3162 break;
3163 if (error)
3164 goto out_dput;
3165 d_invalidate(dentry);
3166 dput(dentry);
3167 dentry = NULL;
3168 }
3169 if (dentry->d_inode) {
3170 /* Cached positive dentry: will open in f_op->open */
3171 goto out_no_open;
3172 }
3173
3174 /*
3175 * Checking write permission is tricky, bacuse we don't know if we are
3176 * going to actually need it: O_CREAT opens should work as long as the
3177 * file exists. But checking existence breaks atomicity. The trick is
3178 * to check access and if not granted clear O_CREAT from the flags.
3179 *
3180 * Another problem is returing the "right" error value (e.g. for an
3181 * O_EXCL open we want to return EEXIST not EROFS).
3182 */
3183 if (open_flag & O_CREAT) {
3184 if (!IS_POSIXACL(dir->d_inode))
3185 mode &= ~current_umask();
3186 if (unlikely(!got_write)) {
3187 create_error = -EROFS;
3188 open_flag &= ~O_CREAT;
3189 if (open_flag & (O_EXCL | O_TRUNC))
3190 goto no_open;
3191 /* No side effects, safe to clear O_CREAT */
3192 } else {
3193 create_error = may_o_create(&nd->path, dentry, mode);
3194 if (create_error) {
3195 open_flag &= ~O_CREAT;
3196 if (open_flag & O_EXCL)
3197 goto no_open;
3198 }
3199 }
3200 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3201 unlikely(!got_write)) {
3202 /*
3203 * No O_CREATE -> atomicity not a requirement -> fall
3204 * back to lookup + open
3205 */
3206 goto no_open;
3207 }
3208
3209 if (dir_inode->i_op->atomic_open) {
3210 error = atomic_open(nd, dentry, path, file, op, open_flag,
3211 mode, opened);
3212 if (unlikely(error == -ENOENT) && create_error)
3213 error = create_error;
3214 return error;
3215 }
3216
3217 no_open:
3218 if (d_in_lookup(dentry)) {
3219 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3220 nd->flags);
3221 d_lookup_done(dentry);
3222 if (unlikely(res)) {
3223 if (IS_ERR(res)) {
3224 error = PTR_ERR(res);
3225 goto out_dput;
3226 }
3227 dput(dentry);
3228 dentry = res;
3229 }
3230 }
3231
3232 /* Negative dentry, just create the file */
3233 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3234 *opened |= FILE_CREATED;
3235 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3236 if (!dir_inode->i_op->create) {
3237 error = -EACCES;
3238 goto out_dput;
3239 }
3240 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3241 open_flag & O_EXCL);
3242 if (error)
3243 goto out_dput;
3244 fsnotify_create(dir_inode, dentry);
3245 }
3246 if (unlikely(create_error) && !dentry->d_inode) {
3247 error = create_error;
3248 goto out_dput;
3249 }
3250 out_no_open:
3251 path->dentry = dentry;
3252 path->mnt = nd->path.mnt;
3253 return 1;
3254
3255 out_dput:
3256 dput(dentry);
3257 return error;
3258 }
3259
3260 /*
3261 * Handle the last step of open()
3262 */
3263 static int do_last(struct nameidata *nd,
3264 struct file *file, const struct open_flags *op,
3265 int *opened)
3266 {
3267 struct dentry *dir = nd->path.dentry;
3268 int open_flag = op->open_flag;
3269 bool will_truncate = (open_flag & O_TRUNC) != 0;
3270 bool got_write = false;
3271 int acc_mode = op->acc_mode;
3272 unsigned seq;
3273 struct inode *inode;
3274 struct path path;
3275 int error;
3276
3277 nd->flags &= ~LOOKUP_PARENT;
3278 nd->flags |= op->intent;
3279
3280 if (nd->last_type != LAST_NORM) {
3281 error = handle_dots(nd, nd->last_type);
3282 if (unlikely(error))
3283 return error;
3284 goto finish_open;
3285 }
3286
3287 if (!(open_flag & O_CREAT)) {
3288 if (nd->last.name[nd->last.len])
3289 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3290 /* we _can_ be in RCU mode here */
3291 error = lookup_fast(nd, &path, &inode, &seq);
3292 if (likely(error > 0))
3293 goto finish_lookup;
3294
3295 if (error < 0)
3296 return error;
3297
3298 BUG_ON(nd->inode != dir->d_inode);
3299 BUG_ON(nd->flags & LOOKUP_RCU);
3300 } else {
3301 /* create side of things */
3302 /*
3303 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3304 * has been cleared when we got to the last component we are
3305 * about to look up
3306 */
3307 error = complete_walk(nd);
3308 if (error)
3309 return error;
3310
3311 audit_inode(nd->name, dir, LOOKUP_PARENT);
3312 /* trailing slashes? */
3313 if (unlikely(nd->last.name[nd->last.len]))
3314 return -EISDIR;
3315 }
3316
3317 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3318 error = mnt_want_write(nd->path.mnt);
3319 if (!error)
3320 got_write = true;
3321 /*
3322 * do _not_ fail yet - we might not need that or fail with
3323 * a different error; let lookup_open() decide; we'll be
3324 * dropping this one anyway.
3325 */
3326 }
3327 if (open_flag & O_CREAT)
3328 inode_lock(dir->d_inode);
3329 else
3330 inode_lock_shared(dir->d_inode);
3331 error = lookup_open(nd, &path, file, op, got_write, opened);
3332 if (open_flag & O_CREAT)
3333 inode_unlock(dir->d_inode);
3334 else
3335 inode_unlock_shared(dir->d_inode);
3336
3337 if (error <= 0) {
3338 if (error)
3339 goto out;
3340
3341 if ((*opened & FILE_CREATED) ||
3342 !S_ISREG(file_inode(file)->i_mode))
3343 will_truncate = false;
3344
3345 audit_inode(nd->name, file->f_path.dentry, 0);
3346 goto opened;
3347 }
3348
3349 if (*opened & FILE_CREATED) {
3350 /* Don't check for write permission, don't truncate */
3351 open_flag &= ~O_TRUNC;
3352 will_truncate = false;
3353 acc_mode = 0;
3354 path_to_nameidata(&path, nd);
3355 goto finish_open_created;
3356 }
3357
3358 /*
3359 * If atomic_open() acquired write access it is dropped now due to
3360 * possible mount and symlink following (this might be optimized away if
3361 * necessary...)
3362 */
3363 if (got_write) {
3364 mnt_drop_write(nd->path.mnt);
3365 got_write = false;
3366 }
3367
3368 error = follow_managed(&path, nd);
3369 if (unlikely(error < 0))
3370 return error;
3371
3372 if (unlikely(d_is_negative(path.dentry))) {
3373 path_to_nameidata(&path, nd);
3374 return -ENOENT;
3375 }
3376
3377 /*
3378 * create/update audit record if it already exists.
3379 */
3380 audit_inode(nd->name, path.dentry, 0);
3381
3382 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3383 path_to_nameidata(&path, nd);
3384 return -EEXIST;
3385 }
3386
3387 seq = 0; /* out of RCU mode, so the value doesn't matter */
3388 inode = d_backing_inode(path.dentry);
3389 finish_lookup:
3390 error = step_into(nd, &path, 0, inode, seq);
3391 if (unlikely(error))
3392 return error;
3393 finish_open:
3394 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3395 error = complete_walk(nd);
3396 if (error)
3397 return error;
3398 audit_inode(nd->name, nd->path.dentry, 0);
3399 if (open_flag & O_CREAT) {
3400 error = -EISDIR;
3401 if (d_is_dir(nd->path.dentry))
3402 goto out;
3403 error = may_create_in_sticky(dir,
3404 d_backing_inode(nd->path.dentry));
3405 if (unlikely(error))
3406 goto out;
3407 }
3408 error = -ENOTDIR;
3409 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3410 goto out;
3411 if (!d_is_reg(nd->path.dentry))
3412 will_truncate = false;
3413
3414 if (will_truncate) {
3415 error = mnt_want_write(nd->path.mnt);
3416 if (error)
3417 goto out;
3418 got_write = true;
3419 }
3420 finish_open_created:
3421 error = may_open(&nd->path, acc_mode, open_flag);
3422 if (error)
3423 goto out;
3424 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3425 error = vfs_open(&nd->path, file, current_cred());
3426 if (error)
3427 goto out;
3428 *opened |= FILE_OPENED;
3429 opened:
3430 error = open_check_o_direct(file);
3431 if (!error)
3432 error = ima_file_check(file, op->acc_mode, *opened);
3433 if (!error && will_truncate)
3434 error = handle_truncate(file);
3435 out:
3436 if (unlikely(error) && (*opened & FILE_OPENED))
3437 fput(file);
3438 if (unlikely(error > 0)) {
3439 WARN_ON(1);
3440 error = -EINVAL;
3441 }
3442 if (got_write)
3443 mnt_drop_write(nd->path.mnt);
3444 return error;
3445 }
3446
3447 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3448 {
3449 struct dentry *child = NULL;
3450 struct inode *dir = dentry->d_inode;
3451 struct inode *inode;
3452 int error;
3453
3454 /* we want directory to be writable */
3455 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3456 if (error)
3457 goto out_err;
3458 error = -EOPNOTSUPP;
3459 if (!dir->i_op->tmpfile)
3460 goto out_err;
3461 error = -ENOMEM;
3462 child = d_alloc(dentry, &slash_name);
3463 if (unlikely(!child))
3464 goto out_err;
3465 error = dir->i_op->tmpfile(dir, child, mode);
3466 if (error)
3467 goto out_err;
3468 error = -ENOENT;
3469 inode = child->d_inode;
3470 if (unlikely(!inode))
3471 goto out_err;
3472 if (!(open_flag & O_EXCL)) {
3473 spin_lock(&inode->i_lock);
3474 inode->i_state |= I_LINKABLE;
3475 spin_unlock(&inode->i_lock);
3476 }
3477 return child;
3478
3479 out_err:
3480 dput(child);
3481 return ERR_PTR(error);
3482 }
3483 EXPORT_SYMBOL(vfs_tmpfile);
3484
3485 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3486 const struct open_flags *op,
3487 struct file *file, int *opened)
3488 {
3489 struct dentry *child;
3490 struct path path;
3491 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3492 if (unlikely(error))
3493 return error;
3494 error = mnt_want_write(path.mnt);
3495 if (unlikely(error))
3496 goto out;
3497 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3498 error = PTR_ERR(child);
3499 if (unlikely(IS_ERR(child)))
3500 goto out2;
3501 dput(path.dentry);
3502 path.dentry = child;
3503 audit_inode(nd->name, child, 0);
3504 /* Don't check for other permissions, the inode was just created */
3505 error = may_open(&path, 0, op->open_flag);
3506 if (error)
3507 goto out2;
3508 file->f_path.mnt = path.mnt;
3509 error = finish_open(file, child, NULL, opened);
3510 if (error)
3511 goto out2;
3512 error = open_check_o_direct(file);
3513 if (error)
3514 fput(file);
3515 out2:
3516 mnt_drop_write(path.mnt);
3517 out:
3518 path_put(&path);
3519 return error;
3520 }
3521
3522 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3523 {
3524 struct path path;
3525 int error = path_lookupat(nd, flags, &path);
3526 if (!error) {
3527 audit_inode(nd->name, path.dentry, 0);
3528 error = vfs_open(&path, file, current_cred());
3529 path_put(&path);
3530 }
3531 return error;
3532 }
3533
3534 static struct file *path_openat(struct nameidata *nd,
3535 const struct open_flags *op, unsigned flags)
3536 {
3537 const char *s;
3538 struct file *file;
3539 int opened = 0;
3540 int error;
3541
3542 file = get_empty_filp();
3543 if (IS_ERR(file))
3544 return file;
3545
3546 file->f_flags = op->open_flag;
3547
3548 if (unlikely(file->f_flags & __O_TMPFILE)) {
3549 error = do_tmpfile(nd, flags, op, file, &opened);
3550 goto out2;
3551 }
3552
3553 if (unlikely(file->f_flags & O_PATH)) {
3554 error = do_o_path(nd, flags, file);
3555 if (!error)
3556 opened |= FILE_OPENED;
3557 goto out2;
3558 }
3559
3560 s = path_init(nd, flags);
3561 if (IS_ERR(s)) {
3562 put_filp(file);
3563 return ERR_CAST(s);
3564 }
3565 while (!(error = link_path_walk(s, nd)) &&
3566 (error = do_last(nd, file, op, &opened)) > 0) {
3567 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3568 s = trailing_symlink(nd);
3569 if (IS_ERR(s)) {
3570 error = PTR_ERR(s);
3571 break;
3572 }
3573 }
3574 terminate_walk(nd);
3575 out2:
3576 if (!(opened & FILE_OPENED)) {
3577 BUG_ON(!error);
3578 put_filp(file);
3579 }
3580 if (unlikely(error)) {
3581 if (error == -EOPENSTALE) {
3582 if (flags & LOOKUP_RCU)
3583 error = -ECHILD;
3584 else
3585 error = -ESTALE;
3586 }
3587 file = ERR_PTR(error);
3588 }
3589 return file;
3590 }
3591
3592 struct file *do_filp_open(int dfd, struct filename *pathname,
3593 const struct open_flags *op)
3594 {
3595 struct nameidata nd;
3596 int flags = op->lookup_flags;
3597 struct file *filp;
3598
3599 set_nameidata(&nd, dfd, pathname);
3600 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3601 if (unlikely(filp == ERR_PTR(-ECHILD)))
3602 filp = path_openat(&nd, op, flags);
3603 if (unlikely(filp == ERR_PTR(-ESTALE)))
3604 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3605 restore_nameidata();
3606 return filp;
3607 }
3608
3609 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3610 const char *name, const struct open_flags *op)
3611 {
3612 struct nameidata nd;
3613 struct file *file;
3614 struct filename *filename;
3615 int flags = op->lookup_flags | LOOKUP_ROOT;
3616
3617 nd.root.mnt = mnt;
3618 nd.root.dentry = dentry;
3619
3620 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3621 return ERR_PTR(-ELOOP);
3622
3623 filename = getname_kernel(name);
3624 if (IS_ERR(filename))
3625 return ERR_CAST(filename);
3626
3627 set_nameidata(&nd, -1, filename);
3628 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3629 if (unlikely(file == ERR_PTR(-ECHILD)))
3630 file = path_openat(&nd, op, flags);
3631 if (unlikely(file == ERR_PTR(-ESTALE)))
3632 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3633 restore_nameidata();
3634 putname(filename);
3635 return file;
3636 }
3637
3638 static struct dentry *filename_create(int dfd, struct filename *name,
3639 struct path *path, unsigned int lookup_flags)
3640 {
3641 struct dentry *dentry = ERR_PTR(-EEXIST);
3642 struct qstr last;
3643 int type;
3644 int err2;
3645 int error;
3646 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3647
3648 /*
3649 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3650 * other flags passed in are ignored!
3651 */
3652 lookup_flags &= LOOKUP_REVAL;
3653
3654 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3655 if (IS_ERR(name))
3656 return ERR_CAST(name);
3657
3658 /*
3659 * Yucky last component or no last component at all?
3660 * (foo/., foo/.., /////)
3661 */
3662 if (unlikely(type != LAST_NORM))
3663 goto out;
3664
3665 /* don't fail immediately if it's r/o, at least try to report other errors */
3666 err2 = mnt_want_write(path->mnt);
3667 /*
3668 * Do the final lookup.
3669 */
3670 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3671 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3672 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3673 if (IS_ERR(dentry))
3674 goto unlock;
3675
3676 error = -EEXIST;
3677 if (d_is_positive(dentry))
3678 goto fail;
3679
3680 /*
3681 * Special case - lookup gave negative, but... we had foo/bar/
3682 * From the vfs_mknod() POV we just have a negative dentry -
3683 * all is fine. Let's be bastards - you had / on the end, you've
3684 * been asking for (non-existent) directory. -ENOENT for you.
3685 */
3686 if (unlikely(!is_dir && last.name[last.len])) {
3687 error = -ENOENT;
3688 goto fail;
3689 }
3690 if (unlikely(err2)) {
3691 error = err2;
3692 goto fail;
3693 }
3694 putname(name);
3695 return dentry;
3696 fail:
3697 dput(dentry);
3698 dentry = ERR_PTR(error);
3699 unlock:
3700 inode_unlock(path->dentry->d_inode);
3701 if (!err2)
3702 mnt_drop_write(path->mnt);
3703 out:
3704 path_put(path);
3705 putname(name);
3706 return dentry;
3707 }
3708
3709 struct dentry *kern_path_create(int dfd, const char *pathname,
3710 struct path *path, unsigned int lookup_flags)
3711 {
3712 return filename_create(dfd, getname_kernel(pathname),
3713 path, lookup_flags);
3714 }
3715 EXPORT_SYMBOL(kern_path_create);
3716
3717 void done_path_create(struct path *path, struct dentry *dentry)
3718 {
3719 dput(dentry);
3720 inode_unlock(path->dentry->d_inode);
3721 mnt_drop_write(path->mnt);
3722 path_put(path);
3723 }
3724 EXPORT_SYMBOL(done_path_create);
3725
3726 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3727 struct path *path, unsigned int lookup_flags)
3728 {
3729 return filename_create(dfd, getname(pathname), path, lookup_flags);
3730 }
3731 EXPORT_SYMBOL(user_path_create);
3732
3733 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3734 {
3735 int error = may_create(dir, dentry);
3736
3737 if (error)
3738 return error;
3739
3740 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3741 return -EPERM;
3742
3743 if (!dir->i_op->mknod)
3744 return -EPERM;
3745
3746 error = devcgroup_inode_mknod(mode, dev);
3747 if (error)
3748 return error;
3749
3750 error = security_inode_mknod(dir, dentry, mode, dev);
3751 if (error)
3752 return error;
3753
3754 error = dir->i_op->mknod(dir, dentry, mode, dev);
3755 if (!error)
3756 fsnotify_create(dir, dentry);
3757 return error;
3758 }
3759 EXPORT_SYMBOL(vfs_mknod);
3760
3761 static int may_mknod(umode_t mode)
3762 {
3763 switch (mode & S_IFMT) {
3764 case S_IFREG:
3765 case S_IFCHR:
3766 case S_IFBLK:
3767 case S_IFIFO:
3768 case S_IFSOCK:
3769 case 0: /* zero mode translates to S_IFREG */
3770 return 0;
3771 case S_IFDIR:
3772 return -EPERM;
3773 default:
3774 return -EINVAL;
3775 }
3776 }
3777
3778 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3779 unsigned, dev)
3780 {
3781 struct dentry *dentry;
3782 struct path path;
3783 int error;
3784 unsigned int lookup_flags = 0;
3785
3786 error = may_mknod(mode);
3787 if (error)
3788 return error;
3789 retry:
3790 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3791 if (IS_ERR(dentry))
3792 return PTR_ERR(dentry);
3793
3794 if (!IS_POSIXACL(path.dentry->d_inode))
3795 mode &= ~current_umask();
3796 error = security_path_mknod(&path, dentry, mode, dev);
3797 if (error)
3798 goto out;
3799 switch (mode & S_IFMT) {
3800 case 0: case S_IFREG:
3801 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3802 if (!error)
3803 ima_post_path_mknod(dentry);
3804 break;
3805 case S_IFCHR: case S_IFBLK:
3806 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3807 new_decode_dev(dev));
3808 break;
3809 case S_IFIFO: case S_IFSOCK:
3810 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3811 break;
3812 }
3813 out:
3814 done_path_create(&path, dentry);
3815 if (retry_estale(error, lookup_flags)) {
3816 lookup_flags |= LOOKUP_REVAL;
3817 goto retry;
3818 }
3819 return error;
3820 }
3821
3822 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3823 {
3824 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3825 }
3826
3827 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3828 {
3829 int error = may_create(dir, dentry);
3830 unsigned max_links = dir->i_sb->s_max_links;
3831
3832 if (error)
3833 return error;
3834
3835 if (!dir->i_op->mkdir)
3836 return -EPERM;
3837
3838 mode &= (S_IRWXUGO|S_ISVTX);
3839 error = security_inode_mkdir(dir, dentry, mode);
3840 if (error)
3841 return error;
3842
3843 if (max_links && dir->i_nlink >= max_links)
3844 return -EMLINK;
3845
3846 error = dir->i_op->mkdir(dir, dentry, mode);
3847 if (!error)
3848 fsnotify_mkdir(dir, dentry);
3849 return error;
3850 }
3851 EXPORT_SYMBOL(vfs_mkdir);
3852
3853 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3854 {
3855 struct dentry *dentry;
3856 struct path path;
3857 int error;
3858 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3859
3860 retry:
3861 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3862 if (IS_ERR(dentry))
3863 return PTR_ERR(dentry);
3864
3865 if (!IS_POSIXACL(path.dentry->d_inode))
3866 mode &= ~current_umask();
3867 error = security_path_mkdir(&path, dentry, mode);
3868 if (!error)
3869 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3870 done_path_create(&path, dentry);
3871 if (retry_estale(error, lookup_flags)) {
3872 lookup_flags |= LOOKUP_REVAL;
3873 goto retry;
3874 }
3875 return error;
3876 }
3877
3878 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3879 {
3880 return sys_mkdirat(AT_FDCWD, pathname, mode);
3881 }
3882
3883 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3884 {
3885 int error = may_delete(dir, dentry, 1);
3886
3887 if (error)
3888 return error;
3889
3890 if (!dir->i_op->rmdir)
3891 return -EPERM;
3892
3893 dget(dentry);
3894 inode_lock(dentry->d_inode);
3895
3896 error = -EBUSY;
3897 if (is_local_mountpoint(dentry))
3898 goto out;
3899
3900 error = security_inode_rmdir(dir, dentry);
3901 if (error)
3902 goto out;
3903
3904 shrink_dcache_parent(dentry);
3905 error = dir->i_op->rmdir(dir, dentry);
3906 if (error)
3907 goto out;
3908
3909 dentry->d_inode->i_flags |= S_DEAD;
3910 dont_mount(dentry);
3911 detach_mounts(dentry);
3912
3913 out:
3914 inode_unlock(dentry->d_inode);
3915 dput(dentry);
3916 if (!error)
3917 d_delete(dentry);
3918 return error;
3919 }
3920 EXPORT_SYMBOL(vfs_rmdir);
3921
3922 static long do_rmdir(int dfd, const char __user *pathname)
3923 {
3924 int error = 0;
3925 struct filename *name;
3926 struct dentry *dentry;
3927 struct path path;
3928 struct qstr last;
3929 int type;
3930 unsigned int lookup_flags = 0;
3931 retry:
3932 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3933 &path, &last, &type);
3934 if (IS_ERR(name))
3935 return PTR_ERR(name);
3936
3937 switch (type) {
3938 case LAST_DOTDOT:
3939 error = -ENOTEMPTY;
3940 goto exit1;
3941 case LAST_DOT:
3942 error = -EINVAL;
3943 goto exit1;
3944 case LAST_ROOT:
3945 error = -EBUSY;
3946 goto exit1;
3947 }
3948
3949 error = mnt_want_write(path.mnt);
3950 if (error)
3951 goto exit1;
3952
3953 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3954 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3955 error = PTR_ERR(dentry);
3956 if (IS_ERR(dentry))
3957 goto exit2;
3958 if (!dentry->d_inode) {
3959 error = -ENOENT;
3960 goto exit3;
3961 }
3962 error = security_path_rmdir(&path, dentry);
3963 if (error)
3964 goto exit3;
3965 error = vfs_rmdir(path.dentry->d_inode, dentry);
3966 exit3:
3967 dput(dentry);
3968 exit2:
3969 inode_unlock(path.dentry->d_inode);
3970 mnt_drop_write(path.mnt);
3971 exit1:
3972 path_put(&path);
3973 putname(name);
3974 if (retry_estale(error, lookup_flags)) {
3975 lookup_flags |= LOOKUP_REVAL;
3976 goto retry;
3977 }
3978 return error;
3979 }
3980
3981 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3982 {
3983 return do_rmdir(AT_FDCWD, pathname);
3984 }
3985
3986 /**
3987 * vfs_unlink - unlink a filesystem object
3988 * @dir: parent directory
3989 * @dentry: victim
3990 * @delegated_inode: returns victim inode, if the inode is delegated.
3991 *
3992 * The caller must hold dir->i_mutex.
3993 *
3994 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3995 * return a reference to the inode in delegated_inode. The caller
3996 * should then break the delegation on that inode and retry. Because
3997 * breaking a delegation may take a long time, the caller should drop
3998 * dir->i_mutex before doing so.
3999 *
4000 * Alternatively, a caller may pass NULL for delegated_inode. This may
4001 * be appropriate for callers that expect the underlying filesystem not
4002 * to be NFS exported.
4003 */
4004 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4005 {
4006 struct inode *target = dentry->d_inode;
4007 int error = may_delete(dir, dentry, 0);
4008
4009 if (error)
4010 return error;
4011
4012 if (!dir->i_op->unlink)
4013 return -EPERM;
4014
4015 inode_lock(target);
4016 if (is_local_mountpoint(dentry))
4017 error = -EBUSY;
4018 else {
4019 error = security_inode_unlink(dir, dentry);
4020 if (!error) {
4021 error = try_break_deleg(target, delegated_inode);
4022 if (error)
4023 goto out;
4024 error = dir->i_op->unlink(dir, dentry);
4025 if (!error) {
4026 dont_mount(dentry);
4027 detach_mounts(dentry);
4028 }
4029 }
4030 }
4031 out:
4032 inode_unlock(target);
4033
4034 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4035 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4036 fsnotify_link_count(target);
4037 d_delete(dentry);
4038 }
4039
4040 return error;
4041 }
4042 EXPORT_SYMBOL(vfs_unlink);
4043
4044 /*
4045 * Make sure that the actual truncation of the file will occur outside its
4046 * directory's i_mutex. Truncate can take a long time if there is a lot of
4047 * writeout happening, and we don't want to prevent access to the directory
4048 * while waiting on the I/O.
4049 */
4050 static long do_unlinkat(int dfd, const char __user *pathname)
4051 {
4052 int error;
4053 struct filename *name;
4054 struct dentry *dentry;
4055 struct path path;
4056 struct qstr last;
4057 int type;
4058 struct inode *inode = NULL;
4059 struct inode *delegated_inode = NULL;
4060 unsigned int lookup_flags = 0;
4061 retry:
4062 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4063 &path, &last, &type);
4064 if (IS_ERR(name))
4065 return PTR_ERR(name);
4066
4067 error = -EISDIR;
4068 if (type != LAST_NORM)
4069 goto exit1;
4070
4071 error = mnt_want_write(path.mnt);
4072 if (error)
4073 goto exit1;
4074 retry_deleg:
4075 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4076 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4077 error = PTR_ERR(dentry);
4078 if (!IS_ERR(dentry)) {
4079 /* Why not before? Because we want correct error value */
4080 if (last.name[last.len])
4081 goto slashes;
4082 inode = dentry->d_inode;
4083 if (d_is_negative(dentry))
4084 goto slashes;
4085 ihold(inode);
4086 error = security_path_unlink(&path, dentry);
4087 if (error)
4088 goto exit2;
4089 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4090 exit2:
4091 dput(dentry);
4092 }
4093 inode_unlock(path.dentry->d_inode);
4094 if (inode)
4095 iput(inode); /* truncate the inode here */
4096 inode = NULL;
4097 if (delegated_inode) {
4098 error = break_deleg_wait(&delegated_inode);
4099 if (!error)
4100 goto retry_deleg;
4101 }
4102 mnt_drop_write(path.mnt);
4103 exit1:
4104 path_put(&path);
4105 putname(name);
4106 if (retry_estale(error, lookup_flags)) {
4107 lookup_flags |= LOOKUP_REVAL;
4108 inode = NULL;
4109 goto retry;
4110 }
4111 return error;
4112
4113 slashes:
4114 if (d_is_negative(dentry))
4115 error = -ENOENT;
4116 else if (d_is_dir(dentry))
4117 error = -EISDIR;
4118 else
4119 error = -ENOTDIR;
4120 goto exit2;
4121 }
4122
4123 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4124 {
4125 if ((flag & ~AT_REMOVEDIR) != 0)
4126 return -EINVAL;
4127
4128 if (flag & AT_REMOVEDIR)
4129 return do_rmdir(dfd, pathname);
4130
4131 return do_unlinkat(dfd, pathname);
4132 }
4133
4134 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4135 {
4136 return do_unlinkat(AT_FDCWD, pathname);
4137 }
4138
4139 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4140 {
4141 int error = may_create(dir, dentry);
4142
4143 if (error)
4144 return error;
4145
4146 if (!dir->i_op->symlink)
4147 return -EPERM;
4148
4149 error = security_inode_symlink(dir, dentry, oldname);
4150 if (error)
4151 return error;
4152
4153 error = dir->i_op->symlink(dir, dentry, oldname);
4154 if (!error)
4155 fsnotify_create(dir, dentry);
4156 return error;
4157 }
4158 EXPORT_SYMBOL(vfs_symlink);
4159
4160 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4161 int, newdfd, const char __user *, newname)
4162 {
4163 int error;
4164 struct filename *from;
4165 struct dentry *dentry;
4166 struct path path;
4167 unsigned int lookup_flags = 0;
4168
4169 from = getname(oldname);
4170 if (IS_ERR(from))
4171 return PTR_ERR(from);
4172 retry:
4173 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4174 error = PTR_ERR(dentry);
4175 if (IS_ERR(dentry))
4176 goto out_putname;
4177
4178 error = security_path_symlink(&path, dentry, from->name);
4179 if (!error)
4180 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4181 done_path_create(&path, dentry);
4182 if (retry_estale(error, lookup_flags)) {
4183 lookup_flags |= LOOKUP_REVAL;
4184 goto retry;
4185 }
4186 out_putname:
4187 putname(from);
4188 return error;
4189 }
4190
4191 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4192 {
4193 return sys_symlinkat(oldname, AT_FDCWD, newname);
4194 }
4195
4196 /**
4197 * vfs_link - create a new link
4198 * @old_dentry: object to be linked
4199 * @dir: new parent
4200 * @new_dentry: where to create the new link
4201 * @delegated_inode: returns inode needing a delegation break
4202 *
4203 * The caller must hold dir->i_mutex
4204 *
4205 * If vfs_link discovers a delegation on the to-be-linked file in need
4206 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4207 * inode in delegated_inode. The caller should then break the delegation
4208 * and retry. Because breaking a delegation may take a long time, the
4209 * caller should drop the i_mutex before doing so.
4210 *
4211 * Alternatively, a caller may pass NULL for delegated_inode. This may
4212 * be appropriate for callers that expect the underlying filesystem not
4213 * to be NFS exported.
4214 */
4215 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4216 {
4217 struct inode *inode = old_dentry->d_inode;
4218 unsigned max_links = dir->i_sb->s_max_links;
4219 int error;
4220
4221 if (!inode)
4222 return -ENOENT;
4223
4224 error = may_create(dir, new_dentry);
4225 if (error)
4226 return error;
4227
4228 if (dir->i_sb != inode->i_sb)
4229 return -EXDEV;
4230
4231 /*
4232 * A link to an append-only or immutable file cannot be created.
4233 */
4234 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4235 return -EPERM;
4236 /*
4237 * Updating the link count will likely cause i_uid and i_gid to
4238 * be writen back improperly if their true value is unknown to
4239 * the vfs.
4240 */
4241 if (HAS_UNMAPPED_ID(inode))
4242 return -EPERM;
4243 if (!dir->i_op->link)
4244 return -EPERM;
4245 if (S_ISDIR(inode->i_mode))
4246 return -EPERM;
4247
4248 error = security_inode_link(old_dentry, dir, new_dentry);
4249 if (error)
4250 return error;
4251
4252 inode_lock(inode);
4253 /* Make sure we don't allow creating hardlink to an unlinked file */
4254 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4255 error = -ENOENT;
4256 else if (max_links && inode->i_nlink >= max_links)
4257 error = -EMLINK;
4258 else {
4259 error = try_break_deleg(inode, delegated_inode);
4260 if (!error)
4261 error = dir->i_op->link(old_dentry, dir, new_dentry);
4262 }
4263
4264 if (!error && (inode->i_state & I_LINKABLE)) {
4265 spin_lock(&inode->i_lock);
4266 inode->i_state &= ~I_LINKABLE;
4267 spin_unlock(&inode->i_lock);
4268 }
4269 inode_unlock(inode);
4270 if (!error)
4271 fsnotify_link(dir, inode, new_dentry);
4272 return error;
4273 }
4274 EXPORT_SYMBOL(vfs_link);
4275
4276 /*
4277 * Hardlinks are often used in delicate situations. We avoid
4278 * security-related surprises by not following symlinks on the
4279 * newname. --KAB
4280 *
4281 * We don't follow them on the oldname either to be compatible
4282 * with linux 2.0, and to avoid hard-linking to directories
4283 * and other special files. --ADM
4284 */
4285 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4286 int, newdfd, const char __user *, newname, int, flags)
4287 {
4288 struct dentry *new_dentry;
4289 struct path old_path, new_path;
4290 struct inode *delegated_inode = NULL;
4291 int how = 0;
4292 int error;
4293
4294 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4295 return -EINVAL;
4296 /*
4297 * To use null names we require CAP_DAC_READ_SEARCH
4298 * This ensures that not everyone will be able to create
4299 * handlink using the passed filedescriptor.
4300 */
4301 if (flags & AT_EMPTY_PATH) {
4302 if (!capable(CAP_DAC_READ_SEARCH))
4303 return -ENOENT;
4304 how = LOOKUP_EMPTY;
4305 }
4306
4307 if (flags & AT_SYMLINK_FOLLOW)
4308 how |= LOOKUP_FOLLOW;
4309 retry:
4310 error = user_path_at(olddfd, oldname, how, &old_path);
4311 if (error)
4312 return error;
4313
4314 new_dentry = user_path_create(newdfd, newname, &new_path,
4315 (how & LOOKUP_REVAL));
4316 error = PTR_ERR(new_dentry);
4317 if (IS_ERR(new_dentry))
4318 goto out;
4319
4320 error = -EXDEV;
4321 if (old_path.mnt != new_path.mnt)
4322 goto out_dput;
4323 error = may_linkat(&old_path);
4324 if (unlikely(error))
4325 goto out_dput;
4326 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4327 if (error)
4328 goto out_dput;
4329 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4330 out_dput:
4331 done_path_create(&new_path, new_dentry);
4332 if (delegated_inode) {
4333 error = break_deleg_wait(&delegated_inode);
4334 if (!error) {
4335 path_put(&old_path);
4336 goto retry;
4337 }
4338 }
4339 if (retry_estale(error, how)) {
4340 path_put(&old_path);
4341 how |= LOOKUP_REVAL;
4342 goto retry;
4343 }
4344 out:
4345 path_put(&old_path);
4346
4347 return error;
4348 }
4349
4350 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4351 {
4352 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4353 }
4354
4355 /**
4356 * vfs_rename - rename a filesystem object
4357 * @old_dir: parent of source
4358 * @old_dentry: source
4359 * @new_dir: parent of destination
4360 * @new_dentry: destination
4361 * @delegated_inode: returns an inode needing a delegation break
4362 * @flags: rename flags
4363 *
4364 * The caller must hold multiple mutexes--see lock_rename()).
4365 *
4366 * If vfs_rename discovers a delegation in need of breaking at either
4367 * the source or destination, it will return -EWOULDBLOCK and return a
4368 * reference to the inode in delegated_inode. The caller should then
4369 * break the delegation and retry. Because breaking a delegation may
4370 * take a long time, the caller should drop all locks before doing
4371 * so.
4372 *
4373 * Alternatively, a caller may pass NULL for delegated_inode. This may
4374 * be appropriate for callers that expect the underlying filesystem not
4375 * to be NFS exported.
4376 *
4377 * The worst of all namespace operations - renaming directory. "Perverted"
4378 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4379 * Problems:
4380 *
4381 * a) we can get into loop creation.
4382 * b) race potential - two innocent renames can create a loop together.
4383 * That's where 4.4 screws up. Current fix: serialization on
4384 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4385 * story.
4386 * c) we have to lock _four_ objects - parents and victim (if it exists),
4387 * and source (if it is not a directory).
4388 * And that - after we got ->i_mutex on parents (until then we don't know
4389 * whether the target exists). Solution: try to be smart with locking
4390 * order for inodes. We rely on the fact that tree topology may change
4391 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4392 * move will be locked. Thus we can rank directories by the tree
4393 * (ancestors first) and rank all non-directories after them.
4394 * That works since everybody except rename does "lock parent, lookup,
4395 * lock child" and rename is under ->s_vfs_rename_mutex.
4396 * HOWEVER, it relies on the assumption that any object with ->lookup()
4397 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4398 * we'd better make sure that there's no link(2) for them.
4399 * d) conversion from fhandle to dentry may come in the wrong moment - when
4400 * we are removing the target. Solution: we will have to grab ->i_mutex
4401 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4402 * ->i_mutex on parents, which works but leads to some truly excessive
4403 * locking].
4404 */
4405 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4406 struct inode *new_dir, struct dentry *new_dentry,
4407 struct inode **delegated_inode, unsigned int flags)
4408 {
4409 int error;
4410 bool is_dir = d_is_dir(old_dentry);
4411 struct inode *source = old_dentry->d_inode;
4412 struct inode *target = new_dentry->d_inode;
4413 bool new_is_dir = false;
4414 unsigned max_links = new_dir->i_sb->s_max_links;
4415 struct name_snapshot old_name;
4416
4417 if (source == target)
4418 return 0;
4419
4420 error = may_delete(old_dir, old_dentry, is_dir);
4421 if (error)
4422 return error;
4423
4424 if (!target) {
4425 error = may_create(new_dir, new_dentry);
4426 } else {
4427 new_is_dir = d_is_dir(new_dentry);
4428
4429 if (!(flags & RENAME_EXCHANGE))
4430 error = may_delete(new_dir, new_dentry, is_dir);
4431 else
4432 error = may_delete(new_dir, new_dentry, new_is_dir);
4433 }
4434 if (error)
4435 return error;
4436
4437 if (!old_dir->i_op->rename)
4438 return -EPERM;
4439
4440 /*
4441 * If we are going to change the parent - check write permissions,
4442 * we'll need to flip '..'.
4443 */
4444 if (new_dir != old_dir) {
4445 if (is_dir) {
4446 error = inode_permission(source, MAY_WRITE);
4447 if (error)
4448 return error;
4449 }
4450 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4451 error = inode_permission(target, MAY_WRITE);
4452 if (error)
4453 return error;
4454 }
4455 }
4456
4457 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4458 flags);
4459 if (error)
4460 return error;
4461
4462 take_dentry_name_snapshot(&old_name, old_dentry);
4463 dget(new_dentry);
4464 if (!is_dir || (flags & RENAME_EXCHANGE))
4465 lock_two_nondirectories(source, target);
4466 else if (target)
4467 inode_lock(target);
4468
4469 error = -EBUSY;
4470 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4471 goto out;
4472
4473 if (max_links && new_dir != old_dir) {
4474 error = -EMLINK;
4475 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4476 goto out;
4477 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4478 old_dir->i_nlink >= max_links)
4479 goto out;
4480 }
4481 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4482 shrink_dcache_parent(new_dentry);
4483 if (!is_dir) {
4484 error = try_break_deleg(source, delegated_inode);
4485 if (error)
4486 goto out;
4487 }
4488 if (target && !new_is_dir) {
4489 error = try_break_deleg(target, delegated_inode);
4490 if (error)
4491 goto out;
4492 }
4493 error = old_dir->i_op->rename(old_dir, old_dentry,
4494 new_dir, new_dentry, flags);
4495 if (error)
4496 goto out;
4497
4498 if (!(flags & RENAME_EXCHANGE) && target) {
4499 if (is_dir)
4500 target->i_flags |= S_DEAD;
4501 dont_mount(new_dentry);
4502 detach_mounts(new_dentry);
4503 }
4504 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4505 if (!(flags & RENAME_EXCHANGE))
4506 d_move(old_dentry, new_dentry);
4507 else
4508 d_exchange(old_dentry, new_dentry);
4509 }
4510 out:
4511 if (!is_dir || (flags & RENAME_EXCHANGE))
4512 unlock_two_nondirectories(source, target);
4513 else if (target)
4514 inode_unlock(target);
4515 dput(new_dentry);
4516 if (!error) {
4517 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4518 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4519 if (flags & RENAME_EXCHANGE) {
4520 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4521 new_is_dir, NULL, new_dentry);
4522 }
4523 }
4524 release_dentry_name_snapshot(&old_name);
4525
4526 return error;
4527 }
4528 EXPORT_SYMBOL(vfs_rename);
4529
4530 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4531 int, newdfd, const char __user *, newname, unsigned int, flags)
4532 {
4533 struct dentry *old_dentry, *new_dentry;
4534 struct dentry *trap;
4535 struct path old_path, new_path;
4536 struct qstr old_last, new_last;
4537 int old_type, new_type;
4538 struct inode *delegated_inode = NULL;
4539 struct filename *from;
4540 struct filename *to;
4541 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4542 bool should_retry = false;
4543 int error;
4544
4545 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4546 return -EINVAL;
4547
4548 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4549 (flags & RENAME_EXCHANGE))
4550 return -EINVAL;
4551
4552 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4553 return -EPERM;
4554
4555 if (flags & RENAME_EXCHANGE)
4556 target_flags = 0;
4557
4558 retry:
4559 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4560 &old_path, &old_last, &old_type);
4561 if (IS_ERR(from)) {
4562 error = PTR_ERR(from);
4563 goto exit;
4564 }
4565
4566 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4567 &new_path, &new_last, &new_type);
4568 if (IS_ERR(to)) {
4569 error = PTR_ERR(to);
4570 goto exit1;
4571 }
4572
4573 error = -EXDEV;
4574 if (old_path.mnt != new_path.mnt)
4575 goto exit2;
4576
4577 error = -EBUSY;
4578 if (old_type != LAST_NORM)
4579 goto exit2;
4580
4581 if (flags & RENAME_NOREPLACE)
4582 error = -EEXIST;
4583 if (new_type != LAST_NORM)
4584 goto exit2;
4585
4586 error = mnt_want_write(old_path.mnt);
4587 if (error)
4588 goto exit2;
4589
4590 retry_deleg:
4591 trap = lock_rename(new_path.dentry, old_path.dentry);
4592
4593 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4594 error = PTR_ERR(old_dentry);
4595 if (IS_ERR(old_dentry))
4596 goto exit3;
4597 /* source must exist */
4598 error = -ENOENT;
4599 if (d_is_negative(old_dentry))
4600 goto exit4;
4601 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4602 error = PTR_ERR(new_dentry);
4603 if (IS_ERR(new_dentry))
4604 goto exit4;
4605 error = -EEXIST;
4606 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4607 goto exit5;
4608 if (flags & RENAME_EXCHANGE) {
4609 error = -ENOENT;
4610 if (d_is_negative(new_dentry))
4611 goto exit5;
4612
4613 if (!d_is_dir(new_dentry)) {
4614 error = -ENOTDIR;
4615 if (new_last.name[new_last.len])
4616 goto exit5;
4617 }
4618 }
4619 /* unless the source is a directory trailing slashes give -ENOTDIR */
4620 if (!d_is_dir(old_dentry)) {
4621 error = -ENOTDIR;
4622 if (old_last.name[old_last.len])
4623 goto exit5;
4624 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4625 goto exit5;
4626 }
4627 /* source should not be ancestor of target */
4628 error = -EINVAL;
4629 if (old_dentry == trap)
4630 goto exit5;
4631 /* target should not be an ancestor of source */
4632 if (!(flags & RENAME_EXCHANGE))
4633 error = -ENOTEMPTY;
4634 if (new_dentry == trap)
4635 goto exit5;
4636
4637 error = security_path_rename(&old_path, old_dentry,
4638 &new_path, new_dentry, flags);
4639 if (error)
4640 goto exit5;
4641 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4642 new_path.dentry->d_inode, new_dentry,
4643 &delegated_inode, flags);
4644 exit5:
4645 dput(new_dentry);
4646 exit4:
4647 dput(old_dentry);
4648 exit3:
4649 unlock_rename(new_path.dentry, old_path.dentry);
4650 if (delegated_inode) {
4651 error = break_deleg_wait(&delegated_inode);
4652 if (!error)
4653 goto retry_deleg;
4654 }
4655 mnt_drop_write(old_path.mnt);
4656 exit2:
4657 if (retry_estale(error, lookup_flags))
4658 should_retry = true;
4659 path_put(&new_path);
4660 putname(to);
4661 exit1:
4662 path_put(&old_path);
4663 putname(from);
4664 if (should_retry) {
4665 should_retry = false;
4666 lookup_flags |= LOOKUP_REVAL;
4667 goto retry;
4668 }
4669 exit:
4670 return error;
4671 }
4672
4673 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4674 int, newdfd, const char __user *, newname)
4675 {
4676 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4677 }
4678
4679 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4680 {
4681 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4682 }
4683
4684 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4685 {
4686 int error = may_create(dir, dentry);
4687 if (error)
4688 return error;
4689
4690 if (!dir->i_op->mknod)
4691 return -EPERM;
4692
4693 return dir->i_op->mknod(dir, dentry,
4694 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4695 }
4696 EXPORT_SYMBOL(vfs_whiteout);
4697
4698 int readlink_copy(char __user *buffer, int buflen, const char *link)
4699 {
4700 int len = PTR_ERR(link);
4701 if (IS_ERR(link))
4702 goto out;
4703
4704 len = strlen(link);
4705 if (len > (unsigned) buflen)
4706 len = buflen;
4707 if (copy_to_user(buffer, link, len))
4708 len = -EFAULT;
4709 out:
4710 return len;
4711 }
4712
4713 /*
4714 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4715 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4716 * for any given inode is up to filesystem.
4717 */
4718 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4719 int buflen)
4720 {
4721 DEFINE_DELAYED_CALL(done);
4722 struct inode *inode = d_inode(dentry);
4723 const char *link = inode->i_link;
4724 int res;
4725
4726 if (!link) {
4727 link = inode->i_op->get_link(dentry, inode, &done);
4728 if (IS_ERR(link))
4729 return PTR_ERR(link);
4730 }
4731 res = readlink_copy(buffer, buflen, link);
4732 do_delayed_call(&done);
4733 return res;
4734 }
4735
4736 /**
4737 * vfs_readlink - copy symlink body into userspace buffer
4738 * @dentry: dentry on which to get symbolic link
4739 * @buffer: user memory pointer
4740 * @buflen: size of buffer
4741 *
4742 * Does not touch atime. That's up to the caller if necessary
4743 *
4744 * Does not call security hook.
4745 */
4746 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4747 {
4748 struct inode *inode = d_inode(dentry);
4749
4750 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4751 if (unlikely(inode->i_op->readlink))
4752 return inode->i_op->readlink(dentry, buffer, buflen);
4753
4754 if (!d_is_symlink(dentry))
4755 return -EINVAL;
4756
4757 spin_lock(&inode->i_lock);
4758 inode->i_opflags |= IOP_DEFAULT_READLINK;
4759 spin_unlock(&inode->i_lock);
4760 }
4761
4762 return generic_readlink(dentry, buffer, buflen);
4763 }
4764 EXPORT_SYMBOL(vfs_readlink);
4765
4766 /**
4767 * vfs_get_link - get symlink body
4768 * @dentry: dentry on which to get symbolic link
4769 * @done: caller needs to free returned data with this
4770 *
4771 * Calls security hook and i_op->get_link() on the supplied inode.
4772 *
4773 * It does not touch atime. That's up to the caller if necessary.
4774 *
4775 * Does not work on "special" symlinks like /proc/$$/fd/N
4776 */
4777 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4778 {
4779 const char *res = ERR_PTR(-EINVAL);
4780 struct inode *inode = d_inode(dentry);
4781
4782 if (d_is_symlink(dentry)) {
4783 res = ERR_PTR(security_inode_readlink(dentry));
4784 if (!res)
4785 res = inode->i_op->get_link(dentry, inode, done);
4786 }
4787 return res;
4788 }
4789 EXPORT_SYMBOL(vfs_get_link);
4790
4791 /* get the link contents into pagecache */
4792 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4793 struct delayed_call *callback)
4794 {
4795 char *kaddr;
4796 struct page *page;
4797 struct address_space *mapping = inode->i_mapping;
4798
4799 if (!dentry) {
4800 page = find_get_page(mapping, 0);
4801 if (!page)
4802 return ERR_PTR(-ECHILD);
4803 if (!PageUptodate(page)) {
4804 put_page(page);
4805 return ERR_PTR(-ECHILD);
4806 }
4807 } else {
4808 page = read_mapping_page(mapping, 0, NULL);
4809 if (IS_ERR(page))
4810 return (char*)page;
4811 }
4812 set_delayed_call(callback, page_put_link, page);
4813 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4814 kaddr = page_address(page);
4815 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4816 return kaddr;
4817 }
4818
4819 EXPORT_SYMBOL(page_get_link);
4820
4821 void page_put_link(void *arg)
4822 {
4823 put_page(arg);
4824 }
4825 EXPORT_SYMBOL(page_put_link);
4826
4827 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4828 {
4829 DEFINE_DELAYED_CALL(done);
4830 int res = readlink_copy(buffer, buflen,
4831 page_get_link(dentry, d_inode(dentry),
4832 &done));
4833 do_delayed_call(&done);
4834 return res;
4835 }
4836 EXPORT_SYMBOL(page_readlink);
4837
4838 /*
4839 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4840 */
4841 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4842 {
4843 struct address_space *mapping = inode->i_mapping;
4844 struct page *page;
4845 void *fsdata;
4846 int err;
4847 unsigned int flags = 0;
4848 if (nofs)
4849 flags |= AOP_FLAG_NOFS;
4850
4851 retry:
4852 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4853 flags, &page, &fsdata);
4854 if (err)
4855 goto fail;
4856
4857 memcpy(page_address(page), symname, len-1);
4858
4859 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4860 page, fsdata);
4861 if (err < 0)
4862 goto fail;
4863 if (err < len-1)
4864 goto retry;
4865
4866 mark_inode_dirty(inode);
4867 return 0;
4868 fail:
4869 return err;
4870 }
4871 EXPORT_SYMBOL(__page_symlink);
4872
4873 int page_symlink(struct inode *inode, const char *symname, int len)
4874 {
4875 return __page_symlink(inode, symname, len,
4876 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4877 }
4878 EXPORT_SYMBOL(page_symlink);
4879
4880 const struct inode_operations page_symlink_inode_operations = {
4881 .get_link = page_get_link,
4882 };
4883 EXPORT_SYMBOL(page_symlink_inode_operations);