remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / fcntl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/fcntl.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/fdtable.h>
15 #include <linux/capability.h>
16 #include <linux/dnotify.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/security.h>
21 #include <linux/ptrace.h>
22 #include <linux/signal.h>
23 #include <linux/rcupdate.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/user_namespace.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/compat.h>
28
29 #include <asm/poll.h>
30 #include <asm/siginfo.h>
31 #include <linux/uaccess.h>
32
33 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
34
35 static int setfl(int fd, struct file * filp, unsigned long arg)
36 {
37 struct inode * inode = file_inode(filp);
38 int error = 0;
39
40 /*
41 * O_APPEND cannot be cleared if the file is marked as append-only
42 * and the file is open for write.
43 */
44 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
45 return -EPERM;
46
47 /* O_NOATIME can only be set by the owner or superuser */
48 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
49 if (!inode_owner_or_capable(inode))
50 return -EPERM;
51
52 /* required for strict SunOS emulation */
53 if (O_NONBLOCK != O_NDELAY)
54 if (arg & O_NDELAY)
55 arg |= O_NONBLOCK;
56
57 /* Pipe packetized mode is controlled by O_DIRECT flag */
58 if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
59 if (!filp->f_mapping || !filp->f_mapping->a_ops ||
60 !filp->f_mapping->a_ops->direct_IO)
61 return -EINVAL;
62 }
63
64 if (filp->f_op->check_flags)
65 error = filp->f_op->check_flags(arg);
66 if (error)
67 return error;
68
69 /*
70 * ->fasync() is responsible for setting the FASYNC bit.
71 */
72 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
73 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
74 if (error < 0)
75 goto out;
76 if (error > 0)
77 error = 0;
78 }
79 spin_lock(&filp->f_lock);
80 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
81 spin_unlock(&filp->f_lock);
82
83 out:
84 return error;
85 }
86
87 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
88 int force)
89 {
90 write_lock_irq(&filp->f_owner.lock);
91 if (force || !filp->f_owner.pid) {
92 put_pid(filp->f_owner.pid);
93 filp->f_owner.pid = get_pid(pid);
94 filp->f_owner.pid_type = type;
95
96 if (pid) {
97 const struct cred *cred = current_cred();
98 filp->f_owner.uid = cred->uid;
99 filp->f_owner.euid = cred->euid;
100 }
101 }
102 write_unlock_irq(&filp->f_owner.lock);
103 }
104
105 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
106 int force)
107 {
108 security_file_set_fowner(filp);
109 f_modown(filp, pid, type, force);
110 }
111 EXPORT_SYMBOL(__f_setown);
112
113 int f_setown(struct file *filp, unsigned long arg, int force)
114 {
115 enum pid_type type;
116 struct pid *pid = NULL;
117 int who = arg, ret = 0;
118
119 type = PIDTYPE_PID;
120 if (who < 0) {
121 /* avoid overflow below */
122 if (who == INT_MIN)
123 return -EINVAL;
124
125 type = PIDTYPE_PGID;
126 who = -who;
127 }
128
129 rcu_read_lock();
130 if (who) {
131 pid = find_vpid(who);
132 if (!pid)
133 ret = -ESRCH;
134 }
135
136 if (!ret)
137 __f_setown(filp, pid, type, force);
138 rcu_read_unlock();
139
140 return ret;
141 }
142 EXPORT_SYMBOL(f_setown);
143
144 void f_delown(struct file *filp)
145 {
146 f_modown(filp, NULL, PIDTYPE_PID, 1);
147 }
148
149 pid_t f_getown(struct file *filp)
150 {
151 pid_t pid;
152 read_lock(&filp->f_owner.lock);
153 pid = pid_vnr(filp->f_owner.pid);
154 if (filp->f_owner.pid_type == PIDTYPE_PGID)
155 pid = -pid;
156 read_unlock(&filp->f_owner.lock);
157 return pid;
158 }
159
160 static int f_setown_ex(struct file *filp, unsigned long arg)
161 {
162 struct f_owner_ex __user *owner_p = (void __user *)arg;
163 struct f_owner_ex owner;
164 struct pid *pid;
165 int type;
166 int ret;
167
168 ret = copy_from_user(&owner, owner_p, sizeof(owner));
169 if (ret)
170 return -EFAULT;
171
172 switch (owner.type) {
173 case F_OWNER_TID:
174 type = PIDTYPE_MAX;
175 break;
176
177 case F_OWNER_PID:
178 type = PIDTYPE_PID;
179 break;
180
181 case F_OWNER_PGRP:
182 type = PIDTYPE_PGID;
183 break;
184
185 default:
186 return -EINVAL;
187 }
188
189 rcu_read_lock();
190 pid = find_vpid(owner.pid);
191 if (owner.pid && !pid)
192 ret = -ESRCH;
193 else
194 __f_setown(filp, pid, type, 1);
195 rcu_read_unlock();
196
197 return ret;
198 }
199
200 static int f_getown_ex(struct file *filp, unsigned long arg)
201 {
202 struct f_owner_ex __user *owner_p = (void __user *)arg;
203 struct f_owner_ex owner;
204 int ret = 0;
205
206 read_lock(&filp->f_owner.lock);
207 owner.pid = pid_vnr(filp->f_owner.pid);
208 switch (filp->f_owner.pid_type) {
209 case PIDTYPE_MAX:
210 owner.type = F_OWNER_TID;
211 break;
212
213 case PIDTYPE_PID:
214 owner.type = F_OWNER_PID;
215 break;
216
217 case PIDTYPE_PGID:
218 owner.type = F_OWNER_PGRP;
219 break;
220
221 default:
222 WARN_ON(1);
223 ret = -EINVAL;
224 break;
225 }
226 read_unlock(&filp->f_owner.lock);
227
228 if (!ret) {
229 ret = copy_to_user(owner_p, &owner, sizeof(owner));
230 if (ret)
231 ret = -EFAULT;
232 }
233 return ret;
234 }
235
236 #ifdef CONFIG_CHECKPOINT_RESTORE
237 static int f_getowner_uids(struct file *filp, unsigned long arg)
238 {
239 struct user_namespace *user_ns = current_user_ns();
240 uid_t __user *dst = (void __user *)arg;
241 uid_t src[2];
242 int err;
243
244 read_lock(&filp->f_owner.lock);
245 src[0] = from_kuid(user_ns, filp->f_owner.uid);
246 src[1] = from_kuid(user_ns, filp->f_owner.euid);
247 read_unlock(&filp->f_owner.lock);
248
249 err = put_user(src[0], &dst[0]);
250 err |= put_user(src[1], &dst[1]);
251
252 return err;
253 }
254 #else
255 static int f_getowner_uids(struct file *filp, unsigned long arg)
256 {
257 return -EINVAL;
258 }
259 #endif
260
261 static bool rw_hint_valid(enum rw_hint hint)
262 {
263 switch (hint) {
264 case RWF_WRITE_LIFE_NOT_SET:
265 case RWH_WRITE_LIFE_NONE:
266 case RWH_WRITE_LIFE_SHORT:
267 case RWH_WRITE_LIFE_MEDIUM:
268 case RWH_WRITE_LIFE_LONG:
269 case RWH_WRITE_LIFE_EXTREME:
270 return true;
271 default:
272 return false;
273 }
274 }
275
276 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
277 unsigned long arg)
278 {
279 struct inode *inode = file_inode(file);
280 u64 *argp = (u64 __user *)arg;
281 enum rw_hint hint;
282 u64 h;
283
284 switch (cmd) {
285 case F_GET_FILE_RW_HINT:
286 h = file_write_hint(file);
287 if (copy_to_user(argp, &h, sizeof(*argp)))
288 return -EFAULT;
289 return 0;
290 case F_SET_FILE_RW_HINT:
291 if (copy_from_user(&h, argp, sizeof(h)))
292 return -EFAULT;
293 hint = (enum rw_hint) h;
294 if (!rw_hint_valid(hint))
295 return -EINVAL;
296
297 spin_lock(&file->f_lock);
298 file->f_write_hint = hint;
299 spin_unlock(&file->f_lock);
300 return 0;
301 case F_GET_RW_HINT:
302 h = inode->i_write_hint;
303 if (copy_to_user(argp, &h, sizeof(*argp)))
304 return -EFAULT;
305 return 0;
306 case F_SET_RW_HINT:
307 if (copy_from_user(&h, argp, sizeof(h)))
308 return -EFAULT;
309 hint = (enum rw_hint) h;
310 if (!rw_hint_valid(hint))
311 return -EINVAL;
312
313 inode_lock(inode);
314 inode->i_write_hint = hint;
315 inode_unlock(inode);
316 return 0;
317 default:
318 return -EINVAL;
319 }
320 }
321
322 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
323 struct file *filp)
324 {
325 void __user *argp = (void __user *)arg;
326 struct flock flock;
327 long err = -EINVAL;
328
329 switch (cmd) {
330 case F_DUPFD:
331 err = f_dupfd(arg, filp, 0);
332 break;
333 case F_DUPFD_CLOEXEC:
334 err = f_dupfd(arg, filp, O_CLOEXEC);
335 break;
336 case F_GETFD:
337 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
338 break;
339 case F_SETFD:
340 err = 0;
341 set_close_on_exec(fd, arg & FD_CLOEXEC);
342 break;
343 case F_GETFL:
344 err = filp->f_flags;
345 break;
346 case F_SETFL:
347 err = setfl(fd, filp, arg);
348 break;
349 #if BITS_PER_LONG != 32
350 /* 32-bit arches must use fcntl64() */
351 case F_OFD_GETLK:
352 #endif
353 case F_GETLK:
354 if (copy_from_user(&flock, argp, sizeof(flock)))
355 return -EFAULT;
356 err = fcntl_getlk(filp, cmd, &flock);
357 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
358 return -EFAULT;
359 break;
360 #if BITS_PER_LONG != 32
361 /* 32-bit arches must use fcntl64() */
362 case F_OFD_SETLK:
363 case F_OFD_SETLKW:
364 #endif
365 /* Fallthrough */
366 case F_SETLK:
367 case F_SETLKW:
368 if (copy_from_user(&flock, argp, sizeof(flock)))
369 return -EFAULT;
370 err = fcntl_setlk(fd, filp, cmd, &flock);
371 break;
372 case F_GETOWN:
373 /*
374 * XXX If f_owner is a process group, the
375 * negative return value will get converted
376 * into an error. Oops. If we keep the
377 * current syscall conventions, the only way
378 * to fix this will be in libc.
379 */
380 err = f_getown(filp);
381 force_successful_syscall_return();
382 break;
383 case F_SETOWN:
384 err = f_setown(filp, arg, 1);
385 break;
386 case F_GETOWN_EX:
387 err = f_getown_ex(filp, arg);
388 break;
389 case F_SETOWN_EX:
390 err = f_setown_ex(filp, arg);
391 break;
392 case F_GETOWNER_UIDS:
393 err = f_getowner_uids(filp, arg);
394 break;
395 case F_GETSIG:
396 err = filp->f_owner.signum;
397 break;
398 case F_SETSIG:
399 /* arg == 0 restores default behaviour. */
400 if (!valid_signal(arg)) {
401 break;
402 }
403 err = 0;
404 filp->f_owner.signum = arg;
405 break;
406 case F_GETLEASE:
407 err = fcntl_getlease(filp);
408 break;
409 case F_SETLEASE:
410 err = fcntl_setlease(fd, filp, arg);
411 break;
412 case F_NOTIFY:
413 err = fcntl_dirnotify(fd, filp, arg);
414 break;
415 case F_SETPIPE_SZ:
416 case F_GETPIPE_SZ:
417 err = pipe_fcntl(filp, cmd, arg);
418 break;
419 case F_ADD_SEALS:
420 case F_GET_SEALS:
421 err = shmem_fcntl(filp, cmd, arg);
422 break;
423 case F_GET_RW_HINT:
424 case F_SET_RW_HINT:
425 case F_GET_FILE_RW_HINT:
426 case F_SET_FILE_RW_HINT:
427 err = fcntl_rw_hint(filp, cmd, arg);
428 break;
429 default:
430 break;
431 }
432 return err;
433 }
434
435 static int check_fcntl_cmd(unsigned cmd)
436 {
437 switch (cmd) {
438 case F_DUPFD:
439 case F_DUPFD_CLOEXEC:
440 case F_GETFD:
441 case F_SETFD:
442 case F_GETFL:
443 return 1;
444 }
445 return 0;
446 }
447
448 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
449 {
450 struct fd f = fdget_raw(fd);
451 long err = -EBADF;
452
453 if (!f.file)
454 goto out;
455
456 if (unlikely(f.file->f_mode & FMODE_PATH)) {
457 if (!check_fcntl_cmd(cmd))
458 goto out1;
459 }
460
461 err = security_file_fcntl(f.file, cmd, arg);
462 if (!err)
463 err = do_fcntl(fd, cmd, arg, f.file);
464
465 out1:
466 fdput(f);
467 out:
468 return err;
469 }
470
471 #if BITS_PER_LONG == 32
472 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
473 unsigned long, arg)
474 {
475 void __user *argp = (void __user *)arg;
476 struct fd f = fdget_raw(fd);
477 struct flock64 flock;
478 long err = -EBADF;
479
480 if (!f.file)
481 goto out;
482
483 if (unlikely(f.file->f_mode & FMODE_PATH)) {
484 if (!check_fcntl_cmd(cmd))
485 goto out1;
486 }
487
488 err = security_file_fcntl(f.file, cmd, arg);
489 if (err)
490 goto out1;
491
492 switch (cmd) {
493 case F_GETLK64:
494 case F_OFD_GETLK:
495 err = -EFAULT;
496 if (copy_from_user(&flock, argp, sizeof(flock)))
497 break;
498 err = fcntl_getlk64(f.file, cmd, &flock);
499 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
500 err = -EFAULT;
501 break;
502 case F_SETLK64:
503 case F_SETLKW64:
504 case F_OFD_SETLK:
505 case F_OFD_SETLKW:
506 err = -EFAULT;
507 if (copy_from_user(&flock, argp, sizeof(flock)))
508 break;
509 err = fcntl_setlk64(fd, f.file, cmd, &flock);
510 break;
511 default:
512 err = do_fcntl(fd, cmd, arg, f.file);
513 break;
514 }
515 out1:
516 fdput(f);
517 out:
518 return err;
519 }
520 #endif
521
522 #ifdef CONFIG_COMPAT
523 /* careful - don't use anywhere else */
524 #define copy_flock_fields(dst, src) \
525 (dst)->l_type = (src)->l_type; \
526 (dst)->l_whence = (src)->l_whence; \
527 (dst)->l_start = (src)->l_start; \
528 (dst)->l_len = (src)->l_len; \
529 (dst)->l_pid = (src)->l_pid;
530
531 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
532 {
533 struct compat_flock fl;
534
535 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
536 return -EFAULT;
537 copy_flock_fields(kfl, &fl);
538 return 0;
539 }
540
541 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
542 {
543 struct compat_flock64 fl;
544
545 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
546 return -EFAULT;
547 copy_flock_fields(kfl, &fl);
548 return 0;
549 }
550
551 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
552 {
553 struct compat_flock fl;
554
555 memset(&fl, 0, sizeof(struct compat_flock));
556 copy_flock_fields(&fl, kfl);
557 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
558 return -EFAULT;
559 return 0;
560 }
561
562 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
563 {
564 struct compat_flock64 fl;
565
566 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
567 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
568
569 memset(&fl, 0, sizeof(struct compat_flock64));
570 copy_flock_fields(&fl, kfl);
571 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
572 return -EFAULT;
573 return 0;
574 }
575 #undef copy_flock_fields
576
577 static unsigned int
578 convert_fcntl_cmd(unsigned int cmd)
579 {
580 switch (cmd) {
581 case F_GETLK64:
582 return F_GETLK;
583 case F_SETLK64:
584 return F_SETLK;
585 case F_SETLKW64:
586 return F_SETLKW;
587 }
588
589 return cmd;
590 }
591
592 /*
593 * GETLK was successful and we need to return the data, but it needs to fit in
594 * the compat structure.
595 * l_start shouldn't be too big, unless the original start + end is greater than
596 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
597 * -EOVERFLOW in that case. l_len could be too big, in which case we just
598 * truncate it, and only allow the app to see that part of the conflicting lock
599 * that might make sense to it anyway
600 */
601 static int fixup_compat_flock(struct flock *flock)
602 {
603 if (flock->l_start > COMPAT_OFF_T_MAX)
604 return -EOVERFLOW;
605 if (flock->l_len > COMPAT_OFF_T_MAX)
606 flock->l_len = COMPAT_OFF_T_MAX;
607 return 0;
608 }
609
610 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
611 compat_ulong_t, arg)
612 {
613 struct fd f = fdget_raw(fd);
614 struct flock flock;
615 long err = -EBADF;
616
617 if (!f.file)
618 return err;
619
620 if (unlikely(f.file->f_mode & FMODE_PATH)) {
621 if (!check_fcntl_cmd(cmd))
622 goto out_put;
623 }
624
625 err = security_file_fcntl(f.file, cmd, arg);
626 if (err)
627 goto out_put;
628
629 switch (cmd) {
630 case F_GETLK:
631 err = get_compat_flock(&flock, compat_ptr(arg));
632 if (err)
633 break;
634 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
635 if (err)
636 break;
637 err = fixup_compat_flock(&flock);
638 if (!err)
639 err = put_compat_flock(&flock, compat_ptr(arg));
640 break;
641 case F_GETLK64:
642 case F_OFD_GETLK:
643 err = get_compat_flock64(&flock, compat_ptr(arg));
644 if (err)
645 break;
646 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
647 if (!err)
648 err = put_compat_flock64(&flock, compat_ptr(arg));
649 break;
650 case F_SETLK:
651 case F_SETLKW:
652 err = get_compat_flock(&flock, compat_ptr(arg));
653 if (err)
654 break;
655 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
656 break;
657 case F_SETLK64:
658 case F_SETLKW64:
659 case F_OFD_SETLK:
660 case F_OFD_SETLKW:
661 err = get_compat_flock64(&flock, compat_ptr(arg));
662 if (err)
663 break;
664 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
665 break;
666 default:
667 err = do_fcntl(fd, cmd, arg, f.file);
668 break;
669 }
670 out_put:
671 fdput(f);
672 return err;
673 }
674
675 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
676 compat_ulong_t, arg)
677 {
678 switch (cmd) {
679 case F_GETLK64:
680 case F_SETLK64:
681 case F_SETLKW64:
682 case F_OFD_GETLK:
683 case F_OFD_SETLK:
684 case F_OFD_SETLKW:
685 return -EINVAL;
686 }
687 return compat_sys_fcntl64(fd, cmd, arg);
688 }
689 #endif
690
691 /* Table to convert sigio signal codes into poll band bitmaps */
692
693 static const long band_table[NSIGPOLL] = {
694 POLLIN | POLLRDNORM, /* POLL_IN */
695 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */
696 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */
697 POLLERR, /* POLL_ERR */
698 POLLPRI | POLLRDBAND, /* POLL_PRI */
699 POLLHUP | POLLERR /* POLL_HUP */
700 };
701
702 static inline int sigio_perm(struct task_struct *p,
703 struct fown_struct *fown, int sig)
704 {
705 const struct cred *cred;
706 int ret;
707
708 rcu_read_lock();
709 cred = __task_cred(p);
710 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
711 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
712 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
713 !security_file_send_sigiotask(p, fown, sig));
714 rcu_read_unlock();
715 return ret;
716 }
717
718 static void send_sigio_to_task(struct task_struct *p,
719 struct fown_struct *fown,
720 int fd, int reason, int group)
721 {
722 /*
723 * F_SETSIG can change ->signum lockless in parallel, make
724 * sure we read it once and use the same value throughout.
725 */
726 int signum = ACCESS_ONCE(fown->signum);
727
728 if (!sigio_perm(p, fown, signum))
729 return;
730
731 switch (signum) {
732 siginfo_t si;
733 default:
734 /* Queue a rt signal with the appropriate fd as its
735 value. We use SI_SIGIO as the source, not
736 SI_KERNEL, since kernel signals always get
737 delivered even if we can't queue. Failure to
738 queue in this case _should_ be reported; we fall
739 back to SIGIO in that case. --sct */
740 si.si_signo = signum;
741 si.si_errno = 0;
742 si.si_code = reason;
743 /*
744 * Posix definies POLL_IN and friends to be signal
745 * specific si_codes for SIG_POLL. Linux extended
746 * these si_codes to other signals in a way that is
747 * ambiguous if other signals also have signal
748 * specific si_codes. In that case use SI_SIGIO instead
749 * to remove the ambiguity.
750 */
751 if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
752 si.si_code = SI_SIGIO;
753
754 /* Make sure we are called with one of the POLL_*
755 reasons, otherwise we could leak kernel stack into
756 userspace. */
757 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
758 if (reason - POLL_IN >= NSIGPOLL)
759 si.si_band = ~0L;
760 else
761 si.si_band = band_table[reason - POLL_IN];
762 si.si_fd = fd;
763 if (!do_send_sig_info(signum, &si, p, group))
764 break;
765 /* fall-through: fall back on the old plain SIGIO signal */
766 case 0:
767 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
768 }
769 }
770
771 void send_sigio(struct fown_struct *fown, int fd, int band)
772 {
773 struct task_struct *p;
774 enum pid_type type;
775 struct pid *pid;
776 int group = 1;
777
778 read_lock(&fown->lock);
779
780 type = fown->pid_type;
781 if (type == PIDTYPE_MAX) {
782 group = 0;
783 type = PIDTYPE_PID;
784 }
785
786 pid = fown->pid;
787 if (!pid)
788 goto out_unlock_fown;
789
790 read_lock(&tasklist_lock);
791 do_each_pid_task(pid, type, p) {
792 send_sigio_to_task(p, fown, fd, band, group);
793 } while_each_pid_task(pid, type, p);
794 read_unlock(&tasklist_lock);
795 out_unlock_fown:
796 read_unlock(&fown->lock);
797 }
798
799 static void send_sigurg_to_task(struct task_struct *p,
800 struct fown_struct *fown, int group)
801 {
802 if (sigio_perm(p, fown, SIGURG))
803 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
804 }
805
806 int send_sigurg(struct fown_struct *fown)
807 {
808 struct task_struct *p;
809 enum pid_type type;
810 struct pid *pid;
811 int group = 1;
812 int ret = 0;
813
814 read_lock(&fown->lock);
815
816 type = fown->pid_type;
817 if (type == PIDTYPE_MAX) {
818 group = 0;
819 type = PIDTYPE_PID;
820 }
821
822 pid = fown->pid;
823 if (!pid)
824 goto out_unlock_fown;
825
826 ret = 1;
827
828 read_lock(&tasklist_lock);
829 do_each_pid_task(pid, type, p) {
830 send_sigurg_to_task(p, fown, group);
831 } while_each_pid_task(pid, type, p);
832 read_unlock(&tasklist_lock);
833 out_unlock_fown:
834 read_unlock(&fown->lock);
835 return ret;
836 }
837
838 static DEFINE_SPINLOCK(fasync_lock);
839 static struct kmem_cache *fasync_cache __read_mostly;
840
841 static void fasync_free_rcu(struct rcu_head *head)
842 {
843 kmem_cache_free(fasync_cache,
844 container_of(head, struct fasync_struct, fa_rcu));
845 }
846
847 /*
848 * Remove a fasync entry. If successfully removed, return
849 * positive and clear the FASYNC flag. If no entry exists,
850 * do nothing and return 0.
851 *
852 * NOTE! It is very important that the FASYNC flag always
853 * match the state "is the filp on a fasync list".
854 *
855 */
856 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
857 {
858 struct fasync_struct *fa, **fp;
859 int result = 0;
860
861 spin_lock(&filp->f_lock);
862 spin_lock(&fasync_lock);
863 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
864 if (fa->fa_file != filp)
865 continue;
866
867 spin_lock_irq(&fa->fa_lock);
868 fa->fa_file = NULL;
869 spin_unlock_irq(&fa->fa_lock);
870
871 *fp = fa->fa_next;
872 call_rcu(&fa->fa_rcu, fasync_free_rcu);
873 filp->f_flags &= ~FASYNC;
874 result = 1;
875 break;
876 }
877 spin_unlock(&fasync_lock);
878 spin_unlock(&filp->f_lock);
879 return result;
880 }
881
882 struct fasync_struct *fasync_alloc(void)
883 {
884 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
885 }
886
887 /*
888 * NOTE! This can be used only for unused fasync entries:
889 * entries that actually got inserted on the fasync list
890 * need to be released by rcu - see fasync_remove_entry.
891 */
892 void fasync_free(struct fasync_struct *new)
893 {
894 kmem_cache_free(fasync_cache, new);
895 }
896
897 /*
898 * Insert a new entry into the fasync list. Return the pointer to the
899 * old one if we didn't use the new one.
900 *
901 * NOTE! It is very important that the FASYNC flag always
902 * match the state "is the filp on a fasync list".
903 */
904 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
905 {
906 struct fasync_struct *fa, **fp;
907
908 spin_lock(&filp->f_lock);
909 spin_lock(&fasync_lock);
910 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
911 if (fa->fa_file != filp)
912 continue;
913
914 spin_lock_irq(&fa->fa_lock);
915 fa->fa_fd = fd;
916 spin_unlock_irq(&fa->fa_lock);
917 goto out;
918 }
919
920 spin_lock_init(&new->fa_lock);
921 new->magic = FASYNC_MAGIC;
922 new->fa_file = filp;
923 new->fa_fd = fd;
924 new->fa_next = *fapp;
925 rcu_assign_pointer(*fapp, new);
926 filp->f_flags |= FASYNC;
927
928 out:
929 spin_unlock(&fasync_lock);
930 spin_unlock(&filp->f_lock);
931 return fa;
932 }
933
934 /*
935 * Add a fasync entry. Return negative on error, positive if
936 * added, and zero if did nothing but change an existing one.
937 */
938 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
939 {
940 struct fasync_struct *new;
941
942 new = fasync_alloc();
943 if (!new)
944 return -ENOMEM;
945
946 /*
947 * fasync_insert_entry() returns the old (update) entry if
948 * it existed.
949 *
950 * So free the (unused) new entry and return 0 to let the
951 * caller know that we didn't add any new fasync entries.
952 */
953 if (fasync_insert_entry(fd, filp, fapp, new)) {
954 fasync_free(new);
955 return 0;
956 }
957
958 return 1;
959 }
960
961 /*
962 * fasync_helper() is used by almost all character device drivers
963 * to set up the fasync queue, and for regular files by the file
964 * lease code. It returns negative on error, 0 if it did no changes
965 * and positive if it added/deleted the entry.
966 */
967 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
968 {
969 if (!on)
970 return fasync_remove_entry(filp, fapp);
971 return fasync_add_entry(fd, filp, fapp);
972 }
973
974 EXPORT_SYMBOL(fasync_helper);
975
976 /*
977 * rcu_read_lock() is held
978 */
979 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
980 {
981 while (fa) {
982 struct fown_struct *fown;
983 unsigned long flags;
984
985 if (fa->magic != FASYNC_MAGIC) {
986 printk(KERN_ERR "kill_fasync: bad magic number in "
987 "fasync_struct!\n");
988 return;
989 }
990 spin_lock_irqsave(&fa->fa_lock, flags);
991 if (fa->fa_file) {
992 fown = &fa->fa_file->f_owner;
993 /* Don't send SIGURG to processes which have not set a
994 queued signum: SIGURG has its own default signalling
995 mechanism. */
996 if (!(sig == SIGURG && fown->signum == 0))
997 send_sigio(fown, fa->fa_fd, band);
998 }
999 spin_unlock_irqrestore(&fa->fa_lock, flags);
1000 fa = rcu_dereference(fa->fa_next);
1001 }
1002 }
1003
1004 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1005 {
1006 /* First a quick test without locking: usually
1007 * the list is empty.
1008 */
1009 if (*fp) {
1010 rcu_read_lock();
1011 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1012 rcu_read_unlock();
1013 }
1014 }
1015 EXPORT_SYMBOL(kill_fasync);
1016
1017 static int __init fcntl_init(void)
1018 {
1019 /*
1020 * Please add new bits here to ensure allocation uniqueness.
1021 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1022 * is defined as O_NONBLOCK on some platforms and not on others.
1023 */
1024 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1025 HWEIGHT32(
1026 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1027 __FMODE_EXEC | __FMODE_NONOTIFY));
1028
1029 fasync_cache = kmem_cache_create("fasync_cache",
1030 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
1031 return 0;
1032 }
1033
1034 module_init(fcntl_init)