Merge 4.14.4 into android-4.14
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 int err;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 err = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 return err;
46 }
47
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
55
56 if (unlikely(f2fs_cp_error(sbi))) {
57 err = -EIO;
58 goto err;
59 }
60
61 sb_start_pagefault(inode->i_sb);
62
63 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64
65 /* block allocation */
66 f2fs_lock_op(sbi);
67 set_new_dnode(&dn, inode, NULL, NULL, 0);
68 err = f2fs_reserve_block(&dn, page->index);
69 if (err) {
70 f2fs_unlock_op(sbi);
71 goto out;
72 }
73 f2fs_put_dnode(&dn);
74 f2fs_unlock_op(sbi);
75
76 f2fs_balance_fs(sbi, dn.node_changed);
77
78 file_update_time(vmf->vma->vm_file);
79 down_read(&F2FS_I(inode)->i_mmap_sem);
80 lock_page(page);
81 if (unlikely(page->mapping != inode->i_mapping ||
82 page_offset(page) > i_size_read(inode) ||
83 !PageUptodate(page))) {
84 unlock_page(page);
85 err = -EFAULT;
86 goto out_sem;
87 }
88
89 /*
90 * check to see if the page is mapped already (no holes)
91 */
92 if (PageMappedToDisk(page))
93 goto mapped;
94
95 /* page is wholly or partially inside EOF */
96 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 i_size_read(inode)) {
98 unsigned offset;
99 offset = i_size_read(inode) & ~PAGE_MASK;
100 zero_user_segment(page, offset, PAGE_SIZE);
101 }
102 set_page_dirty(page);
103 if (!PageUptodate(page))
104 SetPageUptodate(page);
105
106 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
107
108 trace_f2fs_vm_page_mkwrite(page, DATA);
109 mapped:
110 /* fill the page */
111 f2fs_wait_on_page_writeback(page, DATA, false);
112
113 /* wait for GCed encrypted page writeback */
114 if (f2fs_encrypted_file(inode))
115 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
116
117 out_sem:
118 up_read(&F2FS_I(inode)->i_mmap_sem);
119 out:
120 sb_end_pagefault(inode->i_sb);
121 f2fs_update_time(sbi, REQ_TIME);
122 err:
123 return block_page_mkwrite_return(err);
124 }
125
126 static const struct vm_operations_struct f2fs_file_vm_ops = {
127 .fault = f2fs_filemap_fault,
128 .map_pages = filemap_map_pages,
129 .page_mkwrite = f2fs_vm_page_mkwrite,
130 };
131
132 static int get_parent_ino(struct inode *inode, nid_t *pino)
133 {
134 struct dentry *dentry;
135
136 inode = igrab(inode);
137 dentry = d_find_any_alias(inode);
138 iput(inode);
139 if (!dentry)
140 return 0;
141
142 *pino = parent_ino(dentry);
143 dput(dentry);
144 return 1;
145 }
146
147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
148 {
149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
150 enum cp_reason_type cp_reason = CP_NO_NEEDED;
151
152 if (!S_ISREG(inode->i_mode))
153 cp_reason = CP_NON_REGULAR;
154 else if (inode->i_nlink != 1)
155 cp_reason = CP_HARDLINK;
156 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
157 cp_reason = CP_SB_NEED_CP;
158 else if (file_wrong_pino(inode))
159 cp_reason = CP_WRONG_PINO;
160 else if (!space_for_roll_forward(sbi))
161 cp_reason = CP_NO_SPC_ROLL;
162 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
163 cp_reason = CP_NODE_NEED_CP;
164 else if (test_opt(sbi, FASTBOOT))
165 cp_reason = CP_FASTBOOT_MODE;
166 else if (sbi->active_logs == 2)
167 cp_reason = CP_SPEC_LOG_NUM;
168
169 return cp_reason;
170 }
171
172 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
173 {
174 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
175 bool ret = false;
176 /* But we need to avoid that there are some inode updates */
177 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
178 ret = true;
179 f2fs_put_page(i, 0);
180 return ret;
181 }
182
183 static void try_to_fix_pino(struct inode *inode)
184 {
185 struct f2fs_inode_info *fi = F2FS_I(inode);
186 nid_t pino;
187
188 down_write(&fi->i_sem);
189 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
190 get_parent_ino(inode, &pino)) {
191 f2fs_i_pino_write(inode, pino);
192 file_got_pino(inode);
193 }
194 up_write(&fi->i_sem);
195 }
196
197 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
198 int datasync, bool atomic)
199 {
200 struct inode *inode = file->f_mapping->host;
201 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
202 nid_t ino = inode->i_ino;
203 int ret = 0;
204 enum cp_reason_type cp_reason = 0;
205 struct writeback_control wbc = {
206 .sync_mode = WB_SYNC_ALL,
207 .nr_to_write = LONG_MAX,
208 .for_reclaim = 0,
209 };
210
211 if (unlikely(f2fs_readonly(inode->i_sb)))
212 return 0;
213
214 trace_f2fs_sync_file_enter(inode);
215
216 /* if fdatasync is triggered, let's do in-place-update */
217 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
218 set_inode_flag(inode, FI_NEED_IPU);
219 ret = file_write_and_wait_range(file, start, end);
220 clear_inode_flag(inode, FI_NEED_IPU);
221
222 if (ret) {
223 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
224 return ret;
225 }
226
227 /* if the inode is dirty, let's recover all the time */
228 if (!f2fs_skip_inode_update(inode, datasync)) {
229 f2fs_write_inode(inode, NULL);
230 goto go_write;
231 }
232
233 /*
234 * if there is no written data, don't waste time to write recovery info.
235 */
236 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
237 !exist_written_data(sbi, ino, APPEND_INO)) {
238
239 /* it may call write_inode just prior to fsync */
240 if (need_inode_page_update(sbi, ino))
241 goto go_write;
242
243 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
244 exist_written_data(sbi, ino, UPDATE_INO))
245 goto flush_out;
246 goto out;
247 }
248 go_write:
249 /*
250 * Both of fdatasync() and fsync() are able to be recovered from
251 * sudden-power-off.
252 */
253 down_read(&F2FS_I(inode)->i_sem);
254 cp_reason = need_do_checkpoint(inode);
255 up_read(&F2FS_I(inode)->i_sem);
256
257 if (cp_reason) {
258 /* all the dirty node pages should be flushed for POR */
259 ret = f2fs_sync_fs(inode->i_sb, 1);
260
261 /*
262 * We've secured consistency through sync_fs. Following pino
263 * will be used only for fsynced inodes after checkpoint.
264 */
265 try_to_fix_pino(inode);
266 clear_inode_flag(inode, FI_APPEND_WRITE);
267 clear_inode_flag(inode, FI_UPDATE_WRITE);
268 goto out;
269 }
270 sync_nodes:
271 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
272 if (ret)
273 goto out;
274
275 /* if cp_error was enabled, we should avoid infinite loop */
276 if (unlikely(f2fs_cp_error(sbi))) {
277 ret = -EIO;
278 goto out;
279 }
280
281 if (need_inode_block_update(sbi, ino)) {
282 f2fs_mark_inode_dirty_sync(inode, true);
283 f2fs_write_inode(inode, NULL);
284 goto sync_nodes;
285 }
286
287 /*
288 * If it's atomic_write, it's just fine to keep write ordering. So
289 * here we don't need to wait for node write completion, since we use
290 * node chain which serializes node blocks. If one of node writes are
291 * reordered, we can see simply broken chain, resulting in stopping
292 * roll-forward recovery. It means we'll recover all or none node blocks
293 * given fsync mark.
294 */
295 if (!atomic) {
296 ret = wait_on_node_pages_writeback(sbi, ino);
297 if (ret)
298 goto out;
299 }
300
301 /* once recovery info is written, don't need to tack this */
302 remove_ino_entry(sbi, ino, APPEND_INO);
303 clear_inode_flag(inode, FI_APPEND_WRITE);
304 flush_out:
305 if (!atomic)
306 ret = f2fs_issue_flush(sbi, inode->i_ino);
307 if (!ret) {
308 remove_ino_entry(sbi, ino, UPDATE_INO);
309 clear_inode_flag(inode, FI_UPDATE_WRITE);
310 remove_ino_entry(sbi, ino, FLUSH_INO);
311 }
312 f2fs_update_time(sbi, REQ_TIME);
313 out:
314 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
315 f2fs_trace_ios(NULL, 1);
316 return ret;
317 }
318
319 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
320 {
321 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
322 return -EIO;
323 return f2fs_do_sync_file(file, start, end, datasync, false);
324 }
325
326 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
327 pgoff_t pgofs, int whence)
328 {
329 struct pagevec pvec;
330 int nr_pages;
331
332 if (whence != SEEK_DATA)
333 return 0;
334
335 /* find first dirty page index */
336 pagevec_init(&pvec, 0);
337 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
338 PAGECACHE_TAG_DIRTY, 1);
339 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
340 pagevec_release(&pvec);
341 return pgofs;
342 }
343
344 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
345 int whence)
346 {
347 switch (whence) {
348 case SEEK_DATA:
349 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
350 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
351 return true;
352 break;
353 case SEEK_HOLE:
354 if (blkaddr == NULL_ADDR)
355 return true;
356 break;
357 }
358 return false;
359 }
360
361 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
362 {
363 struct inode *inode = file->f_mapping->host;
364 loff_t maxbytes = inode->i_sb->s_maxbytes;
365 struct dnode_of_data dn;
366 pgoff_t pgofs, end_offset, dirty;
367 loff_t data_ofs = offset;
368 loff_t isize;
369 int err = 0;
370
371 inode_lock(inode);
372
373 isize = i_size_read(inode);
374 if (offset >= isize)
375 goto fail;
376
377 /* handle inline data case */
378 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
379 if (whence == SEEK_HOLE)
380 data_ofs = isize;
381 goto found;
382 }
383
384 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
385
386 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
387
388 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
389 set_new_dnode(&dn, inode, NULL, NULL, 0);
390 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
391 if (err && err != -ENOENT) {
392 goto fail;
393 } else if (err == -ENOENT) {
394 /* direct node does not exists */
395 if (whence == SEEK_DATA) {
396 pgofs = get_next_page_offset(&dn, pgofs);
397 continue;
398 } else {
399 goto found;
400 }
401 }
402
403 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
404
405 /* find data/hole in dnode block */
406 for (; dn.ofs_in_node < end_offset;
407 dn.ofs_in_node++, pgofs++,
408 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
409 block_t blkaddr;
410 blkaddr = datablock_addr(dn.inode,
411 dn.node_page, dn.ofs_in_node);
412
413 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
414 f2fs_put_dnode(&dn);
415 goto found;
416 }
417 }
418 f2fs_put_dnode(&dn);
419 }
420
421 if (whence == SEEK_DATA)
422 goto fail;
423 found:
424 if (whence == SEEK_HOLE && data_ofs > isize)
425 data_ofs = isize;
426 inode_unlock(inode);
427 return vfs_setpos(file, data_ofs, maxbytes);
428 fail:
429 inode_unlock(inode);
430 return -ENXIO;
431 }
432
433 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
434 {
435 struct inode *inode = file->f_mapping->host;
436 loff_t maxbytes = inode->i_sb->s_maxbytes;
437
438 switch (whence) {
439 case SEEK_SET:
440 case SEEK_CUR:
441 case SEEK_END:
442 return generic_file_llseek_size(file, offset, whence,
443 maxbytes, i_size_read(inode));
444 case SEEK_DATA:
445 case SEEK_HOLE:
446 if (offset < 0)
447 return -ENXIO;
448 return f2fs_seek_block(file, offset, whence);
449 }
450
451 return -EINVAL;
452 }
453
454 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
455 {
456 struct inode *inode = file_inode(file);
457 int err;
458
459 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
460 return -EIO;
461
462 /* we don't need to use inline_data strictly */
463 err = f2fs_convert_inline_inode(inode);
464 if (err)
465 return err;
466
467 file_accessed(file);
468 vma->vm_ops = &f2fs_file_vm_ops;
469 return 0;
470 }
471
472 static int f2fs_file_open(struct inode *inode, struct file *filp)
473 {
474 struct dentry *dir;
475
476 if (f2fs_encrypted_inode(inode)) {
477 int ret = fscrypt_get_encryption_info(inode);
478 if (ret)
479 return -EACCES;
480 if (!fscrypt_has_encryption_key(inode))
481 return -ENOKEY;
482 }
483 dir = dget_parent(file_dentry(filp));
484 if (f2fs_encrypted_inode(d_inode(dir)) &&
485 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
486 dput(dir);
487 return -EPERM;
488 }
489 dput(dir);
490 return dquot_file_open(inode, filp);
491 }
492
493 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
494 {
495 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
496 struct f2fs_node *raw_node;
497 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
498 __le32 *addr;
499 int base = 0;
500
501 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
502 base = get_extra_isize(dn->inode);
503
504 raw_node = F2FS_NODE(dn->node_page);
505 addr = blkaddr_in_node(raw_node) + base + ofs;
506
507 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
508 block_t blkaddr = le32_to_cpu(*addr);
509 if (blkaddr == NULL_ADDR)
510 continue;
511
512 dn->data_blkaddr = NULL_ADDR;
513 set_data_blkaddr(dn);
514 invalidate_blocks(sbi, blkaddr);
515 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
516 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
517 nr_free++;
518 }
519
520 if (nr_free) {
521 pgoff_t fofs;
522 /*
523 * once we invalidate valid blkaddr in range [ofs, ofs + count],
524 * we will invalidate all blkaddr in the whole range.
525 */
526 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
527 dn->inode) + ofs;
528 f2fs_update_extent_cache_range(dn, fofs, 0, len);
529 dec_valid_block_count(sbi, dn->inode, nr_free);
530 }
531 dn->ofs_in_node = ofs;
532
533 f2fs_update_time(sbi, REQ_TIME);
534 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
535 dn->ofs_in_node, nr_free);
536 return nr_free;
537 }
538
539 void truncate_data_blocks(struct dnode_of_data *dn)
540 {
541 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
542 }
543
544 static int truncate_partial_data_page(struct inode *inode, u64 from,
545 bool cache_only)
546 {
547 unsigned offset = from & (PAGE_SIZE - 1);
548 pgoff_t index = from >> PAGE_SHIFT;
549 struct address_space *mapping = inode->i_mapping;
550 struct page *page;
551
552 if (!offset && !cache_only)
553 return 0;
554
555 if (cache_only) {
556 page = find_lock_page(mapping, index);
557 if (page && PageUptodate(page))
558 goto truncate_out;
559 f2fs_put_page(page, 1);
560 return 0;
561 }
562
563 page = get_lock_data_page(inode, index, true);
564 if (IS_ERR(page))
565 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
566 truncate_out:
567 f2fs_wait_on_page_writeback(page, DATA, true);
568 zero_user(page, offset, PAGE_SIZE - offset);
569
570 /* An encrypted inode should have a key and truncate the last page. */
571 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
572 if (!cache_only)
573 set_page_dirty(page);
574 f2fs_put_page(page, 1);
575 return 0;
576 }
577
578 int truncate_blocks(struct inode *inode, u64 from, bool lock)
579 {
580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
581 unsigned int blocksize = inode->i_sb->s_blocksize;
582 struct dnode_of_data dn;
583 pgoff_t free_from;
584 int count = 0, err = 0;
585 struct page *ipage;
586 bool truncate_page = false;
587
588 trace_f2fs_truncate_blocks_enter(inode, from);
589
590 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
591
592 if (free_from >= sbi->max_file_blocks)
593 goto free_partial;
594
595 if (lock)
596 f2fs_lock_op(sbi);
597
598 ipage = get_node_page(sbi, inode->i_ino);
599 if (IS_ERR(ipage)) {
600 err = PTR_ERR(ipage);
601 goto out;
602 }
603
604 if (f2fs_has_inline_data(inode)) {
605 truncate_inline_inode(inode, ipage, from);
606 f2fs_put_page(ipage, 1);
607 truncate_page = true;
608 goto out;
609 }
610
611 set_new_dnode(&dn, inode, ipage, NULL, 0);
612 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
613 if (err) {
614 if (err == -ENOENT)
615 goto free_next;
616 goto out;
617 }
618
619 count = ADDRS_PER_PAGE(dn.node_page, inode);
620
621 count -= dn.ofs_in_node;
622 f2fs_bug_on(sbi, count < 0);
623
624 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
625 truncate_data_blocks_range(&dn, count);
626 free_from += count;
627 }
628
629 f2fs_put_dnode(&dn);
630 free_next:
631 err = truncate_inode_blocks(inode, free_from);
632 out:
633 if (lock)
634 f2fs_unlock_op(sbi);
635 free_partial:
636 /* lastly zero out the first data page */
637 if (!err)
638 err = truncate_partial_data_page(inode, from, truncate_page);
639
640 trace_f2fs_truncate_blocks_exit(inode, err);
641 return err;
642 }
643
644 int f2fs_truncate(struct inode *inode)
645 {
646 int err;
647
648 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
649 return -EIO;
650
651 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
652 S_ISLNK(inode->i_mode)))
653 return 0;
654
655 trace_f2fs_truncate(inode);
656
657 #ifdef CONFIG_F2FS_FAULT_INJECTION
658 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
659 f2fs_show_injection_info(FAULT_TRUNCATE);
660 return -EIO;
661 }
662 #endif
663 /* we should check inline_data size */
664 if (!f2fs_may_inline_data(inode)) {
665 err = f2fs_convert_inline_inode(inode);
666 if (err)
667 return err;
668 }
669
670 err = truncate_blocks(inode, i_size_read(inode), true);
671 if (err)
672 return err;
673
674 inode->i_mtime = inode->i_ctime = current_time(inode);
675 f2fs_mark_inode_dirty_sync(inode, false);
676 return 0;
677 }
678
679 int f2fs_getattr(const struct path *path, struct kstat *stat,
680 u32 request_mask, unsigned int query_flags)
681 {
682 struct inode *inode = d_inode(path->dentry);
683 struct f2fs_inode_info *fi = F2FS_I(inode);
684 unsigned int flags;
685
686 flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
687 if (flags & FS_APPEND_FL)
688 stat->attributes |= STATX_ATTR_APPEND;
689 if (flags & FS_COMPR_FL)
690 stat->attributes |= STATX_ATTR_COMPRESSED;
691 if (f2fs_encrypted_inode(inode))
692 stat->attributes |= STATX_ATTR_ENCRYPTED;
693 if (flags & FS_IMMUTABLE_FL)
694 stat->attributes |= STATX_ATTR_IMMUTABLE;
695 if (flags & FS_NODUMP_FL)
696 stat->attributes |= STATX_ATTR_NODUMP;
697
698 stat->attributes_mask |= (STATX_ATTR_APPEND |
699 STATX_ATTR_COMPRESSED |
700 STATX_ATTR_ENCRYPTED |
701 STATX_ATTR_IMMUTABLE |
702 STATX_ATTR_NODUMP);
703
704 generic_fillattr(inode, stat);
705
706 /* we need to show initial sectors used for inline_data/dentries */
707 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
708 f2fs_has_inline_dentry(inode))
709 stat->blocks += (stat->size + 511) >> 9;
710
711 return 0;
712 }
713
714 #ifdef CONFIG_F2FS_FS_POSIX_ACL
715 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
716 {
717 unsigned int ia_valid = attr->ia_valid;
718
719 if (ia_valid & ATTR_UID)
720 inode->i_uid = attr->ia_uid;
721 if (ia_valid & ATTR_GID)
722 inode->i_gid = attr->ia_gid;
723 if (ia_valid & ATTR_ATIME)
724 inode->i_atime = timespec_trunc(attr->ia_atime,
725 inode->i_sb->s_time_gran);
726 if (ia_valid & ATTR_MTIME)
727 inode->i_mtime = timespec_trunc(attr->ia_mtime,
728 inode->i_sb->s_time_gran);
729 if (ia_valid & ATTR_CTIME)
730 inode->i_ctime = timespec_trunc(attr->ia_ctime,
731 inode->i_sb->s_time_gran);
732 if (ia_valid & ATTR_MODE) {
733 umode_t mode = attr->ia_mode;
734
735 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
736 mode &= ~S_ISGID;
737 set_acl_inode(inode, mode);
738 }
739 }
740 #else
741 #define __setattr_copy setattr_copy
742 #endif
743
744 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
745 {
746 struct inode *inode = d_inode(dentry);
747 int err;
748 bool size_changed = false;
749
750 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
751 return -EIO;
752
753 err = setattr_prepare(dentry, attr);
754 if (err)
755 return err;
756
757 if (is_quota_modification(inode, attr)) {
758 err = dquot_initialize(inode);
759 if (err)
760 return err;
761 }
762 if ((attr->ia_valid & ATTR_UID &&
763 !uid_eq(attr->ia_uid, inode->i_uid)) ||
764 (attr->ia_valid & ATTR_GID &&
765 !gid_eq(attr->ia_gid, inode->i_gid))) {
766 err = dquot_transfer(inode, attr);
767 if (err)
768 return err;
769 }
770
771 if (attr->ia_valid & ATTR_SIZE) {
772 if (f2fs_encrypted_inode(inode)) {
773 err = fscrypt_get_encryption_info(inode);
774 if (err)
775 return err;
776 if (!fscrypt_has_encryption_key(inode))
777 return -ENOKEY;
778 }
779
780 if (attr->ia_size <= i_size_read(inode)) {
781 down_write(&F2FS_I(inode)->i_mmap_sem);
782 truncate_setsize(inode, attr->ia_size);
783 err = f2fs_truncate(inode);
784 up_write(&F2FS_I(inode)->i_mmap_sem);
785 if (err)
786 return err;
787 } else {
788 /*
789 * do not trim all blocks after i_size if target size is
790 * larger than i_size.
791 */
792 down_write(&F2FS_I(inode)->i_mmap_sem);
793 truncate_setsize(inode, attr->ia_size);
794 up_write(&F2FS_I(inode)->i_mmap_sem);
795
796 /* should convert inline inode here */
797 if (!f2fs_may_inline_data(inode)) {
798 err = f2fs_convert_inline_inode(inode);
799 if (err)
800 return err;
801 }
802 inode->i_mtime = inode->i_ctime = current_time(inode);
803 }
804
805 down_write(&F2FS_I(inode)->i_sem);
806 F2FS_I(inode)->last_disk_size = i_size_read(inode);
807 up_write(&F2FS_I(inode)->i_sem);
808
809 size_changed = true;
810 }
811
812 __setattr_copy(inode, attr);
813
814 if (attr->ia_valid & ATTR_MODE) {
815 err = posix_acl_chmod(inode, get_inode_mode(inode));
816 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
817 inode->i_mode = F2FS_I(inode)->i_acl_mode;
818 clear_inode_flag(inode, FI_ACL_MODE);
819 }
820 }
821
822 /* file size may changed here */
823 f2fs_mark_inode_dirty_sync(inode, size_changed);
824
825 /* inode change will produce dirty node pages flushed by checkpoint */
826 f2fs_balance_fs(F2FS_I_SB(inode), true);
827
828 return err;
829 }
830
831 const struct inode_operations f2fs_file_inode_operations = {
832 .getattr = f2fs_getattr,
833 .setattr = f2fs_setattr,
834 .get_acl = f2fs_get_acl,
835 .set_acl = f2fs_set_acl,
836 #ifdef CONFIG_F2FS_FS_XATTR
837 .listxattr = f2fs_listxattr,
838 #endif
839 .fiemap = f2fs_fiemap,
840 };
841
842 static int fill_zero(struct inode *inode, pgoff_t index,
843 loff_t start, loff_t len)
844 {
845 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
846 struct page *page;
847
848 if (!len)
849 return 0;
850
851 f2fs_balance_fs(sbi, true);
852
853 f2fs_lock_op(sbi);
854 page = get_new_data_page(inode, NULL, index, false);
855 f2fs_unlock_op(sbi);
856
857 if (IS_ERR(page))
858 return PTR_ERR(page);
859
860 f2fs_wait_on_page_writeback(page, DATA, true);
861 zero_user(page, start, len);
862 set_page_dirty(page);
863 f2fs_put_page(page, 1);
864 return 0;
865 }
866
867 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
868 {
869 int err;
870
871 while (pg_start < pg_end) {
872 struct dnode_of_data dn;
873 pgoff_t end_offset, count;
874
875 set_new_dnode(&dn, inode, NULL, NULL, 0);
876 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
877 if (err) {
878 if (err == -ENOENT) {
879 pg_start = get_next_page_offset(&dn, pg_start);
880 continue;
881 }
882 return err;
883 }
884
885 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
886 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
887
888 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
889
890 truncate_data_blocks_range(&dn, count);
891 f2fs_put_dnode(&dn);
892
893 pg_start += count;
894 }
895 return 0;
896 }
897
898 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
899 {
900 pgoff_t pg_start, pg_end;
901 loff_t off_start, off_end;
902 int ret;
903
904 ret = f2fs_convert_inline_inode(inode);
905 if (ret)
906 return ret;
907
908 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
909 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
910
911 off_start = offset & (PAGE_SIZE - 1);
912 off_end = (offset + len) & (PAGE_SIZE - 1);
913
914 if (pg_start == pg_end) {
915 ret = fill_zero(inode, pg_start, off_start,
916 off_end - off_start);
917 if (ret)
918 return ret;
919 } else {
920 if (off_start) {
921 ret = fill_zero(inode, pg_start++, off_start,
922 PAGE_SIZE - off_start);
923 if (ret)
924 return ret;
925 }
926 if (off_end) {
927 ret = fill_zero(inode, pg_end, 0, off_end);
928 if (ret)
929 return ret;
930 }
931
932 if (pg_start < pg_end) {
933 struct address_space *mapping = inode->i_mapping;
934 loff_t blk_start, blk_end;
935 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
936
937 f2fs_balance_fs(sbi, true);
938
939 blk_start = (loff_t)pg_start << PAGE_SHIFT;
940 blk_end = (loff_t)pg_end << PAGE_SHIFT;
941 down_write(&F2FS_I(inode)->i_mmap_sem);
942 truncate_inode_pages_range(mapping, blk_start,
943 blk_end - 1);
944
945 f2fs_lock_op(sbi);
946 ret = truncate_hole(inode, pg_start, pg_end);
947 f2fs_unlock_op(sbi);
948 up_write(&F2FS_I(inode)->i_mmap_sem);
949 }
950 }
951
952 return ret;
953 }
954
955 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
956 int *do_replace, pgoff_t off, pgoff_t len)
957 {
958 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
959 struct dnode_of_data dn;
960 int ret, done, i;
961
962 next_dnode:
963 set_new_dnode(&dn, inode, NULL, NULL, 0);
964 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
965 if (ret && ret != -ENOENT) {
966 return ret;
967 } else if (ret == -ENOENT) {
968 if (dn.max_level == 0)
969 return -ENOENT;
970 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
971 blkaddr += done;
972 do_replace += done;
973 goto next;
974 }
975
976 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
977 dn.ofs_in_node, len);
978 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
979 *blkaddr = datablock_addr(dn.inode,
980 dn.node_page, dn.ofs_in_node);
981 if (!is_checkpointed_data(sbi, *blkaddr)) {
982
983 if (test_opt(sbi, LFS)) {
984 f2fs_put_dnode(&dn);
985 return -ENOTSUPP;
986 }
987
988 /* do not invalidate this block address */
989 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
990 *do_replace = 1;
991 }
992 }
993 f2fs_put_dnode(&dn);
994 next:
995 len -= done;
996 off += done;
997 if (len)
998 goto next_dnode;
999 return 0;
1000 }
1001
1002 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1003 int *do_replace, pgoff_t off, int len)
1004 {
1005 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1006 struct dnode_of_data dn;
1007 int ret, i;
1008
1009 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1010 if (*do_replace == 0)
1011 continue;
1012
1013 set_new_dnode(&dn, inode, NULL, NULL, 0);
1014 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1015 if (ret) {
1016 dec_valid_block_count(sbi, inode, 1);
1017 invalidate_blocks(sbi, *blkaddr);
1018 } else {
1019 f2fs_update_data_blkaddr(&dn, *blkaddr);
1020 }
1021 f2fs_put_dnode(&dn);
1022 }
1023 return 0;
1024 }
1025
1026 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1027 block_t *blkaddr, int *do_replace,
1028 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1029 {
1030 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1031 pgoff_t i = 0;
1032 int ret;
1033
1034 while (i < len) {
1035 if (blkaddr[i] == NULL_ADDR && !full) {
1036 i++;
1037 continue;
1038 }
1039
1040 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1041 struct dnode_of_data dn;
1042 struct node_info ni;
1043 size_t new_size;
1044 pgoff_t ilen;
1045
1046 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1047 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1048 if (ret)
1049 return ret;
1050
1051 get_node_info(sbi, dn.nid, &ni);
1052 ilen = min((pgoff_t)
1053 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1054 dn.ofs_in_node, len - i);
1055 do {
1056 dn.data_blkaddr = datablock_addr(dn.inode,
1057 dn.node_page, dn.ofs_in_node);
1058 truncate_data_blocks_range(&dn, 1);
1059
1060 if (do_replace[i]) {
1061 f2fs_i_blocks_write(src_inode,
1062 1, false, false);
1063 f2fs_i_blocks_write(dst_inode,
1064 1, true, false);
1065 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1066 blkaddr[i], ni.version, true, false);
1067
1068 do_replace[i] = 0;
1069 }
1070 dn.ofs_in_node++;
1071 i++;
1072 new_size = (dst + i) << PAGE_SHIFT;
1073 if (dst_inode->i_size < new_size)
1074 f2fs_i_size_write(dst_inode, new_size);
1075 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1076
1077 f2fs_put_dnode(&dn);
1078 } else {
1079 struct page *psrc, *pdst;
1080
1081 psrc = get_lock_data_page(src_inode, src + i, true);
1082 if (IS_ERR(psrc))
1083 return PTR_ERR(psrc);
1084 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1085 true);
1086 if (IS_ERR(pdst)) {
1087 f2fs_put_page(psrc, 1);
1088 return PTR_ERR(pdst);
1089 }
1090 f2fs_copy_page(psrc, pdst);
1091 set_page_dirty(pdst);
1092 f2fs_put_page(pdst, 1);
1093 f2fs_put_page(psrc, 1);
1094
1095 ret = truncate_hole(src_inode, src + i, src + i + 1);
1096 if (ret)
1097 return ret;
1098 i++;
1099 }
1100 }
1101 return 0;
1102 }
1103
1104 static int __exchange_data_block(struct inode *src_inode,
1105 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1106 pgoff_t len, bool full)
1107 {
1108 block_t *src_blkaddr;
1109 int *do_replace;
1110 pgoff_t olen;
1111 int ret;
1112
1113 while (len) {
1114 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1115
1116 src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1117 if (!src_blkaddr)
1118 return -ENOMEM;
1119
1120 do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1121 if (!do_replace) {
1122 kvfree(src_blkaddr);
1123 return -ENOMEM;
1124 }
1125
1126 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1127 do_replace, src, olen);
1128 if (ret)
1129 goto roll_back;
1130
1131 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1132 do_replace, src, dst, olen, full);
1133 if (ret)
1134 goto roll_back;
1135
1136 src += olen;
1137 dst += olen;
1138 len -= olen;
1139
1140 kvfree(src_blkaddr);
1141 kvfree(do_replace);
1142 }
1143 return 0;
1144
1145 roll_back:
1146 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1147 kvfree(src_blkaddr);
1148 kvfree(do_replace);
1149 return ret;
1150 }
1151
1152 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1153 {
1154 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1155 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1156 int ret;
1157
1158 f2fs_balance_fs(sbi, true);
1159 f2fs_lock_op(sbi);
1160
1161 f2fs_drop_extent_tree(inode);
1162
1163 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1164 f2fs_unlock_op(sbi);
1165 return ret;
1166 }
1167
1168 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1169 {
1170 pgoff_t pg_start, pg_end;
1171 loff_t new_size;
1172 int ret;
1173
1174 if (offset + len >= i_size_read(inode))
1175 return -EINVAL;
1176
1177 /* collapse range should be aligned to block size of f2fs. */
1178 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1179 return -EINVAL;
1180
1181 ret = f2fs_convert_inline_inode(inode);
1182 if (ret)
1183 return ret;
1184
1185 pg_start = offset >> PAGE_SHIFT;
1186 pg_end = (offset + len) >> PAGE_SHIFT;
1187
1188 down_write(&F2FS_I(inode)->i_mmap_sem);
1189 /* write out all dirty pages from offset */
1190 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1191 if (ret)
1192 goto out;
1193
1194 /* avoid gc operation during block exchange */
1195 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1196
1197 truncate_pagecache(inode, offset);
1198
1199 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1200 if (ret)
1201 goto out_unlock;
1202
1203 /* write out all moved pages, if possible */
1204 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1205 truncate_pagecache(inode, offset);
1206
1207 new_size = i_size_read(inode) - len;
1208 truncate_pagecache(inode, new_size);
1209
1210 ret = truncate_blocks(inode, new_size, true);
1211 if (!ret)
1212 f2fs_i_size_write(inode, new_size);
1213 out_unlock:
1214 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1215 out:
1216 up_write(&F2FS_I(inode)->i_mmap_sem);
1217 return ret;
1218 }
1219
1220 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1221 pgoff_t end)
1222 {
1223 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1224 pgoff_t index = start;
1225 unsigned int ofs_in_node = dn->ofs_in_node;
1226 blkcnt_t count = 0;
1227 int ret;
1228
1229 for (; index < end; index++, dn->ofs_in_node++) {
1230 if (datablock_addr(dn->inode, dn->node_page,
1231 dn->ofs_in_node) == NULL_ADDR)
1232 count++;
1233 }
1234
1235 dn->ofs_in_node = ofs_in_node;
1236 ret = reserve_new_blocks(dn, count);
1237 if (ret)
1238 return ret;
1239
1240 dn->ofs_in_node = ofs_in_node;
1241 for (index = start; index < end; index++, dn->ofs_in_node++) {
1242 dn->data_blkaddr = datablock_addr(dn->inode,
1243 dn->node_page, dn->ofs_in_node);
1244 /*
1245 * reserve_new_blocks will not guarantee entire block
1246 * allocation.
1247 */
1248 if (dn->data_blkaddr == NULL_ADDR) {
1249 ret = -ENOSPC;
1250 break;
1251 }
1252 if (dn->data_blkaddr != NEW_ADDR) {
1253 invalidate_blocks(sbi, dn->data_blkaddr);
1254 dn->data_blkaddr = NEW_ADDR;
1255 set_data_blkaddr(dn);
1256 }
1257 }
1258
1259 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1260
1261 return ret;
1262 }
1263
1264 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1265 int mode)
1266 {
1267 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1268 struct address_space *mapping = inode->i_mapping;
1269 pgoff_t index, pg_start, pg_end;
1270 loff_t new_size = i_size_read(inode);
1271 loff_t off_start, off_end;
1272 int ret = 0;
1273
1274 ret = inode_newsize_ok(inode, (len + offset));
1275 if (ret)
1276 return ret;
1277
1278 ret = f2fs_convert_inline_inode(inode);
1279 if (ret)
1280 return ret;
1281
1282 down_write(&F2FS_I(inode)->i_mmap_sem);
1283 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1284 if (ret)
1285 goto out_sem;
1286
1287 truncate_pagecache_range(inode, offset, offset + len - 1);
1288
1289 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1290 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1291
1292 off_start = offset & (PAGE_SIZE - 1);
1293 off_end = (offset + len) & (PAGE_SIZE - 1);
1294
1295 if (pg_start == pg_end) {
1296 ret = fill_zero(inode, pg_start, off_start,
1297 off_end - off_start);
1298 if (ret)
1299 goto out_sem;
1300
1301 new_size = max_t(loff_t, new_size, offset + len);
1302 } else {
1303 if (off_start) {
1304 ret = fill_zero(inode, pg_start++, off_start,
1305 PAGE_SIZE - off_start);
1306 if (ret)
1307 goto out_sem;
1308
1309 new_size = max_t(loff_t, new_size,
1310 (loff_t)pg_start << PAGE_SHIFT);
1311 }
1312
1313 for (index = pg_start; index < pg_end;) {
1314 struct dnode_of_data dn;
1315 unsigned int end_offset;
1316 pgoff_t end;
1317
1318 f2fs_lock_op(sbi);
1319
1320 set_new_dnode(&dn, inode, NULL, NULL, 0);
1321 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1322 if (ret) {
1323 f2fs_unlock_op(sbi);
1324 goto out;
1325 }
1326
1327 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1328 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1329
1330 ret = f2fs_do_zero_range(&dn, index, end);
1331 f2fs_put_dnode(&dn);
1332 f2fs_unlock_op(sbi);
1333
1334 f2fs_balance_fs(sbi, dn.node_changed);
1335
1336 if (ret)
1337 goto out;
1338
1339 index = end;
1340 new_size = max_t(loff_t, new_size,
1341 (loff_t)index << PAGE_SHIFT);
1342 }
1343
1344 if (off_end) {
1345 ret = fill_zero(inode, pg_end, 0, off_end);
1346 if (ret)
1347 goto out;
1348
1349 new_size = max_t(loff_t, new_size, offset + len);
1350 }
1351 }
1352
1353 out:
1354 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1355 f2fs_i_size_write(inode, new_size);
1356 out_sem:
1357 up_write(&F2FS_I(inode)->i_mmap_sem);
1358
1359 return ret;
1360 }
1361
1362 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1363 {
1364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1365 pgoff_t nr, pg_start, pg_end, delta, idx;
1366 loff_t new_size;
1367 int ret = 0;
1368
1369 new_size = i_size_read(inode) + len;
1370 ret = inode_newsize_ok(inode, new_size);
1371 if (ret)
1372 return ret;
1373
1374 if (offset >= i_size_read(inode))
1375 return -EINVAL;
1376
1377 /* insert range should be aligned to block size of f2fs. */
1378 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1379 return -EINVAL;
1380
1381 ret = f2fs_convert_inline_inode(inode);
1382 if (ret)
1383 return ret;
1384
1385 f2fs_balance_fs(sbi, true);
1386
1387 down_write(&F2FS_I(inode)->i_mmap_sem);
1388 ret = truncate_blocks(inode, i_size_read(inode), true);
1389 if (ret)
1390 goto out;
1391
1392 /* write out all dirty pages from offset */
1393 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1394 if (ret)
1395 goto out;
1396
1397 /* avoid gc operation during block exchange */
1398 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1399
1400 truncate_pagecache(inode, offset);
1401
1402 pg_start = offset >> PAGE_SHIFT;
1403 pg_end = (offset + len) >> PAGE_SHIFT;
1404 delta = pg_end - pg_start;
1405 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1406
1407 while (!ret && idx > pg_start) {
1408 nr = idx - pg_start;
1409 if (nr > delta)
1410 nr = delta;
1411 idx -= nr;
1412
1413 f2fs_lock_op(sbi);
1414 f2fs_drop_extent_tree(inode);
1415
1416 ret = __exchange_data_block(inode, inode, idx,
1417 idx + delta, nr, false);
1418 f2fs_unlock_op(sbi);
1419 }
1420
1421 /* write out all moved pages, if possible */
1422 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1423 truncate_pagecache(inode, offset);
1424
1425 if (!ret)
1426 f2fs_i_size_write(inode, new_size);
1427
1428 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1429 out:
1430 up_write(&F2FS_I(inode)->i_mmap_sem);
1431 return ret;
1432 }
1433
1434 static int expand_inode_data(struct inode *inode, loff_t offset,
1435 loff_t len, int mode)
1436 {
1437 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1438 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1439 pgoff_t pg_end;
1440 loff_t new_size = i_size_read(inode);
1441 loff_t off_end;
1442 int err;
1443
1444 err = inode_newsize_ok(inode, (len + offset));
1445 if (err)
1446 return err;
1447
1448 err = f2fs_convert_inline_inode(inode);
1449 if (err)
1450 return err;
1451
1452 f2fs_balance_fs(sbi, true);
1453
1454 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1455 off_end = (offset + len) & (PAGE_SIZE - 1);
1456
1457 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1458 map.m_len = pg_end - map.m_lblk;
1459 if (off_end)
1460 map.m_len++;
1461
1462 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1463 if (err) {
1464 pgoff_t last_off;
1465
1466 if (!map.m_len)
1467 return err;
1468
1469 last_off = map.m_lblk + map.m_len - 1;
1470
1471 /* update new size to the failed position */
1472 new_size = (last_off == pg_end) ? offset + len:
1473 (loff_t)(last_off + 1) << PAGE_SHIFT;
1474 } else {
1475 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1476 }
1477
1478 if (new_size > i_size_read(inode)) {
1479 if (mode & FALLOC_FL_KEEP_SIZE)
1480 file_set_keep_isize(inode);
1481 else
1482 f2fs_i_size_write(inode, new_size);
1483 }
1484
1485 return err;
1486 }
1487
1488 static long f2fs_fallocate(struct file *file, int mode,
1489 loff_t offset, loff_t len)
1490 {
1491 struct inode *inode = file_inode(file);
1492 long ret = 0;
1493
1494 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1495 return -EIO;
1496
1497 /* f2fs only support ->fallocate for regular file */
1498 if (!S_ISREG(inode->i_mode))
1499 return -EINVAL;
1500
1501 if (f2fs_encrypted_inode(inode) &&
1502 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1503 return -EOPNOTSUPP;
1504
1505 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1506 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1507 FALLOC_FL_INSERT_RANGE))
1508 return -EOPNOTSUPP;
1509
1510 inode_lock(inode);
1511
1512 if (mode & FALLOC_FL_PUNCH_HOLE) {
1513 if (offset >= inode->i_size)
1514 goto out;
1515
1516 ret = punch_hole(inode, offset, len);
1517 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1518 ret = f2fs_collapse_range(inode, offset, len);
1519 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1520 ret = f2fs_zero_range(inode, offset, len, mode);
1521 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1522 ret = f2fs_insert_range(inode, offset, len);
1523 } else {
1524 ret = expand_inode_data(inode, offset, len, mode);
1525 }
1526
1527 if (!ret) {
1528 inode->i_mtime = inode->i_ctime = current_time(inode);
1529 f2fs_mark_inode_dirty_sync(inode, false);
1530 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1531 }
1532
1533 out:
1534 inode_unlock(inode);
1535
1536 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1537 return ret;
1538 }
1539
1540 static int f2fs_release_file(struct inode *inode, struct file *filp)
1541 {
1542 /*
1543 * f2fs_relase_file is called at every close calls. So we should
1544 * not drop any inmemory pages by close called by other process.
1545 */
1546 if (!(filp->f_mode & FMODE_WRITE) ||
1547 atomic_read(&inode->i_writecount) != 1)
1548 return 0;
1549
1550 /* some remained atomic pages should discarded */
1551 if (f2fs_is_atomic_file(inode))
1552 drop_inmem_pages(inode);
1553 if (f2fs_is_volatile_file(inode)) {
1554 clear_inode_flag(inode, FI_VOLATILE_FILE);
1555 stat_dec_volatile_write(inode);
1556 set_inode_flag(inode, FI_DROP_CACHE);
1557 filemap_fdatawrite(inode->i_mapping);
1558 clear_inode_flag(inode, FI_DROP_CACHE);
1559 }
1560 return 0;
1561 }
1562
1563 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1564 {
1565 struct inode *inode = file_inode(file);
1566
1567 /*
1568 * If the process doing a transaction is crashed, we should do
1569 * roll-back. Otherwise, other reader/write can see corrupted database
1570 * until all the writers close its file. Since this should be done
1571 * before dropping file lock, it needs to do in ->flush.
1572 */
1573 if (f2fs_is_atomic_file(inode) &&
1574 F2FS_I(inode)->inmem_task == current)
1575 drop_inmem_pages(inode);
1576 return 0;
1577 }
1578
1579 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1580 {
1581 struct inode *inode = file_inode(filp);
1582 struct f2fs_inode_info *fi = F2FS_I(inode);
1583 unsigned int flags = fi->i_flags &
1584 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1585 return put_user(flags, (int __user *)arg);
1586 }
1587
1588 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1589 {
1590 struct f2fs_inode_info *fi = F2FS_I(inode);
1591 unsigned int oldflags;
1592
1593 /* Is it quota file? Do not allow user to mess with it */
1594 if (IS_NOQUOTA(inode))
1595 return -EPERM;
1596
1597 flags = f2fs_mask_flags(inode->i_mode, flags);
1598
1599 oldflags = fi->i_flags;
1600
1601 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1602 if (!capable(CAP_LINUX_IMMUTABLE))
1603 return -EPERM;
1604
1605 flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1606 flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1607 fi->i_flags = flags;
1608
1609 if (fi->i_flags & FS_PROJINHERIT_FL)
1610 set_inode_flag(inode, FI_PROJ_INHERIT);
1611 else
1612 clear_inode_flag(inode, FI_PROJ_INHERIT);
1613
1614 inode->i_ctime = current_time(inode);
1615 f2fs_set_inode_flags(inode);
1616 f2fs_mark_inode_dirty_sync(inode, false);
1617 return 0;
1618 }
1619
1620 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1621 {
1622 struct inode *inode = file_inode(filp);
1623 unsigned int flags;
1624 int ret;
1625
1626 if (!inode_owner_or_capable(inode))
1627 return -EACCES;
1628
1629 if (get_user(flags, (int __user *)arg))
1630 return -EFAULT;
1631
1632 ret = mnt_want_write_file(filp);
1633 if (ret)
1634 return ret;
1635
1636 inode_lock(inode);
1637
1638 ret = __f2fs_ioc_setflags(inode, flags);
1639
1640 inode_unlock(inode);
1641 mnt_drop_write_file(filp);
1642 return ret;
1643 }
1644
1645 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1646 {
1647 struct inode *inode = file_inode(filp);
1648
1649 return put_user(inode->i_generation, (int __user *)arg);
1650 }
1651
1652 static int f2fs_ioc_start_atomic_write(struct file *filp)
1653 {
1654 struct inode *inode = file_inode(filp);
1655 int ret;
1656
1657 if (!inode_owner_or_capable(inode))
1658 return -EACCES;
1659
1660 if (!S_ISREG(inode->i_mode))
1661 return -EINVAL;
1662
1663 ret = mnt_want_write_file(filp);
1664 if (ret)
1665 return ret;
1666
1667 inode_lock(inode);
1668
1669 if (f2fs_is_atomic_file(inode))
1670 goto out;
1671
1672 ret = f2fs_convert_inline_inode(inode);
1673 if (ret)
1674 goto out;
1675
1676 set_inode_flag(inode, FI_ATOMIC_FILE);
1677 set_inode_flag(inode, FI_HOT_DATA);
1678 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1679
1680 if (!get_dirty_pages(inode))
1681 goto inc_stat;
1682
1683 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1684 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1685 inode->i_ino, get_dirty_pages(inode));
1686 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1687 if (ret) {
1688 clear_inode_flag(inode, FI_ATOMIC_FILE);
1689 clear_inode_flag(inode, FI_HOT_DATA);
1690 goto out;
1691 }
1692
1693 inc_stat:
1694 F2FS_I(inode)->inmem_task = current;
1695 stat_inc_atomic_write(inode);
1696 stat_update_max_atomic_write(inode);
1697 out:
1698 inode_unlock(inode);
1699 mnt_drop_write_file(filp);
1700 return ret;
1701 }
1702
1703 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1704 {
1705 struct inode *inode = file_inode(filp);
1706 int ret;
1707
1708 if (!inode_owner_or_capable(inode))
1709 return -EACCES;
1710
1711 ret = mnt_want_write_file(filp);
1712 if (ret)
1713 return ret;
1714
1715 inode_lock(inode);
1716
1717 if (f2fs_is_volatile_file(inode))
1718 goto err_out;
1719
1720 if (f2fs_is_atomic_file(inode)) {
1721 ret = commit_inmem_pages(inode);
1722 if (ret)
1723 goto err_out;
1724
1725 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1726 if (!ret) {
1727 clear_inode_flag(inode, FI_ATOMIC_FILE);
1728 clear_inode_flag(inode, FI_HOT_DATA);
1729 stat_dec_atomic_write(inode);
1730 }
1731 } else {
1732 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1733 }
1734 err_out:
1735 inode_unlock(inode);
1736 mnt_drop_write_file(filp);
1737 return ret;
1738 }
1739
1740 static int f2fs_ioc_start_volatile_write(struct file *filp)
1741 {
1742 struct inode *inode = file_inode(filp);
1743 int ret;
1744
1745 if (!inode_owner_or_capable(inode))
1746 return -EACCES;
1747
1748 if (!S_ISREG(inode->i_mode))
1749 return -EINVAL;
1750
1751 ret = mnt_want_write_file(filp);
1752 if (ret)
1753 return ret;
1754
1755 inode_lock(inode);
1756
1757 if (f2fs_is_volatile_file(inode))
1758 goto out;
1759
1760 ret = f2fs_convert_inline_inode(inode);
1761 if (ret)
1762 goto out;
1763
1764 stat_inc_volatile_write(inode);
1765 stat_update_max_volatile_write(inode);
1766
1767 set_inode_flag(inode, FI_VOLATILE_FILE);
1768 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1769 out:
1770 inode_unlock(inode);
1771 mnt_drop_write_file(filp);
1772 return ret;
1773 }
1774
1775 static int f2fs_ioc_release_volatile_write(struct file *filp)
1776 {
1777 struct inode *inode = file_inode(filp);
1778 int ret;
1779
1780 if (!inode_owner_or_capable(inode))
1781 return -EACCES;
1782
1783 ret = mnt_want_write_file(filp);
1784 if (ret)
1785 return ret;
1786
1787 inode_lock(inode);
1788
1789 if (!f2fs_is_volatile_file(inode))
1790 goto out;
1791
1792 if (!f2fs_is_first_block_written(inode)) {
1793 ret = truncate_partial_data_page(inode, 0, true);
1794 goto out;
1795 }
1796
1797 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1798 out:
1799 inode_unlock(inode);
1800 mnt_drop_write_file(filp);
1801 return ret;
1802 }
1803
1804 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1805 {
1806 struct inode *inode = file_inode(filp);
1807 int ret;
1808
1809 if (!inode_owner_or_capable(inode))
1810 return -EACCES;
1811
1812 ret = mnt_want_write_file(filp);
1813 if (ret)
1814 return ret;
1815
1816 inode_lock(inode);
1817
1818 if (f2fs_is_atomic_file(inode))
1819 drop_inmem_pages(inode);
1820 if (f2fs_is_volatile_file(inode)) {
1821 clear_inode_flag(inode, FI_VOLATILE_FILE);
1822 stat_dec_volatile_write(inode);
1823 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1824 }
1825
1826 inode_unlock(inode);
1827
1828 mnt_drop_write_file(filp);
1829 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1830 return ret;
1831 }
1832
1833 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1834 {
1835 struct inode *inode = file_inode(filp);
1836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1837 struct super_block *sb = sbi->sb;
1838 __u32 in;
1839 int ret;
1840
1841 if (!capable(CAP_SYS_ADMIN))
1842 return -EPERM;
1843
1844 if (get_user(in, (__u32 __user *)arg))
1845 return -EFAULT;
1846
1847 ret = mnt_want_write_file(filp);
1848 if (ret)
1849 return ret;
1850
1851 switch (in) {
1852 case F2FS_GOING_DOWN_FULLSYNC:
1853 sb = freeze_bdev(sb->s_bdev);
1854 if (sb && !IS_ERR(sb)) {
1855 f2fs_stop_checkpoint(sbi, false);
1856 thaw_bdev(sb->s_bdev, sb);
1857 }
1858 break;
1859 case F2FS_GOING_DOWN_METASYNC:
1860 /* do checkpoint only */
1861 f2fs_sync_fs(sb, 1);
1862 f2fs_stop_checkpoint(sbi, false);
1863 break;
1864 case F2FS_GOING_DOWN_NOSYNC:
1865 f2fs_stop_checkpoint(sbi, false);
1866 break;
1867 case F2FS_GOING_DOWN_METAFLUSH:
1868 sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1869 f2fs_stop_checkpoint(sbi, false);
1870 break;
1871 default:
1872 ret = -EINVAL;
1873 goto out;
1874 }
1875 f2fs_update_time(sbi, REQ_TIME);
1876 out:
1877 mnt_drop_write_file(filp);
1878 return ret;
1879 }
1880
1881 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1882 {
1883 struct inode *inode = file_inode(filp);
1884 struct super_block *sb = inode->i_sb;
1885 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1886 struct fstrim_range range;
1887 int ret;
1888
1889 if (!capable(CAP_SYS_ADMIN))
1890 return -EPERM;
1891
1892 if (!blk_queue_discard(q))
1893 return -EOPNOTSUPP;
1894
1895 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1896 sizeof(range)))
1897 return -EFAULT;
1898
1899 ret = mnt_want_write_file(filp);
1900 if (ret)
1901 return ret;
1902
1903 range.minlen = max((unsigned int)range.minlen,
1904 q->limits.discard_granularity);
1905 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1906 mnt_drop_write_file(filp);
1907 if (ret < 0)
1908 return ret;
1909
1910 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1911 sizeof(range)))
1912 return -EFAULT;
1913 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1914 return 0;
1915 }
1916
1917 static bool uuid_is_nonzero(__u8 u[16])
1918 {
1919 int i;
1920
1921 for (i = 0; i < 16; i++)
1922 if (u[i])
1923 return true;
1924 return false;
1925 }
1926
1927 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1928 {
1929 struct inode *inode = file_inode(filp);
1930
1931 if (!f2fs_sb_has_crypto(inode->i_sb))
1932 return -EOPNOTSUPP;
1933
1934 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1935
1936 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1937 }
1938
1939 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1940 {
1941 if (!f2fs_sb_has_crypto(file_inode(filp)->i_sb))
1942 return -EOPNOTSUPP;
1943 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1944 }
1945
1946 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1947 {
1948 struct inode *inode = file_inode(filp);
1949 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1950 int err;
1951
1952 if (!f2fs_sb_has_crypto(inode->i_sb))
1953 return -EOPNOTSUPP;
1954
1955 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1956 goto got_it;
1957
1958 err = mnt_want_write_file(filp);
1959 if (err)
1960 return err;
1961
1962 /* update superblock with uuid */
1963 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1964
1965 err = f2fs_commit_super(sbi, false);
1966 if (err) {
1967 /* undo new data */
1968 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1969 mnt_drop_write_file(filp);
1970 return err;
1971 }
1972 mnt_drop_write_file(filp);
1973 got_it:
1974 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1975 16))
1976 return -EFAULT;
1977 return 0;
1978 }
1979
1980 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1981 {
1982 struct inode *inode = file_inode(filp);
1983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1984 __u32 sync;
1985 int ret;
1986
1987 if (!capable(CAP_SYS_ADMIN))
1988 return -EPERM;
1989
1990 if (get_user(sync, (__u32 __user *)arg))
1991 return -EFAULT;
1992
1993 if (f2fs_readonly(sbi->sb))
1994 return -EROFS;
1995
1996 ret = mnt_want_write_file(filp);
1997 if (ret)
1998 return ret;
1999
2000 if (!sync) {
2001 if (!mutex_trylock(&sbi->gc_mutex)) {
2002 ret = -EBUSY;
2003 goto out;
2004 }
2005 } else {
2006 mutex_lock(&sbi->gc_mutex);
2007 }
2008
2009 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2010 out:
2011 mnt_drop_write_file(filp);
2012 return ret;
2013 }
2014
2015 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2016 {
2017 struct inode *inode = file_inode(filp);
2018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2019 struct f2fs_gc_range range;
2020 u64 end;
2021 int ret;
2022
2023 if (!capable(CAP_SYS_ADMIN))
2024 return -EPERM;
2025
2026 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2027 sizeof(range)))
2028 return -EFAULT;
2029
2030 if (f2fs_readonly(sbi->sb))
2031 return -EROFS;
2032
2033 ret = mnt_want_write_file(filp);
2034 if (ret)
2035 return ret;
2036
2037 end = range.start + range.len;
2038 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
2039 return -EINVAL;
2040 do_more:
2041 if (!range.sync) {
2042 if (!mutex_trylock(&sbi->gc_mutex)) {
2043 ret = -EBUSY;
2044 goto out;
2045 }
2046 } else {
2047 mutex_lock(&sbi->gc_mutex);
2048 }
2049
2050 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2051 range.start += sbi->blocks_per_seg;
2052 if (range.start <= end)
2053 goto do_more;
2054 out:
2055 mnt_drop_write_file(filp);
2056 return ret;
2057 }
2058
2059 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2060 {
2061 struct inode *inode = file_inode(filp);
2062 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2063 int ret;
2064
2065 if (!capable(CAP_SYS_ADMIN))
2066 return -EPERM;
2067
2068 if (f2fs_readonly(sbi->sb))
2069 return -EROFS;
2070
2071 ret = mnt_want_write_file(filp);
2072 if (ret)
2073 return ret;
2074
2075 ret = f2fs_sync_fs(sbi->sb, 1);
2076
2077 mnt_drop_write_file(filp);
2078 return ret;
2079 }
2080
2081 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2082 struct file *filp,
2083 struct f2fs_defragment *range)
2084 {
2085 struct inode *inode = file_inode(filp);
2086 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2087 struct extent_info ei = {0,0,0};
2088 pgoff_t pg_start, pg_end;
2089 unsigned int blk_per_seg = sbi->blocks_per_seg;
2090 unsigned int total = 0, sec_num;
2091 block_t blk_end = 0;
2092 bool fragmented = false;
2093 int err;
2094
2095 /* if in-place-update policy is enabled, don't waste time here */
2096 if (need_inplace_update_policy(inode, NULL))
2097 return -EINVAL;
2098
2099 pg_start = range->start >> PAGE_SHIFT;
2100 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2101
2102 f2fs_balance_fs(sbi, true);
2103
2104 inode_lock(inode);
2105
2106 /* writeback all dirty pages in the range */
2107 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2108 range->start + range->len - 1);
2109 if (err)
2110 goto out;
2111
2112 /*
2113 * lookup mapping info in extent cache, skip defragmenting if physical
2114 * block addresses are continuous.
2115 */
2116 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2117 if (ei.fofs + ei.len >= pg_end)
2118 goto out;
2119 }
2120
2121 map.m_lblk = pg_start;
2122
2123 /*
2124 * lookup mapping info in dnode page cache, skip defragmenting if all
2125 * physical block addresses are continuous even if there are hole(s)
2126 * in logical blocks.
2127 */
2128 while (map.m_lblk < pg_end) {
2129 map.m_len = pg_end - map.m_lblk;
2130 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2131 if (err)
2132 goto out;
2133
2134 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2135 map.m_lblk++;
2136 continue;
2137 }
2138
2139 if (blk_end && blk_end != map.m_pblk) {
2140 fragmented = true;
2141 break;
2142 }
2143 blk_end = map.m_pblk + map.m_len;
2144
2145 map.m_lblk += map.m_len;
2146 }
2147
2148 if (!fragmented)
2149 goto out;
2150
2151 map.m_lblk = pg_start;
2152 map.m_len = pg_end - pg_start;
2153
2154 sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2155
2156 /*
2157 * make sure there are enough free section for LFS allocation, this can
2158 * avoid defragment running in SSR mode when free section are allocated
2159 * intensively
2160 */
2161 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2162 err = -EAGAIN;
2163 goto out;
2164 }
2165
2166 while (map.m_lblk < pg_end) {
2167 pgoff_t idx;
2168 int cnt = 0;
2169
2170 do_map:
2171 map.m_len = pg_end - map.m_lblk;
2172 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2173 if (err)
2174 goto clear_out;
2175
2176 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2177 map.m_lblk++;
2178 continue;
2179 }
2180
2181 set_inode_flag(inode, FI_DO_DEFRAG);
2182
2183 idx = map.m_lblk;
2184 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2185 struct page *page;
2186
2187 page = get_lock_data_page(inode, idx, true);
2188 if (IS_ERR(page)) {
2189 err = PTR_ERR(page);
2190 goto clear_out;
2191 }
2192
2193 set_page_dirty(page);
2194 f2fs_put_page(page, 1);
2195
2196 idx++;
2197 cnt++;
2198 total++;
2199 }
2200
2201 map.m_lblk = idx;
2202
2203 if (idx < pg_end && cnt < blk_per_seg)
2204 goto do_map;
2205
2206 clear_inode_flag(inode, FI_DO_DEFRAG);
2207
2208 err = filemap_fdatawrite(inode->i_mapping);
2209 if (err)
2210 goto out;
2211 }
2212 clear_out:
2213 clear_inode_flag(inode, FI_DO_DEFRAG);
2214 out:
2215 inode_unlock(inode);
2216 if (!err)
2217 range->len = (u64)total << PAGE_SHIFT;
2218 return err;
2219 }
2220
2221 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2222 {
2223 struct inode *inode = file_inode(filp);
2224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2225 struct f2fs_defragment range;
2226 int err;
2227
2228 if (!capable(CAP_SYS_ADMIN))
2229 return -EPERM;
2230
2231 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2232 return -EINVAL;
2233
2234 if (f2fs_readonly(sbi->sb))
2235 return -EROFS;
2236
2237 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2238 sizeof(range)))
2239 return -EFAULT;
2240
2241 /* verify alignment of offset & size */
2242 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2243 return -EINVAL;
2244
2245 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2246 sbi->max_file_blocks))
2247 return -EINVAL;
2248
2249 err = mnt_want_write_file(filp);
2250 if (err)
2251 return err;
2252
2253 err = f2fs_defragment_range(sbi, filp, &range);
2254 mnt_drop_write_file(filp);
2255
2256 f2fs_update_time(sbi, REQ_TIME);
2257 if (err < 0)
2258 return err;
2259
2260 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2261 sizeof(range)))
2262 return -EFAULT;
2263
2264 return 0;
2265 }
2266
2267 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2268 struct file *file_out, loff_t pos_out, size_t len)
2269 {
2270 struct inode *src = file_inode(file_in);
2271 struct inode *dst = file_inode(file_out);
2272 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2273 size_t olen = len, dst_max_i_size = 0;
2274 size_t dst_osize;
2275 int ret;
2276
2277 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2278 src->i_sb != dst->i_sb)
2279 return -EXDEV;
2280
2281 if (unlikely(f2fs_readonly(src->i_sb)))
2282 return -EROFS;
2283
2284 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2285 return -EINVAL;
2286
2287 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2288 return -EOPNOTSUPP;
2289
2290 if (src == dst) {
2291 if (pos_in == pos_out)
2292 return 0;
2293 if (pos_out > pos_in && pos_out < pos_in + len)
2294 return -EINVAL;
2295 }
2296
2297 inode_lock(src);
2298 down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2299 if (src != dst) {
2300 ret = -EBUSY;
2301 if (!inode_trylock(dst))
2302 goto out;
2303 if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2304 inode_unlock(dst);
2305 goto out;
2306 }
2307 }
2308
2309 ret = -EINVAL;
2310 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2311 goto out_unlock;
2312 if (len == 0)
2313 olen = len = src->i_size - pos_in;
2314 if (pos_in + len == src->i_size)
2315 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2316 if (len == 0) {
2317 ret = 0;
2318 goto out_unlock;
2319 }
2320
2321 dst_osize = dst->i_size;
2322 if (pos_out + olen > dst->i_size)
2323 dst_max_i_size = pos_out + olen;
2324
2325 /* verify the end result is block aligned */
2326 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2327 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2328 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2329 goto out_unlock;
2330
2331 ret = f2fs_convert_inline_inode(src);
2332 if (ret)
2333 goto out_unlock;
2334
2335 ret = f2fs_convert_inline_inode(dst);
2336 if (ret)
2337 goto out_unlock;
2338
2339 /* write out all dirty pages from offset */
2340 ret = filemap_write_and_wait_range(src->i_mapping,
2341 pos_in, pos_in + len);
2342 if (ret)
2343 goto out_unlock;
2344
2345 ret = filemap_write_and_wait_range(dst->i_mapping,
2346 pos_out, pos_out + len);
2347 if (ret)
2348 goto out_unlock;
2349
2350 f2fs_balance_fs(sbi, true);
2351 f2fs_lock_op(sbi);
2352 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2353 pos_out >> F2FS_BLKSIZE_BITS,
2354 len >> F2FS_BLKSIZE_BITS, false);
2355
2356 if (!ret) {
2357 if (dst_max_i_size)
2358 f2fs_i_size_write(dst, dst_max_i_size);
2359 else if (dst_osize != dst->i_size)
2360 f2fs_i_size_write(dst, dst_osize);
2361 }
2362 f2fs_unlock_op(sbi);
2363 out_unlock:
2364 if (src != dst) {
2365 up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2366 inode_unlock(dst);
2367 }
2368 out:
2369 up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2370 inode_unlock(src);
2371 return ret;
2372 }
2373
2374 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2375 {
2376 struct f2fs_move_range range;
2377 struct fd dst;
2378 int err;
2379
2380 if (!(filp->f_mode & FMODE_READ) ||
2381 !(filp->f_mode & FMODE_WRITE))
2382 return -EBADF;
2383
2384 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2385 sizeof(range)))
2386 return -EFAULT;
2387
2388 dst = fdget(range.dst_fd);
2389 if (!dst.file)
2390 return -EBADF;
2391
2392 if (!(dst.file->f_mode & FMODE_WRITE)) {
2393 err = -EBADF;
2394 goto err_out;
2395 }
2396
2397 err = mnt_want_write_file(filp);
2398 if (err)
2399 goto err_out;
2400
2401 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2402 range.pos_out, range.len);
2403
2404 mnt_drop_write_file(filp);
2405 if (err)
2406 goto err_out;
2407
2408 if (copy_to_user((struct f2fs_move_range __user *)arg,
2409 &range, sizeof(range)))
2410 err = -EFAULT;
2411 err_out:
2412 fdput(dst);
2413 return err;
2414 }
2415
2416 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2417 {
2418 struct inode *inode = file_inode(filp);
2419 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2420 struct sit_info *sm = SIT_I(sbi);
2421 unsigned int start_segno = 0, end_segno = 0;
2422 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2423 struct f2fs_flush_device range;
2424 int ret;
2425
2426 if (!capable(CAP_SYS_ADMIN))
2427 return -EPERM;
2428
2429 if (f2fs_readonly(sbi->sb))
2430 return -EROFS;
2431
2432 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2433 sizeof(range)))
2434 return -EFAULT;
2435
2436 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2437 sbi->segs_per_sec != 1) {
2438 f2fs_msg(sbi->sb, KERN_WARNING,
2439 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2440 range.dev_num, sbi->s_ndevs,
2441 sbi->segs_per_sec);
2442 return -EINVAL;
2443 }
2444
2445 ret = mnt_want_write_file(filp);
2446 if (ret)
2447 return ret;
2448
2449 if (range.dev_num != 0)
2450 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2451 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2452
2453 start_segno = sm->last_victim[FLUSH_DEVICE];
2454 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2455 start_segno = dev_start_segno;
2456 end_segno = min(start_segno + range.segments, dev_end_segno);
2457
2458 while (start_segno < end_segno) {
2459 if (!mutex_trylock(&sbi->gc_mutex)) {
2460 ret = -EBUSY;
2461 goto out;
2462 }
2463 sm->last_victim[GC_CB] = end_segno + 1;
2464 sm->last_victim[GC_GREEDY] = end_segno + 1;
2465 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2466 ret = f2fs_gc(sbi, true, true, start_segno);
2467 if (ret == -EAGAIN)
2468 ret = 0;
2469 else if (ret < 0)
2470 break;
2471 start_segno++;
2472 }
2473 out:
2474 mnt_drop_write_file(filp);
2475 return ret;
2476 }
2477
2478 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2479 {
2480 struct inode *inode = file_inode(filp);
2481 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2482
2483 /* Must validate to set it with SQLite behavior in Android. */
2484 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2485
2486 return put_user(sb_feature, (u32 __user *)arg);
2487 }
2488
2489 #ifdef CONFIG_QUOTA
2490 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2491 {
2492 struct inode *inode = file_inode(filp);
2493 struct f2fs_inode_info *fi = F2FS_I(inode);
2494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2495 struct super_block *sb = sbi->sb;
2496 struct dquot *transfer_to[MAXQUOTAS] = {};
2497 struct page *ipage;
2498 kprojid_t kprojid;
2499 int err;
2500
2501 if (!f2fs_sb_has_project_quota(sb)) {
2502 if (projid != F2FS_DEF_PROJID)
2503 return -EOPNOTSUPP;
2504 else
2505 return 0;
2506 }
2507
2508 if (!f2fs_has_extra_attr(inode))
2509 return -EOPNOTSUPP;
2510
2511 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2512
2513 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2514 return 0;
2515
2516 err = mnt_want_write_file(filp);
2517 if (err)
2518 return err;
2519
2520 err = -EPERM;
2521 inode_lock(inode);
2522
2523 /* Is it quota file? Do not allow user to mess with it */
2524 if (IS_NOQUOTA(inode))
2525 goto out_unlock;
2526
2527 ipage = get_node_page(sbi, inode->i_ino);
2528 if (IS_ERR(ipage)) {
2529 err = PTR_ERR(ipage);
2530 goto out_unlock;
2531 }
2532
2533 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2534 i_projid)) {
2535 err = -EOVERFLOW;
2536 f2fs_put_page(ipage, 1);
2537 goto out_unlock;
2538 }
2539 f2fs_put_page(ipage, 1);
2540
2541 dquot_initialize(inode);
2542
2543 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2544 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2545 err = __dquot_transfer(inode, transfer_to);
2546 dqput(transfer_to[PRJQUOTA]);
2547 if (err)
2548 goto out_dirty;
2549 }
2550
2551 F2FS_I(inode)->i_projid = kprojid;
2552 inode->i_ctime = current_time(inode);
2553 out_dirty:
2554 f2fs_mark_inode_dirty_sync(inode, true);
2555 out_unlock:
2556 inode_unlock(inode);
2557 mnt_drop_write_file(filp);
2558 return err;
2559 }
2560 #else
2561 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2562 {
2563 if (projid != F2FS_DEF_PROJID)
2564 return -EOPNOTSUPP;
2565 return 0;
2566 }
2567 #endif
2568
2569 /* Transfer internal flags to xflags */
2570 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2571 {
2572 __u32 xflags = 0;
2573
2574 if (iflags & FS_SYNC_FL)
2575 xflags |= FS_XFLAG_SYNC;
2576 if (iflags & FS_IMMUTABLE_FL)
2577 xflags |= FS_XFLAG_IMMUTABLE;
2578 if (iflags & FS_APPEND_FL)
2579 xflags |= FS_XFLAG_APPEND;
2580 if (iflags & FS_NODUMP_FL)
2581 xflags |= FS_XFLAG_NODUMP;
2582 if (iflags & FS_NOATIME_FL)
2583 xflags |= FS_XFLAG_NOATIME;
2584 if (iflags & FS_PROJINHERIT_FL)
2585 xflags |= FS_XFLAG_PROJINHERIT;
2586 return xflags;
2587 }
2588
2589 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2590 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2591 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2592
2593 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2594 #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
2595 FS_IMMUTABLE_FL | \
2596 FS_APPEND_FL | \
2597 FS_NODUMP_FL | \
2598 FS_NOATIME_FL | \
2599 FS_PROJINHERIT_FL)
2600
2601 /* Transfer xflags flags to internal */
2602 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2603 {
2604 unsigned long iflags = 0;
2605
2606 if (xflags & FS_XFLAG_SYNC)
2607 iflags |= FS_SYNC_FL;
2608 if (xflags & FS_XFLAG_IMMUTABLE)
2609 iflags |= FS_IMMUTABLE_FL;
2610 if (xflags & FS_XFLAG_APPEND)
2611 iflags |= FS_APPEND_FL;
2612 if (xflags & FS_XFLAG_NODUMP)
2613 iflags |= FS_NODUMP_FL;
2614 if (xflags & FS_XFLAG_NOATIME)
2615 iflags |= FS_NOATIME_FL;
2616 if (xflags & FS_XFLAG_PROJINHERIT)
2617 iflags |= FS_PROJINHERIT_FL;
2618
2619 return iflags;
2620 }
2621
2622 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2623 {
2624 struct inode *inode = file_inode(filp);
2625 struct f2fs_inode_info *fi = F2FS_I(inode);
2626 struct fsxattr fa;
2627
2628 memset(&fa, 0, sizeof(struct fsxattr));
2629 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2630 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2631
2632 if (f2fs_sb_has_project_quota(inode->i_sb))
2633 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2634 fi->i_projid);
2635
2636 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2637 return -EFAULT;
2638 return 0;
2639 }
2640
2641 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2642 {
2643 struct inode *inode = file_inode(filp);
2644 struct f2fs_inode_info *fi = F2FS_I(inode);
2645 struct fsxattr fa;
2646 unsigned int flags;
2647 int err;
2648
2649 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2650 return -EFAULT;
2651
2652 /* Make sure caller has proper permission */
2653 if (!inode_owner_or_capable(inode))
2654 return -EACCES;
2655
2656 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2657 return -EOPNOTSUPP;
2658
2659 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2660 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2661 return -EOPNOTSUPP;
2662
2663 err = mnt_want_write_file(filp);
2664 if (err)
2665 return err;
2666
2667 inode_lock(inode);
2668 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2669 (flags & F2FS_FL_XFLAG_VISIBLE);
2670 err = __f2fs_ioc_setflags(inode, flags);
2671 inode_unlock(inode);
2672 mnt_drop_write_file(filp);
2673 if (err)
2674 return err;
2675
2676 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2677 if (err)
2678 return err;
2679
2680 return 0;
2681 }
2682
2683 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2684 {
2685 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2686 return -EIO;
2687
2688 switch (cmd) {
2689 case F2FS_IOC_GETFLAGS:
2690 return f2fs_ioc_getflags(filp, arg);
2691 case F2FS_IOC_SETFLAGS:
2692 return f2fs_ioc_setflags(filp, arg);
2693 case F2FS_IOC_GETVERSION:
2694 return f2fs_ioc_getversion(filp, arg);
2695 case F2FS_IOC_START_ATOMIC_WRITE:
2696 return f2fs_ioc_start_atomic_write(filp);
2697 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2698 return f2fs_ioc_commit_atomic_write(filp);
2699 case F2FS_IOC_START_VOLATILE_WRITE:
2700 return f2fs_ioc_start_volatile_write(filp);
2701 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2702 return f2fs_ioc_release_volatile_write(filp);
2703 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2704 return f2fs_ioc_abort_volatile_write(filp);
2705 case F2FS_IOC_SHUTDOWN:
2706 return f2fs_ioc_shutdown(filp, arg);
2707 case FITRIM:
2708 return f2fs_ioc_fitrim(filp, arg);
2709 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2710 return f2fs_ioc_set_encryption_policy(filp, arg);
2711 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2712 return f2fs_ioc_get_encryption_policy(filp, arg);
2713 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2714 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2715 case F2FS_IOC_GARBAGE_COLLECT:
2716 return f2fs_ioc_gc(filp, arg);
2717 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2718 return f2fs_ioc_gc_range(filp, arg);
2719 case F2FS_IOC_WRITE_CHECKPOINT:
2720 return f2fs_ioc_write_checkpoint(filp, arg);
2721 case F2FS_IOC_DEFRAGMENT:
2722 return f2fs_ioc_defragment(filp, arg);
2723 case F2FS_IOC_MOVE_RANGE:
2724 return f2fs_ioc_move_range(filp, arg);
2725 case F2FS_IOC_FLUSH_DEVICE:
2726 return f2fs_ioc_flush_device(filp, arg);
2727 case F2FS_IOC_GET_FEATURES:
2728 return f2fs_ioc_get_features(filp, arg);
2729 case F2FS_IOC_FSGETXATTR:
2730 return f2fs_ioc_fsgetxattr(filp, arg);
2731 case F2FS_IOC_FSSETXATTR:
2732 return f2fs_ioc_fssetxattr(filp, arg);
2733 default:
2734 return -ENOTTY;
2735 }
2736 }
2737
2738 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2739 {
2740 struct file *file = iocb->ki_filp;
2741 struct inode *inode = file_inode(file);
2742 struct blk_plug plug;
2743 ssize_t ret;
2744
2745 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2746 return -EIO;
2747
2748 inode_lock(inode);
2749 ret = generic_write_checks(iocb, from);
2750 if (ret > 0) {
2751 int err;
2752
2753 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2754 set_inode_flag(inode, FI_NO_PREALLOC);
2755
2756 err = f2fs_preallocate_blocks(iocb, from);
2757 if (err) {
2758 clear_inode_flag(inode, FI_NO_PREALLOC);
2759 inode_unlock(inode);
2760 return err;
2761 }
2762 blk_start_plug(&plug);
2763 ret = __generic_file_write_iter(iocb, from);
2764 blk_finish_plug(&plug);
2765 clear_inode_flag(inode, FI_NO_PREALLOC);
2766
2767 if (ret > 0)
2768 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2769 }
2770 inode_unlock(inode);
2771
2772 if (ret > 0)
2773 ret = generic_write_sync(iocb, ret);
2774 return ret;
2775 }
2776
2777 #ifdef CONFIG_COMPAT
2778 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2779 {
2780 switch (cmd) {
2781 case F2FS_IOC32_GETFLAGS:
2782 cmd = F2FS_IOC_GETFLAGS;
2783 break;
2784 case F2FS_IOC32_SETFLAGS:
2785 cmd = F2FS_IOC_SETFLAGS;
2786 break;
2787 case F2FS_IOC32_GETVERSION:
2788 cmd = F2FS_IOC_GETVERSION;
2789 break;
2790 case F2FS_IOC_START_ATOMIC_WRITE:
2791 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2792 case F2FS_IOC_START_VOLATILE_WRITE:
2793 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2794 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2795 case F2FS_IOC_SHUTDOWN:
2796 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2797 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2798 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2799 case F2FS_IOC_GARBAGE_COLLECT:
2800 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2801 case F2FS_IOC_WRITE_CHECKPOINT:
2802 case F2FS_IOC_DEFRAGMENT:
2803 case F2FS_IOC_MOVE_RANGE:
2804 case F2FS_IOC_FLUSH_DEVICE:
2805 case F2FS_IOC_GET_FEATURES:
2806 case F2FS_IOC_FSGETXATTR:
2807 case F2FS_IOC_FSSETXATTR:
2808 break;
2809 default:
2810 return -ENOIOCTLCMD;
2811 }
2812 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2813 }
2814 #endif
2815
2816 const struct file_operations f2fs_file_operations = {
2817 .llseek = f2fs_llseek,
2818 .read_iter = generic_file_read_iter,
2819 .write_iter = f2fs_file_write_iter,
2820 .open = f2fs_file_open,
2821 .release = f2fs_release_file,
2822 .mmap = f2fs_file_mmap,
2823 .flush = f2fs_file_flush,
2824 .fsync = f2fs_sync_file,
2825 .fallocate = f2fs_fallocate,
2826 .unlocked_ioctl = f2fs_ioctl,
2827 #ifdef CONFIG_COMPAT
2828 .compat_ioctl = f2fs_compat_ioctl,
2829 #endif
2830 .splice_read = generic_file_splice_read,
2831 .splice_write = iter_file_splice_write,
2832 };