[RAMEN9610-8702][COMMON] fmp: remove REQ_AUX_PRIV
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 #include <linux/fscrypt.h> /* for CONFIG_CRYPTO_DISKCIPHER_DEBUG */
50
51 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
52 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
53 enum rw_hint hint, struct writeback_control *wbc);
54
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56
57 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
58 {
59 bh->b_end_io = handler;
60 bh->b_private = private;
61 }
62 EXPORT_SYMBOL(init_buffer);
63
64 inline void touch_buffer(struct buffer_head *bh)
65 {
66 trace_block_touch_buffer(bh);
67 mark_page_accessed(bh->b_page);
68 }
69 EXPORT_SYMBOL(touch_buffer);
70
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_atomic();
81 wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
89 */
90 void buffer_check_dirty_writeback(struct page *page,
91 bool *dirty, bool *writeback)
92 {
93 struct buffer_head *head, *bh;
94 *dirty = false;
95 *writeback = false;
96
97 BUG_ON(!PageLocked(page));
98
99 if (!page_has_buffers(page))
100 return;
101
102 if (PageWriteback(page))
103 *writeback = true;
104
105 head = page_buffers(page);
106 bh = head;
107 do {
108 if (buffer_locked(bh))
109 *writeback = true;
110
111 if (buffer_dirty(bh))
112 *dirty = true;
113
114 bh = bh->b_this_page;
115 } while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118
119 /*
120 * Block until a buffer comes unlocked. This doesn't stop it
121 * from becoming locked again - you have to lock it yourself
122 * if you want to preserve its state.
123 */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
135 put_page(page);
136 }
137
138 static void buffer_io_error(struct buffer_head *bh, char *msg)
139 {
140 if (!test_bit(BH_Quiet, &bh->b_state))
141 printk_ratelimited(KERN_ERR
142 "Buffer I/O error on dev %pg, logical block %llu%s\n",
143 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
144 }
145
146 /*
147 * End-of-IO handler helper function which does not touch the bh after
148 * unlocking it.
149 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150 * a race there is benign: unlock_buffer() only use the bh's address for
151 * hashing after unlocking the buffer, so it doesn't actually touch the bh
152 * itself.
153 */
154 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155 {
156 if (uptodate) {
157 set_buffer_uptodate(bh);
158 } else {
159 /* This happens, due to failed read-ahead attempts. */
160 clear_buffer_uptodate(bh);
161 }
162 unlock_buffer(bh);
163 }
164
165 /*
166 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
167 * unlock the buffer. This is what ll_rw_block uses too.
168 */
169 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 {
171 __end_buffer_read_notouch(bh, uptodate);
172 put_bh(bh);
173 }
174 EXPORT_SYMBOL(end_buffer_read_sync);
175
176 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177 {
178 if (uptodate) {
179 set_buffer_uptodate(bh);
180 } else {
181 buffer_io_error(bh, ", lost sync page write");
182 mark_buffer_write_io_error(bh);
183 clear_buffer_uptodate(bh);
184 }
185 unlock_buffer(bh);
186 put_bh(bh);
187 }
188 EXPORT_SYMBOL(end_buffer_write_sync);
189
190 /*
191 * Various filesystems appear to want __find_get_block to be non-blocking.
192 * But it's the page lock which protects the buffers. To get around this,
193 * we get exclusion from try_to_free_buffers with the blockdev mapping's
194 * private_lock.
195 *
196 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197 * may be quite high. This code could TryLock the page, and if that
198 * succeeds, there is no need to take private_lock. (But if
199 * private_lock is contended then so is mapping->tree_lock).
200 */
201 static struct buffer_head *
202 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 {
204 struct inode *bd_inode = bdev->bd_inode;
205 struct address_space *bd_mapping = bd_inode->i_mapping;
206 struct buffer_head *ret = NULL;
207 pgoff_t index;
208 struct buffer_head *bh;
209 struct buffer_head *head;
210 struct page *page;
211 int all_mapped = 1;
212
213 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
214 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215 if (!page)
216 goto out;
217
218 spin_lock(&bd_mapping->private_lock);
219 if (!page_has_buffers(page))
220 goto out_unlock;
221 head = page_buffers(page);
222 bh = head;
223 do {
224 if (!buffer_mapped(bh))
225 all_mapped = 0;
226 else if (bh->b_blocknr == block) {
227 ret = bh;
228 get_bh(bh);
229 goto out_unlock;
230 }
231 bh = bh->b_this_page;
232 } while (bh != head);
233
234 /* we might be here because some of the buffers on this page are
235 * not mapped. This is due to various races between
236 * file io on the block device and getblk. It gets dealt with
237 * elsewhere, don't buffer_error if we had some unmapped buffers
238 */
239 if (all_mapped) {
240 printk("__find_get_block_slow() failed. "
241 "block=%llu, b_blocknr=%llu\n",
242 (unsigned long long)block,
243 (unsigned long long)bh->b_blocknr);
244 printk("b_state=0x%08lx, b_size=%zu\n",
245 bh->b_state, bh->b_size);
246 printk("device %pg blocksize: %d\n", bdev,
247 1 << bd_inode->i_blkbits);
248 }
249 out_unlock:
250 spin_unlock(&bd_mapping->private_lock);
251 put_page(page);
252 out:
253 return ret;
254 }
255
256 /*
257 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258 */
259 static void free_more_memory(void)
260 {
261 struct zoneref *z;
262 int nid;
263
264 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
265 yield();
266
267 for_each_online_node(nid) {
268
269 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
270 gfp_zone(GFP_NOFS), NULL);
271 if (z->zone)
272 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
273 GFP_NOFS, NULL);
274 }
275 }
276
277 /*
278 * I/O completion handler for block_read_full_page() - pages
279 * which come unlocked at the end of I/O.
280 */
281 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
282 {
283 unsigned long flags;
284 struct buffer_head *first;
285 struct buffer_head *tmp;
286 struct page *page;
287 int page_uptodate = 1;
288
289 BUG_ON(!buffer_async_read(bh));
290
291 page = bh->b_page;
292 if (uptodate) {
293 set_buffer_uptodate(bh);
294 } else {
295 clear_buffer_uptodate(bh);
296 buffer_io_error(bh, ", async page read");
297 SetPageError(page);
298 }
299
300 /*
301 * Be _very_ careful from here on. Bad things can happen if
302 * two buffer heads end IO at almost the same time and both
303 * decide that the page is now completely done.
304 */
305 first = page_buffers(page);
306 local_irq_save(flags);
307 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
308 clear_buffer_async_read(bh);
309 unlock_buffer(bh);
310 tmp = bh;
311 do {
312 if (!buffer_uptodate(tmp))
313 page_uptodate = 0;
314 if (buffer_async_read(tmp)) {
315 BUG_ON(!buffer_locked(tmp));
316 goto still_busy;
317 }
318 tmp = tmp->b_this_page;
319 } while (tmp != bh);
320 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
321 local_irq_restore(flags);
322
323 /*
324 * If none of the buffers had errors and they are all
325 * uptodate then we can set the page uptodate.
326 */
327 if (page_uptodate && !PageError(page))
328 SetPageUptodate(page);
329 unlock_page(page);
330 return;
331
332 still_busy:
333 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
334 local_irq_restore(flags);
335 return;
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
377 end_page_writeback(page);
378 return;
379
380 still_busy:
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
383 return;
384 }
385 EXPORT_SYMBOL(end_buffer_async_write);
386
387 /*
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
395 *
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
398 *
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
401 *
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
404 *
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
407 */
408 static void mark_buffer_async_read(struct buffer_head *bh)
409 {
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
412 }
413
414 static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
416 {
417 bh->b_end_io = handler;
418 set_buffer_async_write(bh);
419 }
420
421 void mark_buffer_async_write(struct buffer_head *bh)
422 {
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424 }
425 EXPORT_SYMBOL(mark_buffer_async_write);
426
427
428 /*
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
434 *
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
438 *
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
449 *
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
452 *
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
457 *
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
461 *
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
466 *
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
475 */
476
477 /*
478 * The buffer's backing address_space's private_lock must be held
479 */
480 static void __remove_assoc_queue(struct buffer_head *bh)
481 {
482 list_del_init(&bh->b_assoc_buffers);
483 WARN_ON(!bh->b_assoc_map);
484 bh->b_assoc_map = NULL;
485 }
486
487 int inode_has_buffers(struct inode *inode)
488 {
489 return !list_empty(&inode->i_data.private_list);
490 }
491
492 /*
493 * osync is designed to support O_SYNC io. It waits synchronously for
494 * all already-submitted IO to complete, but does not queue any new
495 * writes to the disk.
496 *
497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498 * you dirty the buffers, and then use osync_inode_buffers to wait for
499 * completion. Any other dirty buffers which are not yet queued for
500 * write will not be flushed to disk by the osync.
501 */
502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 {
504 struct buffer_head *bh;
505 struct list_head *p;
506 int err = 0;
507
508 spin_lock(lock);
509 repeat:
510 list_for_each_prev(p, list) {
511 bh = BH_ENTRY(p);
512 if (buffer_locked(bh)) {
513 get_bh(bh);
514 spin_unlock(lock);
515 wait_on_buffer(bh);
516 if (!buffer_uptodate(bh))
517 err = -EIO;
518 brelse(bh);
519 spin_lock(lock);
520 goto repeat;
521 }
522 }
523 spin_unlock(lock);
524 return err;
525 }
526
527 static void do_thaw_one(struct super_block *sb, void *unused)
528 {
529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531 }
532
533 static void do_thaw_all(struct work_struct *work)
534 {
535 iterate_supers(do_thaw_one, NULL);
536 kfree(work);
537 printk(KERN_WARNING "Emergency Thaw complete\n");
538 }
539
540 /**
541 * emergency_thaw_all -- forcibly thaw every frozen filesystem
542 *
543 * Used for emergency unfreeze of all filesystems via SysRq
544 */
545 void emergency_thaw_all(void)
546 {
547 struct work_struct *work;
548
549 work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 if (work) {
551 INIT_WORK(work, do_thaw_all);
552 schedule_work(work);
553 }
554 }
555
556 /**
557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558 * @mapping: the mapping which wants those buffers written
559 *
560 * Starts I/O against the buffers at mapping->private_list, and waits upon
561 * that I/O.
562 *
563 * Basically, this is a convenience function for fsync().
564 * @mapping is a file or directory which needs those buffers to be written for
565 * a successful fsync().
566 */
567 int sync_mapping_buffers(struct address_space *mapping)
568 {
569 struct address_space *buffer_mapping = mapping->private_data;
570
571 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 return 0;
573
574 return fsync_buffers_list(&buffer_mapping->private_lock,
575 &mapping->private_list);
576 }
577 EXPORT_SYMBOL(sync_mapping_buffers);
578
579 /*
580 * Called when we've recently written block `bblock', and it is known that
581 * `bblock' was for a buffer_boundary() buffer. This means that the block at
582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
583 * dirty, schedule it for IO. So that indirects merge nicely with their data.
584 */
585 void write_boundary_block(struct block_device *bdev,
586 sector_t bblock, unsigned blocksize)
587 {
588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 if (bh) {
590 if (buffer_dirty(bh))
591 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
592 put_bh(bh);
593 }
594 }
595
596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 {
598 struct address_space *mapping = inode->i_mapping;
599 struct address_space *buffer_mapping = bh->b_page->mapping;
600
601 mark_buffer_dirty(bh);
602 if (!mapping->private_data) {
603 mapping->private_data = buffer_mapping;
604 } else {
605 BUG_ON(mapping->private_data != buffer_mapping);
606 }
607 if (!bh->b_assoc_map) {
608 spin_lock(&buffer_mapping->private_lock);
609 list_move_tail(&bh->b_assoc_buffers,
610 &mapping->private_list);
611 bh->b_assoc_map = mapping;
612 spin_unlock(&buffer_mapping->private_lock);
613 }
614 }
615 EXPORT_SYMBOL(mark_buffer_dirty_inode);
616
617 /*
618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619 * dirty.
620 *
621 * If warn is true, then emit a warning if the page is not uptodate and has
622 * not been truncated.
623 *
624 * The caller must hold lock_page_memcg().
625 */
626 static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 int warn)
628 {
629 unsigned long flags;
630
631 spin_lock_irqsave(&mapping->tree_lock, flags);
632 if (page->mapping) { /* Race with truncate? */
633 WARN_ON_ONCE(warn && !PageUptodate(page));
634 account_page_dirtied(page, mapping);
635 radix_tree_tag_set(&mapping->page_tree,
636 page_index(page), PAGECACHE_TAG_DIRTY);
637 }
638 spin_unlock_irqrestore(&mapping->tree_lock, flags);
639 }
640
641 /*
642 * Add a page to the dirty page list.
643 *
644 * It is a sad fact of life that this function is called from several places
645 * deeply under spinlocking. It may not sleep.
646 *
647 * If the page has buffers, the uptodate buffers are set dirty, to preserve
648 * dirty-state coherency between the page and the buffers. It the page does
649 * not have buffers then when they are later attached they will all be set
650 * dirty.
651 *
652 * The buffers are dirtied before the page is dirtied. There's a small race
653 * window in which a writepage caller may see the page cleanness but not the
654 * buffer dirtiness. That's fine. If this code were to set the page dirty
655 * before the buffers, a concurrent writepage caller could clear the page dirty
656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657 * page on the dirty page list.
658 *
659 * We use private_lock to lock against try_to_free_buffers while using the
660 * page's buffer list. Also use this to protect against clean buffers being
661 * added to the page after it was set dirty.
662 *
663 * FIXME: may need to call ->reservepage here as well. That's rather up to the
664 * address_space though.
665 */
666 int __set_page_dirty_buffers(struct page *page)
667 {
668 int newly_dirty;
669 struct address_space *mapping = page_mapping(page);
670
671 if (unlikely(!mapping))
672 return !TestSetPageDirty(page);
673
674 spin_lock(&mapping->private_lock);
675 if (page_has_buffers(page)) {
676 struct buffer_head *head = page_buffers(page);
677 struct buffer_head *bh = head;
678
679 do {
680 set_buffer_dirty(bh);
681 bh = bh->b_this_page;
682 } while (bh != head);
683 }
684 /*
685 * Lock out page->mem_cgroup migration to keep PageDirty
686 * synchronized with per-memcg dirty page counters.
687 */
688 lock_page_memcg(page);
689 newly_dirty = !TestSetPageDirty(page);
690 spin_unlock(&mapping->private_lock);
691
692 if (newly_dirty)
693 __set_page_dirty(page, mapping, 1);
694
695 unlock_page_memcg(page);
696
697 if (newly_dirty)
698 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699
700 return newly_dirty;
701 }
702 EXPORT_SYMBOL(__set_page_dirty_buffers);
703
704 /*
705 * Write out and wait upon a list of buffers.
706 *
707 * We have conflicting pressures: we want to make sure that all
708 * initially dirty buffers get waited on, but that any subsequently
709 * dirtied buffers don't. After all, we don't want fsync to last
710 * forever if somebody is actively writing to the file.
711 *
712 * Do this in two main stages: first we copy dirty buffers to a
713 * temporary inode list, queueing the writes as we go. Then we clean
714 * up, waiting for those writes to complete.
715 *
716 * During this second stage, any subsequent updates to the file may end
717 * up refiling the buffer on the original inode's dirty list again, so
718 * there is a chance we will end up with a buffer queued for write but
719 * not yet completed on that list. So, as a final cleanup we go through
720 * the osync code to catch these locked, dirty buffers without requeuing
721 * any newly dirty buffers for write.
722 */
723 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724 {
725 struct buffer_head *bh;
726 struct list_head tmp;
727 struct address_space *mapping;
728 int err = 0, err2;
729 struct blk_plug plug;
730
731 INIT_LIST_HEAD(&tmp);
732 blk_start_plug(&plug);
733
734 spin_lock(lock);
735 while (!list_empty(list)) {
736 bh = BH_ENTRY(list->next);
737 mapping = bh->b_assoc_map;
738 __remove_assoc_queue(bh);
739 /* Avoid race with mark_buffer_dirty_inode() which does
740 * a lockless check and we rely on seeing the dirty bit */
741 smp_mb();
742 if (buffer_dirty(bh) || buffer_locked(bh)) {
743 list_add(&bh->b_assoc_buffers, &tmp);
744 bh->b_assoc_map = mapping;
745 if (buffer_dirty(bh)) {
746 get_bh(bh);
747 spin_unlock(lock);
748 /*
749 * Ensure any pending I/O completes so that
750 * write_dirty_buffer() actually writes the
751 * current contents - it is a noop if I/O is
752 * still in flight on potentially older
753 * contents.
754 */
755 write_dirty_buffer(bh, REQ_SYNC);
756
757 /*
758 * Kick off IO for the previous mapping. Note
759 * that we will not run the very last mapping,
760 * wait_on_buffer() will do that for us
761 * through sync_buffer().
762 */
763 brelse(bh);
764 spin_lock(lock);
765 }
766 }
767 }
768
769 spin_unlock(lock);
770 blk_finish_plug(&plug);
771 spin_lock(lock);
772
773 while (!list_empty(&tmp)) {
774 bh = BH_ENTRY(tmp.prev);
775 get_bh(bh);
776 mapping = bh->b_assoc_map;
777 __remove_assoc_queue(bh);
778 /* Avoid race with mark_buffer_dirty_inode() which does
779 * a lockless check and we rely on seeing the dirty bit */
780 smp_mb();
781 if (buffer_dirty(bh)) {
782 list_add(&bh->b_assoc_buffers,
783 &mapping->private_list);
784 bh->b_assoc_map = mapping;
785 }
786 spin_unlock(lock);
787 wait_on_buffer(bh);
788 if (!buffer_uptodate(bh))
789 err = -EIO;
790 brelse(bh);
791 spin_lock(lock);
792 }
793
794 spin_unlock(lock);
795 err2 = osync_buffers_list(lock, list);
796 if (err)
797 return err;
798 else
799 return err2;
800 }
801
802 /*
803 * Invalidate any and all dirty buffers on a given inode. We are
804 * probably unmounting the fs, but that doesn't mean we have already
805 * done a sync(). Just drop the buffers from the inode list.
806 *
807 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
808 * assumes that all the buffers are against the blockdev. Not true
809 * for reiserfs.
810 */
811 void invalidate_inode_buffers(struct inode *inode)
812 {
813 if (inode_has_buffers(inode)) {
814 struct address_space *mapping = &inode->i_data;
815 struct list_head *list = &mapping->private_list;
816 struct address_space *buffer_mapping = mapping->private_data;
817
818 spin_lock(&buffer_mapping->private_lock);
819 while (!list_empty(list))
820 __remove_assoc_queue(BH_ENTRY(list->next));
821 spin_unlock(&buffer_mapping->private_lock);
822 }
823 }
824 EXPORT_SYMBOL(invalidate_inode_buffers);
825
826 /*
827 * Remove any clean buffers from the inode's buffer list. This is called
828 * when we're trying to free the inode itself. Those buffers can pin it.
829 *
830 * Returns true if all buffers were removed.
831 */
832 int remove_inode_buffers(struct inode *inode)
833 {
834 int ret = 1;
835
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->private_data;
840
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list)) {
843 struct buffer_head *bh = BH_ENTRY(list->next);
844 if (buffer_dirty(bh)) {
845 ret = 0;
846 break;
847 }
848 __remove_assoc_queue(bh);
849 }
850 spin_unlock(&buffer_mapping->private_lock);
851 }
852 return ret;
853 }
854
855 /*
856 * Create the appropriate buffers when given a page for data area and
857 * the size of each buffer.. Use the bh->b_this_page linked list to
858 * follow the buffers created. Return NULL if unable to create more
859 * buffers.
860 *
861 * The retry flag is used to differentiate async IO (paging, swapping)
862 * which may not fail from ordinary buffer allocations.
863 */
864 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865 int retry)
866 {
867 struct buffer_head *bh, *head;
868 long offset;
869
870 try_again:
871 head = NULL;
872 offset = PAGE_SIZE;
873 while ((offset -= size) >= 0) {
874 bh = alloc_buffer_head(GFP_NOFS);
875 if (!bh)
876 goto no_grow;
877
878 bh->b_this_page = head;
879 bh->b_blocknr = -1;
880 head = bh;
881
882 bh->b_size = size;
883
884 /* Link the buffer to its page */
885 set_bh_page(bh, page, offset);
886 }
887 return head;
888 /*
889 * In case anything failed, we just free everything we got.
890 */
891 no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
898 }
899
900 /*
901 * Return failure for non-async IO requests. Async IO requests
902 * are not allowed to fail, so we have to wait until buffer heads
903 * become available. But we don't want tasks sleeping with
904 * partially complete buffers, so all were released above.
905 */
906 if (!retry)
907 return NULL;
908
909 /* We're _really_ low on memory. Now we just
910 * wait for old buffer heads to become free due to
911 * finishing IO. Since this is an async request and
912 * the reserve list is empty, we're sure there are
913 * async buffer heads in use.
914 */
915 free_more_memory();
916 goto try_again;
917 }
918 EXPORT_SYMBOL_GPL(alloc_page_buffers);
919
920 static inline void
921 link_dev_buffers(struct page *page, struct buffer_head *head)
922 {
923 struct buffer_head *bh, *tail;
924
925 bh = head;
926 do {
927 tail = bh;
928 bh = bh->b_this_page;
929 } while (bh);
930 tail->b_this_page = head;
931 attach_page_buffers(page, head);
932 }
933
934 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935 {
936 sector_t retval = ~((sector_t)0);
937 loff_t sz = i_size_read(bdev->bd_inode);
938
939 if (sz) {
940 unsigned int sizebits = blksize_bits(size);
941 retval = (sz >> sizebits);
942 }
943 return retval;
944 }
945
946 /*
947 * Initialise the state of a blockdev page's buffers.
948 */
949 static sector_t
950 init_page_buffers(struct page *page, struct block_device *bdev,
951 sector_t block, int size)
952 {
953 struct buffer_head *head = page_buffers(page);
954 struct buffer_head *bh = head;
955 int uptodate = PageUptodate(page);
956 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957
958 do {
959 if (!buffer_mapped(bh)) {
960 init_buffer(bh, NULL, NULL);
961 bh->b_bdev = bdev;
962 bh->b_blocknr = block;
963 if (uptodate)
964 set_buffer_uptodate(bh);
965 if (block < end_block)
966 set_buffer_mapped(bh);
967 }
968 block++;
969 bh = bh->b_this_page;
970 } while (bh != head);
971
972 /*
973 * Caller needs to validate requested block against end of device.
974 */
975 return end_block;
976 }
977
978 /*
979 * Create the page-cache page that contains the requested block.
980 *
981 * This is used purely for blockdev mappings.
982 */
983 static int
984 grow_dev_page(struct block_device *bdev, sector_t block,
985 pgoff_t index, int size, int sizebits, gfp_t gfp)
986 {
987 struct inode *inode = bdev->bd_inode;
988 struct page *page;
989 struct buffer_head *bh;
990 sector_t end_block;
991 int ret = 0; /* Will call free_more_memory() */
992 gfp_t gfp_mask;
993
994 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
995
996 /*
997 * XXX: __getblk_slow() can not really deal with failure and
998 * will endlessly loop on improvised global reclaim. Prefer
999 * looping in the allocator rather than here, at least that
1000 * code knows what it's doing.
1001 */
1002 gfp_mask |= __GFP_NOFAIL;
1003
1004 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005 if (!page)
1006 return ret;
1007
1008 BUG_ON(!PageLocked(page));
1009
1010 if (page_has_buffers(page)) {
1011 bh = page_buffers(page);
1012 if (bh->b_size == size) {
1013 end_block = init_page_buffers(page, bdev,
1014 (sector_t)index << sizebits,
1015 size);
1016 goto done;
1017 }
1018 if (!try_to_free_buffers(page))
1019 goto failed;
1020 }
1021
1022 /*
1023 * Allocate some buffers for this page
1024 */
1025 bh = alloc_page_buffers(page, size, 0);
1026 if (!bh)
1027 goto failed;
1028
1029 /*
1030 * Link the page to the buffers and initialise them. Take the
1031 * lock to be atomic wrt __find_get_block(), which does not
1032 * run under the page lock.
1033 */
1034 spin_lock(&inode->i_mapping->private_lock);
1035 link_dev_buffers(page, bh);
1036 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037 size);
1038 spin_unlock(&inode->i_mapping->private_lock);
1039 done:
1040 ret = (block < end_block) ? 1 : -ENXIO;
1041 failed:
1042 unlock_page(page);
1043 put_page(page);
1044 return ret;
1045 }
1046
1047 /*
1048 * Create buffers for the specified block device block's page. If
1049 * that page was dirty, the buffers are set dirty also.
1050 */
1051 static int
1052 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053 {
1054 pgoff_t index;
1055 int sizebits;
1056
1057 sizebits = -1;
1058 do {
1059 sizebits++;
1060 } while ((size << sizebits) < PAGE_SIZE);
1061
1062 index = block >> sizebits;
1063
1064 /*
1065 * Check for a block which wants to lie outside our maximum possible
1066 * pagecache index. (this comparison is done using sector_t types).
1067 */
1068 if (unlikely(index != block >> sizebits)) {
1069 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 "device %pg\n",
1071 __func__, (unsigned long long)block,
1072 bdev);
1073 return -EIO;
1074 }
1075
1076 /* Create a page with the proper size buffers.. */
1077 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1078 }
1079
1080 static struct buffer_head *
1081 __getblk_slow(struct block_device *bdev, sector_t block,
1082 unsigned size, gfp_t gfp)
1083 {
1084 /* Size must be multiple of hard sectorsize */
1085 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1086 (size < 512 || size > PAGE_SIZE))) {
1087 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088 size);
1089 printk(KERN_ERR "logical block size: %d\n",
1090 bdev_logical_block_size(bdev));
1091
1092 dump_stack();
1093 return NULL;
1094 }
1095
1096 for (;;) {
1097 struct buffer_head *bh;
1098 int ret;
1099
1100 bh = __find_get_block(bdev, block, size);
1101 if (bh)
1102 return bh;
1103
1104 ret = grow_buffers(bdev, block, size, gfp);
1105 if (ret < 0)
1106 return NULL;
1107 if (ret == 0)
1108 free_more_memory();
1109 }
1110 }
1111
1112 /*
1113 * The relationship between dirty buffers and dirty pages:
1114 *
1115 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1116 * the page is tagged dirty in its radix tree.
1117 *
1118 * At all times, the dirtiness of the buffers represents the dirtiness of
1119 * subsections of the page. If the page has buffers, the page dirty bit is
1120 * merely a hint about the true dirty state.
1121 *
1122 * When a page is set dirty in its entirety, all its buffers are marked dirty
1123 * (if the page has buffers).
1124 *
1125 * When a buffer is marked dirty, its page is dirtied, but the page's other
1126 * buffers are not.
1127 *
1128 * Also. When blockdev buffers are explicitly read with bread(), they
1129 * individually become uptodate. But their backing page remains not
1130 * uptodate - even if all of its buffers are uptodate. A subsequent
1131 * block_read_full_page() against that page will discover all the uptodate
1132 * buffers, will set the page uptodate and will perform no I/O.
1133 */
1134
1135 /**
1136 * mark_buffer_dirty - mark a buffer_head as needing writeout
1137 * @bh: the buffer_head to mark dirty
1138 *
1139 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1140 * backing page dirty, then tag the page as dirty in its address_space's radix
1141 * tree and then attach the address_space's inode to its superblock's dirty
1142 * inode list.
1143 *
1144 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1145 * mapping->tree_lock and mapping->host->i_lock.
1146 */
1147 void mark_buffer_dirty(struct buffer_head *bh)
1148 {
1149 WARN_ON_ONCE(!buffer_uptodate(bh));
1150
1151 trace_block_dirty_buffer(bh);
1152
1153 /*
1154 * Very *carefully* optimize the it-is-already-dirty case.
1155 *
1156 * Don't let the final "is it dirty" escape to before we
1157 * perhaps modified the buffer.
1158 */
1159 if (buffer_dirty(bh)) {
1160 smp_mb();
1161 if (buffer_dirty(bh))
1162 return;
1163 }
1164
1165 if (!test_set_buffer_dirty(bh)) {
1166 struct page *page = bh->b_page;
1167 struct address_space *mapping = NULL;
1168
1169 lock_page_memcg(page);
1170 if (!TestSetPageDirty(page)) {
1171 mapping = page_mapping(page);
1172 if (mapping)
1173 __set_page_dirty(page, mapping, 0);
1174 }
1175 unlock_page_memcg(page);
1176 if (mapping)
1177 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1178 }
1179 }
1180 EXPORT_SYMBOL(mark_buffer_dirty);
1181
1182 void mark_buffer_write_io_error(struct buffer_head *bh)
1183 {
1184 set_buffer_write_io_error(bh);
1185 /* FIXME: do we need to set this in both places? */
1186 if (bh->b_page && bh->b_page->mapping)
1187 mapping_set_error(bh->b_page->mapping, -EIO);
1188 if (bh->b_assoc_map)
1189 mapping_set_error(bh->b_assoc_map, -EIO);
1190 }
1191 EXPORT_SYMBOL(mark_buffer_write_io_error);
1192
1193 /*
1194 * Decrement a buffer_head's reference count. If all buffers against a page
1195 * have zero reference count, are clean and unlocked, and if the page is clean
1196 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198 * a page but it ends up not being freed, and buffers may later be reattached).
1199 */
1200 void __brelse(struct buffer_head * buf)
1201 {
1202 if (atomic_read(&buf->b_count)) {
1203 put_bh(buf);
1204 return;
1205 }
1206 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207 }
1208 EXPORT_SYMBOL(__brelse);
1209
1210 /*
1211 * bforget() is like brelse(), except it discards any
1212 * potentially dirty data.
1213 */
1214 void __bforget(struct buffer_head *bh)
1215 {
1216 clear_buffer_dirty(bh);
1217 if (bh->b_assoc_map) {
1218 struct address_space *buffer_mapping = bh->b_page->mapping;
1219
1220 spin_lock(&buffer_mapping->private_lock);
1221 list_del_init(&bh->b_assoc_buffers);
1222 bh->b_assoc_map = NULL;
1223 spin_unlock(&buffer_mapping->private_lock);
1224 }
1225 __brelse(bh);
1226 }
1227 EXPORT_SYMBOL(__bforget);
1228
1229 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230 {
1231 lock_buffer(bh);
1232 if (buffer_uptodate(bh)) {
1233 unlock_buffer(bh);
1234 return bh;
1235 } else {
1236 get_bh(bh);
1237 bh->b_end_io = end_buffer_read_sync;
1238 submit_bh(REQ_OP_READ, 0, bh);
1239 wait_on_buffer(bh);
1240 if (buffer_uptodate(bh))
1241 return bh;
1242 }
1243 brelse(bh);
1244 return NULL;
1245 }
1246
1247 /*
1248 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1249 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1250 * refcount elevated by one when they're in an LRU. A buffer can only appear
1251 * once in a particular CPU's LRU. A single buffer can be present in multiple
1252 * CPU's LRUs at the same time.
1253 *
1254 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255 * sb_find_get_block().
1256 *
1257 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1258 * a local interrupt disable for that.
1259 */
1260
1261 #define BH_LRU_SIZE 16
1262
1263 struct bh_lru {
1264 struct buffer_head *bhs[BH_LRU_SIZE];
1265 };
1266
1267 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268
1269 #ifdef CONFIG_SMP
1270 #define bh_lru_lock() local_irq_disable()
1271 #define bh_lru_unlock() local_irq_enable()
1272 #else
1273 #define bh_lru_lock() preempt_disable()
1274 #define bh_lru_unlock() preempt_enable()
1275 #endif
1276
1277 static inline void check_irqs_on(void)
1278 {
1279 #ifdef irqs_disabled
1280 BUG_ON(irqs_disabled());
1281 #endif
1282 }
1283
1284 /*
1285 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1286 * inserted at the front, and the buffer_head at the back if any is evicted.
1287 * Or, if already in the LRU it is moved to the front.
1288 */
1289 static void bh_lru_install(struct buffer_head *bh)
1290 {
1291 struct buffer_head *evictee = bh;
1292 struct bh_lru *b;
1293 int i;
1294
1295 check_irqs_on();
1296 bh_lru_lock();
1297
1298 b = this_cpu_ptr(&bh_lrus);
1299 for (i = 0; i < BH_LRU_SIZE; i++) {
1300 swap(evictee, b->bhs[i]);
1301 if (evictee == bh) {
1302 bh_lru_unlock();
1303 return;
1304 }
1305 }
1306
1307 get_bh(bh);
1308 bh_lru_unlock();
1309 brelse(evictee);
1310 }
1311
1312 /*
1313 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1314 */
1315 static struct buffer_head *
1316 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1317 {
1318 struct buffer_head *ret = NULL;
1319 unsigned int i;
1320
1321 check_irqs_on();
1322 bh_lru_lock();
1323 for (i = 0; i < BH_LRU_SIZE; i++) {
1324 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1325
1326 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1327 bh->b_size == size) {
1328 if (i) {
1329 while (i) {
1330 __this_cpu_write(bh_lrus.bhs[i],
1331 __this_cpu_read(bh_lrus.bhs[i - 1]));
1332 i--;
1333 }
1334 __this_cpu_write(bh_lrus.bhs[0], bh);
1335 }
1336 get_bh(bh);
1337 ret = bh;
1338 break;
1339 }
1340 }
1341 bh_lru_unlock();
1342 return ret;
1343 }
1344
1345 /*
1346 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1347 * it in the LRU and mark it as accessed. If it is not present then return
1348 * NULL
1349 */
1350 struct buffer_head *
1351 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1352 {
1353 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1354
1355 if (bh == NULL) {
1356 /* __find_get_block_slow will mark the page accessed */
1357 bh = __find_get_block_slow(bdev, block);
1358 if (bh)
1359 bh_lru_install(bh);
1360 } else
1361 touch_buffer(bh);
1362
1363 return bh;
1364 }
1365 EXPORT_SYMBOL(__find_get_block);
1366
1367 /*
1368 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1369 * which corresponds to the passed block_device, block and size. The
1370 * returned buffer has its reference count incremented.
1371 *
1372 * __getblk_gfp() will lock up the machine if grow_dev_page's
1373 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1374 */
1375 struct buffer_head *
1376 __getblk_gfp(struct block_device *bdev, sector_t block,
1377 unsigned size, gfp_t gfp)
1378 {
1379 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380
1381 might_sleep();
1382 if (bh == NULL)
1383 bh = __getblk_slow(bdev, block, size, gfp);
1384 return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk_gfp);
1387
1388 /*
1389 * Do async read-ahead on a buffer..
1390 */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393 struct buffer_head *bh = __getblk(bdev, block, size);
1394 if (likely(bh)) {
1395 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1396 brelse(bh);
1397 }
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400
1401 /**
1402 * __bread_gfp() - reads a specified block and returns the bh
1403 * @bdev: the block_device to read from
1404 * @block: number of block
1405 * @size: size (in bytes) to read
1406 * @gfp: page allocation flag
1407 *
1408 * Reads a specified block, and returns buffer head that contains it.
1409 * The page cache can be allocated from non-movable area
1410 * not to prevent page migration if you set gfp to zero.
1411 * It returns NULL if the block was unreadable.
1412 */
1413 struct buffer_head *
1414 __bread_gfp(struct block_device *bdev, sector_t block,
1415 unsigned size, gfp_t gfp)
1416 {
1417 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1418
1419 if (likely(bh) && !buffer_uptodate(bh))
1420 bh = __bread_slow(bh);
1421 return bh;
1422 }
1423 EXPORT_SYMBOL(__bread_gfp);
1424
1425 /*
1426 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1427 * This doesn't race because it runs in each cpu either in irq
1428 * or with preempt disabled.
1429 */
1430 static void invalidate_bh_lru(void *arg)
1431 {
1432 struct bh_lru *b = &get_cpu_var(bh_lrus);
1433 int i;
1434
1435 for (i = 0; i < BH_LRU_SIZE; i++) {
1436 brelse(b->bhs[i]);
1437 b->bhs[i] = NULL;
1438 }
1439 put_cpu_var(bh_lrus);
1440 }
1441
1442 static bool has_bh_in_lru(int cpu, void *dummy)
1443 {
1444 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1445 int i;
1446
1447 for (i = 0; i < BH_LRU_SIZE; i++) {
1448 if (b->bhs[i])
1449 return 1;
1450 }
1451
1452 return 0;
1453 }
1454
1455 void invalidate_bh_lrus(void)
1456 {
1457 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1458 }
1459 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1460
1461 void set_bh_page(struct buffer_head *bh,
1462 struct page *page, unsigned long offset)
1463 {
1464 bh->b_page = page;
1465 BUG_ON(offset >= PAGE_SIZE);
1466 if (PageHighMem(page))
1467 /*
1468 * This catches illegal uses and preserves the offset:
1469 */
1470 bh->b_data = (char *)(0 + offset);
1471 else
1472 bh->b_data = page_address(page) + offset;
1473 }
1474 EXPORT_SYMBOL(set_bh_page);
1475
1476 /*
1477 * Called when truncating a buffer on a page completely.
1478 */
1479
1480 /* Bits that are cleared during an invalidate */
1481 #define BUFFER_FLAGS_DISCARD \
1482 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1483 1 << BH_Delay | 1 << BH_Unwritten)
1484
1485 static void discard_buffer(struct buffer_head * bh)
1486 {
1487 unsigned long b_state, b_state_old;
1488
1489 lock_buffer(bh);
1490 clear_buffer_dirty(bh);
1491 bh->b_bdev = NULL;
1492 b_state = bh->b_state;
1493 for (;;) {
1494 b_state_old = cmpxchg(&bh->b_state, b_state,
1495 (b_state & ~BUFFER_FLAGS_DISCARD));
1496 if (b_state_old == b_state)
1497 break;
1498 b_state = b_state_old;
1499 }
1500 unlock_buffer(bh);
1501 }
1502
1503 /**
1504 * block_invalidatepage - invalidate part or all of a buffer-backed page
1505 *
1506 * @page: the page which is affected
1507 * @offset: start of the range to invalidate
1508 * @length: length of the range to invalidate
1509 *
1510 * block_invalidatepage() is called when all or part of the page has become
1511 * invalidated by a truncate operation.
1512 *
1513 * block_invalidatepage() does not have to release all buffers, but it must
1514 * ensure that no dirty buffer is left outside @offset and that no I/O
1515 * is underway against any of the blocks which are outside the truncation
1516 * point. Because the caller is about to free (and possibly reuse) those
1517 * blocks on-disk.
1518 */
1519 void block_invalidatepage(struct page *page, unsigned int offset,
1520 unsigned int length)
1521 {
1522 struct buffer_head *head, *bh, *next;
1523 unsigned int curr_off = 0;
1524 unsigned int stop = length + offset;
1525
1526 BUG_ON(!PageLocked(page));
1527 if (!page_has_buffers(page))
1528 goto out;
1529
1530 /*
1531 * Check for overflow
1532 */
1533 BUG_ON(stop > PAGE_SIZE || stop < length);
1534
1535 head = page_buffers(page);
1536 bh = head;
1537 do {
1538 unsigned int next_off = curr_off + bh->b_size;
1539 next = bh->b_this_page;
1540
1541 /*
1542 * Are we still fully in range ?
1543 */
1544 if (next_off > stop)
1545 goto out;
1546
1547 /*
1548 * is this block fully invalidated?
1549 */
1550 if (offset <= curr_off)
1551 discard_buffer(bh);
1552 curr_off = next_off;
1553 bh = next;
1554 } while (bh != head);
1555
1556 /*
1557 * We release buffers only if the entire page is being invalidated.
1558 * The get_block cached value has been unconditionally invalidated,
1559 * so real IO is not possible anymore.
1560 */
1561 if (offset == 0)
1562 try_to_release_page(page, 0);
1563 out:
1564 return;
1565 }
1566 EXPORT_SYMBOL(block_invalidatepage);
1567
1568
1569 /*
1570 * We attach and possibly dirty the buffers atomically wrt
1571 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1572 * is already excluded via the page lock.
1573 */
1574 void create_empty_buffers(struct page *page,
1575 unsigned long blocksize, unsigned long b_state)
1576 {
1577 struct buffer_head *bh, *head, *tail;
1578
1579 head = alloc_page_buffers(page, blocksize, 1);
1580 bh = head;
1581 do {
1582 bh->b_state |= b_state;
1583 tail = bh;
1584 bh = bh->b_this_page;
1585 } while (bh);
1586 tail->b_this_page = head;
1587
1588 spin_lock(&page->mapping->private_lock);
1589 if (PageUptodate(page) || PageDirty(page)) {
1590 bh = head;
1591 do {
1592 if (PageDirty(page))
1593 set_buffer_dirty(bh);
1594 if (PageUptodate(page))
1595 set_buffer_uptodate(bh);
1596 bh = bh->b_this_page;
1597 } while (bh != head);
1598 }
1599 attach_page_buffers(page, head);
1600 spin_unlock(&page->mapping->private_lock);
1601 }
1602 EXPORT_SYMBOL(create_empty_buffers);
1603
1604 /**
1605 * clean_bdev_aliases: clean a range of buffers in block device
1606 * @bdev: Block device to clean buffers in
1607 * @block: Start of a range of blocks to clean
1608 * @len: Number of blocks to clean
1609 *
1610 * We are taking a range of blocks for data and we don't want writeback of any
1611 * buffer-cache aliases starting from return from this function and until the
1612 * moment when something will explicitly mark the buffer dirty (hopefully that
1613 * will not happen until we will free that block ;-) We don't even need to mark
1614 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1615 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1616 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1617 * would confuse anyone who might pick it with bread() afterwards...
1618 *
1619 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1620 * writeout I/O going on against recently-freed buffers. We don't wait on that
1621 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1622 * need to. That happens here.
1623 */
1624 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1625 {
1626 struct inode *bd_inode = bdev->bd_inode;
1627 struct address_space *bd_mapping = bd_inode->i_mapping;
1628 struct pagevec pvec;
1629 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1630 pgoff_t end;
1631 int i, count;
1632 struct buffer_head *bh;
1633 struct buffer_head *head;
1634
1635 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1636 pagevec_init(&pvec, 0);
1637 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1638 count = pagevec_count(&pvec);
1639 for (i = 0; i < count; i++) {
1640 struct page *page = pvec.pages[i];
1641
1642 if (!page_has_buffers(page))
1643 continue;
1644 /*
1645 * We use page lock instead of bd_mapping->private_lock
1646 * to pin buffers here since we can afford to sleep and
1647 * it scales better than a global spinlock lock.
1648 */
1649 lock_page(page);
1650 /* Recheck when the page is locked which pins bhs */
1651 if (!page_has_buffers(page))
1652 goto unlock_page;
1653 head = page_buffers(page);
1654 bh = head;
1655 do {
1656 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1657 goto next;
1658 if (bh->b_blocknr >= block + len)
1659 break;
1660 clear_buffer_dirty(bh);
1661 wait_on_buffer(bh);
1662 clear_buffer_req(bh);
1663 next:
1664 bh = bh->b_this_page;
1665 } while (bh != head);
1666 unlock_page:
1667 unlock_page(page);
1668 }
1669 pagevec_release(&pvec);
1670 cond_resched();
1671 /* End of range already reached? */
1672 if (index > end || !index)
1673 break;
1674 }
1675 }
1676 EXPORT_SYMBOL(clean_bdev_aliases);
1677
1678 /*
1679 * Size is a power-of-two in the range 512..PAGE_SIZE,
1680 * and the case we care about most is PAGE_SIZE.
1681 *
1682 * So this *could* possibly be written with those
1683 * constraints in mind (relevant mostly if some
1684 * architecture has a slow bit-scan instruction)
1685 */
1686 static inline int block_size_bits(unsigned int blocksize)
1687 {
1688 return ilog2(blocksize);
1689 }
1690
1691 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1692 {
1693 BUG_ON(!PageLocked(page));
1694
1695 if (!page_has_buffers(page))
1696 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1697 return page_buffers(page);
1698 }
1699
1700 /*
1701 * NOTE! All mapped/uptodate combinations are valid:
1702 *
1703 * Mapped Uptodate Meaning
1704 *
1705 * No No "unknown" - must do get_block()
1706 * No Yes "hole" - zero-filled
1707 * Yes No "allocated" - allocated on disk, not read in
1708 * Yes Yes "valid" - allocated and up-to-date in memory.
1709 *
1710 * "Dirty" is valid only with the last case (mapped+uptodate).
1711 */
1712
1713 /*
1714 * While block_write_full_page is writing back the dirty buffers under
1715 * the page lock, whoever dirtied the buffers may decide to clean them
1716 * again at any time. We handle that by only looking at the buffer
1717 * state inside lock_buffer().
1718 *
1719 * If block_write_full_page() is called for regular writeback
1720 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1721 * locked buffer. This only can happen if someone has written the buffer
1722 * directly, with submit_bh(). At the address_space level PageWriteback
1723 * prevents this contention from occurring.
1724 *
1725 * If block_write_full_page() is called with wbc->sync_mode ==
1726 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1727 * causes the writes to be flagged as synchronous writes.
1728 */
1729 int __block_write_full_page(struct inode *inode, struct page *page,
1730 get_block_t *get_block, struct writeback_control *wbc,
1731 bh_end_io_t *handler)
1732 {
1733 int err;
1734 sector_t block;
1735 sector_t last_block;
1736 struct buffer_head *bh, *head;
1737 unsigned int blocksize, bbits;
1738 int nr_underway = 0;
1739 int write_flags = wbc_to_write_flags(wbc);
1740
1741 head = create_page_buffers(page, inode,
1742 (1 << BH_Dirty)|(1 << BH_Uptodate));
1743
1744 /*
1745 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1746 * here, and the (potentially unmapped) buffers may become dirty at
1747 * any time. If a buffer becomes dirty here after we've inspected it
1748 * then we just miss that fact, and the page stays dirty.
1749 *
1750 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1751 * handle that here by just cleaning them.
1752 */
1753
1754 bh = head;
1755 blocksize = bh->b_size;
1756 bbits = block_size_bits(blocksize);
1757
1758 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1759 last_block = (i_size_read(inode) - 1) >> bbits;
1760
1761 /*
1762 * Get all the dirty buffers mapped to disk addresses and
1763 * handle any aliases from the underlying blockdev's mapping.
1764 */
1765 do {
1766 if (block > last_block) {
1767 /*
1768 * mapped buffers outside i_size will occur, because
1769 * this page can be outside i_size when there is a
1770 * truncate in progress.
1771 */
1772 /*
1773 * The buffer was zeroed by block_write_full_page()
1774 */
1775 clear_buffer_dirty(bh);
1776 set_buffer_uptodate(bh);
1777 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1778 buffer_dirty(bh)) {
1779 WARN_ON(bh->b_size != blocksize);
1780 err = get_block(inode, block, bh, 1);
1781 if (err)
1782 goto recover;
1783 clear_buffer_delay(bh);
1784 if (buffer_new(bh)) {
1785 /* blockdev mappings never come here */
1786 clear_buffer_new(bh);
1787 clean_bdev_bh_alias(bh);
1788 }
1789 }
1790 bh = bh->b_this_page;
1791 block++;
1792 } while (bh != head);
1793
1794 do {
1795 if (!buffer_mapped(bh))
1796 continue;
1797 /*
1798 * If it's a fully non-blocking write attempt and we cannot
1799 * lock the buffer then redirty the page. Note that this can
1800 * potentially cause a busy-wait loop from writeback threads
1801 * and kswapd activity, but those code paths have their own
1802 * higher-level throttling.
1803 */
1804 if (wbc->sync_mode != WB_SYNC_NONE) {
1805 lock_buffer(bh);
1806 } else if (!trylock_buffer(bh)) {
1807 redirty_page_for_writepage(wbc, page);
1808 continue;
1809 }
1810 if (test_clear_buffer_dirty(bh)) {
1811 mark_buffer_async_write_endio(bh, handler);
1812 } else {
1813 unlock_buffer(bh);
1814 }
1815 } while ((bh = bh->b_this_page) != head);
1816
1817 /*
1818 * The page and its buffers are protected by PageWriteback(), so we can
1819 * drop the bh refcounts early.
1820 */
1821 BUG_ON(PageWriteback(page));
1822 set_page_writeback(page);
1823
1824 do {
1825 struct buffer_head *next = bh->b_this_page;
1826 if (buffer_async_write(bh)) {
1827 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1828 inode->i_write_hint, wbc);
1829 nr_underway++;
1830 }
1831 bh = next;
1832 } while (bh != head);
1833 unlock_page(page);
1834
1835 err = 0;
1836 done:
1837 if (nr_underway == 0) {
1838 /*
1839 * The page was marked dirty, but the buffers were
1840 * clean. Someone wrote them back by hand with
1841 * ll_rw_block/submit_bh. A rare case.
1842 */
1843 end_page_writeback(page);
1844
1845 /*
1846 * The page and buffer_heads can be released at any time from
1847 * here on.
1848 */
1849 }
1850 return err;
1851
1852 recover:
1853 /*
1854 * ENOSPC, or some other error. We may already have added some
1855 * blocks to the file, so we need to write these out to avoid
1856 * exposing stale data.
1857 * The page is currently locked and not marked for writeback
1858 */
1859 bh = head;
1860 /* Recovery: lock and submit the mapped buffers */
1861 do {
1862 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1863 !buffer_delay(bh)) {
1864 lock_buffer(bh);
1865 mark_buffer_async_write_endio(bh, handler);
1866 } else {
1867 /*
1868 * The buffer may have been set dirty during
1869 * attachment to a dirty page.
1870 */
1871 clear_buffer_dirty(bh);
1872 }
1873 } while ((bh = bh->b_this_page) != head);
1874 SetPageError(page);
1875 BUG_ON(PageWriteback(page));
1876 mapping_set_error(page->mapping, err);
1877 set_page_writeback(page);
1878 do {
1879 struct buffer_head *next = bh->b_this_page;
1880 if (buffer_async_write(bh)) {
1881 clear_buffer_dirty(bh);
1882 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1883 inode->i_write_hint, wbc);
1884 nr_underway++;
1885 }
1886 bh = next;
1887 } while (bh != head);
1888 unlock_page(page);
1889 goto done;
1890 }
1891 EXPORT_SYMBOL(__block_write_full_page);
1892
1893 /*
1894 * If a page has any new buffers, zero them out here, and mark them uptodate
1895 * and dirty so they'll be written out (in order to prevent uninitialised
1896 * block data from leaking). And clear the new bit.
1897 */
1898 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1899 {
1900 unsigned int block_start, block_end;
1901 struct buffer_head *head, *bh;
1902
1903 BUG_ON(!PageLocked(page));
1904 if (!page_has_buffers(page))
1905 return;
1906
1907 bh = head = page_buffers(page);
1908 block_start = 0;
1909 do {
1910 block_end = block_start + bh->b_size;
1911
1912 if (buffer_new(bh)) {
1913 if (block_end > from && block_start < to) {
1914 if (!PageUptodate(page)) {
1915 unsigned start, size;
1916
1917 start = max(from, block_start);
1918 size = min(to, block_end) - start;
1919
1920 zero_user(page, start, size);
1921 set_buffer_uptodate(bh);
1922 }
1923
1924 clear_buffer_new(bh);
1925 mark_buffer_dirty(bh);
1926 }
1927 }
1928
1929 block_start = block_end;
1930 bh = bh->b_this_page;
1931 } while (bh != head);
1932 }
1933 EXPORT_SYMBOL(page_zero_new_buffers);
1934
1935 static void
1936 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1937 struct iomap *iomap)
1938 {
1939 loff_t offset = block << inode->i_blkbits;
1940
1941 bh->b_bdev = iomap->bdev;
1942
1943 /*
1944 * Block points to offset in file we need to map, iomap contains
1945 * the offset at which the map starts. If the map ends before the
1946 * current block, then do not map the buffer and let the caller
1947 * handle it.
1948 */
1949 BUG_ON(offset >= iomap->offset + iomap->length);
1950
1951 switch (iomap->type) {
1952 case IOMAP_HOLE:
1953 /*
1954 * If the buffer is not up to date or beyond the current EOF,
1955 * we need to mark it as new to ensure sub-block zeroing is
1956 * executed if necessary.
1957 */
1958 if (!buffer_uptodate(bh) ||
1959 (offset >= i_size_read(inode)))
1960 set_buffer_new(bh);
1961 break;
1962 case IOMAP_DELALLOC:
1963 if (!buffer_uptodate(bh) ||
1964 (offset >= i_size_read(inode)))
1965 set_buffer_new(bh);
1966 set_buffer_uptodate(bh);
1967 set_buffer_mapped(bh);
1968 set_buffer_delay(bh);
1969 break;
1970 case IOMAP_UNWRITTEN:
1971 /*
1972 * For unwritten regions, we always need to ensure that
1973 * sub-block writes cause the regions in the block we are not
1974 * writing to are zeroed. Set the buffer as new to ensure this.
1975 */
1976 set_buffer_new(bh);
1977 set_buffer_unwritten(bh);
1978 /* FALLTHRU */
1979 case IOMAP_MAPPED:
1980 if (offset >= i_size_read(inode))
1981 set_buffer_new(bh);
1982 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1983 ((offset - iomap->offset) >> inode->i_blkbits);
1984 set_buffer_mapped(bh);
1985 break;
1986 }
1987 }
1988
1989 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1990 get_block_t *get_block, struct iomap *iomap)
1991 {
1992 unsigned from = pos & (PAGE_SIZE - 1);
1993 unsigned to = from + len;
1994 struct inode *inode = page->mapping->host;
1995 unsigned block_start, block_end;
1996 sector_t block;
1997 int err = 0;
1998 unsigned blocksize, bbits;
1999 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2000
2001 BUG_ON(!PageLocked(page));
2002 BUG_ON(from > PAGE_SIZE);
2003 BUG_ON(to > PAGE_SIZE);
2004 BUG_ON(from > to);
2005
2006 head = create_page_buffers(page, inode, 0);
2007 blocksize = head->b_size;
2008 bbits = block_size_bits(blocksize);
2009
2010 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2011
2012 for(bh = head, block_start = 0; bh != head || !block_start;
2013 block++, block_start=block_end, bh = bh->b_this_page) {
2014 block_end = block_start + blocksize;
2015 if (block_end <= from || block_start >= to) {
2016 if (PageUptodate(page)) {
2017 if (!buffer_uptodate(bh))
2018 set_buffer_uptodate(bh);
2019 }
2020 continue;
2021 }
2022 if (buffer_new(bh))
2023 clear_buffer_new(bh);
2024 if (!buffer_mapped(bh)) {
2025 WARN_ON(bh->b_size != blocksize);
2026 if (get_block) {
2027 err = get_block(inode, block, bh, 1);
2028 if (err)
2029 break;
2030 } else {
2031 iomap_to_bh(inode, block, bh, iomap);
2032 }
2033
2034 if (buffer_new(bh)) {
2035 clean_bdev_bh_alias(bh);
2036 if (PageUptodate(page)) {
2037 clear_buffer_new(bh);
2038 set_buffer_uptodate(bh);
2039 mark_buffer_dirty(bh);
2040 continue;
2041 }
2042 if (block_end > to || block_start < from)
2043 zero_user_segments(page,
2044 to, block_end,
2045 block_start, from);
2046 continue;
2047 }
2048 }
2049 if (PageUptodate(page)) {
2050 if (!buffer_uptodate(bh))
2051 set_buffer_uptodate(bh);
2052 continue;
2053 }
2054 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2055 !buffer_unwritten(bh) &&
2056 (block_start < from || block_end > to)) {
2057 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058 *wait_bh++=bh;
2059 }
2060 }
2061 /*
2062 * If we issued read requests - let them complete.
2063 */
2064 while(wait_bh > wait) {
2065 wait_on_buffer(*--wait_bh);
2066 if (!buffer_uptodate(*wait_bh))
2067 err = -EIO;
2068 }
2069 if (unlikely(err))
2070 page_zero_new_buffers(page, from, to);
2071 return err;
2072 }
2073
2074 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2075 get_block_t *get_block)
2076 {
2077 return __block_write_begin_int(page, pos, len, get_block, NULL);
2078 }
2079 EXPORT_SYMBOL(__block_write_begin);
2080
2081 static int __block_commit_write(struct inode *inode, struct page *page,
2082 unsigned from, unsigned to)
2083 {
2084 unsigned block_start, block_end;
2085 int partial = 0;
2086 unsigned blocksize;
2087 struct buffer_head *bh, *head;
2088
2089 bh = head = page_buffers(page);
2090 blocksize = bh->b_size;
2091
2092 block_start = 0;
2093 do {
2094 block_end = block_start + blocksize;
2095 if (block_end <= from || block_start >= to) {
2096 if (!buffer_uptodate(bh))
2097 partial = 1;
2098 } else {
2099 set_buffer_uptodate(bh);
2100 mark_buffer_dirty(bh);
2101 }
2102 clear_buffer_new(bh);
2103
2104 block_start = block_end;
2105 bh = bh->b_this_page;
2106 } while (bh != head);
2107
2108 /*
2109 * If this is a partial write which happened to make all buffers
2110 * uptodate then we can optimize away a bogus readpage() for
2111 * the next read(). Here we 'discover' whether the page went
2112 * uptodate as a result of this (potentially partial) write.
2113 */
2114 if (!partial)
2115 SetPageUptodate(page);
2116 return 0;
2117 }
2118
2119 /*
2120 * block_write_begin takes care of the basic task of block allocation and
2121 * bringing partial write blocks uptodate first.
2122 *
2123 * The filesystem needs to handle block truncation upon failure.
2124 */
2125 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2126 unsigned flags, struct page **pagep, get_block_t *get_block)
2127 {
2128 pgoff_t index = pos >> PAGE_SHIFT;
2129 struct page *page;
2130 int status;
2131
2132 page = grab_cache_page_write_begin(mapping, index, flags);
2133 if (!page)
2134 return -ENOMEM;
2135
2136 status = __block_write_begin(page, pos, len, get_block);
2137 if (unlikely(status)) {
2138 unlock_page(page);
2139 put_page(page);
2140 page = NULL;
2141 }
2142
2143 *pagep = page;
2144 return status;
2145 }
2146 EXPORT_SYMBOL(block_write_begin);
2147
2148 int block_write_end(struct file *file, struct address_space *mapping,
2149 loff_t pos, unsigned len, unsigned copied,
2150 struct page *page, void *fsdata)
2151 {
2152 struct inode *inode = mapping->host;
2153 unsigned start;
2154
2155 start = pos & (PAGE_SIZE - 1);
2156
2157 if (unlikely(copied < len)) {
2158 /*
2159 * The buffers that were written will now be uptodate, so we
2160 * don't have to worry about a readpage reading them and
2161 * overwriting a partial write. However if we have encountered
2162 * a short write and only partially written into a buffer, it
2163 * will not be marked uptodate, so a readpage might come in and
2164 * destroy our partial write.
2165 *
2166 * Do the simplest thing, and just treat any short write to a
2167 * non uptodate page as a zero-length write, and force the
2168 * caller to redo the whole thing.
2169 */
2170 if (!PageUptodate(page))
2171 copied = 0;
2172
2173 page_zero_new_buffers(page, start+copied, start+len);
2174 }
2175 flush_dcache_page(page);
2176
2177 /* This could be a short (even 0-length) commit */
2178 __block_commit_write(inode, page, start, start+copied);
2179
2180 return copied;
2181 }
2182 EXPORT_SYMBOL(block_write_end);
2183
2184 int generic_write_end(struct file *file, struct address_space *mapping,
2185 loff_t pos, unsigned len, unsigned copied,
2186 struct page *page, void *fsdata)
2187 {
2188 struct inode *inode = mapping->host;
2189 loff_t old_size = inode->i_size;
2190 int i_size_changed = 0;
2191
2192 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2193
2194 /*
2195 * No need to use i_size_read() here, the i_size
2196 * cannot change under us because we hold i_mutex.
2197 *
2198 * But it's important to update i_size while still holding page lock:
2199 * page writeout could otherwise come in and zero beyond i_size.
2200 */
2201 if (pos+copied > inode->i_size) {
2202 i_size_write(inode, pos+copied);
2203 i_size_changed = 1;
2204 }
2205
2206 unlock_page(page);
2207 put_page(page);
2208
2209 if (old_size < pos)
2210 pagecache_isize_extended(inode, old_size, pos);
2211 /*
2212 * Don't mark the inode dirty under page lock. First, it unnecessarily
2213 * makes the holding time of page lock longer. Second, it forces lock
2214 * ordering of page lock and transaction start for journaling
2215 * filesystems.
2216 */
2217 if (i_size_changed)
2218 mark_inode_dirty(inode);
2219
2220 return copied;
2221 }
2222 EXPORT_SYMBOL(generic_write_end);
2223
2224 /*
2225 * block_is_partially_uptodate checks whether buffers within a page are
2226 * uptodate or not.
2227 *
2228 * Returns true if all buffers which correspond to a file portion
2229 * we want to read are uptodate.
2230 */
2231 int block_is_partially_uptodate(struct page *page, unsigned long from,
2232 unsigned long count)
2233 {
2234 unsigned block_start, block_end, blocksize;
2235 unsigned to;
2236 struct buffer_head *bh, *head;
2237 int ret = 1;
2238
2239 if (!page_has_buffers(page))
2240 return 0;
2241
2242 head = page_buffers(page);
2243 blocksize = head->b_size;
2244 to = min_t(unsigned, PAGE_SIZE - from, count);
2245 to = from + to;
2246 if (from < blocksize && to > PAGE_SIZE - blocksize)
2247 return 0;
2248
2249 bh = head;
2250 block_start = 0;
2251 do {
2252 block_end = block_start + blocksize;
2253 if (block_end > from && block_start < to) {
2254 if (!buffer_uptodate(bh)) {
2255 ret = 0;
2256 break;
2257 }
2258 if (block_end >= to)
2259 break;
2260 }
2261 block_start = block_end;
2262 bh = bh->b_this_page;
2263 } while (bh != head);
2264
2265 return ret;
2266 }
2267 EXPORT_SYMBOL(block_is_partially_uptodate);
2268
2269 /*
2270 * Generic "read page" function for block devices that have the normal
2271 * get_block functionality. This is most of the block device filesystems.
2272 * Reads the page asynchronously --- the unlock_buffer() and
2273 * set/clear_buffer_uptodate() functions propagate buffer state into the
2274 * page struct once IO has completed.
2275 */
2276 int block_read_full_page(struct page *page, get_block_t *get_block)
2277 {
2278 struct inode *inode = page->mapping->host;
2279 sector_t iblock, lblock;
2280 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2281 unsigned int blocksize, bbits;
2282 int nr, i;
2283 int fully_mapped = 1;
2284
2285 head = create_page_buffers(page, inode, 0);
2286 blocksize = head->b_size;
2287 bbits = block_size_bits(blocksize);
2288
2289 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2290 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2291 bh = head;
2292 nr = 0;
2293 i = 0;
2294
2295 do {
2296 if (buffer_uptodate(bh))
2297 continue;
2298
2299 if (!buffer_mapped(bh)) {
2300 int err = 0;
2301
2302 fully_mapped = 0;
2303 if (iblock < lblock) {
2304 WARN_ON(bh->b_size != blocksize);
2305 err = get_block(inode, iblock, bh, 0);
2306 if (err)
2307 SetPageError(page);
2308 }
2309 if (!buffer_mapped(bh)) {
2310 zero_user(page, i * blocksize, blocksize);
2311 if (!err)
2312 set_buffer_uptodate(bh);
2313 continue;
2314 }
2315 /*
2316 * get_block() might have updated the buffer
2317 * synchronously
2318 */
2319 if (buffer_uptodate(bh))
2320 continue;
2321 }
2322 arr[nr++] = bh;
2323 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2324
2325 if (fully_mapped)
2326 SetPageMappedToDisk(page);
2327
2328 if (!nr) {
2329 /*
2330 * All buffers are uptodate - we can set the page uptodate
2331 * as well. But not if get_block() returned an error.
2332 */
2333 if (!PageError(page))
2334 SetPageUptodate(page);
2335 unlock_page(page);
2336 return 0;
2337 }
2338
2339 /* Stage two: lock the buffers */
2340 for (i = 0; i < nr; i++) {
2341 bh = arr[i];
2342 lock_buffer(bh);
2343 mark_buffer_async_read(bh);
2344 }
2345
2346 /*
2347 * Stage 3: start the IO. Check for uptodateness
2348 * inside the buffer lock in case another process reading
2349 * the underlying blockdev brought it uptodate (the sct fix).
2350 */
2351 for (i = 0; i < nr; i++) {
2352 bh = arr[i];
2353 if (buffer_uptodate(bh))
2354 end_buffer_async_read(bh, 1);
2355 else
2356 submit_bh(REQ_OP_READ, 0, bh);
2357 }
2358 return 0;
2359 }
2360 EXPORT_SYMBOL(block_read_full_page);
2361
2362 /* utility function for filesystems that need to do work on expanding
2363 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2364 * deal with the hole.
2365 */
2366 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2367 {
2368 struct address_space *mapping = inode->i_mapping;
2369 struct page *page;
2370 void *fsdata;
2371 int err;
2372
2373 err = inode_newsize_ok(inode, size);
2374 if (err)
2375 goto out;
2376
2377 err = pagecache_write_begin(NULL, mapping, size, 0,
2378 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2379 if (err)
2380 goto out;
2381
2382 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2383 BUG_ON(err > 0);
2384
2385 out:
2386 return err;
2387 }
2388 EXPORT_SYMBOL(generic_cont_expand_simple);
2389
2390 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2391 loff_t pos, loff_t *bytes)
2392 {
2393 struct inode *inode = mapping->host;
2394 unsigned int blocksize = i_blocksize(inode);
2395 struct page *page;
2396 void *fsdata;
2397 pgoff_t index, curidx;
2398 loff_t curpos;
2399 unsigned zerofrom, offset, len;
2400 int err = 0;
2401
2402 index = pos >> PAGE_SHIFT;
2403 offset = pos & ~PAGE_MASK;
2404
2405 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2406 zerofrom = curpos & ~PAGE_MASK;
2407 if (zerofrom & (blocksize-1)) {
2408 *bytes |= (blocksize-1);
2409 (*bytes)++;
2410 }
2411 len = PAGE_SIZE - zerofrom;
2412
2413 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2414 &page, &fsdata);
2415 if (err)
2416 goto out;
2417 zero_user(page, zerofrom, len);
2418 err = pagecache_write_end(file, mapping, curpos, len, len,
2419 page, fsdata);
2420 if (err < 0)
2421 goto out;
2422 BUG_ON(err != len);
2423 err = 0;
2424
2425 balance_dirty_pages_ratelimited(mapping);
2426
2427 if (unlikely(fatal_signal_pending(current))) {
2428 err = -EINTR;
2429 goto out;
2430 }
2431 }
2432
2433 /* page covers the boundary, find the boundary offset */
2434 if (index == curidx) {
2435 zerofrom = curpos & ~PAGE_MASK;
2436 /* if we will expand the thing last block will be filled */
2437 if (offset <= zerofrom) {
2438 goto out;
2439 }
2440 if (zerofrom & (blocksize-1)) {
2441 *bytes |= (blocksize-1);
2442 (*bytes)++;
2443 }
2444 len = offset - zerofrom;
2445
2446 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2447 &page, &fsdata);
2448 if (err)
2449 goto out;
2450 zero_user(page, zerofrom, len);
2451 err = pagecache_write_end(file, mapping, curpos, len, len,
2452 page, fsdata);
2453 if (err < 0)
2454 goto out;
2455 BUG_ON(err != len);
2456 err = 0;
2457 }
2458 out:
2459 return err;
2460 }
2461
2462 /*
2463 * For moronic filesystems that do not allow holes in file.
2464 * We may have to extend the file.
2465 */
2466 int cont_write_begin(struct file *file, struct address_space *mapping,
2467 loff_t pos, unsigned len, unsigned flags,
2468 struct page **pagep, void **fsdata,
2469 get_block_t *get_block, loff_t *bytes)
2470 {
2471 struct inode *inode = mapping->host;
2472 unsigned int blocksize = i_blocksize(inode);
2473 unsigned int zerofrom;
2474 int err;
2475
2476 err = cont_expand_zero(file, mapping, pos, bytes);
2477 if (err)
2478 return err;
2479
2480 zerofrom = *bytes & ~PAGE_MASK;
2481 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2482 *bytes |= (blocksize-1);
2483 (*bytes)++;
2484 }
2485
2486 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2487 }
2488 EXPORT_SYMBOL(cont_write_begin);
2489
2490 int block_commit_write(struct page *page, unsigned from, unsigned to)
2491 {
2492 struct inode *inode = page->mapping->host;
2493 __block_commit_write(inode,page,from,to);
2494 return 0;
2495 }
2496 EXPORT_SYMBOL(block_commit_write);
2497
2498 /*
2499 * block_page_mkwrite() is not allowed to change the file size as it gets
2500 * called from a page fault handler when a page is first dirtied. Hence we must
2501 * be careful to check for EOF conditions here. We set the page up correctly
2502 * for a written page which means we get ENOSPC checking when writing into
2503 * holes and correct delalloc and unwritten extent mapping on filesystems that
2504 * support these features.
2505 *
2506 * We are not allowed to take the i_mutex here so we have to play games to
2507 * protect against truncate races as the page could now be beyond EOF. Because
2508 * truncate writes the inode size before removing pages, once we have the
2509 * page lock we can determine safely if the page is beyond EOF. If it is not
2510 * beyond EOF, then the page is guaranteed safe against truncation until we
2511 * unlock the page.
2512 *
2513 * Direct callers of this function should protect against filesystem freezing
2514 * using sb_start_pagefault() - sb_end_pagefault() functions.
2515 */
2516 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2517 get_block_t get_block)
2518 {
2519 struct page *page = vmf->page;
2520 struct inode *inode = file_inode(vma->vm_file);
2521 unsigned long end;
2522 loff_t size;
2523 int ret;
2524
2525 lock_page(page);
2526 size = i_size_read(inode);
2527 if ((page->mapping != inode->i_mapping) ||
2528 (page_offset(page) > size)) {
2529 /* We overload EFAULT to mean page got truncated */
2530 ret = -EFAULT;
2531 goto out_unlock;
2532 }
2533
2534 /* page is wholly or partially inside EOF */
2535 if (((page->index + 1) << PAGE_SHIFT) > size)
2536 end = size & ~PAGE_MASK;
2537 else
2538 end = PAGE_SIZE;
2539
2540 ret = __block_write_begin(page, 0, end, get_block);
2541 if (!ret)
2542 ret = block_commit_write(page, 0, end);
2543
2544 if (unlikely(ret < 0))
2545 goto out_unlock;
2546 set_page_dirty(page);
2547 wait_for_stable_page(page);
2548 return 0;
2549 out_unlock:
2550 unlock_page(page);
2551 return ret;
2552 }
2553 EXPORT_SYMBOL(block_page_mkwrite);
2554
2555 /*
2556 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2557 * immediately, while under the page lock. So it needs a special end_io
2558 * handler which does not touch the bh after unlocking it.
2559 */
2560 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2561 {
2562 __end_buffer_read_notouch(bh, uptodate);
2563 }
2564
2565 /*
2566 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2567 * the page (converting it to circular linked list and taking care of page
2568 * dirty races).
2569 */
2570 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2571 {
2572 struct buffer_head *bh;
2573
2574 BUG_ON(!PageLocked(page));
2575
2576 spin_lock(&page->mapping->private_lock);
2577 bh = head;
2578 do {
2579 if (PageDirty(page))
2580 set_buffer_dirty(bh);
2581 if (!bh->b_this_page)
2582 bh->b_this_page = head;
2583 bh = bh->b_this_page;
2584 } while (bh != head);
2585 attach_page_buffers(page, head);
2586 spin_unlock(&page->mapping->private_lock);
2587 }
2588
2589 /*
2590 * On entry, the page is fully not uptodate.
2591 * On exit the page is fully uptodate in the areas outside (from,to)
2592 * The filesystem needs to handle block truncation upon failure.
2593 */
2594 int nobh_write_begin(struct address_space *mapping,
2595 loff_t pos, unsigned len, unsigned flags,
2596 struct page **pagep, void **fsdata,
2597 get_block_t *get_block)
2598 {
2599 struct inode *inode = mapping->host;
2600 const unsigned blkbits = inode->i_blkbits;
2601 const unsigned blocksize = 1 << blkbits;
2602 struct buffer_head *head, *bh;
2603 struct page *page;
2604 pgoff_t index;
2605 unsigned from, to;
2606 unsigned block_in_page;
2607 unsigned block_start, block_end;
2608 sector_t block_in_file;
2609 int nr_reads = 0;
2610 int ret = 0;
2611 int is_mapped_to_disk = 1;
2612
2613 index = pos >> PAGE_SHIFT;
2614 from = pos & (PAGE_SIZE - 1);
2615 to = from + len;
2616
2617 page = grab_cache_page_write_begin(mapping, index, flags);
2618 if (!page)
2619 return -ENOMEM;
2620 *pagep = page;
2621 *fsdata = NULL;
2622
2623 if (page_has_buffers(page)) {
2624 ret = __block_write_begin(page, pos, len, get_block);
2625 if (unlikely(ret))
2626 goto out_release;
2627 return ret;
2628 }
2629
2630 if (PageMappedToDisk(page))
2631 return 0;
2632
2633 /*
2634 * Allocate buffers so that we can keep track of state, and potentially
2635 * attach them to the page if an error occurs. In the common case of
2636 * no error, they will just be freed again without ever being attached
2637 * to the page (which is all OK, because we're under the page lock).
2638 *
2639 * Be careful: the buffer linked list is a NULL terminated one, rather
2640 * than the circular one we're used to.
2641 */
2642 head = alloc_page_buffers(page, blocksize, 0);
2643 if (!head) {
2644 ret = -ENOMEM;
2645 goto out_release;
2646 }
2647
2648 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2649
2650 /*
2651 * We loop across all blocks in the page, whether or not they are
2652 * part of the affected region. This is so we can discover if the
2653 * page is fully mapped-to-disk.
2654 */
2655 for (block_start = 0, block_in_page = 0, bh = head;
2656 block_start < PAGE_SIZE;
2657 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2658 int create;
2659
2660 block_end = block_start + blocksize;
2661 bh->b_state = 0;
2662 create = 1;
2663 if (block_start >= to)
2664 create = 0;
2665 ret = get_block(inode, block_in_file + block_in_page,
2666 bh, create);
2667 if (ret)
2668 goto failed;
2669 if (!buffer_mapped(bh))
2670 is_mapped_to_disk = 0;
2671 if (buffer_new(bh))
2672 clean_bdev_bh_alias(bh);
2673 if (PageUptodate(page)) {
2674 set_buffer_uptodate(bh);
2675 continue;
2676 }
2677 if (buffer_new(bh) || !buffer_mapped(bh)) {
2678 zero_user_segments(page, block_start, from,
2679 to, block_end);
2680 continue;
2681 }
2682 if (buffer_uptodate(bh))
2683 continue; /* reiserfs does this */
2684 if (block_start < from || block_end > to) {
2685 lock_buffer(bh);
2686 bh->b_end_io = end_buffer_read_nobh;
2687 submit_bh(REQ_OP_READ, 0, bh);
2688 nr_reads++;
2689 }
2690 }
2691
2692 if (nr_reads) {
2693 /*
2694 * The page is locked, so these buffers are protected from
2695 * any VM or truncate activity. Hence we don't need to care
2696 * for the buffer_head refcounts.
2697 */
2698 for (bh = head; bh; bh = bh->b_this_page) {
2699 wait_on_buffer(bh);
2700 if (!buffer_uptodate(bh))
2701 ret = -EIO;
2702 }
2703 if (ret)
2704 goto failed;
2705 }
2706
2707 if (is_mapped_to_disk)
2708 SetPageMappedToDisk(page);
2709
2710 *fsdata = head; /* to be released by nobh_write_end */
2711
2712 return 0;
2713
2714 failed:
2715 BUG_ON(!ret);
2716 /*
2717 * Error recovery is a bit difficult. We need to zero out blocks that
2718 * were newly allocated, and dirty them to ensure they get written out.
2719 * Buffers need to be attached to the page at this point, otherwise
2720 * the handling of potential IO errors during writeout would be hard
2721 * (could try doing synchronous writeout, but what if that fails too?)
2722 */
2723 attach_nobh_buffers(page, head);
2724 page_zero_new_buffers(page, from, to);
2725
2726 out_release:
2727 unlock_page(page);
2728 put_page(page);
2729 *pagep = NULL;
2730
2731 return ret;
2732 }
2733 EXPORT_SYMBOL(nobh_write_begin);
2734
2735 int nobh_write_end(struct file *file, struct address_space *mapping,
2736 loff_t pos, unsigned len, unsigned copied,
2737 struct page *page, void *fsdata)
2738 {
2739 struct inode *inode = page->mapping->host;
2740 struct buffer_head *head = fsdata;
2741 struct buffer_head *bh;
2742 BUG_ON(fsdata != NULL && page_has_buffers(page));
2743
2744 if (unlikely(copied < len) && head)
2745 attach_nobh_buffers(page, head);
2746 if (page_has_buffers(page))
2747 return generic_write_end(file, mapping, pos, len,
2748 copied, page, fsdata);
2749
2750 SetPageUptodate(page);
2751 set_page_dirty(page);
2752 if (pos+copied > inode->i_size) {
2753 i_size_write(inode, pos+copied);
2754 mark_inode_dirty(inode);
2755 }
2756
2757 unlock_page(page);
2758 put_page(page);
2759
2760 while (head) {
2761 bh = head;
2762 head = head->b_this_page;
2763 free_buffer_head(bh);
2764 }
2765
2766 return copied;
2767 }
2768 EXPORT_SYMBOL(nobh_write_end);
2769
2770 /*
2771 * nobh_writepage() - based on block_full_write_page() except
2772 * that it tries to operate without attaching bufferheads to
2773 * the page.
2774 */
2775 int nobh_writepage(struct page *page, get_block_t *get_block,
2776 struct writeback_control *wbc)
2777 {
2778 struct inode * const inode = page->mapping->host;
2779 loff_t i_size = i_size_read(inode);
2780 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2781 unsigned offset;
2782 int ret;
2783
2784 /* Is the page fully inside i_size? */
2785 if (page->index < end_index)
2786 goto out;
2787
2788 /* Is the page fully outside i_size? (truncate in progress) */
2789 offset = i_size & (PAGE_SIZE-1);
2790 if (page->index >= end_index+1 || !offset) {
2791 /*
2792 * The page may have dirty, unmapped buffers. For example,
2793 * they may have been added in ext3_writepage(). Make them
2794 * freeable here, so the page does not leak.
2795 */
2796 #if 0
2797 /* Not really sure about this - do we need this ? */
2798 if (page->mapping->a_ops->invalidatepage)
2799 page->mapping->a_ops->invalidatepage(page, offset);
2800 #endif
2801 unlock_page(page);
2802 return 0; /* don't care */
2803 }
2804
2805 /*
2806 * The page straddles i_size. It must be zeroed out on each and every
2807 * writepage invocation because it may be mmapped. "A file is mapped
2808 * in multiples of the page size. For a file that is not a multiple of
2809 * the page size, the remaining memory is zeroed when mapped, and
2810 * writes to that region are not written out to the file."
2811 */
2812 zero_user_segment(page, offset, PAGE_SIZE);
2813 out:
2814 ret = mpage_writepage(page, get_block, wbc);
2815 if (ret == -EAGAIN)
2816 ret = __block_write_full_page(inode, page, get_block, wbc,
2817 end_buffer_async_write);
2818 return ret;
2819 }
2820 EXPORT_SYMBOL(nobh_writepage);
2821
2822 int nobh_truncate_page(struct address_space *mapping,
2823 loff_t from, get_block_t *get_block)
2824 {
2825 pgoff_t index = from >> PAGE_SHIFT;
2826 unsigned offset = from & (PAGE_SIZE-1);
2827 unsigned blocksize;
2828 sector_t iblock;
2829 unsigned length, pos;
2830 struct inode *inode = mapping->host;
2831 struct page *page;
2832 struct buffer_head map_bh;
2833 int err;
2834
2835 blocksize = i_blocksize(inode);
2836 length = offset & (blocksize - 1);
2837
2838 /* Block boundary? Nothing to do */
2839 if (!length)
2840 return 0;
2841
2842 length = blocksize - length;
2843 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2844
2845 page = grab_cache_page(mapping, index);
2846 err = -ENOMEM;
2847 if (!page)
2848 goto out;
2849
2850 if (page_has_buffers(page)) {
2851 has_buffers:
2852 unlock_page(page);
2853 put_page(page);
2854 return block_truncate_page(mapping, from, get_block);
2855 }
2856
2857 /* Find the buffer that contains "offset" */
2858 pos = blocksize;
2859 while (offset >= pos) {
2860 iblock++;
2861 pos += blocksize;
2862 }
2863
2864 map_bh.b_size = blocksize;
2865 map_bh.b_state = 0;
2866 err = get_block(inode, iblock, &map_bh, 0);
2867 if (err)
2868 goto unlock;
2869 /* unmapped? It's a hole - nothing to do */
2870 if (!buffer_mapped(&map_bh))
2871 goto unlock;
2872
2873 /* Ok, it's mapped. Make sure it's up-to-date */
2874 if (!PageUptodate(page)) {
2875 err = mapping->a_ops->readpage(NULL, page);
2876 if (err) {
2877 put_page(page);
2878 goto out;
2879 }
2880 lock_page(page);
2881 if (!PageUptodate(page)) {
2882 err = -EIO;
2883 goto unlock;
2884 }
2885 if (page_has_buffers(page))
2886 goto has_buffers;
2887 }
2888 zero_user(page, offset, length);
2889 set_page_dirty(page);
2890 err = 0;
2891
2892 unlock:
2893 unlock_page(page);
2894 put_page(page);
2895 out:
2896 return err;
2897 }
2898 EXPORT_SYMBOL(nobh_truncate_page);
2899
2900 int block_truncate_page(struct address_space *mapping,
2901 loff_t from, get_block_t *get_block)
2902 {
2903 pgoff_t index = from >> PAGE_SHIFT;
2904 unsigned offset = from & (PAGE_SIZE-1);
2905 unsigned blocksize;
2906 sector_t iblock;
2907 unsigned length, pos;
2908 struct inode *inode = mapping->host;
2909 struct page *page;
2910 struct buffer_head *bh;
2911 int err;
2912
2913 blocksize = i_blocksize(inode);
2914 length = offset & (blocksize - 1);
2915
2916 /* Block boundary? Nothing to do */
2917 if (!length)
2918 return 0;
2919
2920 length = blocksize - length;
2921 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2922
2923 page = grab_cache_page(mapping, index);
2924 err = -ENOMEM;
2925 if (!page)
2926 goto out;
2927
2928 if (!page_has_buffers(page))
2929 create_empty_buffers(page, blocksize, 0);
2930
2931 /* Find the buffer that contains "offset" */
2932 bh = page_buffers(page);
2933 pos = blocksize;
2934 while (offset >= pos) {
2935 bh = bh->b_this_page;
2936 iblock++;
2937 pos += blocksize;
2938 }
2939
2940 err = 0;
2941 if (!buffer_mapped(bh)) {
2942 WARN_ON(bh->b_size != blocksize);
2943 err = get_block(inode, iblock, bh, 0);
2944 if (err)
2945 goto unlock;
2946 /* unmapped? It's a hole - nothing to do */
2947 if (!buffer_mapped(bh))
2948 goto unlock;
2949 }
2950
2951 /* Ok, it's mapped. Make sure it's up-to-date */
2952 if (PageUptodate(page))
2953 set_buffer_uptodate(bh);
2954
2955 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2956 err = -EIO;
2957 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2958 wait_on_buffer(bh);
2959 /* Uhhuh. Read error. Complain and punt. */
2960 if (!buffer_uptodate(bh))
2961 goto unlock;
2962 }
2963
2964 zero_user(page, offset, length);
2965 mark_buffer_dirty(bh);
2966 err = 0;
2967
2968 unlock:
2969 unlock_page(page);
2970 put_page(page);
2971 out:
2972 return err;
2973 }
2974 EXPORT_SYMBOL(block_truncate_page);
2975
2976 /*
2977 * The generic ->writepage function for buffer-backed address_spaces
2978 */
2979 int block_write_full_page(struct page *page, get_block_t *get_block,
2980 struct writeback_control *wbc)
2981 {
2982 struct inode * const inode = page->mapping->host;
2983 loff_t i_size = i_size_read(inode);
2984 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2985 unsigned offset;
2986
2987 /* Is the page fully inside i_size? */
2988 if (page->index < end_index)
2989 return __block_write_full_page(inode, page, get_block, wbc,
2990 end_buffer_async_write);
2991
2992 /* Is the page fully outside i_size? (truncate in progress) */
2993 offset = i_size & (PAGE_SIZE-1);
2994 if (page->index >= end_index+1 || !offset) {
2995 /*
2996 * The page may have dirty, unmapped buffers. For example,
2997 * they may have been added in ext3_writepage(). Make them
2998 * freeable here, so the page does not leak.
2999 */
3000 do_invalidatepage(page, 0, PAGE_SIZE);
3001 unlock_page(page);
3002 return 0; /* don't care */
3003 }
3004
3005 /*
3006 * The page straddles i_size. It must be zeroed out on each and every
3007 * writepage invocation because it may be mmapped. "A file is mapped
3008 * in multiples of the page size. For a file that is not a multiple of
3009 * the page size, the remaining memory is zeroed when mapped, and
3010 * writes to that region are not written out to the file."
3011 */
3012 zero_user_segment(page, offset, PAGE_SIZE);
3013 return __block_write_full_page(inode, page, get_block, wbc,
3014 end_buffer_async_write);
3015 }
3016 EXPORT_SYMBOL(block_write_full_page);
3017
3018 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3019 get_block_t *get_block)
3020 {
3021 struct inode *inode = mapping->host;
3022 struct buffer_head tmp = {
3023 .b_size = i_blocksize(inode),
3024 };
3025
3026 get_block(inode, block, &tmp, 0);
3027 return tmp.b_blocknr;
3028 }
3029 EXPORT_SYMBOL(generic_block_bmap);
3030
3031 static void end_bio_bh_io_sync(struct bio *bio)
3032 {
3033 struct buffer_head *bh = bio->bi_private;
3034
3035 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3036 set_bit(BH_Quiet, &bh->b_state);
3037
3038 bh->b_end_io(bh, !bio->bi_status);
3039 bio_put(bio);
3040 }
3041
3042 /*
3043 * This allows us to do IO even on the odd last sectors
3044 * of a device, even if the block size is some multiple
3045 * of the physical sector size.
3046 *
3047 * We'll just truncate the bio to the size of the device,
3048 * and clear the end of the buffer head manually.
3049 *
3050 * Truly out-of-range accesses will turn into actual IO
3051 * errors, this only handles the "we need to be able to
3052 * do IO at the final sector" case.
3053 */
3054 void guard_bio_eod(int op, struct bio *bio)
3055 {
3056 sector_t maxsector;
3057 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3058 unsigned truncated_bytes;
3059 struct hd_struct *part;
3060
3061 rcu_read_lock();
3062 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3063 if (part)
3064 maxsector = part_nr_sects_read(part);
3065 else
3066 maxsector = get_capacity(bio->bi_disk);
3067 rcu_read_unlock();
3068
3069 if (!maxsector)
3070 return;
3071
3072 /*
3073 * If the *whole* IO is past the end of the device,
3074 * let it through, and the IO layer will turn it into
3075 * an EIO.
3076 */
3077 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3078 return;
3079
3080 maxsector -= bio->bi_iter.bi_sector;
3081 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3082 return;
3083
3084 /* Uhhuh. We've got a bio that straddles the device size! */
3085 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3086
3087 /* Truncate the bio.. */
3088 bio->bi_iter.bi_size -= truncated_bytes;
3089 bvec->bv_len -= truncated_bytes;
3090
3091 /* ..and clear the end of the buffer for reads */
3092 if (op == REQ_OP_READ) {
3093 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3094 truncated_bytes);
3095 }
3096 }
3097
3098 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3099 enum rw_hint write_hint, struct writeback_control *wbc)
3100 {
3101 struct bio *bio;
3102
3103 BUG_ON(!buffer_locked(bh));
3104 BUG_ON(!buffer_mapped(bh));
3105 BUG_ON(!bh->b_end_io);
3106 BUG_ON(buffer_delay(bh));
3107 BUG_ON(buffer_unwritten(bh));
3108
3109 /*
3110 * Only clear out a write error when rewriting
3111 */
3112 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3113 clear_buffer_write_io_error(bh);
3114
3115 /*
3116 * from here on down, it's all bio -- do the initial mapping,
3117 * submit_bio -> generic_make_request may further map this bio around
3118 */
3119 bio = bio_alloc(GFP_NOIO, 1);
3120
3121 if (wbc) {
3122 wbc_init_bio(wbc, bio);
3123 wbc_account_io(wbc, bh->b_page, bh->b_size);
3124 }
3125
3126 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3127 bio_set_dev(bio, bh->b_bdev);
3128 bio->bi_write_hint = write_hint;
3129
3130 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3131 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3132
3133 bio->bi_end_io = end_bio_bh_io_sync;
3134 bio->bi_private = bh;
3135
3136 /* Take care of bh's that straddle the end of the device */
3137 guard_bio_eod(op, bio);
3138
3139 if (buffer_meta(bh))
3140 op_flags |= REQ_META;
3141 if (buffer_prio(bh))
3142 op_flags |= REQ_PRIO;
3143 bio_set_op_attrs(bio, op, op_flags);
3144
3145 crypto_diskcipher_debug(BLK_BH, op_flags);
3146 if (bio->bi_opf & REQ_CRYPT)
3147 bio->bi_aux_private = bh->b_private;
3148 submit_bio(bio);
3149 return 0;
3150 }
3151
3152 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3153 {
3154 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3155 }
3156 EXPORT_SYMBOL(submit_bh);
3157
3158 /**
3159 * ll_rw_block: low-level access to block devices (DEPRECATED)
3160 * @op: whether to %READ or %WRITE
3161 * @op_flags: req_flag_bits
3162 * @nr: number of &struct buffer_heads in the array
3163 * @bhs: array of pointers to &struct buffer_head
3164 *
3165 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3166 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3167 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3168 * %REQ_RAHEAD.
3169 *
3170 * This function drops any buffer that it cannot get a lock on (with the
3171 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3172 * request, and any buffer that appears to be up-to-date when doing read
3173 * request. Further it marks as clean buffers that are processed for
3174 * writing (the buffer cache won't assume that they are actually clean
3175 * until the buffer gets unlocked).
3176 *
3177 * ll_rw_block sets b_end_io to simple completion handler that marks
3178 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3179 * any waiters.
3180 *
3181 * All of the buffers must be for the same device, and must also be a
3182 * multiple of the current approved size for the device.
3183 */
3184 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3185 {
3186 int i;
3187
3188 for (i = 0; i < nr; i++) {
3189 struct buffer_head *bh = bhs[i];
3190
3191 if (!trylock_buffer(bh))
3192 continue;
3193 if (op == WRITE) {
3194 if (test_clear_buffer_dirty(bh)) {
3195 bh->b_end_io = end_buffer_write_sync;
3196 get_bh(bh);
3197 submit_bh(op, op_flags, bh);
3198 continue;
3199 }
3200 } else {
3201 if (!buffer_uptodate(bh)) {
3202 bh->b_end_io = end_buffer_read_sync;
3203 get_bh(bh);
3204 submit_bh(op, op_flags, bh);
3205 continue;
3206 }
3207 }
3208 unlock_buffer(bh);
3209 }
3210 }
3211 EXPORT_SYMBOL(ll_rw_block);
3212
3213 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3214 {
3215 lock_buffer(bh);
3216 if (!test_clear_buffer_dirty(bh)) {
3217 unlock_buffer(bh);
3218 return;
3219 }
3220 bh->b_end_io = end_buffer_write_sync;
3221 get_bh(bh);
3222 submit_bh(REQ_OP_WRITE, op_flags, bh);
3223 }
3224 EXPORT_SYMBOL(write_dirty_buffer);
3225
3226 /*
3227 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3228 * and then start new I/O and then wait upon it. The caller must have a ref on
3229 * the buffer_head.
3230 */
3231 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3232 {
3233 int ret = 0;
3234
3235 WARN_ON(atomic_read(&bh->b_count) < 1);
3236 lock_buffer(bh);
3237 if (test_clear_buffer_dirty(bh)) {
3238 get_bh(bh);
3239 bh->b_end_io = end_buffer_write_sync;
3240 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3241 wait_on_buffer(bh);
3242 if (!ret && !buffer_uptodate(bh))
3243 ret = -EIO;
3244 } else {
3245 unlock_buffer(bh);
3246 }
3247 return ret;
3248 }
3249 EXPORT_SYMBOL(__sync_dirty_buffer);
3250
3251 int sync_dirty_buffer(struct buffer_head *bh)
3252 {
3253 return __sync_dirty_buffer(bh, REQ_SYNC);
3254 }
3255 EXPORT_SYMBOL(sync_dirty_buffer);
3256
3257 /*
3258 * try_to_free_buffers() checks if all the buffers on this particular page
3259 * are unused, and releases them if so.
3260 *
3261 * Exclusion against try_to_free_buffers may be obtained by either
3262 * locking the page or by holding its mapping's private_lock.
3263 *
3264 * If the page is dirty but all the buffers are clean then we need to
3265 * be sure to mark the page clean as well. This is because the page
3266 * may be against a block device, and a later reattachment of buffers
3267 * to a dirty page will set *all* buffers dirty. Which would corrupt
3268 * filesystem data on the same device.
3269 *
3270 * The same applies to regular filesystem pages: if all the buffers are
3271 * clean then we set the page clean and proceed. To do that, we require
3272 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3273 * private_lock.
3274 *
3275 * try_to_free_buffers() is non-blocking.
3276 */
3277 static inline int buffer_busy(struct buffer_head *bh)
3278 {
3279 return atomic_read(&bh->b_count) |
3280 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3281 }
3282
3283 static int
3284 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3285 {
3286 struct buffer_head *head = page_buffers(page);
3287 struct buffer_head *bh;
3288
3289 bh = head;
3290 do {
3291 if (buffer_busy(bh))
3292 goto failed;
3293 bh = bh->b_this_page;
3294 } while (bh != head);
3295
3296 do {
3297 struct buffer_head *next = bh->b_this_page;
3298
3299 if (bh->b_assoc_map)
3300 __remove_assoc_queue(bh);
3301 bh = next;
3302 } while (bh != head);
3303 *buffers_to_free = head;
3304 __clear_page_buffers(page);
3305 return 1;
3306 failed:
3307 return 0;
3308 }
3309
3310 int try_to_free_buffers(struct page *page)
3311 {
3312 struct address_space * const mapping = page->mapping;
3313 struct buffer_head *buffers_to_free = NULL;
3314 int ret = 0;
3315
3316 BUG_ON(!PageLocked(page));
3317 if (PageWriteback(page))
3318 return 0;
3319
3320 if (mapping == NULL) { /* can this still happen? */
3321 ret = drop_buffers(page, &buffers_to_free);
3322 goto out;
3323 }
3324
3325 spin_lock(&mapping->private_lock);
3326 ret = drop_buffers(page, &buffers_to_free);
3327
3328 /*
3329 * If the filesystem writes its buffers by hand (eg ext3)
3330 * then we can have clean buffers against a dirty page. We
3331 * clean the page here; otherwise the VM will never notice
3332 * that the filesystem did any IO at all.
3333 *
3334 * Also, during truncate, discard_buffer will have marked all
3335 * the page's buffers clean. We discover that here and clean
3336 * the page also.
3337 *
3338 * private_lock must be held over this entire operation in order
3339 * to synchronise against __set_page_dirty_buffers and prevent the
3340 * dirty bit from being lost.
3341 */
3342 if (ret)
3343 cancel_dirty_page(page);
3344 spin_unlock(&mapping->private_lock);
3345 out:
3346 if (buffers_to_free) {
3347 struct buffer_head *bh = buffers_to_free;
3348
3349 do {
3350 struct buffer_head *next = bh->b_this_page;
3351 free_buffer_head(bh);
3352 bh = next;
3353 } while (bh != buffers_to_free);
3354 }
3355 return ret;
3356 }
3357 EXPORT_SYMBOL(try_to_free_buffers);
3358
3359 /*
3360 * There are no bdflush tunables left. But distributions are
3361 * still running obsolete flush daemons, so we terminate them here.
3362 *
3363 * Use of bdflush() is deprecated and will be removed in a future kernel.
3364 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3365 */
3366 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3367 {
3368 static int msg_count;
3369
3370 if (!capable(CAP_SYS_ADMIN))
3371 return -EPERM;
3372
3373 if (msg_count < 5) {
3374 msg_count++;
3375 printk(KERN_INFO
3376 "warning: process `%s' used the obsolete bdflush"
3377 " system call\n", current->comm);
3378 printk(KERN_INFO "Fix your initscripts?\n");
3379 }
3380
3381 if (func == 1)
3382 do_exit(0);
3383 return 0;
3384 }
3385
3386 /*
3387 * Buffer-head allocation
3388 */
3389 static struct kmem_cache *bh_cachep __read_mostly;
3390
3391 /*
3392 * Once the number of bh's in the machine exceeds this level, we start
3393 * stripping them in writeback.
3394 */
3395 static unsigned long max_buffer_heads;
3396
3397 int buffer_heads_over_limit;
3398
3399 struct bh_accounting {
3400 int nr; /* Number of live bh's */
3401 int ratelimit; /* Limit cacheline bouncing */
3402 };
3403
3404 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3405
3406 static void recalc_bh_state(void)
3407 {
3408 int i;
3409 int tot = 0;
3410
3411 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3412 return;
3413 __this_cpu_write(bh_accounting.ratelimit, 0);
3414 for_each_online_cpu(i)
3415 tot += per_cpu(bh_accounting, i).nr;
3416 buffer_heads_over_limit = (tot > max_buffer_heads);
3417 }
3418
3419 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3420 {
3421 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3422 if (ret) {
3423 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3424 preempt_disable();
3425 __this_cpu_inc(bh_accounting.nr);
3426 recalc_bh_state();
3427 preempt_enable();
3428 }
3429 return ret;
3430 }
3431 EXPORT_SYMBOL(alloc_buffer_head);
3432
3433 void free_buffer_head(struct buffer_head *bh)
3434 {
3435 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3436 kmem_cache_free(bh_cachep, bh);
3437 preempt_disable();
3438 __this_cpu_dec(bh_accounting.nr);
3439 recalc_bh_state();
3440 preempt_enable();
3441 }
3442 EXPORT_SYMBOL(free_buffer_head);
3443
3444 static int buffer_exit_cpu_dead(unsigned int cpu)
3445 {
3446 int i;
3447 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3448
3449 for (i = 0; i < BH_LRU_SIZE; i++) {
3450 brelse(b->bhs[i]);
3451 b->bhs[i] = NULL;
3452 }
3453 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3454 per_cpu(bh_accounting, cpu).nr = 0;
3455 return 0;
3456 }
3457
3458 /**
3459 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3460 * @bh: struct buffer_head
3461 *
3462 * Return true if the buffer is up-to-date and false,
3463 * with the buffer locked, if not.
3464 */
3465 int bh_uptodate_or_lock(struct buffer_head *bh)
3466 {
3467 if (!buffer_uptodate(bh)) {
3468 lock_buffer(bh);
3469 if (!buffer_uptodate(bh))
3470 return 0;
3471 unlock_buffer(bh);
3472 }
3473 return 1;
3474 }
3475 EXPORT_SYMBOL(bh_uptodate_or_lock);
3476
3477 /**
3478 * bh_submit_read - Submit a locked buffer for reading
3479 * @bh: struct buffer_head
3480 *
3481 * Returns zero on success and -EIO on error.
3482 */
3483 int bh_submit_read(struct buffer_head *bh)
3484 {
3485 BUG_ON(!buffer_locked(bh));
3486
3487 if (buffer_uptodate(bh)) {
3488 unlock_buffer(bh);
3489 return 0;
3490 }
3491
3492 get_bh(bh);
3493 bh->b_end_io = end_buffer_read_sync;
3494 submit_bh(REQ_OP_READ, 0, bh);
3495 wait_on_buffer(bh);
3496 if (buffer_uptodate(bh))
3497 return 0;
3498 return -EIO;
3499 }
3500 EXPORT_SYMBOL(bh_submit_read);
3501
3502 /*
3503 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3504 *
3505 * Returns the offset within the file on success, and -ENOENT otherwise.
3506 */
3507 static loff_t
3508 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3509 {
3510 loff_t offset = page_offset(page);
3511 struct buffer_head *bh, *head;
3512 bool seek_data = whence == SEEK_DATA;
3513
3514 if (lastoff < offset)
3515 lastoff = offset;
3516
3517 bh = head = page_buffers(page);
3518 do {
3519 offset += bh->b_size;
3520 if (lastoff >= offset)
3521 continue;
3522
3523 /*
3524 * Unwritten extents that have data in the page cache covering
3525 * them can be identified by the BH_Unwritten state flag.
3526 * Pages with multiple buffers might have a mix of holes, data
3527 * and unwritten extents - any buffer with valid data in it
3528 * should have BH_Uptodate flag set on it.
3529 */
3530
3531 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3532 return lastoff;
3533
3534 lastoff = offset;
3535 } while ((bh = bh->b_this_page) != head);
3536 return -ENOENT;
3537 }
3538
3539 /*
3540 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3541 *
3542 * Within unwritten extents, the page cache determines which parts are holes
3543 * and which are data: unwritten and uptodate buffer heads count as data;
3544 * everything else counts as a hole.
3545 *
3546 * Returns the resulting offset on successs, and -ENOENT otherwise.
3547 */
3548 loff_t
3549 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3550 int whence)
3551 {
3552 pgoff_t index = offset >> PAGE_SHIFT;
3553 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3554 loff_t lastoff = offset;
3555 struct pagevec pvec;
3556
3557 if (length <= 0)
3558 return -ENOENT;
3559
3560 pagevec_init(&pvec, 0);
3561
3562 do {
3563 unsigned nr_pages, i;
3564
3565 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3566 end - 1);
3567 if (nr_pages == 0)
3568 break;
3569
3570 for (i = 0; i < nr_pages; i++) {
3571 struct page *page = pvec.pages[i];
3572
3573 /*
3574 * At this point, the page may be truncated or
3575 * invalidated (changing page->mapping to NULL), or
3576 * even swizzled back from swapper_space to tmpfs file
3577 * mapping. However, page->index will not change
3578 * because we have a reference on the page.
3579 *
3580 * If current page offset is beyond where we've ended,
3581 * we've found a hole.
3582 */
3583 if (whence == SEEK_HOLE &&
3584 lastoff < page_offset(page))
3585 goto check_range;
3586
3587 lock_page(page);
3588 if (likely(page->mapping == inode->i_mapping) &&
3589 page_has_buffers(page)) {
3590 lastoff = page_seek_hole_data(page, lastoff, whence);
3591 if (lastoff >= 0) {
3592 unlock_page(page);
3593 goto check_range;
3594 }
3595 }
3596 unlock_page(page);
3597 lastoff = page_offset(page) + PAGE_SIZE;
3598 }
3599 pagevec_release(&pvec);
3600 } while (index < end);
3601
3602 /* When no page at lastoff and we are not done, we found a hole. */
3603 if (whence != SEEK_HOLE)
3604 goto not_found;
3605
3606 check_range:
3607 if (lastoff < offset + length)
3608 goto out;
3609 not_found:
3610 lastoff = -ENOENT;
3611 out:
3612 pagevec_release(&pvec);
3613 return lastoff;
3614 }
3615
3616 void __init buffer_init(void)
3617 {
3618 unsigned long nrpages;
3619 int ret;
3620
3621 bh_cachep = kmem_cache_create("buffer_head",
3622 sizeof(struct buffer_head), 0,
3623 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3624 SLAB_MEM_SPREAD),
3625 NULL);
3626
3627 /*
3628 * Limit the bh occupancy to 10% of ZONE_NORMAL
3629 */
3630 nrpages = (nr_free_buffer_pages() * 10) / 100;
3631 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3632 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3633 NULL, buffer_exit_cpu_dead);
3634 WARN_ON(ret < 0);
3635 }