Merge 4.14.70 into android-4.14-p
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / acpi / scan.c
1 /*
2 * scan.c - support for transforming the ACPI namespace into individual objects
3 */
4
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/acpi.h>
10 #include <linux/acpi_iort.h>
11 #include <linux/signal.h>
12 #include <linux/kthread.h>
13 #include <linux/dmi.h>
14 #include <linux/nls.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/platform_data/x86/apple.h>
17
18 #include <asm/pgtable.h>
19
20 #include "internal.h"
21
22 #define _COMPONENT ACPI_BUS_COMPONENT
23 ACPI_MODULE_NAME("scan");
24 extern struct acpi_device *acpi_root;
25
26 #define ACPI_BUS_CLASS "system_bus"
27 #define ACPI_BUS_HID "LNXSYBUS"
28 #define ACPI_BUS_DEVICE_NAME "System Bus"
29
30 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent)
31
32 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
33
34 static const char *dummy_hid = "device";
35
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44
45 /*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50 static u64 spcr_uart_addr;
51
52 struct acpi_dep_data {
53 struct list_head node;
54 acpi_handle master;
55 acpi_handle slave;
56 };
57
58 void acpi_scan_lock_acquire(void)
59 {
60 mutex_lock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
63
64 void acpi_scan_lock_release(void)
65 {
66 mutex_unlock(&acpi_scan_lock);
67 }
68 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
69
70 void acpi_lock_hp_context(void)
71 {
72 mutex_lock(&acpi_hp_context_lock);
73 }
74
75 void acpi_unlock_hp_context(void)
76 {
77 mutex_unlock(&acpi_hp_context_lock);
78 }
79
80 void acpi_initialize_hp_context(struct acpi_device *adev,
81 struct acpi_hotplug_context *hp,
82 int (*notify)(struct acpi_device *, u32),
83 void (*uevent)(struct acpi_device *, u32))
84 {
85 acpi_lock_hp_context();
86 hp->notify = notify;
87 hp->uevent = uevent;
88 acpi_set_hp_context(adev, hp);
89 acpi_unlock_hp_context();
90 }
91 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
92
93 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
94 {
95 if (!handler)
96 return -EINVAL;
97
98 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
99 return 0;
100 }
101
102 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
103 const char *hotplug_profile_name)
104 {
105 int error;
106
107 error = acpi_scan_add_handler(handler);
108 if (error)
109 return error;
110
111 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
112 return 0;
113 }
114
115 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
116 {
117 struct acpi_device_physical_node *pn;
118 bool offline = true;
119
120 /*
121 * acpi_container_offline() calls this for all of the container's
122 * children under the container's physical_node_lock lock.
123 */
124 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
125
126 list_for_each_entry(pn, &adev->physical_node_list, node)
127 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
128 if (uevent)
129 kobject_uevent(&pn->dev->kobj, KOBJ_CHANGE);
130
131 offline = false;
132 break;
133 }
134
135 mutex_unlock(&adev->physical_node_lock);
136 return offline;
137 }
138
139 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
140 void **ret_p)
141 {
142 struct acpi_device *device = NULL;
143 struct acpi_device_physical_node *pn;
144 bool second_pass = (bool)data;
145 acpi_status status = AE_OK;
146
147 if (acpi_bus_get_device(handle, &device))
148 return AE_OK;
149
150 if (device->handler && !device->handler->hotplug.enabled) {
151 *ret_p = &device->dev;
152 return AE_SUPPORT;
153 }
154
155 mutex_lock(&device->physical_node_lock);
156
157 list_for_each_entry(pn, &device->physical_node_list, node) {
158 int ret;
159
160 if (second_pass) {
161 /* Skip devices offlined by the first pass. */
162 if (pn->put_online)
163 continue;
164 } else {
165 pn->put_online = false;
166 }
167 ret = device_offline(pn->dev);
168 if (ret >= 0) {
169 pn->put_online = !ret;
170 } else {
171 *ret_p = pn->dev;
172 if (second_pass) {
173 status = AE_ERROR;
174 break;
175 }
176 }
177 }
178
179 mutex_unlock(&device->physical_node_lock);
180
181 return status;
182 }
183
184 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
185 void **ret_p)
186 {
187 struct acpi_device *device = NULL;
188 struct acpi_device_physical_node *pn;
189
190 if (acpi_bus_get_device(handle, &device))
191 return AE_OK;
192
193 mutex_lock(&device->physical_node_lock);
194
195 list_for_each_entry(pn, &device->physical_node_list, node)
196 if (pn->put_online) {
197 device_online(pn->dev);
198 pn->put_online = false;
199 }
200
201 mutex_unlock(&device->physical_node_lock);
202
203 return AE_OK;
204 }
205
206 static int acpi_scan_try_to_offline(struct acpi_device *device)
207 {
208 acpi_handle handle = device->handle;
209 struct device *errdev = NULL;
210 acpi_status status;
211
212 /*
213 * Carry out two passes here and ignore errors in the first pass,
214 * because if the devices in question are memory blocks and
215 * CONFIG_MEMCG is set, one of the blocks may hold data structures
216 * that the other blocks depend on, but it is not known in advance which
217 * block holds them.
218 *
219 * If the first pass is successful, the second one isn't needed, though.
220 */
221 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 NULL, acpi_bus_offline, (void *)false,
223 (void **)&errdev);
224 if (status == AE_SUPPORT) {
225 dev_warn(errdev, "Offline disabled.\n");
226 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
227 acpi_bus_online, NULL, NULL, NULL);
228 return -EPERM;
229 }
230 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
231 if (errdev) {
232 errdev = NULL;
233 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
234 NULL, acpi_bus_offline, (void *)true,
235 (void **)&errdev);
236 if (!errdev)
237 acpi_bus_offline(handle, 0, (void *)true,
238 (void **)&errdev);
239
240 if (errdev) {
241 dev_warn(errdev, "Offline failed.\n");
242 acpi_bus_online(handle, 0, NULL, NULL);
243 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
244 ACPI_UINT32_MAX, acpi_bus_online,
245 NULL, NULL, NULL);
246 return -EBUSY;
247 }
248 }
249 return 0;
250 }
251
252 static int acpi_scan_hot_remove(struct acpi_device *device)
253 {
254 acpi_handle handle = device->handle;
255 unsigned long long sta;
256 acpi_status status;
257
258 if (device->handler && device->handler->hotplug.demand_offline) {
259 if (!acpi_scan_is_offline(device, true))
260 return -EBUSY;
261 } else {
262 int error = acpi_scan_try_to_offline(device);
263 if (error)
264 return error;
265 }
266
267 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 "Hot-removing device %s...\n", dev_name(&device->dev)));
269
270 acpi_bus_trim(device);
271
272 acpi_evaluate_lck(handle, 0);
273 /*
274 * TBD: _EJD support.
275 */
276 status = acpi_evaluate_ej0(handle);
277 if (status == AE_NOT_FOUND)
278 return -ENODEV;
279 else if (ACPI_FAILURE(status))
280 return -EIO;
281
282 /*
283 * Verify if eject was indeed successful. If not, log an error
284 * message. No need to call _OST since _EJ0 call was made OK.
285 */
286 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
287 if (ACPI_FAILURE(status)) {
288 acpi_handle_warn(handle,
289 "Status check after eject failed (0x%x)\n", status);
290 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
291 acpi_handle_warn(handle,
292 "Eject incomplete - status 0x%llx\n", sta);
293 }
294
295 return 0;
296 }
297
298 static int acpi_scan_device_not_present(struct acpi_device *adev)
299 {
300 if (!acpi_device_enumerated(adev)) {
301 dev_warn(&adev->dev, "Still not present\n");
302 return -EALREADY;
303 }
304 acpi_bus_trim(adev);
305 return 0;
306 }
307
308 static int acpi_scan_device_check(struct acpi_device *adev)
309 {
310 int error;
311
312 acpi_bus_get_status(adev);
313 if (adev->status.present || adev->status.functional) {
314 /*
315 * This function is only called for device objects for which
316 * matching scan handlers exist. The only situation in which
317 * the scan handler is not attached to this device object yet
318 * is when the device has just appeared (either it wasn't
319 * present at all before or it was removed and then added
320 * again).
321 */
322 if (adev->handler) {
323 dev_warn(&adev->dev, "Already enumerated\n");
324 return -EALREADY;
325 }
326 error = acpi_bus_scan(adev->handle);
327 if (error) {
328 dev_warn(&adev->dev, "Namespace scan failure\n");
329 return error;
330 }
331 if (!adev->handler) {
332 dev_warn(&adev->dev, "Enumeration failure\n");
333 error = -ENODEV;
334 }
335 } else {
336 error = acpi_scan_device_not_present(adev);
337 }
338 return error;
339 }
340
341 static int acpi_scan_bus_check(struct acpi_device *adev)
342 {
343 struct acpi_scan_handler *handler = adev->handler;
344 struct acpi_device *child;
345 int error;
346
347 acpi_bus_get_status(adev);
348 if (!(adev->status.present || adev->status.functional)) {
349 acpi_scan_device_not_present(adev);
350 return 0;
351 }
352 if (handler && handler->hotplug.scan_dependent)
353 return handler->hotplug.scan_dependent(adev);
354
355 error = acpi_bus_scan(adev->handle);
356 if (error) {
357 dev_warn(&adev->dev, "Namespace scan failure\n");
358 return error;
359 }
360 list_for_each_entry(child, &adev->children, node) {
361 error = acpi_scan_bus_check(child);
362 if (error)
363 return error;
364 }
365 return 0;
366 }
367
368 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
369 {
370 switch (type) {
371 case ACPI_NOTIFY_BUS_CHECK:
372 return acpi_scan_bus_check(adev);
373 case ACPI_NOTIFY_DEVICE_CHECK:
374 return acpi_scan_device_check(adev);
375 case ACPI_NOTIFY_EJECT_REQUEST:
376 case ACPI_OST_EC_OSPM_EJECT:
377 if (adev->handler && !adev->handler->hotplug.enabled) {
378 dev_info(&adev->dev, "Eject disabled\n");
379 return -EPERM;
380 }
381 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
382 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
383 return acpi_scan_hot_remove(adev);
384 }
385 return -EINVAL;
386 }
387
388 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
389 {
390 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
391 int error = -ENODEV;
392
393 lock_device_hotplug();
394 mutex_lock(&acpi_scan_lock);
395
396 /*
397 * The device object's ACPI handle cannot become invalid as long as we
398 * are holding acpi_scan_lock, but it might have become invalid before
399 * that lock was acquired.
400 */
401 if (adev->handle == INVALID_ACPI_HANDLE)
402 goto err_out;
403
404 if (adev->flags.is_dock_station) {
405 error = dock_notify(adev, src);
406 } else if (adev->flags.hotplug_notify) {
407 error = acpi_generic_hotplug_event(adev, src);
408 } else {
409 int (*notify)(struct acpi_device *, u32);
410
411 acpi_lock_hp_context();
412 notify = adev->hp ? adev->hp->notify : NULL;
413 acpi_unlock_hp_context();
414 /*
415 * There may be additional notify handlers for device objects
416 * without the .event() callback, so ignore them here.
417 */
418 if (notify)
419 error = notify(adev, src);
420 else
421 goto out;
422 }
423 switch (error) {
424 case 0:
425 ost_code = ACPI_OST_SC_SUCCESS;
426 break;
427 case -EPERM:
428 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
429 break;
430 case -EBUSY:
431 ost_code = ACPI_OST_SC_DEVICE_BUSY;
432 break;
433 default:
434 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
435 break;
436 }
437
438 err_out:
439 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
440
441 out:
442 acpi_bus_put_acpi_device(adev);
443 mutex_unlock(&acpi_scan_lock);
444 unlock_device_hotplug();
445 }
446
447 static void acpi_free_power_resources_lists(struct acpi_device *device)
448 {
449 int i;
450
451 if (device->wakeup.flags.valid)
452 acpi_power_resources_list_free(&device->wakeup.resources);
453
454 if (!device->power.flags.power_resources)
455 return;
456
457 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
458 struct acpi_device_power_state *ps = &device->power.states[i];
459 acpi_power_resources_list_free(&ps->resources);
460 }
461 }
462
463 static void acpi_device_release(struct device *dev)
464 {
465 struct acpi_device *acpi_dev = to_acpi_device(dev);
466
467 acpi_free_properties(acpi_dev);
468 acpi_free_pnp_ids(&acpi_dev->pnp);
469 acpi_free_power_resources_lists(acpi_dev);
470 kfree(acpi_dev);
471 }
472
473 static void acpi_device_del(struct acpi_device *device)
474 {
475 struct acpi_device_bus_id *acpi_device_bus_id;
476
477 mutex_lock(&acpi_device_lock);
478 if (device->parent)
479 list_del(&device->node);
480
481 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
482 if (!strcmp(acpi_device_bus_id->bus_id,
483 acpi_device_hid(device))) {
484 if (acpi_device_bus_id->instance_no > 0)
485 acpi_device_bus_id->instance_no--;
486 else {
487 list_del(&acpi_device_bus_id->node);
488 kfree(acpi_device_bus_id);
489 }
490 break;
491 }
492
493 list_del(&device->wakeup_list);
494 mutex_unlock(&acpi_device_lock);
495
496 acpi_power_add_remove_device(device, false);
497 acpi_device_remove_files(device);
498 if (device->remove)
499 device->remove(device);
500
501 device_del(&device->dev);
502 }
503
504 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
505
506 static LIST_HEAD(acpi_device_del_list);
507 static DEFINE_MUTEX(acpi_device_del_lock);
508
509 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
510 {
511 for (;;) {
512 struct acpi_device *adev;
513
514 mutex_lock(&acpi_device_del_lock);
515
516 if (list_empty(&acpi_device_del_list)) {
517 mutex_unlock(&acpi_device_del_lock);
518 break;
519 }
520 adev = list_first_entry(&acpi_device_del_list,
521 struct acpi_device, del_list);
522 list_del(&adev->del_list);
523
524 mutex_unlock(&acpi_device_del_lock);
525
526 blocking_notifier_call_chain(&acpi_reconfig_chain,
527 ACPI_RECONFIG_DEVICE_REMOVE, adev);
528
529 acpi_device_del(adev);
530 /*
531 * Drop references to all power resources that might have been
532 * used by the device.
533 */
534 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
535 put_device(&adev->dev);
536 }
537 }
538
539 /**
540 * acpi_scan_drop_device - Drop an ACPI device object.
541 * @handle: Handle of an ACPI namespace node, not used.
542 * @context: Address of the ACPI device object to drop.
543 *
544 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
545 * namespace node the device object pointed to by @context is attached to.
546 *
547 * The unregistration is carried out asynchronously to avoid running
548 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
549 * ensure the correct ordering (the device objects must be unregistered in the
550 * same order in which the corresponding namespace nodes are deleted).
551 */
552 static void acpi_scan_drop_device(acpi_handle handle, void *context)
553 {
554 static DECLARE_WORK(work, acpi_device_del_work_fn);
555 struct acpi_device *adev = context;
556
557 mutex_lock(&acpi_device_del_lock);
558
559 /*
560 * Use the ACPI hotplug workqueue which is ordered, so this work item
561 * won't run after any hotplug work items submitted subsequently. That
562 * prevents attempts to register device objects identical to those being
563 * deleted from happening concurrently (such attempts result from
564 * hotplug events handled via the ACPI hotplug workqueue). It also will
565 * run after all of the work items submitted previosuly, which helps
566 * those work items to ensure that they are not accessing stale device
567 * objects.
568 */
569 if (list_empty(&acpi_device_del_list))
570 acpi_queue_hotplug_work(&work);
571
572 list_add_tail(&adev->del_list, &acpi_device_del_list);
573 /* Make acpi_ns_validate_handle() return NULL for this handle. */
574 adev->handle = INVALID_ACPI_HANDLE;
575
576 mutex_unlock(&acpi_device_del_lock);
577 }
578
579 static int acpi_get_device_data(acpi_handle handle, struct acpi_device **device,
580 void (*callback)(void *))
581 {
582 acpi_status status;
583
584 if (!device)
585 return -EINVAL;
586
587 status = acpi_get_data_full(handle, acpi_scan_drop_device,
588 (void **)device, callback);
589 if (ACPI_FAILURE(status) || !*device) {
590 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n",
591 handle));
592 return -ENODEV;
593 }
594 return 0;
595 }
596
597 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
598 {
599 return acpi_get_device_data(handle, device, NULL);
600 }
601 EXPORT_SYMBOL(acpi_bus_get_device);
602
603 static void get_acpi_device(void *dev)
604 {
605 if (dev)
606 get_device(&((struct acpi_device *)dev)->dev);
607 }
608
609 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
610 {
611 struct acpi_device *adev = NULL;
612
613 acpi_get_device_data(handle, &adev, get_acpi_device);
614 return adev;
615 }
616
617 void acpi_bus_put_acpi_device(struct acpi_device *adev)
618 {
619 put_device(&adev->dev);
620 }
621
622 int acpi_device_add(struct acpi_device *device,
623 void (*release)(struct device *))
624 {
625 int result;
626 struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
627 int found = 0;
628
629 if (device->handle) {
630 acpi_status status;
631
632 status = acpi_attach_data(device->handle, acpi_scan_drop_device,
633 device);
634 if (ACPI_FAILURE(status)) {
635 acpi_handle_err(device->handle,
636 "Unable to attach device data\n");
637 return -ENODEV;
638 }
639 }
640
641 /*
642 * Linkage
643 * -------
644 * Link this device to its parent and siblings.
645 */
646 INIT_LIST_HEAD(&device->children);
647 INIT_LIST_HEAD(&device->node);
648 INIT_LIST_HEAD(&device->wakeup_list);
649 INIT_LIST_HEAD(&device->physical_node_list);
650 INIT_LIST_HEAD(&device->del_list);
651 mutex_init(&device->physical_node_lock);
652
653 new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
654 if (!new_bus_id) {
655 pr_err(PREFIX "Memory allocation error\n");
656 result = -ENOMEM;
657 goto err_detach;
658 }
659
660 mutex_lock(&acpi_device_lock);
661 /*
662 * Find suitable bus_id and instance number in acpi_bus_id_list
663 * If failed, create one and link it into acpi_bus_id_list
664 */
665 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
666 if (!strcmp(acpi_device_bus_id->bus_id,
667 acpi_device_hid(device))) {
668 acpi_device_bus_id->instance_no++;
669 found = 1;
670 kfree(new_bus_id);
671 break;
672 }
673 }
674 if (!found) {
675 acpi_device_bus_id = new_bus_id;
676 strcpy(acpi_device_bus_id->bus_id, acpi_device_hid(device));
677 acpi_device_bus_id->instance_no = 0;
678 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
679 }
680 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
681
682 if (device->parent)
683 list_add_tail(&device->node, &device->parent->children);
684
685 if (device->wakeup.flags.valid)
686 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
687 mutex_unlock(&acpi_device_lock);
688
689 if (device->parent)
690 device->dev.parent = &device->parent->dev;
691 device->dev.bus = &acpi_bus_type;
692 device->dev.release = release;
693 result = device_add(&device->dev);
694 if (result) {
695 dev_err(&device->dev, "Error registering device\n");
696 goto err;
697 }
698
699 result = acpi_device_setup_files(device);
700 if (result)
701 printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n",
702 dev_name(&device->dev));
703
704 return 0;
705
706 err:
707 mutex_lock(&acpi_device_lock);
708 if (device->parent)
709 list_del(&device->node);
710 list_del(&device->wakeup_list);
711 mutex_unlock(&acpi_device_lock);
712
713 err_detach:
714 acpi_detach_data(device->handle, acpi_scan_drop_device);
715 return result;
716 }
717
718 /* --------------------------------------------------------------------------
719 Device Enumeration
720 -------------------------------------------------------------------------- */
721 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
722 {
723 struct acpi_device *device = NULL;
724 acpi_status status;
725
726 /*
727 * Fixed hardware devices do not appear in the namespace and do not
728 * have handles, but we fabricate acpi_devices for them, so we have
729 * to deal with them specially.
730 */
731 if (!handle)
732 return acpi_root;
733
734 do {
735 status = acpi_get_parent(handle, &handle);
736 if (ACPI_FAILURE(status))
737 return status == AE_NULL_ENTRY ? NULL : acpi_root;
738 } while (acpi_bus_get_device(handle, &device));
739 return device;
740 }
741
742 acpi_status
743 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
744 {
745 acpi_status status;
746 acpi_handle tmp;
747 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
748 union acpi_object *obj;
749
750 status = acpi_get_handle(handle, "_EJD", &tmp);
751 if (ACPI_FAILURE(status))
752 return status;
753
754 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
755 if (ACPI_SUCCESS(status)) {
756 obj = buffer.pointer;
757 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
758 ejd);
759 kfree(buffer.pointer);
760 }
761 return status;
762 }
763 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
764
765 static int acpi_bus_extract_wakeup_device_power_package(acpi_handle handle,
766 struct acpi_device_wakeup *wakeup)
767 {
768 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
769 union acpi_object *package = NULL;
770 union acpi_object *element = NULL;
771 acpi_status status;
772 int err = -ENODATA;
773
774 if (!wakeup)
775 return -EINVAL;
776
777 INIT_LIST_HEAD(&wakeup->resources);
778
779 /* _PRW */
780 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
781 if (ACPI_FAILURE(status)) {
782 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW"));
783 return err;
784 }
785
786 package = (union acpi_object *)buffer.pointer;
787
788 if (!package || package->package.count < 2)
789 goto out;
790
791 element = &(package->package.elements[0]);
792 if (!element)
793 goto out;
794
795 if (element->type == ACPI_TYPE_PACKAGE) {
796 if ((element->package.count < 2) ||
797 (element->package.elements[0].type !=
798 ACPI_TYPE_LOCAL_REFERENCE)
799 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
800 goto out;
801
802 wakeup->gpe_device =
803 element->package.elements[0].reference.handle;
804 wakeup->gpe_number =
805 (u32) element->package.elements[1].integer.value;
806 } else if (element->type == ACPI_TYPE_INTEGER) {
807 wakeup->gpe_device = NULL;
808 wakeup->gpe_number = element->integer.value;
809 } else {
810 goto out;
811 }
812
813 element = &(package->package.elements[1]);
814 if (element->type != ACPI_TYPE_INTEGER)
815 goto out;
816
817 wakeup->sleep_state = element->integer.value;
818
819 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
820 if (err)
821 goto out;
822
823 if (!list_empty(&wakeup->resources)) {
824 int sleep_state;
825
826 err = acpi_power_wakeup_list_init(&wakeup->resources,
827 &sleep_state);
828 if (err) {
829 acpi_handle_warn(handle, "Retrieving current states "
830 "of wakeup power resources failed\n");
831 acpi_power_resources_list_free(&wakeup->resources);
832 goto out;
833 }
834 if (sleep_state < wakeup->sleep_state) {
835 acpi_handle_warn(handle, "Overriding _PRW sleep state "
836 "(S%d) by S%d from power resources\n",
837 (int)wakeup->sleep_state, sleep_state);
838 wakeup->sleep_state = sleep_state;
839 }
840 }
841
842 out:
843 kfree(buffer.pointer);
844 return err;
845 }
846
847 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
848 {
849 static const struct acpi_device_id button_device_ids[] = {
850 {"PNP0C0C", 0},
851 {"PNP0C0D", 0},
852 {"PNP0C0E", 0},
853 {"", 0},
854 };
855 struct acpi_device_wakeup *wakeup = &device->wakeup;
856 acpi_status status;
857
858 wakeup->flags.notifier_present = 0;
859
860 /* Power button, Lid switch always enable wakeup */
861 if (!acpi_match_device_ids(device, button_device_ids)) {
862 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
863 /* Do not use Lid/sleep button for S5 wakeup */
864 if (wakeup->sleep_state == ACPI_STATE_S5)
865 wakeup->sleep_state = ACPI_STATE_S4;
866 }
867 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
868 device_set_wakeup_capable(&device->dev, true);
869 return true;
870 }
871
872 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
873 wakeup->gpe_number);
874 return ACPI_SUCCESS(status);
875 }
876
877 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
878 {
879 int err;
880
881 /* Presence of _PRW indicates wake capable */
882 if (!acpi_has_method(device->handle, "_PRW"))
883 return;
884
885 err = acpi_bus_extract_wakeup_device_power_package(device->handle,
886 &device->wakeup);
887 if (err) {
888 dev_err(&device->dev, "_PRW evaluation error: %d\n", err);
889 return;
890 }
891
892 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
893 device->wakeup.prepare_count = 0;
894 /*
895 * Call _PSW/_DSW object to disable its ability to wake the sleeping
896 * system for the ACPI device with the _PRW object.
897 * The _PSW object is depreciated in ACPI 3.0 and is replaced by _DSW.
898 * So it is necessary to call _DSW object first. Only when it is not
899 * present will the _PSW object used.
900 */
901 err = acpi_device_sleep_wake(device, 0, 0, 0);
902 if (err)
903 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
904 "error in _DSW or _PSW evaluation\n"));
905 }
906
907 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
908 {
909 struct acpi_device_power_state *ps = &device->power.states[state];
910 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
911 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
912 acpi_status status;
913
914 INIT_LIST_HEAD(&ps->resources);
915
916 /* Evaluate "_PRx" to get referenced power resources */
917 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
918 if (ACPI_SUCCESS(status)) {
919 union acpi_object *package = buffer.pointer;
920
921 if (buffer.length && package
922 && package->type == ACPI_TYPE_PACKAGE
923 && package->package.count) {
924 int err = acpi_extract_power_resources(package, 0,
925 &ps->resources);
926 if (!err)
927 device->power.flags.power_resources = 1;
928 }
929 ACPI_FREE(buffer.pointer);
930 }
931
932 /* Evaluate "_PSx" to see if we can do explicit sets */
933 pathname[2] = 'S';
934 if (acpi_has_method(device->handle, pathname))
935 ps->flags.explicit_set = 1;
936
937 /* State is valid if there are means to put the device into it. */
938 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
939 ps->flags.valid = 1;
940
941 ps->power = -1; /* Unknown - driver assigned */
942 ps->latency = -1; /* Unknown - driver assigned */
943 }
944
945 static void acpi_bus_get_power_flags(struct acpi_device *device)
946 {
947 u32 i;
948
949 /* Presence of _PS0|_PR0 indicates 'power manageable' */
950 if (!acpi_has_method(device->handle, "_PS0") &&
951 !acpi_has_method(device->handle, "_PR0"))
952 return;
953
954 device->flags.power_manageable = 1;
955
956 /*
957 * Power Management Flags
958 */
959 if (acpi_has_method(device->handle, "_PSC"))
960 device->power.flags.explicit_get = 1;
961
962 if (acpi_has_method(device->handle, "_IRC"))
963 device->power.flags.inrush_current = 1;
964
965 if (acpi_has_method(device->handle, "_DSW"))
966 device->power.flags.dsw_present = 1;
967
968 /*
969 * Enumerate supported power management states
970 */
971 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
972 acpi_bus_init_power_state(device, i);
973
974 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
975 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
976 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
977
978 /* Set defaults for D0 and D3hot states (always valid) */
979 device->power.states[ACPI_STATE_D0].flags.valid = 1;
980 device->power.states[ACPI_STATE_D0].power = 100;
981 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
982
983 if (acpi_bus_init_power(device))
984 device->flags.power_manageable = 0;
985 }
986
987 static void acpi_bus_get_flags(struct acpi_device *device)
988 {
989 /* Presence of _STA indicates 'dynamic_status' */
990 if (acpi_has_method(device->handle, "_STA"))
991 device->flags.dynamic_status = 1;
992
993 /* Presence of _RMV indicates 'removable' */
994 if (acpi_has_method(device->handle, "_RMV"))
995 device->flags.removable = 1;
996
997 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
998 if (acpi_has_method(device->handle, "_EJD") ||
999 acpi_has_method(device->handle, "_EJ0"))
1000 device->flags.ejectable = 1;
1001 }
1002
1003 static void acpi_device_get_busid(struct acpi_device *device)
1004 {
1005 char bus_id[5] = { '?', 0 };
1006 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1007 int i = 0;
1008
1009 /*
1010 * Bus ID
1011 * ------
1012 * The device's Bus ID is simply the object name.
1013 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1014 */
1015 if (ACPI_IS_ROOT_DEVICE(device)) {
1016 strcpy(device->pnp.bus_id, "ACPI");
1017 return;
1018 }
1019
1020 switch (device->device_type) {
1021 case ACPI_BUS_TYPE_POWER_BUTTON:
1022 strcpy(device->pnp.bus_id, "PWRF");
1023 break;
1024 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1025 strcpy(device->pnp.bus_id, "SLPF");
1026 break;
1027 case ACPI_BUS_TYPE_ECDT_EC:
1028 strcpy(device->pnp.bus_id, "ECDT");
1029 break;
1030 default:
1031 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1032 /* Clean up trailing underscores (if any) */
1033 for (i = 3; i > 1; i--) {
1034 if (bus_id[i] == '_')
1035 bus_id[i] = '\0';
1036 else
1037 break;
1038 }
1039 strcpy(device->pnp.bus_id, bus_id);
1040 break;
1041 }
1042 }
1043
1044 /*
1045 * acpi_ata_match - see if an acpi object is an ATA device
1046 *
1047 * If an acpi object has one of the ACPI ATA methods defined,
1048 * then we can safely call it an ATA device.
1049 */
1050 bool acpi_ata_match(acpi_handle handle)
1051 {
1052 return acpi_has_method(handle, "_GTF") ||
1053 acpi_has_method(handle, "_GTM") ||
1054 acpi_has_method(handle, "_STM") ||
1055 acpi_has_method(handle, "_SDD");
1056 }
1057
1058 /*
1059 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1060 *
1061 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1062 * then we can safely call it an ejectable drive bay
1063 */
1064 bool acpi_bay_match(acpi_handle handle)
1065 {
1066 acpi_handle phandle;
1067
1068 if (!acpi_has_method(handle, "_EJ0"))
1069 return false;
1070 if (acpi_ata_match(handle))
1071 return true;
1072 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1073 return false;
1074
1075 return acpi_ata_match(phandle);
1076 }
1077
1078 bool acpi_device_is_battery(struct acpi_device *adev)
1079 {
1080 struct acpi_hardware_id *hwid;
1081
1082 list_for_each_entry(hwid, &adev->pnp.ids, list)
1083 if (!strcmp("PNP0C0A", hwid->id))
1084 return true;
1085
1086 return false;
1087 }
1088
1089 static bool is_ejectable_bay(struct acpi_device *adev)
1090 {
1091 acpi_handle handle = adev->handle;
1092
1093 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1094 return true;
1095
1096 return acpi_bay_match(handle);
1097 }
1098
1099 /*
1100 * acpi_dock_match - see if an acpi object has a _DCK method
1101 */
1102 bool acpi_dock_match(acpi_handle handle)
1103 {
1104 return acpi_has_method(handle, "_DCK");
1105 }
1106
1107 static acpi_status
1108 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1109 void **return_value)
1110 {
1111 long *cap = context;
1112
1113 if (acpi_has_method(handle, "_BCM") &&
1114 acpi_has_method(handle, "_BCL")) {
1115 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found generic backlight "
1116 "support\n"));
1117 *cap |= ACPI_VIDEO_BACKLIGHT;
1118 /* We have backlight support, no need to scan further */
1119 return AE_CTRL_TERMINATE;
1120 }
1121 return 0;
1122 }
1123
1124 /* Returns true if the ACPI object is a video device which can be
1125 * handled by video.ko.
1126 * The device will get a Linux specific CID added in scan.c to
1127 * identify the device as an ACPI graphics device
1128 * Be aware that the graphics device may not be physically present
1129 * Use acpi_video_get_capabilities() to detect general ACPI video
1130 * capabilities of present cards
1131 */
1132 long acpi_is_video_device(acpi_handle handle)
1133 {
1134 long video_caps = 0;
1135
1136 /* Is this device able to support video switching ? */
1137 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1138 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1139
1140 /* Is this device able to retrieve a video ROM ? */
1141 if (acpi_has_method(handle, "_ROM"))
1142 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1143
1144 /* Is this device able to configure which video head to be POSTed ? */
1145 if (acpi_has_method(handle, "_VPO") &&
1146 acpi_has_method(handle, "_GPD") &&
1147 acpi_has_method(handle, "_SPD"))
1148 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1149
1150 /* Only check for backlight functionality if one of the above hit. */
1151 if (video_caps)
1152 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1153 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1154 &video_caps, NULL);
1155
1156 return video_caps;
1157 }
1158 EXPORT_SYMBOL(acpi_is_video_device);
1159
1160 const char *acpi_device_hid(struct acpi_device *device)
1161 {
1162 struct acpi_hardware_id *hid;
1163
1164 if (list_empty(&device->pnp.ids))
1165 return dummy_hid;
1166
1167 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1168 return hid->id;
1169 }
1170 EXPORT_SYMBOL(acpi_device_hid);
1171
1172 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1173 {
1174 struct acpi_hardware_id *id;
1175
1176 id = kmalloc(sizeof(*id), GFP_KERNEL);
1177 if (!id)
1178 return;
1179
1180 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1181 if (!id->id) {
1182 kfree(id);
1183 return;
1184 }
1185
1186 list_add_tail(&id->list, &pnp->ids);
1187 pnp->type.hardware_id = 1;
1188 }
1189
1190 /*
1191 * Old IBM workstations have a DSDT bug wherein the SMBus object
1192 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1193 * prefix. Work around this.
1194 */
1195 static bool acpi_ibm_smbus_match(acpi_handle handle)
1196 {
1197 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1198 struct acpi_buffer path = { sizeof(node_name), node_name };
1199
1200 if (!dmi_name_in_vendors("IBM"))
1201 return false;
1202
1203 /* Look for SMBS object */
1204 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1205 strcmp("SMBS", path.pointer))
1206 return false;
1207
1208 /* Does it have the necessary (but misnamed) methods? */
1209 if (acpi_has_method(handle, "SBI") &&
1210 acpi_has_method(handle, "SBR") &&
1211 acpi_has_method(handle, "SBW"))
1212 return true;
1213
1214 return false;
1215 }
1216
1217 static bool acpi_object_is_system_bus(acpi_handle handle)
1218 {
1219 acpi_handle tmp;
1220
1221 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1222 tmp == handle)
1223 return true;
1224 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1225 tmp == handle)
1226 return true;
1227
1228 return false;
1229 }
1230
1231 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1232 int device_type)
1233 {
1234 acpi_status status;
1235 struct acpi_device_info *info;
1236 struct acpi_pnp_device_id_list *cid_list;
1237 int i;
1238
1239 switch (device_type) {
1240 case ACPI_BUS_TYPE_DEVICE:
1241 if (handle == ACPI_ROOT_OBJECT) {
1242 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1243 break;
1244 }
1245
1246 status = acpi_get_object_info(handle, &info);
1247 if (ACPI_FAILURE(status)) {
1248 pr_err(PREFIX "%s: Error reading device info\n",
1249 __func__);
1250 return;
1251 }
1252
1253 if (info->valid & ACPI_VALID_HID) {
1254 acpi_add_id(pnp, info->hardware_id.string);
1255 pnp->type.platform_id = 1;
1256 }
1257 if (info->valid & ACPI_VALID_CID) {
1258 cid_list = &info->compatible_id_list;
1259 for (i = 0; i < cid_list->count; i++)
1260 acpi_add_id(pnp, cid_list->ids[i].string);
1261 }
1262 if (info->valid & ACPI_VALID_ADR) {
1263 pnp->bus_address = info->address;
1264 pnp->type.bus_address = 1;
1265 }
1266 if (info->valid & ACPI_VALID_UID)
1267 pnp->unique_id = kstrdup(info->unique_id.string,
1268 GFP_KERNEL);
1269 if (info->valid & ACPI_VALID_CLS)
1270 acpi_add_id(pnp, info->class_code.string);
1271
1272 kfree(info);
1273
1274 /*
1275 * Some devices don't reliably have _HIDs & _CIDs, so add
1276 * synthetic HIDs to make sure drivers can find them.
1277 */
1278 if (acpi_is_video_device(handle))
1279 acpi_add_id(pnp, ACPI_VIDEO_HID);
1280 else if (acpi_bay_match(handle))
1281 acpi_add_id(pnp, ACPI_BAY_HID);
1282 else if (acpi_dock_match(handle))
1283 acpi_add_id(pnp, ACPI_DOCK_HID);
1284 else if (acpi_ibm_smbus_match(handle))
1285 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1286 else if (list_empty(&pnp->ids) &&
1287 acpi_object_is_system_bus(handle)) {
1288 /* \_SB, \_TZ, LNXSYBUS */
1289 acpi_add_id(pnp, ACPI_BUS_HID);
1290 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1291 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1292 }
1293
1294 break;
1295 case ACPI_BUS_TYPE_POWER:
1296 acpi_add_id(pnp, ACPI_POWER_HID);
1297 break;
1298 case ACPI_BUS_TYPE_PROCESSOR:
1299 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1300 break;
1301 case ACPI_BUS_TYPE_THERMAL:
1302 acpi_add_id(pnp, ACPI_THERMAL_HID);
1303 break;
1304 case ACPI_BUS_TYPE_POWER_BUTTON:
1305 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1306 break;
1307 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1308 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1309 break;
1310 case ACPI_BUS_TYPE_ECDT_EC:
1311 acpi_add_id(pnp, ACPI_ECDT_HID);
1312 break;
1313 }
1314 }
1315
1316 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1317 {
1318 struct acpi_hardware_id *id, *tmp;
1319
1320 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1321 kfree_const(id->id);
1322 kfree(id);
1323 }
1324 kfree(pnp->unique_id);
1325 }
1326
1327 /**
1328 * acpi_dma_supported - Check DMA support for the specified device.
1329 * @adev: The pointer to acpi device
1330 *
1331 * Return false if DMA is not supported. Otherwise, return true
1332 */
1333 bool acpi_dma_supported(struct acpi_device *adev)
1334 {
1335 if (!adev)
1336 return false;
1337
1338 if (adev->flags.cca_seen)
1339 return true;
1340
1341 /*
1342 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1343 * DMA on "Intel platforms". Presumably that includes all x86 and
1344 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1345 */
1346 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1347 return true;
1348
1349 return false;
1350 }
1351
1352 /**
1353 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1354 * @adev: The pointer to acpi device
1355 *
1356 * Return enum dev_dma_attr.
1357 */
1358 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1359 {
1360 if (!acpi_dma_supported(adev))
1361 return DEV_DMA_NOT_SUPPORTED;
1362
1363 if (adev->flags.coherent_dma)
1364 return DEV_DMA_COHERENT;
1365 else
1366 return DEV_DMA_NON_COHERENT;
1367 }
1368
1369 /**
1370 * acpi_dma_get_range() - Get device DMA parameters.
1371 *
1372 * @dev: device to configure
1373 * @dma_addr: pointer device DMA address result
1374 * @offset: pointer to the DMA offset result
1375 * @size: pointer to DMA range size result
1376 *
1377 * Evaluate DMA regions and return respectively DMA region start, offset
1378 * and size in dma_addr, offset and size on parsing success; it does not
1379 * update the passed in values on failure.
1380 *
1381 * Return 0 on success, < 0 on failure.
1382 */
1383 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1384 u64 *size)
1385 {
1386 struct acpi_device *adev;
1387 LIST_HEAD(list);
1388 struct resource_entry *rentry;
1389 int ret;
1390 struct device *dma_dev = dev;
1391 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1392
1393 /*
1394 * Walk the device tree chasing an ACPI companion with a _DMA
1395 * object while we go. Stop if we find a device with an ACPI
1396 * companion containing a _DMA method.
1397 */
1398 do {
1399 adev = ACPI_COMPANION(dma_dev);
1400 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1401 break;
1402
1403 dma_dev = dma_dev->parent;
1404 } while (dma_dev);
1405
1406 if (!dma_dev)
1407 return -ENODEV;
1408
1409 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1410 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1411 return -EINVAL;
1412 }
1413
1414 ret = acpi_dev_get_dma_resources(adev, &list);
1415 if (ret > 0) {
1416 list_for_each_entry(rentry, &list, node) {
1417 if (dma_offset && rentry->offset != dma_offset) {
1418 ret = -EINVAL;
1419 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1420 goto out;
1421 }
1422 dma_offset = rentry->offset;
1423
1424 /* Take lower and upper limits */
1425 if (rentry->res->start < dma_start)
1426 dma_start = rentry->res->start;
1427 if (rentry->res->end > dma_end)
1428 dma_end = rentry->res->end;
1429 }
1430
1431 if (dma_start >= dma_end) {
1432 ret = -EINVAL;
1433 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1434 goto out;
1435 }
1436
1437 *dma_addr = dma_start - dma_offset;
1438 len = dma_end - dma_start;
1439 *size = max(len, len + 1);
1440 *offset = dma_offset;
1441 }
1442 out:
1443 acpi_dev_free_resource_list(&list);
1444
1445 return ret >= 0 ? 0 : ret;
1446 }
1447
1448 /**
1449 * acpi_dma_configure - Set-up DMA configuration for the device.
1450 * @dev: The pointer to the device
1451 * @attr: device dma attributes
1452 */
1453 int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr)
1454 {
1455 const struct iommu_ops *iommu;
1456 u64 dma_addr = 0, size = 0;
1457
1458 iort_dma_setup(dev, &dma_addr, &size);
1459
1460 iommu = iort_iommu_configure(dev);
1461 if (IS_ERR(iommu) && PTR_ERR(iommu) == -EPROBE_DEFER)
1462 return -EPROBE_DEFER;
1463
1464 arch_setup_dma_ops(dev, dma_addr, size,
1465 iommu, attr == DEV_DMA_COHERENT);
1466
1467 return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(acpi_dma_configure);
1470
1471 /**
1472 * acpi_dma_deconfigure - Tear-down DMA configuration for the device.
1473 * @dev: The pointer to the device
1474 */
1475 void acpi_dma_deconfigure(struct device *dev)
1476 {
1477 arch_teardown_dma_ops(dev);
1478 }
1479 EXPORT_SYMBOL_GPL(acpi_dma_deconfigure);
1480
1481 static void acpi_init_coherency(struct acpi_device *adev)
1482 {
1483 unsigned long long cca = 0;
1484 acpi_status status;
1485 struct acpi_device *parent = adev->parent;
1486
1487 if (parent && parent->flags.cca_seen) {
1488 /*
1489 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1490 * already saw one.
1491 */
1492 adev->flags.cca_seen = 1;
1493 cca = parent->flags.coherent_dma;
1494 } else {
1495 status = acpi_evaluate_integer(adev->handle, "_CCA",
1496 NULL, &cca);
1497 if (ACPI_SUCCESS(status))
1498 adev->flags.cca_seen = 1;
1499 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1500 /*
1501 * If architecture does not specify that _CCA is
1502 * required for DMA-able devices (e.g. x86),
1503 * we default to _CCA=1.
1504 */
1505 cca = 1;
1506 else
1507 acpi_handle_debug(adev->handle,
1508 "ACPI device is missing _CCA.\n");
1509 }
1510
1511 adev->flags.coherent_dma = cca;
1512 }
1513
1514 static int acpi_check_spi_i2c_slave(struct acpi_resource *ares, void *data)
1515 {
1516 bool *is_spi_i2c_slave_p = data;
1517
1518 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1519 return 1;
1520
1521 /*
1522 * devices that are connected to UART still need to be enumerated to
1523 * platform bus
1524 */
1525 if (ares->data.common_serial_bus.type != ACPI_RESOURCE_SERIAL_TYPE_UART)
1526 *is_spi_i2c_slave_p = true;
1527
1528 /* no need to do more checking */
1529 return -1;
1530 }
1531
1532 static bool acpi_is_spi_i2c_slave(struct acpi_device *device)
1533 {
1534 struct list_head resource_list;
1535 bool is_spi_i2c_slave = false;
1536
1537 /* Macs use device properties in lieu of _CRS resources */
1538 if (x86_apple_machine &&
1539 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1540 fwnode_property_present(&device->fwnode, "i2cAddress")))
1541 return true;
1542
1543 INIT_LIST_HEAD(&resource_list);
1544 acpi_dev_get_resources(device, &resource_list, acpi_check_spi_i2c_slave,
1545 &is_spi_i2c_slave);
1546 acpi_dev_free_resource_list(&resource_list);
1547
1548 return is_spi_i2c_slave;
1549 }
1550
1551 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1552 int type, unsigned long long sta)
1553 {
1554 INIT_LIST_HEAD(&device->pnp.ids);
1555 device->device_type = type;
1556 device->handle = handle;
1557 device->parent = acpi_bus_get_parent(handle);
1558 device->fwnode.ops = &acpi_device_fwnode_ops;
1559 acpi_set_device_status(device, sta);
1560 acpi_device_get_busid(device);
1561 acpi_set_pnp_ids(handle, &device->pnp, type);
1562 acpi_init_properties(device);
1563 acpi_bus_get_flags(device);
1564 device->flags.match_driver = false;
1565 device->flags.initialized = true;
1566 device->flags.spi_i2c_slave = acpi_is_spi_i2c_slave(device);
1567 acpi_device_clear_enumerated(device);
1568 device_initialize(&device->dev);
1569 dev_set_uevent_suppress(&device->dev, true);
1570 acpi_init_coherency(device);
1571 /* Assume there are unmet deps until acpi_device_dep_initialize() runs */
1572 device->dep_unmet = 1;
1573 }
1574
1575 void acpi_device_add_finalize(struct acpi_device *device)
1576 {
1577 dev_set_uevent_suppress(&device->dev, false);
1578 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1579 }
1580
1581 static int acpi_add_single_object(struct acpi_device **child,
1582 acpi_handle handle, int type,
1583 unsigned long long sta)
1584 {
1585 int result;
1586 struct acpi_device *device;
1587 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1588
1589 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1590 if (!device) {
1591 printk(KERN_ERR PREFIX "Memory allocation error\n");
1592 return -ENOMEM;
1593 }
1594
1595 acpi_init_device_object(device, handle, type, sta);
1596 /*
1597 * For ACPI_BUS_TYPE_DEVICE getting the status is delayed till here so
1598 * that we can call acpi_bus_get_status() and use its quirk handling.
1599 * Note this must be done before the get power-/wakeup_dev-flags calls.
1600 */
1601 if (type == ACPI_BUS_TYPE_DEVICE)
1602 if (acpi_bus_get_status(device) < 0)
1603 acpi_set_device_status(device, 0);
1604
1605 acpi_bus_get_power_flags(device);
1606 acpi_bus_get_wakeup_device_flags(device);
1607
1608 result = acpi_device_add(device, acpi_device_release);
1609 if (result) {
1610 acpi_device_release(&device->dev);
1611 return result;
1612 }
1613
1614 acpi_power_add_remove_device(device, true);
1615 acpi_device_add_finalize(device);
1616 acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
1617 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Added %s [%s] parent %s\n",
1618 dev_name(&device->dev), (char *) buffer.pointer,
1619 device->parent ? dev_name(&device->parent->dev) : "(null)"));
1620 kfree(buffer.pointer);
1621 *child = device;
1622 return 0;
1623 }
1624
1625 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1626 void *context)
1627 {
1628 struct resource *res = context;
1629
1630 if (acpi_dev_resource_memory(ares, res))
1631 return AE_CTRL_TERMINATE;
1632
1633 return AE_OK;
1634 }
1635
1636 static bool acpi_device_should_be_hidden(acpi_handle handle)
1637 {
1638 acpi_status status;
1639 struct resource res;
1640
1641 /* Check if it should ignore the UART device */
1642 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1643 return false;
1644
1645 /*
1646 * The UART device described in SPCR table is assumed to have only one
1647 * memory resource present. So we only look for the first one here.
1648 */
1649 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1650 acpi_get_resource_memory, &res);
1651 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1652 return false;
1653
1654 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1655 &res.start);
1656
1657 return true;
1658 }
1659
1660 static int acpi_bus_type_and_status(acpi_handle handle, int *type,
1661 unsigned long long *sta)
1662 {
1663 acpi_status status;
1664 acpi_object_type acpi_type;
1665
1666 status = acpi_get_type(handle, &acpi_type);
1667 if (ACPI_FAILURE(status))
1668 return -ENODEV;
1669
1670 switch (acpi_type) {
1671 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
1672 case ACPI_TYPE_DEVICE:
1673 if (acpi_device_should_be_hidden(handle))
1674 return -ENODEV;
1675
1676 *type = ACPI_BUS_TYPE_DEVICE;
1677 /*
1678 * acpi_add_single_object updates this once we've an acpi_device
1679 * so that acpi_bus_get_status' quirk handling can be used.
1680 */
1681 *sta = ACPI_STA_DEFAULT;
1682 break;
1683 case ACPI_TYPE_PROCESSOR:
1684 *type = ACPI_BUS_TYPE_PROCESSOR;
1685 status = acpi_bus_get_status_handle(handle, sta);
1686 if (ACPI_FAILURE(status))
1687 return -ENODEV;
1688 break;
1689 case ACPI_TYPE_THERMAL:
1690 *type = ACPI_BUS_TYPE_THERMAL;
1691 *sta = ACPI_STA_DEFAULT;
1692 break;
1693 case ACPI_TYPE_POWER:
1694 *type = ACPI_BUS_TYPE_POWER;
1695 *sta = ACPI_STA_DEFAULT;
1696 break;
1697 default:
1698 return -ENODEV;
1699 }
1700
1701 return 0;
1702 }
1703
1704 bool acpi_device_is_present(const struct acpi_device *adev)
1705 {
1706 return adev->status.present || adev->status.functional;
1707 }
1708
1709 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1710 const char *idstr,
1711 const struct acpi_device_id **matchid)
1712 {
1713 const struct acpi_device_id *devid;
1714
1715 if (handler->match)
1716 return handler->match(idstr, matchid);
1717
1718 for (devid = handler->ids; devid->id[0]; devid++)
1719 if (!strcmp((char *)devid->id, idstr)) {
1720 if (matchid)
1721 *matchid = devid;
1722
1723 return true;
1724 }
1725
1726 return false;
1727 }
1728
1729 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1730 const struct acpi_device_id **matchid)
1731 {
1732 struct acpi_scan_handler *handler;
1733
1734 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1735 if (acpi_scan_handler_matching(handler, idstr, matchid))
1736 return handler;
1737
1738 return NULL;
1739 }
1740
1741 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1742 {
1743 if (!!hotplug->enabled == !!val)
1744 return;
1745
1746 mutex_lock(&acpi_scan_lock);
1747
1748 hotplug->enabled = val;
1749
1750 mutex_unlock(&acpi_scan_lock);
1751 }
1752
1753 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1754 {
1755 struct acpi_hardware_id *hwid;
1756
1757 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1758 acpi_dock_add(adev);
1759 return;
1760 }
1761 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1762 struct acpi_scan_handler *handler;
1763
1764 handler = acpi_scan_match_handler(hwid->id, NULL);
1765 if (handler) {
1766 adev->flags.hotplug_notify = true;
1767 break;
1768 }
1769 }
1770 }
1771
1772 static void acpi_device_dep_initialize(struct acpi_device *adev)
1773 {
1774 struct acpi_dep_data *dep;
1775 struct acpi_handle_list dep_devices;
1776 acpi_status status;
1777 int i;
1778
1779 adev->dep_unmet = 0;
1780
1781 if (!acpi_has_method(adev->handle, "_DEP"))
1782 return;
1783
1784 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
1785 &dep_devices);
1786 if (ACPI_FAILURE(status)) {
1787 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
1788 return;
1789 }
1790
1791 for (i = 0; i < dep_devices.count; i++) {
1792 struct acpi_device_info *info;
1793 int skip;
1794
1795 status = acpi_get_object_info(dep_devices.handles[i], &info);
1796 if (ACPI_FAILURE(status)) {
1797 dev_dbg(&adev->dev, "Error reading _DEP device info\n");
1798 continue;
1799 }
1800
1801 /*
1802 * Skip the dependency of Windows System Power
1803 * Management Controller
1804 */
1805 skip = info->valid & ACPI_VALID_HID &&
1806 !strcmp(info->hardware_id.string, "INT3396");
1807
1808 kfree(info);
1809
1810 if (skip)
1811 continue;
1812
1813 dep = kzalloc(sizeof(struct acpi_dep_data), GFP_KERNEL);
1814 if (!dep)
1815 return;
1816
1817 dep->master = dep_devices.handles[i];
1818 dep->slave = adev->handle;
1819 adev->dep_unmet++;
1820
1821 mutex_lock(&acpi_dep_list_lock);
1822 list_add_tail(&dep->node , &acpi_dep_list);
1823 mutex_unlock(&acpi_dep_list_lock);
1824 }
1825 }
1826
1827 static acpi_status acpi_bus_check_add(acpi_handle handle, u32 lvl_not_used,
1828 void *not_used, void **return_value)
1829 {
1830 struct acpi_device *device = NULL;
1831 int type;
1832 unsigned long long sta;
1833 int result;
1834
1835 acpi_bus_get_device(handle, &device);
1836 if (device)
1837 goto out;
1838
1839 result = acpi_bus_type_and_status(handle, &type, &sta);
1840 if (result)
1841 return AE_OK;
1842
1843 if (type == ACPI_BUS_TYPE_POWER) {
1844 acpi_add_power_resource(handle);
1845 return AE_OK;
1846 }
1847
1848 acpi_add_single_object(&device, handle, type, sta);
1849 if (!device)
1850 return AE_CTRL_DEPTH;
1851
1852 acpi_scan_init_hotplug(device);
1853 acpi_device_dep_initialize(device);
1854
1855 out:
1856 if (!*return_value)
1857 *return_value = device;
1858
1859 return AE_OK;
1860 }
1861
1862 static void acpi_default_enumeration(struct acpi_device *device)
1863 {
1864 /*
1865 * Do not enumerate SPI/I2C slaves as they will be enumerated by their
1866 * respective parents.
1867 */
1868 if (!device->flags.spi_i2c_slave) {
1869 acpi_create_platform_device(device, NULL);
1870 acpi_device_set_enumerated(device);
1871 } else {
1872 blocking_notifier_call_chain(&acpi_reconfig_chain,
1873 ACPI_RECONFIG_DEVICE_ADD, device);
1874 }
1875 }
1876
1877 static const struct acpi_device_id generic_device_ids[] = {
1878 {ACPI_DT_NAMESPACE_HID, },
1879 {"", },
1880 };
1881
1882 static int acpi_generic_device_attach(struct acpi_device *adev,
1883 const struct acpi_device_id *not_used)
1884 {
1885 /*
1886 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
1887 * below can be unconditional.
1888 */
1889 if (adev->data.of_compatible)
1890 acpi_default_enumeration(adev);
1891
1892 return 1;
1893 }
1894
1895 static struct acpi_scan_handler generic_device_handler = {
1896 .ids = generic_device_ids,
1897 .attach = acpi_generic_device_attach,
1898 };
1899
1900 static int acpi_scan_attach_handler(struct acpi_device *device)
1901 {
1902 struct acpi_hardware_id *hwid;
1903 int ret = 0;
1904
1905 list_for_each_entry(hwid, &device->pnp.ids, list) {
1906 const struct acpi_device_id *devid;
1907 struct acpi_scan_handler *handler;
1908
1909 handler = acpi_scan_match_handler(hwid->id, &devid);
1910 if (handler) {
1911 if (!handler->attach) {
1912 device->pnp.type.platform_id = 0;
1913 continue;
1914 }
1915 device->handler = handler;
1916 ret = handler->attach(device, devid);
1917 if (ret > 0)
1918 break;
1919
1920 device->handler = NULL;
1921 if (ret < 0)
1922 break;
1923 }
1924 }
1925
1926 return ret;
1927 }
1928
1929 static void acpi_bus_attach(struct acpi_device *device)
1930 {
1931 struct acpi_device *child;
1932 acpi_handle ejd;
1933 int ret;
1934
1935 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
1936 register_dock_dependent_device(device, ejd);
1937
1938 acpi_bus_get_status(device);
1939 /* Skip devices that are not present. */
1940 if (!acpi_device_is_present(device)) {
1941 device->flags.initialized = false;
1942 acpi_device_clear_enumerated(device);
1943 device->flags.power_manageable = 0;
1944 return;
1945 }
1946 if (device->handler)
1947 goto ok;
1948
1949 if (!device->flags.initialized) {
1950 device->flags.power_manageable =
1951 device->power.states[ACPI_STATE_D0].flags.valid;
1952 if (acpi_bus_init_power(device))
1953 device->flags.power_manageable = 0;
1954
1955 device->flags.initialized = true;
1956 } else if (device->flags.visited) {
1957 goto ok;
1958 }
1959
1960 ret = acpi_scan_attach_handler(device);
1961 if (ret < 0)
1962 return;
1963
1964 device->flags.match_driver = true;
1965 if (ret > 0 && !device->flags.spi_i2c_slave) {
1966 acpi_device_set_enumerated(device);
1967 goto ok;
1968 }
1969
1970 ret = device_attach(&device->dev);
1971 if (ret < 0)
1972 return;
1973
1974 if (!device->pnp.type.platform_id && !device->flags.spi_i2c_slave)
1975 acpi_device_set_enumerated(device);
1976 else
1977 acpi_default_enumeration(device);
1978
1979 ok:
1980 list_for_each_entry(child, &device->children, node)
1981 acpi_bus_attach(child);
1982
1983 if (device->handler && device->handler->hotplug.notify_online)
1984 device->handler->hotplug.notify_online(device);
1985 }
1986
1987 void acpi_walk_dep_device_list(acpi_handle handle)
1988 {
1989 struct acpi_dep_data *dep, *tmp;
1990 struct acpi_device *adev;
1991
1992 mutex_lock(&acpi_dep_list_lock);
1993 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
1994 if (dep->master == handle) {
1995 acpi_bus_get_device(dep->slave, &adev);
1996 if (!adev)
1997 continue;
1998
1999 adev->dep_unmet--;
2000 if (!adev->dep_unmet)
2001 acpi_bus_attach(adev);
2002 list_del(&dep->node);
2003 kfree(dep);
2004 }
2005 }
2006 mutex_unlock(&acpi_dep_list_lock);
2007 }
2008 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list);
2009
2010 /**
2011 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2012 * @handle: Root of the namespace scope to scan.
2013 *
2014 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2015 * found devices.
2016 *
2017 * If no devices were found, -ENODEV is returned, but it does not mean that
2018 * there has been a real error. There just have been no suitable ACPI objects
2019 * in the table trunk from which the kernel could create a device and add an
2020 * appropriate driver.
2021 *
2022 * Must be called under acpi_scan_lock.
2023 */
2024 int acpi_bus_scan(acpi_handle handle)
2025 {
2026 void *device = NULL;
2027
2028 if (ACPI_SUCCESS(acpi_bus_check_add(handle, 0, NULL, &device)))
2029 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2030 acpi_bus_check_add, NULL, NULL, &device);
2031
2032 if (device) {
2033 acpi_bus_attach(device);
2034 return 0;
2035 }
2036 return -ENODEV;
2037 }
2038 EXPORT_SYMBOL(acpi_bus_scan);
2039
2040 /**
2041 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2042 * @adev: Root of the ACPI namespace scope to walk.
2043 *
2044 * Must be called under acpi_scan_lock.
2045 */
2046 void acpi_bus_trim(struct acpi_device *adev)
2047 {
2048 struct acpi_scan_handler *handler = adev->handler;
2049 struct acpi_device *child;
2050
2051 list_for_each_entry_reverse(child, &adev->children, node)
2052 acpi_bus_trim(child);
2053
2054 adev->flags.match_driver = false;
2055 if (handler) {
2056 if (handler->detach)
2057 handler->detach(adev);
2058
2059 adev->handler = NULL;
2060 } else {
2061 device_release_driver(&adev->dev);
2062 }
2063 /*
2064 * Most likely, the device is going away, so put it into D3cold before
2065 * that.
2066 */
2067 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2068 adev->flags.initialized = false;
2069 acpi_device_clear_enumerated(adev);
2070 }
2071 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2072
2073 int acpi_bus_register_early_device(int type)
2074 {
2075 struct acpi_device *device = NULL;
2076 int result;
2077
2078 result = acpi_add_single_object(&device, NULL,
2079 type, ACPI_STA_DEFAULT);
2080 if (result)
2081 return result;
2082
2083 device->flags.match_driver = true;
2084 return device_attach(&device->dev);
2085 }
2086 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2087
2088 static int acpi_bus_scan_fixed(void)
2089 {
2090 int result = 0;
2091
2092 /*
2093 * Enumerate all fixed-feature devices.
2094 */
2095 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2096 struct acpi_device *device = NULL;
2097
2098 result = acpi_add_single_object(&device, NULL,
2099 ACPI_BUS_TYPE_POWER_BUTTON,
2100 ACPI_STA_DEFAULT);
2101 if (result)
2102 return result;
2103
2104 device->flags.match_driver = true;
2105 result = device_attach(&device->dev);
2106 if (result < 0)
2107 return result;
2108
2109 device_init_wakeup(&device->dev, true);
2110 }
2111
2112 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2113 struct acpi_device *device = NULL;
2114
2115 result = acpi_add_single_object(&device, NULL,
2116 ACPI_BUS_TYPE_SLEEP_BUTTON,
2117 ACPI_STA_DEFAULT);
2118 if (result)
2119 return result;
2120
2121 device->flags.match_driver = true;
2122 result = device_attach(&device->dev);
2123 }
2124
2125 return result < 0 ? result : 0;
2126 }
2127
2128 static void __init acpi_get_spcr_uart_addr(void)
2129 {
2130 acpi_status status;
2131 struct acpi_table_spcr *spcr_ptr;
2132
2133 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2134 (struct acpi_table_header **)&spcr_ptr);
2135 if (ACPI_SUCCESS(status))
2136 spcr_uart_addr = spcr_ptr->serial_port.address;
2137 else
2138 printk(KERN_WARNING PREFIX "STAO table present, but SPCR is missing\n");
2139 }
2140
2141 static bool acpi_scan_initialized;
2142
2143 int __init acpi_scan_init(void)
2144 {
2145 int result;
2146 acpi_status status;
2147 struct acpi_table_stao *stao_ptr;
2148
2149 acpi_pci_root_init();
2150 acpi_pci_link_init();
2151 acpi_processor_init();
2152 acpi_lpss_init();
2153 acpi_apd_init();
2154 acpi_cmos_rtc_init();
2155 acpi_container_init();
2156 acpi_memory_hotplug_init();
2157 acpi_pnp_init();
2158 acpi_int340x_thermal_init();
2159 acpi_amba_init();
2160 acpi_watchdog_init();
2161
2162 acpi_scan_add_handler(&generic_device_handler);
2163
2164 /*
2165 * If there is STAO table, check whether it needs to ignore the UART
2166 * device in SPCR table.
2167 */
2168 status = acpi_get_table(ACPI_SIG_STAO, 0,
2169 (struct acpi_table_header **)&stao_ptr);
2170 if (ACPI_SUCCESS(status)) {
2171 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2172 printk(KERN_INFO PREFIX "STAO Name List not yet supported.");
2173
2174 if (stao_ptr->ignore_uart)
2175 acpi_get_spcr_uart_addr();
2176 }
2177
2178 acpi_gpe_apply_masked_gpes();
2179 acpi_update_all_gpes();
2180
2181 mutex_lock(&acpi_scan_lock);
2182 /*
2183 * Enumerate devices in the ACPI namespace.
2184 */
2185 result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2186 if (result)
2187 goto out;
2188
2189 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2190 if (result)
2191 goto out;
2192
2193 /* Fixed feature devices do not exist on HW-reduced platform */
2194 if (!acpi_gbl_reduced_hardware) {
2195 result = acpi_bus_scan_fixed();
2196 if (result) {
2197 acpi_detach_data(acpi_root->handle,
2198 acpi_scan_drop_device);
2199 acpi_device_del(acpi_root);
2200 put_device(&acpi_root->dev);
2201 goto out;
2202 }
2203 }
2204
2205 acpi_scan_initialized = true;
2206
2207 out:
2208 mutex_unlock(&acpi_scan_lock);
2209 return result;
2210 }
2211
2212 static struct acpi_probe_entry *ape;
2213 static int acpi_probe_count;
2214 static DEFINE_MUTEX(acpi_probe_mutex);
2215
2216 static int __init acpi_match_madt(struct acpi_subtable_header *header,
2217 const unsigned long end)
2218 {
2219 if (!ape->subtable_valid || ape->subtable_valid(header, ape))
2220 if (!ape->probe_subtbl(header, end))
2221 acpi_probe_count++;
2222
2223 return 0;
2224 }
2225
2226 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2227 {
2228 int count = 0;
2229
2230 if (acpi_disabled)
2231 return 0;
2232
2233 mutex_lock(&acpi_probe_mutex);
2234 for (ape = ap_head; nr; ape++, nr--) {
2235 if (ACPI_COMPARE_NAME(ACPI_SIG_MADT, ape->id)) {
2236 acpi_probe_count = 0;
2237 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2238 count += acpi_probe_count;
2239 } else {
2240 int res;
2241 res = acpi_table_parse(ape->id, ape->probe_table);
2242 if (!res)
2243 count++;
2244 }
2245 }
2246 mutex_unlock(&acpi_probe_mutex);
2247
2248 return count;
2249 }
2250
2251 struct acpi_table_events_work {
2252 struct work_struct work;
2253 void *table;
2254 u32 event;
2255 };
2256
2257 static void acpi_table_events_fn(struct work_struct *work)
2258 {
2259 struct acpi_table_events_work *tew;
2260
2261 tew = container_of(work, struct acpi_table_events_work, work);
2262
2263 if (tew->event == ACPI_TABLE_EVENT_LOAD) {
2264 acpi_scan_lock_acquire();
2265 acpi_bus_scan(ACPI_ROOT_OBJECT);
2266 acpi_scan_lock_release();
2267 }
2268
2269 kfree(tew);
2270 }
2271
2272 void acpi_scan_table_handler(u32 event, void *table, void *context)
2273 {
2274 struct acpi_table_events_work *tew;
2275
2276 if (!acpi_scan_initialized)
2277 return;
2278
2279 if (event != ACPI_TABLE_EVENT_LOAD)
2280 return;
2281
2282 tew = kmalloc(sizeof(*tew), GFP_KERNEL);
2283 if (!tew)
2284 return;
2285
2286 INIT_WORK(&tew->work, acpi_table_events_fn);
2287 tew->table = table;
2288 tew->event = event;
2289
2290 schedule_work(&tew->work);
2291 }
2292
2293 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2294 {
2295 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2296 }
2297 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2298
2299 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2300 {
2301 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2302 }
2303 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);