SCSI: fix queue cleanup race before queue initialization is done
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362 inline void __blk_run_queue_uncond(struct request_queue *q)
363 {
364 lockdep_assert_held(q->queue_lock);
365 WARN_ON_ONCE(q->mq_ops);
366
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
378 q->request_fn(q);
379 q->request_fn_active--;
380 }
381 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
382
383 /**
384 * __blk_run_queue - run a single device queue
385 * @q: The queue to run
386 *
387 * Description:
388 * See @blk_run_queue.
389 */
390 void __blk_run_queue(struct request_queue *q)
391 {
392 lockdep_assert_held(q->queue_lock);
393 WARN_ON_ONCE(q->mq_ops);
394
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
398 __blk_run_queue_uncond(q);
399 }
400 EXPORT_SYMBOL(__blk_run_queue);
401
402 /**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
414 */
415 void blk_run_queue_async(struct request_queue *q)
416 {
417 lockdep_assert_held(q->queue_lock);
418 WARN_ON_ONCE(q->mq_ops);
419
420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
422 }
423 EXPORT_SYMBOL(blk_run_queue_async);
424
425 /**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
431 * May be used to restart queueing when a request has completed.
432 */
433 void blk_run_queue(struct request_queue *q)
434 {
435 unsigned long flags;
436
437 WARN_ON_ONCE(q->mq_ops);
438
439 spin_lock_irqsave(q->queue_lock, flags);
440 __blk_run_queue(q);
441 spin_unlock_irqrestore(q->queue_lock, flags);
442 }
443 EXPORT_SYMBOL(blk_run_queue);
444
445 void blk_put_queue(struct request_queue *q)
446 {
447 kobject_put(&q->kobj);
448 }
449 EXPORT_SYMBOL(blk_put_queue);
450
451 /**
452 * __blk_drain_queue - drain requests from request_queue
453 * @q: queue to drain
454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
455 *
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
459 */
460 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
463 {
464 int i;
465
466 lockdep_assert_held(q->queue_lock);
467 WARN_ON_ONCE(q->mq_ops);
468
469 while (true) {
470 bool drain = false;
471
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
479 blkcg_drain_queue(q);
480
481 /*
482 * This function might be called on a queue which failed
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
487 */
488 if (!list_empty(&q->queue_head) && q->request_fn)
489 __blk_run_queue(q);
490
491 drain |= q->nr_rqs_elvpriv;
492 drain |= q->request_fn_active;
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
503 drain |= q->nr_rqs[i];
504 drain |= q->in_flight[i];
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
507 }
508 }
509
510 if (!drain)
511 break;
512
513 spin_unlock_irq(q->queue_lock);
514
515 msleep(10);
516
517 spin_lock_irq(q->queue_lock);
518 }
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
531 }
532 }
533
534 void blk_drain_queue(struct request_queue *q)
535 {
536 spin_lock_irq(q->queue_lock);
537 __blk_drain_queue(q, true);
538 spin_unlock_irq(q->queue_lock);
539 }
540
541 /**
542 * blk_queue_bypass_start - enter queue bypass mode
543 * @q: queue of interest
544 *
545 * In bypass mode, only the dispatch FIFO queue of @q is used. This
546 * function makes @q enter bypass mode and drains all requests which were
547 * throttled or issued before. On return, it's guaranteed that no request
548 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
549 * inside queue or RCU read lock.
550 */
551 void blk_queue_bypass_start(struct request_queue *q)
552 {
553 WARN_ON_ONCE(q->mq_ops);
554
555 spin_lock_irq(q->queue_lock);
556 q->bypass_depth++;
557 queue_flag_set(QUEUE_FLAG_BYPASS, q);
558 spin_unlock_irq(q->queue_lock);
559
560 /*
561 * Queues start drained. Skip actual draining till init is
562 * complete. This avoids lenghty delays during queue init which
563 * can happen many times during boot.
564 */
565 if (blk_queue_init_done(q)) {
566 spin_lock_irq(q->queue_lock);
567 __blk_drain_queue(q, false);
568 spin_unlock_irq(q->queue_lock);
569
570 /* ensure blk_queue_bypass() is %true inside RCU read lock */
571 synchronize_rcu();
572 }
573 }
574 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
575
576 /**
577 * blk_queue_bypass_end - leave queue bypass mode
578 * @q: queue of interest
579 *
580 * Leave bypass mode and restore the normal queueing behavior.
581 *
582 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
583 * this function is called for both blk-sq and blk-mq queues.
584 */
585 void blk_queue_bypass_end(struct request_queue *q)
586 {
587 spin_lock_irq(q->queue_lock);
588 if (!--q->bypass_depth)
589 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
590 WARN_ON_ONCE(q->bypass_depth < 0);
591 spin_unlock_irq(q->queue_lock);
592 }
593 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
594
595 void blk_set_queue_dying(struct request_queue *q)
596 {
597 spin_lock_irq(q->queue_lock);
598 queue_flag_set(QUEUE_FLAG_DYING, q);
599 spin_unlock_irq(q->queue_lock);
600
601 /*
602 * When queue DYING flag is set, we need to block new req
603 * entering queue, so we call blk_freeze_queue_start() to
604 * prevent I/O from crossing blk_queue_enter().
605 */
606 blk_freeze_queue_start(q);
607
608 if (q->mq_ops)
609 blk_mq_wake_waiters(q);
610 else {
611 struct request_list *rl;
612
613 spin_lock_irq(q->queue_lock);
614 blk_queue_for_each_rl(rl, q) {
615 if (rl->rq_pool) {
616 wake_up_all(&rl->wait[BLK_RW_SYNC]);
617 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
618 }
619 }
620 spin_unlock_irq(q->queue_lock);
621 }
622 }
623 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
624
625 /**
626 * blk_cleanup_queue - shutdown a request queue
627 * @q: request queue to shutdown
628 *
629 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
630 * put it. All future requests will be failed immediately with -ENODEV.
631 */
632 void blk_cleanup_queue(struct request_queue *q)
633 {
634 spinlock_t *lock = q->queue_lock;
635
636 /* mark @q DYING, no new request or merges will be allowed afterwards */
637 mutex_lock(&q->sysfs_lock);
638 blk_set_queue_dying(q);
639 spin_lock_irq(lock);
640
641 /*
642 * A dying queue is permanently in bypass mode till released. Note
643 * that, unlike blk_queue_bypass_start(), we aren't performing
644 * synchronize_rcu() after entering bypass mode to avoid the delay
645 * as some drivers create and destroy a lot of queues while
646 * probing. This is still safe because blk_release_queue() will be
647 * called only after the queue refcnt drops to zero and nothing,
648 * RCU or not, would be traversing the queue by then.
649 */
650 q->bypass_depth++;
651 queue_flag_set(QUEUE_FLAG_BYPASS, q);
652
653 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
654 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
655 queue_flag_set(QUEUE_FLAG_DYING, q);
656 spin_unlock_irq(lock);
657 mutex_unlock(&q->sysfs_lock);
658
659 /*
660 * Drain all requests queued before DYING marking. Set DEAD flag to
661 * prevent that q->request_fn() gets invoked after draining finished.
662 */
663 blk_freeze_queue(q);
664 spin_lock_irq(lock);
665 queue_flag_set(QUEUE_FLAG_DEAD, q);
666 spin_unlock_irq(lock);
667
668 /*
669 * make sure all in-progress dispatch are completed because
670 * blk_freeze_queue() can only complete all requests, and
671 * dispatch may still be in-progress since we dispatch requests
672 * from more than one contexts.
673 *
674 * We rely on driver to deal with the race in case that queue
675 * initialization isn't done.
676 */
677 if (q->mq_ops && blk_queue_init_done(q))
678 blk_mq_quiesce_queue(q);
679
680 /* for synchronous bio-based driver finish in-flight integrity i/o */
681 blk_flush_integrity();
682
683 /* @q won't process any more request, flush async actions */
684 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
685 blk_sync_queue(q);
686
687 if (q->mq_ops)
688 blk_mq_free_queue(q);
689 percpu_ref_exit(&q->q_usage_counter);
690
691 spin_lock_irq(lock);
692 if (q->queue_lock != &q->__queue_lock)
693 q->queue_lock = &q->__queue_lock;
694 spin_unlock_irq(lock);
695
696 /* @q is and will stay empty, shutdown and put */
697 blk_put_queue(q);
698 }
699 EXPORT_SYMBOL(blk_cleanup_queue);
700
701 /* Allocate memory local to the request queue */
702 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
703 {
704 struct request_queue *q = data;
705
706 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
707 }
708
709 static void free_request_simple(void *element, void *data)
710 {
711 kmem_cache_free(request_cachep, element);
712 }
713
714 static void *alloc_request_size(gfp_t gfp_mask, void *data)
715 {
716 struct request_queue *q = data;
717 struct request *rq;
718
719 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
720 q->node);
721 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
722 kfree(rq);
723 rq = NULL;
724 }
725 return rq;
726 }
727
728 static void free_request_size(void *element, void *data)
729 {
730 struct request_queue *q = data;
731
732 if (q->exit_rq_fn)
733 q->exit_rq_fn(q, element);
734 kfree(element);
735 }
736
737 int blk_init_rl(struct request_list *rl, struct request_queue *q,
738 gfp_t gfp_mask)
739 {
740 if (unlikely(rl->rq_pool))
741 return 0;
742
743 rl->q = q;
744 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
745 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
746 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
747 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
748
749 if (q->cmd_size) {
750 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
751 alloc_request_size, free_request_size,
752 q, gfp_mask, q->node);
753 } else {
754 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
755 alloc_request_simple, free_request_simple,
756 q, gfp_mask, q->node);
757 }
758 if (!rl->rq_pool)
759 return -ENOMEM;
760
761 if (rl != &q->root_rl)
762 WARN_ON_ONCE(!blk_get_queue(q));
763
764 return 0;
765 }
766
767 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
768 {
769 if (rl->rq_pool) {
770 mempool_destroy(rl->rq_pool);
771 if (rl != &q->root_rl)
772 blk_put_queue(q);
773 }
774 }
775
776 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
777 {
778 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
779 }
780 EXPORT_SYMBOL(blk_alloc_queue);
781
782 int blk_queue_enter(struct request_queue *q, bool nowait)
783 {
784 while (true) {
785
786 if (percpu_ref_tryget_live(&q->q_usage_counter))
787 return 0;
788
789 if (nowait)
790 return -EBUSY;
791
792 /*
793 * read pair of barrier in blk_freeze_queue_start(),
794 * we need to order reading __PERCPU_REF_DEAD flag of
795 * .q_usage_counter and reading .mq_freeze_depth or
796 * queue dying flag, otherwise the following wait may
797 * never return if the two reads are reordered.
798 */
799 smp_rmb();
800
801 wait_event(q->mq_freeze_wq,
802 !atomic_read(&q->mq_freeze_depth) ||
803 blk_queue_dying(q));
804 if (blk_queue_dying(q))
805 return -ENODEV;
806 }
807 }
808
809 void blk_queue_exit(struct request_queue *q)
810 {
811 percpu_ref_put(&q->q_usage_counter);
812 }
813
814 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
815 {
816 struct request_queue *q =
817 container_of(ref, struct request_queue, q_usage_counter);
818
819 wake_up_all(&q->mq_freeze_wq);
820 }
821
822 static void blk_rq_timed_out_timer(unsigned long data)
823 {
824 struct request_queue *q = (struct request_queue *)data;
825
826 kblockd_schedule_work(&q->timeout_work);
827 }
828
829 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
830 {
831 struct request_queue *q;
832
833 q = kmem_cache_alloc_node(blk_requestq_cachep,
834 gfp_mask | __GFP_ZERO, node_id);
835 if (!q)
836 return NULL;
837
838 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
839 if (q->id < 0)
840 goto fail_q;
841
842 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
843 if (!q->bio_split)
844 goto fail_id;
845
846 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
847 if (!q->backing_dev_info)
848 goto fail_split;
849
850 q->stats = blk_alloc_queue_stats();
851 if (!q->stats)
852 goto fail_stats;
853
854 q->backing_dev_info->ra_pages =
855 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
856 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
857 q->backing_dev_info->name = "block";
858 q->node = node_id;
859
860 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
861 laptop_mode_timer_fn, (unsigned long) q);
862 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
863 INIT_WORK(&q->timeout_work, NULL);
864 INIT_LIST_HEAD(&q->queue_head);
865 INIT_LIST_HEAD(&q->timeout_list);
866 INIT_LIST_HEAD(&q->icq_list);
867 #ifdef CONFIG_BLK_CGROUP
868 INIT_LIST_HEAD(&q->blkg_list);
869 #endif
870 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
871
872 kobject_init(&q->kobj, &blk_queue_ktype);
873
874 #ifdef CONFIG_BLK_DEV_IO_TRACE
875 mutex_init(&q->blk_trace_mutex);
876 #endif
877 mutex_init(&q->sysfs_lock);
878 spin_lock_init(&q->__queue_lock);
879
880 /*
881 * By default initialize queue_lock to internal lock and driver can
882 * override it later if need be.
883 */
884 q->queue_lock = &q->__queue_lock;
885
886 /*
887 * A queue starts its life with bypass turned on to avoid
888 * unnecessary bypass on/off overhead and nasty surprises during
889 * init. The initial bypass will be finished when the queue is
890 * registered by blk_register_queue().
891 */
892 q->bypass_depth = 1;
893 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
894
895 init_waitqueue_head(&q->mq_freeze_wq);
896
897 /*
898 * Init percpu_ref in atomic mode so that it's faster to shutdown.
899 * See blk_register_queue() for details.
900 */
901 if (percpu_ref_init(&q->q_usage_counter,
902 blk_queue_usage_counter_release,
903 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
904 goto fail_bdi;
905
906 if (blkcg_init_queue(q))
907 goto fail_ref;
908
909 return q;
910
911 fail_ref:
912 percpu_ref_exit(&q->q_usage_counter);
913 fail_bdi:
914 blk_free_queue_stats(q->stats);
915 fail_stats:
916 bdi_put(q->backing_dev_info);
917 fail_split:
918 bioset_free(q->bio_split);
919 fail_id:
920 ida_simple_remove(&blk_queue_ida, q->id);
921 fail_q:
922 kmem_cache_free(blk_requestq_cachep, q);
923 return NULL;
924 }
925 EXPORT_SYMBOL(blk_alloc_queue_node);
926
927 /**
928 * blk_init_queue - prepare a request queue for use with a block device
929 * @rfn: The function to be called to process requests that have been
930 * placed on the queue.
931 * @lock: Request queue spin lock
932 *
933 * Description:
934 * If a block device wishes to use the standard request handling procedures,
935 * which sorts requests and coalesces adjacent requests, then it must
936 * call blk_init_queue(). The function @rfn will be called when there
937 * are requests on the queue that need to be processed. If the device
938 * supports plugging, then @rfn may not be called immediately when requests
939 * are available on the queue, but may be called at some time later instead.
940 * Plugged queues are generally unplugged when a buffer belonging to one
941 * of the requests on the queue is needed, or due to memory pressure.
942 *
943 * @rfn is not required, or even expected, to remove all requests off the
944 * queue, but only as many as it can handle at a time. If it does leave
945 * requests on the queue, it is responsible for arranging that the requests
946 * get dealt with eventually.
947 *
948 * The queue spin lock must be held while manipulating the requests on the
949 * request queue; this lock will be taken also from interrupt context, so irq
950 * disabling is needed for it.
951 *
952 * Function returns a pointer to the initialized request queue, or %NULL if
953 * it didn't succeed.
954 *
955 * Note:
956 * blk_init_queue() must be paired with a blk_cleanup_queue() call
957 * when the block device is deactivated (such as at module unload).
958 **/
959
960 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
961 {
962 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
963 }
964 EXPORT_SYMBOL(blk_init_queue);
965
966 struct request_queue *
967 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
968 {
969 struct request_queue *q;
970
971 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
972 if (!q)
973 return NULL;
974
975 q->request_fn = rfn;
976 if (lock)
977 q->queue_lock = lock;
978 if (blk_init_allocated_queue(q) < 0) {
979 blk_cleanup_queue(q);
980 return NULL;
981 }
982
983 return q;
984 }
985 EXPORT_SYMBOL(blk_init_queue_node);
986
987 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
988
989
990 int blk_init_allocated_queue(struct request_queue *q)
991 {
992 WARN_ON_ONCE(q->mq_ops);
993
994 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
995 if (!q->fq)
996 return -ENOMEM;
997
998 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
999 goto out_free_flush_queue;
1000
1001 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1002 goto out_exit_flush_rq;
1003
1004 INIT_WORK(&q->timeout_work, blk_timeout_work);
1005 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1006
1007 /*
1008 * This also sets hw/phys segments, boundary and size
1009 */
1010 blk_queue_make_request(q, blk_queue_bio);
1011
1012 q->sg_reserved_size = INT_MAX;
1013
1014 /* Protect q->elevator from elevator_change */
1015 mutex_lock(&q->sysfs_lock);
1016
1017 /* init elevator */
1018 if (elevator_init(q, NULL)) {
1019 mutex_unlock(&q->sysfs_lock);
1020 goto out_exit_flush_rq;
1021 }
1022
1023 mutex_unlock(&q->sysfs_lock);
1024 return 0;
1025
1026 out_exit_flush_rq:
1027 if (q->exit_rq_fn)
1028 q->exit_rq_fn(q, q->fq->flush_rq);
1029 out_free_flush_queue:
1030 blk_free_flush_queue(q->fq);
1031 q->fq = NULL;
1032 return -ENOMEM;
1033 }
1034 EXPORT_SYMBOL(blk_init_allocated_queue);
1035
1036 bool blk_get_queue(struct request_queue *q)
1037 {
1038 if (likely(!blk_queue_dying(q))) {
1039 __blk_get_queue(q);
1040 return true;
1041 }
1042
1043 return false;
1044 }
1045 EXPORT_SYMBOL(blk_get_queue);
1046
1047 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1048 {
1049 if (rq->rq_flags & RQF_ELVPRIV) {
1050 elv_put_request(rl->q, rq);
1051 if (rq->elv.icq)
1052 put_io_context(rq->elv.icq->ioc);
1053 }
1054
1055 mempool_free(rq, rl->rq_pool);
1056 }
1057
1058 /*
1059 * ioc_batching returns true if the ioc is a valid batching request and
1060 * should be given priority access to a request.
1061 */
1062 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1063 {
1064 if (!ioc)
1065 return 0;
1066
1067 /*
1068 * Make sure the process is able to allocate at least 1 request
1069 * even if the batch times out, otherwise we could theoretically
1070 * lose wakeups.
1071 */
1072 return ioc->nr_batch_requests == q->nr_batching ||
1073 (ioc->nr_batch_requests > 0
1074 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1075 }
1076
1077 /*
1078 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1079 * will cause the process to be a "batcher" on all queues in the system. This
1080 * is the behaviour we want though - once it gets a wakeup it should be given
1081 * a nice run.
1082 */
1083 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1084 {
1085 if (!ioc || ioc_batching(q, ioc))
1086 return;
1087
1088 ioc->nr_batch_requests = q->nr_batching;
1089 ioc->last_waited = jiffies;
1090 }
1091
1092 static void __freed_request(struct request_list *rl, int sync)
1093 {
1094 struct request_queue *q = rl->q;
1095
1096 if (rl->count[sync] < queue_congestion_off_threshold(q))
1097 blk_clear_congested(rl, sync);
1098
1099 if (rl->count[sync] + 1 <= q->nr_requests) {
1100 if (waitqueue_active(&rl->wait[sync]))
1101 wake_up(&rl->wait[sync]);
1102
1103 blk_clear_rl_full(rl, sync);
1104 }
1105 }
1106
1107 /*
1108 * A request has just been released. Account for it, update the full and
1109 * congestion status, wake up any waiters. Called under q->queue_lock.
1110 */
1111 static void freed_request(struct request_list *rl, bool sync,
1112 req_flags_t rq_flags)
1113 {
1114 struct request_queue *q = rl->q;
1115
1116 q->nr_rqs[sync]--;
1117 rl->count[sync]--;
1118 if (rq_flags & RQF_ELVPRIV)
1119 q->nr_rqs_elvpriv--;
1120
1121 __freed_request(rl, sync);
1122
1123 if (unlikely(rl->starved[sync ^ 1]))
1124 __freed_request(rl, sync ^ 1);
1125 }
1126
1127 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1128 {
1129 struct request_list *rl;
1130 int on_thresh, off_thresh;
1131
1132 WARN_ON_ONCE(q->mq_ops);
1133
1134 spin_lock_irq(q->queue_lock);
1135 q->nr_requests = nr;
1136 blk_queue_congestion_threshold(q);
1137 on_thresh = queue_congestion_on_threshold(q);
1138 off_thresh = queue_congestion_off_threshold(q);
1139
1140 blk_queue_for_each_rl(rl, q) {
1141 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1142 blk_set_congested(rl, BLK_RW_SYNC);
1143 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1144 blk_clear_congested(rl, BLK_RW_SYNC);
1145
1146 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1147 blk_set_congested(rl, BLK_RW_ASYNC);
1148 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1149 blk_clear_congested(rl, BLK_RW_ASYNC);
1150
1151 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1152 blk_set_rl_full(rl, BLK_RW_SYNC);
1153 } else {
1154 blk_clear_rl_full(rl, BLK_RW_SYNC);
1155 wake_up(&rl->wait[BLK_RW_SYNC]);
1156 }
1157
1158 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1159 blk_set_rl_full(rl, BLK_RW_ASYNC);
1160 } else {
1161 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1162 wake_up(&rl->wait[BLK_RW_ASYNC]);
1163 }
1164 }
1165
1166 spin_unlock_irq(q->queue_lock);
1167 return 0;
1168 }
1169
1170 /**
1171 * __get_request - get a free request
1172 * @rl: request list to allocate from
1173 * @op: operation and flags
1174 * @bio: bio to allocate request for (can be %NULL)
1175 * @gfp_mask: allocation mask
1176 *
1177 * Get a free request from @q. This function may fail under memory
1178 * pressure or if @q is dead.
1179 *
1180 * Must be called with @q->queue_lock held and,
1181 * Returns ERR_PTR on failure, with @q->queue_lock held.
1182 * Returns request pointer on success, with @q->queue_lock *not held*.
1183 */
1184 static struct request *__get_request(struct request_list *rl, unsigned int op,
1185 struct bio *bio, gfp_t gfp_mask)
1186 {
1187 struct request_queue *q = rl->q;
1188 struct request *rq;
1189 struct elevator_type *et = q->elevator->type;
1190 struct io_context *ioc = rq_ioc(bio);
1191 struct io_cq *icq = NULL;
1192 const bool is_sync = op_is_sync(op);
1193 int may_queue;
1194 req_flags_t rq_flags = RQF_ALLOCED;
1195
1196 lockdep_assert_held(q->queue_lock);
1197
1198 if (unlikely(blk_queue_dying(q)))
1199 return ERR_PTR(-ENODEV);
1200
1201 may_queue = elv_may_queue(q, op);
1202 if (may_queue == ELV_MQUEUE_NO)
1203 goto rq_starved;
1204
1205 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1206 if (rl->count[is_sync]+1 >= q->nr_requests) {
1207 /*
1208 * The queue will fill after this allocation, so set
1209 * it as full, and mark this process as "batching".
1210 * This process will be allowed to complete a batch of
1211 * requests, others will be blocked.
1212 */
1213 if (!blk_rl_full(rl, is_sync)) {
1214 ioc_set_batching(q, ioc);
1215 blk_set_rl_full(rl, is_sync);
1216 } else {
1217 if (may_queue != ELV_MQUEUE_MUST
1218 && !ioc_batching(q, ioc)) {
1219 /*
1220 * The queue is full and the allocating
1221 * process is not a "batcher", and not
1222 * exempted by the IO scheduler
1223 */
1224 return ERR_PTR(-ENOMEM);
1225 }
1226 }
1227 }
1228 blk_set_congested(rl, is_sync);
1229 }
1230
1231 /*
1232 * Only allow batching queuers to allocate up to 50% over the defined
1233 * limit of requests, otherwise we could have thousands of requests
1234 * allocated with any setting of ->nr_requests
1235 */
1236 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1237 return ERR_PTR(-ENOMEM);
1238
1239 q->nr_rqs[is_sync]++;
1240 rl->count[is_sync]++;
1241 rl->starved[is_sync] = 0;
1242
1243 /*
1244 * Decide whether the new request will be managed by elevator. If
1245 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1246 * prevent the current elevator from being destroyed until the new
1247 * request is freed. This guarantees icq's won't be destroyed and
1248 * makes creating new ones safe.
1249 *
1250 * Flush requests do not use the elevator so skip initialization.
1251 * This allows a request to share the flush and elevator data.
1252 *
1253 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1254 * it will be created after releasing queue_lock.
1255 */
1256 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1257 rq_flags |= RQF_ELVPRIV;
1258 q->nr_rqs_elvpriv++;
1259 if (et->icq_cache && ioc)
1260 icq = ioc_lookup_icq(ioc, q);
1261 }
1262
1263 if (blk_queue_io_stat(q))
1264 rq_flags |= RQF_IO_STAT;
1265 spin_unlock_irq(q->queue_lock);
1266
1267 /* allocate and init request */
1268 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1269 if (!rq)
1270 goto fail_alloc;
1271
1272 blk_rq_init(q, rq);
1273 blk_rq_set_rl(rq, rl);
1274 rq->cmd_flags = op;
1275 rq->rq_flags = rq_flags;
1276
1277 /* init elvpriv */
1278 if (rq_flags & RQF_ELVPRIV) {
1279 if (unlikely(et->icq_cache && !icq)) {
1280 if (ioc)
1281 icq = ioc_create_icq(ioc, q, gfp_mask);
1282 if (!icq)
1283 goto fail_elvpriv;
1284 }
1285
1286 rq->elv.icq = icq;
1287 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1288 goto fail_elvpriv;
1289
1290 /* @rq->elv.icq holds io_context until @rq is freed */
1291 if (icq)
1292 get_io_context(icq->ioc);
1293 }
1294 out:
1295 /*
1296 * ioc may be NULL here, and ioc_batching will be false. That's
1297 * OK, if the queue is under the request limit then requests need
1298 * not count toward the nr_batch_requests limit. There will always
1299 * be some limit enforced by BLK_BATCH_TIME.
1300 */
1301 if (ioc_batching(q, ioc))
1302 ioc->nr_batch_requests--;
1303
1304 trace_block_getrq(q, bio, op);
1305 return rq;
1306
1307 fail_elvpriv:
1308 /*
1309 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1310 * and may fail indefinitely under memory pressure and thus
1311 * shouldn't stall IO. Treat this request as !elvpriv. This will
1312 * disturb iosched and blkcg but weird is bettern than dead.
1313 */
1314 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1315 __func__, dev_name(q->backing_dev_info->dev));
1316
1317 rq->rq_flags &= ~RQF_ELVPRIV;
1318 rq->elv.icq = NULL;
1319
1320 spin_lock_irq(q->queue_lock);
1321 q->nr_rqs_elvpriv--;
1322 spin_unlock_irq(q->queue_lock);
1323 goto out;
1324
1325 fail_alloc:
1326 /*
1327 * Allocation failed presumably due to memory. Undo anything we
1328 * might have messed up.
1329 *
1330 * Allocating task should really be put onto the front of the wait
1331 * queue, but this is pretty rare.
1332 */
1333 spin_lock_irq(q->queue_lock);
1334 freed_request(rl, is_sync, rq_flags);
1335
1336 /*
1337 * in the very unlikely event that allocation failed and no
1338 * requests for this direction was pending, mark us starved so that
1339 * freeing of a request in the other direction will notice
1340 * us. another possible fix would be to split the rq mempool into
1341 * READ and WRITE
1342 */
1343 rq_starved:
1344 if (unlikely(rl->count[is_sync] == 0))
1345 rl->starved[is_sync] = 1;
1346 return ERR_PTR(-ENOMEM);
1347 }
1348
1349 /**
1350 * get_request - get a free request
1351 * @q: request_queue to allocate request from
1352 * @op: operation and flags
1353 * @bio: bio to allocate request for (can be %NULL)
1354 * @gfp_mask: allocation mask
1355 *
1356 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1357 * this function keeps retrying under memory pressure and fails iff @q is dead.
1358 *
1359 * Must be called with @q->queue_lock held and,
1360 * Returns ERR_PTR on failure, with @q->queue_lock held.
1361 * Returns request pointer on success, with @q->queue_lock *not held*.
1362 */
1363 static struct request *get_request(struct request_queue *q, unsigned int op,
1364 struct bio *bio, gfp_t gfp_mask)
1365 {
1366 const bool is_sync = op_is_sync(op);
1367 DEFINE_WAIT(wait);
1368 struct request_list *rl;
1369 struct request *rq;
1370
1371 lockdep_assert_held(q->queue_lock);
1372 WARN_ON_ONCE(q->mq_ops);
1373
1374 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1375 retry:
1376 rq = __get_request(rl, op, bio, gfp_mask);
1377 if (!IS_ERR(rq))
1378 return rq;
1379
1380 if (op & REQ_NOWAIT) {
1381 blk_put_rl(rl);
1382 return ERR_PTR(-EAGAIN);
1383 }
1384
1385 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1386 blk_put_rl(rl);
1387 return rq;
1388 }
1389
1390 /* wait on @rl and retry */
1391 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1392 TASK_UNINTERRUPTIBLE);
1393
1394 trace_block_sleeprq(q, bio, op);
1395
1396 spin_unlock_irq(q->queue_lock);
1397 io_schedule();
1398
1399 /*
1400 * After sleeping, we become a "batching" process and will be able
1401 * to allocate at least one request, and up to a big batch of them
1402 * for a small period time. See ioc_batching, ioc_set_batching
1403 */
1404 ioc_set_batching(q, current->io_context);
1405
1406 spin_lock_irq(q->queue_lock);
1407 finish_wait(&rl->wait[is_sync], &wait);
1408
1409 goto retry;
1410 }
1411
1412 static struct request *blk_old_get_request(struct request_queue *q,
1413 unsigned int op, gfp_t gfp_mask)
1414 {
1415 struct request *rq;
1416
1417 WARN_ON_ONCE(q->mq_ops);
1418
1419 /* create ioc upfront */
1420 create_io_context(gfp_mask, q->node);
1421
1422 spin_lock_irq(q->queue_lock);
1423 rq = get_request(q, op, NULL, gfp_mask);
1424 if (IS_ERR(rq)) {
1425 spin_unlock_irq(q->queue_lock);
1426 return rq;
1427 }
1428
1429 /* q->queue_lock is unlocked at this point */
1430 rq->__data_len = 0;
1431 rq->__sector = (sector_t) -1;
1432 rq->bio = rq->biotail = NULL;
1433 return rq;
1434 }
1435
1436 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1437 gfp_t gfp_mask)
1438 {
1439 struct request *req;
1440
1441 if (q->mq_ops) {
1442 req = blk_mq_alloc_request(q, op,
1443 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1444 0 : BLK_MQ_REQ_NOWAIT);
1445 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1446 q->mq_ops->initialize_rq_fn(req);
1447 } else {
1448 req = blk_old_get_request(q, op, gfp_mask);
1449 if (!IS_ERR(req) && q->initialize_rq_fn)
1450 q->initialize_rq_fn(req);
1451 }
1452
1453 return req;
1454 }
1455 EXPORT_SYMBOL(blk_get_request);
1456
1457 /**
1458 * blk_requeue_request - put a request back on queue
1459 * @q: request queue where request should be inserted
1460 * @rq: request to be inserted
1461 *
1462 * Description:
1463 * Drivers often keep queueing requests until the hardware cannot accept
1464 * more, when that condition happens we need to put the request back
1465 * on the queue. Must be called with queue lock held.
1466 */
1467 void blk_requeue_request(struct request_queue *q, struct request *rq)
1468 {
1469 lockdep_assert_held(q->queue_lock);
1470 WARN_ON_ONCE(q->mq_ops);
1471
1472 blk_delete_timer(rq);
1473 blk_clear_rq_complete(rq);
1474 trace_block_rq_requeue(q, rq);
1475 wbt_requeue(q->rq_wb, &rq->issue_stat);
1476
1477 if (rq->rq_flags & RQF_QUEUED)
1478 blk_queue_end_tag(q, rq);
1479
1480 BUG_ON(blk_queued_rq(rq));
1481
1482 elv_requeue_request(q, rq);
1483 }
1484 EXPORT_SYMBOL(blk_requeue_request);
1485
1486 static void add_acct_request(struct request_queue *q, struct request *rq,
1487 int where)
1488 {
1489 blk_account_io_start(rq, true);
1490 __elv_add_request(q, rq, where);
1491 }
1492
1493 static void part_round_stats_single(struct request_queue *q, int cpu,
1494 struct hd_struct *part, unsigned long now,
1495 unsigned int inflight)
1496 {
1497 if (inflight) {
1498 __part_stat_add(cpu, part, time_in_queue,
1499 inflight * (now - part->stamp));
1500 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1501 }
1502 part->stamp = now;
1503 }
1504
1505 /**
1506 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1507 * @q: target block queue
1508 * @cpu: cpu number for stats access
1509 * @part: target partition
1510 *
1511 * The average IO queue length and utilisation statistics are maintained
1512 * by observing the current state of the queue length and the amount of
1513 * time it has been in this state for.
1514 *
1515 * Normally, that accounting is done on IO completion, but that can result
1516 * in more than a second's worth of IO being accounted for within any one
1517 * second, leading to >100% utilisation. To deal with that, we call this
1518 * function to do a round-off before returning the results when reading
1519 * /proc/diskstats. This accounts immediately for all queue usage up to
1520 * the current jiffies and restarts the counters again.
1521 */
1522 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1523 {
1524 struct hd_struct *part2 = NULL;
1525 unsigned long now = jiffies;
1526 unsigned int inflight[2];
1527 int stats = 0;
1528
1529 if (part->stamp != now)
1530 stats |= 1;
1531
1532 if (part->partno) {
1533 part2 = &part_to_disk(part)->part0;
1534 if (part2->stamp != now)
1535 stats |= 2;
1536 }
1537
1538 if (!stats)
1539 return;
1540
1541 part_in_flight(q, part, inflight);
1542
1543 if (stats & 2)
1544 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1545 if (stats & 1)
1546 part_round_stats_single(q, cpu, part, now, inflight[0]);
1547 }
1548 EXPORT_SYMBOL_GPL(part_round_stats);
1549
1550 #ifdef CONFIG_PM
1551 static void blk_pm_put_request(struct request *rq)
1552 {
1553 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1554 pm_runtime_mark_last_busy(rq->q->dev);
1555 }
1556 #else
1557 static inline void blk_pm_put_request(struct request *rq) {}
1558 #endif
1559
1560 void __blk_put_request(struct request_queue *q, struct request *req)
1561 {
1562 req_flags_t rq_flags = req->rq_flags;
1563
1564 if (unlikely(!q))
1565 return;
1566
1567 if (q->mq_ops) {
1568 blk_mq_free_request(req);
1569 return;
1570 }
1571
1572 lockdep_assert_held(q->queue_lock);
1573
1574 blk_pm_put_request(req);
1575
1576 elv_completed_request(q, req);
1577
1578 /* this is a bio leak */
1579 WARN_ON(req->bio != NULL);
1580
1581 wbt_done(q->rq_wb, &req->issue_stat);
1582
1583 /*
1584 * Request may not have originated from ll_rw_blk. if not,
1585 * it didn't come out of our reserved rq pools
1586 */
1587 if (rq_flags & RQF_ALLOCED) {
1588 struct request_list *rl = blk_rq_rl(req);
1589 bool sync = op_is_sync(req->cmd_flags);
1590
1591 BUG_ON(!list_empty(&req->queuelist));
1592 BUG_ON(ELV_ON_HASH(req));
1593
1594 blk_free_request(rl, req);
1595 freed_request(rl, sync, rq_flags);
1596 blk_put_rl(rl);
1597 }
1598 }
1599 EXPORT_SYMBOL_GPL(__blk_put_request);
1600
1601 void blk_put_request(struct request *req)
1602 {
1603 struct request_queue *q = req->q;
1604
1605 if (q->mq_ops)
1606 blk_mq_free_request(req);
1607 else {
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(q->queue_lock, flags);
1611 __blk_put_request(q, req);
1612 spin_unlock_irqrestore(q->queue_lock, flags);
1613 }
1614 }
1615 EXPORT_SYMBOL(blk_put_request);
1616
1617 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1618 struct bio *bio)
1619 {
1620 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1621
1622 if (!ll_back_merge_fn(q, req, bio))
1623 return false;
1624
1625 trace_block_bio_backmerge(q, req, bio);
1626
1627 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1628 blk_rq_set_mixed_merge(req);
1629
1630 req->biotail->bi_next = bio;
1631 req->biotail = bio;
1632 req->__data_len += bio->bi_iter.bi_size;
1633 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1634
1635 blk_account_io_start(req, false);
1636 return true;
1637 }
1638
1639 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1640 struct bio *bio)
1641 {
1642 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1643
1644 if (!ll_front_merge_fn(q, req, bio))
1645 return false;
1646
1647 trace_block_bio_frontmerge(q, req, bio);
1648
1649 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1650 blk_rq_set_mixed_merge(req);
1651
1652 bio->bi_next = req->bio;
1653 req->bio = bio;
1654
1655 req->__sector = bio->bi_iter.bi_sector;
1656 req->__data_len += bio->bi_iter.bi_size;
1657 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1658
1659 blk_account_io_start(req, false);
1660 return true;
1661 }
1662
1663 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1664 struct bio *bio)
1665 {
1666 unsigned short segments = blk_rq_nr_discard_segments(req);
1667
1668 if (segments >= queue_max_discard_segments(q))
1669 goto no_merge;
1670 if (blk_rq_sectors(req) + bio_sectors(bio) >
1671 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1672 goto no_merge;
1673
1674 req->biotail->bi_next = bio;
1675 req->biotail = bio;
1676 req->__data_len += bio->bi_iter.bi_size;
1677 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1678 req->nr_phys_segments = segments + 1;
1679
1680 blk_account_io_start(req, false);
1681 return true;
1682 no_merge:
1683 req_set_nomerge(q, req);
1684 return false;
1685 }
1686
1687 /**
1688 * blk_attempt_plug_merge - try to merge with %current's plugged list
1689 * @q: request_queue new bio is being queued at
1690 * @bio: new bio being queued
1691 * @request_count: out parameter for number of traversed plugged requests
1692 * @same_queue_rq: pointer to &struct request that gets filled in when
1693 * another request associated with @q is found on the plug list
1694 * (optional, may be %NULL)
1695 *
1696 * Determine whether @bio being queued on @q can be merged with a request
1697 * on %current's plugged list. Returns %true if merge was successful,
1698 * otherwise %false.
1699 *
1700 * Plugging coalesces IOs from the same issuer for the same purpose without
1701 * going through @q->queue_lock. As such it's more of an issuing mechanism
1702 * than scheduling, and the request, while may have elvpriv data, is not
1703 * added on the elevator at this point. In addition, we don't have
1704 * reliable access to the elevator outside queue lock. Only check basic
1705 * merging parameters without querying the elevator.
1706 *
1707 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1708 */
1709 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1710 unsigned int *request_count,
1711 struct request **same_queue_rq)
1712 {
1713 struct blk_plug *plug;
1714 struct request *rq;
1715 struct list_head *plug_list;
1716
1717 plug = current->plug;
1718 if (!plug)
1719 return false;
1720 *request_count = 0;
1721
1722 if (q->mq_ops)
1723 plug_list = &plug->mq_list;
1724 else
1725 plug_list = &plug->list;
1726
1727 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1728 bool merged = false;
1729
1730 if (rq->q == q) {
1731 (*request_count)++;
1732 /*
1733 * Only blk-mq multiple hardware queues case checks the
1734 * rq in the same queue, there should be only one such
1735 * rq in a queue
1736 **/
1737 if (same_queue_rq)
1738 *same_queue_rq = rq;
1739 }
1740
1741 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1742 continue;
1743
1744 switch (blk_try_merge(rq, bio)) {
1745 case ELEVATOR_BACK_MERGE:
1746 merged = bio_attempt_back_merge(q, rq, bio);
1747 break;
1748 case ELEVATOR_FRONT_MERGE:
1749 merged = bio_attempt_front_merge(q, rq, bio);
1750 break;
1751 case ELEVATOR_DISCARD_MERGE:
1752 merged = bio_attempt_discard_merge(q, rq, bio);
1753 break;
1754 default:
1755 break;
1756 }
1757
1758 if (merged)
1759 return true;
1760 }
1761
1762 return false;
1763 }
1764
1765 unsigned int blk_plug_queued_count(struct request_queue *q)
1766 {
1767 struct blk_plug *plug;
1768 struct request *rq;
1769 struct list_head *plug_list;
1770 unsigned int ret = 0;
1771
1772 plug = current->plug;
1773 if (!plug)
1774 goto out;
1775
1776 if (q->mq_ops)
1777 plug_list = &plug->mq_list;
1778 else
1779 plug_list = &plug->list;
1780
1781 list_for_each_entry(rq, plug_list, queuelist) {
1782 if (rq->q == q)
1783 ret++;
1784 }
1785 out:
1786 return ret;
1787 }
1788
1789 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1790 {
1791 struct io_context *ioc = rq_ioc(bio);
1792
1793 if (bio->bi_opf & REQ_RAHEAD)
1794 req->cmd_flags |= REQ_FAILFAST_MASK;
1795
1796 req->__sector = bio->bi_iter.bi_sector;
1797 if (ioprio_valid(bio_prio(bio)))
1798 req->ioprio = bio_prio(bio);
1799 else if (ioc)
1800 req->ioprio = ioc->ioprio;
1801 else
1802 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1803 req->write_hint = bio->bi_write_hint;
1804 blk_rq_bio_prep(req->q, req, bio);
1805 }
1806 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1807
1808 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1809 {
1810 struct blk_plug *plug;
1811 int where = ELEVATOR_INSERT_SORT;
1812 struct request *req, *free;
1813 unsigned int request_count = 0;
1814 unsigned int wb_acct;
1815
1816 /*
1817 * low level driver can indicate that it wants pages above a
1818 * certain limit bounced to low memory (ie for highmem, or even
1819 * ISA dma in theory)
1820 */
1821 blk_queue_bounce(q, &bio);
1822
1823 blk_queue_split(q, &bio);
1824
1825 if (!bio_integrity_prep(bio))
1826 return BLK_QC_T_NONE;
1827
1828 if (op_is_flush(bio->bi_opf)) {
1829 spin_lock_irq(q->queue_lock);
1830 where = ELEVATOR_INSERT_FLUSH;
1831 goto get_rq;
1832 }
1833
1834 /*
1835 * Check if we can merge with the plugged list before grabbing
1836 * any locks.
1837 */
1838 if (!blk_queue_nomerges(q)) {
1839 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1840 return BLK_QC_T_NONE;
1841 } else
1842 request_count = blk_plug_queued_count(q);
1843
1844 spin_lock_irq(q->queue_lock);
1845
1846 switch (elv_merge(q, &req, bio)) {
1847 case ELEVATOR_BACK_MERGE:
1848 if (!bio_attempt_back_merge(q, req, bio))
1849 break;
1850 elv_bio_merged(q, req, bio);
1851 free = attempt_back_merge(q, req);
1852 if (free)
1853 __blk_put_request(q, free);
1854 else
1855 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1856 goto out_unlock;
1857 case ELEVATOR_FRONT_MERGE:
1858 if (!bio_attempt_front_merge(q, req, bio))
1859 break;
1860 elv_bio_merged(q, req, bio);
1861 free = attempt_front_merge(q, req);
1862 if (free)
1863 __blk_put_request(q, free);
1864 else
1865 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1866 goto out_unlock;
1867 default:
1868 break;
1869 }
1870
1871 get_rq:
1872 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1873
1874 /*
1875 * Grab a free request. This is might sleep but can not fail.
1876 * Returns with the queue unlocked.
1877 */
1878 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1879 if (IS_ERR(req)) {
1880 __wbt_done(q->rq_wb, wb_acct);
1881 if (PTR_ERR(req) == -ENOMEM)
1882 bio->bi_status = BLK_STS_RESOURCE;
1883 else
1884 bio->bi_status = BLK_STS_IOERR;
1885 bio_endio(bio);
1886 goto out_unlock;
1887 }
1888
1889 wbt_track(&req->issue_stat, wb_acct);
1890
1891 /*
1892 * After dropping the lock and possibly sleeping here, our request
1893 * may now be mergeable after it had proven unmergeable (above).
1894 * We don't worry about that case for efficiency. It won't happen
1895 * often, and the elevators are able to handle it.
1896 */
1897 blk_init_request_from_bio(req, bio);
1898
1899 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1900 req->cpu = raw_smp_processor_id();
1901
1902 plug = current->plug;
1903 if (plug) {
1904 /*
1905 * If this is the first request added after a plug, fire
1906 * of a plug trace.
1907 *
1908 * @request_count may become stale because of schedule
1909 * out, so check plug list again.
1910 */
1911 if (!request_count || list_empty(&plug->list))
1912 trace_block_plug(q);
1913 else {
1914 struct request *last = list_entry_rq(plug->list.prev);
1915 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1916 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1917 blk_flush_plug_list(plug, false);
1918 trace_block_plug(q);
1919 }
1920 }
1921 list_add_tail(&req->queuelist, &plug->list);
1922 blk_account_io_start(req, true);
1923 } else {
1924 spin_lock_irq(q->queue_lock);
1925 add_acct_request(q, req, where);
1926 __blk_run_queue(q);
1927 out_unlock:
1928 spin_unlock_irq(q->queue_lock);
1929 }
1930
1931 return BLK_QC_T_NONE;
1932 }
1933
1934 static void handle_bad_sector(struct bio *bio)
1935 {
1936 char b[BDEVNAME_SIZE];
1937
1938 printk(KERN_INFO "attempt to access beyond end of device\n");
1939 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1940 bio_devname(bio, b), bio->bi_opf,
1941 (unsigned long long)bio_end_sector(bio),
1942 (long long)get_capacity(bio->bi_disk));
1943 }
1944
1945 #ifdef CONFIG_FAIL_MAKE_REQUEST
1946
1947 static DECLARE_FAULT_ATTR(fail_make_request);
1948
1949 static int __init setup_fail_make_request(char *str)
1950 {
1951 return setup_fault_attr(&fail_make_request, str);
1952 }
1953 __setup("fail_make_request=", setup_fail_make_request);
1954
1955 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1956 {
1957 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1958 }
1959
1960 static int __init fail_make_request_debugfs(void)
1961 {
1962 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1963 NULL, &fail_make_request);
1964
1965 return PTR_ERR_OR_ZERO(dir);
1966 }
1967
1968 late_initcall(fail_make_request_debugfs);
1969
1970 #else /* CONFIG_FAIL_MAKE_REQUEST */
1971
1972 static inline bool should_fail_request(struct hd_struct *part,
1973 unsigned int bytes)
1974 {
1975 return false;
1976 }
1977
1978 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1979
1980 /*
1981 * Remap block n of partition p to block n+start(p) of the disk.
1982 */
1983 static inline int blk_partition_remap(struct bio *bio)
1984 {
1985 struct hd_struct *p;
1986 int ret = 0;
1987
1988 /*
1989 * Zone reset does not include bi_size so bio_sectors() is always 0.
1990 * Include a test for the reset op code and perform the remap if needed.
1991 */
1992 if (!bio->bi_partno ||
1993 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1994 return 0;
1995
1996 rcu_read_lock();
1997 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1998 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1999 bio->bi_iter.bi_sector += p->start_sect;
2000 bio->bi_partno = 0;
2001 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2002 bio->bi_iter.bi_sector - p->start_sect);
2003 } else {
2004 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2005 ret = -EIO;
2006 }
2007 rcu_read_unlock();
2008
2009 return ret;
2010 }
2011
2012 /*
2013 * Check whether this bio extends beyond the end of the device.
2014 */
2015 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2016 {
2017 sector_t maxsector;
2018
2019 if (!nr_sectors)
2020 return 0;
2021
2022 /* Test device or partition size, when known. */
2023 maxsector = get_capacity(bio->bi_disk);
2024 if (maxsector) {
2025 sector_t sector = bio->bi_iter.bi_sector;
2026
2027 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2028 /*
2029 * This may well happen - the kernel calls bread()
2030 * without checking the size of the device, e.g., when
2031 * mounting a device.
2032 */
2033 handle_bad_sector(bio);
2034 return 1;
2035 }
2036 }
2037
2038 return 0;
2039 }
2040
2041 static noinline_for_stack bool
2042 generic_make_request_checks(struct bio *bio)
2043 {
2044 struct request_queue *q;
2045 int nr_sectors = bio_sectors(bio);
2046 blk_status_t status = BLK_STS_IOERR;
2047 char b[BDEVNAME_SIZE];
2048
2049 might_sleep();
2050
2051 if (bio_check_eod(bio, nr_sectors))
2052 goto end_io;
2053
2054 q = bio->bi_disk->queue;
2055 if (unlikely(!q)) {
2056 printk(KERN_ERR
2057 "generic_make_request: Trying to access "
2058 "nonexistent block-device %s (%Lu)\n",
2059 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2060 goto end_io;
2061 }
2062
2063 /*
2064 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2065 * if queue is not a request based queue.
2066 */
2067
2068 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2069 goto not_supported;
2070
2071 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2072 goto end_io;
2073
2074 if (blk_partition_remap(bio))
2075 goto end_io;
2076
2077 if (bio_check_eod(bio, nr_sectors))
2078 goto end_io;
2079
2080 /*
2081 * Filter flush bio's early so that make_request based
2082 * drivers without flush support don't have to worry
2083 * about them.
2084 */
2085 if (op_is_flush(bio->bi_opf) &&
2086 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2087 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2088 if (!nr_sectors) {
2089 status = BLK_STS_OK;
2090 goto end_io;
2091 }
2092 }
2093
2094 switch (bio_op(bio)) {
2095 case REQ_OP_DISCARD:
2096 if (!blk_queue_discard(q))
2097 goto not_supported;
2098 break;
2099 case REQ_OP_SECURE_ERASE:
2100 if (!blk_queue_secure_erase(q))
2101 goto not_supported;
2102 break;
2103 case REQ_OP_WRITE_SAME:
2104 if (!q->limits.max_write_same_sectors)
2105 goto not_supported;
2106 break;
2107 case REQ_OP_ZONE_REPORT:
2108 case REQ_OP_ZONE_RESET:
2109 if (!blk_queue_is_zoned(q))
2110 goto not_supported;
2111 break;
2112 case REQ_OP_WRITE_ZEROES:
2113 if (!q->limits.max_write_zeroes_sectors)
2114 goto not_supported;
2115 break;
2116 default:
2117 break;
2118 }
2119
2120 /*
2121 * Various block parts want %current->io_context and lazy ioc
2122 * allocation ends up trading a lot of pain for a small amount of
2123 * memory. Just allocate it upfront. This may fail and block
2124 * layer knows how to live with it.
2125 */
2126 create_io_context(GFP_ATOMIC, q->node);
2127
2128 if (!blkcg_bio_issue_check(q, bio))
2129 return false;
2130
2131 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2132 trace_block_bio_queue(q, bio);
2133 /* Now that enqueuing has been traced, we need to trace
2134 * completion as well.
2135 */
2136 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2137 }
2138 return true;
2139
2140 not_supported:
2141 status = BLK_STS_NOTSUPP;
2142 end_io:
2143 bio->bi_status = status;
2144 bio_endio(bio);
2145 return false;
2146 }
2147
2148 /**
2149 * generic_make_request - hand a buffer to its device driver for I/O
2150 * @bio: The bio describing the location in memory and on the device.
2151 *
2152 * generic_make_request() is used to make I/O requests of block
2153 * devices. It is passed a &struct bio, which describes the I/O that needs
2154 * to be done.
2155 *
2156 * generic_make_request() does not return any status. The
2157 * success/failure status of the request, along with notification of
2158 * completion, is delivered asynchronously through the bio->bi_end_io
2159 * function described (one day) else where.
2160 *
2161 * The caller of generic_make_request must make sure that bi_io_vec
2162 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2163 * set to describe the device address, and the
2164 * bi_end_io and optionally bi_private are set to describe how
2165 * completion notification should be signaled.
2166 *
2167 * generic_make_request and the drivers it calls may use bi_next if this
2168 * bio happens to be merged with someone else, and may resubmit the bio to
2169 * a lower device by calling into generic_make_request recursively, which
2170 * means the bio should NOT be touched after the call to ->make_request_fn.
2171 */
2172 blk_qc_t generic_make_request(struct bio *bio)
2173 {
2174 /*
2175 * bio_list_on_stack[0] contains bios submitted by the current
2176 * make_request_fn.
2177 * bio_list_on_stack[1] contains bios that were submitted before
2178 * the current make_request_fn, but that haven't been processed
2179 * yet.
2180 */
2181 struct bio_list bio_list_on_stack[2];
2182 blk_qc_t ret = BLK_QC_T_NONE;
2183
2184 if (!generic_make_request_checks(bio))
2185 goto out;
2186
2187 /*
2188 * We only want one ->make_request_fn to be active at a time, else
2189 * stack usage with stacked devices could be a problem. So use
2190 * current->bio_list to keep a list of requests submited by a
2191 * make_request_fn function. current->bio_list is also used as a
2192 * flag to say if generic_make_request is currently active in this
2193 * task or not. If it is NULL, then no make_request is active. If
2194 * it is non-NULL, then a make_request is active, and new requests
2195 * should be added at the tail
2196 */
2197 if (current->bio_list) {
2198 bio_list_add(&current->bio_list[0], bio);
2199 goto out;
2200 }
2201
2202 /* following loop may be a bit non-obvious, and so deserves some
2203 * explanation.
2204 * Before entering the loop, bio->bi_next is NULL (as all callers
2205 * ensure that) so we have a list with a single bio.
2206 * We pretend that we have just taken it off a longer list, so
2207 * we assign bio_list to a pointer to the bio_list_on_stack,
2208 * thus initialising the bio_list of new bios to be
2209 * added. ->make_request() may indeed add some more bios
2210 * through a recursive call to generic_make_request. If it
2211 * did, we find a non-NULL value in bio_list and re-enter the loop
2212 * from the top. In this case we really did just take the bio
2213 * of the top of the list (no pretending) and so remove it from
2214 * bio_list, and call into ->make_request() again.
2215 */
2216 BUG_ON(bio->bi_next);
2217 bio_list_init(&bio_list_on_stack[0]);
2218 current->bio_list = bio_list_on_stack;
2219 do {
2220 struct request_queue *q = bio->bi_disk->queue;
2221
2222 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2223 struct bio_list lower, same;
2224
2225 /* Create a fresh bio_list for all subordinate requests */
2226 bio_list_on_stack[1] = bio_list_on_stack[0];
2227 bio_list_init(&bio_list_on_stack[0]);
2228 ret = q->make_request_fn(q, bio);
2229
2230 blk_queue_exit(q);
2231
2232 /* sort new bios into those for a lower level
2233 * and those for the same level
2234 */
2235 bio_list_init(&lower);
2236 bio_list_init(&same);
2237 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2238 if (q == bio->bi_disk->queue)
2239 bio_list_add(&same, bio);
2240 else
2241 bio_list_add(&lower, bio);
2242 /* now assemble so we handle the lowest level first */
2243 bio_list_merge(&bio_list_on_stack[0], &lower);
2244 bio_list_merge(&bio_list_on_stack[0], &same);
2245 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2246 } else {
2247 if (unlikely(!blk_queue_dying(q) &&
2248 (bio->bi_opf & REQ_NOWAIT)))
2249 bio_wouldblock_error(bio);
2250 else
2251 bio_io_error(bio);
2252 }
2253 bio = bio_list_pop(&bio_list_on_stack[0]);
2254 } while (bio);
2255 current->bio_list = NULL; /* deactivate */
2256
2257 out:
2258 return ret;
2259 }
2260 EXPORT_SYMBOL(generic_make_request);
2261
2262 /**
2263 * submit_bio - submit a bio to the block device layer for I/O
2264 * @bio: The &struct bio which describes the I/O
2265 *
2266 * submit_bio() is very similar in purpose to generic_make_request(), and
2267 * uses that function to do most of the work. Both are fairly rough
2268 * interfaces; @bio must be presetup and ready for I/O.
2269 *
2270 */
2271 blk_qc_t submit_bio(struct bio *bio)
2272 {
2273 /*
2274 * If it's a regular read/write or a barrier with data attached,
2275 * go through the normal accounting stuff before submission.
2276 */
2277 if (bio_has_data(bio)) {
2278 unsigned int count;
2279
2280 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2281 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2282 else
2283 count = bio_sectors(bio);
2284
2285 if (op_is_write(bio_op(bio))) {
2286 count_vm_events(PGPGOUT, count);
2287 } else {
2288 task_io_account_read(bio->bi_iter.bi_size);
2289 count_vm_events(PGPGIN, count);
2290 }
2291
2292 if (unlikely(block_dump)) {
2293 char b[BDEVNAME_SIZE];
2294 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2295 current->comm, task_pid_nr(current),
2296 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2297 (unsigned long long)bio->bi_iter.bi_sector,
2298 bio_devname(bio, b), count);
2299 }
2300 }
2301
2302 return generic_make_request(bio);
2303 }
2304 EXPORT_SYMBOL(submit_bio);
2305
2306 /**
2307 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2308 * for new the queue limits
2309 * @q: the queue
2310 * @rq: the request being checked
2311 *
2312 * Description:
2313 * @rq may have been made based on weaker limitations of upper-level queues
2314 * in request stacking drivers, and it may violate the limitation of @q.
2315 * Since the block layer and the underlying device driver trust @rq
2316 * after it is inserted to @q, it should be checked against @q before
2317 * the insertion using this generic function.
2318 *
2319 * Request stacking drivers like request-based dm may change the queue
2320 * limits when retrying requests on other queues. Those requests need
2321 * to be checked against the new queue limits again during dispatch.
2322 */
2323 static int blk_cloned_rq_check_limits(struct request_queue *q,
2324 struct request *rq)
2325 {
2326 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2327 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2328 return -EIO;
2329 }
2330
2331 /*
2332 * queue's settings related to segment counting like q->bounce_pfn
2333 * may differ from that of other stacking queues.
2334 * Recalculate it to check the request correctly on this queue's
2335 * limitation.
2336 */
2337 blk_recalc_rq_segments(rq);
2338 if (rq->nr_phys_segments > queue_max_segments(q)) {
2339 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2340 return -EIO;
2341 }
2342
2343 return 0;
2344 }
2345
2346 /**
2347 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2348 * @q: the queue to submit the request
2349 * @rq: the request being queued
2350 */
2351 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2352 {
2353 unsigned long flags;
2354 int where = ELEVATOR_INSERT_BACK;
2355
2356 if (blk_cloned_rq_check_limits(q, rq))
2357 return BLK_STS_IOERR;
2358
2359 if (rq->rq_disk &&
2360 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2361 return BLK_STS_IOERR;
2362
2363 if (q->mq_ops) {
2364 if (blk_queue_io_stat(q))
2365 blk_account_io_start(rq, true);
2366 /*
2367 * Since we have a scheduler attached on the top device,
2368 * bypass a potential scheduler on the bottom device for
2369 * insert.
2370 */
2371 blk_mq_request_bypass_insert(rq);
2372 return BLK_STS_OK;
2373 }
2374
2375 spin_lock_irqsave(q->queue_lock, flags);
2376 if (unlikely(blk_queue_dying(q))) {
2377 spin_unlock_irqrestore(q->queue_lock, flags);
2378 return BLK_STS_IOERR;
2379 }
2380
2381 /*
2382 * Submitting request must be dequeued before calling this function
2383 * because it will be linked to another request_queue
2384 */
2385 BUG_ON(blk_queued_rq(rq));
2386
2387 if (op_is_flush(rq->cmd_flags))
2388 where = ELEVATOR_INSERT_FLUSH;
2389
2390 add_acct_request(q, rq, where);
2391 if (where == ELEVATOR_INSERT_FLUSH)
2392 __blk_run_queue(q);
2393 spin_unlock_irqrestore(q->queue_lock, flags);
2394
2395 return BLK_STS_OK;
2396 }
2397 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2398
2399 /**
2400 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2401 * @rq: request to examine
2402 *
2403 * Description:
2404 * A request could be merge of IOs which require different failure
2405 * handling. This function determines the number of bytes which
2406 * can be failed from the beginning of the request without
2407 * crossing into area which need to be retried further.
2408 *
2409 * Return:
2410 * The number of bytes to fail.
2411 */
2412 unsigned int blk_rq_err_bytes(const struct request *rq)
2413 {
2414 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2415 unsigned int bytes = 0;
2416 struct bio *bio;
2417
2418 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2419 return blk_rq_bytes(rq);
2420
2421 /*
2422 * Currently the only 'mixing' which can happen is between
2423 * different fastfail types. We can safely fail portions
2424 * which have all the failfast bits that the first one has -
2425 * the ones which are at least as eager to fail as the first
2426 * one.
2427 */
2428 for (bio = rq->bio; bio; bio = bio->bi_next) {
2429 if ((bio->bi_opf & ff) != ff)
2430 break;
2431 bytes += bio->bi_iter.bi_size;
2432 }
2433
2434 /* this could lead to infinite loop */
2435 BUG_ON(blk_rq_bytes(rq) && !bytes);
2436 return bytes;
2437 }
2438 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2439
2440 void blk_account_io_completion(struct request *req, unsigned int bytes)
2441 {
2442 if (blk_do_io_stat(req)) {
2443 const int rw = rq_data_dir(req);
2444 struct hd_struct *part;
2445 int cpu;
2446
2447 cpu = part_stat_lock();
2448 part = req->part;
2449 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2450 part_stat_unlock();
2451 }
2452 }
2453
2454 void blk_account_io_done(struct request *req)
2455 {
2456 /*
2457 * Account IO completion. flush_rq isn't accounted as a
2458 * normal IO on queueing nor completion. Accounting the
2459 * containing request is enough.
2460 */
2461 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2462 unsigned long duration = jiffies - req->start_time;
2463 const int rw = rq_data_dir(req);
2464 struct hd_struct *part;
2465 int cpu;
2466
2467 cpu = part_stat_lock();
2468 part = req->part;
2469
2470 part_stat_inc(cpu, part, ios[rw]);
2471 part_stat_add(cpu, part, ticks[rw], duration);
2472 part_round_stats(req->q, cpu, part);
2473 part_dec_in_flight(req->q, part, rw);
2474
2475 hd_struct_put(part);
2476 part_stat_unlock();
2477 }
2478 }
2479
2480 #ifdef CONFIG_PM
2481 /*
2482 * Don't process normal requests when queue is suspended
2483 * or in the process of suspending/resuming
2484 */
2485 static struct request *blk_pm_peek_request(struct request_queue *q,
2486 struct request *rq)
2487 {
2488 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2489 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2490 return NULL;
2491 else
2492 return rq;
2493 }
2494 #else
2495 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2496 struct request *rq)
2497 {
2498 return rq;
2499 }
2500 #endif
2501
2502 void blk_account_io_start(struct request *rq, bool new_io)
2503 {
2504 struct hd_struct *part;
2505 int rw = rq_data_dir(rq);
2506 int cpu;
2507
2508 if (!blk_do_io_stat(rq))
2509 return;
2510
2511 cpu = part_stat_lock();
2512
2513 if (!new_io) {
2514 part = rq->part;
2515 part_stat_inc(cpu, part, merges[rw]);
2516 } else {
2517 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2518 if (!hd_struct_try_get(part)) {
2519 /*
2520 * The partition is already being removed,
2521 * the request will be accounted on the disk only
2522 *
2523 * We take a reference on disk->part0 although that
2524 * partition will never be deleted, so we can treat
2525 * it as any other partition.
2526 */
2527 part = &rq->rq_disk->part0;
2528 hd_struct_get(part);
2529 }
2530 part_round_stats(rq->q, cpu, part);
2531 part_inc_in_flight(rq->q, part, rw);
2532 rq->part = part;
2533 }
2534
2535 part_stat_unlock();
2536 }
2537
2538 /**
2539 * blk_peek_request - peek at the top of a request queue
2540 * @q: request queue to peek at
2541 *
2542 * Description:
2543 * Return the request at the top of @q. The returned request
2544 * should be started using blk_start_request() before LLD starts
2545 * processing it.
2546 *
2547 * Return:
2548 * Pointer to the request at the top of @q if available. Null
2549 * otherwise.
2550 */
2551 struct request *blk_peek_request(struct request_queue *q)
2552 {
2553 struct request *rq;
2554 int ret;
2555
2556 lockdep_assert_held(q->queue_lock);
2557 WARN_ON_ONCE(q->mq_ops);
2558
2559 while ((rq = __elv_next_request(q)) != NULL) {
2560
2561 rq = blk_pm_peek_request(q, rq);
2562 if (!rq)
2563 break;
2564
2565 if (!(rq->rq_flags & RQF_STARTED)) {
2566 /*
2567 * This is the first time the device driver
2568 * sees this request (possibly after
2569 * requeueing). Notify IO scheduler.
2570 */
2571 if (rq->rq_flags & RQF_SORTED)
2572 elv_activate_rq(q, rq);
2573
2574 /*
2575 * just mark as started even if we don't start
2576 * it, a request that has been delayed should
2577 * not be passed by new incoming requests
2578 */
2579 rq->rq_flags |= RQF_STARTED;
2580 trace_block_rq_issue(q, rq);
2581 }
2582
2583 if (!q->boundary_rq || q->boundary_rq == rq) {
2584 q->end_sector = rq_end_sector(rq);
2585 q->boundary_rq = NULL;
2586 }
2587
2588 if (rq->rq_flags & RQF_DONTPREP)
2589 break;
2590
2591 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2592 /*
2593 * make sure space for the drain appears we
2594 * know we can do this because max_hw_segments
2595 * has been adjusted to be one fewer than the
2596 * device can handle
2597 */
2598 rq->nr_phys_segments++;
2599 }
2600
2601 if (!q->prep_rq_fn)
2602 break;
2603
2604 ret = q->prep_rq_fn(q, rq);
2605 if (ret == BLKPREP_OK) {
2606 break;
2607 } else if (ret == BLKPREP_DEFER) {
2608 /*
2609 * the request may have been (partially) prepped.
2610 * we need to keep this request in the front to
2611 * avoid resource deadlock. RQF_STARTED will
2612 * prevent other fs requests from passing this one.
2613 */
2614 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2615 !(rq->rq_flags & RQF_DONTPREP)) {
2616 /*
2617 * remove the space for the drain we added
2618 * so that we don't add it again
2619 */
2620 --rq->nr_phys_segments;
2621 }
2622
2623 rq = NULL;
2624 break;
2625 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2626 rq->rq_flags |= RQF_QUIET;
2627 /*
2628 * Mark this request as started so we don't trigger
2629 * any debug logic in the end I/O path.
2630 */
2631 blk_start_request(rq);
2632 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2633 BLK_STS_TARGET : BLK_STS_IOERR);
2634 } else {
2635 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2636 break;
2637 }
2638 }
2639
2640 return rq;
2641 }
2642 EXPORT_SYMBOL(blk_peek_request);
2643
2644 static void blk_dequeue_request(struct request *rq)
2645 {
2646 struct request_queue *q = rq->q;
2647
2648 BUG_ON(list_empty(&rq->queuelist));
2649 BUG_ON(ELV_ON_HASH(rq));
2650
2651 list_del_init(&rq->queuelist);
2652
2653 /*
2654 * the time frame between a request being removed from the lists
2655 * and to it is freed is accounted as io that is in progress at
2656 * the driver side.
2657 */
2658 if (blk_account_rq(rq)) {
2659 q->in_flight[rq_is_sync(rq)]++;
2660 set_io_start_time_ns(rq);
2661 }
2662 }
2663
2664 /**
2665 * blk_start_request - start request processing on the driver
2666 * @req: request to dequeue
2667 *
2668 * Description:
2669 * Dequeue @req and start timeout timer on it. This hands off the
2670 * request to the driver.
2671 */
2672 void blk_start_request(struct request *req)
2673 {
2674 lockdep_assert_held(req->q->queue_lock);
2675 WARN_ON_ONCE(req->q->mq_ops);
2676
2677 blk_dequeue_request(req);
2678
2679 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2680 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2681 req->rq_flags |= RQF_STATS;
2682 wbt_issue(req->q->rq_wb, &req->issue_stat);
2683 }
2684
2685 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2686 blk_add_timer(req);
2687 }
2688 EXPORT_SYMBOL(blk_start_request);
2689
2690 /**
2691 * blk_fetch_request - fetch a request from a request queue
2692 * @q: request queue to fetch a request from
2693 *
2694 * Description:
2695 * Return the request at the top of @q. The request is started on
2696 * return and LLD can start processing it immediately.
2697 *
2698 * Return:
2699 * Pointer to the request at the top of @q if available. Null
2700 * otherwise.
2701 */
2702 struct request *blk_fetch_request(struct request_queue *q)
2703 {
2704 struct request *rq;
2705
2706 lockdep_assert_held(q->queue_lock);
2707 WARN_ON_ONCE(q->mq_ops);
2708
2709 rq = blk_peek_request(q);
2710 if (rq)
2711 blk_start_request(rq);
2712 return rq;
2713 }
2714 EXPORT_SYMBOL(blk_fetch_request);
2715
2716 /**
2717 * blk_update_request - Special helper function for request stacking drivers
2718 * @req: the request being processed
2719 * @error: block status code
2720 * @nr_bytes: number of bytes to complete @req
2721 *
2722 * Description:
2723 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2724 * the request structure even if @req doesn't have leftover.
2725 * If @req has leftover, sets it up for the next range of segments.
2726 *
2727 * This special helper function is only for request stacking drivers
2728 * (e.g. request-based dm) so that they can handle partial completion.
2729 * Actual device drivers should use blk_end_request instead.
2730 *
2731 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2732 * %false return from this function.
2733 *
2734 * Return:
2735 * %false - this request doesn't have any more data
2736 * %true - this request has more data
2737 **/
2738 bool blk_update_request(struct request *req, blk_status_t error,
2739 unsigned int nr_bytes)
2740 {
2741 int total_bytes;
2742
2743 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2744
2745 if (!req->bio)
2746 return false;
2747
2748 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2749 !(req->rq_flags & RQF_QUIET)))
2750 print_req_error(req, error);
2751
2752 blk_account_io_completion(req, nr_bytes);
2753
2754 total_bytes = 0;
2755 while (req->bio) {
2756 struct bio *bio = req->bio;
2757 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2758
2759 if (bio_bytes == bio->bi_iter.bi_size)
2760 req->bio = bio->bi_next;
2761
2762 /* Completion has already been traced */
2763 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2764 req_bio_endio(req, bio, bio_bytes, error);
2765
2766 total_bytes += bio_bytes;
2767 nr_bytes -= bio_bytes;
2768
2769 if (!nr_bytes)
2770 break;
2771 }
2772
2773 /*
2774 * completely done
2775 */
2776 if (!req->bio) {
2777 /*
2778 * Reset counters so that the request stacking driver
2779 * can find how many bytes remain in the request
2780 * later.
2781 */
2782 req->__data_len = 0;
2783 return false;
2784 }
2785
2786 req->__data_len -= total_bytes;
2787
2788 /* update sector only for requests with clear definition of sector */
2789 if (!blk_rq_is_passthrough(req))
2790 req->__sector += total_bytes >> 9;
2791
2792 /* mixed attributes always follow the first bio */
2793 if (req->rq_flags & RQF_MIXED_MERGE) {
2794 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2795 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2796 }
2797
2798 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2799 /*
2800 * If total number of sectors is less than the first segment
2801 * size, something has gone terribly wrong.
2802 */
2803 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2804 blk_dump_rq_flags(req, "request botched");
2805 req->__data_len = blk_rq_cur_bytes(req);
2806 }
2807
2808 /* recalculate the number of segments */
2809 blk_recalc_rq_segments(req);
2810 }
2811
2812 return true;
2813 }
2814 EXPORT_SYMBOL_GPL(blk_update_request);
2815
2816 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2817 unsigned int nr_bytes,
2818 unsigned int bidi_bytes)
2819 {
2820 if (blk_update_request(rq, error, nr_bytes))
2821 return true;
2822
2823 /* Bidi request must be completed as a whole */
2824 if (unlikely(blk_bidi_rq(rq)) &&
2825 blk_update_request(rq->next_rq, error, bidi_bytes))
2826 return true;
2827
2828 if (blk_queue_add_random(rq->q))
2829 add_disk_randomness(rq->rq_disk);
2830
2831 return false;
2832 }
2833
2834 /**
2835 * blk_unprep_request - unprepare a request
2836 * @req: the request
2837 *
2838 * This function makes a request ready for complete resubmission (or
2839 * completion). It happens only after all error handling is complete,
2840 * so represents the appropriate moment to deallocate any resources
2841 * that were allocated to the request in the prep_rq_fn. The queue
2842 * lock is held when calling this.
2843 */
2844 void blk_unprep_request(struct request *req)
2845 {
2846 struct request_queue *q = req->q;
2847
2848 req->rq_flags &= ~RQF_DONTPREP;
2849 if (q->unprep_rq_fn)
2850 q->unprep_rq_fn(q, req);
2851 }
2852 EXPORT_SYMBOL_GPL(blk_unprep_request);
2853
2854 void blk_finish_request(struct request *req, blk_status_t error)
2855 {
2856 struct request_queue *q = req->q;
2857
2858 lockdep_assert_held(req->q->queue_lock);
2859 WARN_ON_ONCE(q->mq_ops);
2860
2861 if (req->rq_flags & RQF_STATS)
2862 blk_stat_add(req);
2863
2864 if (req->rq_flags & RQF_QUEUED)
2865 blk_queue_end_tag(q, req);
2866
2867 BUG_ON(blk_queued_rq(req));
2868
2869 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2870 laptop_io_completion(req->q->backing_dev_info);
2871
2872 blk_delete_timer(req);
2873
2874 if (req->rq_flags & RQF_DONTPREP)
2875 blk_unprep_request(req);
2876
2877 blk_account_io_done(req);
2878
2879 if (req->end_io) {
2880 wbt_done(req->q->rq_wb, &req->issue_stat);
2881 req->end_io(req, error);
2882 } else {
2883 if (blk_bidi_rq(req))
2884 __blk_put_request(req->next_rq->q, req->next_rq);
2885
2886 __blk_put_request(q, req);
2887 }
2888 }
2889 EXPORT_SYMBOL(blk_finish_request);
2890
2891 /**
2892 * blk_end_bidi_request - Complete a bidi request
2893 * @rq: the request to complete
2894 * @error: block status code
2895 * @nr_bytes: number of bytes to complete @rq
2896 * @bidi_bytes: number of bytes to complete @rq->next_rq
2897 *
2898 * Description:
2899 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2900 * Drivers that supports bidi can safely call this member for any
2901 * type of request, bidi or uni. In the later case @bidi_bytes is
2902 * just ignored.
2903 *
2904 * Return:
2905 * %false - we are done with this request
2906 * %true - still buffers pending for this request
2907 **/
2908 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2909 unsigned int nr_bytes, unsigned int bidi_bytes)
2910 {
2911 struct request_queue *q = rq->q;
2912 unsigned long flags;
2913
2914 WARN_ON_ONCE(q->mq_ops);
2915
2916 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2917 return true;
2918
2919 spin_lock_irqsave(q->queue_lock, flags);
2920 blk_finish_request(rq, error);
2921 spin_unlock_irqrestore(q->queue_lock, flags);
2922
2923 return false;
2924 }
2925
2926 /**
2927 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2928 * @rq: the request to complete
2929 * @error: block status code
2930 * @nr_bytes: number of bytes to complete @rq
2931 * @bidi_bytes: number of bytes to complete @rq->next_rq
2932 *
2933 * Description:
2934 * Identical to blk_end_bidi_request() except that queue lock is
2935 * assumed to be locked on entry and remains so on return.
2936 *
2937 * Return:
2938 * %false - we are done with this request
2939 * %true - still buffers pending for this request
2940 **/
2941 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2942 unsigned int nr_bytes, unsigned int bidi_bytes)
2943 {
2944 lockdep_assert_held(rq->q->queue_lock);
2945 WARN_ON_ONCE(rq->q->mq_ops);
2946
2947 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2948 return true;
2949
2950 blk_finish_request(rq, error);
2951
2952 return false;
2953 }
2954
2955 /**
2956 * blk_end_request - Helper function for drivers to complete the request.
2957 * @rq: the request being processed
2958 * @error: block status code
2959 * @nr_bytes: number of bytes to complete
2960 *
2961 * Description:
2962 * Ends I/O on a number of bytes attached to @rq.
2963 * If @rq has leftover, sets it up for the next range of segments.
2964 *
2965 * Return:
2966 * %false - we are done with this request
2967 * %true - still buffers pending for this request
2968 **/
2969 bool blk_end_request(struct request *rq, blk_status_t error,
2970 unsigned int nr_bytes)
2971 {
2972 WARN_ON_ONCE(rq->q->mq_ops);
2973 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2974 }
2975 EXPORT_SYMBOL(blk_end_request);
2976
2977 /**
2978 * blk_end_request_all - Helper function for drives to finish the request.
2979 * @rq: the request to finish
2980 * @error: block status code
2981 *
2982 * Description:
2983 * Completely finish @rq.
2984 */
2985 void blk_end_request_all(struct request *rq, blk_status_t error)
2986 {
2987 bool pending;
2988 unsigned int bidi_bytes = 0;
2989
2990 if (unlikely(blk_bidi_rq(rq)))
2991 bidi_bytes = blk_rq_bytes(rq->next_rq);
2992
2993 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2994 BUG_ON(pending);
2995 }
2996 EXPORT_SYMBOL(blk_end_request_all);
2997
2998 /**
2999 * __blk_end_request - Helper function for drivers to complete the request.
3000 * @rq: the request being processed
3001 * @error: block status code
3002 * @nr_bytes: number of bytes to complete
3003 *
3004 * Description:
3005 * Must be called with queue lock held unlike blk_end_request().
3006 *
3007 * Return:
3008 * %false - we are done with this request
3009 * %true - still buffers pending for this request
3010 **/
3011 bool __blk_end_request(struct request *rq, blk_status_t error,
3012 unsigned int nr_bytes)
3013 {
3014 lockdep_assert_held(rq->q->queue_lock);
3015 WARN_ON_ONCE(rq->q->mq_ops);
3016
3017 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3018 }
3019 EXPORT_SYMBOL(__blk_end_request);
3020
3021 /**
3022 * __blk_end_request_all - Helper function for drives to finish the request.
3023 * @rq: the request to finish
3024 * @error: block status code
3025 *
3026 * Description:
3027 * Completely finish @rq. Must be called with queue lock held.
3028 */
3029 void __blk_end_request_all(struct request *rq, blk_status_t error)
3030 {
3031 bool pending;
3032 unsigned int bidi_bytes = 0;
3033
3034 lockdep_assert_held(rq->q->queue_lock);
3035 WARN_ON_ONCE(rq->q->mq_ops);
3036
3037 if (unlikely(blk_bidi_rq(rq)))
3038 bidi_bytes = blk_rq_bytes(rq->next_rq);
3039
3040 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3041 BUG_ON(pending);
3042 }
3043 EXPORT_SYMBOL(__blk_end_request_all);
3044
3045 /**
3046 * __blk_end_request_cur - Helper function to finish the current request chunk.
3047 * @rq: the request to finish the current chunk for
3048 * @error: block status code
3049 *
3050 * Description:
3051 * Complete the current consecutively mapped chunk from @rq. Must
3052 * be called with queue lock held.
3053 *
3054 * Return:
3055 * %false - we are done with this request
3056 * %true - still buffers pending for this request
3057 */
3058 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3059 {
3060 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3061 }
3062 EXPORT_SYMBOL(__blk_end_request_cur);
3063
3064 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3065 struct bio *bio)
3066 {
3067 if (bio_has_data(bio))
3068 rq->nr_phys_segments = bio_phys_segments(q, bio);
3069 else if (bio_op(bio) == REQ_OP_DISCARD)
3070 rq->nr_phys_segments = 1;
3071
3072 rq->__data_len = bio->bi_iter.bi_size;
3073 rq->bio = rq->biotail = bio;
3074
3075 if (bio->bi_disk)
3076 rq->rq_disk = bio->bi_disk;
3077 }
3078
3079 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3080 /**
3081 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3082 * @rq: the request to be flushed
3083 *
3084 * Description:
3085 * Flush all pages in @rq.
3086 */
3087 void rq_flush_dcache_pages(struct request *rq)
3088 {
3089 struct req_iterator iter;
3090 struct bio_vec bvec;
3091
3092 rq_for_each_segment(bvec, rq, iter)
3093 flush_dcache_page(bvec.bv_page);
3094 }
3095 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3096 #endif
3097
3098 /**
3099 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3100 * @q : the queue of the device being checked
3101 *
3102 * Description:
3103 * Check if underlying low-level drivers of a device are busy.
3104 * If the drivers want to export their busy state, they must set own
3105 * exporting function using blk_queue_lld_busy() first.
3106 *
3107 * Basically, this function is used only by request stacking drivers
3108 * to stop dispatching requests to underlying devices when underlying
3109 * devices are busy. This behavior helps more I/O merging on the queue
3110 * of the request stacking driver and prevents I/O throughput regression
3111 * on burst I/O load.
3112 *
3113 * Return:
3114 * 0 - Not busy (The request stacking driver should dispatch request)
3115 * 1 - Busy (The request stacking driver should stop dispatching request)
3116 */
3117 int blk_lld_busy(struct request_queue *q)
3118 {
3119 if (q->lld_busy_fn)
3120 return q->lld_busy_fn(q);
3121
3122 return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(blk_lld_busy);
3125
3126 /**
3127 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3128 * @rq: the clone request to be cleaned up
3129 *
3130 * Description:
3131 * Free all bios in @rq for a cloned request.
3132 */
3133 void blk_rq_unprep_clone(struct request *rq)
3134 {
3135 struct bio *bio;
3136
3137 while ((bio = rq->bio) != NULL) {
3138 rq->bio = bio->bi_next;
3139
3140 bio_put(bio);
3141 }
3142 }
3143 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3144
3145 /*
3146 * Copy attributes of the original request to the clone request.
3147 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3148 */
3149 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3150 {
3151 dst->cpu = src->cpu;
3152 dst->__sector = blk_rq_pos(src);
3153 dst->__data_len = blk_rq_bytes(src);
3154 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3155 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3156 dst->special_vec = src->special_vec;
3157 }
3158 dst->nr_phys_segments = src->nr_phys_segments;
3159 dst->ioprio = src->ioprio;
3160 dst->extra_len = src->extra_len;
3161 }
3162
3163 /**
3164 * blk_rq_prep_clone - Helper function to setup clone request
3165 * @rq: the request to be setup
3166 * @rq_src: original request to be cloned
3167 * @bs: bio_set that bios for clone are allocated from
3168 * @gfp_mask: memory allocation mask for bio
3169 * @bio_ctr: setup function to be called for each clone bio.
3170 * Returns %0 for success, non %0 for failure.
3171 * @data: private data to be passed to @bio_ctr
3172 *
3173 * Description:
3174 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3175 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3176 * are not copied, and copying such parts is the caller's responsibility.
3177 * Also, pages which the original bios are pointing to are not copied
3178 * and the cloned bios just point same pages.
3179 * So cloned bios must be completed before original bios, which means
3180 * the caller must complete @rq before @rq_src.
3181 */
3182 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3183 struct bio_set *bs, gfp_t gfp_mask,
3184 int (*bio_ctr)(struct bio *, struct bio *, void *),
3185 void *data)
3186 {
3187 struct bio *bio, *bio_src;
3188
3189 if (!bs)
3190 bs = fs_bio_set;
3191
3192 __rq_for_each_bio(bio_src, rq_src) {
3193 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3194 if (!bio)
3195 goto free_and_out;
3196
3197 if (bio_ctr && bio_ctr(bio, bio_src, data))
3198 goto free_and_out;
3199
3200 if (rq->bio) {
3201 rq->biotail->bi_next = bio;
3202 rq->biotail = bio;
3203 } else
3204 rq->bio = rq->biotail = bio;
3205 }
3206
3207 __blk_rq_prep_clone(rq, rq_src);
3208
3209 return 0;
3210
3211 free_and_out:
3212 if (bio)
3213 bio_put(bio);
3214 blk_rq_unprep_clone(rq);
3215
3216 return -ENOMEM;
3217 }
3218 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3219
3220 int kblockd_schedule_work(struct work_struct *work)
3221 {
3222 return queue_work(kblockd_workqueue, work);
3223 }
3224 EXPORT_SYMBOL(kblockd_schedule_work);
3225
3226 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3227 {
3228 return queue_work_on(cpu, kblockd_workqueue, work);
3229 }
3230 EXPORT_SYMBOL(kblockd_schedule_work_on);
3231
3232 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3233 unsigned long delay)
3234 {
3235 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3236 }
3237 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3238
3239 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3240 unsigned long delay)
3241 {
3242 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3243 }
3244 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3245
3246 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3247 unsigned long delay)
3248 {
3249 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3250 }
3251 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3252
3253 /**
3254 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3255 * @plug: The &struct blk_plug that needs to be initialized
3256 *
3257 * Description:
3258 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3259 * pending I/O should the task end up blocking between blk_start_plug() and
3260 * blk_finish_plug(). This is important from a performance perspective, but
3261 * also ensures that we don't deadlock. For instance, if the task is blocking
3262 * for a memory allocation, memory reclaim could end up wanting to free a
3263 * page belonging to that request that is currently residing in our private
3264 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3265 * this kind of deadlock.
3266 */
3267 void blk_start_plug(struct blk_plug *plug)
3268 {
3269 struct task_struct *tsk = current;
3270
3271 /*
3272 * If this is a nested plug, don't actually assign it.
3273 */
3274 if (tsk->plug)
3275 return;
3276
3277 INIT_LIST_HEAD(&plug->list);
3278 INIT_LIST_HEAD(&plug->mq_list);
3279 INIT_LIST_HEAD(&plug->cb_list);
3280 /*
3281 * Store ordering should not be needed here, since a potential
3282 * preempt will imply a full memory barrier
3283 */
3284 tsk->plug = plug;
3285 }
3286 EXPORT_SYMBOL(blk_start_plug);
3287
3288 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3289 {
3290 struct request *rqa = container_of(a, struct request, queuelist);
3291 struct request *rqb = container_of(b, struct request, queuelist);
3292
3293 return !(rqa->q < rqb->q ||
3294 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3295 }
3296
3297 /*
3298 * If 'from_schedule' is true, then postpone the dispatch of requests
3299 * until a safe kblockd context. We due this to avoid accidental big
3300 * additional stack usage in driver dispatch, in places where the originally
3301 * plugger did not intend it.
3302 */
3303 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3304 bool from_schedule)
3305 __releases(q->queue_lock)
3306 {
3307 lockdep_assert_held(q->queue_lock);
3308
3309 trace_block_unplug(q, depth, !from_schedule);
3310
3311 if (from_schedule)
3312 blk_run_queue_async(q);
3313 else
3314 __blk_run_queue(q);
3315 spin_unlock(q->queue_lock);
3316 }
3317
3318 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3319 {
3320 LIST_HEAD(callbacks);
3321
3322 while (!list_empty(&plug->cb_list)) {
3323 list_splice_init(&plug->cb_list, &callbacks);
3324
3325 while (!list_empty(&callbacks)) {
3326 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3327 struct blk_plug_cb,
3328 list);
3329 list_del(&cb->list);
3330 cb->callback(cb, from_schedule);
3331 }
3332 }
3333 }
3334
3335 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3336 int size)
3337 {
3338 struct blk_plug *plug = current->plug;
3339 struct blk_plug_cb *cb;
3340
3341 if (!plug)
3342 return NULL;
3343
3344 list_for_each_entry(cb, &plug->cb_list, list)
3345 if (cb->callback == unplug && cb->data == data)
3346 return cb;
3347
3348 /* Not currently on the callback list */
3349 BUG_ON(size < sizeof(*cb));
3350 cb = kzalloc(size, GFP_ATOMIC);
3351 if (cb) {
3352 cb->data = data;
3353 cb->callback = unplug;
3354 list_add(&cb->list, &plug->cb_list);
3355 }
3356 return cb;
3357 }
3358 EXPORT_SYMBOL(blk_check_plugged);
3359
3360 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3361 {
3362 struct request_queue *q;
3363 unsigned long flags;
3364 struct request *rq;
3365 LIST_HEAD(list);
3366 unsigned int depth;
3367
3368 flush_plug_callbacks(plug, from_schedule);
3369
3370 if (!list_empty(&plug->mq_list))
3371 blk_mq_flush_plug_list(plug, from_schedule);
3372
3373 if (list_empty(&plug->list))
3374 return;
3375
3376 list_splice_init(&plug->list, &list);
3377
3378 list_sort(NULL, &list, plug_rq_cmp);
3379
3380 q = NULL;
3381 depth = 0;
3382
3383 /*
3384 * Save and disable interrupts here, to avoid doing it for every
3385 * queue lock we have to take.
3386 */
3387 local_irq_save(flags);
3388 while (!list_empty(&list)) {
3389 rq = list_entry_rq(list.next);
3390 list_del_init(&rq->queuelist);
3391 BUG_ON(!rq->q);
3392 if (rq->q != q) {
3393 /*
3394 * This drops the queue lock
3395 */
3396 if (q)
3397 queue_unplugged(q, depth, from_schedule);
3398 q = rq->q;
3399 depth = 0;
3400 spin_lock(q->queue_lock);
3401 }
3402
3403 /*
3404 * Short-circuit if @q is dead
3405 */
3406 if (unlikely(blk_queue_dying(q))) {
3407 __blk_end_request_all(rq, BLK_STS_IOERR);
3408 continue;
3409 }
3410
3411 /*
3412 * rq is already accounted, so use raw insert
3413 */
3414 if (op_is_flush(rq->cmd_flags))
3415 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3416 else
3417 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3418
3419 depth++;
3420 }
3421
3422 /*
3423 * This drops the queue lock
3424 */
3425 if (q)
3426 queue_unplugged(q, depth, from_schedule);
3427
3428 local_irq_restore(flags);
3429 }
3430
3431 void blk_finish_plug(struct blk_plug *plug)
3432 {
3433 if (plug != current->plug)
3434 return;
3435 blk_flush_plug_list(plug, false);
3436
3437 current->plug = NULL;
3438 }
3439 EXPORT_SYMBOL(blk_finish_plug);
3440
3441 #ifdef CONFIG_PM
3442 /**
3443 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3444 * @q: the queue of the device
3445 * @dev: the device the queue belongs to
3446 *
3447 * Description:
3448 * Initialize runtime-PM-related fields for @q and start auto suspend for
3449 * @dev. Drivers that want to take advantage of request-based runtime PM
3450 * should call this function after @dev has been initialized, and its
3451 * request queue @q has been allocated, and runtime PM for it can not happen
3452 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3453 * cases, driver should call this function before any I/O has taken place.
3454 *
3455 * This function takes care of setting up using auto suspend for the device,
3456 * the autosuspend delay is set to -1 to make runtime suspend impossible
3457 * until an updated value is either set by user or by driver. Drivers do
3458 * not need to touch other autosuspend settings.
3459 *
3460 * The block layer runtime PM is request based, so only works for drivers
3461 * that use request as their IO unit instead of those directly use bio's.
3462 */
3463 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3464 {
3465 /* Don't enable runtime PM for blk-mq until it is ready */
3466 if (q->mq_ops) {
3467 pm_runtime_disable(dev);
3468 return;
3469 }
3470
3471 q->dev = dev;
3472 q->rpm_status = RPM_ACTIVE;
3473 pm_runtime_set_autosuspend_delay(q->dev, -1);
3474 pm_runtime_use_autosuspend(q->dev);
3475 }
3476 EXPORT_SYMBOL(blk_pm_runtime_init);
3477
3478 /**
3479 * blk_pre_runtime_suspend - Pre runtime suspend check
3480 * @q: the queue of the device
3481 *
3482 * Description:
3483 * This function will check if runtime suspend is allowed for the device
3484 * by examining if there are any requests pending in the queue. If there
3485 * are requests pending, the device can not be runtime suspended; otherwise,
3486 * the queue's status will be updated to SUSPENDING and the driver can
3487 * proceed to suspend the device.
3488 *
3489 * For the not allowed case, we mark last busy for the device so that
3490 * runtime PM core will try to autosuspend it some time later.
3491 *
3492 * This function should be called near the start of the device's
3493 * runtime_suspend callback.
3494 *
3495 * Return:
3496 * 0 - OK to runtime suspend the device
3497 * -EBUSY - Device should not be runtime suspended
3498 */
3499 int blk_pre_runtime_suspend(struct request_queue *q)
3500 {
3501 int ret = 0;
3502
3503 if (!q->dev)
3504 return ret;
3505
3506 spin_lock_irq(q->queue_lock);
3507 if (q->nr_pending) {
3508 ret = -EBUSY;
3509 pm_runtime_mark_last_busy(q->dev);
3510 } else {
3511 q->rpm_status = RPM_SUSPENDING;
3512 }
3513 spin_unlock_irq(q->queue_lock);
3514 return ret;
3515 }
3516 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3517
3518 /**
3519 * blk_post_runtime_suspend - Post runtime suspend processing
3520 * @q: the queue of the device
3521 * @err: return value of the device's runtime_suspend function
3522 *
3523 * Description:
3524 * Update the queue's runtime status according to the return value of the
3525 * device's runtime suspend function and mark last busy for the device so
3526 * that PM core will try to auto suspend the device at a later time.
3527 *
3528 * This function should be called near the end of the device's
3529 * runtime_suspend callback.
3530 */
3531 void blk_post_runtime_suspend(struct request_queue *q, int err)
3532 {
3533 if (!q->dev)
3534 return;
3535
3536 spin_lock_irq(q->queue_lock);
3537 if (!err) {
3538 q->rpm_status = RPM_SUSPENDED;
3539 } else {
3540 q->rpm_status = RPM_ACTIVE;
3541 pm_runtime_mark_last_busy(q->dev);
3542 }
3543 spin_unlock_irq(q->queue_lock);
3544 }
3545 EXPORT_SYMBOL(blk_post_runtime_suspend);
3546
3547 /**
3548 * blk_pre_runtime_resume - Pre runtime resume processing
3549 * @q: the queue of the device
3550 *
3551 * Description:
3552 * Update the queue's runtime status to RESUMING in preparation for the
3553 * runtime resume of the device.
3554 *
3555 * This function should be called near the start of the device's
3556 * runtime_resume callback.
3557 */
3558 void blk_pre_runtime_resume(struct request_queue *q)
3559 {
3560 if (!q->dev)
3561 return;
3562
3563 spin_lock_irq(q->queue_lock);
3564 q->rpm_status = RPM_RESUMING;
3565 spin_unlock_irq(q->queue_lock);
3566 }
3567 EXPORT_SYMBOL(blk_pre_runtime_resume);
3568
3569 /**
3570 * blk_post_runtime_resume - Post runtime resume processing
3571 * @q: the queue of the device
3572 * @err: return value of the device's runtime_resume function
3573 *
3574 * Description:
3575 * Update the queue's runtime status according to the return value of the
3576 * device's runtime_resume function. If it is successfully resumed, process
3577 * the requests that are queued into the device's queue when it is resuming
3578 * and then mark last busy and initiate autosuspend for it.
3579 *
3580 * This function should be called near the end of the device's
3581 * runtime_resume callback.
3582 */
3583 void blk_post_runtime_resume(struct request_queue *q, int err)
3584 {
3585 if (!q->dev)
3586 return;
3587
3588 spin_lock_irq(q->queue_lock);
3589 if (!err) {
3590 q->rpm_status = RPM_ACTIVE;
3591 __blk_run_queue(q);
3592 pm_runtime_mark_last_busy(q->dev);
3593 pm_request_autosuspend(q->dev);
3594 } else {
3595 q->rpm_status = RPM_SUSPENDED;
3596 }
3597 spin_unlock_irq(q->queue_lock);
3598 }
3599 EXPORT_SYMBOL(blk_post_runtime_resume);
3600
3601 /**
3602 * blk_set_runtime_active - Force runtime status of the queue to be active
3603 * @q: the queue of the device
3604 *
3605 * If the device is left runtime suspended during system suspend the resume
3606 * hook typically resumes the device and corrects runtime status
3607 * accordingly. However, that does not affect the queue runtime PM status
3608 * which is still "suspended". This prevents processing requests from the
3609 * queue.
3610 *
3611 * This function can be used in driver's resume hook to correct queue
3612 * runtime PM status and re-enable peeking requests from the queue. It
3613 * should be called before first request is added to the queue.
3614 */
3615 void blk_set_runtime_active(struct request_queue *q)
3616 {
3617 spin_lock_irq(q->queue_lock);
3618 q->rpm_status = RPM_ACTIVE;
3619 pm_runtime_mark_last_busy(q->dev);
3620 pm_request_autosuspend(q->dev);
3621 spin_unlock_irq(q->queue_lock);
3622 }
3623 EXPORT_SYMBOL(blk_set_runtime_active);
3624 #endif
3625
3626 int __init blk_dev_init(void)
3627 {
3628 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3629 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3630 FIELD_SIZEOF(struct request, cmd_flags));
3631 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3632 FIELD_SIZEOF(struct bio, bi_opf));
3633
3634 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3635 kblockd_workqueue = alloc_workqueue("kblockd",
3636 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3637 if (!kblockd_workqueue)
3638 panic("Failed to create kblockd\n");
3639
3640 request_cachep = kmem_cache_create("blkdev_requests",
3641 sizeof(struct request), 0, SLAB_PANIC, NULL);
3642
3643 blk_requestq_cachep = kmem_cache_create("request_queue",
3644 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3645
3646 #ifdef CONFIG_DEBUG_FS
3647 blk_debugfs_root = debugfs_create_dir("block", NULL);
3648 #endif
3649
3650 return 0;
3651 }