ANDROID: xt_qtaguid: Remove unnecessary null checks to ifa_label
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 #ifdef CONFIG_PM_SLEEP
129 /*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
137
138 static gfp_t saved_gfp_mask;
139
140 void pm_restore_gfp_mask(void)
141 {
142 WARN_ON(!mutex_is_locked(&pm_mutex));
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
147 }
148
149 void pm_restrict_gfp_mask(void)
150 {
151 WARN_ON(!mutex_is_locked(&pm_mutex));
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
154 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
155 }
156
157 bool pm_suspended_storage(void)
158 {
159 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
160 return false;
161 return true;
162 }
163 #endif /* CONFIG_PM_SLEEP */
164
165 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166 unsigned int pageblock_order __read_mostly;
167 #endif
168
169 static void __free_pages_ok(struct page *page, unsigned int order);
170
171 /*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
181 */
182 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
183 #ifdef CONFIG_ZONE_DMA
184 256,
185 #endif
186 #ifdef CONFIG_ZONE_DMA32
187 256,
188 #endif
189 #ifdef CONFIG_HIGHMEM
190 32,
191 #endif
192 32,
193 };
194
195 EXPORT_SYMBOL(totalram_pages);
196
197 static char * const zone_names[MAX_NR_ZONES] = {
198 #ifdef CONFIG_ZONE_DMA
199 "DMA",
200 #endif
201 #ifdef CONFIG_ZONE_DMA32
202 "DMA32",
203 #endif
204 "Normal",
205 #ifdef CONFIG_HIGHMEM
206 "HighMem",
207 #endif
208 "Movable",
209 #ifdef CONFIG_ZONE_DEVICE
210 "Device",
211 #endif
212 };
213
214 static void free_compound_page(struct page *page);
215 compound_page_dtor * const compound_page_dtors[] = {
216 NULL,
217 free_compound_page,
218 #ifdef CONFIG_HUGETLB_PAGE
219 free_huge_page,
220 #endif
221 };
222
223 /*
224 * Try to keep at least this much lowmem free. Do not allow normal
225 * allocations below this point, only high priority ones. Automatically
226 * tuned according to the amount of memory in the system.
227 */
228 int min_free_kbytes = 1024;
229 int user_min_free_kbytes = -1;
230
231 /*
232 * Extra memory for the system to try freeing. Used to temporarily
233 * free memory, to make space for new workloads. Anyone can allocate
234 * down to the min watermarks controlled by min_free_kbytes above.
235 */
236 int extra_free_kbytes = 0;
237
238 static unsigned long __meminitdata nr_kernel_pages;
239 static unsigned long __meminitdata nr_all_pages;
240 static unsigned long __meminitdata dma_reserve;
241
242 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
243 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
244 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
245 static unsigned long __initdata required_kernelcore;
246 static unsigned long __initdata required_movablecore;
247 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
248
249 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
250 int movable_zone;
251 EXPORT_SYMBOL(movable_zone);
252 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
253
254 #if MAX_NUMNODES > 1
255 int nr_node_ids __read_mostly = MAX_NUMNODES;
256 int nr_online_nodes __read_mostly = 1;
257 EXPORT_SYMBOL(nr_node_ids);
258 EXPORT_SYMBOL(nr_online_nodes);
259 #endif
260
261 int page_group_by_mobility_disabled __read_mostly;
262
263 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
264
265 /*
266 * Determine how many pages need to be initialized durig early boot
267 * (non-deferred initialization).
268 * The value of first_deferred_pfn will be set later, once non-deferred pages
269 * are initialized, but for now set it ULONG_MAX.
270 */
271 static inline void reset_deferred_meminit(pg_data_t *pgdat)
272 {
273 phys_addr_t start_addr, end_addr;
274 unsigned long max_pgcnt;
275 unsigned long reserved;
276
277 /*
278 * Initialise at least 2G of a node but also take into account that
279 * two large system hashes that can take up 1GB for 0.25TB/node.
280 */
281 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
282 (pgdat->node_spanned_pages >> 8));
283
284 /*
285 * Compensate the all the memblock reservations (e.g. crash kernel)
286 * from the initial estimation to make sure we will initialize enough
287 * memory to boot.
288 */
289 start_addr = PFN_PHYS(pgdat->node_start_pfn);
290 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
291 reserved = memblock_reserved_memory_within(start_addr, end_addr);
292 max_pgcnt += PHYS_PFN(reserved);
293
294 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
295 pgdat->first_deferred_pfn = ULONG_MAX;
296 }
297
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 return true;
305
306 return false;
307 }
308
309 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
310 {
311 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
312 return true;
313
314 return false;
315 }
316
317 /*
318 * Returns false when the remaining initialisation should be deferred until
319 * later in the boot cycle when it can be parallelised.
320 */
321 static inline bool update_defer_init(pg_data_t *pgdat,
322 unsigned long pfn, unsigned long zone_end,
323 unsigned long *nr_initialised)
324 {
325 /* Always populate low zones for address-contrained allocations */
326 if (zone_end < pgdat_end_pfn(pgdat))
327 return true;
328 /* Initialise at least 2G of the highest zone */
329 (*nr_initialised)++;
330 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
333 return false;
334 }
335
336 return true;
337 }
338 #else
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
340 {
341 }
342
343 static inline bool early_page_uninitialised(unsigned long pfn)
344 {
345 return false;
346 }
347
348 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
349 {
350 return false;
351 }
352
353 static inline bool update_defer_init(pg_data_t *pgdat,
354 unsigned long pfn, unsigned long zone_end,
355 unsigned long *nr_initialised)
356 {
357 return true;
358 }
359 #endif
360
361
362 void set_pageblock_migratetype(struct page *page, int migratetype)
363 {
364 if (unlikely(page_group_by_mobility_disabled &&
365 migratetype < MIGRATE_PCPTYPES))
366 migratetype = MIGRATE_UNMOVABLE;
367
368 set_pageblock_flags_group(page, (unsigned long)migratetype,
369 PB_migrate, PB_migrate_end);
370 }
371
372 #ifdef CONFIG_DEBUG_VM
373 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
374 {
375 int ret = 0;
376 unsigned seq;
377 unsigned long pfn = page_to_pfn(page);
378 unsigned long sp, start_pfn;
379
380 do {
381 seq = zone_span_seqbegin(zone);
382 start_pfn = zone->zone_start_pfn;
383 sp = zone->spanned_pages;
384 if (!zone_spans_pfn(zone, pfn))
385 ret = 1;
386 } while (zone_span_seqretry(zone, seq));
387
388 if (ret)
389 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
390 pfn, zone_to_nid(zone), zone->name,
391 start_pfn, start_pfn + sp);
392
393 return ret;
394 }
395
396 static int page_is_consistent(struct zone *zone, struct page *page)
397 {
398 if (!pfn_valid_within(page_to_pfn(page)))
399 return 0;
400 if (zone != page_zone(page))
401 return 0;
402
403 return 1;
404 }
405 /*
406 * Temporary debugging check for pages not lying within a given zone.
407 */
408 static int bad_range(struct zone *zone, struct page *page)
409 {
410 if (page_outside_zone_boundaries(zone, page))
411 return 1;
412 if (!page_is_consistent(zone, page))
413 return 1;
414
415 return 0;
416 }
417 #else
418 static inline int bad_range(struct zone *zone, struct page *page)
419 {
420 return 0;
421 }
422 #endif
423
424 static void bad_page(struct page *page, const char *reason,
425 unsigned long bad_flags)
426 {
427 static unsigned long resume;
428 static unsigned long nr_shown;
429 static unsigned long nr_unshown;
430
431 /* Don't complain about poisoned pages */
432 if (PageHWPoison(page)) {
433 page_mapcount_reset(page); /* remove PageBuddy */
434 return;
435 }
436
437 /*
438 * Allow a burst of 60 reports, then keep quiet for that minute;
439 * or allow a steady drip of one report per second.
440 */
441 if (nr_shown == 60) {
442 if (time_before(jiffies, resume)) {
443 nr_unshown++;
444 goto out;
445 }
446 if (nr_unshown) {
447 printk(KERN_ALERT
448 "BUG: Bad page state: %lu messages suppressed\n",
449 nr_unshown);
450 nr_unshown = 0;
451 }
452 nr_shown = 0;
453 }
454 if (nr_shown++ == 0)
455 resume = jiffies + 60 * HZ;
456
457 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
458 current->comm, page_to_pfn(page));
459 dump_page_badflags(page, reason, bad_flags);
460
461 print_modules();
462 dump_stack();
463 out:
464 /* Leave bad fields for debug, except PageBuddy could make trouble */
465 page_mapcount_reset(page); /* remove PageBuddy */
466 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
467 }
468
469 /*
470 * Higher-order pages are called "compound pages". They are structured thusly:
471 *
472 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
473 *
474 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
475 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
476 *
477 * The first tail page's ->compound_dtor holds the offset in array of compound
478 * page destructors. See compound_page_dtors.
479 *
480 * The first tail page's ->compound_order holds the order of allocation.
481 * This usage means that zero-order pages may not be compound.
482 */
483
484 static void free_compound_page(struct page *page)
485 {
486 __free_pages_ok(page, compound_order(page));
487 }
488
489 void prep_compound_page(struct page *page, unsigned int order)
490 {
491 int i;
492 int nr_pages = 1 << order;
493
494 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
495 set_compound_order(page, order);
496 __SetPageHead(page);
497 for (i = 1; i < nr_pages; i++) {
498 struct page *p = page + i;
499 set_page_count(p, 0);
500 set_compound_head(p, page);
501 }
502 }
503
504 #ifdef CONFIG_DEBUG_PAGEALLOC
505 unsigned int _debug_guardpage_minorder;
506 bool _debug_pagealloc_enabled __read_mostly;
507 bool _debug_guardpage_enabled __read_mostly;
508
509 static int __init early_debug_pagealloc(char *buf)
510 {
511 if (!buf)
512 return -EINVAL;
513
514 if (strcmp(buf, "on") == 0)
515 _debug_pagealloc_enabled = true;
516
517 return 0;
518 }
519 early_param("debug_pagealloc", early_debug_pagealloc);
520
521 static bool need_debug_guardpage(void)
522 {
523 /* If we don't use debug_pagealloc, we don't need guard page */
524 if (!debug_pagealloc_enabled())
525 return false;
526
527 return true;
528 }
529
530 static void init_debug_guardpage(void)
531 {
532 if (!debug_pagealloc_enabled())
533 return;
534
535 _debug_guardpage_enabled = true;
536 }
537
538 struct page_ext_operations debug_guardpage_ops = {
539 .need = need_debug_guardpage,
540 .init = init_debug_guardpage,
541 };
542
543 static int __init debug_guardpage_minorder_setup(char *buf)
544 {
545 unsigned long res;
546
547 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
548 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
549 return 0;
550 }
551 _debug_guardpage_minorder = res;
552 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
553 return 0;
554 }
555 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
556
557 static inline void set_page_guard(struct zone *zone, struct page *page,
558 unsigned int order, int migratetype)
559 {
560 struct page_ext *page_ext;
561
562 if (!debug_guardpage_enabled())
563 return;
564
565 page_ext = lookup_page_ext(page);
566 if (unlikely(!page_ext))
567 return;
568
569 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
570
571 INIT_LIST_HEAD(&page->lru);
572 set_page_private(page, order);
573 /* Guard pages are not available for any usage */
574 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
575 }
576
577 static inline void clear_page_guard(struct zone *zone, struct page *page,
578 unsigned int order, int migratetype)
579 {
580 struct page_ext *page_ext;
581
582 if (!debug_guardpage_enabled())
583 return;
584
585 page_ext = lookup_page_ext(page);
586 if (unlikely(!page_ext))
587 return;
588
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
594 }
595 #else
596 struct page_ext_operations debug_guardpage_ops = { NULL, };
597 static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599 static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
601 #endif
602
603 static inline void set_page_order(struct page *page, unsigned int order)
604 {
605 set_page_private(page, order);
606 __SetPageBuddy(page);
607 }
608
609 static inline void rmv_page_order(struct page *page)
610 {
611 __ClearPageBuddy(page);
612 set_page_private(page, 0);
613 }
614
615 /*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
618 * (a) the buddy is not in a hole &&
619 * (b) the buddy is in the buddy system &&
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
622 *
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
627 *
628 * For recording page's order, we use page_private(page).
629 */
630 static inline int page_is_buddy(struct page *page, struct page *buddy,
631 unsigned int order)
632 {
633 if (!pfn_valid_within(page_to_pfn(buddy)))
634 return 0;
635
636 if (page_is_guard(buddy) && page_order(buddy) == order) {
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
642 return 1;
643 }
644
645 if (PageBuddy(buddy) && page_order(buddy) == order) {
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
656 return 1;
657 }
658 return 0;
659 }
660
661 /*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
677 * So when we are allocating or freeing one, we can derive the state of the
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
680 * If a block is freed, and its buddy is also free, then this
681 * triggers coalescing into a block of larger size.
682 *
683 * -- nyc
684 */
685
686 static inline void __free_one_page(struct page *page,
687 unsigned long pfn,
688 struct zone *zone, unsigned int order,
689 int migratetype)
690 {
691 unsigned long page_idx;
692 unsigned long combined_idx;
693 unsigned long uninitialized_var(buddy_idx);
694 struct page *buddy;
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
698
699 VM_BUG_ON(!zone_is_initialized(zone));
700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
701
702 VM_BUG_ON(migratetype == -1);
703 if (likely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705
706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
707
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
710
711 continue_merging:
712 while (order < max_order - 1) {
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
715 if (!page_is_buddy(page, buddy, order))
716 goto done_merging;
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
722 clear_page_guard(zone, buddy, order, migratetype);
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
728 combined_idx = buddy_idx & page_idx;
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758 done_merging:
759 set_page_order(page, order);
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
770 struct page *higher_page, *higher_buddy;
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
774 higher_buddy = higher_page + (buddy_idx - combined_idx);
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783 out:
784 zone->free_area[order].nr_free++;
785 }
786
787 static inline int free_pages_check(struct page *page)
788 {
789 const char *bad_reason = NULL;
790 unsigned long bad_flags = 0;
791
792 if (unlikely(page_mapcount(page)))
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
796 if (unlikely(atomic_read(&page->_count) != 0))
797 bad_reason = "nonzero _count";
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
802 #ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805 #endif
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
808 return 1;
809 }
810 page_cpupid_reset_last(page);
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
814 }
815
816 /*
817 * Frees a number of pages from the PCP lists
818 * Assumes all pages on list are in same zone, and of same order.
819 * count is the number of pages to free.
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
827 static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
829 {
830 int migratetype = 0;
831 int batch_free = 0;
832 int to_free = count;
833 unsigned long nr_scanned;
834
835 spin_lock(&zone->lock);
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
839
840 while (to_free) {
841 struct page *page;
842 struct list_head *list;
843
844 /*
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
850 */
851 do {
852 batch_free++;
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
857
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
862 do {
863 int mt; /* migratetype of the to-be-freed page */
864
865 page = list_entry(list->prev, struct page, lru);
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
868
869 mt = get_pcppage_migratetype(page);
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
873 if (unlikely(has_isolate_pageblock(zone)))
874 mt = get_pageblock_migratetype(page);
875
876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
877 trace_mm_page_pcpu_drain(page, 0, mt);
878 } while (--to_free && --batch_free && !list_empty(list));
879 }
880 spin_unlock(&zone->lock);
881 }
882
883 static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
885 unsigned int order,
886 int migratetype)
887 {
888 unsigned long nr_scanned;
889 spin_lock(&zone->lock);
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
893
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
897 }
898 __free_one_page(page, pfn, zone, order, migratetype);
899 spin_unlock(&zone->lock);
900 }
901
902 static int free_tail_pages_check(struct page *head_page, struct page *page)
903 {
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
916 if (unlikely(!PageTail(page))) {
917 bad_page(page, "PageTail not set", 0);
918 goto out;
919 }
920 if (unlikely(compound_head(page) != head_page)) {
921 bad_page(page, "compound_head not consistent", 0);
922 goto out;
923 }
924 ret = 0;
925 out:
926 clear_compound_head(page);
927 return ret;
928 }
929
930 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
931 unsigned long zone, int nid)
932 {
933 set_page_links(page, zone, nid, pfn);
934 init_page_count(page);
935 page_mapcount_reset(page);
936 page_cpupid_reset_last(page);
937
938 INIT_LIST_HEAD(&page->lru);
939 #ifdef WANT_PAGE_VIRTUAL
940 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
941 if (!is_highmem_idx(zone))
942 set_page_address(page, __va(pfn << PAGE_SHIFT));
943 #endif
944 }
945
946 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
947 int nid)
948 {
949 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
950 }
951
952 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
953 static void init_reserved_page(unsigned long pfn)
954 {
955 pg_data_t *pgdat;
956 int nid, zid;
957
958 if (!early_page_uninitialised(pfn))
959 return;
960
961 nid = early_pfn_to_nid(pfn);
962 pgdat = NODE_DATA(nid);
963
964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
965 struct zone *zone = &pgdat->node_zones[zid];
966
967 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
968 break;
969 }
970 __init_single_pfn(pfn, zid, nid);
971 }
972 #else
973 static inline void init_reserved_page(unsigned long pfn)
974 {
975 }
976 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
977
978 /*
979 * Initialised pages do not have PageReserved set. This function is
980 * called for each range allocated by the bootmem allocator and
981 * marks the pages PageReserved. The remaining valid pages are later
982 * sent to the buddy page allocator.
983 */
984 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
985 {
986 unsigned long start_pfn = PFN_DOWN(start);
987 unsigned long end_pfn = PFN_UP(end);
988
989 for (; start_pfn < end_pfn; start_pfn++) {
990 if (pfn_valid(start_pfn)) {
991 struct page *page = pfn_to_page(start_pfn);
992
993 init_reserved_page(start_pfn);
994
995 /* Avoid false-positive PageTail() */
996 INIT_LIST_HEAD(&page->lru);
997
998 SetPageReserved(page);
999 }
1000 }
1001 }
1002
1003 static bool free_pages_prepare(struct page *page, unsigned int order)
1004 {
1005 bool compound = PageCompound(page);
1006 int i, bad = 0;
1007
1008 VM_BUG_ON_PAGE(PageTail(page), page);
1009 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1010
1011 trace_mm_page_free(page, order);
1012 kmemcheck_free_shadow(page, order);
1013 kasan_free_pages(page, order);
1014
1015 if (PageMappingFlags(page))
1016 page->mapping = NULL;
1017 bad += free_pages_check(page);
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 bad += free_pages_check(page + i);
1022 }
1023 if (bad)
1024 return false;
1025
1026 reset_page_owner(page, order);
1027
1028 if (!PageHighMem(page)) {
1029 debug_check_no_locks_freed(page_address(page),
1030 PAGE_SIZE << order);
1031 debug_check_no_obj_freed(page_address(page),
1032 PAGE_SIZE << order);
1033 }
1034 arch_free_page(page, order);
1035 kernel_map_pages(page, 1 << order, 0);
1036
1037 return true;
1038 }
1039
1040 static void __free_pages_ok(struct page *page, unsigned int order)
1041 {
1042 unsigned long flags;
1043 int migratetype;
1044 unsigned long pfn = page_to_pfn(page);
1045
1046 if (!free_pages_prepare(page, order))
1047 return;
1048
1049 migratetype = get_pfnblock_migratetype(page, pfn);
1050 local_irq_save(flags);
1051 __count_vm_events(PGFREE, 1 << order);
1052 free_one_page(page_zone(page), page, pfn, order, migratetype);
1053 local_irq_restore(flags);
1054 }
1055
1056 void put_page_freelist(struct page *page)
1057 {
1058 if (put_page_testzero(page)) {
1059 mem_cgroup_uncharge(page);
1060 __free_pages_ok(page, 0);
1061 }
1062 }
1063 EXPORT_SYMBOL(put_page_freelist);
1064
1065 static void __init __free_pages_boot_core(struct page *page,
1066 unsigned long pfn, unsigned int order)
1067 {
1068 unsigned int nr_pages = 1 << order;
1069 struct page *p = page;
1070 unsigned int loop;
1071
1072 prefetchw(p);
1073 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1074 prefetchw(p + 1);
1075 __ClearPageReserved(p);
1076 set_page_count(p, 0);
1077 }
1078 __ClearPageReserved(p);
1079 set_page_count(p, 0);
1080
1081 page_zone(page)->managed_pages += nr_pages;
1082 set_page_refcounted(page);
1083 __free_pages(page, order);
1084 }
1085
1086 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1087 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1088
1089 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1090
1091 int __meminit early_pfn_to_nid(unsigned long pfn)
1092 {
1093 static DEFINE_SPINLOCK(early_pfn_lock);
1094 int nid;
1095
1096 spin_lock(&early_pfn_lock);
1097 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1098 if (nid < 0)
1099 nid = first_online_node;
1100 spin_unlock(&early_pfn_lock);
1101
1102 return nid;
1103 }
1104 #endif
1105
1106 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1107 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1108 struct mminit_pfnnid_cache *state)
1109 {
1110 int nid;
1111
1112 nid = __early_pfn_to_nid(pfn, state);
1113 if (nid >= 0 && nid != node)
1114 return false;
1115 return true;
1116 }
1117
1118 /* Only safe to use early in boot when initialisation is single-threaded */
1119 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1120 {
1121 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1122 }
1123
1124 #else
1125
1126 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1127 {
1128 return true;
1129 }
1130 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1131 struct mminit_pfnnid_cache *state)
1132 {
1133 return true;
1134 }
1135 #endif
1136
1137
1138 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1139 unsigned int order)
1140 {
1141 if (early_page_uninitialised(pfn))
1142 return;
1143 return __free_pages_boot_core(page, pfn, order);
1144 }
1145
1146 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1147 static void __init deferred_free_range(struct page *page,
1148 unsigned long pfn, int nr_pages)
1149 {
1150 int i;
1151
1152 if (!page)
1153 return;
1154
1155 /* Free a large naturally-aligned chunk if possible */
1156 if (nr_pages == MAX_ORDER_NR_PAGES &&
1157 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1158 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1159 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1160 return;
1161 }
1162
1163 for (i = 0; i < nr_pages; i++, page++, pfn++)
1164 __free_pages_boot_core(page, pfn, 0);
1165 }
1166
1167 /* Completion tracking for deferred_init_memmap() threads */
1168 static atomic_t pgdat_init_n_undone __initdata;
1169 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1170
1171 static inline void __init pgdat_init_report_one_done(void)
1172 {
1173 if (atomic_dec_and_test(&pgdat_init_n_undone))
1174 complete(&pgdat_init_all_done_comp);
1175 }
1176
1177 /* Initialise remaining memory on a node */
1178 static int __init deferred_init_memmap(void *data)
1179 {
1180 pg_data_t *pgdat = data;
1181 int nid = pgdat->node_id;
1182 struct mminit_pfnnid_cache nid_init_state = { };
1183 unsigned long start = jiffies;
1184 unsigned long nr_pages = 0;
1185 unsigned long walk_start, walk_end;
1186 int i, zid;
1187 struct zone *zone;
1188 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1189 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1190
1191 if (first_init_pfn == ULONG_MAX) {
1192 pgdat_init_report_one_done();
1193 return 0;
1194 }
1195
1196 /* Bind memory initialisation thread to a local node if possible */
1197 if (!cpumask_empty(cpumask))
1198 set_cpus_allowed_ptr(current, cpumask);
1199
1200 /* Sanity check boundaries */
1201 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1202 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1203 pgdat->first_deferred_pfn = ULONG_MAX;
1204
1205 /* Only the highest zone is deferred so find it */
1206 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1207 zone = pgdat->node_zones + zid;
1208 if (first_init_pfn < zone_end_pfn(zone))
1209 break;
1210 }
1211
1212 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1213 unsigned long pfn, end_pfn;
1214 struct page *page = NULL;
1215 struct page *free_base_page = NULL;
1216 unsigned long free_base_pfn = 0;
1217 int nr_to_free = 0;
1218
1219 end_pfn = min(walk_end, zone_end_pfn(zone));
1220 pfn = first_init_pfn;
1221 if (pfn < walk_start)
1222 pfn = walk_start;
1223 if (pfn < zone->zone_start_pfn)
1224 pfn = zone->zone_start_pfn;
1225
1226 for (; pfn < end_pfn; pfn++) {
1227 if (!pfn_valid_within(pfn))
1228 goto free_range;
1229
1230 /*
1231 * Ensure pfn_valid is checked every
1232 * MAX_ORDER_NR_PAGES for memory holes
1233 */
1234 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1235 if (!pfn_valid(pfn)) {
1236 page = NULL;
1237 goto free_range;
1238 }
1239 }
1240
1241 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1242 page = NULL;
1243 goto free_range;
1244 }
1245
1246 /* Minimise pfn page lookups and scheduler checks */
1247 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1248 page++;
1249 } else {
1250 nr_pages += nr_to_free;
1251 deferred_free_range(free_base_page,
1252 free_base_pfn, nr_to_free);
1253 free_base_page = NULL;
1254 free_base_pfn = nr_to_free = 0;
1255
1256 page = pfn_to_page(pfn);
1257 cond_resched();
1258 }
1259
1260 if (page->flags) {
1261 VM_BUG_ON(page_zone(page) != zone);
1262 goto free_range;
1263 }
1264
1265 __init_single_page(page, pfn, zid, nid);
1266 if (!free_base_page) {
1267 free_base_page = page;
1268 free_base_pfn = pfn;
1269 nr_to_free = 0;
1270 }
1271 nr_to_free++;
1272
1273 /* Where possible, batch up pages for a single free */
1274 continue;
1275 free_range:
1276 /* Free the current block of pages to allocator */
1277 nr_pages += nr_to_free;
1278 deferred_free_range(free_base_page, free_base_pfn,
1279 nr_to_free);
1280 free_base_page = NULL;
1281 free_base_pfn = nr_to_free = 0;
1282 }
1283
1284 first_init_pfn = max(end_pfn, first_init_pfn);
1285 }
1286
1287 /* Sanity check that the next zone really is unpopulated */
1288 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1289
1290 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1291 jiffies_to_msecs(jiffies - start));
1292
1293 pgdat_init_report_one_done();
1294 return 0;
1295 }
1296
1297 void __init page_alloc_init_late(void)
1298 {
1299 int nid;
1300
1301 /* There will be num_node_state(N_MEMORY) threads */
1302 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1303 for_each_node_state(nid, N_MEMORY) {
1304 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1305 }
1306
1307 /* Block until all are initialised */
1308 wait_for_completion(&pgdat_init_all_done_comp);
1309
1310 /* Reinit limits that are based on free pages after the kernel is up */
1311 files_maxfiles_init();
1312 }
1313 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1314
1315 #ifdef CONFIG_CMA
1316 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1317 void __init init_cma_reserved_pageblock(struct page *page)
1318 {
1319 unsigned i = pageblock_nr_pages;
1320 struct page *p = page;
1321
1322 do {
1323 __ClearPageReserved(p);
1324 set_page_count(p, 0);
1325 } while (++p, --i);
1326
1327 set_pageblock_migratetype(page, MIGRATE_CMA);
1328
1329 if (pageblock_order >= MAX_ORDER) {
1330 i = pageblock_nr_pages;
1331 p = page;
1332 do {
1333 set_page_refcounted(p);
1334 __free_pages(p, MAX_ORDER - 1);
1335 p += MAX_ORDER_NR_PAGES;
1336 } while (i -= MAX_ORDER_NR_PAGES);
1337 } else {
1338 set_page_refcounted(page);
1339 __free_pages(page, pageblock_order);
1340 }
1341
1342 adjust_managed_page_count(page, pageblock_nr_pages);
1343 }
1344 #endif
1345
1346 /*
1347 * The order of subdivision here is critical for the IO subsystem.
1348 * Please do not alter this order without good reasons and regression
1349 * testing. Specifically, as large blocks of memory are subdivided,
1350 * the order in which smaller blocks are delivered depends on the order
1351 * they're subdivided in this function. This is the primary factor
1352 * influencing the order in which pages are delivered to the IO
1353 * subsystem according to empirical testing, and this is also justified
1354 * by considering the behavior of a buddy system containing a single
1355 * large block of memory acted on by a series of small allocations.
1356 * This behavior is a critical factor in sglist merging's success.
1357 *
1358 * -- nyc
1359 */
1360 static inline void expand(struct zone *zone, struct page *page,
1361 int low, int high, struct free_area *area,
1362 int migratetype)
1363 {
1364 unsigned long size = 1 << high;
1365
1366 while (high > low) {
1367 area--;
1368 high--;
1369 size >>= 1;
1370 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1371
1372 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1373 debug_guardpage_enabled() &&
1374 high < debug_guardpage_minorder()) {
1375 /*
1376 * Mark as guard pages (or page), that will allow to
1377 * merge back to allocator when buddy will be freed.
1378 * Corresponding page table entries will not be touched,
1379 * pages will stay not present in virtual address space
1380 */
1381 set_page_guard(zone, &page[size], high, migratetype);
1382 continue;
1383 }
1384 list_add(&page[size].lru, &area->free_list[migratetype]);
1385 area->nr_free++;
1386 set_page_order(&page[size], high);
1387 }
1388 }
1389
1390 /*
1391 * This page is about to be returned from the page allocator
1392 */
1393 static inline int check_new_page(struct page *page)
1394 {
1395 const char *bad_reason = NULL;
1396 unsigned long bad_flags = 0;
1397
1398 if (unlikely(page_mapcount(page)))
1399 bad_reason = "nonzero mapcount";
1400 if (unlikely(page->mapping != NULL))
1401 bad_reason = "non-NULL mapping";
1402 if (unlikely(atomic_read(&page->_count) != 0))
1403 bad_reason = "nonzero _count";
1404 if (unlikely(page->flags & __PG_HWPOISON)) {
1405 bad_reason = "HWPoisoned (hardware-corrupted)";
1406 bad_flags = __PG_HWPOISON;
1407 }
1408 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1409 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1410 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1411 }
1412 #ifdef CONFIG_MEMCG
1413 if (unlikely(page->mem_cgroup))
1414 bad_reason = "page still charged to cgroup";
1415 #endif
1416 if (unlikely(bad_reason)) {
1417 bad_page(page, bad_reason, bad_flags);
1418 return 1;
1419 }
1420 return 0;
1421 }
1422
1423 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1424 int alloc_flags)
1425 {
1426 int i;
1427
1428 for (i = 0; i < (1 << order); i++) {
1429 struct page *p = page + i;
1430 if (unlikely(check_new_page(p)))
1431 return 1;
1432 }
1433
1434 set_page_private(page, 0);
1435 set_page_refcounted(page);
1436
1437 arch_alloc_page(page, order);
1438 kernel_map_pages(page, 1 << order, 1);
1439 kasan_alloc_pages(page, order);
1440
1441 if (gfp_flags & __GFP_ZERO)
1442 for (i = 0; i < (1 << order); i++)
1443 clear_highpage(page + i);
1444
1445 if (order && (gfp_flags & __GFP_COMP))
1446 prep_compound_page(page, order);
1447
1448 set_page_owner(page, order, gfp_flags);
1449
1450 /*
1451 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1452 * allocate the page. The expectation is that the caller is taking
1453 * steps that will free more memory. The caller should avoid the page
1454 * being used for !PFMEMALLOC purposes.
1455 */
1456 if (alloc_flags & ALLOC_NO_WATERMARKS)
1457 set_page_pfmemalloc(page);
1458 else
1459 clear_page_pfmemalloc(page);
1460
1461 return 0;
1462 }
1463
1464 /*
1465 * Go through the free lists for the given migratetype and remove
1466 * the smallest available page from the freelists
1467 */
1468 static inline
1469 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1470 int migratetype)
1471 {
1472 unsigned int current_order;
1473 struct free_area *area;
1474 struct page *page;
1475
1476 /* Find a page of the appropriate size in the preferred list */
1477 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1478 area = &(zone->free_area[current_order]);
1479 if (list_empty(&area->free_list[migratetype]))
1480 continue;
1481
1482 page = list_entry(area->free_list[migratetype].next,
1483 struct page, lru);
1484 list_del(&page->lru);
1485 rmv_page_order(page);
1486 area->nr_free--;
1487 expand(zone, page, order, current_order, area, migratetype);
1488 set_pcppage_migratetype(page, migratetype);
1489 return page;
1490 }
1491
1492 return NULL;
1493 }
1494
1495
1496 /*
1497 * This array describes the order lists are fallen back to when
1498 * the free lists for the desirable migrate type are depleted
1499 */
1500 static int fallbacks[MIGRATE_TYPES][4] = {
1501 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1502 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1503 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1504 #ifdef CONFIG_CMA
1505 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1506 #endif
1507 #ifdef CONFIG_MEMORY_ISOLATION
1508 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1509 #endif
1510 };
1511
1512 #ifdef CONFIG_CMA
1513 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1514 unsigned int order)
1515 {
1516 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1517 }
1518 #else
1519 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1520 unsigned int order) { return NULL; }
1521 #endif
1522
1523 /*
1524 * Move the free pages in a range to the free lists of the requested type.
1525 * Note that start_page and end_pages are not aligned on a pageblock
1526 * boundary. If alignment is required, use move_freepages_block()
1527 */
1528 int move_freepages(struct zone *zone,
1529 struct page *start_page, struct page *end_page,
1530 int migratetype)
1531 {
1532 struct page *page;
1533 unsigned int order;
1534 int pages_moved = 0;
1535
1536 #ifndef CONFIG_HOLES_IN_ZONE
1537 /*
1538 * page_zone is not safe to call in this context when
1539 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1540 * anyway as we check zone boundaries in move_freepages_block().
1541 * Remove at a later date when no bug reports exist related to
1542 * grouping pages by mobility
1543 */
1544 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1545 #endif
1546
1547 for (page = start_page; page <= end_page;) {
1548 if (!pfn_valid_within(page_to_pfn(page))) {
1549 page++;
1550 continue;
1551 }
1552
1553 /* Make sure we are not inadvertently changing nodes */
1554 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1555
1556 if (!PageBuddy(page)) {
1557 page++;
1558 continue;
1559 }
1560
1561 order = page_order(page);
1562 list_move(&page->lru,
1563 &zone->free_area[order].free_list[migratetype]);
1564 page += 1 << order;
1565 pages_moved += 1 << order;
1566 }
1567
1568 return pages_moved;
1569 }
1570
1571 int move_freepages_block(struct zone *zone, struct page *page,
1572 int migratetype)
1573 {
1574 unsigned long start_pfn, end_pfn;
1575 struct page *start_page, *end_page;
1576
1577 start_pfn = page_to_pfn(page);
1578 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1579 start_page = pfn_to_page(start_pfn);
1580 end_page = start_page + pageblock_nr_pages - 1;
1581 end_pfn = start_pfn + pageblock_nr_pages - 1;
1582
1583 /* Do not cross zone boundaries */
1584 if (!zone_spans_pfn(zone, start_pfn))
1585 start_page = page;
1586 if (!zone_spans_pfn(zone, end_pfn))
1587 return 0;
1588
1589 return move_freepages(zone, start_page, end_page, migratetype);
1590 }
1591
1592 static void change_pageblock_range(struct page *pageblock_page,
1593 int start_order, int migratetype)
1594 {
1595 int nr_pageblocks = 1 << (start_order - pageblock_order);
1596
1597 while (nr_pageblocks--) {
1598 set_pageblock_migratetype(pageblock_page, migratetype);
1599 pageblock_page += pageblock_nr_pages;
1600 }
1601 }
1602
1603 /*
1604 * When we are falling back to another migratetype during allocation, try to
1605 * steal extra free pages from the same pageblocks to satisfy further
1606 * allocations, instead of polluting multiple pageblocks.
1607 *
1608 * If we are stealing a relatively large buddy page, it is likely there will
1609 * be more free pages in the pageblock, so try to steal them all. For
1610 * reclaimable and unmovable allocations, we steal regardless of page size,
1611 * as fragmentation caused by those allocations polluting movable pageblocks
1612 * is worse than movable allocations stealing from unmovable and reclaimable
1613 * pageblocks.
1614 */
1615 static bool can_steal_fallback(unsigned int order, int start_mt)
1616 {
1617 /*
1618 * Leaving this order check is intended, although there is
1619 * relaxed order check in next check. The reason is that
1620 * we can actually steal whole pageblock if this condition met,
1621 * but, below check doesn't guarantee it and that is just heuristic
1622 * so could be changed anytime.
1623 */
1624 if (order >= pageblock_order)
1625 return true;
1626
1627 if (order >= pageblock_order / 2 ||
1628 start_mt == MIGRATE_RECLAIMABLE ||
1629 start_mt == MIGRATE_UNMOVABLE ||
1630 start_mt == MIGRATE_MOVABLE ||
1631 page_group_by_mobility_disabled)
1632 return true;
1633
1634 return false;
1635 }
1636
1637 /*
1638 * This function implements actual steal behaviour. If order is large enough,
1639 * we can steal whole pageblock. If not, we first move freepages in this
1640 * pageblock and check whether half of pages are moved or not. If half of
1641 * pages are moved, we can change migratetype of pageblock and permanently
1642 * use it's pages as requested migratetype in the future.
1643 */
1644 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1645 int start_type)
1646 {
1647 unsigned int current_order = page_order(page);
1648 int pages;
1649
1650 /* Take ownership for orders >= pageblock_order */
1651 if (current_order >= pageblock_order) {
1652 change_pageblock_range(page, current_order, start_type);
1653 return;
1654 }
1655
1656 pages = move_freepages_block(zone, page, start_type);
1657
1658 /* Claim the whole block if over half of it is free */
1659 if (pages >= (1 << (pageblock_order-1)) ||
1660 start_type == MIGRATE_MOVABLE ||
1661 page_group_by_mobility_disabled)
1662 set_pageblock_migratetype(page, start_type);
1663 }
1664
1665 /*
1666 * Check whether there is a suitable fallback freepage with requested order.
1667 * If only_stealable is true, this function returns fallback_mt only if
1668 * we can steal other freepages all together. This would help to reduce
1669 * fragmentation due to mixed migratetype pages in one pageblock.
1670 */
1671 int find_suitable_fallback(struct free_area *area, unsigned int order,
1672 int migratetype, bool only_stealable, bool *can_steal)
1673 {
1674 int i;
1675 int fallback_mt;
1676
1677 if (area->nr_free == 0)
1678 return -1;
1679
1680 *can_steal = false;
1681 for (i = 0;; i++) {
1682 fallback_mt = fallbacks[migratetype][i];
1683 if (fallback_mt == MIGRATE_TYPES)
1684 break;
1685
1686 if (list_empty(&area->free_list[fallback_mt]))
1687 continue;
1688
1689 if (can_steal_fallback(order, migratetype))
1690 *can_steal = true;
1691
1692 if (!only_stealable)
1693 return fallback_mt;
1694
1695 if (*can_steal)
1696 return fallback_mt;
1697 }
1698
1699 return -1;
1700 }
1701
1702 /*
1703 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1704 * there are no empty page blocks that contain a page with a suitable order
1705 */
1706 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1707 unsigned int alloc_order)
1708 {
1709 int mt;
1710 unsigned long max_managed, flags;
1711
1712 /*
1713 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1714 * Check is race-prone but harmless.
1715 */
1716 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1717 if (zone->nr_reserved_highatomic >= max_managed)
1718 return;
1719
1720 spin_lock_irqsave(&zone->lock, flags);
1721
1722 /* Recheck the nr_reserved_highatomic limit under the lock */
1723 if (zone->nr_reserved_highatomic >= max_managed)
1724 goto out_unlock;
1725
1726 /* Yoink! */
1727 mt = get_pageblock_migratetype(page);
1728 if (mt != MIGRATE_HIGHATOMIC &&
1729 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1730 zone->nr_reserved_highatomic += pageblock_nr_pages;
1731 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1732 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1733 }
1734
1735 out_unlock:
1736 spin_unlock_irqrestore(&zone->lock, flags);
1737 }
1738
1739 /*
1740 * Used when an allocation is about to fail under memory pressure. This
1741 * potentially hurts the reliability of high-order allocations when under
1742 * intense memory pressure but failed atomic allocations should be easier
1743 * to recover from than an OOM.
1744 */
1745 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1746 {
1747 struct zonelist *zonelist = ac->zonelist;
1748 unsigned long flags;
1749 struct zoneref *z;
1750 struct zone *zone;
1751 struct page *page;
1752 int order;
1753
1754 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1755 ac->nodemask) {
1756 /* Preserve at least one pageblock */
1757 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1758 continue;
1759
1760 spin_lock_irqsave(&zone->lock, flags);
1761 for (order = 0; order < MAX_ORDER; order++) {
1762 struct free_area *area = &(zone->free_area[order]);
1763
1764 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1765 continue;
1766
1767 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1768 struct page, lru);
1769
1770 /*
1771 * In page freeing path, migratetype change is racy so
1772 * we can counter several free pages in a pageblock
1773 * in this loop althoug we changed the pageblock type
1774 * from highatomic to ac->migratetype. So we should
1775 * adjust the count once.
1776 */
1777 if (get_pageblock_migratetype(page) ==
1778 MIGRATE_HIGHATOMIC) {
1779 /*
1780 * It should never happen but changes to
1781 * locking could inadvertently allow a per-cpu
1782 * drain to add pages to MIGRATE_HIGHATOMIC
1783 * while unreserving so be safe and watch for
1784 * underflows.
1785 */
1786 zone->nr_reserved_highatomic -= min(
1787 pageblock_nr_pages,
1788 zone->nr_reserved_highatomic);
1789 }
1790
1791 /*
1792 * Convert to ac->migratetype and avoid the normal
1793 * pageblock stealing heuristics. Minimally, the caller
1794 * is doing the work and needs the pages. More
1795 * importantly, if the block was always converted to
1796 * MIGRATE_UNMOVABLE or another type then the number
1797 * of pageblocks that cannot be completely freed
1798 * may increase.
1799 */
1800 set_pageblock_migratetype(page, ac->migratetype);
1801 move_freepages_block(zone, page, ac->migratetype);
1802 spin_unlock_irqrestore(&zone->lock, flags);
1803 return;
1804 }
1805 spin_unlock_irqrestore(&zone->lock, flags);
1806 }
1807 }
1808
1809 /* Remove an element from the buddy allocator from the fallback list */
1810 static inline struct page *
1811 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1812 {
1813 struct free_area *area;
1814 unsigned int current_order;
1815 struct page *page;
1816 int fallback_mt;
1817 bool can_steal;
1818
1819 /* Find the largest possible block of pages in the other list */
1820 for (current_order = MAX_ORDER-1;
1821 current_order >= order && current_order <= MAX_ORDER-1;
1822 --current_order) {
1823 area = &(zone->free_area[current_order]);
1824 fallback_mt = find_suitable_fallback(area, current_order,
1825 start_migratetype, false, &can_steal);
1826 if (fallback_mt == -1)
1827 continue;
1828
1829 page = list_entry(area->free_list[fallback_mt].next,
1830 struct page, lru);
1831 if (can_steal &&
1832 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
1833 steal_suitable_fallback(zone, page, start_migratetype);
1834
1835 /* Remove the page from the freelists */
1836 area->nr_free--;
1837 list_del(&page->lru);
1838 rmv_page_order(page);
1839
1840 expand(zone, page, order, current_order, area,
1841 start_migratetype);
1842 /*
1843 * The pcppage_migratetype may differ from pageblock's
1844 * migratetype depending on the decisions in
1845 * find_suitable_fallback(). This is OK as long as it does not
1846 * differ for MIGRATE_CMA pageblocks. Those can be used as
1847 * fallback only via special __rmqueue_cma_fallback() function
1848 */
1849 set_pcppage_migratetype(page, start_migratetype);
1850
1851 trace_mm_page_alloc_extfrag(page, order, current_order,
1852 start_migratetype, fallback_mt);
1853
1854 return page;
1855 }
1856
1857 return NULL;
1858 }
1859
1860 /*
1861 * Do the hard work of removing an element from the buddy allocator.
1862 * Call me with the zone->lock already held.
1863 */
1864 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1865 int migratetype, gfp_t gfp_flags)
1866 {
1867 struct page *page = NULL;
1868
1869 if ((migratetype == MIGRATE_MOVABLE) && (gfp_flags & __GFP_CMA))
1870 page = __rmqueue_cma_fallback(zone, order);
1871
1872 if (!page)
1873 page = __rmqueue_smallest(zone, order, migratetype);
1874
1875 if (unlikely(!page))
1876 page = __rmqueue_fallback(zone, order, migratetype);
1877
1878 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1879 return page;
1880 }
1881
1882 /*
1883 * Obtain a specified number of elements from the buddy allocator, all under
1884 * a single hold of the lock, for efficiency. Add them to the supplied list.
1885 * Returns the number of new pages which were placed at *list.
1886 */
1887 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1888 unsigned long count, struct list_head *list,
1889 int migratetype, gfp_t gfp_flags)
1890 {
1891 int i;
1892
1893 spin_lock(&zone->lock);
1894 for (i = 0; i < count; ++i) {
1895 struct page *page = __rmqueue(zone, order, migratetype, gfp_flags);
1896 if (unlikely(page == NULL))
1897 break;
1898
1899 /*
1900 * Split buddy pages returned by expand() are received here
1901 * in physical page order. The page is added to the callers and
1902 * list and the list head then moves forward. From the callers
1903 * perspective, the linked list is ordered by page number in
1904 * some conditions. This is useful for IO devices that can
1905 * merge IO requests if the physical pages are ordered
1906 * properly.
1907 */
1908 if (likely(!(gfp_flags & __GFP_COLD)))
1909 list_add(&page->lru, list);
1910 else
1911 list_add_tail(&page->lru, list);
1912 list = &page->lru;
1913 if (is_migrate_cma(get_pcppage_migratetype(page)))
1914 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1915 -(1 << order));
1916 }
1917 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1918 spin_unlock(&zone->lock);
1919 return i;
1920 }
1921
1922 #ifdef CONFIG_NUMA
1923 /*
1924 * Called from the vmstat counter updater to drain pagesets of this
1925 * currently executing processor on remote nodes after they have
1926 * expired.
1927 *
1928 * Note that this function must be called with the thread pinned to
1929 * a single processor.
1930 */
1931 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1932 {
1933 unsigned long flags;
1934 int to_drain, batch;
1935
1936 local_irq_save(flags);
1937 batch = READ_ONCE(pcp->batch);
1938 to_drain = min(pcp->count, batch);
1939 if (to_drain > 0) {
1940 free_pcppages_bulk(zone, to_drain, pcp);
1941 pcp->count -= to_drain;
1942 }
1943 local_irq_restore(flags);
1944 }
1945 #endif
1946
1947 /*
1948 * Drain pcplists of the indicated processor and zone.
1949 *
1950 * The processor must either be the current processor and the
1951 * thread pinned to the current processor or a processor that
1952 * is not online.
1953 */
1954 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1955 {
1956 unsigned long flags;
1957 struct per_cpu_pageset *pset;
1958 struct per_cpu_pages *pcp;
1959
1960 local_irq_save(flags);
1961 pset = per_cpu_ptr(zone->pageset, cpu);
1962
1963 pcp = &pset->pcp;
1964 if (pcp->count) {
1965 free_pcppages_bulk(zone, pcp->count, pcp);
1966 pcp->count = 0;
1967 }
1968 local_irq_restore(flags);
1969 }
1970
1971 /*
1972 * Drain pcplists of all zones on the indicated processor.
1973 *
1974 * The processor must either be the current processor and the
1975 * thread pinned to the current processor or a processor that
1976 * is not online.
1977 */
1978 static void drain_pages(unsigned int cpu)
1979 {
1980 struct zone *zone;
1981
1982 for_each_populated_zone(zone) {
1983 drain_pages_zone(cpu, zone);
1984 }
1985 }
1986
1987 /*
1988 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1989 *
1990 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1991 * the single zone's pages.
1992 */
1993 void drain_local_pages(struct zone *zone)
1994 {
1995 int cpu = smp_processor_id();
1996
1997 if (zone)
1998 drain_pages_zone(cpu, zone);
1999 else
2000 drain_pages(cpu);
2001 }
2002
2003 /*
2004 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2005 *
2006 * When zone parameter is non-NULL, spill just the single zone's pages.
2007 *
2008 * Note that this code is protected against sending an IPI to an offline
2009 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2010 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2011 * nothing keeps CPUs from showing up after we populated the cpumask and
2012 * before the call to on_each_cpu_mask().
2013 */
2014 void drain_all_pages(struct zone *zone)
2015 {
2016 int cpu;
2017
2018 /*
2019 * Allocate in the BSS so we wont require allocation in
2020 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2021 */
2022 static cpumask_t cpus_with_pcps;
2023
2024 /*
2025 * We don't care about racing with CPU hotplug event
2026 * as offline notification will cause the notified
2027 * cpu to drain that CPU pcps and on_each_cpu_mask
2028 * disables preemption as part of its processing
2029 */
2030 for_each_online_cpu(cpu) {
2031 struct per_cpu_pageset *pcp;
2032 struct zone *z;
2033 bool has_pcps = false;
2034
2035 if (zone) {
2036 pcp = per_cpu_ptr(zone->pageset, cpu);
2037 if (pcp->pcp.count)
2038 has_pcps = true;
2039 } else {
2040 for_each_populated_zone(z) {
2041 pcp = per_cpu_ptr(z->pageset, cpu);
2042 if (pcp->pcp.count) {
2043 has_pcps = true;
2044 break;
2045 }
2046 }
2047 }
2048
2049 if (has_pcps)
2050 cpumask_set_cpu(cpu, &cpus_with_pcps);
2051 else
2052 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2053 }
2054 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2055 zone, 1);
2056 }
2057
2058 #ifdef CONFIG_HIBERNATION
2059
2060 void mark_free_pages(struct zone *zone)
2061 {
2062 unsigned long pfn, max_zone_pfn;
2063 unsigned long flags;
2064 unsigned int order, t;
2065 struct list_head *curr;
2066
2067 if (zone_is_empty(zone))
2068 return;
2069
2070 spin_lock_irqsave(&zone->lock, flags);
2071
2072 max_zone_pfn = zone_end_pfn(zone);
2073 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2074 if (pfn_valid(pfn)) {
2075 struct page *page = pfn_to_page(pfn);
2076
2077 if (!swsusp_page_is_forbidden(page))
2078 swsusp_unset_page_free(page);
2079 }
2080
2081 for_each_migratetype_order(order, t) {
2082 list_for_each(curr, &zone->free_area[order].free_list[t]) {
2083 unsigned long i;
2084
2085 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2086 for (i = 0; i < (1UL << order); i++)
2087 swsusp_set_page_free(pfn_to_page(pfn + i));
2088 }
2089 }
2090 spin_unlock_irqrestore(&zone->lock, flags);
2091 }
2092 #endif /* CONFIG_PM */
2093
2094 /*
2095 * Free a 0-order page
2096 * cold == true ? free a cold page : free a hot page
2097 */
2098 void free_hot_cold_page(struct page *page, bool cold)
2099 {
2100 struct zone *zone = page_zone(page);
2101 struct per_cpu_pages *pcp;
2102 unsigned long flags;
2103 unsigned long pfn = page_to_pfn(page);
2104 int migratetype;
2105
2106 if (!free_pages_prepare(page, 0))
2107 return;
2108
2109 migratetype = get_pfnblock_migratetype(page, pfn);
2110 set_pcppage_migratetype(page, migratetype);
2111 local_irq_save(flags);
2112 __count_vm_event(PGFREE);
2113
2114 /*
2115 * We only track unmovable, reclaimable and movable on pcp lists.
2116 * Free ISOLATE pages back to the allocator because they are being
2117 * offlined but treat RESERVE as movable pages so we can get those
2118 * areas back if necessary. Otherwise, we may have to free
2119 * excessively into the page allocator
2120 */
2121 if (migratetype >= MIGRATE_PCPTYPES) {
2122 if (unlikely(is_migrate_isolate(migratetype))) {
2123 free_one_page(zone, page, pfn, 0, migratetype);
2124 goto out;
2125 }
2126 migratetype = MIGRATE_MOVABLE;
2127 }
2128
2129 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2130 if (!cold)
2131 list_add(&page->lru, &pcp->lists[migratetype]);
2132 else
2133 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2134 pcp->count++;
2135 if (pcp->count >= pcp->high) {
2136 unsigned long batch = READ_ONCE(pcp->batch);
2137 free_pcppages_bulk(zone, batch, pcp);
2138 pcp->count -= batch;
2139 }
2140
2141 out:
2142 local_irq_restore(flags);
2143 }
2144
2145 /*
2146 * Free a list of 0-order pages
2147 */
2148 void free_hot_cold_page_list(struct list_head *list, bool cold)
2149 {
2150 struct page *page, *next;
2151
2152 list_for_each_entry_safe(page, next, list, lru) {
2153 trace_mm_page_free_batched(page, cold);
2154 free_hot_cold_page(page, cold);
2155 }
2156 }
2157
2158 /*
2159 * split_page takes a non-compound higher-order page, and splits it into
2160 * n (1<<order) sub-pages: page[0..n]
2161 * Each sub-page must be freed individually.
2162 *
2163 * Note: this is probably too low level an operation for use in drivers.
2164 * Please consult with lkml before using this in your driver.
2165 */
2166 void split_page(struct page *page, unsigned int order)
2167 {
2168 int i;
2169 gfp_t gfp_mask;
2170
2171 VM_BUG_ON_PAGE(PageCompound(page), page);
2172 VM_BUG_ON_PAGE(!page_count(page), page);
2173
2174 #ifdef CONFIG_KMEMCHECK
2175 /*
2176 * Split shadow pages too, because free(page[0]) would
2177 * otherwise free the whole shadow.
2178 */
2179 if (kmemcheck_page_is_tracked(page))
2180 split_page(virt_to_page(page[0].shadow), order);
2181 #endif
2182
2183 gfp_mask = get_page_owner_gfp(page);
2184 set_page_owner(page, 0, gfp_mask);
2185 for (i = 1; i < (1 << order); i++) {
2186 set_page_refcounted(page + i);
2187 set_page_owner(page + i, 0, gfp_mask);
2188 }
2189 }
2190 EXPORT_SYMBOL_GPL(split_page);
2191
2192 int __isolate_free_page(struct page *page, unsigned int order)
2193 {
2194 unsigned long watermark;
2195 struct zone *zone;
2196 int mt;
2197
2198 BUG_ON(!PageBuddy(page));
2199
2200 zone = page_zone(page);
2201 mt = get_pageblock_migratetype(page);
2202
2203 if (!is_migrate_isolate(mt)) {
2204 /* Obey watermarks as if the page was being allocated */
2205 watermark = low_wmark_pages(zone) + (1 << order);
2206 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2207 return 0;
2208
2209 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2210 }
2211
2212 /* Remove page from free list */
2213 list_del(&page->lru);
2214 zone->free_area[order].nr_free--;
2215 rmv_page_order(page);
2216
2217 set_page_owner(page, order, __GFP_MOVABLE);
2218
2219 /* Set the pageblock if the isolated page is at least a pageblock */
2220 if (order >= pageblock_order - 1) {
2221 struct page *endpage = page + (1 << order) - 1;
2222 for (; page < endpage; page += pageblock_nr_pages) {
2223 int mt = get_pageblock_migratetype(page);
2224 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2225 && mt != MIGRATE_HIGHATOMIC)
2226 set_pageblock_migratetype(page,
2227 MIGRATE_MOVABLE);
2228 }
2229 }
2230
2231
2232 return 1UL << order;
2233 }
2234
2235 /*
2236 * Similar to split_page except the page is already free. As this is only
2237 * being used for migration, the migratetype of the block also changes.
2238 * As this is called with interrupts disabled, the caller is responsible
2239 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2240 * are enabled.
2241 *
2242 * Note: this is probably too low level an operation for use in drivers.
2243 * Please consult with lkml before using this in your driver.
2244 */
2245 int split_free_page(struct page *page)
2246 {
2247 unsigned int order;
2248 int nr_pages;
2249
2250 order = page_order(page);
2251
2252 nr_pages = __isolate_free_page(page, order);
2253 if (!nr_pages)
2254 return 0;
2255
2256 /* Split into individual pages */
2257 set_page_refcounted(page);
2258 split_page(page, order);
2259 return nr_pages;
2260 }
2261
2262 /*
2263 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2264 */
2265 static inline
2266 struct page *buffered_rmqueue(struct zone *preferred_zone,
2267 struct zone *zone, unsigned int order,
2268 gfp_t gfp_flags, int alloc_flags, int migratetype)
2269 {
2270 unsigned long flags;
2271 struct page *page = NULL;
2272
2273 if (likely(order == 0)) {
2274 struct per_cpu_pages *pcp;
2275 struct list_head *list;
2276
2277 local_irq_save(flags);
2278 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2279 list = &pcp->lists[migratetype];
2280 if (list_empty(list)) {
2281 pcp->count += rmqueue_bulk(zone, 0,
2282 pcp->batch, list,
2283 migratetype, gfp_flags);
2284 if (unlikely(list_empty(list)))
2285 goto failed;
2286 }
2287
2288 if ((gfp_flags & __GFP_COLD) != 0)
2289 page = list_entry(list->prev, struct page, lru);
2290 else
2291 page = list_entry(list->next, struct page, lru);
2292
2293 /*
2294 * If the head or the tail page in the pcp list is CMA page and
2295 * the gfp flags does not have __GFP_CMA, try allocation from
2296 * free list. If a page in the pcp list is CMA page, all pages
2297 * in the pcp list is probabily CMA pages because rmqueue_bulk()
2298 * fills the list from the free list of the same migratetype.
2299 */
2300 if (!(gfp_flags & __GFP_CMA) &&
2301 is_migrate_cma(get_pcppage_migratetype(page))) {
2302 page = NULL;
2303 local_irq_restore(flags);
2304 } else {
2305 list_del(&page->lru);
2306 pcp->count--;
2307 }
2308 }
2309
2310 if (!page) {
2311 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2312 /*
2313 * __GFP_NOFAIL is not to be used in new code.
2314 *
2315 * All __GFP_NOFAIL callers should be fixed so that they
2316 * properly detect and handle allocation failures.
2317 *
2318 * We most definitely don't want callers attempting to
2319 * allocate greater than order-1 page units with
2320 * __GFP_NOFAIL.
2321 */
2322 WARN_ON_ONCE(order > 1);
2323 }
2324 spin_lock_irqsave(&zone->lock, flags);
2325
2326 if (alloc_flags & ALLOC_HARDER) {
2327 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2328 if (page)
2329 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2330 }
2331 if (!page)
2332 page = __rmqueue(zone, order, migratetype, gfp_flags);
2333 spin_unlock(&zone->lock);
2334 if (!page)
2335 goto failed;
2336 __mod_zone_freepage_state(zone, -(1 << order),
2337 get_pcppage_migratetype(page));
2338 }
2339
2340 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2341 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2342 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2343 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2344
2345 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2346 zone_statistics(preferred_zone, zone, gfp_flags);
2347 local_irq_restore(flags);
2348
2349 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2350 return page;
2351
2352 failed:
2353 local_irq_restore(flags);
2354 return NULL;
2355 }
2356
2357 #ifdef CONFIG_FAIL_PAGE_ALLOC
2358
2359 static struct {
2360 struct fault_attr attr;
2361
2362 bool ignore_gfp_highmem;
2363 bool ignore_gfp_reclaim;
2364 u32 min_order;
2365 } fail_page_alloc = {
2366 .attr = FAULT_ATTR_INITIALIZER,
2367 .ignore_gfp_reclaim = true,
2368 .ignore_gfp_highmem = true,
2369 .min_order = 1,
2370 };
2371
2372 static int __init setup_fail_page_alloc(char *str)
2373 {
2374 return setup_fault_attr(&fail_page_alloc.attr, str);
2375 }
2376 __setup("fail_page_alloc=", setup_fail_page_alloc);
2377
2378 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2379 {
2380 if (order < fail_page_alloc.min_order)
2381 return false;
2382 if (gfp_mask & __GFP_NOFAIL)
2383 return false;
2384 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2385 return false;
2386 if (fail_page_alloc.ignore_gfp_reclaim &&
2387 (gfp_mask & __GFP_DIRECT_RECLAIM))
2388 return false;
2389
2390 return should_fail(&fail_page_alloc.attr, 1 << order);
2391 }
2392
2393 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2394
2395 static int __init fail_page_alloc_debugfs(void)
2396 {
2397 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2398 struct dentry *dir;
2399
2400 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2401 &fail_page_alloc.attr);
2402 if (IS_ERR(dir))
2403 return PTR_ERR(dir);
2404
2405 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2406 &fail_page_alloc.ignore_gfp_reclaim))
2407 goto fail;
2408 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2409 &fail_page_alloc.ignore_gfp_highmem))
2410 goto fail;
2411 if (!debugfs_create_u32("min-order", mode, dir,
2412 &fail_page_alloc.min_order))
2413 goto fail;
2414
2415 return 0;
2416 fail:
2417 debugfs_remove_recursive(dir);
2418
2419 return -ENOMEM;
2420 }
2421
2422 late_initcall(fail_page_alloc_debugfs);
2423
2424 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2425
2426 #else /* CONFIG_FAIL_PAGE_ALLOC */
2427
2428 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2429 {
2430 return false;
2431 }
2432
2433 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2434
2435 /*
2436 * Return true if free base pages are above 'mark'. For high-order checks it
2437 * will return true of the order-0 watermark is reached and there is at least
2438 * one free page of a suitable size. Checking now avoids taking the zone lock
2439 * to check in the allocation paths if no pages are free.
2440 */
2441 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2442 unsigned long mark, int classzone_idx, int alloc_flags,
2443 long free_pages)
2444 {
2445 long min = mark;
2446 int o;
2447 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2448
2449 /* free_pages may go negative - that's OK */
2450 free_pages -= (1 << order) - 1;
2451
2452 if (alloc_flags & ALLOC_HIGH)
2453 min -= min / 2;
2454
2455 /*
2456 * If the caller does not have rights to ALLOC_HARDER then subtract
2457 * the high-atomic reserves. This will over-estimate the size of the
2458 * atomic reserve but it avoids a search.
2459 */
2460 if (likely(!alloc_harder))
2461 free_pages -= z->nr_reserved_highatomic;
2462 else
2463 min -= min / 4;
2464
2465 #ifdef CONFIG_CMA
2466 /* If allocation can't use CMA areas don't use free CMA pages */
2467 if (!(alloc_flags & ALLOC_CMA))
2468 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2469 #endif
2470
2471 /*
2472 * Check watermarks for an order-0 allocation request. If these
2473 * are not met, then a high-order request also cannot go ahead
2474 * even if a suitable page happened to be free.
2475 */
2476 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2477 return false;
2478
2479 /* If this is an order-0 request then the watermark is fine */
2480 if (!order)
2481 return true;
2482
2483 /* For a high-order request, check at least one suitable page is free */
2484 for (o = order; o < MAX_ORDER; o++) {
2485 struct free_area *area = &z->free_area[o];
2486 int mt;
2487
2488 if (!area->nr_free)
2489 continue;
2490
2491 if (alloc_harder)
2492 return true;
2493
2494 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2495 if (!list_empty(&area->free_list[mt]))
2496 return true;
2497 }
2498
2499 #ifdef CONFIG_CMA
2500 if ((alloc_flags & ALLOC_CMA) &&
2501 !list_empty(&area->free_list[MIGRATE_CMA])) {
2502 return true;
2503 }
2504 #endif
2505 }
2506 return false;
2507 }
2508
2509 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2510 int classzone_idx, int alloc_flags)
2511 {
2512 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2513 zone_page_state(z, NR_FREE_PAGES));
2514 }
2515
2516 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2517 unsigned long mark, int classzone_idx)
2518 {
2519 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2520
2521 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2522 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2523
2524 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2525 free_pages);
2526 }
2527
2528 #ifdef CONFIG_NUMA
2529 static bool zone_local(struct zone *local_zone, struct zone *zone)
2530 {
2531 return local_zone->node == zone->node;
2532 }
2533
2534 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2535 {
2536 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2537 RECLAIM_DISTANCE;
2538 }
2539 #else /* CONFIG_NUMA */
2540 static bool zone_local(struct zone *local_zone, struct zone *zone)
2541 {
2542 return true;
2543 }
2544
2545 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2546 {
2547 return true;
2548 }
2549 #endif /* CONFIG_NUMA */
2550
2551 static void reset_alloc_batches(struct zone *preferred_zone)
2552 {
2553 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2554
2555 do {
2556 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2557 high_wmark_pages(zone) - low_wmark_pages(zone) -
2558 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2559 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2560 } while (zone++ != preferred_zone);
2561 }
2562
2563 /*
2564 * get_page_from_freelist goes through the zonelist trying to allocate
2565 * a page.
2566 */
2567 static struct page *
2568 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2569 const struct alloc_context *ac)
2570 {
2571 struct zonelist *zonelist = ac->zonelist;
2572 struct zoneref *z;
2573 struct page *page = NULL;
2574 struct zone *zone;
2575 int nr_fair_skipped = 0;
2576 bool zonelist_rescan;
2577
2578 zonelist_scan:
2579 zonelist_rescan = false;
2580
2581 /*
2582 * Scan zonelist, looking for a zone with enough free.
2583 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2584 */
2585 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2586 ac->nodemask) {
2587 unsigned long mark;
2588
2589 if (cpusets_enabled() &&
2590 (alloc_flags & ALLOC_CPUSET) &&
2591 !cpuset_zone_allowed(zone, gfp_mask))
2592 continue;
2593 /*
2594 * Distribute pages in proportion to the individual
2595 * zone size to ensure fair page aging. The zone a
2596 * page was allocated in should have no effect on the
2597 * time the page has in memory before being reclaimed.
2598 */
2599 if (alloc_flags & ALLOC_FAIR) {
2600 if (!zone_local(ac->preferred_zone, zone))
2601 break;
2602 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2603 nr_fair_skipped++;
2604 continue;
2605 }
2606 }
2607 /*
2608 * When allocating a page cache page for writing, we
2609 * want to get it from a zone that is within its dirty
2610 * limit, such that no single zone holds more than its
2611 * proportional share of globally allowed dirty pages.
2612 * The dirty limits take into account the zone's
2613 * lowmem reserves and high watermark so that kswapd
2614 * should be able to balance it without having to
2615 * write pages from its LRU list.
2616 *
2617 * This may look like it could increase pressure on
2618 * lower zones by failing allocations in higher zones
2619 * before they are full. But the pages that do spill
2620 * over are limited as the lower zones are protected
2621 * by this very same mechanism. It should not become
2622 * a practical burden to them.
2623 *
2624 * XXX: For now, allow allocations to potentially
2625 * exceed the per-zone dirty limit in the slowpath
2626 * (spread_dirty_pages unset) before going into reclaim,
2627 * which is important when on a NUMA setup the allowed
2628 * zones are together not big enough to reach the
2629 * global limit. The proper fix for these situations
2630 * will require awareness of zones in the
2631 * dirty-throttling and the flusher threads.
2632 */
2633 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2634 continue;
2635
2636 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2637 if (!zone_watermark_ok(zone, order, mark,
2638 ac->classzone_idx, alloc_flags)) {
2639 int ret;
2640
2641 /* Checked here to keep the fast path fast */
2642 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2643 if (alloc_flags & ALLOC_NO_WATERMARKS)
2644 goto try_this_zone;
2645
2646 if (zone_reclaim_mode == 0 ||
2647 !zone_allows_reclaim(ac->preferred_zone, zone))
2648 continue;
2649
2650 ret = zone_reclaim(zone, gfp_mask, order);
2651 switch (ret) {
2652 case ZONE_RECLAIM_NOSCAN:
2653 /* did not scan */
2654 continue;
2655 case ZONE_RECLAIM_FULL:
2656 /* scanned but unreclaimable */
2657 continue;
2658 default:
2659 /* did we reclaim enough */
2660 if (zone_watermark_ok(zone, order, mark,
2661 ac->classzone_idx, alloc_flags))
2662 goto try_this_zone;
2663
2664 continue;
2665 }
2666 }
2667
2668 try_this_zone:
2669 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2670 gfp_mask, alloc_flags, ac->migratetype);
2671 if (page) {
2672 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2673 goto try_this_zone;
2674
2675 /*
2676 * If this is a high-order atomic allocation then check
2677 * if the pageblock should be reserved for the future
2678 */
2679 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2680 reserve_highatomic_pageblock(page, zone, order);
2681
2682 return page;
2683 }
2684 }
2685
2686 /*
2687 * The first pass makes sure allocations are spread fairly within the
2688 * local node. However, the local node might have free pages left
2689 * after the fairness batches are exhausted, and remote zones haven't
2690 * even been considered yet. Try once more without fairness, and
2691 * include remote zones now, before entering the slowpath and waking
2692 * kswapd: prefer spilling to a remote zone over swapping locally.
2693 */
2694 if (alloc_flags & ALLOC_FAIR) {
2695 alloc_flags &= ~ALLOC_FAIR;
2696 if (nr_fair_skipped) {
2697 zonelist_rescan = true;
2698 reset_alloc_batches(ac->preferred_zone);
2699 }
2700 if (nr_online_nodes > 1)
2701 zonelist_rescan = true;
2702 }
2703
2704 if (zonelist_rescan)
2705 goto zonelist_scan;
2706
2707 return NULL;
2708 }
2709
2710 /*
2711 * Large machines with many possible nodes should not always dump per-node
2712 * meminfo in irq context.
2713 */
2714 static inline bool should_suppress_show_mem(void)
2715 {
2716 bool ret = false;
2717
2718 #if NODES_SHIFT > 8
2719 ret = in_interrupt();
2720 #endif
2721 return ret;
2722 }
2723
2724 static DEFINE_RATELIMIT_STATE(nopage_rs,
2725 DEFAULT_RATELIMIT_INTERVAL,
2726 DEFAULT_RATELIMIT_BURST);
2727
2728 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2729 {
2730 unsigned int filter = SHOW_MEM_FILTER_NODES;
2731
2732 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2733 debug_guardpage_minorder() > 0)
2734 return;
2735
2736 /*
2737 * This documents exceptions given to allocations in certain
2738 * contexts that are allowed to allocate outside current's set
2739 * of allowed nodes.
2740 */
2741 if (!(gfp_mask & __GFP_NOMEMALLOC))
2742 if (test_thread_flag(TIF_MEMDIE) ||
2743 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2744 filter &= ~SHOW_MEM_FILTER_NODES;
2745 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2746 filter &= ~SHOW_MEM_FILTER_NODES;
2747
2748 if (fmt) {
2749 struct va_format vaf;
2750 va_list args;
2751
2752 va_start(args, fmt);
2753
2754 vaf.fmt = fmt;
2755 vaf.va = &args;
2756
2757 pr_warn("%pV", &vaf);
2758
2759 va_end(args);
2760 }
2761
2762 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2763 current->comm, order, gfp_mask);
2764
2765 dump_stack();
2766 if (!should_suppress_show_mem())
2767 show_mem(filter);
2768 }
2769
2770 static inline struct page *
2771 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2772 const struct alloc_context *ac, unsigned long *did_some_progress)
2773 {
2774 struct oom_control oc = {
2775 .zonelist = ac->zonelist,
2776 .nodemask = ac->nodemask,
2777 .gfp_mask = gfp_mask,
2778 .order = order,
2779 };
2780 struct page *page;
2781
2782 *did_some_progress = 0;
2783
2784 /*
2785 * Acquire the oom lock. If that fails, somebody else is
2786 * making progress for us.
2787 */
2788 if (!mutex_trylock(&oom_lock)) {
2789 *did_some_progress = 1;
2790 schedule_timeout_uninterruptible(1);
2791 return NULL;
2792 }
2793
2794 /*
2795 * Go through the zonelist yet one more time, keep very high watermark
2796 * here, this is only to catch a parallel oom killing, we must fail if
2797 * we're still under heavy pressure.
2798 */
2799 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2800 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2801 if (page)
2802 goto out;
2803
2804 if (!(gfp_mask & __GFP_NOFAIL)) {
2805 /* Coredumps can quickly deplete all memory reserves */
2806 if (current->flags & PF_DUMPCORE)
2807 goto out;
2808 /* The OOM killer will not help higher order allocs */
2809 if (order > PAGE_ALLOC_COSTLY_ORDER)
2810 goto out;
2811 /* The OOM killer does not needlessly kill tasks for lowmem */
2812 if (ac->high_zoneidx < ZONE_NORMAL)
2813 goto out;
2814 /* The OOM killer does not compensate for IO-less reclaim */
2815 if (!(gfp_mask & __GFP_FS)) {
2816 /*
2817 * XXX: Page reclaim didn't yield anything,
2818 * and the OOM killer can't be invoked, but
2819 * keep looping as per tradition.
2820 */
2821 *did_some_progress = 1;
2822 goto out;
2823 }
2824 if (pm_suspended_storage())
2825 goto out;
2826 /* The OOM killer may not free memory on a specific node */
2827 if (gfp_mask & __GFP_THISNODE)
2828 goto out;
2829 }
2830 /* Exhausted what can be done so it's blamo time */
2831 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2832 *did_some_progress = 1;
2833 out:
2834 mutex_unlock(&oom_lock);
2835 return page;
2836 }
2837
2838 #ifdef CONFIG_COMPACTION
2839 /* Try memory compaction for high-order allocations before reclaim */
2840 static struct page *
2841 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2842 int alloc_flags, const struct alloc_context *ac,
2843 enum migrate_mode mode, int *contended_compaction,
2844 bool *deferred_compaction)
2845 {
2846 unsigned long compact_result;
2847 struct page *page;
2848
2849 if (!order)
2850 return NULL;
2851
2852 current->flags |= PF_MEMALLOC;
2853 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2854 mode, contended_compaction);
2855 current->flags &= ~PF_MEMALLOC;
2856
2857 switch (compact_result) {
2858 case COMPACT_DEFERRED:
2859 *deferred_compaction = true;
2860 /* fall-through */
2861 case COMPACT_SKIPPED:
2862 return NULL;
2863 default:
2864 break;
2865 }
2866
2867 /*
2868 * At least in one zone compaction wasn't deferred or skipped, so let's
2869 * count a compaction stall
2870 */
2871 count_vm_event(COMPACTSTALL);
2872
2873 page = get_page_from_freelist(gfp_mask, order,
2874 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2875
2876 if (page) {
2877 struct zone *zone = page_zone(page);
2878
2879 zone->compact_blockskip_flush = false;
2880 compaction_defer_reset(zone, order, true);
2881 count_vm_event(COMPACTSUCCESS);
2882 return page;
2883 }
2884
2885 /*
2886 * It's bad if compaction run occurs and fails. The most likely reason
2887 * is that pages exist, but not enough to satisfy watermarks.
2888 */
2889 count_vm_event(COMPACTFAIL);
2890
2891 cond_resched();
2892
2893 return NULL;
2894 }
2895 #else
2896 static inline struct page *
2897 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2898 int alloc_flags, const struct alloc_context *ac,
2899 enum migrate_mode mode, int *contended_compaction,
2900 bool *deferred_compaction)
2901 {
2902 return NULL;
2903 }
2904 #endif /* CONFIG_COMPACTION */
2905
2906 /* Perform direct synchronous page reclaim */
2907 static int
2908 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2909 const struct alloc_context *ac)
2910 {
2911 struct reclaim_state reclaim_state;
2912 int progress;
2913
2914 cond_resched();
2915
2916 /* We now go into synchronous reclaim */
2917 cpuset_memory_pressure_bump();
2918 current->flags |= PF_MEMALLOC;
2919 lockdep_set_current_reclaim_state(gfp_mask);
2920 reclaim_state.reclaimed_slab = 0;
2921 current->reclaim_state = &reclaim_state;
2922
2923 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2924 ac->nodemask);
2925
2926 current->reclaim_state = NULL;
2927 lockdep_clear_current_reclaim_state();
2928 current->flags &= ~PF_MEMALLOC;
2929
2930 cond_resched();
2931
2932 return progress;
2933 }
2934
2935 /* The really slow allocator path where we enter direct reclaim */
2936 static inline struct page *
2937 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2938 int alloc_flags, const struct alloc_context *ac,
2939 unsigned long *did_some_progress)
2940 {
2941 struct page *page = NULL;
2942 bool drained = false;
2943
2944 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2945 if (unlikely(!(*did_some_progress)))
2946 return NULL;
2947
2948 retry:
2949 page = get_page_from_freelist(gfp_mask, order,
2950 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2951
2952 /*
2953 * If an allocation failed after direct reclaim, it could be because
2954 * pages are pinned on the per-cpu lists or in high alloc reserves.
2955 * Shrink them them and try again
2956 */
2957 if (!page && !drained) {
2958 unreserve_highatomic_pageblock(ac);
2959 drain_all_pages(NULL);
2960 drained = true;
2961 goto retry;
2962 }
2963
2964 return page;
2965 }
2966
2967 /*
2968 * This is called in the allocator slow-path if the allocation request is of
2969 * sufficient urgency to ignore watermarks and take other desperate measures
2970 */
2971 static inline struct page *
2972 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2973 const struct alloc_context *ac)
2974 {
2975 struct page *page;
2976
2977 do {
2978 page = get_page_from_freelist(gfp_mask, order,
2979 ALLOC_NO_WATERMARKS, ac);
2980
2981 if (!page && gfp_mask & __GFP_NOFAIL)
2982 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2983 HZ/50);
2984 } while (!page && (gfp_mask & __GFP_NOFAIL));
2985
2986 return page;
2987 }
2988
2989 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2990 {
2991 struct zoneref *z;
2992 struct zone *zone;
2993
2994 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2995 ac->high_zoneidx, ac->nodemask)
2996 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2997 }
2998
2999 static inline int
3000 gfp_to_alloc_flags(gfp_t gfp_mask)
3001 {
3002 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3003
3004 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3005 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3006
3007 /*
3008 * The caller may dip into page reserves a bit more if the caller
3009 * cannot run direct reclaim, or if the caller has realtime scheduling
3010 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3011 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3012 */
3013 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3014
3015 if (gfp_mask & __GFP_ATOMIC) {
3016 /*
3017 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3018 * if it can't schedule.
3019 */
3020 if (!(gfp_mask & __GFP_NOMEMALLOC))
3021 alloc_flags |= ALLOC_HARDER;
3022 /*
3023 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3024 * comment for __cpuset_node_allowed().
3025 */
3026 alloc_flags &= ~ALLOC_CPUSET;
3027 } else if (unlikely(rt_task(current)) && !in_interrupt())
3028 alloc_flags |= ALLOC_HARDER;
3029
3030 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3031 if (gfp_mask & __GFP_MEMALLOC)
3032 alloc_flags |= ALLOC_NO_WATERMARKS;
3033 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3034 alloc_flags |= ALLOC_NO_WATERMARKS;
3035 else if (!in_interrupt() &&
3036 ((current->flags & PF_MEMALLOC) ||
3037 unlikely(test_thread_flag(TIF_MEMDIE))))
3038 alloc_flags |= ALLOC_NO_WATERMARKS;
3039 }
3040 #ifdef CONFIG_CMA
3041 if ((gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3042 && !!(gfp_mask & __GFP_CMA))
3043 alloc_flags |= ALLOC_CMA;
3044 #endif
3045 return alloc_flags;
3046 }
3047
3048 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3049 {
3050 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3051 }
3052
3053 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3054 {
3055 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3056 }
3057
3058 static inline struct page *
3059 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3060 struct alloc_context *ac)
3061 {
3062 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3063 struct page *page = NULL;
3064 int alloc_flags;
3065 unsigned long pages_reclaimed = 0;
3066 unsigned long did_some_progress;
3067 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3068 bool deferred_compaction = false;
3069 int contended_compaction = COMPACT_CONTENDED_NONE;
3070
3071 /*
3072 * In the slowpath, we sanity check order to avoid ever trying to
3073 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3074 * be using allocators in order of preference for an area that is
3075 * too large.
3076 */
3077 if (order >= MAX_ORDER) {
3078 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3079 return NULL;
3080 }
3081
3082 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3083 set_tsk_thread_flag(current, TIF_MEMALLOC);
3084 #endif
3085
3086 /*
3087 * We also sanity check to catch abuse of atomic reserves being used by
3088 * callers that are not in atomic context.
3089 */
3090 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3091 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3092 gfp_mask &= ~__GFP_ATOMIC;
3093
3094 /*
3095 * If this allocation cannot block and it is for a specific node, then
3096 * fail early. There's no need to wakeup kswapd or retry for a
3097 * speculative node-specific allocation.
3098 */
3099 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3100 goto nopage;
3101
3102 retry:
3103 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3104 wake_all_kswapds(order, ac);
3105
3106 /*
3107 * OK, we're below the kswapd watermark and have kicked background
3108 * reclaim. Now things get more complex, so set up alloc_flags according
3109 * to how we want to proceed.
3110 */
3111 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3112
3113 /*
3114 * Find the true preferred zone if the allocation is unconstrained by
3115 * cpusets.
3116 */
3117 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3118 struct zoneref *preferred_zoneref;
3119 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3120 ac->high_zoneidx, NULL, &ac->preferred_zone);
3121 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3122 }
3123
3124 /* This is the last chance, in general, before the goto nopage. */
3125 page = get_page_from_freelist(gfp_mask, order,
3126 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3127 if (page)
3128 goto got_pg;
3129
3130 /* Allocate without watermarks if the context allows */
3131 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3132 /*
3133 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3134 * the allocation is high priority and these type of
3135 * allocations are system rather than user orientated
3136 */
3137 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3138
3139 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3140
3141 if (page) {
3142 goto got_pg;
3143 }
3144 }
3145
3146 /* Caller is not willing to reclaim, we can't balance anything */
3147 if (!can_direct_reclaim) {
3148 /*
3149 * All existing users of the deprecated __GFP_NOFAIL are
3150 * blockable, so warn of any new users that actually allow this
3151 * type of allocation to fail.
3152 */
3153 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3154 goto nopage;
3155 }
3156
3157 /* Avoid recursion of direct reclaim */
3158 if (current->flags & PF_MEMALLOC)
3159 goto nopage;
3160
3161 /* Avoid allocations with no watermarks from looping endlessly */
3162 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3163 goto nopage;
3164
3165 /*
3166 * Try direct compaction. The first pass is asynchronous. Subsequent
3167 * attempts after direct reclaim are synchronous
3168 */
3169 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3170 migration_mode,
3171 &contended_compaction,
3172 &deferred_compaction);
3173 if (page)
3174 goto got_pg;
3175
3176 /* Checks for THP-specific high-order allocations */
3177 if (is_thp_gfp_mask(gfp_mask)) {
3178 /*
3179 * If compaction is deferred for high-order allocations, it is
3180 * because sync compaction recently failed. If this is the case
3181 * and the caller requested a THP allocation, we do not want
3182 * to heavily disrupt the system, so we fail the allocation
3183 * instead of entering direct reclaim.
3184 */
3185 if (deferred_compaction)
3186 goto nopage;
3187
3188 /*
3189 * In all zones where compaction was attempted (and not
3190 * deferred or skipped), lock contention has been detected.
3191 * For THP allocation we do not want to disrupt the others
3192 * so we fallback to base pages instead.
3193 */
3194 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3195 goto nopage;
3196
3197 /*
3198 * If compaction was aborted due to need_resched(), we do not
3199 * want to further increase allocation latency, unless it is
3200 * khugepaged trying to collapse.
3201 */
3202 if (contended_compaction == COMPACT_CONTENDED_SCHED
3203 && !(current->flags & PF_KTHREAD))
3204 goto nopage;
3205 }
3206
3207 /*
3208 * It can become very expensive to allocate transparent hugepages at
3209 * fault, so use asynchronous memory compaction for THP unless it is
3210 * khugepaged trying to collapse.
3211 */
3212 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3213 migration_mode = MIGRATE_SYNC_LIGHT;
3214
3215 /* Try direct reclaim and then allocating */
3216 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3217 &did_some_progress);
3218 if (page)
3219 goto got_pg;
3220
3221 /* Do not loop if specifically requested */
3222 if (gfp_mask & __GFP_NORETRY)
3223 goto noretry;
3224
3225 /* Keep reclaiming pages as long as there is reasonable progress */
3226 pages_reclaimed += did_some_progress;
3227 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3228 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3229 /* Wait for some write requests to complete then retry */
3230 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3231 goto retry;
3232 }
3233
3234 /* Reclaim has failed us, start killing things */
3235 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3236 if (page)
3237 goto got_pg;
3238
3239 /* Retry as long as the OOM killer is making progress */
3240 if (did_some_progress)
3241 goto retry;
3242
3243 noretry:
3244 /*
3245 * High-order allocations do not necessarily loop after
3246 * direct reclaim and reclaim/compaction depends on compaction
3247 * being called after reclaim so call directly if necessary
3248 */
3249 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3250 ac, migration_mode,
3251 &contended_compaction,
3252 &deferred_compaction);
3253 if (page)
3254 goto got_pg;
3255 nopage:
3256 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3257 clear_tsk_thread_flag(current, TIF_MEMALLOC);
3258 #endif
3259 warn_alloc_failed(gfp_mask, order, NULL);
3260 got_pg:
3261 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3262 clear_tsk_thread_flag(current, TIF_MEMALLOC);
3263 #endif
3264 return page;
3265 }
3266
3267 /*
3268 * This is the 'heart' of the zoned buddy allocator.
3269 */
3270 struct page *
3271 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3272 struct zonelist *zonelist, nodemask_t *nodemask)
3273 {
3274 struct zoneref *preferred_zoneref;
3275 struct page *page = NULL;
3276 unsigned int cpuset_mems_cookie;
3277 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3278 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3279 struct alloc_context ac = {
3280 .high_zoneidx = gfp_zone(gfp_mask),
3281 .nodemask = nodemask,
3282 .migratetype = gfpflags_to_migratetype(gfp_mask),
3283 };
3284
3285 gfp_mask &= gfp_allowed_mask;
3286
3287 lockdep_trace_alloc(gfp_mask);
3288
3289 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3290
3291 if (should_fail_alloc_page(gfp_mask, order))
3292 return NULL;
3293
3294 /*
3295 * Check the zones suitable for the gfp_mask contain at least one
3296 * valid zone. It's possible to have an empty zonelist as a result
3297 * of __GFP_THISNODE and a memoryless node
3298 */
3299 if (unlikely(!zonelist->_zonerefs->zone))
3300 return NULL;
3301
3302 if (IS_ENABLED(CONFIG_CMA) && (ac.migratetype == MIGRATE_MOVABLE)
3303 && !!(gfp_mask & __GFP_CMA))
3304 alloc_flags |= ALLOC_CMA;
3305
3306 retry_cpuset:
3307 cpuset_mems_cookie = read_mems_allowed_begin();
3308
3309 /* We set it here, as __alloc_pages_slowpath might have changed it */
3310 ac.zonelist = zonelist;
3311
3312 /* Dirty zone balancing only done in the fast path */
3313 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3314
3315 /* The preferred zone is used for statistics later */
3316 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3317 ac.nodemask ? : &cpuset_current_mems_allowed,
3318 &ac.preferred_zone);
3319 if (!ac.preferred_zone)
3320 goto out;
3321 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3322
3323 /* First allocation attempt */
3324 alloc_mask = gfp_mask|__GFP_HARDWALL;
3325 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3326 if (unlikely(!page)) {
3327 /*
3328 * Runtime PM, block IO and its error handling path
3329 * can deadlock because I/O on the device might not
3330 * complete.
3331 */
3332 alloc_mask = memalloc_noio_flags(gfp_mask);
3333 ac.spread_dirty_pages = false;
3334
3335 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3336 }
3337
3338 if (kmemcheck_enabled && page)
3339 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3340
3341 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3342
3343 out:
3344 /*
3345 * When updating a task's mems_allowed, it is possible to race with
3346 * parallel threads in such a way that an allocation can fail while
3347 * the mask is being updated. If a page allocation is about to fail,
3348 * check if the cpuset changed during allocation and if so, retry.
3349 */
3350 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3351 goto retry_cpuset;
3352
3353 return page;
3354 }
3355 EXPORT_SYMBOL(__alloc_pages_nodemask);
3356
3357 /*
3358 * Common helper functions.
3359 */
3360 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3361 {
3362 struct page *page;
3363
3364 /*
3365 * __get_free_pages() returns a 32-bit address, which cannot represent
3366 * a highmem page
3367 */
3368 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3369
3370 page = alloc_pages(gfp_mask, order);
3371 if (!page)
3372 return 0;
3373 return (unsigned long) page_address(page);
3374 }
3375 EXPORT_SYMBOL(__get_free_pages);
3376
3377 unsigned long get_zeroed_page(gfp_t gfp_mask)
3378 {
3379 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3380 }
3381 EXPORT_SYMBOL(get_zeroed_page);
3382
3383 void __free_pages(struct page *page, unsigned int order)
3384 {
3385 if (put_page_testzero(page)) {
3386 if (order == 0)
3387 free_hot_cold_page(page, false);
3388 else
3389 __free_pages_ok(page, order);
3390 }
3391 }
3392
3393 EXPORT_SYMBOL(__free_pages);
3394
3395 void free_pages(unsigned long addr, unsigned int order)
3396 {
3397 if (addr != 0) {
3398 VM_BUG_ON(!virt_addr_valid((void *)addr));
3399 __free_pages(virt_to_page((void *)addr), order);
3400 }
3401 }
3402
3403 EXPORT_SYMBOL(free_pages);
3404
3405 /*
3406 * Page Fragment:
3407 * An arbitrary-length arbitrary-offset area of memory which resides
3408 * within a 0 or higher order page. Multiple fragments within that page
3409 * are individually refcounted, in the page's reference counter.
3410 *
3411 * The page_frag functions below provide a simple allocation framework for
3412 * page fragments. This is used by the network stack and network device
3413 * drivers to provide a backing region of memory for use as either an
3414 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3415 */
3416 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3417 gfp_t gfp_mask)
3418 {
3419 struct page *page = NULL;
3420 gfp_t gfp = gfp_mask;
3421
3422 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3423 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3424 __GFP_NOMEMALLOC;
3425 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3426 PAGE_FRAG_CACHE_MAX_ORDER);
3427 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3428 #endif
3429 if (unlikely(!page))
3430 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3431
3432 nc->va = page ? page_address(page) : NULL;
3433
3434 return page;
3435 }
3436
3437 void *__alloc_page_frag(struct page_frag_cache *nc,
3438 unsigned int fragsz, gfp_t gfp_mask)
3439 {
3440 unsigned int size = PAGE_SIZE;
3441 struct page *page;
3442 int offset;
3443
3444 if (unlikely(!nc->va)) {
3445 refill:
3446 page = __page_frag_refill(nc, gfp_mask);
3447 if (!page)
3448 return NULL;
3449
3450 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3451 /* if size can vary use size else just use PAGE_SIZE */
3452 size = nc->size;
3453 #endif
3454 /* Even if we own the page, we do not use atomic_set().
3455 * This would break get_page_unless_zero() users.
3456 */
3457 atomic_add(size - 1, &page->_count);
3458
3459 /* reset page count bias and offset to start of new frag */
3460 nc->pfmemalloc = page_is_pfmemalloc(page);
3461 nc->pagecnt_bias = size;
3462 nc->offset = size;
3463 }
3464
3465 offset = nc->offset - fragsz;
3466 if (unlikely(offset < 0)) {
3467 page = virt_to_page(nc->va);
3468
3469 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3470 goto refill;
3471
3472 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3473 /* if size can vary use size else just use PAGE_SIZE */
3474 size = nc->size;
3475 #endif
3476 /* OK, page count is 0, we can safely set it */
3477 atomic_set(&page->_count, size);
3478
3479 /* reset page count bias and offset to start of new frag */
3480 nc->pagecnt_bias = size;
3481 offset = size - fragsz;
3482 }
3483
3484 nc->pagecnt_bias--;
3485 nc->offset = offset;
3486
3487 return nc->va + offset;
3488 }
3489 EXPORT_SYMBOL(__alloc_page_frag);
3490
3491 /*
3492 * Frees a page fragment allocated out of either a compound or order 0 page.
3493 */
3494 void __free_page_frag(void *addr)
3495 {
3496 struct page *page = virt_to_head_page(addr);
3497
3498 if (unlikely(put_page_testzero(page)))
3499 __free_pages_ok(page, compound_order(page));
3500 }
3501 EXPORT_SYMBOL(__free_page_frag);
3502
3503 /*
3504 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3505 * of the current memory cgroup.
3506 *
3507 * It should be used when the caller would like to use kmalloc, but since the
3508 * allocation is large, it has to fall back to the page allocator.
3509 */
3510 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3511 {
3512 struct page *page;
3513
3514 page = alloc_pages(gfp_mask, order);
3515 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3516 __free_pages(page, order);
3517 page = NULL;
3518 }
3519 return page;
3520 }
3521
3522 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3523 {
3524 struct page *page;
3525
3526 page = alloc_pages_node(nid, gfp_mask, order);
3527 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3528 __free_pages(page, order);
3529 page = NULL;
3530 }
3531 return page;
3532 }
3533
3534 /*
3535 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3536 * alloc_kmem_pages.
3537 */
3538 void __free_kmem_pages(struct page *page, unsigned int order)
3539 {
3540 memcg_kmem_uncharge(page, order);
3541 __free_pages(page, order);
3542 }
3543
3544 void free_kmem_pages(unsigned long addr, unsigned int order)
3545 {
3546 if (addr != 0) {
3547 VM_BUG_ON(!virt_addr_valid((void *)addr));
3548 __free_kmem_pages(virt_to_page((void *)addr), order);
3549 }
3550 }
3551
3552 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3553 size_t size)
3554 {
3555 if (addr) {
3556 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3557 unsigned long used = addr + PAGE_ALIGN(size);
3558
3559 split_page(virt_to_page((void *)addr), order);
3560 while (used < alloc_end) {
3561 free_page(used);
3562 used += PAGE_SIZE;
3563 }
3564 }
3565 return (void *)addr;
3566 }
3567
3568 /**
3569 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3570 * @size: the number of bytes to allocate
3571 * @gfp_mask: GFP flags for the allocation
3572 *
3573 * This function is similar to alloc_pages(), except that it allocates the
3574 * minimum number of pages to satisfy the request. alloc_pages() can only
3575 * allocate memory in power-of-two pages.
3576 *
3577 * This function is also limited by MAX_ORDER.
3578 *
3579 * Memory allocated by this function must be released by free_pages_exact().
3580 */
3581 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3582 {
3583 unsigned int order = get_order(size);
3584 unsigned long addr;
3585
3586 addr = __get_free_pages(gfp_mask, order);
3587 return make_alloc_exact(addr, order, size);
3588 }
3589 EXPORT_SYMBOL(alloc_pages_exact);
3590
3591 /**
3592 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3593 * pages on a node.
3594 * @nid: the preferred node ID where memory should be allocated
3595 * @size: the number of bytes to allocate
3596 * @gfp_mask: GFP flags for the allocation
3597 *
3598 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3599 * back.
3600 */
3601 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3602 {
3603 unsigned int order = get_order(size);
3604 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3605 if (!p)
3606 return NULL;
3607 return make_alloc_exact((unsigned long)page_address(p), order, size);
3608 }
3609
3610 /**
3611 * free_pages_exact - release memory allocated via alloc_pages_exact()
3612 * @virt: the value returned by alloc_pages_exact.
3613 * @size: size of allocation, same value as passed to alloc_pages_exact().
3614 *
3615 * Release the memory allocated by a previous call to alloc_pages_exact.
3616 */
3617 void free_pages_exact(void *virt, size_t size)
3618 {
3619 unsigned long addr = (unsigned long)virt;
3620 unsigned long end = addr + PAGE_ALIGN(size);
3621
3622 while (addr < end) {
3623 free_page(addr);
3624 addr += PAGE_SIZE;
3625 }
3626 }
3627 EXPORT_SYMBOL(free_pages_exact);
3628
3629 /**
3630 * nr_free_zone_pages - count number of pages beyond high watermark
3631 * @offset: The zone index of the highest zone
3632 *
3633 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3634 * high watermark within all zones at or below a given zone index. For each
3635 * zone, the number of pages is calculated as:
3636 * managed_pages - high_pages
3637 */
3638 static unsigned long nr_free_zone_pages(int offset)
3639 {
3640 struct zoneref *z;
3641 struct zone *zone;
3642
3643 /* Just pick one node, since fallback list is circular */
3644 unsigned long sum = 0;
3645
3646 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3647
3648 for_each_zone_zonelist(zone, z, zonelist, offset) {
3649 unsigned long size = zone->managed_pages;
3650 unsigned long high = high_wmark_pages(zone);
3651 if (size > high)
3652 sum += size - high;
3653 }
3654
3655 return sum;
3656 }
3657
3658 /**
3659 * nr_free_buffer_pages - count number of pages beyond high watermark
3660 *
3661 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3662 * watermark within ZONE_DMA and ZONE_NORMAL.
3663 */
3664 unsigned long nr_free_buffer_pages(void)
3665 {
3666 return nr_free_zone_pages(gfp_zone(GFP_USER));
3667 }
3668 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3669
3670 /**
3671 * nr_free_pagecache_pages - count number of pages beyond high watermark
3672 *
3673 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3674 * high watermark within all zones.
3675 */
3676 unsigned long nr_free_pagecache_pages(void)
3677 {
3678 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3679 }
3680
3681 static inline void show_node(struct zone *zone)
3682 {
3683 if (IS_ENABLED(CONFIG_NUMA))
3684 printk("Node %d ", zone_to_nid(zone));
3685 }
3686
3687 void si_meminfo(struct sysinfo *val)
3688 {
3689 val->totalram = totalram_pages;
3690 val->sharedram = global_page_state(NR_SHMEM);
3691 val->freeram = global_page_state(NR_FREE_PAGES);
3692 val->bufferram = nr_blockdev_pages();
3693 val->totalhigh = totalhigh_pages;
3694 val->freehigh = nr_free_highpages();
3695 val->mem_unit = PAGE_SIZE;
3696 }
3697
3698 EXPORT_SYMBOL(si_meminfo);
3699
3700 #ifdef CONFIG_NUMA
3701 void si_meminfo_node(struct sysinfo *val, int nid)
3702 {
3703 int zone_type; /* needs to be signed */
3704 unsigned long managed_pages = 0;
3705 pg_data_t *pgdat = NODE_DATA(nid);
3706
3707 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3708 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3709 val->totalram = managed_pages;
3710 val->sharedram = node_page_state(nid, NR_SHMEM);
3711 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3712 #ifdef CONFIG_HIGHMEM
3713 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3714 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3715 NR_FREE_PAGES);
3716 #else
3717 val->totalhigh = 0;
3718 val->freehigh = 0;
3719 #endif
3720 val->mem_unit = PAGE_SIZE;
3721 }
3722 #endif
3723
3724 /*
3725 * Determine whether the node should be displayed or not, depending on whether
3726 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3727 */
3728 bool skip_free_areas_node(unsigned int flags, int nid)
3729 {
3730 bool ret = false;
3731 unsigned int cpuset_mems_cookie;
3732
3733 if (!(flags & SHOW_MEM_FILTER_NODES))
3734 goto out;
3735
3736 do {
3737 cpuset_mems_cookie = read_mems_allowed_begin();
3738 ret = !node_isset(nid, cpuset_current_mems_allowed);
3739 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3740 out:
3741 return ret;
3742 }
3743
3744 #define K(x) ((x) << (PAGE_SHIFT-10))
3745
3746 static void show_migration_types(unsigned char type)
3747 {
3748 static const char types[MIGRATE_TYPES] = {
3749 [MIGRATE_UNMOVABLE] = 'U',
3750 [MIGRATE_MOVABLE] = 'M',
3751 [MIGRATE_RECLAIMABLE] = 'E',
3752 [MIGRATE_HIGHATOMIC] = 'H',
3753 #ifdef CONFIG_CMA
3754 [MIGRATE_CMA] = 'C',
3755 #endif
3756 #ifdef CONFIG_MEMORY_ISOLATION
3757 [MIGRATE_ISOLATE] = 'I',
3758 #endif
3759 };
3760 char tmp[MIGRATE_TYPES + 1];
3761 char *p = tmp;
3762 int i;
3763
3764 for (i = 0; i < MIGRATE_TYPES; i++) {
3765 if (type & (1 << i))
3766 *p++ = types[i];
3767 }
3768
3769 *p = '\0';
3770 printk("(%s) ", tmp);
3771 }
3772
3773 /*
3774 * Show free area list (used inside shift_scroll-lock stuff)
3775 * We also calculate the percentage fragmentation. We do this by counting the
3776 * memory on each free list with the exception of the first item on the list.
3777 *
3778 * Bits in @filter:
3779 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3780 * cpuset.
3781 */
3782 void show_free_areas(unsigned int filter)
3783 {
3784 unsigned long free_pcp = 0;
3785 int cpu;
3786 struct zone *zone;
3787
3788 for_each_populated_zone(zone) {
3789 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3790 continue;
3791
3792 for_each_online_cpu(cpu)
3793 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3794 }
3795
3796 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3797 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3798 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3799 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3800 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3801 " free:%lu free_pcp:%lu free_cma:%lu\n",
3802 global_page_state(NR_ACTIVE_ANON),
3803 global_page_state(NR_INACTIVE_ANON),
3804 global_page_state(NR_ISOLATED_ANON),
3805 global_page_state(NR_ACTIVE_FILE),
3806 global_page_state(NR_INACTIVE_FILE),
3807 global_page_state(NR_ISOLATED_FILE),
3808 global_page_state(NR_UNEVICTABLE),
3809 global_page_state(NR_FILE_DIRTY),
3810 global_page_state(NR_WRITEBACK),
3811 global_page_state(NR_UNSTABLE_NFS),
3812 global_page_state(NR_SLAB_RECLAIMABLE),
3813 global_page_state(NR_SLAB_UNRECLAIMABLE),
3814 global_page_state(NR_FILE_MAPPED),
3815 global_page_state(NR_SHMEM),
3816 global_page_state(NR_PAGETABLE),
3817 global_page_state(NR_BOUNCE),
3818 global_page_state(NR_FREE_PAGES),
3819 free_pcp,
3820 global_page_state(NR_FREE_CMA_PAGES));
3821
3822 for_each_populated_zone(zone) {
3823 int i;
3824
3825 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3826 continue;
3827
3828 free_pcp = 0;
3829 for_each_online_cpu(cpu)
3830 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3831
3832 show_node(zone);
3833 printk("%s"
3834 " free:%lukB"
3835 " min:%lukB"
3836 " low:%lukB"
3837 " high:%lukB"
3838 " active_anon:%lukB"
3839 " inactive_anon:%lukB"
3840 " active_file:%lukB"
3841 " inactive_file:%lukB"
3842 " unevictable:%lukB"
3843 " isolated(anon):%lukB"
3844 " isolated(file):%lukB"
3845 " present:%lukB"
3846 " managed:%lukB"
3847 " mlocked:%lukB"
3848 " dirty:%lukB"
3849 " writeback:%lukB"
3850 " mapped:%lukB"
3851 " shmem:%lukB"
3852 " slab_reclaimable:%lukB"
3853 " slab_unreclaimable:%lukB"
3854 " kernel_stack:%lukB"
3855 " pagetables:%lukB"
3856 " unstable:%lukB"
3857 " bounce:%lukB"
3858 " free_pcp:%lukB"
3859 " local_pcp:%ukB"
3860 " free_cma:%lukB"
3861 " writeback_tmp:%lukB"
3862 " pages_scanned:%lu"
3863 " all_unreclaimable? %s"
3864 "\n",
3865 zone->name,
3866 K(zone_page_state(zone, NR_FREE_PAGES)),
3867 K(min_wmark_pages(zone)),
3868 K(low_wmark_pages(zone)),
3869 K(high_wmark_pages(zone)),
3870 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3871 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3872 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3873 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3874 K(zone_page_state(zone, NR_UNEVICTABLE)),
3875 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3876 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3877 K(zone->present_pages),
3878 K(zone->managed_pages),
3879 K(zone_page_state(zone, NR_MLOCK)),
3880 K(zone_page_state(zone, NR_FILE_DIRTY)),
3881 K(zone_page_state(zone, NR_WRITEBACK)),
3882 K(zone_page_state(zone, NR_FILE_MAPPED)),
3883 K(zone_page_state(zone, NR_SHMEM)),
3884 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3885 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3886 zone_page_state(zone, NR_KERNEL_STACK) *
3887 THREAD_SIZE / 1024,
3888 K(zone_page_state(zone, NR_PAGETABLE)),
3889 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3890 K(zone_page_state(zone, NR_BOUNCE)),
3891 K(free_pcp),
3892 K(this_cpu_read(zone->pageset->pcp.count)),
3893 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3894 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3895 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3896 (!zone_reclaimable(zone) ? "yes" : "no")
3897 );
3898 printk("lowmem_reserve[]:");
3899 for (i = 0; i < MAX_NR_ZONES; i++)
3900 printk(" %ld", zone->lowmem_reserve[i]);
3901 printk("\n");
3902 }
3903
3904 for_each_populated_zone(zone) {
3905 unsigned int order;
3906 unsigned long nr[MAX_ORDER], flags, total = 0;
3907 unsigned char types[MAX_ORDER];
3908
3909 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3910 continue;
3911 show_node(zone);
3912 printk("%s: ", zone->name);
3913
3914 spin_lock_irqsave(&zone->lock, flags);
3915 for (order = 0; order < MAX_ORDER; order++) {
3916 struct free_area *area = &zone->free_area[order];
3917 int type;
3918
3919 nr[order] = area->nr_free;
3920 total += nr[order] << order;
3921
3922 types[order] = 0;
3923 for (type = 0; type < MIGRATE_TYPES; type++) {
3924 if (!list_empty(&area->free_list[type]))
3925 types[order] |= 1 << type;
3926 }
3927 }
3928 spin_unlock_irqrestore(&zone->lock, flags);
3929 for (order = 0; order < MAX_ORDER; order++) {
3930 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3931 if (nr[order])
3932 show_migration_types(types[order]);
3933 }
3934 printk("= %lukB\n", K(total));
3935 }
3936
3937 hugetlb_show_meminfo();
3938
3939 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3940
3941 show_swap_cache_info();
3942 }
3943
3944 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3945 {
3946 zoneref->zone = zone;
3947 zoneref->zone_idx = zone_idx(zone);
3948 }
3949
3950 /*
3951 * Builds allocation fallback zone lists.
3952 *
3953 * Add all populated zones of a node to the zonelist.
3954 */
3955 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3956 int nr_zones)
3957 {
3958 struct zone *zone;
3959 enum zone_type zone_type = MAX_NR_ZONES;
3960
3961 do {
3962 zone_type--;
3963 zone = pgdat->node_zones + zone_type;
3964 if (populated_zone(zone)) {
3965 zoneref_set_zone(zone,
3966 &zonelist->_zonerefs[nr_zones++]);
3967 check_highest_zone(zone_type);
3968 }
3969 } while (zone_type);
3970
3971 return nr_zones;
3972 }
3973
3974
3975 /*
3976 * zonelist_order:
3977 * 0 = automatic detection of better ordering.
3978 * 1 = order by ([node] distance, -zonetype)
3979 * 2 = order by (-zonetype, [node] distance)
3980 *
3981 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3982 * the same zonelist. So only NUMA can configure this param.
3983 */
3984 #define ZONELIST_ORDER_DEFAULT 0
3985 #define ZONELIST_ORDER_NODE 1
3986 #define ZONELIST_ORDER_ZONE 2
3987
3988 /* zonelist order in the kernel.
3989 * set_zonelist_order() will set this to NODE or ZONE.
3990 */
3991 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3992 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3993
3994
3995 #ifdef CONFIG_NUMA
3996 /* The value user specified ....changed by config */
3997 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3998 /* string for sysctl */
3999 #define NUMA_ZONELIST_ORDER_LEN 16
4000 char numa_zonelist_order[16] = "default";
4001
4002 /*
4003 * interface for configure zonelist ordering.
4004 * command line option "numa_zonelist_order"
4005 * = "[dD]efault - default, automatic configuration.
4006 * = "[nN]ode - order by node locality, then by zone within node
4007 * = "[zZ]one - order by zone, then by locality within zone
4008 */
4009
4010 static int __parse_numa_zonelist_order(char *s)
4011 {
4012 if (*s == 'd' || *s == 'D') {
4013 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4014 } else if (*s == 'n' || *s == 'N') {
4015 user_zonelist_order = ZONELIST_ORDER_NODE;
4016 } else if (*s == 'z' || *s == 'Z') {
4017 user_zonelist_order = ZONELIST_ORDER_ZONE;
4018 } else {
4019 printk(KERN_WARNING
4020 "Ignoring invalid numa_zonelist_order value: %s\n", s);
4021 return -EINVAL;
4022 }
4023 return 0;
4024 }
4025
4026 static __init int setup_numa_zonelist_order(char *s)
4027 {
4028 int ret;
4029
4030 if (!s)
4031 return 0;
4032
4033 ret = __parse_numa_zonelist_order(s);
4034 if (ret == 0)
4035 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4036
4037 return ret;
4038 }
4039 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4040
4041 /*
4042 * sysctl handler for numa_zonelist_order
4043 */
4044 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4045 void __user *buffer, size_t *length,
4046 loff_t *ppos)
4047 {
4048 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4049 int ret;
4050 static DEFINE_MUTEX(zl_order_mutex);
4051
4052 mutex_lock(&zl_order_mutex);
4053 if (write) {
4054 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4055 ret = -EINVAL;
4056 goto out;
4057 }
4058 strcpy(saved_string, (char *)table->data);
4059 }
4060 ret = proc_dostring(table, write, buffer, length, ppos);
4061 if (ret)
4062 goto out;
4063 if (write) {
4064 int oldval = user_zonelist_order;
4065
4066 ret = __parse_numa_zonelist_order((char *)table->data);
4067 if (ret) {
4068 /*
4069 * bogus value. restore saved string
4070 */
4071 strncpy((char *)table->data, saved_string,
4072 NUMA_ZONELIST_ORDER_LEN);
4073 user_zonelist_order = oldval;
4074 } else if (oldval != user_zonelist_order) {
4075 mutex_lock(&zonelists_mutex);
4076 build_all_zonelists(NULL, NULL);
4077 mutex_unlock(&zonelists_mutex);
4078 }
4079 }
4080 out:
4081 mutex_unlock(&zl_order_mutex);
4082 return ret;
4083 }
4084
4085
4086 #define MAX_NODE_LOAD (nr_online_nodes)
4087 static int node_load[MAX_NUMNODES];
4088
4089 /**
4090 * find_next_best_node - find the next node that should appear in a given node's fallback list
4091 * @node: node whose fallback list we're appending
4092 * @used_node_mask: nodemask_t of already used nodes
4093 *
4094 * We use a number of factors to determine which is the next node that should
4095 * appear on a given node's fallback list. The node should not have appeared
4096 * already in @node's fallback list, and it should be the next closest node
4097 * according to the distance array (which contains arbitrary distance values
4098 * from each node to each node in the system), and should also prefer nodes
4099 * with no CPUs, since presumably they'll have very little allocation pressure
4100 * on them otherwise.
4101 * It returns -1 if no node is found.
4102 */
4103 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4104 {
4105 int n, val;
4106 int min_val = INT_MAX;
4107 int best_node = NUMA_NO_NODE;
4108 const struct cpumask *tmp = cpumask_of_node(0);
4109
4110 /* Use the local node if we haven't already */
4111 if (!node_isset(node, *used_node_mask)) {
4112 node_set(node, *used_node_mask);
4113 return node;
4114 }
4115
4116 for_each_node_state(n, N_MEMORY) {
4117
4118 /* Don't want a node to appear more than once */
4119 if (node_isset(n, *used_node_mask))
4120 continue;
4121
4122 /* Use the distance array to find the distance */
4123 val = node_distance(node, n);
4124
4125 /* Penalize nodes under us ("prefer the next node") */
4126 val += (n < node);
4127
4128 /* Give preference to headless and unused nodes */
4129 tmp = cpumask_of_node(n);
4130 if (!cpumask_empty(tmp))
4131 val += PENALTY_FOR_NODE_WITH_CPUS;
4132
4133 /* Slight preference for less loaded node */
4134 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4135 val += node_load[n];
4136
4137 if (val < min_val) {
4138 min_val = val;
4139 best_node = n;
4140 }
4141 }
4142
4143 if (best_node >= 0)
4144 node_set(best_node, *used_node_mask);
4145
4146 return best_node;
4147 }
4148
4149
4150 /*
4151 * Build zonelists ordered by node and zones within node.
4152 * This results in maximum locality--normal zone overflows into local
4153 * DMA zone, if any--but risks exhausting DMA zone.
4154 */
4155 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4156 {
4157 int j;
4158 struct zonelist *zonelist;
4159
4160 zonelist = &pgdat->node_zonelists[0];
4161 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4162 ;
4163 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4164 zonelist->_zonerefs[j].zone = NULL;
4165 zonelist->_zonerefs[j].zone_idx = 0;
4166 }
4167
4168 /*
4169 * Build gfp_thisnode zonelists
4170 */
4171 static void build_thisnode_zonelists(pg_data_t *pgdat)
4172 {
4173 int j;
4174 struct zonelist *zonelist;
4175
4176 zonelist = &pgdat->node_zonelists[1];
4177 j = build_zonelists_node(pgdat, zonelist, 0);
4178 zonelist->_zonerefs[j].zone = NULL;
4179 zonelist->_zonerefs[j].zone_idx = 0;
4180 }
4181
4182 /*
4183 * Build zonelists ordered by zone and nodes within zones.
4184 * This results in conserving DMA zone[s] until all Normal memory is
4185 * exhausted, but results in overflowing to remote node while memory
4186 * may still exist in local DMA zone.
4187 */
4188 static int node_order[MAX_NUMNODES];
4189
4190 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4191 {
4192 int pos, j, node;
4193 int zone_type; /* needs to be signed */
4194 struct zone *z;
4195 struct zonelist *zonelist;
4196
4197 zonelist = &pgdat->node_zonelists[0];
4198 pos = 0;
4199 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4200 for (j = 0; j < nr_nodes; j++) {
4201 node = node_order[j];
4202 z = &NODE_DATA(node)->node_zones[zone_type];
4203 if (populated_zone(z)) {
4204 zoneref_set_zone(z,
4205 &zonelist->_zonerefs[pos++]);
4206 check_highest_zone(zone_type);
4207 }
4208 }
4209 }
4210 zonelist->_zonerefs[pos].zone = NULL;
4211 zonelist->_zonerefs[pos].zone_idx = 0;
4212 }
4213
4214 #if defined(CONFIG_64BIT)
4215 /*
4216 * Devices that require DMA32/DMA are relatively rare and do not justify a
4217 * penalty to every machine in case the specialised case applies. Default
4218 * to Node-ordering on 64-bit NUMA machines
4219 */
4220 static int default_zonelist_order(void)
4221 {
4222 return ZONELIST_ORDER_NODE;
4223 }
4224 #else
4225 /*
4226 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4227 * by the kernel. If processes running on node 0 deplete the low memory zone
4228 * then reclaim will occur more frequency increasing stalls and potentially
4229 * be easier to OOM if a large percentage of the zone is under writeback or
4230 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4231 * Hence, default to zone ordering on 32-bit.
4232 */
4233 static int default_zonelist_order(void)
4234 {
4235 return ZONELIST_ORDER_ZONE;
4236 }
4237 #endif /* CONFIG_64BIT */
4238
4239 static void set_zonelist_order(void)
4240 {
4241 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4242 current_zonelist_order = default_zonelist_order();
4243 else
4244 current_zonelist_order = user_zonelist_order;
4245 }
4246
4247 static void build_zonelists(pg_data_t *pgdat)
4248 {
4249 int j, node, load;
4250 enum zone_type i;
4251 nodemask_t used_mask;
4252 int local_node, prev_node;
4253 struct zonelist *zonelist;
4254 unsigned int order = current_zonelist_order;
4255
4256 /* initialize zonelists */
4257 for (i = 0; i < MAX_ZONELISTS; i++) {
4258 zonelist = pgdat->node_zonelists + i;
4259 zonelist->_zonerefs[0].zone = NULL;
4260 zonelist->_zonerefs[0].zone_idx = 0;
4261 }
4262
4263 /* NUMA-aware ordering of nodes */
4264 local_node = pgdat->node_id;
4265 load = nr_online_nodes;
4266 prev_node = local_node;
4267 nodes_clear(used_mask);
4268
4269 memset(node_order, 0, sizeof(node_order));
4270 j = 0;
4271
4272 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4273 /*
4274 * We don't want to pressure a particular node.
4275 * So adding penalty to the first node in same
4276 * distance group to make it round-robin.
4277 */
4278 if (node_distance(local_node, node) !=
4279 node_distance(local_node, prev_node))
4280 node_load[node] = load;
4281
4282 prev_node = node;
4283 load--;
4284 if (order == ZONELIST_ORDER_NODE)
4285 build_zonelists_in_node_order(pgdat, node);
4286 else
4287 node_order[j++] = node; /* remember order */
4288 }
4289
4290 if (order == ZONELIST_ORDER_ZONE) {
4291 /* calculate node order -- i.e., DMA last! */
4292 build_zonelists_in_zone_order(pgdat, j);
4293 }
4294
4295 build_thisnode_zonelists(pgdat);
4296 }
4297
4298 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4299 /*
4300 * Return node id of node used for "local" allocations.
4301 * I.e., first node id of first zone in arg node's generic zonelist.
4302 * Used for initializing percpu 'numa_mem', which is used primarily
4303 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4304 */
4305 int local_memory_node(int node)
4306 {
4307 struct zone *zone;
4308
4309 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4310 gfp_zone(GFP_KERNEL),
4311 NULL,
4312 &zone);
4313 return zone->node;
4314 }
4315 #endif
4316
4317 #else /* CONFIG_NUMA */
4318
4319 static void set_zonelist_order(void)
4320 {
4321 current_zonelist_order = ZONELIST_ORDER_ZONE;
4322 }
4323
4324 static void build_zonelists(pg_data_t *pgdat)
4325 {
4326 int node, local_node;
4327 enum zone_type j;
4328 struct zonelist *zonelist;
4329
4330 local_node = pgdat->node_id;
4331
4332 zonelist = &pgdat->node_zonelists[0];
4333 j = build_zonelists_node(pgdat, zonelist, 0);
4334
4335 /*
4336 * Now we build the zonelist so that it contains the zones
4337 * of all the other nodes.
4338 * We don't want to pressure a particular node, so when
4339 * building the zones for node N, we make sure that the
4340 * zones coming right after the local ones are those from
4341 * node N+1 (modulo N)
4342 */
4343 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4344 if (!node_online(node))
4345 continue;
4346 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4347 }
4348 for (node = 0; node < local_node; node++) {
4349 if (!node_online(node))
4350 continue;
4351 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4352 }
4353
4354 zonelist->_zonerefs[j].zone = NULL;
4355 zonelist->_zonerefs[j].zone_idx = 0;
4356 }
4357
4358 #endif /* CONFIG_NUMA */
4359
4360 /*
4361 * Boot pageset table. One per cpu which is going to be used for all
4362 * zones and all nodes. The parameters will be set in such a way
4363 * that an item put on a list will immediately be handed over to
4364 * the buddy list. This is safe since pageset manipulation is done
4365 * with interrupts disabled.
4366 *
4367 * The boot_pagesets must be kept even after bootup is complete for
4368 * unused processors and/or zones. They do play a role for bootstrapping
4369 * hotplugged processors.
4370 *
4371 * zoneinfo_show() and maybe other functions do
4372 * not check if the processor is online before following the pageset pointer.
4373 * Other parts of the kernel may not check if the zone is available.
4374 */
4375 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4376 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4377 static void setup_zone_pageset(struct zone *zone);
4378
4379 /*
4380 * Global mutex to protect against size modification of zonelists
4381 * as well as to serialize pageset setup for the new populated zone.
4382 */
4383 DEFINE_MUTEX(zonelists_mutex);
4384
4385 /* return values int ....just for stop_machine() */
4386 static int __build_all_zonelists(void *data)
4387 {
4388 int nid;
4389 int cpu;
4390 pg_data_t *self = data;
4391
4392 #ifdef CONFIG_NUMA
4393 memset(node_load, 0, sizeof(node_load));
4394 #endif
4395
4396 if (self && !node_online(self->node_id)) {
4397 build_zonelists(self);
4398 }
4399
4400 for_each_online_node(nid) {
4401 pg_data_t *pgdat = NODE_DATA(nid);
4402
4403 build_zonelists(pgdat);
4404 }
4405
4406 /*
4407 * Initialize the boot_pagesets that are going to be used
4408 * for bootstrapping processors. The real pagesets for
4409 * each zone will be allocated later when the per cpu
4410 * allocator is available.
4411 *
4412 * boot_pagesets are used also for bootstrapping offline
4413 * cpus if the system is already booted because the pagesets
4414 * are needed to initialize allocators on a specific cpu too.
4415 * F.e. the percpu allocator needs the page allocator which
4416 * needs the percpu allocator in order to allocate its pagesets
4417 * (a chicken-egg dilemma).
4418 */
4419 for_each_possible_cpu(cpu) {
4420 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4421
4422 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4423 /*
4424 * We now know the "local memory node" for each node--
4425 * i.e., the node of the first zone in the generic zonelist.
4426 * Set up numa_mem percpu variable for on-line cpus. During
4427 * boot, only the boot cpu should be on-line; we'll init the
4428 * secondary cpus' numa_mem as they come on-line. During
4429 * node/memory hotplug, we'll fixup all on-line cpus.
4430 */
4431 if (cpu_online(cpu))
4432 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4433 #endif
4434 }
4435
4436 return 0;
4437 }
4438
4439 static noinline void __init
4440 build_all_zonelists_init(void)
4441 {
4442 __build_all_zonelists(NULL);
4443 mminit_verify_zonelist();
4444 cpuset_init_current_mems_allowed();
4445 }
4446
4447 /*
4448 * Called with zonelists_mutex held always
4449 * unless system_state == SYSTEM_BOOTING.
4450 *
4451 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4452 * [we're only called with non-NULL zone through __meminit paths] and
4453 * (2) call of __init annotated helper build_all_zonelists_init
4454 * [protected by SYSTEM_BOOTING].
4455 */
4456 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4457 {
4458 set_zonelist_order();
4459
4460 if (system_state == SYSTEM_BOOTING) {
4461 build_all_zonelists_init();
4462 } else {
4463 #ifdef CONFIG_MEMORY_HOTPLUG
4464 if (zone)
4465 setup_zone_pageset(zone);
4466 #endif
4467 /* we have to stop all cpus to guarantee there is no user
4468 of zonelist */
4469 stop_machine(__build_all_zonelists, pgdat, NULL);
4470 /* cpuset refresh routine should be here */
4471 }
4472 vm_total_pages = nr_free_pagecache_pages();
4473 /*
4474 * Disable grouping by mobility if the number of pages in the
4475 * system is too low to allow the mechanism to work. It would be
4476 * more accurate, but expensive to check per-zone. This check is
4477 * made on memory-hotadd so a system can start with mobility
4478 * disabled and enable it later
4479 */
4480 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4481 page_group_by_mobility_disabled = 1;
4482 else
4483 page_group_by_mobility_disabled = 0;
4484
4485 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4486 nr_online_nodes,
4487 zonelist_order_name[current_zonelist_order],
4488 page_group_by_mobility_disabled ? "off" : "on",
4489 vm_total_pages);
4490 #ifdef CONFIG_NUMA
4491 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4492 #endif
4493 }
4494
4495 /*
4496 * Helper functions to size the waitqueue hash table.
4497 * Essentially these want to choose hash table sizes sufficiently
4498 * large so that collisions trying to wait on pages are rare.
4499 * But in fact, the number of active page waitqueues on typical
4500 * systems is ridiculously low, less than 200. So this is even
4501 * conservative, even though it seems large.
4502 *
4503 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4504 * waitqueues, i.e. the size of the waitq table given the number of pages.
4505 */
4506 #define PAGES_PER_WAITQUEUE 256
4507
4508 #ifndef CONFIG_MEMORY_HOTPLUG
4509 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4510 {
4511 unsigned long size = 1;
4512
4513 pages /= PAGES_PER_WAITQUEUE;
4514
4515 while (size < pages)
4516 size <<= 1;
4517
4518 /*
4519 * Once we have dozens or even hundreds of threads sleeping
4520 * on IO we've got bigger problems than wait queue collision.
4521 * Limit the size of the wait table to a reasonable size.
4522 */
4523 size = min(size, 4096UL);
4524
4525 return max(size, 4UL);
4526 }
4527 #else
4528 /*
4529 * A zone's size might be changed by hot-add, so it is not possible to determine
4530 * a suitable size for its wait_table. So we use the maximum size now.
4531 *
4532 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4533 *
4534 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4535 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4536 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4537 *
4538 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4539 * or more by the traditional way. (See above). It equals:
4540 *
4541 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4542 * ia64(16K page size) : = ( 8G + 4M)byte.
4543 * powerpc (64K page size) : = (32G +16M)byte.
4544 */
4545 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4546 {
4547 return 4096UL;
4548 }
4549 #endif
4550
4551 /*
4552 * This is an integer logarithm so that shifts can be used later
4553 * to extract the more random high bits from the multiplicative
4554 * hash function before the remainder is taken.
4555 */
4556 static inline unsigned long wait_table_bits(unsigned long size)
4557 {
4558 return ffz(~size);
4559 }
4560
4561 /*
4562 * Initially all pages are reserved - free ones are freed
4563 * up by free_all_bootmem() once the early boot process is
4564 * done. Non-atomic initialization, single-pass.
4565 */
4566 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4567 unsigned long start_pfn, enum memmap_context context)
4568 {
4569 pg_data_t *pgdat = NODE_DATA(nid);
4570 unsigned long end_pfn = start_pfn + size;
4571 unsigned long pfn;
4572 struct zone *z;
4573 unsigned long nr_initialised = 0;
4574
4575 if (highest_memmap_pfn < end_pfn - 1)
4576 highest_memmap_pfn = end_pfn - 1;
4577
4578 z = &pgdat->node_zones[zone];
4579 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4580 /*
4581 * There can be holes in boot-time mem_map[]s
4582 * handed to this function. They do not
4583 * exist on hotplugged memory.
4584 */
4585 if (context == MEMMAP_EARLY) {
4586 if (!early_pfn_valid(pfn))
4587 continue;
4588 if (!early_pfn_in_nid(pfn, nid))
4589 continue;
4590 if (!update_defer_init(pgdat, pfn, end_pfn,
4591 &nr_initialised))
4592 break;
4593 }
4594
4595 /*
4596 * Mark the block movable so that blocks are reserved for
4597 * movable at startup. This will force kernel allocations
4598 * to reserve their blocks rather than leaking throughout
4599 * the address space during boot when many long-lived
4600 * kernel allocations are made.
4601 *
4602 * bitmap is created for zone's valid pfn range. but memmap
4603 * can be created for invalid pages (for alignment)
4604 * check here not to call set_pageblock_migratetype() against
4605 * pfn out of zone.
4606 */
4607 if (!(pfn & (pageblock_nr_pages - 1))) {
4608 struct page *page = pfn_to_page(pfn);
4609
4610 __init_single_page(page, pfn, zone, nid);
4611 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4612 } else {
4613 __init_single_pfn(pfn, zone, nid);
4614 }
4615 }
4616 }
4617
4618 static void __meminit zone_init_free_lists(struct zone *zone)
4619 {
4620 unsigned int order, t;
4621 for_each_migratetype_order(order, t) {
4622 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4623 zone->free_area[order].nr_free = 0;
4624 }
4625 }
4626
4627 #ifndef __HAVE_ARCH_MEMMAP_INIT
4628 #define memmap_init(size, nid, zone, start_pfn) \
4629 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4630 #endif
4631
4632 static int zone_batchsize(struct zone *zone)
4633 {
4634 #ifdef CONFIG_MMU
4635 int batch;
4636
4637 /*
4638 * The per-cpu-pages pools are set to around 1000th of the
4639 * size of the zone. But no more than 1/2 of a meg.
4640 *
4641 * OK, so we don't know how big the cache is. So guess.
4642 */
4643 batch = zone->managed_pages / 1024;
4644 if (batch * PAGE_SIZE > 512 * 1024)
4645 batch = (512 * 1024) / PAGE_SIZE;
4646 batch /= 4; /* We effectively *= 4 below */
4647 if (batch < 1)
4648 batch = 1;
4649
4650 /*
4651 * Clamp the batch to a 2^n - 1 value. Having a power
4652 * of 2 value was found to be more likely to have
4653 * suboptimal cache aliasing properties in some cases.
4654 *
4655 * For example if 2 tasks are alternately allocating
4656 * batches of pages, one task can end up with a lot
4657 * of pages of one half of the possible page colors
4658 * and the other with pages of the other colors.
4659 */
4660 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4661
4662 return batch;
4663
4664 #else
4665 /* The deferral and batching of frees should be suppressed under NOMMU
4666 * conditions.
4667 *
4668 * The problem is that NOMMU needs to be able to allocate large chunks
4669 * of contiguous memory as there's no hardware page translation to
4670 * assemble apparent contiguous memory from discontiguous pages.
4671 *
4672 * Queueing large contiguous runs of pages for batching, however,
4673 * causes the pages to actually be freed in smaller chunks. As there
4674 * can be a significant delay between the individual batches being
4675 * recycled, this leads to the once large chunks of space being
4676 * fragmented and becoming unavailable for high-order allocations.
4677 */
4678 return 0;
4679 #endif
4680 }
4681
4682 /*
4683 * pcp->high and pcp->batch values are related and dependent on one another:
4684 * ->batch must never be higher then ->high.
4685 * The following function updates them in a safe manner without read side
4686 * locking.
4687 *
4688 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4689 * those fields changing asynchronously (acording the the above rule).
4690 *
4691 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4692 * outside of boot time (or some other assurance that no concurrent updaters
4693 * exist).
4694 */
4695 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4696 unsigned long batch)
4697 {
4698 /* start with a fail safe value for batch */
4699 pcp->batch = 1;
4700 smp_wmb();
4701
4702 /* Update high, then batch, in order */
4703 pcp->high = high;
4704 smp_wmb();
4705
4706 pcp->batch = batch;
4707 }
4708
4709 /* a companion to pageset_set_high() */
4710 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4711 {
4712 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4713 }
4714
4715 static void pageset_init(struct per_cpu_pageset *p)
4716 {
4717 struct per_cpu_pages *pcp;
4718 int migratetype;
4719
4720 memset(p, 0, sizeof(*p));
4721
4722 pcp = &p->pcp;
4723 pcp->count = 0;
4724 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4725 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4726 }
4727
4728 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4729 {
4730 pageset_init(p);
4731 pageset_set_batch(p, batch);
4732 }
4733
4734 /*
4735 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4736 * to the value high for the pageset p.
4737 */
4738 static void pageset_set_high(struct per_cpu_pageset *p,
4739 unsigned long high)
4740 {
4741 unsigned long batch = max(1UL, high / 4);
4742 if ((high / 4) > (PAGE_SHIFT * 8))
4743 batch = PAGE_SHIFT * 8;
4744
4745 pageset_update(&p->pcp, high, batch);
4746 }
4747
4748 static void pageset_set_high_and_batch(struct zone *zone,
4749 struct per_cpu_pageset *pcp)
4750 {
4751 if (percpu_pagelist_fraction)
4752 pageset_set_high(pcp,
4753 (zone->managed_pages /
4754 percpu_pagelist_fraction));
4755 else
4756 pageset_set_batch(pcp, zone_batchsize(zone));
4757 }
4758
4759 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4760 {
4761 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4762
4763 pageset_init(pcp);
4764 pageset_set_high_and_batch(zone, pcp);
4765 }
4766
4767 static void __meminit setup_zone_pageset(struct zone *zone)
4768 {
4769 int cpu;
4770 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4771 for_each_possible_cpu(cpu)
4772 zone_pageset_init(zone, cpu);
4773 }
4774
4775 /*
4776 * Allocate per cpu pagesets and initialize them.
4777 * Before this call only boot pagesets were available.
4778 */
4779 void __init setup_per_cpu_pageset(void)
4780 {
4781 struct zone *zone;
4782
4783 for_each_populated_zone(zone)
4784 setup_zone_pageset(zone);
4785 }
4786
4787 static noinline __init_refok
4788 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4789 {
4790 int i;
4791 size_t alloc_size;
4792
4793 /*
4794 * The per-page waitqueue mechanism uses hashed waitqueues
4795 * per zone.
4796 */
4797 zone->wait_table_hash_nr_entries =
4798 wait_table_hash_nr_entries(zone_size_pages);
4799 zone->wait_table_bits =
4800 wait_table_bits(zone->wait_table_hash_nr_entries);
4801 alloc_size = zone->wait_table_hash_nr_entries
4802 * sizeof(wait_queue_head_t);
4803
4804 if (!slab_is_available()) {
4805 zone->wait_table = (wait_queue_head_t *)
4806 memblock_virt_alloc_node_nopanic(
4807 alloc_size, zone->zone_pgdat->node_id);
4808 } else {
4809 /*
4810 * This case means that a zone whose size was 0 gets new memory
4811 * via memory hot-add.
4812 * But it may be the case that a new node was hot-added. In
4813 * this case vmalloc() will not be able to use this new node's
4814 * memory - this wait_table must be initialized to use this new
4815 * node itself as well.
4816 * To use this new node's memory, further consideration will be
4817 * necessary.
4818 */
4819 zone->wait_table = vmalloc(alloc_size);
4820 }
4821 if (!zone->wait_table)
4822 return -ENOMEM;
4823
4824 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4825 init_waitqueue_head(zone->wait_table + i);
4826
4827 return 0;
4828 }
4829
4830 static __meminit void zone_pcp_init(struct zone *zone)
4831 {
4832 /*
4833 * per cpu subsystem is not up at this point. The following code
4834 * relies on the ability of the linker to provide the
4835 * offset of a (static) per cpu variable into the per cpu area.
4836 */
4837 zone->pageset = &boot_pageset;
4838
4839 if (populated_zone(zone))
4840 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4841 zone->name, zone->present_pages,
4842 zone_batchsize(zone));
4843 }
4844
4845 int __meminit init_currently_empty_zone(struct zone *zone,
4846 unsigned long zone_start_pfn,
4847 unsigned long size)
4848 {
4849 struct pglist_data *pgdat = zone->zone_pgdat;
4850 int ret;
4851 ret = zone_wait_table_init(zone, size);
4852 if (ret)
4853 return ret;
4854 pgdat->nr_zones = zone_idx(zone) + 1;
4855
4856 zone->zone_start_pfn = zone_start_pfn;
4857
4858 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4859 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4860 pgdat->node_id,
4861 (unsigned long)zone_idx(zone),
4862 zone_start_pfn, (zone_start_pfn + size));
4863
4864 zone_init_free_lists(zone);
4865
4866 return 0;
4867 }
4868
4869 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4870 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4871
4872 /*
4873 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4874 */
4875 int __meminit __early_pfn_to_nid(unsigned long pfn,
4876 struct mminit_pfnnid_cache *state)
4877 {
4878 unsigned long start_pfn, end_pfn;
4879 int nid;
4880
4881 if (state->last_start <= pfn && pfn < state->last_end)
4882 return state->last_nid;
4883
4884 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4885 if (nid != -1) {
4886 state->last_start = start_pfn;
4887 state->last_end = end_pfn;
4888 state->last_nid = nid;
4889 }
4890
4891 return nid;
4892 }
4893 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4894
4895 /**
4896 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4897 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4898 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4899 *
4900 * If an architecture guarantees that all ranges registered contain no holes
4901 * and may be freed, this this function may be used instead of calling
4902 * memblock_free_early_nid() manually.
4903 */
4904 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4905 {
4906 unsigned long start_pfn, end_pfn;
4907 int i, this_nid;
4908
4909 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4910 start_pfn = min(start_pfn, max_low_pfn);
4911 end_pfn = min(end_pfn, max_low_pfn);
4912
4913 if (start_pfn < end_pfn)
4914 memblock_free_early_nid(PFN_PHYS(start_pfn),
4915 (end_pfn - start_pfn) << PAGE_SHIFT,
4916 this_nid);
4917 }
4918 }
4919
4920 /**
4921 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4922 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4923 *
4924 * If an architecture guarantees that all ranges registered contain no holes and may
4925 * be freed, this function may be used instead of calling memory_present() manually.
4926 */
4927 void __init sparse_memory_present_with_active_regions(int nid)
4928 {
4929 unsigned long start_pfn, end_pfn;
4930 int i, this_nid;
4931
4932 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4933 memory_present(this_nid, start_pfn, end_pfn);
4934 }
4935
4936 /**
4937 * get_pfn_range_for_nid - Return the start and end page frames for a node
4938 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4939 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4940 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4941 *
4942 * It returns the start and end page frame of a node based on information
4943 * provided by memblock_set_node(). If called for a node
4944 * with no available memory, a warning is printed and the start and end
4945 * PFNs will be 0.
4946 */
4947 void __meminit get_pfn_range_for_nid(unsigned int nid,
4948 unsigned long *start_pfn, unsigned long *end_pfn)
4949 {
4950 unsigned long this_start_pfn, this_end_pfn;
4951 int i;
4952
4953 *start_pfn = -1UL;
4954 *end_pfn = 0;
4955
4956 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4957 *start_pfn = min(*start_pfn, this_start_pfn);
4958 *end_pfn = max(*end_pfn, this_end_pfn);
4959 }
4960
4961 if (*start_pfn == -1UL)
4962 *start_pfn = 0;
4963 }
4964
4965 /*
4966 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4967 * assumption is made that zones within a node are ordered in monotonic
4968 * increasing memory addresses so that the "highest" populated zone is used
4969 */
4970 static void __init find_usable_zone_for_movable(void)
4971 {
4972 int zone_index;
4973 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4974 if (zone_index == ZONE_MOVABLE)
4975 continue;
4976
4977 if (arch_zone_highest_possible_pfn[zone_index] >
4978 arch_zone_lowest_possible_pfn[zone_index])
4979 break;
4980 }
4981
4982 VM_BUG_ON(zone_index == -1);
4983 movable_zone = zone_index;
4984 }
4985
4986 /*
4987 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4988 * because it is sized independent of architecture. Unlike the other zones,
4989 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4990 * in each node depending on the size of each node and how evenly kernelcore
4991 * is distributed. This helper function adjusts the zone ranges
4992 * provided by the architecture for a given node by using the end of the
4993 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4994 * zones within a node are in order of monotonic increases memory addresses
4995 */
4996 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4997 unsigned long zone_type,
4998 unsigned long node_start_pfn,
4999 unsigned long node_end_pfn,
5000 unsigned long *zone_start_pfn,
5001 unsigned long *zone_end_pfn)
5002 {
5003 /* Only adjust if ZONE_MOVABLE is on this node */
5004 if (zone_movable_pfn[nid]) {
5005 /* Size ZONE_MOVABLE */
5006 if (zone_type == ZONE_MOVABLE) {
5007 *zone_start_pfn = zone_movable_pfn[nid];
5008 *zone_end_pfn = min(node_end_pfn,
5009 arch_zone_highest_possible_pfn[movable_zone]);
5010
5011 /* Adjust for ZONE_MOVABLE starting within this range */
5012 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5013 *zone_end_pfn > zone_movable_pfn[nid]) {
5014 *zone_end_pfn = zone_movable_pfn[nid];
5015
5016 /* Check if this whole range is within ZONE_MOVABLE */
5017 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5018 *zone_start_pfn = *zone_end_pfn;
5019 }
5020 }
5021
5022 /*
5023 * Return the number of pages a zone spans in a node, including holes
5024 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5025 */
5026 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5027 unsigned long zone_type,
5028 unsigned long node_start_pfn,
5029 unsigned long node_end_pfn,
5030 unsigned long *ignored)
5031 {
5032 unsigned long zone_start_pfn, zone_end_pfn;
5033
5034 /* When hotadd a new node from cpu_up(), the node should be empty */
5035 if (!node_start_pfn && !node_end_pfn)
5036 return 0;
5037
5038 /* Get the start and end of the zone */
5039 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5040 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5041 adjust_zone_range_for_zone_movable(nid, zone_type,
5042 node_start_pfn, node_end_pfn,
5043 &zone_start_pfn, &zone_end_pfn);
5044
5045 /* Check that this node has pages within the zone's required range */
5046 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5047 return 0;
5048
5049 /* Move the zone boundaries inside the node if necessary */
5050 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5051 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5052
5053 /* Return the spanned pages */
5054 return zone_end_pfn - zone_start_pfn;
5055 }
5056
5057 /*
5058 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5059 * then all holes in the requested range will be accounted for.
5060 */
5061 unsigned long __meminit __absent_pages_in_range(int nid,
5062 unsigned long range_start_pfn,
5063 unsigned long range_end_pfn)
5064 {
5065 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5066 unsigned long start_pfn, end_pfn;
5067 int i;
5068
5069 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5070 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5071 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5072 nr_absent -= end_pfn - start_pfn;
5073 }
5074 return nr_absent;
5075 }
5076
5077 /**
5078 * absent_pages_in_range - Return number of page frames in holes within a range
5079 * @start_pfn: The start PFN to start searching for holes
5080 * @end_pfn: The end PFN to stop searching for holes
5081 *
5082 * It returns the number of pages frames in memory holes within a range.
5083 */
5084 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5085 unsigned long end_pfn)
5086 {
5087 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5088 }
5089
5090 /* Return the number of page frames in holes in a zone on a node */
5091 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5092 unsigned long zone_type,
5093 unsigned long node_start_pfn,
5094 unsigned long node_end_pfn,
5095 unsigned long *ignored)
5096 {
5097 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5098 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5099 unsigned long zone_start_pfn, zone_end_pfn;
5100
5101 /* When hotadd a new node from cpu_up(), the node should be empty */
5102 if (!node_start_pfn && !node_end_pfn)
5103 return 0;
5104
5105 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5106 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5107
5108 adjust_zone_range_for_zone_movable(nid, zone_type,
5109 node_start_pfn, node_end_pfn,
5110 &zone_start_pfn, &zone_end_pfn);
5111 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5112 }
5113
5114 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5115 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5116 unsigned long zone_type,
5117 unsigned long node_start_pfn,
5118 unsigned long node_end_pfn,
5119 unsigned long *zones_size)
5120 {
5121 return zones_size[zone_type];
5122 }
5123
5124 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5125 unsigned long zone_type,
5126 unsigned long node_start_pfn,
5127 unsigned long node_end_pfn,
5128 unsigned long *zholes_size)
5129 {
5130 if (!zholes_size)
5131 return 0;
5132
5133 return zholes_size[zone_type];
5134 }
5135
5136 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5137
5138 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5139 unsigned long node_start_pfn,
5140 unsigned long node_end_pfn,
5141 unsigned long *zones_size,
5142 unsigned long *zholes_size)
5143 {
5144 unsigned long realtotalpages = 0, totalpages = 0;
5145 enum zone_type i;
5146
5147 for (i = 0; i < MAX_NR_ZONES; i++) {
5148 struct zone *zone = pgdat->node_zones + i;
5149 unsigned long size, real_size;
5150
5151 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5152 node_start_pfn,
5153 node_end_pfn,
5154 zones_size);
5155 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5156 node_start_pfn, node_end_pfn,
5157 zholes_size);
5158 zone->spanned_pages = size;
5159 zone->present_pages = real_size;
5160
5161 totalpages += size;
5162 realtotalpages += real_size;
5163 }
5164
5165 pgdat->node_spanned_pages = totalpages;
5166 pgdat->node_present_pages = realtotalpages;
5167 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5168 realtotalpages);
5169 }
5170
5171 #ifndef CONFIG_SPARSEMEM
5172 /*
5173 * Calculate the size of the zone->blockflags rounded to an unsigned long
5174 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5175 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5176 * round what is now in bits to nearest long in bits, then return it in
5177 * bytes.
5178 */
5179 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5180 {
5181 unsigned long usemapsize;
5182
5183 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5184 usemapsize = roundup(zonesize, pageblock_nr_pages);
5185 usemapsize = usemapsize >> pageblock_order;
5186 usemapsize *= NR_PAGEBLOCK_BITS;
5187 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5188
5189 return usemapsize / 8;
5190 }
5191
5192 static void __init setup_usemap(struct pglist_data *pgdat,
5193 struct zone *zone,
5194 unsigned long zone_start_pfn,
5195 unsigned long zonesize)
5196 {
5197 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5198 zone->pageblock_flags = NULL;
5199 if (usemapsize)
5200 zone->pageblock_flags =
5201 memblock_virt_alloc_node_nopanic(usemapsize,
5202 pgdat->node_id);
5203 }
5204 #else
5205 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5206 unsigned long zone_start_pfn, unsigned long zonesize) {}
5207 #endif /* CONFIG_SPARSEMEM */
5208
5209 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5210
5211 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5212 void __paginginit set_pageblock_order(void)
5213 {
5214 unsigned int order;
5215
5216 /* Check that pageblock_nr_pages has not already been setup */
5217 if (pageblock_order)
5218 return;
5219
5220 if (HPAGE_SHIFT > PAGE_SHIFT)
5221 order = HUGETLB_PAGE_ORDER;
5222 else
5223 order = MAX_ORDER - 1;
5224
5225 /*
5226 * Assume the largest contiguous order of interest is a huge page.
5227 * This value may be variable depending on boot parameters on IA64 and
5228 * powerpc.
5229 */
5230 pageblock_order = order;
5231 }
5232 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5233
5234 /*
5235 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5236 * is unused as pageblock_order is set at compile-time. See
5237 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5238 * the kernel config
5239 */
5240 void __paginginit set_pageblock_order(void)
5241 {
5242 }
5243
5244 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5245
5246 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5247 unsigned long present_pages)
5248 {
5249 unsigned long pages = spanned_pages;
5250
5251 /*
5252 * Provide a more accurate estimation if there are holes within
5253 * the zone and SPARSEMEM is in use. If there are holes within the
5254 * zone, each populated memory region may cost us one or two extra
5255 * memmap pages due to alignment because memmap pages for each
5256 * populated regions may not naturally algined on page boundary.
5257 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5258 */
5259 if (spanned_pages > present_pages + (present_pages >> 4) &&
5260 IS_ENABLED(CONFIG_SPARSEMEM))
5261 pages = present_pages;
5262
5263 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5264 }
5265
5266 /*
5267 * Set up the zone data structures:
5268 * - mark all pages reserved
5269 * - mark all memory queues empty
5270 * - clear the memory bitmaps
5271 *
5272 * NOTE: pgdat should get zeroed by caller.
5273 */
5274 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5275 {
5276 enum zone_type j;
5277 int nid = pgdat->node_id;
5278 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5279 int ret;
5280
5281 pgdat_resize_init(pgdat);
5282 #ifdef CONFIG_NUMA_BALANCING
5283 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5284 pgdat->numabalancing_migrate_nr_pages = 0;
5285 pgdat->numabalancing_migrate_next_window = jiffies;
5286 #endif
5287 init_waitqueue_head(&pgdat->kswapd_wait);
5288 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5289 #ifdef CONFIG_COMPACTION
5290 init_waitqueue_head(&pgdat->kcompactd_wait);
5291 #endif
5292 pgdat_page_ext_init(pgdat);
5293
5294 for (j = 0; j < MAX_NR_ZONES; j++) {
5295 struct zone *zone = pgdat->node_zones + j;
5296 unsigned long size, realsize, freesize, memmap_pages;
5297
5298 size = zone->spanned_pages;
5299 realsize = freesize = zone->present_pages;
5300
5301 /*
5302 * Adjust freesize so that it accounts for how much memory
5303 * is used by this zone for memmap. This affects the watermark
5304 * and per-cpu initialisations
5305 */
5306 memmap_pages = calc_memmap_size(size, realsize);
5307 if (!is_highmem_idx(j)) {
5308 if (freesize >= memmap_pages) {
5309 freesize -= memmap_pages;
5310 if (memmap_pages)
5311 printk(KERN_DEBUG
5312 " %s zone: %lu pages used for memmap\n",
5313 zone_names[j], memmap_pages);
5314 } else
5315 printk(KERN_WARNING
5316 " %s zone: %lu pages exceeds freesize %lu\n",
5317 zone_names[j], memmap_pages, freesize);
5318 }
5319
5320 /* Account for reserved pages */
5321 if (j == 0 && freesize > dma_reserve) {
5322 freesize -= dma_reserve;
5323 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5324 zone_names[0], dma_reserve);
5325 }
5326
5327 if (!is_highmem_idx(j))
5328 nr_kernel_pages += freesize;
5329 /* Charge for highmem memmap if there are enough kernel pages */
5330 else if (nr_kernel_pages > memmap_pages * 2)
5331 nr_kernel_pages -= memmap_pages;
5332 nr_all_pages += freesize;
5333
5334 /*
5335 * Set an approximate value for lowmem here, it will be adjusted
5336 * when the bootmem allocator frees pages into the buddy system.
5337 * And all highmem pages will be managed by the buddy system.
5338 */
5339 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5340 #ifdef CONFIG_NUMA
5341 zone->node = nid;
5342 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5343 / 100;
5344 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5345 #endif
5346 zone->name = zone_names[j];
5347 spin_lock_init(&zone->lock);
5348 spin_lock_init(&zone->lru_lock);
5349 zone_seqlock_init(zone);
5350 zone->zone_pgdat = pgdat;
5351 zone_pcp_init(zone);
5352
5353 /* For bootup, initialized properly in watermark setup */
5354 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5355
5356 lruvec_init(&zone->lruvec);
5357 if (!size)
5358 continue;
5359
5360 set_pageblock_order();
5361 setup_usemap(pgdat, zone, zone_start_pfn, size);
5362 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5363 BUG_ON(ret);
5364 memmap_init(size, nid, j, zone_start_pfn);
5365 zone_start_pfn += size;
5366 }
5367 }
5368
5369 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5370 {
5371 unsigned long __maybe_unused start = 0;
5372 unsigned long __maybe_unused offset = 0;
5373
5374 /* Skip empty nodes */
5375 if (!pgdat->node_spanned_pages)
5376 return;
5377
5378 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5379 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5380 offset = pgdat->node_start_pfn - start;
5381 /* ia64 gets its own node_mem_map, before this, without bootmem */
5382 if (!pgdat->node_mem_map) {
5383 unsigned long size, end;
5384 struct page *map;
5385
5386 /*
5387 * The zone's endpoints aren't required to be MAX_ORDER
5388 * aligned but the node_mem_map endpoints must be in order
5389 * for the buddy allocator to function correctly.
5390 */
5391 end = pgdat_end_pfn(pgdat);
5392 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5393 size = (end - start) * sizeof(struct page);
5394 map = alloc_remap(pgdat->node_id, size);
5395 if (!map)
5396 map = memblock_virt_alloc_node_nopanic(size,
5397 pgdat->node_id);
5398 pgdat->node_mem_map = map + offset;
5399 }
5400 #ifndef CONFIG_NEED_MULTIPLE_NODES
5401 /*
5402 * With no DISCONTIG, the global mem_map is just set as node 0's
5403 */
5404 if (pgdat == NODE_DATA(0)) {
5405 mem_map = NODE_DATA(0)->node_mem_map;
5406 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5407 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5408 mem_map -= offset;
5409 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5410 }
5411 #endif
5412 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5413 }
5414
5415 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5416 unsigned long node_start_pfn, unsigned long *zholes_size)
5417 {
5418 pg_data_t *pgdat = NODE_DATA(nid);
5419 unsigned long start_pfn = 0;
5420 unsigned long end_pfn = 0;
5421
5422 /* pg_data_t should be reset to zero when it's allocated */
5423 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5424
5425 pgdat->node_id = nid;
5426 pgdat->node_start_pfn = node_start_pfn;
5427 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5428 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5429 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5430 (u64)start_pfn << PAGE_SHIFT,
5431 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5432 #endif
5433 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5434 zones_size, zholes_size);
5435
5436 alloc_node_mem_map(pgdat);
5437 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5438 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5439 nid, (unsigned long)pgdat,
5440 (unsigned long)pgdat->node_mem_map);
5441 #endif
5442
5443 reset_deferred_meminit(pgdat);
5444 free_area_init_core(pgdat);
5445 }
5446
5447 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5448
5449 #if MAX_NUMNODES > 1
5450 /*
5451 * Figure out the number of possible node ids.
5452 */
5453 void __init setup_nr_node_ids(void)
5454 {
5455 unsigned int highest;
5456
5457 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5458 nr_node_ids = highest + 1;
5459 }
5460 #endif
5461
5462 /**
5463 * node_map_pfn_alignment - determine the maximum internode alignment
5464 *
5465 * This function should be called after node map is populated and sorted.
5466 * It calculates the maximum power of two alignment which can distinguish
5467 * all the nodes.
5468 *
5469 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5470 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5471 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5472 * shifted, 1GiB is enough and this function will indicate so.
5473 *
5474 * This is used to test whether pfn -> nid mapping of the chosen memory
5475 * model has fine enough granularity to avoid incorrect mapping for the
5476 * populated node map.
5477 *
5478 * Returns the determined alignment in pfn's. 0 if there is no alignment
5479 * requirement (single node).
5480 */
5481 unsigned long __init node_map_pfn_alignment(void)
5482 {
5483 unsigned long accl_mask = 0, last_end = 0;
5484 unsigned long start, end, mask;
5485 int last_nid = -1;
5486 int i, nid;
5487
5488 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5489 if (!start || last_nid < 0 || last_nid == nid) {
5490 last_nid = nid;
5491 last_end = end;
5492 continue;
5493 }
5494
5495 /*
5496 * Start with a mask granular enough to pin-point to the
5497 * start pfn and tick off bits one-by-one until it becomes
5498 * too coarse to separate the current node from the last.
5499 */
5500 mask = ~((1 << __ffs(start)) - 1);
5501 while (mask && last_end <= (start & (mask << 1)))
5502 mask <<= 1;
5503
5504 /* accumulate all internode masks */
5505 accl_mask |= mask;
5506 }
5507
5508 /* convert mask to number of pages */
5509 return ~accl_mask + 1;
5510 }
5511
5512 /* Find the lowest pfn for a node */
5513 static unsigned long __init find_min_pfn_for_node(int nid)
5514 {
5515 unsigned long min_pfn = ULONG_MAX;
5516 unsigned long start_pfn;
5517 int i;
5518
5519 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5520 min_pfn = min(min_pfn, start_pfn);
5521
5522 if (min_pfn == ULONG_MAX) {
5523 printk(KERN_WARNING
5524 "Could not find start_pfn for node %d\n", nid);
5525 return 0;
5526 }
5527
5528 return min_pfn;
5529 }
5530
5531 /**
5532 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5533 *
5534 * It returns the minimum PFN based on information provided via
5535 * memblock_set_node().
5536 */
5537 unsigned long __init find_min_pfn_with_active_regions(void)
5538 {
5539 return find_min_pfn_for_node(MAX_NUMNODES);
5540 }
5541
5542 /*
5543 * early_calculate_totalpages()
5544 * Sum pages in active regions for movable zone.
5545 * Populate N_MEMORY for calculating usable_nodes.
5546 */
5547 static unsigned long __init early_calculate_totalpages(void)
5548 {
5549 unsigned long totalpages = 0;
5550 unsigned long start_pfn, end_pfn;
5551 int i, nid;
5552
5553 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5554 unsigned long pages = end_pfn - start_pfn;
5555
5556 totalpages += pages;
5557 if (pages)
5558 node_set_state(nid, N_MEMORY);
5559 }
5560 return totalpages;
5561 }
5562
5563 /*
5564 * Find the PFN the Movable zone begins in each node. Kernel memory
5565 * is spread evenly between nodes as long as the nodes have enough
5566 * memory. When they don't, some nodes will have more kernelcore than
5567 * others
5568 */
5569 static void __init find_zone_movable_pfns_for_nodes(void)
5570 {
5571 int i, nid;
5572 unsigned long usable_startpfn;
5573 unsigned long kernelcore_node, kernelcore_remaining;
5574 /* save the state before borrow the nodemask */
5575 nodemask_t saved_node_state = node_states[N_MEMORY];
5576 unsigned long totalpages = early_calculate_totalpages();
5577 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5578 struct memblock_region *r;
5579
5580 /* Need to find movable_zone earlier when movable_node is specified. */
5581 find_usable_zone_for_movable();
5582
5583 /*
5584 * If movable_node is specified, ignore kernelcore and movablecore
5585 * options.
5586 */
5587 if (movable_node_is_enabled()) {
5588 for_each_memblock(memory, r) {
5589 if (!memblock_is_hotpluggable(r))
5590 continue;
5591
5592 nid = r->nid;
5593
5594 usable_startpfn = PFN_DOWN(r->base);
5595 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5596 min(usable_startpfn, zone_movable_pfn[nid]) :
5597 usable_startpfn;
5598 }
5599
5600 goto out2;
5601 }
5602
5603 /*
5604 * If movablecore=nn[KMG] was specified, calculate what size of
5605 * kernelcore that corresponds so that memory usable for
5606 * any allocation type is evenly spread. If both kernelcore
5607 * and movablecore are specified, then the value of kernelcore
5608 * will be used for required_kernelcore if it's greater than
5609 * what movablecore would have allowed.
5610 */
5611 if (required_movablecore) {
5612 unsigned long corepages;
5613
5614 /*
5615 * Round-up so that ZONE_MOVABLE is at least as large as what
5616 * was requested by the user
5617 */
5618 required_movablecore =
5619 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5620 required_movablecore = min(totalpages, required_movablecore);
5621 corepages = totalpages - required_movablecore;
5622
5623 required_kernelcore = max(required_kernelcore, corepages);
5624 }
5625
5626 /*
5627 * If kernelcore was not specified or kernelcore size is larger
5628 * than totalpages, there is no ZONE_MOVABLE.
5629 */
5630 if (!required_kernelcore || required_kernelcore >= totalpages)
5631 goto out;
5632
5633 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5634 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5635
5636 restart:
5637 /* Spread kernelcore memory as evenly as possible throughout nodes */
5638 kernelcore_node = required_kernelcore / usable_nodes;
5639 for_each_node_state(nid, N_MEMORY) {
5640 unsigned long start_pfn, end_pfn;
5641
5642 /*
5643 * Recalculate kernelcore_node if the division per node
5644 * now exceeds what is necessary to satisfy the requested
5645 * amount of memory for the kernel
5646 */
5647 if (required_kernelcore < kernelcore_node)
5648 kernelcore_node = required_kernelcore / usable_nodes;
5649
5650 /*
5651 * As the map is walked, we track how much memory is usable
5652 * by the kernel using kernelcore_remaining. When it is
5653 * 0, the rest of the node is usable by ZONE_MOVABLE
5654 */
5655 kernelcore_remaining = kernelcore_node;
5656
5657 /* Go through each range of PFNs within this node */
5658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5659 unsigned long size_pages;
5660
5661 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5662 if (start_pfn >= end_pfn)
5663 continue;
5664
5665 /* Account for what is only usable for kernelcore */
5666 if (start_pfn < usable_startpfn) {
5667 unsigned long kernel_pages;
5668 kernel_pages = min(end_pfn, usable_startpfn)
5669 - start_pfn;
5670
5671 kernelcore_remaining -= min(kernel_pages,
5672 kernelcore_remaining);
5673 required_kernelcore -= min(kernel_pages,
5674 required_kernelcore);
5675
5676 /* Continue if range is now fully accounted */
5677 if (end_pfn <= usable_startpfn) {
5678
5679 /*
5680 * Push zone_movable_pfn to the end so
5681 * that if we have to rebalance
5682 * kernelcore across nodes, we will
5683 * not double account here
5684 */
5685 zone_movable_pfn[nid] = end_pfn;
5686 continue;
5687 }
5688 start_pfn = usable_startpfn;
5689 }
5690
5691 /*
5692 * The usable PFN range for ZONE_MOVABLE is from
5693 * start_pfn->end_pfn. Calculate size_pages as the
5694 * number of pages used as kernelcore
5695 */
5696 size_pages = end_pfn - start_pfn;
5697 if (size_pages > kernelcore_remaining)
5698 size_pages = kernelcore_remaining;
5699 zone_movable_pfn[nid] = start_pfn + size_pages;
5700
5701 /*
5702 * Some kernelcore has been met, update counts and
5703 * break if the kernelcore for this node has been
5704 * satisfied
5705 */
5706 required_kernelcore -= min(required_kernelcore,
5707 size_pages);
5708 kernelcore_remaining -= size_pages;
5709 if (!kernelcore_remaining)
5710 break;
5711 }
5712 }
5713
5714 /*
5715 * If there is still required_kernelcore, we do another pass with one
5716 * less node in the count. This will push zone_movable_pfn[nid] further
5717 * along on the nodes that still have memory until kernelcore is
5718 * satisfied
5719 */
5720 usable_nodes--;
5721 if (usable_nodes && required_kernelcore > usable_nodes)
5722 goto restart;
5723
5724 out2:
5725 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5726 for (nid = 0; nid < MAX_NUMNODES; nid++)
5727 zone_movable_pfn[nid] =
5728 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5729
5730 out:
5731 /* restore the node_state */
5732 node_states[N_MEMORY] = saved_node_state;
5733 }
5734
5735 /* Any regular or high memory on that node ? */
5736 static void check_for_memory(pg_data_t *pgdat, int nid)
5737 {
5738 enum zone_type zone_type;
5739
5740 if (N_MEMORY == N_NORMAL_MEMORY)
5741 return;
5742
5743 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5744 struct zone *zone = &pgdat->node_zones[zone_type];
5745 if (populated_zone(zone)) {
5746 node_set_state(nid, N_HIGH_MEMORY);
5747 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5748 zone_type <= ZONE_NORMAL)
5749 node_set_state(nid, N_NORMAL_MEMORY);
5750 break;
5751 }
5752 }
5753 }
5754
5755 /**
5756 * free_area_init_nodes - Initialise all pg_data_t and zone data
5757 * @max_zone_pfn: an array of max PFNs for each zone
5758 *
5759 * This will call free_area_init_node() for each active node in the system.
5760 * Using the page ranges provided by memblock_set_node(), the size of each
5761 * zone in each node and their holes is calculated. If the maximum PFN
5762 * between two adjacent zones match, it is assumed that the zone is empty.
5763 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5764 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5765 * starts where the previous one ended. For example, ZONE_DMA32 starts
5766 * at arch_max_dma_pfn.
5767 */
5768 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5769 {
5770 unsigned long start_pfn, end_pfn;
5771 int i, nid;
5772
5773 /* Record where the zone boundaries are */
5774 memset(arch_zone_lowest_possible_pfn, 0,
5775 sizeof(arch_zone_lowest_possible_pfn));
5776 memset(arch_zone_highest_possible_pfn, 0,
5777 sizeof(arch_zone_highest_possible_pfn));
5778
5779 start_pfn = find_min_pfn_with_active_regions();
5780
5781 for (i = 0; i < MAX_NR_ZONES; i++) {
5782 if (i == ZONE_MOVABLE)
5783 continue;
5784
5785 end_pfn = max(max_zone_pfn[i], start_pfn);
5786 arch_zone_lowest_possible_pfn[i] = start_pfn;
5787 arch_zone_highest_possible_pfn[i] = end_pfn;
5788
5789 start_pfn = end_pfn;
5790 }
5791 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5792 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5793
5794 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5795 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5796 find_zone_movable_pfns_for_nodes();
5797
5798 /* Print out the zone ranges */
5799 pr_info("Zone ranges:\n");
5800 for (i = 0; i < MAX_NR_ZONES; i++) {
5801 if (i == ZONE_MOVABLE)
5802 continue;
5803 pr_info(" %-8s ", zone_names[i]);
5804 if (arch_zone_lowest_possible_pfn[i] ==
5805 arch_zone_highest_possible_pfn[i])
5806 pr_cont("empty\n");
5807 else
5808 pr_cont("[mem %#018Lx-%#018Lx]\n",
5809 (u64)arch_zone_lowest_possible_pfn[i]
5810 << PAGE_SHIFT,
5811 ((u64)arch_zone_highest_possible_pfn[i]
5812 << PAGE_SHIFT) - 1);
5813 }
5814
5815 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5816 pr_info("Movable zone start for each node\n");
5817 for (i = 0; i < MAX_NUMNODES; i++) {
5818 if (zone_movable_pfn[i])
5819 pr_info(" Node %d: %#018Lx\n", i,
5820 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5821 }
5822
5823 /* Print out the early node map */
5824 pr_info("Early memory node ranges\n");
5825 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5826 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5827 (u64)start_pfn << PAGE_SHIFT,
5828 ((u64)end_pfn << PAGE_SHIFT) - 1);
5829
5830 /* Initialise every node */
5831 mminit_verify_pageflags_layout();
5832 setup_nr_node_ids();
5833 for_each_online_node(nid) {
5834 pg_data_t *pgdat = NODE_DATA(nid);
5835 free_area_init_node(nid, NULL,
5836 find_min_pfn_for_node(nid), NULL);
5837
5838 /* Any memory on that node */
5839 if (pgdat->node_present_pages)
5840 node_set_state(nid, N_MEMORY);
5841 check_for_memory(pgdat, nid);
5842 }
5843 }
5844
5845 static int __init cmdline_parse_core(char *p, unsigned long *core)
5846 {
5847 unsigned long long coremem;
5848 if (!p)
5849 return -EINVAL;
5850
5851 coremem = memparse(p, &p);
5852 *core = coremem >> PAGE_SHIFT;
5853
5854 /* Paranoid check that UL is enough for the coremem value */
5855 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5856
5857 return 0;
5858 }
5859
5860 /*
5861 * kernelcore=size sets the amount of memory for use for allocations that
5862 * cannot be reclaimed or migrated.
5863 */
5864 static int __init cmdline_parse_kernelcore(char *p)
5865 {
5866 return cmdline_parse_core(p, &required_kernelcore);
5867 }
5868
5869 /*
5870 * movablecore=size sets the amount of memory for use for allocations that
5871 * can be reclaimed or migrated.
5872 */
5873 static int __init cmdline_parse_movablecore(char *p)
5874 {
5875 return cmdline_parse_core(p, &required_movablecore);
5876 }
5877
5878 early_param("kernelcore", cmdline_parse_kernelcore);
5879 early_param("movablecore", cmdline_parse_movablecore);
5880
5881 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5882
5883 void adjust_managed_page_count(struct page *page, long count)
5884 {
5885 spin_lock(&managed_page_count_lock);
5886 page_zone(page)->managed_pages += count;
5887 totalram_pages += count;
5888 #ifdef CONFIG_HIGHMEM
5889 if (PageHighMem(page))
5890 totalhigh_pages += count;
5891 #endif
5892 spin_unlock(&managed_page_count_lock);
5893 }
5894 EXPORT_SYMBOL(adjust_managed_page_count);
5895
5896 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5897 {
5898 void *pos;
5899 unsigned long pages = 0;
5900
5901 start = (void *)PAGE_ALIGN((unsigned long)start);
5902 end = (void *)((unsigned long)end & PAGE_MASK);
5903 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5904 if ((unsigned int)poison <= 0xFF)
5905 memset(pos, poison, PAGE_SIZE);
5906 free_reserved_page(virt_to_page(pos));
5907 }
5908
5909 if (pages && s)
5910 pr_info("Freeing %s memory: %ldK\n",
5911 s, pages << (PAGE_SHIFT - 10));
5912
5913 return pages;
5914 }
5915 EXPORT_SYMBOL(free_reserved_area);
5916
5917 #ifdef CONFIG_HIGHMEM
5918 void free_highmem_page(struct page *page)
5919 {
5920 __free_reserved_page(page);
5921 totalram_pages++;
5922 page_zone(page)->managed_pages++;
5923 totalhigh_pages++;
5924 }
5925 #endif
5926
5927
5928 void __init mem_init_print_info(const char *str)
5929 {
5930 unsigned long physpages, codesize, datasize, rosize, bss_size;
5931 unsigned long init_code_size, init_data_size;
5932
5933 physpages = get_num_physpages();
5934 codesize = _etext - _stext;
5935 datasize = _edata - _sdata;
5936 rosize = __end_rodata - __start_rodata;
5937 bss_size = __bss_stop - __bss_start;
5938 init_data_size = __init_end - __init_begin;
5939 init_code_size = _einittext - _sinittext;
5940
5941 /*
5942 * Detect special cases and adjust section sizes accordingly:
5943 * 1) .init.* may be embedded into .data sections
5944 * 2) .init.text.* may be out of [__init_begin, __init_end],
5945 * please refer to arch/tile/kernel/vmlinux.lds.S.
5946 * 3) .rodata.* may be embedded into .text or .data sections.
5947 */
5948 #define adj_init_size(start, end, size, pos, adj) \
5949 do { \
5950 if (start <= pos && pos < end && size > adj) \
5951 size -= adj; \
5952 } while (0)
5953
5954 adj_init_size(__init_begin, __init_end, init_data_size,
5955 _sinittext, init_code_size);
5956 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5957 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5958 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5959 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5960
5961 #undef adj_init_size
5962
5963 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
5964 #ifdef CONFIG_HIGHMEM
5965 ", %luK highmem"
5966 #endif
5967 "%s%s)\n",
5968 nr_free_pages() << (PAGE_SHIFT - 10),
5969 physpages << (PAGE_SHIFT - 10),
5970 codesize >> 10, datasize >> 10, rosize >> 10,
5971 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5972 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
5973 totalcma_pages << (PAGE_SHIFT - 10),
5974 #ifdef CONFIG_HIGHMEM
5975 totalhigh_pages << (PAGE_SHIFT - 10),
5976 #endif
5977 str ? ", " : "", str ? str : "");
5978 }
5979
5980 /**
5981 * set_dma_reserve - set the specified number of pages reserved in the first zone
5982 * @new_dma_reserve: The number of pages to mark reserved
5983 *
5984 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5985 * In the DMA zone, a significant percentage may be consumed by kernel image
5986 * and other unfreeable allocations which can skew the watermarks badly. This
5987 * function may optionally be used to account for unfreeable pages in the
5988 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5989 * smaller per-cpu batchsize.
5990 */
5991 void __init set_dma_reserve(unsigned long new_dma_reserve)
5992 {
5993 dma_reserve = new_dma_reserve;
5994 }
5995
5996 void __init free_area_init(unsigned long *zones_size)
5997 {
5998 free_area_init_node(0, zones_size,
5999 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6000 }
6001
6002 static int page_alloc_cpu_notify(struct notifier_block *self,
6003 unsigned long action, void *hcpu)
6004 {
6005 int cpu = (unsigned long)hcpu;
6006
6007 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6008 lru_add_drain_cpu(cpu);
6009 drain_pages(cpu);
6010
6011 /*
6012 * Spill the event counters of the dead processor
6013 * into the current processors event counters.
6014 * This artificially elevates the count of the current
6015 * processor.
6016 */
6017 vm_events_fold_cpu(cpu);
6018
6019 /*
6020 * Zero the differential counters of the dead processor
6021 * so that the vm statistics are consistent.
6022 *
6023 * This is only okay since the processor is dead and cannot
6024 * race with what we are doing.
6025 */
6026 cpu_vm_stats_fold(cpu);
6027 }
6028 return NOTIFY_OK;
6029 }
6030
6031 void __init page_alloc_init(void)
6032 {
6033 hotcpu_notifier(page_alloc_cpu_notify, 0);
6034 }
6035
6036 /*
6037 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6038 * or min_free_kbytes changes.
6039 */
6040 static void calculate_totalreserve_pages(void)
6041 {
6042 struct pglist_data *pgdat;
6043 unsigned long reserve_pages = 0;
6044 enum zone_type i, j;
6045
6046 for_each_online_pgdat(pgdat) {
6047 for (i = 0; i < MAX_NR_ZONES; i++) {
6048 struct zone *zone = pgdat->node_zones + i;
6049 long max = 0;
6050
6051 /* Find valid and maximum lowmem_reserve in the zone */
6052 for (j = i; j < MAX_NR_ZONES; j++) {
6053 if (zone->lowmem_reserve[j] > max)
6054 max = zone->lowmem_reserve[j];
6055 }
6056
6057 /* we treat the high watermark as reserved pages. */
6058 max += high_wmark_pages(zone);
6059
6060 if (max > zone->managed_pages)
6061 max = zone->managed_pages;
6062 reserve_pages += max;
6063 /*
6064 * Lowmem reserves are not available to
6065 * GFP_HIGHUSER page cache allocations and
6066 * kswapd tries to balance zones to their high
6067 * watermark. As a result, neither should be
6068 * regarded as dirtyable memory, to prevent a
6069 * situation where reclaim has to clean pages
6070 * in order to balance the zones.
6071 */
6072 zone->dirty_balance_reserve = max;
6073 }
6074 }
6075 dirty_balance_reserve = reserve_pages;
6076 totalreserve_pages = reserve_pages;
6077 }
6078
6079 /*
6080 * setup_per_zone_lowmem_reserve - called whenever
6081 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6082 * has a correct pages reserved value, so an adequate number of
6083 * pages are left in the zone after a successful __alloc_pages().
6084 */
6085 static void setup_per_zone_lowmem_reserve(void)
6086 {
6087 struct pglist_data *pgdat;
6088 enum zone_type j, idx;
6089
6090 for_each_online_pgdat(pgdat) {
6091 for (j = 0; j < MAX_NR_ZONES; j++) {
6092 struct zone *zone = pgdat->node_zones + j;
6093 unsigned long managed_pages = zone->managed_pages;
6094
6095 zone->lowmem_reserve[j] = 0;
6096
6097 idx = j;
6098 while (idx) {
6099 struct zone *lower_zone;
6100
6101 idx--;
6102
6103 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6104 sysctl_lowmem_reserve_ratio[idx] = 1;
6105
6106 lower_zone = pgdat->node_zones + idx;
6107 lower_zone->lowmem_reserve[j] = managed_pages /
6108 sysctl_lowmem_reserve_ratio[idx];
6109 managed_pages += lower_zone->managed_pages;
6110 }
6111 }
6112 }
6113
6114 /* update totalreserve_pages */
6115 calculate_totalreserve_pages();
6116 }
6117
6118 static void __setup_per_zone_wmarks(void)
6119 {
6120 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6121 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
6122 unsigned long lowmem_pages = 0;
6123 struct zone *zone;
6124 unsigned long flags;
6125
6126 /* Calculate total number of !ZONE_HIGHMEM pages */
6127 for_each_zone(zone) {
6128 if (!is_highmem(zone))
6129 lowmem_pages += zone->managed_pages;
6130 }
6131
6132 for_each_zone(zone) {
6133 u64 min, low;
6134
6135 spin_lock_irqsave(&zone->lock, flags);
6136 min = (u64)pages_min * zone->managed_pages;
6137 do_div(min, lowmem_pages);
6138 low = (u64)pages_low * zone->managed_pages;
6139 do_div(low, vm_total_pages);
6140
6141 if (is_highmem(zone)) {
6142 /*
6143 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6144 * need highmem pages, so cap pages_min to a small
6145 * value here.
6146 *
6147 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6148 * deltas control asynch page reclaim, and so should
6149 * not be capped for highmem.
6150 */
6151 unsigned long min_pages;
6152
6153 min_pages = zone->managed_pages / 1024;
6154 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6155 zone->watermark[WMARK_MIN] = min_pages;
6156 } else {
6157 /*
6158 * If it's a lowmem zone, reserve a number of pages
6159 * proportionate to the zone's size.
6160 */
6161 zone->watermark[WMARK_MIN] = min;
6162 }
6163
6164 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6165 low + (min >> 2);
6166 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6167 low + (min >> 1);
6168
6169 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6170 high_wmark_pages(zone) - low_wmark_pages(zone) -
6171 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6172
6173 spin_unlock_irqrestore(&zone->lock, flags);
6174 }
6175
6176 /* update totalreserve_pages */
6177 calculate_totalreserve_pages();
6178 }
6179
6180 /**
6181 * setup_per_zone_wmarks - called when min_free_kbytes changes
6182 * or when memory is hot-{added|removed}
6183 *
6184 * Ensures that the watermark[min,low,high] values for each zone are set
6185 * correctly with respect to min_free_kbytes.
6186 */
6187 void setup_per_zone_wmarks(void)
6188 {
6189 mutex_lock(&zonelists_mutex);
6190 __setup_per_zone_wmarks();
6191 mutex_unlock(&zonelists_mutex);
6192 }
6193
6194 /*
6195 * The inactive anon list should be small enough that the VM never has to
6196 * do too much work, but large enough that each inactive page has a chance
6197 * to be referenced again before it is swapped out.
6198 *
6199 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6200 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6201 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6202 * the anonymous pages are kept on the inactive list.
6203 *
6204 * total target max
6205 * memory ratio inactive anon
6206 * -------------------------------------
6207 * 10MB 1 5MB
6208 * 100MB 1 50MB
6209 * 1GB 3 250MB
6210 * 10GB 10 0.9GB
6211 * 100GB 31 3GB
6212 * 1TB 101 10GB
6213 * 10TB 320 32GB
6214 */
6215 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6216 {
6217 #ifdef CONFIG_FIX_INACTIVE_RATIO
6218 zone->inactive_ratio = 1;
6219 #else
6220 unsigned int gb, ratio;
6221
6222 /* Zone size in gigabytes */
6223 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6224 if (gb)
6225 ratio = int_sqrt(10 * gb);
6226 else
6227 ratio = 1;
6228
6229 zone->inactive_ratio = ratio;
6230 #endif
6231 }
6232
6233 static void __meminit setup_per_zone_inactive_ratio(void)
6234 {
6235 struct zone *zone;
6236
6237 for_each_zone(zone)
6238 calculate_zone_inactive_ratio(zone);
6239 }
6240
6241 /*
6242 * Initialise min_free_kbytes.
6243 *
6244 * For small machines we want it small (128k min). For large machines
6245 * we want it large (64MB max). But it is not linear, because network
6246 * bandwidth does not increase linearly with machine size. We use
6247 *
6248 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6249 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6250 *
6251 * which yields
6252 *
6253 * 16MB: 512k
6254 * 32MB: 724k
6255 * 64MB: 1024k
6256 * 128MB: 1448k
6257 * 256MB: 2048k
6258 * 512MB: 2896k
6259 * 1024MB: 4096k
6260 * 2048MB: 5792k
6261 * 4096MB: 8192k
6262 * 8192MB: 11584k
6263 * 16384MB: 16384k
6264 */
6265 int __meminit init_per_zone_wmark_min(void)
6266 {
6267 unsigned long lowmem_kbytes;
6268 int new_min_free_kbytes;
6269
6270 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6271 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6272
6273 if (new_min_free_kbytes > user_min_free_kbytes) {
6274 min_free_kbytes = new_min_free_kbytes;
6275 if (min_free_kbytes < 128)
6276 min_free_kbytes = 128;
6277 if (min_free_kbytes > 65536)
6278 min_free_kbytes = 65536;
6279 } else {
6280 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6281 new_min_free_kbytes, user_min_free_kbytes);
6282 }
6283 setup_per_zone_wmarks();
6284 refresh_zone_stat_thresholds();
6285 setup_per_zone_lowmem_reserve();
6286 setup_per_zone_inactive_ratio();
6287 return 0;
6288 }
6289 core_initcall(init_per_zone_wmark_min)
6290
6291 /*
6292 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6293 * that we can call two helper functions whenever min_free_kbytes
6294 * or extra_free_kbytes changes.
6295 */
6296 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6297 void __user *buffer, size_t *length, loff_t *ppos)
6298 {
6299 int rc;
6300
6301 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6302 if (rc)
6303 return rc;
6304
6305 if (write) {
6306 user_min_free_kbytes = min_free_kbytes;
6307 setup_per_zone_wmarks();
6308 }
6309 return 0;
6310 }
6311
6312 #ifdef CONFIG_NUMA
6313 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6314 void __user *buffer, size_t *length, loff_t *ppos)
6315 {
6316 struct zone *zone;
6317 int rc;
6318
6319 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6320 if (rc)
6321 return rc;
6322
6323 for_each_zone(zone)
6324 zone->min_unmapped_pages = (zone->managed_pages *
6325 sysctl_min_unmapped_ratio) / 100;
6326 return 0;
6327 }
6328
6329 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6330 void __user *buffer, size_t *length, loff_t *ppos)
6331 {
6332 struct zone *zone;
6333 int rc;
6334
6335 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6336 if (rc)
6337 return rc;
6338
6339 for_each_zone(zone)
6340 zone->min_slab_pages = (zone->managed_pages *
6341 sysctl_min_slab_ratio) / 100;
6342 return 0;
6343 }
6344 #endif
6345
6346 /*
6347 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6348 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6349 * whenever sysctl_lowmem_reserve_ratio changes.
6350 *
6351 * The reserve ratio obviously has absolutely no relation with the
6352 * minimum watermarks. The lowmem reserve ratio can only make sense
6353 * if in function of the boot time zone sizes.
6354 */
6355 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6356 void __user *buffer, size_t *length, loff_t *ppos)
6357 {
6358 proc_dointvec_minmax(table, write, buffer, length, ppos);
6359 setup_per_zone_lowmem_reserve();
6360 return 0;
6361 }
6362
6363 /*
6364 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6365 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6366 * pagelist can have before it gets flushed back to buddy allocator.
6367 */
6368 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6369 void __user *buffer, size_t *length, loff_t *ppos)
6370 {
6371 struct zone *zone;
6372 int old_percpu_pagelist_fraction;
6373 int ret;
6374
6375 mutex_lock(&pcp_batch_high_lock);
6376 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6377
6378 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6379 if (!write || ret < 0)
6380 goto out;
6381
6382 /* Sanity checking to avoid pcp imbalance */
6383 if (percpu_pagelist_fraction &&
6384 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6385 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6386 ret = -EINVAL;
6387 goto out;
6388 }
6389
6390 /* No change? */
6391 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6392 goto out;
6393
6394 for_each_populated_zone(zone) {
6395 unsigned int cpu;
6396
6397 for_each_possible_cpu(cpu)
6398 pageset_set_high_and_batch(zone,
6399 per_cpu_ptr(zone->pageset, cpu));
6400 }
6401 out:
6402 mutex_unlock(&pcp_batch_high_lock);
6403 return ret;
6404 }
6405
6406 #ifdef CONFIG_NUMA
6407 int hashdist = HASHDIST_DEFAULT;
6408
6409 static int __init set_hashdist(char *str)
6410 {
6411 if (!str)
6412 return 0;
6413 hashdist = simple_strtoul(str, &str, 0);
6414 return 1;
6415 }
6416 __setup("hashdist=", set_hashdist);
6417 #endif
6418
6419 /*
6420 * allocate a large system hash table from bootmem
6421 * - it is assumed that the hash table must contain an exact power-of-2
6422 * quantity of entries
6423 * - limit is the number of hash buckets, not the total allocation size
6424 */
6425 void *__init alloc_large_system_hash(const char *tablename,
6426 unsigned long bucketsize,
6427 unsigned long numentries,
6428 int scale,
6429 int flags,
6430 unsigned int *_hash_shift,
6431 unsigned int *_hash_mask,
6432 unsigned long low_limit,
6433 unsigned long high_limit)
6434 {
6435 unsigned long long max = high_limit;
6436 unsigned long log2qty, size;
6437 void *table = NULL;
6438
6439 /* allow the kernel cmdline to have a say */
6440 if (!numentries) {
6441 /* round applicable memory size up to nearest megabyte */
6442 numentries = nr_kernel_pages;
6443
6444 /* It isn't necessary when PAGE_SIZE >= 1MB */
6445 if (PAGE_SHIFT < 20)
6446 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6447
6448 /* limit to 1 bucket per 2^scale bytes of low memory */
6449 if (scale > PAGE_SHIFT)
6450 numentries >>= (scale - PAGE_SHIFT);
6451 else
6452 numentries <<= (PAGE_SHIFT - scale);
6453
6454 /* Make sure we've got at least a 0-order allocation.. */
6455 if (unlikely(flags & HASH_SMALL)) {
6456 /* Makes no sense without HASH_EARLY */
6457 WARN_ON(!(flags & HASH_EARLY));
6458 if (!(numentries >> *_hash_shift)) {
6459 numentries = 1UL << *_hash_shift;
6460 BUG_ON(!numentries);
6461 }
6462 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6463 numentries = PAGE_SIZE / bucketsize;
6464 }
6465 numentries = roundup_pow_of_two(numentries);
6466
6467 /* limit allocation size to 1/16 total memory by default */
6468 if (max == 0) {
6469 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6470 do_div(max, bucketsize);
6471 }
6472 max = min(max, 0x80000000ULL);
6473
6474 if (numentries < low_limit)
6475 numentries = low_limit;
6476 if (numentries > max)
6477 numentries = max;
6478
6479 log2qty = ilog2(numentries);
6480
6481 do {
6482 size = bucketsize << log2qty;
6483 if (flags & HASH_EARLY)
6484 table = memblock_virt_alloc_nopanic(size, 0);
6485 else if (hashdist)
6486 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6487 else {
6488 /*
6489 * If bucketsize is not a power-of-two, we may free
6490 * some pages at the end of hash table which
6491 * alloc_pages_exact() automatically does
6492 */
6493 if (get_order(size) < MAX_ORDER) {
6494 table = alloc_pages_exact(size, GFP_ATOMIC);
6495 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6496 }
6497 }
6498 } while (!table && size > PAGE_SIZE && --log2qty);
6499
6500 if (!table)
6501 panic("Failed to allocate %s hash table\n", tablename);
6502
6503 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6504 tablename,
6505 (1UL << log2qty),
6506 ilog2(size) - PAGE_SHIFT,
6507 size);
6508
6509 if (_hash_shift)
6510 *_hash_shift = log2qty;
6511 if (_hash_mask)
6512 *_hash_mask = (1 << log2qty) - 1;
6513
6514 return table;
6515 }
6516
6517 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6518 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6519 unsigned long pfn)
6520 {
6521 #ifdef CONFIG_SPARSEMEM
6522 return __pfn_to_section(pfn)->pageblock_flags;
6523 #else
6524 return zone->pageblock_flags;
6525 #endif /* CONFIG_SPARSEMEM */
6526 }
6527
6528 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6529 {
6530 #ifdef CONFIG_SPARSEMEM
6531 pfn &= (PAGES_PER_SECTION-1);
6532 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6533 #else
6534 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6535 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6536 #endif /* CONFIG_SPARSEMEM */
6537 }
6538
6539 /**
6540 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6541 * @page: The page within the block of interest
6542 * @pfn: The target page frame number
6543 * @end_bitidx: The last bit of interest to retrieve
6544 * @mask: mask of bits that the caller is interested in
6545 *
6546 * Return: pageblock_bits flags
6547 */
6548 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6549 unsigned long end_bitidx,
6550 unsigned long mask)
6551 {
6552 struct zone *zone;
6553 unsigned long *bitmap;
6554 unsigned long bitidx, word_bitidx;
6555 unsigned long word;
6556
6557 zone = page_zone(page);
6558 bitmap = get_pageblock_bitmap(zone, pfn);
6559 bitidx = pfn_to_bitidx(zone, pfn);
6560 word_bitidx = bitidx / BITS_PER_LONG;
6561 bitidx &= (BITS_PER_LONG-1);
6562
6563 word = bitmap[word_bitidx];
6564 bitidx += end_bitidx;
6565 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6566 }
6567
6568 /**
6569 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6570 * @page: The page within the block of interest
6571 * @flags: The flags to set
6572 * @pfn: The target page frame number
6573 * @end_bitidx: The last bit of interest
6574 * @mask: mask of bits that the caller is interested in
6575 */
6576 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6577 unsigned long pfn,
6578 unsigned long end_bitidx,
6579 unsigned long mask)
6580 {
6581 struct zone *zone;
6582 unsigned long *bitmap;
6583 unsigned long bitidx, word_bitidx;
6584 unsigned long old_word, word;
6585
6586 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6587
6588 zone = page_zone(page);
6589 bitmap = get_pageblock_bitmap(zone, pfn);
6590 bitidx = pfn_to_bitidx(zone, pfn);
6591 word_bitidx = bitidx / BITS_PER_LONG;
6592 bitidx &= (BITS_PER_LONG-1);
6593
6594 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6595
6596 bitidx += end_bitidx;
6597 mask <<= (BITS_PER_LONG - bitidx - 1);
6598 flags <<= (BITS_PER_LONG - bitidx - 1);
6599
6600 word = READ_ONCE(bitmap[word_bitidx]);
6601 for (;;) {
6602 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6603 if (word == old_word)
6604 break;
6605 word = old_word;
6606 }
6607 }
6608
6609 /*
6610 * This function checks whether pageblock includes unmovable pages or not.
6611 * If @count is not zero, it is okay to include less @count unmovable pages
6612 *
6613 * PageLRU check without isolation or lru_lock could race so that
6614 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6615 * expect this function should be exact.
6616 */
6617 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6618 bool skip_hwpoisoned_pages)
6619 {
6620 unsigned long pfn, iter, found;
6621 int mt;
6622
6623 /*
6624 * For avoiding noise data, lru_add_drain_all() should be called
6625 * If ZONE_MOVABLE, the zone never contains unmovable pages
6626 */
6627 if (zone_idx(zone) == ZONE_MOVABLE)
6628 return false;
6629 mt = get_pageblock_migratetype(page);
6630 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6631 return false;
6632
6633 pfn = page_to_pfn(page);
6634 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6635 unsigned long check = pfn + iter;
6636
6637 if (!pfn_valid_within(check))
6638 continue;
6639
6640 page = pfn_to_page(check);
6641
6642 /*
6643 * Hugepages are not in LRU lists, but they're movable.
6644 * We need not scan over tail pages bacause we don't
6645 * handle each tail page individually in migration.
6646 */
6647 if (PageHuge(page)) {
6648 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6649 continue;
6650 }
6651
6652 /*
6653 * We can't use page_count without pin a page
6654 * because another CPU can free compound page.
6655 * This check already skips compound tails of THP
6656 * because their page->_count is zero at all time.
6657 */
6658 if (!atomic_read(&page->_count)) {
6659 if (PageBuddy(page))
6660 iter += (1 << page_order(page)) - 1;
6661 continue;
6662 }
6663
6664 /*
6665 * The HWPoisoned page may be not in buddy system, and
6666 * page_count() is not 0.
6667 */
6668 if (skip_hwpoisoned_pages && PageHWPoison(page))
6669 continue;
6670
6671 if (!PageLRU(page))
6672 found++;
6673 /*
6674 * If there are RECLAIMABLE pages, we need to check
6675 * it. But now, memory offline itself doesn't call
6676 * shrink_node_slabs() and it still to be fixed.
6677 */
6678 /*
6679 * If the page is not RAM, page_count()should be 0.
6680 * we don't need more check. This is an _used_ not-movable page.
6681 *
6682 * The problematic thing here is PG_reserved pages. PG_reserved
6683 * is set to both of a memory hole page and a _used_ kernel
6684 * page at boot.
6685 */
6686 if (found > count)
6687 return true;
6688 }
6689 return false;
6690 }
6691
6692 bool is_pageblock_removable_nolock(struct page *page)
6693 {
6694 struct zone *zone;
6695 unsigned long pfn;
6696
6697 /*
6698 * We have to be careful here because we are iterating over memory
6699 * sections which are not zone aware so we might end up outside of
6700 * the zone but still within the section.
6701 * We have to take care about the node as well. If the node is offline
6702 * its NODE_DATA will be NULL - see page_zone.
6703 */
6704 if (!node_online(page_to_nid(page)))
6705 return false;
6706
6707 zone = page_zone(page);
6708 pfn = page_to_pfn(page);
6709 if (!zone_spans_pfn(zone, pfn))
6710 return false;
6711
6712 return !has_unmovable_pages(zone, page, 0, true);
6713 }
6714
6715 #ifdef CONFIG_CMA
6716
6717 static unsigned long pfn_max_align_down(unsigned long pfn)
6718 {
6719 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6720 pageblock_nr_pages) - 1);
6721 }
6722
6723 static unsigned long pfn_max_align_up(unsigned long pfn)
6724 {
6725 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6726 pageblock_nr_pages));
6727 }
6728
6729 /* [start, end) must belong to a single zone. */
6730 static int __alloc_contig_migrate_range(struct compact_control *cc,
6731 unsigned long start, unsigned long end,
6732 bool cma)
6733 {
6734 /* This function is based on compact_zone() from compaction.c. */
6735 unsigned long nr_reclaimed;
6736 unsigned long pfn = start;
6737 unsigned int tries = 0;
6738 int ret = 0;
6739
6740 if (cma)
6741 migrate_prep();
6742
6743 while (pfn < end || !list_empty(&cc->migratepages)) {
6744 if (fatal_signal_pending(current)) {
6745 ret = -EINTR;
6746 break;
6747 }
6748
6749 if (list_empty(&cc->migratepages)) {
6750 cc->nr_migratepages = 0;
6751 pfn = isolate_migratepages_range(cc, pfn, end);
6752 if (!pfn) {
6753 ret = -EINTR;
6754 break;
6755 }
6756 tries = 0;
6757 } else if (++tries == 5) {
6758 ret = ret < 0 ? ret : -EBUSY;
6759 break;
6760 }
6761
6762 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6763 &cc->migratepages);
6764 cc->nr_migratepages -= nr_reclaimed;
6765
6766 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6767 NULL, 0, cc->mode, cma ? MR_CMA : MR_HPA);
6768 }
6769 if (ret < 0) {
6770 putback_movable_pages(&cc->migratepages);
6771 return ret;
6772 }
6773 return 0;
6774 }
6775
6776 /**
6777 * __alloc_contig_range() -- tries to allocate given range of pages
6778 * @start: start PFN to allocate
6779 * @end: one-past-the-last PFN to allocate
6780 * @migratetype: migratetype of the underlaying pageblocks (either
6781 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6782 * in range must have the same migratetype and it must
6783 * be either of the two.
6784 * @cma: true if cma allocation
6785 *
6786 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6787 * aligned, however it's the caller's responsibility to guarantee that
6788 * we are the only thread that changes migrate type of pageblocks the
6789 * pages fall in.
6790 *
6791 * The PFN range must belong to a single zone.
6792 *
6793 * If the 'cma' is not true, caller allows and assumes that this allocation
6794 * could be failed.
6795 *
6796 * Returns zero on success or negative error code. On success all
6797 * pages which PFN is in [start, end) are allocated for the caller and
6798 * need to be freed with free_contig_range().
6799 */
6800 int __alloc_contig_range(unsigned long start, unsigned long end,
6801 unsigned migratetype, bool cma)
6802 {
6803 unsigned long outer_start, outer_end;
6804 unsigned int order;
6805 int ret = 0;
6806
6807 struct compact_control cc = {
6808 .nr_migratepages = 0,
6809 .order = -1,
6810 .zone = page_zone(pfn_to_page(start)),
6811 .mode = MIGRATE_SYNC,
6812 .ignore_skip_hint = true,
6813 };
6814 INIT_LIST_HEAD(&cc.migratepages);
6815
6816 /*
6817 * What we do here is we mark all pageblocks in range as
6818 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6819 * have different sizes, and due to the way page allocator
6820 * work, we align the range to biggest of the two pages so
6821 * that page allocator won't try to merge buddies from
6822 * different pageblocks and change MIGRATE_ISOLATE to some
6823 * other migration type.
6824 *
6825 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6826 * migrate the pages from an unaligned range (ie. pages that
6827 * we are interested in). This will put all the pages in
6828 * range back to page allocator as MIGRATE_ISOLATE.
6829 *
6830 * When this is done, we take the pages in range from page
6831 * allocator removing them from the buddy system. This way
6832 * page allocator will never consider using them.
6833 *
6834 * This lets us mark the pageblocks back as
6835 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6836 * aligned range but not in the unaligned, original range are
6837 * put back to page allocator so that buddy can use them.
6838 */
6839
6840 ret = start_isolate_page_range(pfn_max_align_down(start),
6841 pfn_max_align_up(end), migratetype,
6842 false);
6843 if (ret)
6844 return ret;
6845
6846 ret = __alloc_contig_migrate_range(&cc, start, end, cma);
6847 if (ret)
6848 goto done;
6849
6850 /*
6851 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6852 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6853 * more, all pages in [start, end) are free in page allocator.
6854 * What we are going to do is to allocate all pages from
6855 * [start, end) (that is remove them from page allocator).
6856 *
6857 * The only problem is that pages at the beginning and at the
6858 * end of interesting range may be not aligned with pages that
6859 * page allocator holds, ie. they can be part of higher order
6860 * pages. Because of this, we reserve the bigger range and
6861 * once this is done free the pages we are not interested in.
6862 *
6863 * We don't have to hold zone->lock here because the pages are
6864 * isolated thus they won't get removed from buddy.
6865 */
6866
6867 order = 0;
6868 outer_start = start;
6869
6870 if (cma) {
6871 lru_add_drain_all();
6872 drain_all_pages(cc.zone);
6873
6874 while (!PageBuddy(pfn_to_page(outer_start))) {
6875 if (++order >= MAX_ORDER) {
6876 ret = -EBUSY;
6877 goto done;
6878 }
6879 outer_start &= ~0UL << order;
6880 }
6881
6882 /* Make sure the range is really isolated. */
6883 if (test_pages_isolated(outer_start, end, false)) {
6884 pr_info("%s: [%lx, %lx) PFNs busy\n",
6885 __func__, outer_start, end);
6886 ret = -EBUSY;
6887 goto done;
6888 }
6889 }
6890
6891 /* Grab isolated pages from freelists. */
6892 outer_end = isolate_freepages_range(&cc, outer_start, end);
6893 if (!outer_end) {
6894 ret = -EBUSY;
6895 goto done;
6896 }
6897
6898 /* Free head and tail (if any) */
6899 if (start != outer_start)
6900 free_contig_range(outer_start, start - outer_start);
6901 if (end != outer_end)
6902 free_contig_range(end, outer_end - end);
6903
6904 done:
6905 undo_isolate_page_range(pfn_max_align_down(start),
6906 pfn_max_align_up(end), migratetype);
6907 return ret;
6908 }
6909
6910 int alloc_contig_range(unsigned long start, unsigned long end,
6911 unsigned migratetype)
6912 {
6913 return __alloc_contig_range(start, end, migratetype, true);
6914 }
6915
6916 int alloc_contig_range_fast(unsigned long start, unsigned long end,
6917 unsigned migratetype)
6918 {
6919 return __alloc_contig_range(start, end, migratetype, false);
6920 }
6921
6922 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6923 {
6924 unsigned int count = 0;
6925
6926 for (; nr_pages--; pfn++) {
6927 struct page *page = pfn_to_page(pfn);
6928
6929 count += page_count(page) != 1;
6930 __free_page(page);
6931 }
6932 WARN(count != 0, "%d pages are still in use!\n", count);
6933 }
6934 #endif
6935
6936 #ifdef CONFIG_MEMORY_HOTPLUG
6937 /*
6938 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6939 * page high values need to be recalulated.
6940 */
6941 void __meminit zone_pcp_update(struct zone *zone)
6942 {
6943 unsigned cpu;
6944 mutex_lock(&pcp_batch_high_lock);
6945 for_each_possible_cpu(cpu)
6946 pageset_set_high_and_batch(zone,
6947 per_cpu_ptr(zone->pageset, cpu));
6948 mutex_unlock(&pcp_batch_high_lock);
6949 }
6950 #endif
6951
6952 void zone_pcp_reset(struct zone *zone)
6953 {
6954 unsigned long flags;
6955 int cpu;
6956 struct per_cpu_pageset *pset;
6957
6958 /* avoid races with drain_pages() */
6959 local_irq_save(flags);
6960 if (zone->pageset != &boot_pageset) {
6961 for_each_online_cpu(cpu) {
6962 pset = per_cpu_ptr(zone->pageset, cpu);
6963 drain_zonestat(zone, pset);
6964 }
6965 free_percpu(zone->pageset);
6966 zone->pageset = &boot_pageset;
6967 }
6968 local_irq_restore(flags);
6969 }
6970
6971 #ifdef CONFIG_MEMORY_HOTREMOVE
6972 /*
6973 * All pages in the range must be isolated before calling this.
6974 */
6975 void
6976 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6977 {
6978 struct page *page;
6979 struct zone *zone;
6980 unsigned int order, i;
6981 unsigned long pfn;
6982 unsigned long flags;
6983 /* find the first valid pfn */
6984 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6985 if (pfn_valid(pfn))
6986 break;
6987 if (pfn == end_pfn)
6988 return;
6989 zone = page_zone(pfn_to_page(pfn));
6990 spin_lock_irqsave(&zone->lock, flags);
6991 pfn = start_pfn;
6992 while (pfn < end_pfn) {
6993 if (!pfn_valid(pfn)) {
6994 pfn++;
6995 continue;
6996 }
6997 page = pfn_to_page(pfn);
6998 /*
6999 * The HWPoisoned page may be not in buddy system, and
7000 * page_count() is not 0.
7001 */
7002 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7003 pfn++;
7004 SetPageReserved(page);
7005 continue;
7006 }
7007
7008 BUG_ON(page_count(page));
7009 BUG_ON(!PageBuddy(page));
7010 order = page_order(page);
7011 #ifdef CONFIG_DEBUG_VM
7012 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7013 pfn, 1 << order, end_pfn);
7014 #endif
7015 list_del(&page->lru);
7016 rmv_page_order(page);
7017 zone->free_area[order].nr_free--;
7018 for (i = 0; i < (1 << order); i++)
7019 SetPageReserved((page+i));
7020 pfn += (1 << order);
7021 }
7022 spin_unlock_irqrestore(&zone->lock, flags);
7023 }
7024 #endif
7025
7026 #ifdef CONFIG_MEMORY_FAILURE
7027 bool is_free_buddy_page(struct page *page)
7028 {
7029 struct zone *zone = page_zone(page);
7030 unsigned long pfn = page_to_pfn(page);
7031 unsigned long flags;
7032 unsigned int order;
7033
7034 spin_lock_irqsave(&zone->lock, flags);
7035 for (order = 0; order < MAX_ORDER; order++) {
7036 struct page *page_head = page - (pfn & ((1 << order) - 1));
7037
7038 if (PageBuddy(page_head) && page_order(page_head) >= order)
7039 break;
7040 }
7041 spin_unlock_irqrestore(&zone->lock, flags);
7042
7043 return order < MAX_ORDER;
7044 }
7045 #endif