audit: add tty field to LOGIN event
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 return pol->flags & MPOL_MODE_FLAGS;
168 }
169
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
172 {
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
176 }
177
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
184 }
185
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
195 }
196
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
203 }
204
205 /*
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
210 *
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 int ret;
218
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
240 }
241
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
247 }
248
249 /*
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
255 {
256 struct mempolicy *policy;
257
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
265 }
266 VM_BUG_ON(!nodes);
267
268 /*
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
272 */
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
278 }
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
291
292 return policy;
293 }
294
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
301 }
302
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 }
307
308 /*
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 /*
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
327 */
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
337 }
338
339 if (nodes_empty(tmp))
340 tmp = *nodes;
341
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
348
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
355 }
356 }
357
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
361 {
362 nodemask_t tmp;
363
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
366
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
380 }
381 }
382
383 /*
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
385 *
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
393 *
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
398 */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
401 {
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
407
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
410
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
413
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
420
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423
424 /*
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
427 *
428 * Called with task's alloc_lock held.
429 */
430
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
433 {
434 mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436
437 /*
438 * Rebind each vma in mm to new nodemask.
439 *
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
441 */
442
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 struct vm_area_struct *vma;
446
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
451 }
452
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
456 },
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
460 },
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
464 },
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
468 },
469 };
470
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
473
474 struct queue_pages {
475 struct list_head *pagelist;
476 unsigned long flags;
477 nodemask_t *nmask;
478 struct vm_area_struct *prev;
479 };
480
481 /*
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
484 */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
487 {
488 struct vm_area_struct *vma = walk->vma;
489 struct page *page;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
492 int nid;
493 pte_t *pte;
494 spinlock_t *ptl;
495
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
498 return 0;
499
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
503 continue;
504 page = vm_normal_page(vma, addr, *pte);
505 if (!page)
506 continue;
507 /*
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
510 */
511 if (PageReserved(page))
512 continue;
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 continue;
516
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
519 }
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
523 }
524
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
528 {
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
532 int nid;
533 struct page *page;
534 spinlock_t *ptl;
535 pte_t entry;
536
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
540 goto unlock;
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 goto unlock;
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
549 unlock:
550 spin_unlock(ptl);
551 #else
552 BUG();
553 #endif
554 return 0;
555 }
556
557 #ifdef CONFIG_NUMA_BALANCING
558 /*
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
562 *
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
566 */
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
569 {
570 int nr_updated;
571
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 if (nr_updated)
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
575
576 return nr_updated;
577 }
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
581 {
582 return 0;
583 }
584 #endif /* CONFIG_NUMA_BALANCING */
585
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
588 {
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
593
594 if (vma->vm_flags & VM_PFNMAP)
595 return 1;
596
597 if (endvma > end)
598 endvma = end;
599 if (vma->vm_start > start)
600 start = vma->vm_start;
601
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
604 return -EFAULT;
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 return -EFAULT;
607 }
608
609 qp->prev = vma;
610
611 if (flags & MPOL_MF_LAZY) {
612 /* Similar to task_numa_work, skip inaccessible VMAs */
613 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
614 change_prot_numa(vma, start, endvma);
615 return 1;
616 }
617
618 if ((flags & MPOL_MF_STRICT) ||
619 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
620 vma_migratable(vma)))
621 /* queue pages from current vma */
622 return 0;
623 return 1;
624 }
625
626 /*
627 * Walk through page tables and collect pages to be migrated.
628 *
629 * If pages found in a given range are on a set of nodes (determined by
630 * @nodes and @flags,) it's isolated and queued to the pagelist which is
631 * passed via @private.)
632 */
633 static int
634 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
635 nodemask_t *nodes, unsigned long flags,
636 struct list_head *pagelist)
637 {
638 struct queue_pages qp = {
639 .pagelist = pagelist,
640 .flags = flags,
641 .nmask = nodes,
642 .prev = NULL,
643 };
644 struct mm_walk queue_pages_walk = {
645 .hugetlb_entry = queue_pages_hugetlb,
646 .pmd_entry = queue_pages_pte_range,
647 .test_walk = queue_pages_test_walk,
648 .mm = mm,
649 .private = &qp,
650 };
651
652 return walk_page_range(start, end, &queue_pages_walk);
653 }
654
655 /*
656 * Apply policy to a single VMA
657 * This must be called with the mmap_sem held for writing.
658 */
659 static int vma_replace_policy(struct vm_area_struct *vma,
660 struct mempolicy *pol)
661 {
662 int err;
663 struct mempolicy *old;
664 struct mempolicy *new;
665
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670
671 new = mpol_dup(pol);
672 if (IS_ERR(new))
673 return PTR_ERR(new);
674
675 if (vma->vm_ops && vma->vm_ops->set_policy) {
676 err = vma->vm_ops->set_policy(vma, new);
677 if (err)
678 goto err_out;
679 }
680
681 old = vma->vm_policy;
682 vma->vm_policy = new; /* protected by mmap_sem */
683 mpol_put(old);
684
685 return 0;
686 err_out:
687 mpol_put(new);
688 return err;
689 }
690
691 /* Step 2: apply policy to a range and do splits. */
692 static int mbind_range(struct mm_struct *mm, unsigned long start,
693 unsigned long end, struct mempolicy *new_pol)
694 {
695 struct vm_area_struct *next;
696 struct vm_area_struct *prev;
697 struct vm_area_struct *vma;
698 int err = 0;
699 pgoff_t pgoff;
700 unsigned long vmstart;
701 unsigned long vmend;
702
703 vma = find_vma(mm, start);
704 if (!vma || vma->vm_start > start)
705 return -EFAULT;
706
707 prev = vma->vm_prev;
708 if (start > vma->vm_start)
709 prev = vma;
710
711 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
712 next = vma->vm_next;
713 vmstart = max(start, vma->vm_start);
714 vmend = min(end, vma->vm_end);
715
716 if (mpol_equal(vma_policy(vma), new_pol))
717 continue;
718
719 pgoff = vma->vm_pgoff +
720 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
721 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
722 vma->anon_vma, vma->vm_file, pgoff,
723 new_pol, vma->vm_userfaultfd_ctx,
724 vma_get_anon_name(vma));
725 if (prev) {
726 vma = prev;
727 next = vma->vm_next;
728 if (mpol_equal(vma_policy(vma), new_pol))
729 continue;
730 /* vma_merge() joined vma && vma->next, case 8 */
731 goto replace;
732 }
733 if (vma->vm_start != vmstart) {
734 err = split_vma(vma->vm_mm, vma, vmstart, 1);
735 if (err)
736 goto out;
737 }
738 if (vma->vm_end != vmend) {
739 err = split_vma(vma->vm_mm, vma, vmend, 0);
740 if (err)
741 goto out;
742 }
743 replace:
744 err = vma_replace_policy(vma, new_pol);
745 if (err)
746 goto out;
747 }
748
749 out:
750 return err;
751 }
752
753 /* Set the process memory policy */
754 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
755 nodemask_t *nodes)
756 {
757 struct mempolicy *new, *old;
758 NODEMASK_SCRATCH(scratch);
759 int ret;
760
761 if (!scratch)
762 return -ENOMEM;
763
764 new = mpol_new(mode, flags, nodes);
765 if (IS_ERR(new)) {
766 ret = PTR_ERR(new);
767 goto out;
768 }
769
770 task_lock(current);
771 ret = mpol_set_nodemask(new, nodes, scratch);
772 if (ret) {
773 task_unlock(current);
774 mpol_put(new);
775 goto out;
776 }
777 old = current->mempolicy;
778 current->mempolicy = new;
779 if (new && new->mode == MPOL_INTERLEAVE &&
780 nodes_weight(new->v.nodes))
781 current->il_next = first_node(new->v.nodes);
782 task_unlock(current);
783 mpol_put(old);
784 ret = 0;
785 out:
786 NODEMASK_SCRATCH_FREE(scratch);
787 return ret;
788 }
789
790 /*
791 * Return nodemask for policy for get_mempolicy() query
792 *
793 * Called with task's alloc_lock held
794 */
795 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
796 {
797 nodes_clear(*nodes);
798 if (p == &default_policy)
799 return;
800
801 switch (p->mode) {
802 case MPOL_BIND:
803 /* Fall through */
804 case MPOL_INTERLEAVE:
805 *nodes = p->v.nodes;
806 break;
807 case MPOL_PREFERRED:
808 if (!(p->flags & MPOL_F_LOCAL))
809 node_set(p->v.preferred_node, *nodes);
810 /* else return empty node mask for local allocation */
811 break;
812 default:
813 BUG();
814 }
815 }
816
817 static int lookup_node(struct mm_struct *mm, unsigned long addr)
818 {
819 struct page *p;
820 int err;
821
822 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
823 if (err >= 0) {
824 err = page_to_nid(p);
825 put_page(p);
826 }
827 return err;
828 }
829
830 /* Retrieve NUMA policy */
831 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
832 unsigned long addr, unsigned long flags)
833 {
834 int err;
835 struct mm_struct *mm = current->mm;
836 struct vm_area_struct *vma = NULL;
837 struct mempolicy *pol = current->mempolicy;
838
839 if (flags &
840 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
841 return -EINVAL;
842
843 if (flags & MPOL_F_MEMS_ALLOWED) {
844 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
845 return -EINVAL;
846 *policy = 0; /* just so it's initialized */
847 task_lock(current);
848 *nmask = cpuset_current_mems_allowed;
849 task_unlock(current);
850 return 0;
851 }
852
853 if (flags & MPOL_F_ADDR) {
854 /*
855 * Do NOT fall back to task policy if the
856 * vma/shared policy at addr is NULL. We
857 * want to return MPOL_DEFAULT in this case.
858 */
859 down_read(&mm->mmap_sem);
860 vma = find_vma_intersection(mm, addr, addr+1);
861 if (!vma) {
862 up_read(&mm->mmap_sem);
863 return -EFAULT;
864 }
865 if (vma->vm_ops && vma->vm_ops->get_policy)
866 pol = vma->vm_ops->get_policy(vma, addr);
867 else
868 pol = vma->vm_policy;
869 } else if (addr)
870 return -EINVAL;
871
872 if (!pol)
873 pol = &default_policy; /* indicates default behavior */
874
875 if (flags & MPOL_F_NODE) {
876 if (flags & MPOL_F_ADDR) {
877 err = lookup_node(mm, addr);
878 if (err < 0)
879 goto out;
880 *policy = err;
881 } else if (pol == current->mempolicy &&
882 pol->mode == MPOL_INTERLEAVE) {
883 *policy = current->il_next;
884 } else {
885 err = -EINVAL;
886 goto out;
887 }
888 } else {
889 *policy = pol == &default_policy ? MPOL_DEFAULT :
890 pol->mode;
891 /*
892 * Internal mempolicy flags must be masked off before exposing
893 * the policy to userspace.
894 */
895 *policy |= (pol->flags & MPOL_MODE_FLAGS);
896 }
897
898 err = 0;
899 if (nmask) {
900 if (mpol_store_user_nodemask(pol)) {
901 *nmask = pol->w.user_nodemask;
902 } else {
903 task_lock(current);
904 get_policy_nodemask(pol, nmask);
905 task_unlock(current);
906 }
907 }
908
909 out:
910 mpol_cond_put(pol);
911 if (vma)
912 up_read(&current->mm->mmap_sem);
913 return err;
914 }
915
916 #ifdef CONFIG_MIGRATION
917 /*
918 * page migration
919 */
920 static void migrate_page_add(struct page *page, struct list_head *pagelist,
921 unsigned long flags)
922 {
923 /*
924 * Avoid migrating a page that is shared with others.
925 */
926 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
927 if (!isolate_lru_page(page)) {
928 list_add_tail(&page->lru, pagelist);
929 inc_zone_page_state(page, NR_ISOLATED_ANON +
930 page_is_file_cache(page));
931 }
932 }
933 }
934
935 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
936 {
937 if (PageHuge(page))
938 return alloc_huge_page_node(page_hstate(compound_head(page)),
939 node);
940 else
941 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
942 __GFP_THISNODE, 0);
943 }
944
945 /*
946 * Migrate pages from one node to a target node.
947 * Returns error or the number of pages not migrated.
948 */
949 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
950 int flags)
951 {
952 nodemask_t nmask;
953 LIST_HEAD(pagelist);
954 int err = 0;
955
956 nodes_clear(nmask);
957 node_set(source, nmask);
958
959 /*
960 * This does not "check" the range but isolates all pages that
961 * need migration. Between passing in the full user address
962 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
963 */
964 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
965 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
966 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
967
968 if (!list_empty(&pagelist)) {
969 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
970 MIGRATE_SYNC, MR_SYSCALL);
971 if (err)
972 putback_movable_pages(&pagelist);
973 }
974
975 return err;
976 }
977
978 /*
979 * Move pages between the two nodesets so as to preserve the physical
980 * layout as much as possible.
981 *
982 * Returns the number of page that could not be moved.
983 */
984 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
985 const nodemask_t *to, int flags)
986 {
987 int busy = 0;
988 int err;
989 nodemask_t tmp;
990
991 err = migrate_prep();
992 if (err)
993 return err;
994
995 down_read(&mm->mmap_sem);
996
997 /*
998 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
999 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1000 * bit in 'tmp', and return that <source, dest> pair for migration.
1001 * The pair of nodemasks 'to' and 'from' define the map.
1002 *
1003 * If no pair of bits is found that way, fallback to picking some
1004 * pair of 'source' and 'dest' bits that are not the same. If the
1005 * 'source' and 'dest' bits are the same, this represents a node
1006 * that will be migrating to itself, so no pages need move.
1007 *
1008 * If no bits are left in 'tmp', or if all remaining bits left
1009 * in 'tmp' correspond to the same bit in 'to', return false
1010 * (nothing left to migrate).
1011 *
1012 * This lets us pick a pair of nodes to migrate between, such that
1013 * if possible the dest node is not already occupied by some other
1014 * source node, minimizing the risk of overloading the memory on a
1015 * node that would happen if we migrated incoming memory to a node
1016 * before migrating outgoing memory source that same node.
1017 *
1018 * A single scan of tmp is sufficient. As we go, we remember the
1019 * most recent <s, d> pair that moved (s != d). If we find a pair
1020 * that not only moved, but what's better, moved to an empty slot
1021 * (d is not set in tmp), then we break out then, with that pair.
1022 * Otherwise when we finish scanning from_tmp, we at least have the
1023 * most recent <s, d> pair that moved. If we get all the way through
1024 * the scan of tmp without finding any node that moved, much less
1025 * moved to an empty node, then there is nothing left worth migrating.
1026 */
1027
1028 tmp = *from;
1029 while (!nodes_empty(tmp)) {
1030 int s,d;
1031 int source = NUMA_NO_NODE;
1032 int dest = 0;
1033
1034 for_each_node_mask(s, tmp) {
1035
1036 /*
1037 * do_migrate_pages() tries to maintain the relative
1038 * node relationship of the pages established between
1039 * threads and memory areas.
1040 *
1041 * However if the number of source nodes is not equal to
1042 * the number of destination nodes we can not preserve
1043 * this node relative relationship. In that case, skip
1044 * copying memory from a node that is in the destination
1045 * mask.
1046 *
1047 * Example: [2,3,4] -> [3,4,5] moves everything.
1048 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1049 */
1050
1051 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1052 (node_isset(s, *to)))
1053 continue;
1054
1055 d = node_remap(s, *from, *to);
1056 if (s == d)
1057 continue;
1058
1059 source = s; /* Node moved. Memorize */
1060 dest = d;
1061
1062 /* dest not in remaining from nodes? */
1063 if (!node_isset(dest, tmp))
1064 break;
1065 }
1066 if (source == NUMA_NO_NODE)
1067 break;
1068
1069 node_clear(source, tmp);
1070 err = migrate_to_node(mm, source, dest, flags);
1071 if (err > 0)
1072 busy += err;
1073 if (err < 0)
1074 break;
1075 }
1076 up_read(&mm->mmap_sem);
1077 if (err < 0)
1078 return err;
1079 return busy;
1080
1081 }
1082
1083 /*
1084 * Allocate a new page for page migration based on vma policy.
1085 * Start by assuming the page is mapped by the same vma as contains @start.
1086 * Search forward from there, if not. N.B., this assumes that the
1087 * list of pages handed to migrate_pages()--which is how we get here--
1088 * is in virtual address order.
1089 */
1090 static struct page *new_page(struct page *page, unsigned long start, int **x)
1091 {
1092 struct vm_area_struct *vma;
1093 unsigned long uninitialized_var(address);
1094
1095 vma = find_vma(current->mm, start);
1096 while (vma) {
1097 address = page_address_in_vma(page, vma);
1098 if (address != -EFAULT)
1099 break;
1100 vma = vma->vm_next;
1101 }
1102
1103 if (PageHuge(page)) {
1104 BUG_ON(!vma);
1105 return alloc_huge_page_noerr(vma, address, 1);
1106 }
1107 /*
1108 * if !vma, alloc_page_vma() will use task or system default policy
1109 */
1110 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1111 }
1112 #else
1113
1114 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1115 unsigned long flags)
1116 {
1117 }
1118
1119 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1120 const nodemask_t *to, int flags)
1121 {
1122 return -ENOSYS;
1123 }
1124
1125 static struct page *new_page(struct page *page, unsigned long start, int **x)
1126 {
1127 return NULL;
1128 }
1129 #endif
1130
1131 static long do_mbind(unsigned long start, unsigned long len,
1132 unsigned short mode, unsigned short mode_flags,
1133 nodemask_t *nmask, unsigned long flags)
1134 {
1135 struct mm_struct *mm = current->mm;
1136 struct mempolicy *new;
1137 unsigned long end;
1138 int err;
1139 LIST_HEAD(pagelist);
1140
1141 if (flags & ~(unsigned long)MPOL_MF_VALID)
1142 return -EINVAL;
1143 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1144 return -EPERM;
1145
1146 if (start & ~PAGE_MASK)
1147 return -EINVAL;
1148
1149 if (mode == MPOL_DEFAULT)
1150 flags &= ~MPOL_MF_STRICT;
1151
1152 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1153 end = start + len;
1154
1155 if (end < start)
1156 return -EINVAL;
1157 if (end == start)
1158 return 0;
1159
1160 new = mpol_new(mode, mode_flags, nmask);
1161 if (IS_ERR(new))
1162 return PTR_ERR(new);
1163
1164 if (flags & MPOL_MF_LAZY)
1165 new->flags |= MPOL_F_MOF;
1166
1167 /*
1168 * If we are using the default policy then operation
1169 * on discontinuous address spaces is okay after all
1170 */
1171 if (!new)
1172 flags |= MPOL_MF_DISCONTIG_OK;
1173
1174 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1175 start, start + len, mode, mode_flags,
1176 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1177
1178 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1179
1180 err = migrate_prep();
1181 if (err)
1182 goto mpol_out;
1183 }
1184 {
1185 NODEMASK_SCRATCH(scratch);
1186 if (scratch) {
1187 down_write(&mm->mmap_sem);
1188 task_lock(current);
1189 err = mpol_set_nodemask(new, nmask, scratch);
1190 task_unlock(current);
1191 if (err)
1192 up_write(&mm->mmap_sem);
1193 } else
1194 err = -ENOMEM;
1195 NODEMASK_SCRATCH_FREE(scratch);
1196 }
1197 if (err)
1198 goto mpol_out;
1199
1200 err = queue_pages_range(mm, start, end, nmask,
1201 flags | MPOL_MF_INVERT, &pagelist);
1202 if (!err)
1203 err = mbind_range(mm, start, end, new);
1204
1205 if (!err) {
1206 int nr_failed = 0;
1207
1208 if (!list_empty(&pagelist)) {
1209 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1210 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1211 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1212 if (nr_failed)
1213 putback_movable_pages(&pagelist);
1214 }
1215
1216 if (nr_failed && (flags & MPOL_MF_STRICT))
1217 err = -EIO;
1218 } else
1219 putback_movable_pages(&pagelist);
1220
1221 up_write(&mm->mmap_sem);
1222 mpol_out:
1223 mpol_put(new);
1224 return err;
1225 }
1226
1227 /*
1228 * User space interface with variable sized bitmaps for nodelists.
1229 */
1230
1231 /* Copy a node mask from user space. */
1232 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1233 unsigned long maxnode)
1234 {
1235 unsigned long k;
1236 unsigned long nlongs;
1237 unsigned long endmask;
1238
1239 --maxnode;
1240 nodes_clear(*nodes);
1241 if (maxnode == 0 || !nmask)
1242 return 0;
1243 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1244 return -EINVAL;
1245
1246 nlongs = BITS_TO_LONGS(maxnode);
1247 if ((maxnode % BITS_PER_LONG) == 0)
1248 endmask = ~0UL;
1249 else
1250 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1251
1252 /* When the user specified more nodes than supported just check
1253 if the non supported part is all zero. */
1254 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1255 if (nlongs > PAGE_SIZE/sizeof(long))
1256 return -EINVAL;
1257 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1258 unsigned long t;
1259 if (get_user(t, nmask + k))
1260 return -EFAULT;
1261 if (k == nlongs - 1) {
1262 if (t & endmask)
1263 return -EINVAL;
1264 } else if (t)
1265 return -EINVAL;
1266 }
1267 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1268 endmask = ~0UL;
1269 }
1270
1271 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1272 return -EFAULT;
1273 nodes_addr(*nodes)[nlongs-1] &= endmask;
1274 return 0;
1275 }
1276
1277 /* Copy a kernel node mask to user space */
1278 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1279 nodemask_t *nodes)
1280 {
1281 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1282 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1283
1284 if (copy > nbytes) {
1285 if (copy > PAGE_SIZE)
1286 return -EINVAL;
1287 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1288 return -EFAULT;
1289 copy = nbytes;
1290 }
1291 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1292 }
1293
1294 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1295 unsigned long, mode, const unsigned long __user *, nmask,
1296 unsigned long, maxnode, unsigned, flags)
1297 {
1298 nodemask_t nodes;
1299 int err;
1300 unsigned short mode_flags;
1301
1302 mode_flags = mode & MPOL_MODE_FLAGS;
1303 mode &= ~MPOL_MODE_FLAGS;
1304 if (mode >= MPOL_MAX)
1305 return -EINVAL;
1306 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1307 (mode_flags & MPOL_F_RELATIVE_NODES))
1308 return -EINVAL;
1309 err = get_nodes(&nodes, nmask, maxnode);
1310 if (err)
1311 return err;
1312 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1313 }
1314
1315 /* Set the process memory policy */
1316 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1317 unsigned long, maxnode)
1318 {
1319 int err;
1320 nodemask_t nodes;
1321 unsigned short flags;
1322
1323 flags = mode & MPOL_MODE_FLAGS;
1324 mode &= ~MPOL_MODE_FLAGS;
1325 if ((unsigned int)mode >= MPOL_MAX)
1326 return -EINVAL;
1327 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1328 return -EINVAL;
1329 err = get_nodes(&nodes, nmask, maxnode);
1330 if (err)
1331 return err;
1332 return do_set_mempolicy(mode, flags, &nodes);
1333 }
1334
1335 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1336 const unsigned long __user *, old_nodes,
1337 const unsigned long __user *, new_nodes)
1338 {
1339 const struct cred *cred = current_cred(), *tcred;
1340 struct mm_struct *mm = NULL;
1341 struct task_struct *task;
1342 nodemask_t task_nodes;
1343 int err;
1344 nodemask_t *old;
1345 nodemask_t *new;
1346 NODEMASK_SCRATCH(scratch);
1347
1348 if (!scratch)
1349 return -ENOMEM;
1350
1351 old = &scratch->mask1;
1352 new = &scratch->mask2;
1353
1354 err = get_nodes(old, old_nodes, maxnode);
1355 if (err)
1356 goto out;
1357
1358 err = get_nodes(new, new_nodes, maxnode);
1359 if (err)
1360 goto out;
1361
1362 /* Find the mm_struct */
1363 rcu_read_lock();
1364 task = pid ? find_task_by_vpid(pid) : current;
1365 if (!task) {
1366 rcu_read_unlock();
1367 err = -ESRCH;
1368 goto out;
1369 }
1370 get_task_struct(task);
1371
1372 err = -EINVAL;
1373
1374 /*
1375 * Check if this process has the right to modify the specified
1376 * process. The right exists if the process has administrative
1377 * capabilities, superuser privileges or the same
1378 * userid as the target process.
1379 */
1380 tcred = __task_cred(task);
1381 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1382 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1383 !capable(CAP_SYS_NICE)) {
1384 rcu_read_unlock();
1385 err = -EPERM;
1386 goto out_put;
1387 }
1388 rcu_read_unlock();
1389
1390 task_nodes = cpuset_mems_allowed(task);
1391 /* Is the user allowed to access the target nodes? */
1392 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1393 err = -EPERM;
1394 goto out_put;
1395 }
1396
1397 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1398 err = -EINVAL;
1399 goto out_put;
1400 }
1401
1402 err = security_task_movememory(task);
1403 if (err)
1404 goto out_put;
1405
1406 mm = get_task_mm(task);
1407 put_task_struct(task);
1408
1409 if (!mm) {
1410 err = -EINVAL;
1411 goto out;
1412 }
1413
1414 err = do_migrate_pages(mm, old, new,
1415 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1416
1417 mmput(mm);
1418 out:
1419 NODEMASK_SCRATCH_FREE(scratch);
1420
1421 return err;
1422
1423 out_put:
1424 put_task_struct(task);
1425 goto out;
1426
1427 }
1428
1429
1430 /* Retrieve NUMA policy */
1431 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1432 unsigned long __user *, nmask, unsigned long, maxnode,
1433 unsigned long, addr, unsigned long, flags)
1434 {
1435 int err;
1436 int uninitialized_var(pval);
1437 nodemask_t nodes;
1438
1439 if (nmask != NULL && maxnode < MAX_NUMNODES)
1440 return -EINVAL;
1441
1442 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1443
1444 if (err)
1445 return err;
1446
1447 if (policy && put_user(pval, policy))
1448 return -EFAULT;
1449
1450 if (nmask)
1451 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1452
1453 return err;
1454 }
1455
1456 #ifdef CONFIG_COMPAT
1457
1458 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1459 compat_ulong_t __user *, nmask,
1460 compat_ulong_t, maxnode,
1461 compat_ulong_t, addr, compat_ulong_t, flags)
1462 {
1463 long err;
1464 unsigned long __user *nm = NULL;
1465 unsigned long nr_bits, alloc_size;
1466 DECLARE_BITMAP(bm, MAX_NUMNODES);
1467
1468 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1469 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1470
1471 if (nmask)
1472 nm = compat_alloc_user_space(alloc_size);
1473
1474 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1475
1476 if (!err && nmask) {
1477 unsigned long copy_size;
1478 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1479 err = copy_from_user(bm, nm, copy_size);
1480 /* ensure entire bitmap is zeroed */
1481 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1482 err |= compat_put_bitmap(nmask, bm, nr_bits);
1483 }
1484
1485 return err;
1486 }
1487
1488 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1489 compat_ulong_t, maxnode)
1490 {
1491 unsigned long __user *nm = NULL;
1492 unsigned long nr_bits, alloc_size;
1493 DECLARE_BITMAP(bm, MAX_NUMNODES);
1494
1495 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1496 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1497
1498 if (nmask) {
1499 if (compat_get_bitmap(bm, nmask, nr_bits))
1500 return -EFAULT;
1501 nm = compat_alloc_user_space(alloc_size);
1502 if (copy_to_user(nm, bm, alloc_size))
1503 return -EFAULT;
1504 }
1505
1506 return sys_set_mempolicy(mode, nm, nr_bits+1);
1507 }
1508
1509 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1510 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1511 compat_ulong_t, maxnode, compat_ulong_t, flags)
1512 {
1513 unsigned long __user *nm = NULL;
1514 unsigned long nr_bits, alloc_size;
1515 nodemask_t bm;
1516
1517 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1518 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1519
1520 if (nmask) {
1521 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1522 return -EFAULT;
1523 nm = compat_alloc_user_space(alloc_size);
1524 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1525 return -EFAULT;
1526 }
1527
1528 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1529 }
1530
1531 #endif
1532
1533 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1534 unsigned long addr)
1535 {
1536 struct mempolicy *pol = NULL;
1537
1538 if (vma) {
1539 if (vma->vm_ops && vma->vm_ops->get_policy) {
1540 pol = vma->vm_ops->get_policy(vma, addr);
1541 } else if (vma->vm_policy) {
1542 pol = vma->vm_policy;
1543
1544 /*
1545 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1546 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1547 * count on these policies which will be dropped by
1548 * mpol_cond_put() later
1549 */
1550 if (mpol_needs_cond_ref(pol))
1551 mpol_get(pol);
1552 }
1553 }
1554
1555 return pol;
1556 }
1557
1558 /*
1559 * get_vma_policy(@vma, @addr)
1560 * @vma: virtual memory area whose policy is sought
1561 * @addr: address in @vma for shared policy lookup
1562 *
1563 * Returns effective policy for a VMA at specified address.
1564 * Falls back to current->mempolicy or system default policy, as necessary.
1565 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1566 * count--added by the get_policy() vm_op, as appropriate--to protect against
1567 * freeing by another task. It is the caller's responsibility to free the
1568 * extra reference for shared policies.
1569 */
1570 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1571 unsigned long addr)
1572 {
1573 struct mempolicy *pol = __get_vma_policy(vma, addr);
1574
1575 if (!pol)
1576 pol = get_task_policy(current);
1577
1578 return pol;
1579 }
1580
1581 bool vma_policy_mof(struct vm_area_struct *vma)
1582 {
1583 struct mempolicy *pol;
1584
1585 if (vma->vm_ops && vma->vm_ops->get_policy) {
1586 bool ret = false;
1587
1588 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1589 if (pol && (pol->flags & MPOL_F_MOF))
1590 ret = true;
1591 mpol_cond_put(pol);
1592
1593 return ret;
1594 }
1595
1596 pol = vma->vm_policy;
1597 if (!pol)
1598 pol = get_task_policy(current);
1599
1600 return pol->flags & MPOL_F_MOF;
1601 }
1602
1603 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1604 {
1605 enum zone_type dynamic_policy_zone = policy_zone;
1606
1607 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1608
1609 /*
1610 * if policy->v.nodes has movable memory only,
1611 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1612 *
1613 * policy->v.nodes is intersect with node_states[N_MEMORY].
1614 * so if the following test faile, it implies
1615 * policy->v.nodes has movable memory only.
1616 */
1617 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1618 dynamic_policy_zone = ZONE_MOVABLE;
1619
1620 return zone >= dynamic_policy_zone;
1621 }
1622
1623 /*
1624 * Return a nodemask representing a mempolicy for filtering nodes for
1625 * page allocation
1626 */
1627 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1628 {
1629 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1630 if (unlikely(policy->mode == MPOL_BIND) &&
1631 apply_policy_zone(policy, gfp_zone(gfp)) &&
1632 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1633 return &policy->v.nodes;
1634
1635 return NULL;
1636 }
1637
1638 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1639 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1640 int nd)
1641 {
1642 switch (policy->mode) {
1643 case MPOL_PREFERRED:
1644 if (!(policy->flags & MPOL_F_LOCAL))
1645 nd = policy->v.preferred_node;
1646 break;
1647 case MPOL_BIND:
1648 /*
1649 * Normally, MPOL_BIND allocations are node-local within the
1650 * allowed nodemask. However, if __GFP_THISNODE is set and the
1651 * current node isn't part of the mask, we use the zonelist for
1652 * the first node in the mask instead.
1653 */
1654 if (unlikely(gfp & __GFP_THISNODE) &&
1655 unlikely(!node_isset(nd, policy->v.nodes)))
1656 nd = first_node(policy->v.nodes);
1657 break;
1658 default:
1659 BUG();
1660 }
1661 return node_zonelist(nd, gfp);
1662 }
1663
1664 /* Do dynamic interleaving for a process */
1665 static unsigned interleave_nodes(struct mempolicy *policy)
1666 {
1667 unsigned nid, next;
1668 struct task_struct *me = current;
1669
1670 nid = me->il_next;
1671 next = next_node(nid, policy->v.nodes);
1672 if (next >= MAX_NUMNODES)
1673 next = first_node(policy->v.nodes);
1674 if (next < MAX_NUMNODES)
1675 me->il_next = next;
1676 return nid;
1677 }
1678
1679 /*
1680 * Depending on the memory policy provide a node from which to allocate the
1681 * next slab entry.
1682 */
1683 unsigned int mempolicy_slab_node(void)
1684 {
1685 struct mempolicy *policy;
1686 int node = numa_mem_id();
1687
1688 if (in_interrupt())
1689 return node;
1690
1691 policy = current->mempolicy;
1692 if (!policy || policy->flags & MPOL_F_LOCAL)
1693 return node;
1694
1695 switch (policy->mode) {
1696 case MPOL_PREFERRED:
1697 /*
1698 * handled MPOL_F_LOCAL above
1699 */
1700 return policy->v.preferred_node;
1701
1702 case MPOL_INTERLEAVE:
1703 return interleave_nodes(policy);
1704
1705 case MPOL_BIND: {
1706 /*
1707 * Follow bind policy behavior and start allocation at the
1708 * first node.
1709 */
1710 struct zonelist *zonelist;
1711 struct zone *zone;
1712 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1713 zonelist = &NODE_DATA(node)->node_zonelists[0];
1714 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1715 &policy->v.nodes,
1716 &zone);
1717 return zone ? zone->node : node;
1718 }
1719
1720 default:
1721 BUG();
1722 }
1723 }
1724
1725 /* Do static interleaving for a VMA with known offset. */
1726 static unsigned offset_il_node(struct mempolicy *pol,
1727 struct vm_area_struct *vma, unsigned long off)
1728 {
1729 unsigned nnodes = nodes_weight(pol->v.nodes);
1730 unsigned target;
1731 int c;
1732 int nid = NUMA_NO_NODE;
1733
1734 if (!nnodes)
1735 return numa_node_id();
1736 target = (unsigned int)off % nnodes;
1737 c = 0;
1738 do {
1739 nid = next_node(nid, pol->v.nodes);
1740 c++;
1741 } while (c <= target);
1742 return nid;
1743 }
1744
1745 /* Determine a node number for interleave */
1746 static inline unsigned interleave_nid(struct mempolicy *pol,
1747 struct vm_area_struct *vma, unsigned long addr, int shift)
1748 {
1749 if (vma) {
1750 unsigned long off;
1751
1752 /*
1753 * for small pages, there is no difference between
1754 * shift and PAGE_SHIFT, so the bit-shift is safe.
1755 * for huge pages, since vm_pgoff is in units of small
1756 * pages, we need to shift off the always 0 bits to get
1757 * a useful offset.
1758 */
1759 BUG_ON(shift < PAGE_SHIFT);
1760 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1761 off += (addr - vma->vm_start) >> shift;
1762 return offset_il_node(pol, vma, off);
1763 } else
1764 return interleave_nodes(pol);
1765 }
1766
1767 /*
1768 * Return the bit number of a random bit set in the nodemask.
1769 * (returns NUMA_NO_NODE if nodemask is empty)
1770 */
1771 int node_random(const nodemask_t *maskp)
1772 {
1773 int w, bit = NUMA_NO_NODE;
1774
1775 w = nodes_weight(*maskp);
1776 if (w)
1777 bit = bitmap_ord_to_pos(maskp->bits,
1778 get_random_int() % w, MAX_NUMNODES);
1779 return bit;
1780 }
1781
1782 #ifdef CONFIG_HUGETLBFS
1783 /*
1784 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1785 * @vma: virtual memory area whose policy is sought
1786 * @addr: address in @vma for shared policy lookup and interleave policy
1787 * @gfp_flags: for requested zone
1788 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1789 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1790 *
1791 * Returns a zonelist suitable for a huge page allocation and a pointer
1792 * to the struct mempolicy for conditional unref after allocation.
1793 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1794 * @nodemask for filtering the zonelist.
1795 *
1796 * Must be protected by read_mems_allowed_begin()
1797 */
1798 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1799 gfp_t gfp_flags, struct mempolicy **mpol,
1800 nodemask_t **nodemask)
1801 {
1802 struct zonelist *zl;
1803
1804 *mpol = get_vma_policy(vma, addr);
1805 *nodemask = NULL; /* assume !MPOL_BIND */
1806
1807 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1808 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1809 huge_page_shift(hstate_vma(vma))), gfp_flags);
1810 } else {
1811 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1812 if ((*mpol)->mode == MPOL_BIND)
1813 *nodemask = &(*mpol)->v.nodes;
1814 }
1815 return zl;
1816 }
1817
1818 /*
1819 * init_nodemask_of_mempolicy
1820 *
1821 * If the current task's mempolicy is "default" [NULL], return 'false'
1822 * to indicate default policy. Otherwise, extract the policy nodemask
1823 * for 'bind' or 'interleave' policy into the argument nodemask, or
1824 * initialize the argument nodemask to contain the single node for
1825 * 'preferred' or 'local' policy and return 'true' to indicate presence
1826 * of non-default mempolicy.
1827 *
1828 * We don't bother with reference counting the mempolicy [mpol_get/put]
1829 * because the current task is examining it's own mempolicy and a task's
1830 * mempolicy is only ever changed by the task itself.
1831 *
1832 * N.B., it is the caller's responsibility to free a returned nodemask.
1833 */
1834 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1835 {
1836 struct mempolicy *mempolicy;
1837 int nid;
1838
1839 if (!(mask && current->mempolicy))
1840 return false;
1841
1842 task_lock(current);
1843 mempolicy = current->mempolicy;
1844 switch (mempolicy->mode) {
1845 case MPOL_PREFERRED:
1846 if (mempolicy->flags & MPOL_F_LOCAL)
1847 nid = numa_node_id();
1848 else
1849 nid = mempolicy->v.preferred_node;
1850 init_nodemask_of_node(mask, nid);
1851 break;
1852
1853 case MPOL_BIND:
1854 /* Fall through */
1855 case MPOL_INTERLEAVE:
1856 *mask = mempolicy->v.nodes;
1857 break;
1858
1859 default:
1860 BUG();
1861 }
1862 task_unlock(current);
1863
1864 return true;
1865 }
1866 #endif
1867
1868 /*
1869 * mempolicy_nodemask_intersects
1870 *
1871 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1872 * policy. Otherwise, check for intersection between mask and the policy
1873 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1874 * policy, always return true since it may allocate elsewhere on fallback.
1875 *
1876 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1877 */
1878 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1879 const nodemask_t *mask)
1880 {
1881 struct mempolicy *mempolicy;
1882 bool ret = true;
1883
1884 if (!mask)
1885 return ret;
1886 task_lock(tsk);
1887 mempolicy = tsk->mempolicy;
1888 if (!mempolicy)
1889 goto out;
1890
1891 switch (mempolicy->mode) {
1892 case MPOL_PREFERRED:
1893 /*
1894 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1895 * allocate from, they may fallback to other nodes when oom.
1896 * Thus, it's possible for tsk to have allocated memory from
1897 * nodes in mask.
1898 */
1899 break;
1900 case MPOL_BIND:
1901 case MPOL_INTERLEAVE:
1902 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1903 break;
1904 default:
1905 BUG();
1906 }
1907 out:
1908 task_unlock(tsk);
1909 return ret;
1910 }
1911
1912 /* Allocate a page in interleaved policy.
1913 Own path because it needs to do special accounting. */
1914 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1915 unsigned nid)
1916 {
1917 struct zonelist *zl;
1918 struct page *page;
1919
1920 zl = node_zonelist(nid, gfp);
1921 page = __alloc_pages(gfp, order, zl);
1922 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1923 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1924 return page;
1925 }
1926
1927 /**
1928 * alloc_pages_vma - Allocate a page for a VMA.
1929 *
1930 * @gfp:
1931 * %GFP_USER user allocation.
1932 * %GFP_KERNEL kernel allocations,
1933 * %GFP_HIGHMEM highmem/user allocations,
1934 * %GFP_FS allocation should not call back into a file system.
1935 * %GFP_ATOMIC don't sleep.
1936 *
1937 * @order:Order of the GFP allocation.
1938 * @vma: Pointer to VMA or NULL if not available.
1939 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1940 * @node: Which node to prefer for allocation (modulo policy).
1941 * @hugepage: for hugepages try only the preferred node if possible
1942 *
1943 * This function allocates a page from the kernel page pool and applies
1944 * a NUMA policy associated with the VMA or the current process.
1945 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1946 * mm_struct of the VMA to prevent it from going away. Should be used for
1947 * all allocations for pages that will be mapped into user space. Returns
1948 * NULL when no page can be allocated.
1949 */
1950 struct page *
1951 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1952 unsigned long addr, int node, bool hugepage)
1953 {
1954 struct mempolicy *pol;
1955 struct page *page;
1956 unsigned int cpuset_mems_cookie;
1957 struct zonelist *zl;
1958 nodemask_t *nmask;
1959
1960 retry_cpuset:
1961 pol = get_vma_policy(vma, addr);
1962 cpuset_mems_cookie = read_mems_allowed_begin();
1963
1964 if (pol->mode == MPOL_INTERLEAVE) {
1965 unsigned nid;
1966
1967 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1968 mpol_cond_put(pol);
1969 page = alloc_page_interleave(gfp, order, nid);
1970 goto out;
1971 }
1972
1973 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1974 int hpage_node = node;
1975
1976 /*
1977 * For hugepage allocation and non-interleave policy which
1978 * allows the current node (or other explicitly preferred
1979 * node) we only try to allocate from the current/preferred
1980 * node and don't fall back to other nodes, as the cost of
1981 * remote accesses would likely offset THP benefits.
1982 *
1983 * If the policy is interleave, or does not allow the current
1984 * node in its nodemask, we allocate the standard way.
1985 */
1986 if (pol->mode == MPOL_PREFERRED &&
1987 !(pol->flags & MPOL_F_LOCAL))
1988 hpage_node = pol->v.preferred_node;
1989
1990 nmask = policy_nodemask(gfp, pol);
1991 if (!nmask || node_isset(hpage_node, *nmask)) {
1992 mpol_cond_put(pol);
1993 page = __alloc_pages_node(hpage_node,
1994 gfp | __GFP_THISNODE, order);
1995 goto out;
1996 }
1997 }
1998
1999 nmask = policy_nodemask(gfp, pol);
2000 zl = policy_zonelist(gfp, pol, node);
2001 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2002 mpol_cond_put(pol);
2003 out:
2004 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2005 goto retry_cpuset;
2006 return page;
2007 }
2008
2009 /**
2010 * alloc_pages_current - Allocate pages.
2011 *
2012 * @gfp:
2013 * %GFP_USER user allocation,
2014 * %GFP_KERNEL kernel allocation,
2015 * %GFP_HIGHMEM highmem allocation,
2016 * %GFP_FS don't call back into a file system.
2017 * %GFP_ATOMIC don't sleep.
2018 * @order: Power of two of allocation size in pages. 0 is a single page.
2019 *
2020 * Allocate a page from the kernel page pool. When not in
2021 * interrupt context and apply the current process NUMA policy.
2022 * Returns NULL when no page can be allocated.
2023 *
2024 * Don't call cpuset_update_task_memory_state() unless
2025 * 1) it's ok to take cpuset_sem (can WAIT), and
2026 * 2) allocating for current task (not interrupt).
2027 */
2028 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2029 {
2030 struct mempolicy *pol = &default_policy;
2031 struct page *page;
2032 unsigned int cpuset_mems_cookie;
2033
2034 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2035 pol = get_task_policy(current);
2036
2037 retry_cpuset:
2038 cpuset_mems_cookie = read_mems_allowed_begin();
2039
2040 /*
2041 * No reference counting needed for current->mempolicy
2042 * nor system default_policy
2043 */
2044 if (pol->mode == MPOL_INTERLEAVE)
2045 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2046 else
2047 page = __alloc_pages_nodemask(gfp, order,
2048 policy_zonelist(gfp, pol, numa_node_id()),
2049 policy_nodemask(gfp, pol));
2050
2051 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2052 goto retry_cpuset;
2053
2054 return page;
2055 }
2056 EXPORT_SYMBOL(alloc_pages_current);
2057
2058 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2059 {
2060 struct mempolicy *pol = mpol_dup(vma_policy(src));
2061
2062 if (IS_ERR(pol))
2063 return PTR_ERR(pol);
2064 dst->vm_policy = pol;
2065 return 0;
2066 }
2067
2068 /*
2069 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2070 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2071 * with the mems_allowed returned by cpuset_mems_allowed(). This
2072 * keeps mempolicies cpuset relative after its cpuset moves. See
2073 * further kernel/cpuset.c update_nodemask().
2074 *
2075 * current's mempolicy may be rebinded by the other task(the task that changes
2076 * cpuset's mems), so we needn't do rebind work for current task.
2077 */
2078
2079 /* Slow path of a mempolicy duplicate */
2080 struct mempolicy *__mpol_dup(struct mempolicy *old)
2081 {
2082 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2083
2084 if (!new)
2085 return ERR_PTR(-ENOMEM);
2086
2087 /* task's mempolicy is protected by alloc_lock */
2088 if (old == current->mempolicy) {
2089 task_lock(current);
2090 *new = *old;
2091 task_unlock(current);
2092 } else
2093 *new = *old;
2094
2095 if (current_cpuset_is_being_rebound()) {
2096 nodemask_t mems = cpuset_mems_allowed(current);
2097 if (new->flags & MPOL_F_REBINDING)
2098 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2099 else
2100 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2101 }
2102 atomic_set(&new->refcnt, 1);
2103 return new;
2104 }
2105
2106 /* Slow path of a mempolicy comparison */
2107 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2108 {
2109 if (!a || !b)
2110 return false;
2111 if (a->mode != b->mode)
2112 return false;
2113 if (a->flags != b->flags)
2114 return false;
2115 if (mpol_store_user_nodemask(a))
2116 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2117 return false;
2118
2119 switch (a->mode) {
2120 case MPOL_BIND:
2121 /* Fall through */
2122 case MPOL_INTERLEAVE:
2123 return !!nodes_equal(a->v.nodes, b->v.nodes);
2124 case MPOL_PREFERRED:
2125 return a->v.preferred_node == b->v.preferred_node;
2126 default:
2127 BUG();
2128 return false;
2129 }
2130 }
2131
2132 /*
2133 * Shared memory backing store policy support.
2134 *
2135 * Remember policies even when nobody has shared memory mapped.
2136 * The policies are kept in Red-Black tree linked from the inode.
2137 * They are protected by the sp->lock spinlock, which should be held
2138 * for any accesses to the tree.
2139 */
2140
2141 /* lookup first element intersecting start-end */
2142 /* Caller holds sp->lock */
2143 static struct sp_node *
2144 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2145 {
2146 struct rb_node *n = sp->root.rb_node;
2147
2148 while (n) {
2149 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2150
2151 if (start >= p->end)
2152 n = n->rb_right;
2153 else if (end <= p->start)
2154 n = n->rb_left;
2155 else
2156 break;
2157 }
2158 if (!n)
2159 return NULL;
2160 for (;;) {
2161 struct sp_node *w = NULL;
2162 struct rb_node *prev = rb_prev(n);
2163 if (!prev)
2164 break;
2165 w = rb_entry(prev, struct sp_node, nd);
2166 if (w->end <= start)
2167 break;
2168 n = prev;
2169 }
2170 return rb_entry(n, struct sp_node, nd);
2171 }
2172
2173 /* Insert a new shared policy into the list. */
2174 /* Caller holds sp->lock */
2175 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2176 {
2177 struct rb_node **p = &sp->root.rb_node;
2178 struct rb_node *parent = NULL;
2179 struct sp_node *nd;
2180
2181 while (*p) {
2182 parent = *p;
2183 nd = rb_entry(parent, struct sp_node, nd);
2184 if (new->start < nd->start)
2185 p = &(*p)->rb_left;
2186 else if (new->end > nd->end)
2187 p = &(*p)->rb_right;
2188 else
2189 BUG();
2190 }
2191 rb_link_node(&new->nd, parent, p);
2192 rb_insert_color(&new->nd, &sp->root);
2193 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2194 new->policy ? new->policy->mode : 0);
2195 }
2196
2197 /* Find shared policy intersecting idx */
2198 struct mempolicy *
2199 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2200 {
2201 struct mempolicy *pol = NULL;
2202 struct sp_node *sn;
2203
2204 if (!sp->root.rb_node)
2205 return NULL;
2206 spin_lock(&sp->lock);
2207 sn = sp_lookup(sp, idx, idx+1);
2208 if (sn) {
2209 mpol_get(sn->policy);
2210 pol = sn->policy;
2211 }
2212 spin_unlock(&sp->lock);
2213 return pol;
2214 }
2215
2216 static void sp_free(struct sp_node *n)
2217 {
2218 mpol_put(n->policy);
2219 kmem_cache_free(sn_cache, n);
2220 }
2221
2222 /**
2223 * mpol_misplaced - check whether current page node is valid in policy
2224 *
2225 * @page: page to be checked
2226 * @vma: vm area where page mapped
2227 * @addr: virtual address where page mapped
2228 *
2229 * Lookup current policy node id for vma,addr and "compare to" page's
2230 * node id.
2231 *
2232 * Returns:
2233 * -1 - not misplaced, page is in the right node
2234 * node - node id where the page should be
2235 *
2236 * Policy determination "mimics" alloc_page_vma().
2237 * Called from fault path where we know the vma and faulting address.
2238 */
2239 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2240 {
2241 struct mempolicy *pol;
2242 struct zone *zone;
2243 int curnid = page_to_nid(page);
2244 unsigned long pgoff;
2245 int thiscpu = raw_smp_processor_id();
2246 int thisnid = cpu_to_node(thiscpu);
2247 int polnid = -1;
2248 int ret = -1;
2249
2250 BUG_ON(!vma);
2251
2252 pol = get_vma_policy(vma, addr);
2253 if (!(pol->flags & MPOL_F_MOF))
2254 goto out;
2255
2256 switch (pol->mode) {
2257 case MPOL_INTERLEAVE:
2258 BUG_ON(addr >= vma->vm_end);
2259 BUG_ON(addr < vma->vm_start);
2260
2261 pgoff = vma->vm_pgoff;
2262 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2263 polnid = offset_il_node(pol, vma, pgoff);
2264 break;
2265
2266 case MPOL_PREFERRED:
2267 if (pol->flags & MPOL_F_LOCAL)
2268 polnid = numa_node_id();
2269 else
2270 polnid = pol->v.preferred_node;
2271 break;
2272
2273 case MPOL_BIND:
2274 /*
2275 * allows binding to multiple nodes.
2276 * use current page if in policy nodemask,
2277 * else select nearest allowed node, if any.
2278 * If no allowed nodes, use current [!misplaced].
2279 */
2280 if (node_isset(curnid, pol->v.nodes))
2281 goto out;
2282 (void)first_zones_zonelist(
2283 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2284 gfp_zone(GFP_HIGHUSER),
2285 &pol->v.nodes, &zone);
2286 polnid = zone->node;
2287 break;
2288
2289 default:
2290 BUG();
2291 }
2292
2293 /* Migrate the page towards the node whose CPU is referencing it */
2294 if (pol->flags & MPOL_F_MORON) {
2295 polnid = thisnid;
2296
2297 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2298 goto out;
2299 }
2300
2301 if (curnid != polnid)
2302 ret = polnid;
2303 out:
2304 mpol_cond_put(pol);
2305
2306 return ret;
2307 }
2308
2309 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2310 {
2311 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2312 rb_erase(&n->nd, &sp->root);
2313 sp_free(n);
2314 }
2315
2316 static void sp_node_init(struct sp_node *node, unsigned long start,
2317 unsigned long end, struct mempolicy *pol)
2318 {
2319 node->start = start;
2320 node->end = end;
2321 node->policy = pol;
2322 }
2323
2324 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2325 struct mempolicy *pol)
2326 {
2327 struct sp_node *n;
2328 struct mempolicy *newpol;
2329
2330 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2331 if (!n)
2332 return NULL;
2333
2334 newpol = mpol_dup(pol);
2335 if (IS_ERR(newpol)) {
2336 kmem_cache_free(sn_cache, n);
2337 return NULL;
2338 }
2339 newpol->flags |= MPOL_F_SHARED;
2340 sp_node_init(n, start, end, newpol);
2341
2342 return n;
2343 }
2344
2345 /* Replace a policy range. */
2346 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2347 unsigned long end, struct sp_node *new)
2348 {
2349 struct sp_node *n;
2350 struct sp_node *n_new = NULL;
2351 struct mempolicy *mpol_new = NULL;
2352 int ret = 0;
2353
2354 restart:
2355 spin_lock(&sp->lock);
2356 n = sp_lookup(sp, start, end);
2357 /* Take care of old policies in the same range. */
2358 while (n && n->start < end) {
2359 struct rb_node *next = rb_next(&n->nd);
2360 if (n->start >= start) {
2361 if (n->end <= end)
2362 sp_delete(sp, n);
2363 else
2364 n->start = end;
2365 } else {
2366 /* Old policy spanning whole new range. */
2367 if (n->end > end) {
2368 if (!n_new)
2369 goto alloc_new;
2370
2371 *mpol_new = *n->policy;
2372 atomic_set(&mpol_new->refcnt, 1);
2373 sp_node_init(n_new, end, n->end, mpol_new);
2374 n->end = start;
2375 sp_insert(sp, n_new);
2376 n_new = NULL;
2377 mpol_new = NULL;
2378 break;
2379 } else
2380 n->end = start;
2381 }
2382 if (!next)
2383 break;
2384 n = rb_entry(next, struct sp_node, nd);
2385 }
2386 if (new)
2387 sp_insert(sp, new);
2388 spin_unlock(&sp->lock);
2389 ret = 0;
2390
2391 err_out:
2392 if (mpol_new)
2393 mpol_put(mpol_new);
2394 if (n_new)
2395 kmem_cache_free(sn_cache, n_new);
2396
2397 return ret;
2398
2399 alloc_new:
2400 spin_unlock(&sp->lock);
2401 ret = -ENOMEM;
2402 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2403 if (!n_new)
2404 goto err_out;
2405 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2406 if (!mpol_new)
2407 goto err_out;
2408 goto restart;
2409 }
2410
2411 /**
2412 * mpol_shared_policy_init - initialize shared policy for inode
2413 * @sp: pointer to inode shared policy
2414 * @mpol: struct mempolicy to install
2415 *
2416 * Install non-NULL @mpol in inode's shared policy rb-tree.
2417 * On entry, the current task has a reference on a non-NULL @mpol.
2418 * This must be released on exit.
2419 * This is called at get_inode() calls and we can use GFP_KERNEL.
2420 */
2421 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2422 {
2423 int ret;
2424
2425 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2426 spin_lock_init(&sp->lock);
2427
2428 if (mpol) {
2429 struct vm_area_struct pvma;
2430 struct mempolicy *new;
2431 NODEMASK_SCRATCH(scratch);
2432
2433 if (!scratch)
2434 goto put_mpol;
2435 /* contextualize the tmpfs mount point mempolicy */
2436 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2437 if (IS_ERR(new))
2438 goto free_scratch; /* no valid nodemask intersection */
2439
2440 task_lock(current);
2441 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2442 task_unlock(current);
2443 if (ret)
2444 goto put_new;
2445
2446 /* Create pseudo-vma that contains just the policy */
2447 memset(&pvma, 0, sizeof(struct vm_area_struct));
2448 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2449 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2450
2451 put_new:
2452 mpol_put(new); /* drop initial ref */
2453 free_scratch:
2454 NODEMASK_SCRATCH_FREE(scratch);
2455 put_mpol:
2456 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2457 }
2458 }
2459
2460 int mpol_set_shared_policy(struct shared_policy *info,
2461 struct vm_area_struct *vma, struct mempolicy *npol)
2462 {
2463 int err;
2464 struct sp_node *new = NULL;
2465 unsigned long sz = vma_pages(vma);
2466
2467 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2468 vma->vm_pgoff,
2469 sz, npol ? npol->mode : -1,
2470 npol ? npol->flags : -1,
2471 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2472
2473 if (npol) {
2474 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2475 if (!new)
2476 return -ENOMEM;
2477 }
2478 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2479 if (err && new)
2480 sp_free(new);
2481 return err;
2482 }
2483
2484 /* Free a backing policy store on inode delete. */
2485 void mpol_free_shared_policy(struct shared_policy *p)
2486 {
2487 struct sp_node *n;
2488 struct rb_node *next;
2489
2490 if (!p->root.rb_node)
2491 return;
2492 spin_lock(&p->lock);
2493 next = rb_first(&p->root);
2494 while (next) {
2495 n = rb_entry(next, struct sp_node, nd);
2496 next = rb_next(&n->nd);
2497 sp_delete(p, n);
2498 }
2499 spin_unlock(&p->lock);
2500 }
2501
2502 #ifdef CONFIG_NUMA_BALANCING
2503 static int __initdata numabalancing_override;
2504
2505 static void __init check_numabalancing_enable(void)
2506 {
2507 bool numabalancing_default = false;
2508
2509 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2510 numabalancing_default = true;
2511
2512 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2513 if (numabalancing_override)
2514 set_numabalancing_state(numabalancing_override == 1);
2515
2516 if (num_online_nodes() > 1 && !numabalancing_override) {
2517 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2518 numabalancing_default ? "Enabling" : "Disabling");
2519 set_numabalancing_state(numabalancing_default);
2520 }
2521 }
2522
2523 static int __init setup_numabalancing(char *str)
2524 {
2525 int ret = 0;
2526 if (!str)
2527 goto out;
2528
2529 if (!strcmp(str, "enable")) {
2530 numabalancing_override = 1;
2531 ret = 1;
2532 } else if (!strcmp(str, "disable")) {
2533 numabalancing_override = -1;
2534 ret = 1;
2535 }
2536 out:
2537 if (!ret)
2538 pr_warn("Unable to parse numa_balancing=\n");
2539
2540 return ret;
2541 }
2542 __setup("numa_balancing=", setup_numabalancing);
2543 #else
2544 static inline void __init check_numabalancing_enable(void)
2545 {
2546 }
2547 #endif /* CONFIG_NUMA_BALANCING */
2548
2549 /* assumes fs == KERNEL_DS */
2550 void __init numa_policy_init(void)
2551 {
2552 nodemask_t interleave_nodes;
2553 unsigned long largest = 0;
2554 int nid, prefer = 0;
2555
2556 policy_cache = kmem_cache_create("numa_policy",
2557 sizeof(struct mempolicy),
2558 0, SLAB_PANIC, NULL);
2559
2560 sn_cache = kmem_cache_create("shared_policy_node",
2561 sizeof(struct sp_node),
2562 0, SLAB_PANIC, NULL);
2563
2564 for_each_node(nid) {
2565 preferred_node_policy[nid] = (struct mempolicy) {
2566 .refcnt = ATOMIC_INIT(1),
2567 .mode = MPOL_PREFERRED,
2568 .flags = MPOL_F_MOF | MPOL_F_MORON,
2569 .v = { .preferred_node = nid, },
2570 };
2571 }
2572
2573 /*
2574 * Set interleaving policy for system init. Interleaving is only
2575 * enabled across suitably sized nodes (default is >= 16MB), or
2576 * fall back to the largest node if they're all smaller.
2577 */
2578 nodes_clear(interleave_nodes);
2579 for_each_node_state(nid, N_MEMORY) {
2580 unsigned long total_pages = node_present_pages(nid);
2581
2582 /* Preserve the largest node */
2583 if (largest < total_pages) {
2584 largest = total_pages;
2585 prefer = nid;
2586 }
2587
2588 /* Interleave this node? */
2589 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2590 node_set(nid, interleave_nodes);
2591 }
2592
2593 /* All too small, use the largest */
2594 if (unlikely(nodes_empty(interleave_nodes)))
2595 node_set(prefer, interleave_nodes);
2596
2597 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2598 pr_err("%s: interleaving failed\n", __func__);
2599
2600 check_numabalancing_enable();
2601 }
2602
2603 /* Reset policy of current process to default */
2604 void numa_default_policy(void)
2605 {
2606 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2607 }
2608
2609 /*
2610 * Parse and format mempolicy from/to strings
2611 */
2612
2613 /*
2614 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2615 */
2616 static const char * const policy_modes[] =
2617 {
2618 [MPOL_DEFAULT] = "default",
2619 [MPOL_PREFERRED] = "prefer",
2620 [MPOL_BIND] = "bind",
2621 [MPOL_INTERLEAVE] = "interleave",
2622 [MPOL_LOCAL] = "local",
2623 };
2624
2625
2626 #ifdef CONFIG_TMPFS
2627 /**
2628 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2629 * @str: string containing mempolicy to parse
2630 * @mpol: pointer to struct mempolicy pointer, returned on success.
2631 *
2632 * Format of input:
2633 * <mode>[=<flags>][:<nodelist>]
2634 *
2635 * On success, returns 0, else 1
2636 */
2637 int mpol_parse_str(char *str, struct mempolicy **mpol)
2638 {
2639 struct mempolicy *new = NULL;
2640 unsigned short mode;
2641 unsigned short mode_flags;
2642 nodemask_t nodes;
2643 char *nodelist = strchr(str, ':');
2644 char *flags = strchr(str, '=');
2645 int err = 1;
2646
2647 if (nodelist) {
2648 /* NUL-terminate mode or flags string */
2649 *nodelist++ = '\0';
2650 if (nodelist_parse(nodelist, nodes))
2651 goto out;
2652 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2653 goto out;
2654 } else
2655 nodes_clear(nodes);
2656
2657 if (flags)
2658 *flags++ = '\0'; /* terminate mode string */
2659
2660 for (mode = 0; mode < MPOL_MAX; mode++) {
2661 if (!strcmp(str, policy_modes[mode])) {
2662 break;
2663 }
2664 }
2665 if (mode >= MPOL_MAX)
2666 goto out;
2667
2668 switch (mode) {
2669 case MPOL_PREFERRED:
2670 /*
2671 * Insist on a nodelist of one node only
2672 */
2673 if (nodelist) {
2674 char *rest = nodelist;
2675 while (isdigit(*rest))
2676 rest++;
2677 if (*rest)
2678 goto out;
2679 }
2680 break;
2681 case MPOL_INTERLEAVE:
2682 /*
2683 * Default to online nodes with memory if no nodelist
2684 */
2685 if (!nodelist)
2686 nodes = node_states[N_MEMORY];
2687 break;
2688 case MPOL_LOCAL:
2689 /*
2690 * Don't allow a nodelist; mpol_new() checks flags
2691 */
2692 if (nodelist)
2693 goto out;
2694 mode = MPOL_PREFERRED;
2695 break;
2696 case MPOL_DEFAULT:
2697 /*
2698 * Insist on a empty nodelist
2699 */
2700 if (!nodelist)
2701 err = 0;
2702 goto out;
2703 case MPOL_BIND:
2704 /*
2705 * Insist on a nodelist
2706 */
2707 if (!nodelist)
2708 goto out;
2709 }
2710
2711 mode_flags = 0;
2712 if (flags) {
2713 /*
2714 * Currently, we only support two mutually exclusive
2715 * mode flags.
2716 */
2717 if (!strcmp(flags, "static"))
2718 mode_flags |= MPOL_F_STATIC_NODES;
2719 else if (!strcmp(flags, "relative"))
2720 mode_flags |= MPOL_F_RELATIVE_NODES;
2721 else
2722 goto out;
2723 }
2724
2725 new = mpol_new(mode, mode_flags, &nodes);
2726 if (IS_ERR(new))
2727 goto out;
2728
2729 /*
2730 * Save nodes for mpol_to_str() to show the tmpfs mount options
2731 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2732 */
2733 if (mode != MPOL_PREFERRED)
2734 new->v.nodes = nodes;
2735 else if (nodelist)
2736 new->v.preferred_node = first_node(nodes);
2737 else
2738 new->flags |= MPOL_F_LOCAL;
2739
2740 /*
2741 * Save nodes for contextualization: this will be used to "clone"
2742 * the mempolicy in a specific context [cpuset] at a later time.
2743 */
2744 new->w.user_nodemask = nodes;
2745
2746 err = 0;
2747
2748 out:
2749 /* Restore string for error message */
2750 if (nodelist)
2751 *--nodelist = ':';
2752 if (flags)
2753 *--flags = '=';
2754 if (!err)
2755 *mpol = new;
2756 return err;
2757 }
2758 #endif /* CONFIG_TMPFS */
2759
2760 /**
2761 * mpol_to_str - format a mempolicy structure for printing
2762 * @buffer: to contain formatted mempolicy string
2763 * @maxlen: length of @buffer
2764 * @pol: pointer to mempolicy to be formatted
2765 *
2766 * Convert @pol into a string. If @buffer is too short, truncate the string.
2767 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2768 * longest flag, "relative", and to display at least a few node ids.
2769 */
2770 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2771 {
2772 char *p = buffer;
2773 nodemask_t nodes = NODE_MASK_NONE;
2774 unsigned short mode = MPOL_DEFAULT;
2775 unsigned short flags = 0;
2776
2777 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2778 mode = pol->mode;
2779 flags = pol->flags;
2780 }
2781
2782 switch (mode) {
2783 case MPOL_DEFAULT:
2784 break;
2785 case MPOL_PREFERRED:
2786 if (flags & MPOL_F_LOCAL)
2787 mode = MPOL_LOCAL;
2788 else
2789 node_set(pol->v.preferred_node, nodes);
2790 break;
2791 case MPOL_BIND:
2792 case MPOL_INTERLEAVE:
2793 nodes = pol->v.nodes;
2794 break;
2795 default:
2796 WARN_ON_ONCE(1);
2797 snprintf(p, maxlen, "unknown");
2798 return;
2799 }
2800
2801 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2802
2803 if (flags & MPOL_MODE_FLAGS) {
2804 p += snprintf(p, buffer + maxlen - p, "=");
2805
2806 /*
2807 * Currently, the only defined flags are mutually exclusive
2808 */
2809 if (flags & MPOL_F_STATIC_NODES)
2810 p += snprintf(p, buffer + maxlen - p, "static");
2811 else if (flags & MPOL_F_RELATIVE_NODES)
2812 p += snprintf(p, buffer + maxlen - p, "relative");
2813 }
2814
2815 if (!nodes_empty(nodes))
2816 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2817 nodemask_pr_args(&nodes));
2818 }