selinux: silence unused variable warning
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/kaiser.h>
62 #include <linux/delayacct.h>
63 #include <linux/taskstats_kern.h>
64 #include <linux/random.h>
65 #include <linux/tty.h>
66 #include <linux/blkdev.h>
67 #include <linux/fs_struct.h>
68 #include <linux/magic.h>
69 #include <linux/perf_event.h>
70 #include <linux/posix-timers.h>
71 #include <linux/user-return-notifier.h>
72 #include <linux/oom.h>
73 #include <linux/khugepaged.h>
74 #include <linux/signalfd.h>
75 #include <linux/uprobes.h>
76 #include <linux/aio.h>
77 #include <linux/compiler.h>
78 #include <linux/sysctl.h>
79 #include <linux/kcov.h>
80
81 #include <asm/pgtable.h>
82 #include <asm/pgalloc.h>
83 #include <asm/uaccess.h>
84 #include <asm/mmu_context.h>
85 #include <asm/cacheflush.h>
86 #include <asm/tlbflush.h>
87
88 #include <trace/events/sched.h>
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/task.h>
92
93 #ifdef CONFIG_SECURITY_DEFEX
94 #include <linux/defex.h>
95 #endif
96
97 /*
98 * Minimum number of threads to boot the kernel
99 */
100 #define MIN_THREADS 20
101
102 /*
103 * Maximum number of threads
104 */
105 #define MAX_THREADS FUTEX_TID_MASK
106
107 /*
108 * Protected counters by write_lock_irq(&tasklist_lock)
109 */
110 unsigned long total_forks; /* Handle normal Linux uptimes. */
111 int nr_threads; /* The idle threads do not count.. */
112
113 int max_threads; /* tunable limit on nr_threads */
114
115 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
116
117 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
118
119 #ifdef CONFIG_PROVE_RCU
120 int lockdep_tasklist_lock_is_held(void)
121 {
122 return lockdep_is_held(&tasklist_lock);
123 }
124 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
125 #endif /* #ifdef CONFIG_PROVE_RCU */
126
127 int nr_processes(void)
128 {
129 int cpu;
130 int total = 0;
131
132 for_each_possible_cpu(cpu)
133 total += per_cpu(process_counts, cpu);
134
135 return total;
136 }
137
138 void __weak arch_release_task_struct(struct task_struct *tsk)
139 {
140 }
141
142 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
143 static struct kmem_cache *task_struct_cachep;
144
145 static inline struct task_struct *alloc_task_struct_node(int node)
146 {
147 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
148 }
149
150 static inline void free_task_struct(struct task_struct *tsk)
151 {
152 kmem_cache_free(task_struct_cachep, tsk);
153 }
154 #endif
155
156 void __weak arch_release_thread_stack(unsigned long *stack)
157 {
158 }
159
160 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
161
162 /*
163 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
164 * kmemcache based allocator.
165 */
166 # if THREAD_SIZE >= PAGE_SIZE
167 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
168 int node)
169 {
170 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
171 THREAD_SIZE_ORDER);
172
173 return page ? page_address(page) : NULL;
174 }
175
176 static inline void free_thread_stack(unsigned long *stack)
177 {
178 struct page *page = virt_to_page(stack);
179
180 kaiser_unmap_thread_stack(stack);
181 __free_kmem_pages(page, THREAD_SIZE_ORDER);
182 }
183 # else
184 static struct kmem_cache *thread_stack_cache;
185
186 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
187 int node)
188 {
189 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
190 }
191
192 static void free_thread_stack(unsigned long *stack)
193 {
194 kmem_cache_free(thread_stack_cache, stack);
195 }
196
197 void thread_stack_cache_init(void)
198 {
199 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
200 THREAD_SIZE, 0, NULL);
201 BUG_ON(thread_stack_cache == NULL);
202 }
203 # endif
204 #endif
205
206 /* SLAB cache for signal_struct structures (tsk->signal) */
207 static struct kmem_cache *signal_cachep;
208
209 /* SLAB cache for sighand_struct structures (tsk->sighand) */
210 struct kmem_cache *sighand_cachep;
211
212 /* SLAB cache for files_struct structures (tsk->files) */
213 struct kmem_cache *files_cachep;
214
215 /* SLAB cache for fs_struct structures (tsk->fs) */
216 struct kmem_cache *fs_cachep;
217
218 /* SLAB cache for vm_area_struct structures */
219 struct kmem_cache *vm_area_cachep;
220
221 /* SLAB cache for mm_struct structures (tsk->mm) */
222 static struct kmem_cache *mm_cachep;
223
224 static void account_kernel_stack(unsigned long *stack, int account)
225 {
226 struct zone *zone = page_zone(virt_to_page(stack));
227
228 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
229 }
230
231 void free_task(struct task_struct *tsk)
232 {
233 account_kernel_stack(tsk->stack, -1);
234 arch_release_thread_stack(tsk->stack);
235 free_thread_stack(tsk->stack);
236 rt_mutex_debug_task_free(tsk);
237 ftrace_graph_exit_task(tsk);
238 put_seccomp_filter(tsk);
239 arch_release_task_struct(tsk);
240 free_task_struct(tsk);
241 }
242 EXPORT_SYMBOL(free_task);
243
244 static inline void free_signal_struct(struct signal_struct *sig)
245 {
246 taskstats_tgid_free(sig);
247 sched_autogroup_exit(sig);
248 kmem_cache_free(signal_cachep, sig);
249 }
250
251 static inline void put_signal_struct(struct signal_struct *sig)
252 {
253 if (atomic_dec_and_test(&sig->sigcnt))
254 free_signal_struct(sig);
255 }
256
257 void __put_task_struct(struct task_struct *tsk)
258 {
259 WARN_ON(!tsk->exit_state);
260 WARN_ON(atomic_read(&tsk->usage));
261 WARN_ON(tsk == current);
262
263 cgroup_free(tsk);
264 task_numa_free(tsk);
265 security_task_free(tsk);
266 exit_creds(tsk);
267 delayacct_tsk_free(tsk);
268 put_signal_struct(tsk->signal);
269
270 if (!profile_handoff_task(tsk))
271 free_task(tsk);
272 }
273 EXPORT_SYMBOL_GPL(__put_task_struct);
274
275 void __init __weak arch_task_cache_init(void) { }
276
277 /*
278 * set_max_threads
279 */
280 static void set_max_threads(unsigned int max_threads_suggested)
281 {
282 u64 threads;
283
284 /*
285 * The number of threads shall be limited such that the thread
286 * structures may only consume a small part of the available memory.
287 */
288 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
289 threads = MAX_THREADS;
290 else
291 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
292 (u64) THREAD_SIZE * 8UL);
293
294 if (threads > max_threads_suggested)
295 threads = max_threads_suggested;
296
297 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
298 }
299
300 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
301 /* Initialized by the architecture: */
302 int arch_task_struct_size __read_mostly;
303 #endif
304
305 void __init fork_init(void)
306 {
307 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
308 #ifndef ARCH_MIN_TASKALIGN
309 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
310 #endif
311 /* create a slab on which task_structs can be allocated */
312 task_struct_cachep =
313 kmem_cache_create("task_struct", arch_task_struct_size,
314 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
315 #endif
316
317 /* do the arch specific task caches init */
318 arch_task_cache_init();
319
320 set_max_threads(MAX_THREADS);
321
322 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
323 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
324 init_task.signal->rlim[RLIMIT_SIGPENDING] =
325 init_task.signal->rlim[RLIMIT_NPROC];
326 }
327
328 int __weak arch_dup_task_struct(struct task_struct *dst,
329 struct task_struct *src)
330 {
331 *dst = *src;
332 return 0;
333 }
334
335 void set_task_stack_end_magic(struct task_struct *tsk)
336 {
337 unsigned long *stackend;
338
339 stackend = end_of_stack(tsk);
340 *stackend = STACK_END_MAGIC; /* for overflow detection */
341 }
342
343 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
344 {
345 struct task_struct *tsk;
346 unsigned long *stack;
347 int err;
348
349 if (node == NUMA_NO_NODE)
350 node = tsk_fork_get_node(orig);
351 tsk = alloc_task_struct_node(node);
352 if (!tsk)
353 return NULL;
354
355 stack = alloc_thread_stack_node(tsk, node);
356 if (!stack)
357 goto free_tsk;
358
359 err = arch_dup_task_struct(tsk, orig);
360 if (err)
361 goto free_stack;
362
363 tsk->stack = stack;
364
365 err = kaiser_map_thread_stack(tsk->stack);
366 if (err)
367 goto free_stack;
368 #ifdef CONFIG_SECCOMP
369 /*
370 * We must handle setting up seccomp filters once we're under
371 * the sighand lock in case orig has changed between now and
372 * then. Until then, filter must be NULL to avoid messing up
373 * the usage counts on the error path calling free_task.
374 */
375 tsk->seccomp.filter = NULL;
376 #endif
377
378 setup_thread_stack(tsk, orig);
379 clear_user_return_notifier(tsk);
380 clear_tsk_need_resched(tsk);
381 set_task_stack_end_magic(tsk);
382
383 #ifdef CONFIG_CC_STACKPROTECTOR
384 tsk->stack_canary = get_random_long();
385 #endif
386
387 /*
388 * One for us, one for whoever does the "release_task()" (usually
389 * parent)
390 */
391 atomic_set(&tsk->usage, 2);
392 #ifdef CONFIG_BLK_DEV_IO_TRACE
393 tsk->btrace_seq = 0;
394 #endif
395 tsk->splice_pipe = NULL;
396 tsk->task_frag.page = NULL;
397 tsk->wake_q.next = NULL;
398
399 account_kernel_stack(stack, 1);
400
401 kcov_task_init(tsk);
402
403 return tsk;
404
405 free_stack:
406 free_thread_stack(stack);
407 free_tsk:
408 free_task_struct(tsk);
409 return NULL;
410 }
411
412 #ifdef CONFIG_MMU
413 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
414 {
415 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
416 struct rb_node **rb_link, *rb_parent;
417 int retval;
418 unsigned long charge;
419
420 uprobe_start_dup_mmap();
421 down_write(&oldmm->mmap_sem);
422 flush_cache_dup_mm(oldmm);
423 uprobe_dup_mmap(oldmm, mm);
424 /*
425 * Not linked in yet - no deadlock potential:
426 */
427 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
428
429 /* No ordering required: file already has been exposed. */
430 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
431
432 mm->total_vm = oldmm->total_vm;
433 mm->shared_vm = oldmm->shared_vm;
434 mm->exec_vm = oldmm->exec_vm;
435 mm->stack_vm = oldmm->stack_vm;
436
437 rb_link = &mm->mm_rb.rb_node;
438 rb_parent = NULL;
439 pprev = &mm->mmap;
440 retval = ksm_fork(mm, oldmm);
441 if (retval)
442 goto out;
443 retval = khugepaged_fork(mm, oldmm);
444 if (retval)
445 goto out;
446
447 prev = NULL;
448 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
449 struct file *file;
450
451 if (mpnt->vm_flags & VM_DONTCOPY) {
452 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
453 -vma_pages(mpnt));
454 continue;
455 }
456 charge = 0;
457 if (mpnt->vm_flags & VM_ACCOUNT) {
458 unsigned long len = vma_pages(mpnt);
459
460 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
461 goto fail_nomem;
462 charge = len;
463 }
464 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
465 if (!tmp)
466 goto fail_nomem;
467 *tmp = *mpnt;
468 INIT_LIST_HEAD(&tmp->anon_vma_chain);
469 retval = vma_dup_policy(mpnt, tmp);
470 if (retval)
471 goto fail_nomem_policy;
472 tmp->vm_mm = mm;
473 if (anon_vma_fork(tmp, mpnt))
474 goto fail_nomem_anon_vma_fork;
475 tmp->vm_flags &=
476 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
477 tmp->vm_next = tmp->vm_prev = NULL;
478 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
479 file = tmp->vm_file;
480 if (file) {
481 struct inode *inode = file_inode(file);
482 struct address_space *mapping = file->f_mapping;
483
484 get_file(file);
485 if (tmp->vm_flags & VM_DENYWRITE)
486 atomic_dec(&inode->i_writecount);
487 i_mmap_lock_write(mapping);
488 if (tmp->vm_flags & VM_SHARED)
489 atomic_inc(&mapping->i_mmap_writable);
490 flush_dcache_mmap_lock(mapping);
491 /* insert tmp into the share list, just after mpnt */
492 vma_interval_tree_insert_after(tmp, mpnt,
493 &mapping->i_mmap);
494 flush_dcache_mmap_unlock(mapping);
495 i_mmap_unlock_write(mapping);
496 }
497
498 /*
499 * Clear hugetlb-related page reserves for children. This only
500 * affects MAP_PRIVATE mappings. Faults generated by the child
501 * are not guaranteed to succeed, even if read-only
502 */
503 if (is_vm_hugetlb_page(tmp))
504 reset_vma_resv_huge_pages(tmp);
505
506 /*
507 * Link in the new vma and copy the page table entries.
508 */
509 *pprev = tmp;
510 pprev = &tmp->vm_next;
511 tmp->vm_prev = prev;
512 prev = tmp;
513
514 __vma_link_rb(mm, tmp, rb_link, rb_parent);
515 rb_link = &tmp->vm_rb.rb_right;
516 rb_parent = &tmp->vm_rb;
517
518 mm->map_count++;
519 retval = copy_page_range(mm, oldmm, mpnt);
520
521 if (tmp->vm_ops && tmp->vm_ops->open)
522 tmp->vm_ops->open(tmp);
523
524 if (retval)
525 goto out;
526 }
527 /* a new mm has just been created */
528 arch_dup_mmap(oldmm, mm);
529 retval = 0;
530 out:
531 up_write(&mm->mmap_sem);
532 flush_tlb_mm(oldmm);
533 up_write(&oldmm->mmap_sem);
534 uprobe_end_dup_mmap();
535 return retval;
536 fail_nomem_anon_vma_fork:
537 mpol_put(vma_policy(tmp));
538 fail_nomem_policy:
539 kmem_cache_free(vm_area_cachep, tmp);
540 fail_nomem:
541 retval = -ENOMEM;
542 vm_unacct_memory(charge);
543 goto out;
544 }
545
546 static inline int mm_alloc_pgd(struct mm_struct *mm)
547 {
548 mm->pgd = pgd_alloc(mm);
549 if (unlikely(!mm->pgd))
550 return -ENOMEM;
551 return 0;
552 }
553
554 static inline void mm_free_pgd(struct mm_struct *mm)
555 {
556 pgd_free(mm, mm->pgd);
557 }
558 #else
559 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
560 {
561 down_write(&oldmm->mmap_sem);
562 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
563 up_write(&oldmm->mmap_sem);
564 return 0;
565 }
566 #define mm_alloc_pgd(mm) (0)
567 #define mm_free_pgd(mm)
568 #endif /* CONFIG_MMU */
569
570 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
571
572 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
573 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
574
575 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
576
577 static int __init coredump_filter_setup(char *s)
578 {
579 default_dump_filter =
580 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
581 MMF_DUMP_FILTER_MASK;
582 return 1;
583 }
584
585 __setup("coredump_filter=", coredump_filter_setup);
586
587 #include <linux/init_task.h>
588
589 static void mm_init_aio(struct mm_struct *mm)
590 {
591 #ifdef CONFIG_AIO
592 spin_lock_init(&mm->ioctx_lock);
593 mm->ioctx_table = NULL;
594 #endif
595 }
596
597 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
598 {
599 #ifdef CONFIG_MEMCG
600 mm->owner = p;
601 #endif
602 }
603
604 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
605 struct user_namespace *user_ns)
606 {
607 mm->mmap = NULL;
608 mm->mm_rb = RB_ROOT;
609 mm->vmacache_seqnum = 0;
610 atomic_set(&mm->mm_users, 1);
611 atomic_set(&mm->mm_count, 1);
612 init_rwsem(&mm->mmap_sem);
613 INIT_LIST_HEAD(&mm->mmlist);
614 mm->core_state = NULL;
615 atomic_long_set(&mm->nr_ptes, 0);
616 mm_nr_pmds_init(mm);
617 mm->map_count = 0;
618 mm->locked_vm = 0;
619 mm->pinned_vm = 0;
620 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
621 spin_lock_init(&mm->page_table_lock);
622 mm_init_cpumask(mm);
623 mm_init_aio(mm);
624 mm_init_owner(mm, p);
625 mmu_notifier_mm_init(mm);
626 clear_tlb_flush_pending(mm);
627 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
628 mm->pmd_huge_pte = NULL;
629 #endif
630
631 if (current->mm) {
632 mm->flags = current->mm->flags & MMF_INIT_MASK;
633 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
634 } else {
635 mm->flags = default_dump_filter;
636 mm->def_flags = 0;
637 }
638
639 if (mm_alloc_pgd(mm))
640 goto fail_nopgd;
641
642 if (init_new_context(p, mm))
643 goto fail_nocontext;
644
645 mm->user_ns = get_user_ns(user_ns);
646 return mm;
647
648 fail_nocontext:
649 mm_free_pgd(mm);
650 fail_nopgd:
651 free_mm(mm);
652 return NULL;
653 }
654
655 static void check_mm(struct mm_struct *mm)
656 {
657 int i;
658
659 for (i = 0; i < NR_MM_COUNTERS; i++) {
660 long x = atomic_long_read(&mm->rss_stat.count[i]);
661
662 if (unlikely(x))
663 printk(KERN_ALERT "BUG: Bad rss-counter state "
664 "mm:%p idx:%d val:%ld\n", mm, i, x);
665 }
666
667 if (atomic_long_read(&mm->nr_ptes))
668 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
669 atomic_long_read(&mm->nr_ptes));
670 if (mm_nr_pmds(mm))
671 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
672 mm_nr_pmds(mm));
673
674 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
675 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
676 #endif
677 }
678
679 /*
680 * Allocate and initialize an mm_struct.
681 */
682 struct mm_struct *mm_alloc(void)
683 {
684 struct mm_struct *mm;
685
686 mm = allocate_mm();
687 if (!mm)
688 return NULL;
689
690 memset(mm, 0, sizeof(*mm));
691 return mm_init(mm, current, current_user_ns());
692 }
693
694 /*
695 * Called when the last reference to the mm
696 * is dropped: either by a lazy thread or by
697 * mmput. Free the page directory and the mm.
698 */
699 void __mmdrop(struct mm_struct *mm)
700 {
701 BUG_ON(mm == &init_mm);
702 mm_free_pgd(mm);
703 destroy_context(mm);
704 mmu_notifier_mm_destroy(mm);
705 check_mm(mm);
706 put_user_ns(mm->user_ns);
707 free_mm(mm);
708 }
709 EXPORT_SYMBOL_GPL(__mmdrop);
710
711 static inline void __mmput(struct mm_struct *mm)
712 {
713 VM_BUG_ON(atomic_read(&mm->mm_users));
714
715 uprobe_clear_state(mm);
716 exit_aio(mm);
717 ksm_exit(mm);
718 khugepaged_exit(mm); /* must run before exit_mmap */
719 exit_mmap(mm);
720 set_mm_exe_file(mm, NULL);
721 if (!list_empty(&mm->mmlist)) {
722 spin_lock(&mmlist_lock);
723 list_del(&mm->mmlist);
724 spin_unlock(&mmlist_lock);
725 }
726 if (mm->binfmt)
727 module_put(mm->binfmt->module);
728 mmdrop(mm);
729 }
730
731 /*
732 * Decrement the use count and release all resources for an mm.
733 */
734 void mmput(struct mm_struct *mm)
735 {
736 might_sleep();
737
738 if (atomic_dec_and_test(&mm->mm_users))
739 __mmput(mm);
740 }
741 EXPORT_SYMBOL_GPL(mmput);
742
743 static void mmput_async_fn(struct work_struct *work)
744 {
745 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
746 __mmput(mm);
747 }
748
749 void mmput_async(struct mm_struct *mm)
750 {
751 if (atomic_dec_and_test(&mm->mm_users)) {
752 INIT_WORK(&mm->async_put_work, mmput_async_fn);
753 schedule_work(&mm->async_put_work);
754 }
755 }
756
757 /**
758 * set_mm_exe_file - change a reference to the mm's executable file
759 *
760 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
761 *
762 * Main users are mmput() and sys_execve(). Callers prevent concurrent
763 * invocations: in mmput() nobody alive left, in execve task is single
764 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
765 * mm->exe_file, but does so without using set_mm_exe_file() in order
766 * to do avoid the need for any locks.
767 */
768 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
769 {
770 struct file *old_exe_file;
771
772 /*
773 * It is safe to dereference the exe_file without RCU as
774 * this function is only called if nobody else can access
775 * this mm -- see comment above for justification.
776 */
777 old_exe_file = rcu_dereference_raw(mm->exe_file);
778
779 if (new_exe_file)
780 get_file(new_exe_file);
781 rcu_assign_pointer(mm->exe_file, new_exe_file);
782 if (old_exe_file)
783 fput(old_exe_file);
784 }
785
786 /**
787 * get_mm_exe_file - acquire a reference to the mm's executable file
788 *
789 * Returns %NULL if mm has no associated executable file.
790 * User must release file via fput().
791 */
792 struct file *get_mm_exe_file(struct mm_struct *mm)
793 {
794 struct file *exe_file;
795
796 rcu_read_lock();
797 exe_file = rcu_dereference(mm->exe_file);
798 if (exe_file && !get_file_rcu(exe_file))
799 exe_file = NULL;
800 rcu_read_unlock();
801 return exe_file;
802 }
803 EXPORT_SYMBOL(get_mm_exe_file);
804
805 /**
806 * get_task_exe_file - acquire a reference to the task's executable file
807 *
808 * Returns %NULL if task's mm (if any) has no associated executable file or
809 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
810 * User must release file via fput().
811 */
812 struct file *get_task_exe_file(struct task_struct *task)
813 {
814 struct file *exe_file = NULL;
815 struct mm_struct *mm;
816
817 task_lock(task);
818 mm = task->mm;
819 if (mm) {
820 if (!(task->flags & PF_KTHREAD))
821 exe_file = get_mm_exe_file(mm);
822 }
823 task_unlock(task);
824 return exe_file;
825 }
826 EXPORT_SYMBOL(get_task_exe_file);
827
828 /**
829 * get_task_mm - acquire a reference to the task's mm
830 *
831 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
832 * this kernel workthread has transiently adopted a user mm with use_mm,
833 * to do its AIO) is not set and if so returns a reference to it, after
834 * bumping up the use count. User must release the mm via mmput()
835 * after use. Typically used by /proc and ptrace.
836 */
837 struct mm_struct *get_task_mm(struct task_struct *task)
838 {
839 struct mm_struct *mm;
840
841 task_lock(task);
842 mm = task->mm;
843 if (mm) {
844 if (task->flags & PF_KTHREAD)
845 mm = NULL;
846 else
847 atomic_inc(&mm->mm_users);
848 }
849 task_unlock(task);
850 return mm;
851 }
852 EXPORT_SYMBOL_GPL(get_task_mm);
853
854 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
855 {
856 struct mm_struct *mm;
857 int err;
858
859 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
860 if (err)
861 return ERR_PTR(err);
862
863 mm = get_task_mm(task);
864 if (mm && mm != current->mm &&
865 !ptrace_may_access(task, mode)) {
866 mmput(mm);
867 mm = ERR_PTR(-EACCES);
868 }
869 mutex_unlock(&task->signal->cred_guard_mutex);
870
871 return mm;
872 }
873
874 static void complete_vfork_done(struct task_struct *tsk)
875 {
876 struct completion *vfork;
877
878 task_lock(tsk);
879 vfork = tsk->vfork_done;
880 if (likely(vfork)) {
881 tsk->vfork_done = NULL;
882 complete(vfork);
883 }
884 task_unlock(tsk);
885 }
886
887 static int wait_for_vfork_done(struct task_struct *child,
888 struct completion *vfork)
889 {
890 int killed;
891
892 freezer_do_not_count();
893 killed = wait_for_completion_killable(vfork);
894 freezer_count();
895
896 if (killed) {
897 task_lock(child);
898 child->vfork_done = NULL;
899 task_unlock(child);
900 }
901
902 put_task_struct(child);
903 return killed;
904 }
905
906 /* Please note the differences between mmput and mm_release.
907 * mmput is called whenever we stop holding onto a mm_struct,
908 * error success whatever.
909 *
910 * mm_release is called after a mm_struct has been removed
911 * from the current process.
912 *
913 * This difference is important for error handling, when we
914 * only half set up a mm_struct for a new process and need to restore
915 * the old one. Because we mmput the new mm_struct before
916 * restoring the old one. . .
917 * Eric Biederman 10 January 1998
918 */
919 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
920 {
921 /* Get rid of any futexes when releasing the mm */
922 #ifdef CONFIG_FUTEX
923 if (unlikely(tsk->robust_list)) {
924 exit_robust_list(tsk);
925 tsk->robust_list = NULL;
926 }
927 #ifdef CONFIG_COMPAT
928 if (unlikely(tsk->compat_robust_list)) {
929 compat_exit_robust_list(tsk);
930 tsk->compat_robust_list = NULL;
931 }
932 #endif
933 if (unlikely(!list_empty(&tsk->pi_state_list)))
934 exit_pi_state_list(tsk);
935 #endif
936
937 uprobe_free_utask(tsk);
938
939 /* Get rid of any cached register state */
940 deactivate_mm(tsk, mm);
941
942 /*
943 * Signal userspace if we're not exiting with a core dump
944 * because we want to leave the value intact for debugging
945 * purposes.
946 */
947 if (tsk->clear_child_tid) {
948 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
949 atomic_read(&mm->mm_users) > 1) {
950 /*
951 * We don't check the error code - if userspace has
952 * not set up a proper pointer then tough luck.
953 */
954 put_user(0, tsk->clear_child_tid);
955 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
956 1, NULL, NULL, 0);
957 }
958 tsk->clear_child_tid = NULL;
959 }
960
961 /*
962 * All done, finally we can wake up parent and return this mm to him.
963 * Also kthread_stop() uses this completion for synchronization.
964 */
965 if (tsk->vfork_done)
966 complete_vfork_done(tsk);
967 }
968
969 /*
970 * Allocate a new mm structure and copy contents from the
971 * mm structure of the passed in task structure.
972 */
973 static struct mm_struct *dup_mm(struct task_struct *tsk)
974 {
975 struct mm_struct *mm, *oldmm = current->mm;
976 int err;
977
978 mm = allocate_mm();
979 if (!mm)
980 goto fail_nomem;
981
982 memcpy(mm, oldmm, sizeof(*mm));
983
984 if (!mm_init(mm, tsk, mm->user_ns))
985 goto fail_nomem;
986
987 err = dup_mmap(mm, oldmm);
988 if (err)
989 goto free_pt;
990
991 mm->hiwater_rss = get_mm_rss(mm);
992 mm->hiwater_vm = mm->total_vm;
993
994 if (mm->binfmt && !try_module_get(mm->binfmt->module))
995 goto free_pt;
996
997 return mm;
998
999 free_pt:
1000 /* don't put binfmt in mmput, we haven't got module yet */
1001 mm->binfmt = NULL;
1002 mmput(mm);
1003
1004 fail_nomem:
1005 return NULL;
1006 }
1007
1008 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1009 {
1010 struct mm_struct *mm, *oldmm;
1011 int retval;
1012
1013 tsk->min_flt = tsk->maj_flt = 0;
1014 tsk->nvcsw = tsk->nivcsw = 0;
1015 #ifdef CONFIG_DETECT_HUNG_TASK
1016 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1017 #endif
1018
1019 tsk->mm = NULL;
1020 tsk->active_mm = NULL;
1021
1022 /*
1023 * Are we cloning a kernel thread?
1024 *
1025 * We need to steal a active VM for that..
1026 */
1027 oldmm = current->mm;
1028 if (!oldmm)
1029 return 0;
1030
1031 /* initialize the new vmacache entries */
1032 vmacache_flush(tsk);
1033
1034 if (clone_flags & CLONE_VM) {
1035 atomic_inc(&oldmm->mm_users);
1036 mm = oldmm;
1037 goto good_mm;
1038 }
1039
1040 retval = -ENOMEM;
1041 mm = dup_mm(tsk);
1042 if (!mm)
1043 goto fail_nomem;
1044
1045 good_mm:
1046 tsk->mm = mm;
1047 tsk->active_mm = mm;
1048 return 0;
1049
1050 fail_nomem:
1051 return retval;
1052 }
1053
1054 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1055 {
1056 struct fs_struct *fs = current->fs;
1057 if (clone_flags & CLONE_FS) {
1058 /* tsk->fs is already what we want */
1059 spin_lock(&fs->lock);
1060 if (fs->in_exec) {
1061 spin_unlock(&fs->lock);
1062 return -EAGAIN;
1063 }
1064 fs->users++;
1065 spin_unlock(&fs->lock);
1066 return 0;
1067 }
1068 tsk->fs = copy_fs_struct(fs);
1069 if (!tsk->fs)
1070 return -ENOMEM;
1071 return 0;
1072 }
1073
1074 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1075 {
1076 struct files_struct *oldf, *newf;
1077 int error = 0;
1078
1079 /*
1080 * A background process may not have any files ...
1081 */
1082 oldf = current->files;
1083 if (!oldf)
1084 goto out;
1085
1086 if (clone_flags & CLONE_FILES) {
1087 atomic_inc(&oldf->count);
1088 goto out;
1089 }
1090
1091 newf = dup_fd(oldf, &error);
1092 if (!newf)
1093 goto out;
1094
1095 tsk->files = newf;
1096 error = 0;
1097 out:
1098 return error;
1099 }
1100
1101 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1102 {
1103 #ifdef CONFIG_BLOCK
1104 struct io_context *ioc = current->io_context;
1105 struct io_context *new_ioc;
1106
1107 if (!ioc)
1108 return 0;
1109 /*
1110 * Share io context with parent, if CLONE_IO is set
1111 */
1112 if (clone_flags & CLONE_IO) {
1113 ioc_task_link(ioc);
1114 tsk->io_context = ioc;
1115 } else if (ioprio_valid(ioc->ioprio)) {
1116 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1117 if (unlikely(!new_ioc))
1118 return -ENOMEM;
1119
1120 new_ioc->ioprio = ioc->ioprio;
1121 put_io_context(new_ioc);
1122 }
1123 #endif
1124 return 0;
1125 }
1126
1127 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1128 {
1129 struct sighand_struct *sig;
1130
1131 if (clone_flags & CLONE_SIGHAND) {
1132 atomic_inc(&current->sighand->count);
1133 return 0;
1134 }
1135 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1136 rcu_assign_pointer(tsk->sighand, sig);
1137 if (!sig)
1138 return -ENOMEM;
1139
1140 atomic_set(&sig->count, 1);
1141 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1142 return 0;
1143 }
1144
1145 void __cleanup_sighand(struct sighand_struct *sighand)
1146 {
1147 if (atomic_dec_and_test(&sighand->count)) {
1148 signalfd_cleanup(sighand);
1149 /*
1150 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1151 * without an RCU grace period, see __lock_task_sighand().
1152 */
1153 kmem_cache_free(sighand_cachep, sighand);
1154 }
1155 }
1156
1157 /*
1158 * Initialize POSIX timer handling for a thread group.
1159 */
1160 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1161 {
1162 unsigned long cpu_limit;
1163
1164 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1165 if (cpu_limit != RLIM_INFINITY) {
1166 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1167 sig->cputimer.running = true;
1168 }
1169
1170 /* The timer lists. */
1171 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1172 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1173 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1174 }
1175
1176 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1177 {
1178 struct signal_struct *sig;
1179
1180 if (clone_flags & CLONE_THREAD)
1181 return 0;
1182
1183 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1184 tsk->signal = sig;
1185 if (!sig)
1186 return -ENOMEM;
1187
1188 sig->nr_threads = 1;
1189 atomic_set(&sig->live, 1);
1190 atomic_set(&sig->sigcnt, 1);
1191
1192 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1193 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1194 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1195
1196 init_waitqueue_head(&sig->wait_chldexit);
1197 sig->curr_target = tsk;
1198 init_sigpending(&sig->shared_pending);
1199 INIT_LIST_HEAD(&sig->posix_timers);
1200 seqlock_init(&sig->stats_lock);
1201 prev_cputime_init(&sig->prev_cputime);
1202
1203 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1204 sig->real_timer.function = it_real_fn;
1205
1206 task_lock(current->group_leader);
1207 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1208 task_unlock(current->group_leader);
1209
1210 posix_cpu_timers_init_group(sig);
1211
1212 tty_audit_fork(sig);
1213 sched_autogroup_fork(sig);
1214
1215 sig->oom_score_adj = current->signal->oom_score_adj;
1216 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1217
1218 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1219 current->signal->is_child_subreaper;
1220
1221 mutex_init(&sig->cred_guard_mutex);
1222
1223 return 0;
1224 }
1225
1226 static void copy_seccomp(struct task_struct *p)
1227 {
1228 #ifdef CONFIG_SECCOMP
1229 /*
1230 * Must be called with sighand->lock held, which is common to
1231 * all threads in the group. Holding cred_guard_mutex is not
1232 * needed because this new task is not yet running and cannot
1233 * be racing exec.
1234 */
1235 assert_spin_locked(&current->sighand->siglock);
1236
1237 /* Ref-count the new filter user, and assign it. */
1238 get_seccomp_filter(current);
1239 p->seccomp = current->seccomp;
1240
1241 /*
1242 * Explicitly enable no_new_privs here in case it got set
1243 * between the task_struct being duplicated and holding the
1244 * sighand lock. The seccomp state and nnp must be in sync.
1245 */
1246 if (task_no_new_privs(current))
1247 task_set_no_new_privs(p);
1248
1249 /*
1250 * If the parent gained a seccomp mode after copying thread
1251 * flags and between before we held the sighand lock, we have
1252 * to manually enable the seccomp thread flag here.
1253 */
1254 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1255 set_tsk_thread_flag(p, TIF_SECCOMP);
1256 #endif
1257 }
1258
1259 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1260 {
1261 current->clear_child_tid = tidptr;
1262
1263 return task_pid_vnr(current);
1264 }
1265
1266 static void rt_mutex_init_task(struct task_struct *p)
1267 {
1268 raw_spin_lock_init(&p->pi_lock);
1269 #ifdef CONFIG_RT_MUTEXES
1270 p->pi_waiters = RB_ROOT;
1271 p->pi_waiters_leftmost = NULL;
1272 p->pi_blocked_on = NULL;
1273 #endif
1274 }
1275
1276 /*
1277 * Initialize POSIX timer handling for a single task.
1278 */
1279 static void posix_cpu_timers_init(struct task_struct *tsk)
1280 {
1281 tsk->cputime_expires.prof_exp = 0;
1282 tsk->cputime_expires.virt_exp = 0;
1283 tsk->cputime_expires.sched_exp = 0;
1284 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1285 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1286 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1287 }
1288
1289 #ifdef CONFIG_RKP_KDP
1290 void rkp_assign_pgd(struct task_struct *p)
1291 {
1292 u64 pgd;
1293 pgd = (u64)(p->mm ? p->mm->pgd :swapper_pg_dir);
1294 rkp_call(RKP_CMDID(0x43),(u64)p->cred, (u64)pgd,0,0,0);
1295 }
1296 #endif /*CONFIG_RKP_KDP*/
1297
1298 static inline void
1299 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1300 {
1301 task->pids[type].pid = pid;
1302 }
1303
1304 /*
1305 * This creates a new process as a copy of the old one,
1306 * but does not actually start it yet.
1307 *
1308 * It copies the registers, and all the appropriate
1309 * parts of the process environment (as per the clone
1310 * flags). The actual kick-off is left to the caller.
1311 */
1312 static struct task_struct *copy_process(unsigned long clone_flags,
1313 unsigned long stack_start,
1314 unsigned long stack_size,
1315 int __user *child_tidptr,
1316 struct pid *pid,
1317 int trace,
1318 unsigned long tls,
1319 int node)
1320 {
1321 int retval;
1322 struct task_struct *p;
1323 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1324
1325 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1326 return ERR_PTR(-EINVAL);
1327
1328 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1329 return ERR_PTR(-EINVAL);
1330
1331 /*
1332 * Thread groups must share signals as well, and detached threads
1333 * can only be started up within the thread group.
1334 */
1335 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1336 return ERR_PTR(-EINVAL);
1337
1338 /*
1339 * Shared signal handlers imply shared VM. By way of the above,
1340 * thread groups also imply shared VM. Blocking this case allows
1341 * for various simplifications in other code.
1342 */
1343 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1344 return ERR_PTR(-EINVAL);
1345
1346 /*
1347 * Siblings of global init remain as zombies on exit since they are
1348 * not reaped by their parent (swapper). To solve this and to avoid
1349 * multi-rooted process trees, prevent global and container-inits
1350 * from creating siblings.
1351 */
1352 if ((clone_flags & CLONE_PARENT) &&
1353 current->signal->flags & SIGNAL_UNKILLABLE)
1354 return ERR_PTR(-EINVAL);
1355
1356 /*
1357 * If the new process will be in a different pid or user namespace
1358 * do not allow it to share a thread group with the forking task.
1359 */
1360 if (clone_flags & CLONE_THREAD) {
1361 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1362 (task_active_pid_ns(current) !=
1363 current->nsproxy->pid_ns_for_children))
1364 return ERR_PTR(-EINVAL);
1365 }
1366
1367 retval = security_task_create(clone_flags);
1368 if (retval)
1369 goto fork_out;
1370
1371 retval = -ENOMEM;
1372 p = dup_task_struct(current, node);
1373 if (!p)
1374 goto fork_out;
1375
1376 ftrace_graph_init_task(p);
1377
1378 rt_mutex_init_task(p);
1379
1380 #ifdef CONFIG_PROVE_LOCKING
1381 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1382 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1383 #endif
1384 retval = -EAGAIN;
1385 if (atomic_read(&p->real_cred->user->processes) >=
1386 task_rlimit(p, RLIMIT_NPROC)) {
1387 if (p->real_cred->user != INIT_USER &&
1388 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1389 goto bad_fork_free;
1390 }
1391 current->flags &= ~PF_NPROC_EXCEEDED;
1392
1393 retval = copy_creds(p, clone_flags);
1394 if (retval < 0)
1395 goto bad_fork_free;
1396
1397 /*
1398 * If multiple threads are within copy_process(), then this check
1399 * triggers too late. This doesn't hurt, the check is only there
1400 * to stop root fork bombs.
1401 */
1402 retval = -EAGAIN;
1403 if (nr_threads >= max_threads)
1404 goto bad_fork_cleanup_count;
1405
1406 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1407 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1408 p->flags |= PF_FORKNOEXEC;
1409 INIT_LIST_HEAD(&p->children);
1410 INIT_LIST_HEAD(&p->sibling);
1411 rcu_copy_process(p);
1412 p->vfork_done = NULL;
1413 spin_lock_init(&p->alloc_lock);
1414
1415 init_sigpending(&p->pending);
1416
1417 p->utime = p->stime = p->gtime = 0;
1418 p->utimescaled = p->stimescaled = 0;
1419 prev_cputime_init(&p->prev_cputime);
1420 p->cpu_power = 0;
1421
1422 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1423 seqlock_init(&p->vtime_seqlock);
1424 p->vtime_snap = 0;
1425 p->vtime_snap_whence = VTIME_SLEEPING;
1426 #endif
1427
1428 #if defined(SPLIT_RSS_COUNTING)
1429 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1430 #endif
1431
1432 p->default_timer_slack_ns = current->timer_slack_ns;
1433
1434 task_io_accounting_init(&p->ioac);
1435 acct_clear_integrals(p);
1436
1437 posix_cpu_timers_init(p);
1438
1439 p->start_time = ktime_get_ns();
1440 p->real_start_time = ktime_get_boot_ns();
1441 p->io_context = NULL;
1442 p->audit_context = NULL;
1443 cgroup_fork(p);
1444 #ifdef CONFIG_NUMA
1445 p->mempolicy = mpol_dup(p->mempolicy);
1446 if (IS_ERR(p->mempolicy)) {
1447 retval = PTR_ERR(p->mempolicy);
1448 p->mempolicy = NULL;
1449 goto bad_fork_cleanup_threadgroup_lock;
1450 }
1451 #endif
1452 #ifdef CONFIG_CPUSETS
1453 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1454 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1455 seqcount_init(&p->mems_allowed_seq);
1456 #endif
1457 #ifdef CONFIG_TRACE_IRQFLAGS
1458 p->irq_events = 0;
1459 p->hardirqs_enabled = 0;
1460 p->hardirq_enable_ip = 0;
1461 p->hardirq_enable_event = 0;
1462 p->hardirq_disable_ip = _THIS_IP_;
1463 p->hardirq_disable_event = 0;
1464 p->softirqs_enabled = 1;
1465 p->softirq_enable_ip = _THIS_IP_;
1466 p->softirq_enable_event = 0;
1467 p->softirq_disable_ip = 0;
1468 p->softirq_disable_event = 0;
1469 p->hardirq_context = 0;
1470 p->softirq_context = 0;
1471 #endif
1472
1473 p->pagefault_disabled = 0;
1474
1475 #ifdef CONFIG_LOCKDEP
1476 p->lockdep_depth = 0; /* no locks held yet */
1477 p->curr_chain_key = 0;
1478 p->lockdep_recursion = 0;
1479 #endif
1480
1481 #ifdef CONFIG_DEBUG_MUTEXES
1482 p->blocked_on = NULL; /* not blocked yet */
1483 #endif
1484 #ifdef CONFIG_BCACHE
1485 p->sequential_io = 0;
1486 p->sequential_io_avg = 0;
1487 #endif
1488
1489 /* Perform scheduler related setup. Assign this task to a CPU. */
1490 retval = sched_fork(clone_flags, p);
1491 if (retval)
1492 goto bad_fork_cleanup_policy;
1493
1494 retval = perf_event_init_task(p);
1495 if (retval)
1496 goto bad_fork_cleanup_policy;
1497 retval = audit_alloc(p);
1498 if (retval)
1499 goto bad_fork_cleanup_perf;
1500 /* copy all the process information */
1501 shm_init_task(p);
1502 retval = copy_semundo(clone_flags, p);
1503 if (retval)
1504 goto bad_fork_cleanup_audit;
1505 retval = copy_files(clone_flags, p);
1506 if (retval)
1507 goto bad_fork_cleanup_semundo;
1508 retval = copy_fs(clone_flags, p);
1509 if (retval)
1510 goto bad_fork_cleanup_files;
1511 retval = copy_sighand(clone_flags, p);
1512 if (retval)
1513 goto bad_fork_cleanup_fs;
1514 retval = copy_signal(clone_flags, p);
1515 if (retval)
1516 goto bad_fork_cleanup_sighand;
1517 retval = copy_mm(clone_flags, p);
1518 if (retval)
1519 goto bad_fork_cleanup_signal;
1520 retval = copy_namespaces(clone_flags, p);
1521 if (retval)
1522 goto bad_fork_cleanup_mm;
1523 retval = copy_io(clone_flags, p);
1524 if (retval)
1525 goto bad_fork_cleanup_namespaces;
1526 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1527 if (retval)
1528 goto bad_fork_cleanup_io;
1529
1530 if (pid != &init_struct_pid) {
1531 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1532 if (IS_ERR(pid)) {
1533 retval = PTR_ERR(pid);
1534 goto bad_fork_cleanup_io;
1535 }
1536 }
1537
1538 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1539 /*
1540 * Clear TID on mm_release()?
1541 */
1542 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1543 #ifdef CONFIG_BLOCK
1544 p->plug = NULL;
1545 #endif
1546 #ifdef CONFIG_FUTEX
1547 p->robust_list = NULL;
1548 #ifdef CONFIG_COMPAT
1549 p->compat_robust_list = NULL;
1550 #endif
1551 INIT_LIST_HEAD(&p->pi_state_list);
1552 p->pi_state_cache = NULL;
1553 #endif
1554 /*
1555 * sigaltstack should be cleared when sharing the same VM
1556 */
1557 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1558 p->sas_ss_sp = p->sas_ss_size = 0;
1559
1560 /*
1561 * Syscall tracing and stepping should be turned off in the
1562 * child regardless of CLONE_PTRACE.
1563 */
1564 user_disable_single_step(p);
1565 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1566 #ifdef TIF_SYSCALL_EMU
1567 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1568 #endif
1569 clear_all_latency_tracing(p);
1570
1571 /* ok, now we should be set up.. */
1572 p->pid = pid_nr(pid);
1573 if (clone_flags & CLONE_THREAD) {
1574 p->exit_signal = -1;
1575 p->group_leader = current->group_leader;
1576 p->tgid = current->tgid;
1577 } else {
1578 if (clone_flags & CLONE_PARENT)
1579 p->exit_signal = current->group_leader->exit_signal;
1580 else
1581 p->exit_signal = (clone_flags & CSIGNAL);
1582 p->group_leader = p;
1583 p->tgid = p->pid;
1584 }
1585
1586 p->nr_dirtied = 0;
1587 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1588 p->dirty_paused_when = 0;
1589
1590 p->pdeath_signal = 0;
1591 INIT_LIST_HEAD(&p->thread_group);
1592 p->task_works = NULL;
1593
1594 threadgroup_change_begin(current);
1595 /*
1596 * Ensure that the cgroup subsystem policies allow the new process to be
1597 * forked. It should be noted the the new process's css_set can be changed
1598 * between here and cgroup_post_fork() if an organisation operation is in
1599 * progress.
1600 */
1601 retval = cgroup_can_fork(p, cgrp_ss_priv);
1602 if (retval)
1603 goto bad_fork_free_pid;
1604
1605 /*
1606 * Make it visible to the rest of the system, but dont wake it up yet.
1607 * Need tasklist lock for parent etc handling!
1608 */
1609 write_lock_irq(&tasklist_lock);
1610
1611 /* CLONE_PARENT re-uses the old parent */
1612 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1613 p->real_parent = current->real_parent;
1614 p->parent_exec_id = current->parent_exec_id;
1615 } else {
1616 p->real_parent = current;
1617 p->parent_exec_id = current->self_exec_id;
1618 }
1619
1620 spin_lock(&current->sighand->siglock);
1621
1622 /*
1623 * Copy seccomp details explicitly here, in case they were changed
1624 * before holding sighand lock.
1625 */
1626 copy_seccomp(p);
1627
1628 /*
1629 * Process group and session signals need to be delivered to just the
1630 * parent before the fork or both the parent and the child after the
1631 * fork. Restart if a signal comes in before we add the new process to
1632 * it's process group.
1633 * A fatal signal pending means that current will exit, so the new
1634 * thread can't slip out of an OOM kill (or normal SIGKILL).
1635 */
1636 recalc_sigpending();
1637 if (signal_pending(current)) {
1638 retval = -ERESTARTNOINTR;
1639 goto bad_fork_cancel_cgroup;
1640 }
1641 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1642 retval = -ENOMEM;
1643 goto bad_fork_cancel_cgroup;
1644 }
1645
1646 if (likely(p->pid)) {
1647 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1648
1649 init_task_pid(p, PIDTYPE_PID, pid);
1650 if (thread_group_leader(p)) {
1651 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1652 init_task_pid(p, PIDTYPE_SID, task_session(current));
1653
1654 if (is_child_reaper(pid)) {
1655 ns_of_pid(pid)->child_reaper = p;
1656 p->signal->flags |= SIGNAL_UNKILLABLE;
1657 }
1658
1659 p->signal->leader_pid = pid;
1660 p->signal->tty = tty_kref_get(current->signal->tty);
1661 list_add_tail(&p->sibling, &p->real_parent->children);
1662 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1663 attach_pid(p, PIDTYPE_PGID);
1664 attach_pid(p, PIDTYPE_SID);
1665 __this_cpu_inc(process_counts);
1666 } else {
1667 current->signal->nr_threads++;
1668 atomic_inc(&current->signal->live);
1669 atomic_inc(&current->signal->sigcnt);
1670 list_add_tail_rcu(&p->thread_group,
1671 &p->group_leader->thread_group);
1672 list_add_tail_rcu(&p->thread_node,
1673 &p->signal->thread_head);
1674 }
1675 attach_pid(p, PIDTYPE_PID);
1676 nr_threads++;
1677 }
1678
1679 total_forks++;
1680 spin_unlock(&current->sighand->siglock);
1681 syscall_tracepoint_update(p);
1682 write_unlock_irq(&tasklist_lock);
1683
1684 proc_fork_connector(p);
1685 cgroup_post_fork(p, cgrp_ss_priv);
1686 threadgroup_change_end(current);
1687 perf_event_fork(p);
1688
1689 trace_task_newtask(p, clone_flags);
1690 uprobe_copy_process(p, clone_flags);
1691 #ifdef CONFIG_RKP_KDP
1692 if(rkp_cred_enable)
1693 rkp_assign_pgd(p);
1694 #endif/*CONFIG_RKP_KDP*/
1695 return p;
1696
1697 bad_fork_cancel_cgroup:
1698 spin_unlock(&current->sighand->siglock);
1699 write_unlock_irq(&tasklist_lock);
1700 cgroup_cancel_fork(p, cgrp_ss_priv);
1701 bad_fork_free_pid:
1702 threadgroup_change_end(current);
1703 if (pid != &init_struct_pid)
1704 free_pid(pid);
1705 bad_fork_cleanup_io:
1706 if (p->io_context)
1707 exit_io_context(p);
1708 bad_fork_cleanup_namespaces:
1709 exit_task_namespaces(p);
1710 bad_fork_cleanup_mm:
1711 if (p->mm)
1712 mmput(p->mm);
1713 bad_fork_cleanup_signal:
1714 if (!(clone_flags & CLONE_THREAD))
1715 free_signal_struct(p->signal);
1716 bad_fork_cleanup_sighand:
1717 __cleanup_sighand(p->sighand);
1718 bad_fork_cleanup_fs:
1719 exit_fs(p); /* blocking */
1720 bad_fork_cleanup_files:
1721 exit_files(p); /* blocking */
1722 bad_fork_cleanup_semundo:
1723 exit_sem(p);
1724 bad_fork_cleanup_audit:
1725 audit_free(p);
1726 bad_fork_cleanup_perf:
1727 perf_event_free_task(p);
1728 bad_fork_cleanup_policy:
1729 #ifdef CONFIG_NUMA
1730 mpol_put(p->mempolicy);
1731 bad_fork_cleanup_threadgroup_lock:
1732 #endif
1733 delayacct_tsk_free(p);
1734 bad_fork_cleanup_count:
1735 atomic_dec(&p->cred->user->processes);
1736 exit_creds(p);
1737 bad_fork_free:
1738 free_task(p);
1739 fork_out:
1740 return ERR_PTR(retval);
1741 }
1742
1743 static inline void init_idle_pids(struct pid_link *links)
1744 {
1745 enum pid_type type;
1746
1747 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1748 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1749 links[type].pid = &init_struct_pid;
1750 }
1751 }
1752
1753 struct task_struct *fork_idle(int cpu)
1754 {
1755 struct task_struct *task;
1756 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1757 cpu_to_node(cpu));
1758 if (!IS_ERR(task)) {
1759 init_idle_pids(task->pids);
1760 init_idle(task, cpu);
1761 }
1762
1763 return task;
1764 }
1765
1766 /*
1767 * Ok, this is the main fork-routine.
1768 *
1769 * It copies the process, and if successful kick-starts
1770 * it and waits for it to finish using the VM if required.
1771 */
1772 long _do_fork(unsigned long clone_flags,
1773 unsigned long stack_start,
1774 unsigned long stack_size,
1775 int __user *parent_tidptr,
1776 int __user *child_tidptr,
1777 unsigned long tls)
1778 {
1779 struct task_struct *p;
1780 int trace = 0;
1781 long nr;
1782
1783 /*
1784 * Determine whether and which event to report to ptracer. When
1785 * called from kernel_thread or CLONE_UNTRACED is explicitly
1786 * requested, no event is reported; otherwise, report if the event
1787 * for the type of forking is enabled.
1788 */
1789 if (!(clone_flags & CLONE_UNTRACED)) {
1790 if (clone_flags & CLONE_VFORK)
1791 trace = PTRACE_EVENT_VFORK;
1792 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1793 trace = PTRACE_EVENT_CLONE;
1794 else
1795 trace = PTRACE_EVENT_FORK;
1796
1797 if (likely(!ptrace_event_enabled(current, trace)))
1798 trace = 0;
1799 }
1800
1801 p = copy_process(clone_flags, stack_start, stack_size,
1802 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1803 /*
1804 * Do this prior waking up the new thread - the thread pointer
1805 * might get invalid after that point, if the thread exits quickly.
1806 */
1807 if (!IS_ERR(p)) {
1808 struct completion vfork;
1809 struct pid *pid;
1810
1811 trace_sched_process_fork(current, p);
1812
1813 pid = get_task_pid(p, PIDTYPE_PID);
1814 nr = pid_vnr(pid);
1815
1816 #ifdef CONFIG_SECURITY_DEFEX
1817 task_defex_zero_creds(p);
1818 #endif
1819
1820 if (clone_flags & CLONE_PARENT_SETTID)
1821 put_user(nr, parent_tidptr);
1822
1823 if (clone_flags & CLONE_VFORK) {
1824 p->vfork_done = &vfork;
1825 init_completion(&vfork);
1826 get_task_struct(p);
1827 }
1828
1829 wake_up_new_task(p);
1830
1831 /* forking complete and child started to run, tell ptracer */
1832 if (unlikely(trace))
1833 ptrace_event_pid(trace, pid);
1834
1835 if (clone_flags & CLONE_VFORK) {
1836 if (!wait_for_vfork_done(p, &vfork))
1837 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1838 }
1839
1840 put_pid(pid);
1841 } else {
1842 nr = PTR_ERR(p);
1843 }
1844 return nr;
1845 }
1846
1847 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1848 /* For compatibility with architectures that call do_fork directly rather than
1849 * using the syscall entry points below. */
1850 long do_fork(unsigned long clone_flags,
1851 unsigned long stack_start,
1852 unsigned long stack_size,
1853 int __user *parent_tidptr,
1854 int __user *child_tidptr)
1855 {
1856 return _do_fork(clone_flags, stack_start, stack_size,
1857 parent_tidptr, child_tidptr, 0);
1858 }
1859 #endif
1860
1861 /*
1862 * Create a kernel thread.
1863 */
1864 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1865 {
1866 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1867 (unsigned long)arg, NULL, NULL, 0);
1868 }
1869
1870 #ifdef __ARCH_WANT_SYS_FORK
1871 SYSCALL_DEFINE0(fork)
1872 {
1873 #ifdef CONFIG_MMU
1874 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1875 #else
1876 /* can not support in nommu mode */
1877 return -EINVAL;
1878 #endif
1879 }
1880 #endif
1881
1882 #ifdef __ARCH_WANT_SYS_VFORK
1883 SYSCALL_DEFINE0(vfork)
1884 {
1885 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1886 0, NULL, NULL, 0);
1887 }
1888 #endif
1889
1890 #ifdef __ARCH_WANT_SYS_CLONE
1891 #ifdef CONFIG_CLONE_BACKWARDS
1892 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1893 int __user *, parent_tidptr,
1894 unsigned long, tls,
1895 int __user *, child_tidptr)
1896 #elif defined(CONFIG_CLONE_BACKWARDS2)
1897 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1898 int __user *, parent_tidptr,
1899 int __user *, child_tidptr,
1900 unsigned long, tls)
1901 #elif defined(CONFIG_CLONE_BACKWARDS3)
1902 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1903 int, stack_size,
1904 int __user *, parent_tidptr,
1905 int __user *, child_tidptr,
1906 unsigned long, tls)
1907 #else
1908 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1909 int __user *, parent_tidptr,
1910 int __user *, child_tidptr,
1911 unsigned long, tls)
1912 #endif
1913 {
1914 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1915 }
1916 #endif
1917
1918 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1919 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1920 #endif
1921
1922 static void sighand_ctor(void *data)
1923 {
1924 struct sighand_struct *sighand = data;
1925
1926 spin_lock_init(&sighand->siglock);
1927 init_waitqueue_head(&sighand->signalfd_wqh);
1928 }
1929
1930 void __init proc_caches_init(void)
1931 {
1932 sighand_cachep = kmem_cache_create("sighand_cache",
1933 sizeof(struct sighand_struct), 0,
1934 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1935 SLAB_NOTRACK, sighand_ctor);
1936 signal_cachep = kmem_cache_create("signal_cache",
1937 sizeof(struct signal_struct), 0,
1938 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1939 files_cachep = kmem_cache_create("files_cache",
1940 sizeof(struct files_struct), 0,
1941 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1942 fs_cachep = kmem_cache_create("fs_cache",
1943 sizeof(struct fs_struct), 0,
1944 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1945 /*
1946 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1947 * whole struct cpumask for the OFFSTACK case. We could change
1948 * this to *only* allocate as much of it as required by the
1949 * maximum number of CPU's we can ever have. The cpumask_allocation
1950 * is at the end of the structure, exactly for that reason.
1951 */
1952 mm_cachep = kmem_cache_create("mm_struct",
1953 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1954 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1955 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1956 mmap_init();
1957 nsproxy_cache_init();
1958 }
1959
1960 /*
1961 * Check constraints on flags passed to the unshare system call.
1962 */
1963 static int check_unshare_flags(unsigned long unshare_flags)
1964 {
1965 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1966 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1967 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1968 CLONE_NEWUSER|CLONE_NEWPID))
1969 return -EINVAL;
1970 /*
1971 * Not implemented, but pretend it works if there is nothing
1972 * to unshare. Note that unsharing the address space or the
1973 * signal handlers also need to unshare the signal queues (aka
1974 * CLONE_THREAD).
1975 */
1976 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1977 if (!thread_group_empty(current))
1978 return -EINVAL;
1979 }
1980 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1981 if (atomic_read(&current->sighand->count) > 1)
1982 return -EINVAL;
1983 }
1984 if (unshare_flags & CLONE_VM) {
1985 if (!current_is_single_threaded())
1986 return -EINVAL;
1987 }
1988
1989 return 0;
1990 }
1991
1992 /*
1993 * Unshare the filesystem structure if it is being shared
1994 */
1995 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1996 {
1997 struct fs_struct *fs = current->fs;
1998
1999 if (!(unshare_flags & CLONE_FS) || !fs)
2000 return 0;
2001
2002 /* don't need lock here; in the worst case we'll do useless copy */
2003 if (fs->users == 1)
2004 return 0;
2005
2006 *new_fsp = copy_fs_struct(fs);
2007 if (!*new_fsp)
2008 return -ENOMEM;
2009
2010 return 0;
2011 }
2012
2013 /*
2014 * Unshare file descriptor table if it is being shared
2015 */
2016 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2017 {
2018 struct files_struct *fd = current->files;
2019 int error = 0;
2020
2021 if ((unshare_flags & CLONE_FILES) &&
2022 (fd && atomic_read(&fd->count) > 1)) {
2023 *new_fdp = dup_fd(fd, &error);
2024 if (!*new_fdp)
2025 return error;
2026 }
2027
2028 return 0;
2029 }
2030
2031 /*
2032 * unshare allows a process to 'unshare' part of the process
2033 * context which was originally shared using clone. copy_*
2034 * functions used by do_fork() cannot be used here directly
2035 * because they modify an inactive task_struct that is being
2036 * constructed. Here we are modifying the current, active,
2037 * task_struct.
2038 */
2039 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2040 {
2041 struct fs_struct *fs, *new_fs = NULL;
2042 struct files_struct *fd, *new_fd = NULL;
2043 struct cred *new_cred = NULL;
2044 struct nsproxy *new_nsproxy = NULL;
2045 int do_sysvsem = 0;
2046 int err;
2047
2048 /*
2049 * If unsharing a user namespace must also unshare the thread group
2050 * and unshare the filesystem root and working directories.
2051 */
2052 if (unshare_flags & CLONE_NEWUSER)
2053 unshare_flags |= CLONE_THREAD | CLONE_FS;
2054 /*
2055 * If unsharing vm, must also unshare signal handlers.
2056 */
2057 if (unshare_flags & CLONE_VM)
2058 unshare_flags |= CLONE_SIGHAND;
2059 /*
2060 * If unsharing a signal handlers, must also unshare the signal queues.
2061 */
2062 if (unshare_flags & CLONE_SIGHAND)
2063 unshare_flags |= CLONE_THREAD;
2064 /*
2065 * If unsharing namespace, must also unshare filesystem information.
2066 */
2067 if (unshare_flags & CLONE_NEWNS)
2068 unshare_flags |= CLONE_FS;
2069
2070 err = check_unshare_flags(unshare_flags);
2071 if (err)
2072 goto bad_unshare_out;
2073 /*
2074 * CLONE_NEWIPC must also detach from the undolist: after switching
2075 * to a new ipc namespace, the semaphore arrays from the old
2076 * namespace are unreachable.
2077 */
2078 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2079 do_sysvsem = 1;
2080 err = unshare_fs(unshare_flags, &new_fs);
2081 if (err)
2082 goto bad_unshare_out;
2083 err = unshare_fd(unshare_flags, &new_fd);
2084 if (err)
2085 goto bad_unshare_cleanup_fs;
2086 err = unshare_userns(unshare_flags, &new_cred);
2087 if (err)
2088 goto bad_unshare_cleanup_fd;
2089 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2090 new_cred, new_fs);
2091 if (err)
2092 goto bad_unshare_cleanup_cred;
2093
2094 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2095 if (do_sysvsem) {
2096 /*
2097 * CLONE_SYSVSEM is equivalent to sys_exit().
2098 */
2099 exit_sem(current);
2100 }
2101 if (unshare_flags & CLONE_NEWIPC) {
2102 /* Orphan segments in old ns (see sem above). */
2103 exit_shm(current);
2104 shm_init_task(current);
2105 }
2106
2107 if (new_nsproxy)
2108 switch_task_namespaces(current, new_nsproxy);
2109
2110 task_lock(current);
2111
2112 if (new_fs) {
2113 fs = current->fs;
2114 spin_lock(&fs->lock);
2115 current->fs = new_fs;
2116 if (--fs->users)
2117 new_fs = NULL;
2118 else
2119 new_fs = fs;
2120 spin_unlock(&fs->lock);
2121 }
2122
2123 if (new_fd) {
2124 fd = current->files;
2125 current->files = new_fd;
2126 new_fd = fd;
2127 }
2128
2129 task_unlock(current);
2130
2131 if (new_cred) {
2132 /* Install the new user namespace */
2133 commit_creds(new_cred);
2134 new_cred = NULL;
2135 }
2136 }
2137
2138 bad_unshare_cleanup_cred:
2139 if (new_cred)
2140 put_cred(new_cred);
2141 bad_unshare_cleanup_fd:
2142 if (new_fd)
2143 put_files_struct(new_fd);
2144
2145 bad_unshare_cleanup_fs:
2146 if (new_fs)
2147 free_fs_struct(new_fs);
2148
2149 bad_unshare_out:
2150 return err;
2151 }
2152
2153 /*
2154 * Helper to unshare the files of the current task.
2155 * We don't want to expose copy_files internals to
2156 * the exec layer of the kernel.
2157 */
2158
2159 int unshare_files(struct files_struct **displaced)
2160 {
2161 struct task_struct *task = current;
2162 struct files_struct *copy = NULL;
2163 int error;
2164
2165 error = unshare_fd(CLONE_FILES, &copy);
2166 if (error || !copy) {
2167 *displaced = NULL;
2168 return error;
2169 }
2170 *displaced = task->files;
2171 task_lock(task);
2172 task->files = copy;
2173 task_unlock(task);
2174 return 0;
2175 }
2176
2177 int sysctl_max_threads(struct ctl_table *table, int write,
2178 void __user *buffer, size_t *lenp, loff_t *ppos)
2179 {
2180 struct ctl_table t;
2181 int ret;
2182 int threads = max_threads;
2183 int min = MIN_THREADS;
2184 int max = MAX_THREADS;
2185
2186 t = *table;
2187 t.data = &threads;
2188 t.extra1 = &min;
2189 t.extra2 = &max;
2190
2191 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2192 if (ret || !write)
2193 return ret;
2194
2195 set_max_threads(threads);
2196
2197 return 0;
2198 }