block: Restore original read_ahead_kb mode
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/cgroup.h>
61 #include <linux/wait.h>
62
63 struct static_key cpusets_pre_enable_key __read_mostly = STATIC_KEY_INIT_FALSE;
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 cpumask_var_t cpus_requested;
103 nodemask_t mems_allowed;
104
105 /* effective CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t effective_cpus;
107 nodemask_t effective_mems;
108
109 /*
110 * This is old Memory Nodes tasks took on.
111 *
112 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 * - A new cpuset's old_mems_allowed is initialized when some
114 * task is moved into it.
115 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 * cpuset.mems_allowed and have tasks' nodemask updated, and
117 * then old_mems_allowed is updated to mems_allowed.
118 */
119 nodemask_t old_mems_allowed;
120
121 struct fmeter fmeter; /* memory_pressure filter */
122
123 /*
124 * Tasks are being attached to this cpuset. Used to prevent
125 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 */
127 int attach_in_progress;
128
129 /* partition number for rebuild_sched_domains() */
130 int pn;
131
132 /* for custom sched domain */
133 int relax_domain_level;
134 };
135
136 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137 {
138 return css ? container_of(css, struct cpuset, css) : NULL;
139 }
140
141 /* Retrieve the cpuset for a task */
142 static inline struct cpuset *task_cs(struct task_struct *task)
143 {
144 return css_cs(task_css(task, cpuset_cgrp_id));
145 }
146
147 static inline struct cpuset *parent_cs(struct cpuset *cs)
148 {
149 return css_cs(cs->css.parent);
150 }
151
152 #ifdef CONFIG_NUMA
153 static inline bool task_has_mempolicy(struct task_struct *task)
154 {
155 return task->mempolicy;
156 }
157 #else
158 static inline bool task_has_mempolicy(struct task_struct *task)
159 {
160 return false;
161 }
162 #endif
163
164
165 /* bits in struct cpuset flags field */
166 typedef enum {
167 CS_ONLINE,
168 CS_CPU_EXCLUSIVE,
169 CS_MEM_EXCLUSIVE,
170 CS_MEM_HARDWALL,
171 CS_MEMORY_MIGRATE,
172 CS_SCHED_LOAD_BALANCE,
173 CS_SPREAD_PAGE,
174 CS_SPREAD_SLAB,
175 CS_FAMILY_BOOST,
176 } cpuset_flagbits_t;
177
178 /* convenient tests for these bits */
179 static inline bool is_cpuset_online(struct cpuset *cs)
180 {
181 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
182 }
183
184 static inline int is_cpu_exclusive(const struct cpuset *cs)
185 {
186 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
187 }
188
189 static inline int is_mem_exclusive(const struct cpuset *cs)
190 {
191 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
192 }
193
194 static inline int is_mem_hardwall(const struct cpuset *cs)
195 {
196 return test_bit(CS_MEM_HARDWALL, &cs->flags);
197 }
198
199 static inline int is_sched_load_balance(const struct cpuset *cs)
200 {
201 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
202 }
203
204 static inline int is_memory_migrate(const struct cpuset *cs)
205 {
206 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
207 }
208
209 static inline int is_spread_page(const struct cpuset *cs)
210 {
211 return test_bit(CS_SPREAD_PAGE, &cs->flags);
212 }
213
214 static inline int is_spread_slab(const struct cpuset *cs)
215 {
216 return test_bit(CS_SPREAD_SLAB, &cs->flags);
217 }
218
219 static struct cpuset top_cpuset = {
220 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
221 (1 << CS_MEM_EXCLUSIVE)),
222 };
223
224 static inline int is_family_boost_enabled(const struct cpuset *cs)
225 {
226 return test_bit(CS_FAMILY_BOOST, &cs->flags);
227 }
228
229 /**
230 * cpuset_for_each_child - traverse online children of a cpuset
231 * @child_cs: loop cursor pointing to the current child
232 * @pos_css: used for iteration
233 * @parent_cs: target cpuset to walk children of
234 *
235 * Walk @child_cs through the online children of @parent_cs. Must be used
236 * with RCU read locked.
237 */
238 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
239 css_for_each_child((pos_css), &(parent_cs)->css) \
240 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
241
242 /**
243 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
244 * @des_cs: loop cursor pointing to the current descendant
245 * @pos_css: used for iteration
246 * @root_cs: target cpuset to walk ancestor of
247 *
248 * Walk @des_cs through the online descendants of @root_cs. Must be used
249 * with RCU read locked. The caller may modify @pos_css by calling
250 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
251 * iteration and the first node to be visited.
252 */
253 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
254 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
255 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
256
257 /*
258 * There are two global locks guarding cpuset structures - cpuset_mutex and
259 * callback_lock. We also require taking task_lock() when dereferencing a
260 * task's cpuset pointer. See "The task_lock() exception", at the end of this
261 * comment.
262 *
263 * A task must hold both locks to modify cpusets. If a task holds
264 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
265 * is the only task able to also acquire callback_lock and be able to
266 * modify cpusets. It can perform various checks on the cpuset structure
267 * first, knowing nothing will change. It can also allocate memory while
268 * just holding cpuset_mutex. While it is performing these checks, various
269 * callback routines can briefly acquire callback_lock to query cpusets.
270 * Once it is ready to make the changes, it takes callback_lock, blocking
271 * everyone else.
272 *
273 * Calls to the kernel memory allocator can not be made while holding
274 * callback_lock, as that would risk double tripping on callback_lock
275 * from one of the callbacks into the cpuset code from within
276 * __alloc_pages().
277 *
278 * If a task is only holding callback_lock, then it has read-only
279 * access to cpusets.
280 *
281 * Now, the task_struct fields mems_allowed and mempolicy may be changed
282 * by other task, we use alloc_lock in the task_struct fields to protect
283 * them.
284 *
285 * The cpuset_common_file_read() handlers only hold callback_lock across
286 * small pieces of code, such as when reading out possibly multi-word
287 * cpumasks and nodemasks.
288 *
289 * Accessing a task's cpuset should be done in accordance with the
290 * guidelines for accessing subsystem state in kernel/cgroup.c
291 */
292
293 static DEFINE_MUTEX(cpuset_mutex);
294 static DEFINE_SPINLOCK(callback_lock);
295
296 static struct workqueue_struct *cpuset_migrate_mm_wq;
297
298 /*
299 * CPU / memory hotplug is handled asynchronously.
300 */
301 static void cpuset_hotplug_workfn(struct work_struct *work);
302 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
303
304 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
305
306 /*
307 * This is ugly, but preserves the userspace API for existing cpuset
308 * users. If someone tries to mount the "cpuset" filesystem, we
309 * silently switch it to mount "cgroup" instead
310 */
311 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
312 int flags, const char *unused_dev_name, void *data)
313 {
314 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
315 struct dentry *ret = ERR_PTR(-ENODEV);
316 if (cgroup_fs) {
317 char mountopts[] =
318 "cpuset,noprefix,"
319 "release_agent=/sbin/cpuset_release_agent";
320 ret = cgroup_fs->mount(cgroup_fs, flags,
321 unused_dev_name, mountopts);
322 put_filesystem(cgroup_fs);
323 }
324 return ret;
325 }
326
327 static struct file_system_type cpuset_fs_type = {
328 .name = "cpuset",
329 .mount = cpuset_mount,
330 };
331
332 int is_top_task(struct task_struct *p)
333 {
334 struct cpuset *cpuset_for_task;
335 int ret;
336
337 rcu_read_lock();
338 cpuset_for_task = task_cs(p);
339 ret = is_family_boost_enabled(cpuset_for_task);
340 rcu_read_unlock();
341
342 return ret;
343 }
344 EXPORT_SYMBOL(is_top_task);
345
346 /*
347 * Return in pmask the portion of a cpusets's cpus_allowed that
348 * are online. If none are online, walk up the cpuset hierarchy
349 * until we find one that does have some online cpus.
350 *
351 * One way or another, we guarantee to return some non-empty subset
352 * of cpu_online_mask.
353 *
354 * Call with callback_lock or cpuset_mutex held.
355 */
356 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
357 {
358 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
359 cs = parent_cs(cs);
360 if (unlikely(!cs)) {
361 /*
362 * The top cpuset doesn't have any online cpu as a
363 * consequence of a race between cpuset_hotplug_work
364 * and cpu hotplug notifier. But we know the top
365 * cpuset's effective_cpus is on its way to to be
366 * identical to cpu_online_mask.
367 */
368 cpumask_copy(pmask, cpu_online_mask);
369 return;
370 }
371 }
372 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
373 }
374
375 /*
376 * Return in *pmask the portion of a cpusets's mems_allowed that
377 * are online, with memory. If none are online with memory, walk
378 * up the cpuset hierarchy until we find one that does have some
379 * online mems. The top cpuset always has some mems online.
380 *
381 * One way or another, we guarantee to return some non-empty subset
382 * of node_states[N_MEMORY].
383 *
384 * Call with callback_lock or cpuset_mutex held.
385 */
386 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
387 {
388 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
389 cs = parent_cs(cs);
390 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
391 }
392
393 /*
394 * update task's spread flag if cpuset's page/slab spread flag is set
395 *
396 * Call with callback_lock or cpuset_mutex held.
397 */
398 static void cpuset_update_task_spread_flag(struct cpuset *cs,
399 struct task_struct *tsk)
400 {
401 if (is_spread_page(cs))
402 task_set_spread_page(tsk);
403 else
404 task_clear_spread_page(tsk);
405
406 if (is_spread_slab(cs))
407 task_set_spread_slab(tsk);
408 else
409 task_clear_spread_slab(tsk);
410 }
411
412 /*
413 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
414 *
415 * One cpuset is a subset of another if all its allowed CPUs and
416 * Memory Nodes are a subset of the other, and its exclusive flags
417 * are only set if the other's are set. Call holding cpuset_mutex.
418 */
419
420 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
421 {
422 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
423 nodes_subset(p->mems_allowed, q->mems_allowed) &&
424 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
425 is_mem_exclusive(p) <= is_mem_exclusive(q);
426 }
427
428 /**
429 * alloc_trial_cpuset - allocate a trial cpuset
430 * @cs: the cpuset that the trial cpuset duplicates
431 */
432 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
433 {
434 struct cpuset *trial;
435
436 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
437 if (!trial)
438 return NULL;
439
440 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
441 goto free_cs;
442 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
443 goto free_cpus;
444
445 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
446 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
447 return trial;
448
449 free_cpus:
450 free_cpumask_var(trial->cpus_allowed);
451 free_cs:
452 kfree(trial);
453 return NULL;
454 }
455
456 /**
457 * free_trial_cpuset - free the trial cpuset
458 * @trial: the trial cpuset to be freed
459 */
460 static void free_trial_cpuset(struct cpuset *trial)
461 {
462 free_cpumask_var(trial->effective_cpus);
463 free_cpumask_var(trial->cpus_allowed);
464 kfree(trial);
465 }
466
467 /*
468 * validate_change() - Used to validate that any proposed cpuset change
469 * follows the structural rules for cpusets.
470 *
471 * If we replaced the flag and mask values of the current cpuset
472 * (cur) with those values in the trial cpuset (trial), would
473 * our various subset and exclusive rules still be valid? Presumes
474 * cpuset_mutex held.
475 *
476 * 'cur' is the address of an actual, in-use cpuset. Operations
477 * such as list traversal that depend on the actual address of the
478 * cpuset in the list must use cur below, not trial.
479 *
480 * 'trial' is the address of bulk structure copy of cur, with
481 * perhaps one or more of the fields cpus_allowed, mems_allowed,
482 * or flags changed to new, trial values.
483 *
484 * Return 0 if valid, -errno if not.
485 */
486
487 static int validate_change(struct cpuset *cur, struct cpuset *trial)
488 {
489 struct cgroup_subsys_state *css;
490 struct cpuset *c, *par;
491 int ret;
492
493 rcu_read_lock();
494
495 /* Each of our child cpusets must be a subset of us */
496 ret = -EBUSY;
497 cpuset_for_each_child(c, css, cur)
498 if (!is_cpuset_subset(c, trial))
499 goto out;
500
501 /* Remaining checks don't apply to root cpuset */
502 ret = 0;
503 if (cur == &top_cpuset)
504 goto out;
505
506 par = parent_cs(cur);
507
508 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
509 ret = -EACCES;
510 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
511 !is_cpuset_subset(trial, par))
512 goto out;
513
514 /*
515 * If either I or some sibling (!= me) is exclusive, we can't
516 * overlap
517 */
518 ret = -EINVAL;
519 cpuset_for_each_child(c, css, par) {
520 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
521 c != cur &&
522 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
523 goto out;
524 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
525 c != cur &&
526 nodes_intersects(trial->mems_allowed, c->mems_allowed))
527 goto out;
528 }
529
530 /*
531 * Cpusets with tasks - existing or newly being attached - can't
532 * be changed to have empty cpus_allowed or mems_allowed.
533 */
534 ret = -ENOSPC;
535 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
536 if (!cpumask_empty(cur->cpus_allowed) &&
537 cpumask_empty(trial->cpus_allowed))
538 goto out;
539 if (!nodes_empty(cur->mems_allowed) &&
540 nodes_empty(trial->mems_allowed))
541 goto out;
542 }
543
544 /*
545 * We can't shrink if we won't have enough room for SCHED_DEADLINE
546 * tasks.
547 */
548 ret = -EBUSY;
549 if (is_cpu_exclusive(cur) &&
550 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
551 trial->cpus_allowed))
552 goto out;
553
554 ret = 0;
555 out:
556 rcu_read_unlock();
557 return ret;
558 }
559
560 #ifdef CONFIG_SMP
561 /*
562 * Helper routine for generate_sched_domains().
563 * Do cpusets a, b have overlapping effective cpus_allowed masks?
564 */
565 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
566 {
567 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
568 }
569
570 static void
571 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
572 {
573 if (dattr->relax_domain_level < c->relax_domain_level)
574 dattr->relax_domain_level = c->relax_domain_level;
575 return;
576 }
577
578 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
579 struct cpuset *root_cs)
580 {
581 struct cpuset *cp;
582 struct cgroup_subsys_state *pos_css;
583
584 rcu_read_lock();
585 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
586 /* skip the whole subtree if @cp doesn't have any CPU */
587 if (cpumask_empty(cp->cpus_allowed)) {
588 pos_css = css_rightmost_descendant(pos_css);
589 continue;
590 }
591
592 if (is_sched_load_balance(cp))
593 update_domain_attr(dattr, cp);
594 }
595 rcu_read_unlock();
596 }
597
598 /*
599 * generate_sched_domains()
600 *
601 * This function builds a partial partition of the systems CPUs
602 * A 'partial partition' is a set of non-overlapping subsets whose
603 * union is a subset of that set.
604 * The output of this function needs to be passed to kernel/sched/core.c
605 * partition_sched_domains() routine, which will rebuild the scheduler's
606 * load balancing domains (sched domains) as specified by that partial
607 * partition.
608 *
609 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
610 * for a background explanation of this.
611 *
612 * Does not return errors, on the theory that the callers of this
613 * routine would rather not worry about failures to rebuild sched
614 * domains when operating in the severe memory shortage situations
615 * that could cause allocation failures below.
616 *
617 * Must be called with cpuset_mutex held.
618 *
619 * The three key local variables below are:
620 * q - a linked-list queue of cpuset pointers, used to implement a
621 * top-down scan of all cpusets. This scan loads a pointer
622 * to each cpuset marked is_sched_load_balance into the
623 * array 'csa'. For our purposes, rebuilding the schedulers
624 * sched domains, we can ignore !is_sched_load_balance cpusets.
625 * csa - (for CpuSet Array) Array of pointers to all the cpusets
626 * that need to be load balanced, for convenient iterative
627 * access by the subsequent code that finds the best partition,
628 * i.e the set of domains (subsets) of CPUs such that the
629 * cpus_allowed of every cpuset marked is_sched_load_balance
630 * is a subset of one of these domains, while there are as
631 * many such domains as possible, each as small as possible.
632 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
633 * the kernel/sched/core.c routine partition_sched_domains() in a
634 * convenient format, that can be easily compared to the prior
635 * value to determine what partition elements (sched domains)
636 * were changed (added or removed.)
637 *
638 * Finding the best partition (set of domains):
639 * The triple nested loops below over i, j, k scan over the
640 * load balanced cpusets (using the array of cpuset pointers in
641 * csa[]) looking for pairs of cpusets that have overlapping
642 * cpus_allowed, but which don't have the same 'pn' partition
643 * number and gives them in the same partition number. It keeps
644 * looping on the 'restart' label until it can no longer find
645 * any such pairs.
646 *
647 * The union of the cpus_allowed masks from the set of
648 * all cpusets having the same 'pn' value then form the one
649 * element of the partition (one sched domain) to be passed to
650 * partition_sched_domains().
651 */
652 static int generate_sched_domains(cpumask_var_t **domains,
653 struct sched_domain_attr **attributes)
654 {
655 struct cpuset *cp; /* scans q */
656 struct cpuset **csa; /* array of all cpuset ptrs */
657 int csn; /* how many cpuset ptrs in csa so far */
658 int i, j, k; /* indices for partition finding loops */
659 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
660 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
661 struct sched_domain_attr *dattr; /* attributes for custom domains */
662 int ndoms = 0; /* number of sched domains in result */
663 int nslot; /* next empty doms[] struct cpumask slot */
664 struct cgroup_subsys_state *pos_css;
665
666 doms = NULL;
667 dattr = NULL;
668 csa = NULL;
669
670 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
671 goto done;
672 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
673
674 /* Special case for the 99% of systems with one, full, sched domain */
675 if (is_sched_load_balance(&top_cpuset)) {
676 ndoms = 1;
677 doms = alloc_sched_domains(ndoms);
678 if (!doms)
679 goto done;
680
681 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
682 if (dattr) {
683 *dattr = SD_ATTR_INIT;
684 update_domain_attr_tree(dattr, &top_cpuset);
685 }
686 cpumask_and(doms[0], top_cpuset.effective_cpus,
687 non_isolated_cpus);
688
689 goto done;
690 }
691
692 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
693 if (!csa)
694 goto done;
695 csn = 0;
696
697 rcu_read_lock();
698 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
699 if (cp == &top_cpuset)
700 continue;
701 /*
702 * Continue traversing beyond @cp iff @cp has some CPUs and
703 * isn't load balancing. The former is obvious. The
704 * latter: All child cpusets contain a subset of the
705 * parent's cpus, so just skip them, and then we call
706 * update_domain_attr_tree() to calc relax_domain_level of
707 * the corresponding sched domain.
708 */
709 if (!cpumask_empty(cp->cpus_allowed) &&
710 !(is_sched_load_balance(cp) &&
711 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
712 continue;
713
714 if (is_sched_load_balance(cp))
715 csa[csn++] = cp;
716
717 /* skip @cp's subtree */
718 pos_css = css_rightmost_descendant(pos_css);
719 }
720 rcu_read_unlock();
721
722 for (i = 0; i < csn; i++)
723 csa[i]->pn = i;
724 ndoms = csn;
725
726 restart:
727 /* Find the best partition (set of sched domains) */
728 for (i = 0; i < csn; i++) {
729 struct cpuset *a = csa[i];
730 int apn = a->pn;
731
732 for (j = 0; j < csn; j++) {
733 struct cpuset *b = csa[j];
734 int bpn = b->pn;
735
736 if (apn != bpn && cpusets_overlap(a, b)) {
737 for (k = 0; k < csn; k++) {
738 struct cpuset *c = csa[k];
739
740 if (c->pn == bpn)
741 c->pn = apn;
742 }
743 ndoms--; /* one less element */
744 goto restart;
745 }
746 }
747 }
748
749 /*
750 * Now we know how many domains to create.
751 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
752 */
753 doms = alloc_sched_domains(ndoms);
754 if (!doms)
755 goto done;
756
757 /*
758 * The rest of the code, including the scheduler, can deal with
759 * dattr==NULL case. No need to abort if alloc fails.
760 */
761 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
762
763 for (nslot = 0, i = 0; i < csn; i++) {
764 struct cpuset *a = csa[i];
765 struct cpumask *dp;
766 int apn = a->pn;
767
768 if (apn < 0) {
769 /* Skip completed partitions */
770 continue;
771 }
772
773 dp = doms[nslot];
774
775 if (nslot == ndoms) {
776 static int warnings = 10;
777 if (warnings) {
778 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
779 nslot, ndoms, csn, i, apn);
780 warnings--;
781 }
782 continue;
783 }
784
785 cpumask_clear(dp);
786 if (dattr)
787 *(dattr + nslot) = SD_ATTR_INIT;
788 for (j = i; j < csn; j++) {
789 struct cpuset *b = csa[j];
790
791 if (apn == b->pn) {
792 cpumask_or(dp, dp, b->effective_cpus);
793 cpumask_and(dp, dp, non_isolated_cpus);
794 if (dattr)
795 update_domain_attr_tree(dattr + nslot, b);
796
797 /* Done with this partition */
798 b->pn = -1;
799 }
800 }
801 nslot++;
802 }
803 BUG_ON(nslot != ndoms);
804
805 done:
806 free_cpumask_var(non_isolated_cpus);
807 kfree(csa);
808
809 /*
810 * Fallback to the default domain if kmalloc() failed.
811 * See comments in partition_sched_domains().
812 */
813 if (doms == NULL)
814 ndoms = 1;
815
816 *domains = doms;
817 *attributes = dattr;
818 return ndoms;
819 }
820
821 /*
822 * Rebuild scheduler domains.
823 *
824 * If the flag 'sched_load_balance' of any cpuset with non-empty
825 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
826 * which has that flag enabled, or if any cpuset with a non-empty
827 * 'cpus' is removed, then call this routine to rebuild the
828 * scheduler's dynamic sched domains.
829 *
830 * Call with cpuset_mutex held. Takes get_online_cpus().
831 */
832 static void rebuild_sched_domains_locked(void)
833 {
834 struct sched_domain_attr *attr;
835 cpumask_var_t *doms;
836 int ndoms;
837
838 lockdep_assert_held(&cpuset_mutex);
839 get_online_cpus();
840
841 /*
842 * We have raced with CPU hotplug. Don't do anything to avoid
843 * passing doms with offlined cpu to partition_sched_domains().
844 * Anyways, hotplug work item will rebuild sched domains.
845 */
846 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
847 goto out;
848
849 /* Generate domain masks and attrs */
850 ndoms = generate_sched_domains(&doms, &attr);
851
852 /* Have scheduler rebuild the domains */
853 partition_sched_domains(ndoms, doms, attr);
854 out:
855 put_online_cpus();
856 }
857 #else /* !CONFIG_SMP */
858 static void rebuild_sched_domains_locked(void)
859 {
860 }
861 #endif /* CONFIG_SMP */
862
863 void rebuild_sched_domains(void)
864 {
865 mutex_lock(&cpuset_mutex);
866 rebuild_sched_domains_locked();
867 mutex_unlock(&cpuset_mutex);
868 }
869
870 /**
871 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
872 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
873 *
874 * Iterate through each task of @cs updating its cpus_allowed to the
875 * effective cpuset's. As this function is called with cpuset_mutex held,
876 * cpuset membership stays stable.
877 */
878 static void update_tasks_cpumask(struct cpuset *cs)
879 {
880 struct css_task_iter it;
881 struct task_struct *task;
882
883 css_task_iter_start(&cs->css, &it);
884 while ((task = css_task_iter_next(&it)))
885 set_cpus_allowed_ptr(task, cs->effective_cpus);
886 css_task_iter_end(&it);
887 }
888
889 /*
890 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
891 * @cs: the cpuset to consider
892 * @new_cpus: temp variable for calculating new effective_cpus
893 *
894 * When congifured cpumask is changed, the effective cpumasks of this cpuset
895 * and all its descendants need to be updated.
896 *
897 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
898 *
899 * Called with cpuset_mutex held
900 */
901 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
902 {
903 struct cpuset *cp;
904 struct cgroup_subsys_state *pos_css;
905 bool need_rebuild_sched_domains = false;
906
907 rcu_read_lock();
908 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
909 struct cpuset *parent = parent_cs(cp);
910
911 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
912
913 /*
914 * If it becomes empty, inherit the effective mask of the
915 * parent, which is guaranteed to have some CPUs.
916 */
917 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
918 cpumask_empty(new_cpus))
919 cpumask_copy(new_cpus, parent->effective_cpus);
920
921 /* Skip the whole subtree if the cpumask remains the same. */
922 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
923 pos_css = css_rightmost_descendant(pos_css);
924 continue;
925 }
926
927 if (!css_tryget_online(&cp->css))
928 continue;
929 rcu_read_unlock();
930
931 spin_lock_irq(&callback_lock);
932 cpumask_copy(cp->effective_cpus, new_cpus);
933 spin_unlock_irq(&callback_lock);
934
935 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
936 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
937
938 update_tasks_cpumask(cp);
939
940 /*
941 * If the effective cpumask of any non-empty cpuset is changed,
942 * we need to rebuild sched domains.
943 */
944 if (!cpumask_empty(cp->cpus_allowed) &&
945 is_sched_load_balance(cp))
946 need_rebuild_sched_domains = true;
947
948 rcu_read_lock();
949 css_put(&cp->css);
950 }
951 rcu_read_unlock();
952
953 if (need_rebuild_sched_domains)
954 rebuild_sched_domains_locked();
955 }
956
957 /**
958 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
959 * @cs: the cpuset to consider
960 * @trialcs: trial cpuset
961 * @buf: buffer of cpu numbers written to this cpuset
962 */
963 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
964 const char *buf)
965 {
966 int retval;
967
968 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
969 if (cs == &top_cpuset)
970 return -EACCES;
971
972 /*
973 * An empty cpus_allowed is ok only if the cpuset has no tasks.
974 * Since cpulist_parse() fails on an empty mask, we special case
975 * that parsing. The validate_change() call ensures that cpusets
976 * with tasks have cpus.
977 */
978 if (!*buf) {
979 cpumask_clear(trialcs->cpus_allowed);
980 } else {
981 retval = cpulist_parse(buf, trialcs->cpus_requested);
982 if (retval < 0)
983 return retval;
984
985 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
986 return -EINVAL;
987
988 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
989 }
990
991 /* Nothing to do if the cpus didn't change */
992 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
993 return 0;
994
995 retval = validate_change(cs, trialcs);
996 if (retval < 0)
997 return retval;
998
999 spin_lock_irq(&callback_lock);
1000 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1001 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1002 spin_unlock_irq(&callback_lock);
1003
1004 /* use trialcs->cpus_allowed as a temp variable */
1005 update_cpumasks_hier(cs, trialcs->cpus_allowed);
1006 return 0;
1007 }
1008
1009 /*
1010 * Migrate memory region from one set of nodes to another. This is
1011 * performed asynchronously as it can be called from process migration path
1012 * holding locks involved in process management. All mm migrations are
1013 * performed in the queued order and can be waited for by flushing
1014 * cpuset_migrate_mm_wq.
1015 */
1016
1017 struct cpuset_migrate_mm_work {
1018 struct work_struct work;
1019 struct mm_struct *mm;
1020 nodemask_t from;
1021 nodemask_t to;
1022 };
1023
1024 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1025 {
1026 struct cpuset_migrate_mm_work *mwork =
1027 container_of(work, struct cpuset_migrate_mm_work, work);
1028
1029 /* on a wq worker, no need to worry about %current's mems_allowed */
1030 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1031 mmput(mwork->mm);
1032 kfree(mwork);
1033 }
1034
1035 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1036 const nodemask_t *to)
1037 {
1038 struct cpuset_migrate_mm_work *mwork;
1039
1040 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1041 if (mwork) {
1042 mwork->mm = mm;
1043 mwork->from = *from;
1044 mwork->to = *to;
1045 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1046 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1047 } else {
1048 mmput(mm);
1049 }
1050 }
1051
1052 static void cpuset_post_attach(void)
1053 {
1054 flush_workqueue(cpuset_migrate_mm_wq);
1055 }
1056
1057 /*
1058 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1059 * @tsk: the task to change
1060 * @newmems: new nodes that the task will be set
1061 *
1062 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1063 * we structure updates as setting all new allowed nodes, then clearing newly
1064 * disallowed ones.
1065 */
1066 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1067 nodemask_t *newmems)
1068 {
1069 bool need_loop;
1070
1071 /*
1072 * Allow tasks that have access to memory reserves because they have
1073 * been OOM killed to get memory anywhere.
1074 */
1075 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1076 return;
1077 if (current->flags & PF_EXITING) /* Let dying task have memory */
1078 return;
1079
1080 task_lock(tsk);
1081 /*
1082 * Determine if a loop is necessary if another thread is doing
1083 * read_mems_allowed_begin(). If at least one node remains unchanged and
1084 * tsk does not have a mempolicy, then an empty nodemask will not be
1085 * possible when mems_allowed is larger than a word.
1086 */
1087 need_loop = task_has_mempolicy(tsk) ||
1088 !nodes_intersects(*newmems, tsk->mems_allowed);
1089
1090 if (need_loop) {
1091 local_irq_disable();
1092 write_seqcount_begin(&tsk->mems_allowed_seq);
1093 }
1094
1095 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1096 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1097
1098 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1099 tsk->mems_allowed = *newmems;
1100
1101 if (need_loop) {
1102 write_seqcount_end(&tsk->mems_allowed_seq);
1103 local_irq_enable();
1104 }
1105
1106 task_unlock(tsk);
1107 }
1108
1109 static void *cpuset_being_rebound;
1110
1111 /**
1112 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1113 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1114 *
1115 * Iterate through each task of @cs updating its mems_allowed to the
1116 * effective cpuset's. As this function is called with cpuset_mutex held,
1117 * cpuset membership stays stable.
1118 */
1119 static void update_tasks_nodemask(struct cpuset *cs)
1120 {
1121 static nodemask_t newmems; /* protected by cpuset_mutex */
1122 struct css_task_iter it;
1123 struct task_struct *task;
1124
1125 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1126
1127 guarantee_online_mems(cs, &newmems);
1128
1129 /*
1130 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1131 * take while holding tasklist_lock. Forks can happen - the
1132 * mpol_dup() cpuset_being_rebound check will catch such forks,
1133 * and rebind their vma mempolicies too. Because we still hold
1134 * the global cpuset_mutex, we know that no other rebind effort
1135 * will be contending for the global variable cpuset_being_rebound.
1136 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1137 * is idempotent. Also migrate pages in each mm to new nodes.
1138 */
1139 css_task_iter_start(&cs->css, &it);
1140 while ((task = css_task_iter_next(&it))) {
1141 struct mm_struct *mm;
1142 bool migrate;
1143
1144 cpuset_change_task_nodemask(task, &newmems);
1145
1146 mm = get_task_mm(task);
1147 if (!mm)
1148 continue;
1149
1150 migrate = is_memory_migrate(cs);
1151
1152 mpol_rebind_mm(mm, &cs->mems_allowed);
1153 if (migrate)
1154 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1155 else
1156 mmput(mm);
1157 }
1158 css_task_iter_end(&it);
1159
1160 /*
1161 * All the tasks' nodemasks have been updated, update
1162 * cs->old_mems_allowed.
1163 */
1164 cs->old_mems_allowed = newmems;
1165
1166 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1167 cpuset_being_rebound = NULL;
1168 }
1169
1170 /*
1171 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1172 * @cs: the cpuset to consider
1173 * @new_mems: a temp variable for calculating new effective_mems
1174 *
1175 * When configured nodemask is changed, the effective nodemasks of this cpuset
1176 * and all its descendants need to be updated.
1177 *
1178 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1179 *
1180 * Called with cpuset_mutex held
1181 */
1182 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1183 {
1184 struct cpuset *cp;
1185 struct cgroup_subsys_state *pos_css;
1186
1187 rcu_read_lock();
1188 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1189 struct cpuset *parent = parent_cs(cp);
1190
1191 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1192
1193 /*
1194 * If it becomes empty, inherit the effective mask of the
1195 * parent, which is guaranteed to have some MEMs.
1196 */
1197 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1198 nodes_empty(*new_mems))
1199 *new_mems = parent->effective_mems;
1200
1201 /* Skip the whole subtree if the nodemask remains the same. */
1202 if (nodes_equal(*new_mems, cp->effective_mems)) {
1203 pos_css = css_rightmost_descendant(pos_css);
1204 continue;
1205 }
1206
1207 if (!css_tryget_online(&cp->css))
1208 continue;
1209 rcu_read_unlock();
1210
1211 spin_lock_irq(&callback_lock);
1212 cp->effective_mems = *new_mems;
1213 spin_unlock_irq(&callback_lock);
1214
1215 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1216 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1217
1218 update_tasks_nodemask(cp);
1219
1220 rcu_read_lock();
1221 css_put(&cp->css);
1222 }
1223 rcu_read_unlock();
1224 }
1225
1226 /*
1227 * Handle user request to change the 'mems' memory placement
1228 * of a cpuset. Needs to validate the request, update the
1229 * cpusets mems_allowed, and for each task in the cpuset,
1230 * update mems_allowed and rebind task's mempolicy and any vma
1231 * mempolicies and if the cpuset is marked 'memory_migrate',
1232 * migrate the tasks pages to the new memory.
1233 *
1234 * Call with cpuset_mutex held. May take callback_lock during call.
1235 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1236 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1237 * their mempolicies to the cpusets new mems_allowed.
1238 */
1239 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1240 const char *buf)
1241 {
1242 int retval;
1243
1244 /*
1245 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1246 * it's read-only
1247 */
1248 if (cs == &top_cpuset) {
1249 retval = -EACCES;
1250 goto done;
1251 }
1252
1253 /*
1254 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1255 * Since nodelist_parse() fails on an empty mask, we special case
1256 * that parsing. The validate_change() call ensures that cpusets
1257 * with tasks have memory.
1258 */
1259 if (!*buf) {
1260 nodes_clear(trialcs->mems_allowed);
1261 } else {
1262 retval = nodelist_parse(buf, trialcs->mems_allowed);
1263 if (retval < 0)
1264 goto done;
1265
1266 if (!nodes_subset(trialcs->mems_allowed,
1267 top_cpuset.mems_allowed)) {
1268 retval = -EINVAL;
1269 goto done;
1270 }
1271 }
1272
1273 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1274 retval = 0; /* Too easy - nothing to do */
1275 goto done;
1276 }
1277 retval = validate_change(cs, trialcs);
1278 if (retval < 0)
1279 goto done;
1280
1281 spin_lock_irq(&callback_lock);
1282 cs->mems_allowed = trialcs->mems_allowed;
1283 spin_unlock_irq(&callback_lock);
1284
1285 /* use trialcs->mems_allowed as a temp variable */
1286 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1287 done:
1288 return retval;
1289 }
1290
1291 int current_cpuset_is_being_rebound(void)
1292 {
1293 int ret;
1294
1295 rcu_read_lock();
1296 ret = task_cs(current) == cpuset_being_rebound;
1297 rcu_read_unlock();
1298
1299 return ret;
1300 }
1301
1302 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1303 {
1304 #ifdef CONFIG_SMP
1305 if (val < -1 || val >= sched_domain_level_max)
1306 return -EINVAL;
1307 #endif
1308
1309 if (val != cs->relax_domain_level) {
1310 cs->relax_domain_level = val;
1311 if (!cpumask_empty(cs->cpus_allowed) &&
1312 is_sched_load_balance(cs))
1313 rebuild_sched_domains_locked();
1314 }
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1321 * @cs: the cpuset in which each task's spread flags needs to be changed
1322 *
1323 * Iterate through each task of @cs updating its spread flags. As this
1324 * function is called with cpuset_mutex held, cpuset membership stays
1325 * stable.
1326 */
1327 static void update_tasks_flags(struct cpuset *cs)
1328 {
1329 struct css_task_iter it;
1330 struct task_struct *task;
1331
1332 css_task_iter_start(&cs->css, &it);
1333 while ((task = css_task_iter_next(&it)))
1334 cpuset_update_task_spread_flag(cs, task);
1335 css_task_iter_end(&it);
1336 }
1337
1338 /*
1339 * update_flag - read a 0 or a 1 in a file and update associated flag
1340 * bit: the bit to update (see cpuset_flagbits_t)
1341 * cs: the cpuset to update
1342 * turning_on: whether the flag is being set or cleared
1343 *
1344 * Call with cpuset_mutex held.
1345 */
1346
1347 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1348 int turning_on)
1349 {
1350 struct cpuset *trialcs;
1351 int balance_flag_changed;
1352 int spread_flag_changed;
1353 int err;
1354
1355 trialcs = alloc_trial_cpuset(cs);
1356 if (!trialcs)
1357 return -ENOMEM;
1358
1359 if (turning_on)
1360 set_bit(bit, &trialcs->flags);
1361 else
1362 clear_bit(bit, &trialcs->flags);
1363
1364 err = validate_change(cs, trialcs);
1365 if (err < 0)
1366 goto out;
1367
1368 balance_flag_changed = (is_sched_load_balance(cs) !=
1369 is_sched_load_balance(trialcs));
1370
1371 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1372 || (is_spread_page(cs) != is_spread_page(trialcs)));
1373
1374 spin_lock_irq(&callback_lock);
1375 cs->flags = trialcs->flags;
1376 spin_unlock_irq(&callback_lock);
1377
1378 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1379 rebuild_sched_domains_locked();
1380
1381 if (spread_flag_changed)
1382 update_tasks_flags(cs);
1383 out:
1384 free_trial_cpuset(trialcs);
1385 return err;
1386 }
1387
1388 /*
1389 * Frequency meter - How fast is some event occurring?
1390 *
1391 * These routines manage a digitally filtered, constant time based,
1392 * event frequency meter. There are four routines:
1393 * fmeter_init() - initialize a frequency meter.
1394 * fmeter_markevent() - called each time the event happens.
1395 * fmeter_getrate() - returns the recent rate of such events.
1396 * fmeter_update() - internal routine used to update fmeter.
1397 *
1398 * A common data structure is passed to each of these routines,
1399 * which is used to keep track of the state required to manage the
1400 * frequency meter and its digital filter.
1401 *
1402 * The filter works on the number of events marked per unit time.
1403 * The filter is single-pole low-pass recursive (IIR). The time unit
1404 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1405 * simulate 3 decimal digits of precision (multiplied by 1000).
1406 *
1407 * With an FM_COEF of 933, and a time base of 1 second, the filter
1408 * has a half-life of 10 seconds, meaning that if the events quit
1409 * happening, then the rate returned from the fmeter_getrate()
1410 * will be cut in half each 10 seconds, until it converges to zero.
1411 *
1412 * It is not worth doing a real infinitely recursive filter. If more
1413 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1414 * just compute FM_MAXTICKS ticks worth, by which point the level
1415 * will be stable.
1416 *
1417 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1418 * arithmetic overflow in the fmeter_update() routine.
1419 *
1420 * Given the simple 32 bit integer arithmetic used, this meter works
1421 * best for reporting rates between one per millisecond (msec) and
1422 * one per 32 (approx) seconds. At constant rates faster than one
1423 * per msec it maxes out at values just under 1,000,000. At constant
1424 * rates between one per msec, and one per second it will stabilize
1425 * to a value N*1000, where N is the rate of events per second.
1426 * At constant rates between one per second and one per 32 seconds,
1427 * it will be choppy, moving up on the seconds that have an event,
1428 * and then decaying until the next event. At rates slower than
1429 * about one in 32 seconds, it decays all the way back to zero between
1430 * each event.
1431 */
1432
1433 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1434 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1435 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1436 #define FM_SCALE 1000 /* faux fixed point scale */
1437
1438 /* Initialize a frequency meter */
1439 static void fmeter_init(struct fmeter *fmp)
1440 {
1441 fmp->cnt = 0;
1442 fmp->val = 0;
1443 fmp->time = 0;
1444 spin_lock_init(&fmp->lock);
1445 }
1446
1447 /* Internal meter update - process cnt events and update value */
1448 static void fmeter_update(struct fmeter *fmp)
1449 {
1450 time_t now = get_seconds();
1451 time_t ticks = now - fmp->time;
1452
1453 if (ticks == 0)
1454 return;
1455
1456 ticks = min(FM_MAXTICKS, ticks);
1457 while (ticks-- > 0)
1458 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1459 fmp->time = now;
1460
1461 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1462 fmp->cnt = 0;
1463 }
1464
1465 /* Process any previous ticks, then bump cnt by one (times scale). */
1466 static void fmeter_markevent(struct fmeter *fmp)
1467 {
1468 spin_lock(&fmp->lock);
1469 fmeter_update(fmp);
1470 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1471 spin_unlock(&fmp->lock);
1472 }
1473
1474 /* Process any previous ticks, then return current value. */
1475 static int fmeter_getrate(struct fmeter *fmp)
1476 {
1477 int val;
1478
1479 spin_lock(&fmp->lock);
1480 fmeter_update(fmp);
1481 val = fmp->val;
1482 spin_unlock(&fmp->lock);
1483 return val;
1484 }
1485
1486 static struct cpuset *cpuset_attach_old_cs;
1487
1488 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1489 static int cpuset_can_attach(struct cgroup_taskset *tset)
1490 {
1491 struct cgroup_subsys_state *css;
1492 struct cpuset *cs;
1493 struct task_struct *task;
1494 int ret;
1495
1496 /* used later by cpuset_attach() */
1497 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1498 cs = css_cs(css);
1499
1500 mutex_lock(&cpuset_mutex);
1501
1502 /* allow moving tasks into an empty cpuset if on default hierarchy */
1503 ret = -ENOSPC;
1504 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1505 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1506 goto out_unlock;
1507
1508 cgroup_taskset_for_each(task, css, tset) {
1509 ret = task_can_attach(task, cs->cpus_allowed);
1510 if (ret)
1511 goto out_unlock;
1512 ret = security_task_setscheduler(task);
1513 if (ret)
1514 goto out_unlock;
1515 }
1516
1517 /*
1518 * Mark attach is in progress. This makes validate_change() fail
1519 * changes which zero cpus/mems_allowed.
1520 */
1521 cs->attach_in_progress++;
1522 ret = 0;
1523 out_unlock:
1524 mutex_unlock(&cpuset_mutex);
1525 return ret;
1526 }
1527
1528 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1529 {
1530 struct cgroup_subsys_state *css;
1531 struct cpuset *cs;
1532
1533 cgroup_taskset_first(tset, &css);
1534 cs = css_cs(css);
1535
1536 mutex_lock(&cpuset_mutex);
1537 css_cs(css)->attach_in_progress--;
1538 mutex_unlock(&cpuset_mutex);
1539 }
1540
1541 /*
1542 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1543 * but we can't allocate it dynamically there. Define it global and
1544 * allocate from cpuset_init().
1545 */
1546 static cpumask_var_t cpus_attach;
1547
1548 static void cpuset_attach(struct cgroup_taskset *tset)
1549 {
1550 /* static buf protected by cpuset_mutex */
1551 static nodemask_t cpuset_attach_nodemask_to;
1552 struct task_struct *task;
1553 struct task_struct *leader;
1554 struct cgroup_subsys_state *css;
1555 struct cpuset *cs;
1556 struct cpuset *oldcs = cpuset_attach_old_cs;
1557
1558 cgroup_taskset_first(tset, &css);
1559 cs = css_cs(css);
1560
1561 mutex_lock(&cpuset_mutex);
1562
1563 /* prepare for attach */
1564 if (cs == &top_cpuset)
1565 cpumask_copy(cpus_attach, cpu_possible_mask);
1566 else
1567 guarantee_online_cpus(cs, cpus_attach);
1568
1569 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1570
1571 cgroup_taskset_for_each(task, css, tset) {
1572 /*
1573 * can_attach beforehand should guarantee that this doesn't
1574 * fail. TODO: have a better way to handle failure here
1575 */
1576 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1577
1578 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1579 cpuset_update_task_spread_flag(cs, task);
1580 }
1581
1582 /*
1583 * Change mm for all threadgroup leaders. This is expensive and may
1584 * sleep and should be moved outside migration path proper.
1585 */
1586 cpuset_attach_nodemask_to = cs->effective_mems;
1587 cgroup_taskset_for_each_leader(leader, css, tset) {
1588 struct mm_struct *mm = get_task_mm(leader);
1589
1590 if (mm) {
1591 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1592
1593 /*
1594 * old_mems_allowed is the same with mems_allowed
1595 * here, except if this task is being moved
1596 * automatically due to hotplug. In that case
1597 * @mems_allowed has been updated and is empty, so
1598 * @old_mems_allowed is the right nodesets that we
1599 * migrate mm from.
1600 */
1601 if (is_memory_migrate(cs))
1602 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1603 &cpuset_attach_nodemask_to);
1604 else
1605 mmput(mm);
1606 }
1607 }
1608
1609 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1610
1611 cs->attach_in_progress--;
1612 if (!cs->attach_in_progress)
1613 wake_up(&cpuset_attach_wq);
1614
1615 mutex_unlock(&cpuset_mutex);
1616 }
1617
1618 /* The various types of files and directories in a cpuset file system */
1619
1620 typedef enum {
1621 FILE_MEMORY_MIGRATE,
1622 FILE_CPULIST,
1623 FILE_MEMLIST,
1624 FILE_EFFECTIVE_CPULIST,
1625 FILE_EFFECTIVE_MEMLIST,
1626 FILE_CPU_EXCLUSIVE,
1627 FILE_MEM_EXCLUSIVE,
1628 FILE_MEM_HARDWALL,
1629 FILE_SCHED_LOAD_BALANCE,
1630 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1631 FILE_MEMORY_PRESSURE_ENABLED,
1632 FILE_MEMORY_PRESSURE,
1633 FILE_SPREAD_PAGE,
1634 FILE_SPREAD_SLAB,
1635 FILE_FAMILY_BOOST,
1636 } cpuset_filetype_t;
1637
1638 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1639 u64 val)
1640 {
1641 struct cpuset *cs = css_cs(css);
1642 cpuset_filetype_t type = cft->private;
1643 int retval = 0;
1644
1645 mutex_lock(&cpuset_mutex);
1646 if (!is_cpuset_online(cs)) {
1647 retval = -ENODEV;
1648 goto out_unlock;
1649 }
1650
1651 switch (type) {
1652 case FILE_CPU_EXCLUSIVE:
1653 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1654 break;
1655 case FILE_MEM_EXCLUSIVE:
1656 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1657 break;
1658 case FILE_MEM_HARDWALL:
1659 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1660 break;
1661 case FILE_SCHED_LOAD_BALANCE:
1662 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1663 break;
1664 case FILE_MEMORY_MIGRATE:
1665 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1666 break;
1667 case FILE_MEMORY_PRESSURE_ENABLED:
1668 cpuset_memory_pressure_enabled = !!val;
1669 break;
1670 case FILE_SPREAD_PAGE:
1671 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1672 break;
1673 case FILE_SPREAD_SLAB:
1674 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1675 break;
1676 case FILE_FAMILY_BOOST:
1677 retval = update_flag(CS_FAMILY_BOOST, cs, val);
1678 break;
1679 default:
1680 retval = -EINVAL;
1681 break;
1682 }
1683 out_unlock:
1684 mutex_unlock(&cpuset_mutex);
1685 return retval;
1686 }
1687
1688 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1689 s64 val)
1690 {
1691 struct cpuset *cs = css_cs(css);
1692 cpuset_filetype_t type = cft->private;
1693 int retval = -ENODEV;
1694
1695 mutex_lock(&cpuset_mutex);
1696 if (!is_cpuset_online(cs))
1697 goto out_unlock;
1698
1699 switch (type) {
1700 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1701 retval = update_relax_domain_level(cs, val);
1702 break;
1703 default:
1704 retval = -EINVAL;
1705 break;
1706 }
1707 out_unlock:
1708 mutex_unlock(&cpuset_mutex);
1709 return retval;
1710 }
1711
1712 /*
1713 * Common handling for a write to a "cpus" or "mems" file.
1714 */
1715 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1716 char *buf, size_t nbytes, loff_t off)
1717 {
1718 struct cpuset *cs = css_cs(of_css(of));
1719 struct cpuset *trialcs;
1720 int retval = -ENODEV;
1721
1722 buf = strstrip(buf);
1723
1724 /*
1725 * CPU or memory hotunplug may leave @cs w/o any execution
1726 * resources, in which case the hotplug code asynchronously updates
1727 * configuration and transfers all tasks to the nearest ancestor
1728 * which can execute.
1729 *
1730 * As writes to "cpus" or "mems" may restore @cs's execution
1731 * resources, wait for the previously scheduled operations before
1732 * proceeding, so that we don't end up keep removing tasks added
1733 * after execution capability is restored.
1734 *
1735 * cpuset_hotplug_work calls back into cgroup core via
1736 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1737 * operation like this one can lead to a deadlock through kernfs
1738 * active_ref protection. Let's break the protection. Losing the
1739 * protection is okay as we check whether @cs is online after
1740 * grabbing cpuset_mutex anyway. This only happens on the legacy
1741 * hierarchies.
1742 */
1743 css_get(&cs->css);
1744 kernfs_break_active_protection(of->kn);
1745 flush_work(&cpuset_hotplug_work);
1746
1747 mutex_lock(&cpuset_mutex);
1748 if (!is_cpuset_online(cs))
1749 goto out_unlock;
1750
1751 trialcs = alloc_trial_cpuset(cs);
1752 if (!trialcs) {
1753 retval = -ENOMEM;
1754 goto out_unlock;
1755 }
1756
1757 switch (of_cft(of)->private) {
1758 case FILE_CPULIST:
1759 retval = update_cpumask(cs, trialcs, buf);
1760 break;
1761 case FILE_MEMLIST:
1762 retval = update_nodemask(cs, trialcs, buf);
1763 break;
1764 default:
1765 retval = -EINVAL;
1766 break;
1767 }
1768
1769 free_trial_cpuset(trialcs);
1770 out_unlock:
1771 mutex_unlock(&cpuset_mutex);
1772 kernfs_unbreak_active_protection(of->kn);
1773 css_put(&cs->css);
1774 flush_workqueue(cpuset_migrate_mm_wq);
1775 return retval ?: nbytes;
1776 }
1777
1778 /*
1779 * These ascii lists should be read in a single call, by using a user
1780 * buffer large enough to hold the entire map. If read in smaller
1781 * chunks, there is no guarantee of atomicity. Since the display format
1782 * used, list of ranges of sequential numbers, is variable length,
1783 * and since these maps can change value dynamically, one could read
1784 * gibberish by doing partial reads while a list was changing.
1785 */
1786 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1787 {
1788 struct cpuset *cs = css_cs(seq_css(sf));
1789 cpuset_filetype_t type = seq_cft(sf)->private;
1790 int ret = 0;
1791
1792 spin_lock_irq(&callback_lock);
1793
1794 switch (type) {
1795 case FILE_CPULIST:
1796 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
1797 break;
1798 case FILE_MEMLIST:
1799 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1800 break;
1801 case FILE_EFFECTIVE_CPULIST:
1802 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1803 break;
1804 case FILE_EFFECTIVE_MEMLIST:
1805 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1806 break;
1807 default:
1808 ret = -EINVAL;
1809 }
1810
1811 spin_unlock_irq(&callback_lock);
1812 return ret;
1813 }
1814
1815 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1816 {
1817 struct cpuset *cs = css_cs(css);
1818 cpuset_filetype_t type = cft->private;
1819 switch (type) {
1820 case FILE_CPU_EXCLUSIVE:
1821 return is_cpu_exclusive(cs);
1822 case FILE_MEM_EXCLUSIVE:
1823 return is_mem_exclusive(cs);
1824 case FILE_MEM_HARDWALL:
1825 return is_mem_hardwall(cs);
1826 case FILE_SCHED_LOAD_BALANCE:
1827 return is_sched_load_balance(cs);
1828 case FILE_MEMORY_MIGRATE:
1829 return is_memory_migrate(cs);
1830 case FILE_MEMORY_PRESSURE_ENABLED:
1831 return cpuset_memory_pressure_enabled;
1832 case FILE_MEMORY_PRESSURE:
1833 return fmeter_getrate(&cs->fmeter);
1834 case FILE_SPREAD_PAGE:
1835 return is_spread_page(cs);
1836 case FILE_SPREAD_SLAB:
1837 return is_spread_slab(cs);
1838 case FILE_FAMILY_BOOST:
1839 return is_family_boost_enabled(cs);
1840 default:
1841 BUG();
1842 }
1843
1844 /* Unreachable but makes gcc happy */
1845 return 0;
1846 }
1847
1848 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1849 {
1850 struct cpuset *cs = css_cs(css);
1851 cpuset_filetype_t type = cft->private;
1852 switch (type) {
1853 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1854 return cs->relax_domain_level;
1855 default:
1856 BUG();
1857 }
1858
1859 /* Unrechable but makes gcc happy */
1860 return 0;
1861 }
1862
1863
1864 /*
1865 * for the common functions, 'private' gives the type of file
1866 */
1867
1868 static struct cftype files[] = {
1869 {
1870 .name = "cpus",
1871 .seq_show = cpuset_common_seq_show,
1872 .write = cpuset_write_resmask,
1873 .max_write_len = (100U + 6 * NR_CPUS),
1874 .private = FILE_CPULIST,
1875 },
1876
1877 {
1878 .name = "mems",
1879 .seq_show = cpuset_common_seq_show,
1880 .write = cpuset_write_resmask,
1881 .max_write_len = (100U + 6 * MAX_NUMNODES),
1882 .private = FILE_MEMLIST,
1883 },
1884
1885 {
1886 .name = "effective_cpus",
1887 .seq_show = cpuset_common_seq_show,
1888 .private = FILE_EFFECTIVE_CPULIST,
1889 },
1890
1891 {
1892 .name = "effective_mems",
1893 .seq_show = cpuset_common_seq_show,
1894 .private = FILE_EFFECTIVE_MEMLIST,
1895 },
1896
1897 {
1898 .name = "cpu_exclusive",
1899 .read_u64 = cpuset_read_u64,
1900 .write_u64 = cpuset_write_u64,
1901 .private = FILE_CPU_EXCLUSIVE,
1902 },
1903
1904 {
1905 .name = "mem_exclusive",
1906 .read_u64 = cpuset_read_u64,
1907 .write_u64 = cpuset_write_u64,
1908 .private = FILE_MEM_EXCLUSIVE,
1909 },
1910
1911 {
1912 .name = "mem_hardwall",
1913 .read_u64 = cpuset_read_u64,
1914 .write_u64 = cpuset_write_u64,
1915 .private = FILE_MEM_HARDWALL,
1916 },
1917
1918 {
1919 .name = "sched_load_balance",
1920 .read_u64 = cpuset_read_u64,
1921 .write_u64 = cpuset_write_u64,
1922 .private = FILE_SCHED_LOAD_BALANCE,
1923 },
1924
1925 {
1926 .name = "sched_relax_domain_level",
1927 .read_s64 = cpuset_read_s64,
1928 .write_s64 = cpuset_write_s64,
1929 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1930 },
1931
1932 {
1933 .name = "memory_migrate",
1934 .read_u64 = cpuset_read_u64,
1935 .write_u64 = cpuset_write_u64,
1936 .private = FILE_MEMORY_MIGRATE,
1937 },
1938
1939 {
1940 .name = "memory_pressure",
1941 .read_u64 = cpuset_read_u64,
1942 .private = FILE_MEMORY_PRESSURE,
1943 },
1944
1945 {
1946 .name = "memory_spread_page",
1947 .read_u64 = cpuset_read_u64,
1948 .write_u64 = cpuset_write_u64,
1949 .private = FILE_SPREAD_PAGE,
1950 },
1951
1952 {
1953 .name = "memory_spread_slab",
1954 .read_u64 = cpuset_read_u64,
1955 .write_u64 = cpuset_write_u64,
1956 .private = FILE_SPREAD_SLAB,
1957 },
1958
1959 {
1960 .name = "memory_pressure_enabled",
1961 .flags = CFTYPE_ONLY_ON_ROOT,
1962 .read_u64 = cpuset_read_u64,
1963 .write_u64 = cpuset_write_u64,
1964 .private = FILE_MEMORY_PRESSURE_ENABLED,
1965 },
1966
1967 {
1968 .name = "family_boost",
1969 .read_u64 = cpuset_read_u64,
1970 .write_u64 = cpuset_write_u64,
1971 .private = FILE_FAMILY_BOOST,
1972 },
1973
1974
1975 { } /* terminate */
1976 };
1977
1978 /*
1979 * cpuset_css_alloc - allocate a cpuset css
1980 * cgrp: control group that the new cpuset will be part of
1981 */
1982
1983 static struct cgroup_subsys_state *
1984 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1985 {
1986 struct cpuset *cs;
1987
1988 if (!parent_css)
1989 return &top_cpuset.css;
1990
1991 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1992 if (!cs)
1993 return ERR_PTR(-ENOMEM);
1994 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1995 goto free_cs;
1996 if (!alloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
1997 goto free_allowed;
1998 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1999 goto free_requested;
2000
2001 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2002 cpumask_clear(cs->cpus_allowed);
2003 cpumask_clear(cs->cpus_requested);
2004 nodes_clear(cs->mems_allowed);
2005 cpumask_clear(cs->effective_cpus);
2006 nodes_clear(cs->effective_mems);
2007 fmeter_init(&cs->fmeter);
2008 cs->relax_domain_level = -1;
2009
2010 return &cs->css;
2011
2012 free_requested:
2013 free_cpumask_var(cs->cpus_requested);
2014 free_allowed:
2015 free_cpumask_var(cs->cpus_allowed);
2016 free_cs:
2017 kfree(cs);
2018 return ERR_PTR(-ENOMEM);
2019 }
2020
2021 static int cpuset_css_online(struct cgroup_subsys_state *css)
2022 {
2023 struct cpuset *cs = css_cs(css);
2024 struct cpuset *parent = parent_cs(cs);
2025 struct cpuset *tmp_cs;
2026 struct cgroup_subsys_state *pos_css;
2027
2028 if (!parent)
2029 return 0;
2030
2031 mutex_lock(&cpuset_mutex);
2032
2033 set_bit(CS_ONLINE, &cs->flags);
2034 if (is_spread_page(parent))
2035 set_bit(CS_SPREAD_PAGE, &cs->flags);
2036 if (is_spread_slab(parent))
2037 set_bit(CS_SPREAD_SLAB, &cs->flags);
2038
2039 cpuset_inc();
2040
2041 spin_lock_irq(&callback_lock);
2042 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2043 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2044 cs->effective_mems = parent->effective_mems;
2045 }
2046 spin_unlock_irq(&callback_lock);
2047
2048 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2049 goto out_unlock;
2050
2051 /*
2052 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2053 * set. This flag handling is implemented in cgroup core for
2054 * histrical reasons - the flag may be specified during mount.
2055 *
2056 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2057 * refuse to clone the configuration - thereby refusing the task to
2058 * be entered, and as a result refusing the sys_unshare() or
2059 * clone() which initiated it. If this becomes a problem for some
2060 * users who wish to allow that scenario, then this could be
2061 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2062 * (and likewise for mems) to the new cgroup.
2063 */
2064 rcu_read_lock();
2065 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2066 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2067 rcu_read_unlock();
2068 goto out_unlock;
2069 }
2070 }
2071 rcu_read_unlock();
2072
2073 spin_lock_irq(&callback_lock);
2074 cs->mems_allowed = parent->mems_allowed;
2075 cs->effective_mems = parent->mems_allowed;
2076 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2077 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2078 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2079 spin_unlock_irq(&callback_lock);
2080 out_unlock:
2081 mutex_unlock(&cpuset_mutex);
2082 return 0;
2083 }
2084
2085 /*
2086 * If the cpuset being removed has its flag 'sched_load_balance'
2087 * enabled, then simulate turning sched_load_balance off, which
2088 * will call rebuild_sched_domains_locked().
2089 */
2090
2091 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2092 {
2093 struct cpuset *cs = css_cs(css);
2094
2095 mutex_lock(&cpuset_mutex);
2096
2097 if (is_sched_load_balance(cs))
2098 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2099
2100 cpuset_dec();
2101 clear_bit(CS_ONLINE, &cs->flags);
2102
2103 mutex_unlock(&cpuset_mutex);
2104 }
2105
2106 static void cpuset_css_free(struct cgroup_subsys_state *css)
2107 {
2108 struct cpuset *cs = css_cs(css);
2109
2110 free_cpumask_var(cs->effective_cpus);
2111 free_cpumask_var(cs->cpus_allowed);
2112 free_cpumask_var(cs->cpus_requested);
2113 kfree(cs);
2114 }
2115
2116 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2117 {
2118 mutex_lock(&cpuset_mutex);
2119 spin_lock_irq(&callback_lock);
2120
2121 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2122 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2123 top_cpuset.mems_allowed = node_possible_map;
2124 } else {
2125 cpumask_copy(top_cpuset.cpus_allowed,
2126 top_cpuset.effective_cpus);
2127 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2128 }
2129
2130 spin_unlock_irq(&callback_lock);
2131 mutex_unlock(&cpuset_mutex);
2132 }
2133
2134 /*
2135 * Make sure the new task conform to the current state of its parent,
2136 * which could have been changed by cpuset just after it inherits the
2137 * state from the parent and before it sits on the cgroup's task list.
2138 */
2139 void cpuset_fork(struct task_struct *task, void *priv)
2140 {
2141 if (task_css_is_root(task, cpuset_cgrp_id))
2142 return;
2143
2144 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2145 task->mems_allowed = current->mems_allowed;
2146 }
2147
2148 static int cpuset_allow_attach(struct cgroup_taskset *tset)
2149 {
2150 const struct cred *cred = current_cred(), *tcred;
2151 struct task_struct *task;
2152 struct cgroup_subsys_state *css;
2153
2154 cgroup_taskset_for_each(task, css, tset) {
2155 tcred = __task_cred(task);
2156
2157 if ((current != task) && !capable(CAP_SYS_ADMIN) &&
2158 cred->euid.val != tcred->uid.val && cred->euid.val != tcred->suid.val)
2159 return -EACCES;
2160 }
2161
2162 return 0;
2163 }
2164
2165 struct cgroup_subsys cpuset_cgrp_subsys = {
2166 .css_alloc = cpuset_css_alloc,
2167 .css_online = cpuset_css_online,
2168 .css_offline = cpuset_css_offline,
2169 .css_free = cpuset_css_free,
2170 .can_attach = cpuset_can_attach,
2171 .allow_attach = cpuset_allow_attach,
2172 .cancel_attach = cpuset_cancel_attach,
2173 .attach = cpuset_attach,
2174 .post_attach = cpuset_post_attach,
2175 .bind = cpuset_bind,
2176 .fork = cpuset_fork,
2177 .legacy_cftypes = files,
2178 .early_init = 1,
2179 };
2180
2181 /**
2182 * cpuset_init - initialize cpusets at system boot
2183 *
2184 * Description: Initialize top_cpuset and the cpuset internal file system,
2185 **/
2186
2187 int __init cpuset_init(void)
2188 {
2189 int err = 0;
2190
2191 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2192 BUG();
2193 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2194 BUG();
2195 if (!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL))
2196 BUG();
2197
2198 cpumask_setall(top_cpuset.cpus_allowed);
2199 cpumask_setall(top_cpuset.cpus_requested);
2200 nodes_setall(top_cpuset.mems_allowed);
2201 cpumask_setall(top_cpuset.effective_cpus);
2202 nodes_setall(top_cpuset.effective_mems);
2203
2204 fmeter_init(&top_cpuset.fmeter);
2205 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2206 top_cpuset.relax_domain_level = -1;
2207
2208 err = register_filesystem(&cpuset_fs_type);
2209 if (err < 0)
2210 return err;
2211
2212 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2213 BUG();
2214
2215 return 0;
2216 }
2217
2218 /*
2219 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2220 * or memory nodes, we need to walk over the cpuset hierarchy,
2221 * removing that CPU or node from all cpusets. If this removes the
2222 * last CPU or node from a cpuset, then move the tasks in the empty
2223 * cpuset to its next-highest non-empty parent.
2224 */
2225 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2226 {
2227 struct cpuset *parent;
2228
2229 /*
2230 * Find its next-highest non-empty parent, (top cpuset
2231 * has online cpus, so can't be empty).
2232 */
2233 parent = parent_cs(cs);
2234 while (cpumask_empty(parent->cpus_allowed) ||
2235 nodes_empty(parent->mems_allowed))
2236 parent = parent_cs(parent);
2237
2238 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2239 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2240 pr_cont_cgroup_name(cs->css.cgroup);
2241 pr_cont("\n");
2242 }
2243 }
2244
2245 static void
2246 hotplug_update_tasks_legacy(struct cpuset *cs,
2247 struct cpumask *new_cpus, nodemask_t *new_mems,
2248 bool cpus_updated, bool mems_updated)
2249 {
2250 bool is_empty;
2251
2252 spin_lock_irq(&callback_lock);
2253 cpumask_copy(cs->cpus_allowed, new_cpus);
2254 cpumask_copy(cs->effective_cpus, new_cpus);
2255 cs->mems_allowed = *new_mems;
2256 cs->effective_mems = *new_mems;
2257 spin_unlock_irq(&callback_lock);
2258
2259 /*
2260 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2261 * as the tasks will be migratecd to an ancestor.
2262 */
2263 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2264 update_tasks_cpumask(cs);
2265 if (mems_updated && !nodes_empty(cs->mems_allowed))
2266 update_tasks_nodemask(cs);
2267
2268 is_empty = cpumask_empty(cs->cpus_allowed) ||
2269 nodes_empty(cs->mems_allowed);
2270
2271 mutex_unlock(&cpuset_mutex);
2272
2273 /*
2274 * Move tasks to the nearest ancestor with execution resources,
2275 * This is full cgroup operation which will also call back into
2276 * cpuset. Should be done outside any lock.
2277 */
2278 if (is_empty)
2279 remove_tasks_in_empty_cpuset(cs);
2280
2281 mutex_lock(&cpuset_mutex);
2282 }
2283
2284 static void
2285 hotplug_update_tasks(struct cpuset *cs,
2286 struct cpumask *new_cpus, nodemask_t *new_mems,
2287 bool cpus_updated, bool mems_updated)
2288 {
2289 if (cpumask_empty(new_cpus))
2290 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2291 if (nodes_empty(*new_mems))
2292 *new_mems = parent_cs(cs)->effective_mems;
2293
2294 spin_lock_irq(&callback_lock);
2295 cpumask_copy(cs->effective_cpus, new_cpus);
2296 cs->effective_mems = *new_mems;
2297 spin_unlock_irq(&callback_lock);
2298
2299 if (cpus_updated)
2300 update_tasks_cpumask(cs);
2301 if (mems_updated)
2302 update_tasks_nodemask(cs);
2303 }
2304
2305 /**
2306 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2307 * @cs: cpuset in interest
2308 *
2309 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2310 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2311 * all its tasks are moved to the nearest ancestor with both resources.
2312 */
2313 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2314 {
2315 static cpumask_t new_cpus;
2316 static nodemask_t new_mems;
2317 bool cpus_updated;
2318 bool mems_updated;
2319 retry:
2320 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2321
2322 mutex_lock(&cpuset_mutex);
2323
2324 /*
2325 * We have raced with task attaching. We wait until attaching
2326 * is finished, so we won't attach a task to an empty cpuset.
2327 */
2328 if (cs->attach_in_progress) {
2329 mutex_unlock(&cpuset_mutex);
2330 goto retry;
2331 }
2332
2333 cpumask_and(&new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
2334 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2335
2336 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2337 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2338
2339 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2340 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2341 cpus_updated, mems_updated);
2342 else
2343 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2344 cpus_updated, mems_updated);
2345
2346 mutex_unlock(&cpuset_mutex);
2347 }
2348
2349 static bool force_rebuild;
2350
2351 void cpuset_force_rebuild(void)
2352 {
2353 force_rebuild = true;
2354 }
2355
2356 /**
2357 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2358 *
2359 * This function is called after either CPU or memory configuration has
2360 * changed and updates cpuset accordingly. The top_cpuset is always
2361 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2362 * order to make cpusets transparent (of no affect) on systems that are
2363 * actively using CPU hotplug but making no active use of cpusets.
2364 *
2365 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2366 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2367 * all descendants.
2368 *
2369 * Note that CPU offlining during suspend is ignored. We don't modify
2370 * cpusets across suspend/resume cycles at all.
2371 */
2372 static void cpuset_hotplug_workfn(struct work_struct *work)
2373 {
2374 static cpumask_t new_cpus;
2375 static nodemask_t new_mems;
2376 bool cpus_updated, mems_updated;
2377 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2378
2379 mutex_lock(&cpuset_mutex);
2380
2381 /* fetch the available cpus/mems and find out which changed how */
2382 cpumask_copy(&new_cpus, cpu_active_mask);
2383 new_mems = node_states[N_MEMORY];
2384
2385 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2386 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2387
2388 /* synchronize cpus_allowed to cpu_active_mask */
2389 if (cpus_updated) {
2390 spin_lock_irq(&callback_lock);
2391 if (!on_dfl)
2392 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2393 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2394 spin_unlock_irq(&callback_lock);
2395 /* we don't mess with cpumasks of tasks in top_cpuset */
2396 }
2397
2398 /* synchronize mems_allowed to N_MEMORY */
2399 if (mems_updated) {
2400 spin_lock_irq(&callback_lock);
2401 if (!on_dfl)
2402 top_cpuset.mems_allowed = new_mems;
2403 top_cpuset.effective_mems = new_mems;
2404 spin_unlock_irq(&callback_lock);
2405 update_tasks_nodemask(&top_cpuset);
2406 }
2407
2408 mutex_unlock(&cpuset_mutex);
2409
2410 /* if cpus or mems changed, we need to propagate to descendants */
2411 if (cpus_updated || mems_updated) {
2412 struct cpuset *cs;
2413 struct cgroup_subsys_state *pos_css;
2414
2415 rcu_read_lock();
2416 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2417 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2418 continue;
2419 rcu_read_unlock();
2420
2421 cpuset_hotplug_update_tasks(cs);
2422
2423 rcu_read_lock();
2424 css_put(&cs->css);
2425 }
2426 rcu_read_unlock();
2427 }
2428
2429 /* rebuild sched domains if cpus_allowed has changed */
2430 if (cpus_updated || force_rebuild) {
2431 force_rebuild = false;
2432 rebuild_sched_domains();
2433 }
2434 }
2435
2436 void cpuset_update_active_cpus(bool cpu_online)
2437 {
2438 /*
2439 * We're inside cpu hotplug critical region which usually nests
2440 * inside cgroup synchronization. Bounce actual hotplug processing
2441 * to a work item to avoid reverse locking order.
2442 *
2443 * We still need to do partition_sched_domains() synchronously;
2444 * otherwise, the scheduler will get confused and put tasks to the
2445 * dead CPU. Fall back to the default single domain.
2446 * cpuset_hotplug_workfn() will rebuild it as necessary.
2447 */
2448 partition_sched_domains(1, NULL, NULL);
2449 schedule_work(&cpuset_hotplug_work);
2450 }
2451
2452 void cpuset_wait_for_hotplug(void)
2453 {
2454 flush_work(&cpuset_hotplug_work);
2455 }
2456
2457 /*
2458 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2459 * Call this routine anytime after node_states[N_MEMORY] changes.
2460 * See cpuset_update_active_cpus() for CPU hotplug handling.
2461 */
2462 static int cpuset_track_online_nodes(struct notifier_block *self,
2463 unsigned long action, void *arg)
2464 {
2465 schedule_work(&cpuset_hotplug_work);
2466 return NOTIFY_OK;
2467 }
2468
2469 static struct notifier_block cpuset_track_online_nodes_nb = {
2470 .notifier_call = cpuset_track_online_nodes,
2471 .priority = 10, /* ??! */
2472 };
2473
2474 /**
2475 * cpuset_init_smp - initialize cpus_allowed
2476 *
2477 * Description: Finish top cpuset after cpu, node maps are initialized
2478 */
2479 void __init cpuset_init_smp(void)
2480 {
2481 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2482 top_cpuset.mems_allowed = node_states[N_MEMORY];
2483 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2484
2485 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2486 top_cpuset.effective_mems = node_states[N_MEMORY];
2487
2488 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2489
2490 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2491 BUG_ON(!cpuset_migrate_mm_wq);
2492 }
2493
2494 /**
2495 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2496 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2497 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2498 *
2499 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2500 * attached to the specified @tsk. Guaranteed to return some non-empty
2501 * subset of cpu_online_mask, even if this means going outside the
2502 * tasks cpuset.
2503 **/
2504
2505 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2506 {
2507 unsigned long flags;
2508
2509 spin_lock_irqsave(&callback_lock, flags);
2510 rcu_read_lock();
2511 guarantee_online_cpus(task_cs(tsk), pmask);
2512 rcu_read_unlock();
2513 spin_unlock_irqrestore(&callback_lock, flags);
2514 }
2515
2516 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2517 {
2518 rcu_read_lock();
2519 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2520 rcu_read_unlock();
2521
2522 /*
2523 * We own tsk->cpus_allowed, nobody can change it under us.
2524 *
2525 * But we used cs && cs->cpus_allowed lockless and thus can
2526 * race with cgroup_attach_task() or update_cpumask() and get
2527 * the wrong tsk->cpus_allowed. However, both cases imply the
2528 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2529 * which takes task_rq_lock().
2530 *
2531 * If we are called after it dropped the lock we must see all
2532 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2533 * set any mask even if it is not right from task_cs() pov,
2534 * the pending set_cpus_allowed_ptr() will fix things.
2535 *
2536 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2537 * if required.
2538 */
2539 }
2540
2541 void __init cpuset_init_current_mems_allowed(void)
2542 {
2543 nodes_setall(current->mems_allowed);
2544 }
2545
2546 /**
2547 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2548 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2549 *
2550 * Description: Returns the nodemask_t mems_allowed of the cpuset
2551 * attached to the specified @tsk. Guaranteed to return some non-empty
2552 * subset of node_states[N_MEMORY], even if this means going outside the
2553 * tasks cpuset.
2554 **/
2555
2556 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2557 {
2558 nodemask_t mask;
2559 unsigned long flags;
2560
2561 spin_lock_irqsave(&callback_lock, flags);
2562 rcu_read_lock();
2563 guarantee_online_mems(task_cs(tsk), &mask);
2564 rcu_read_unlock();
2565 spin_unlock_irqrestore(&callback_lock, flags);
2566
2567 return mask;
2568 }
2569
2570 /**
2571 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2572 * @nodemask: the nodemask to be checked
2573 *
2574 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2575 */
2576 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2577 {
2578 return nodes_intersects(*nodemask, current->mems_allowed);
2579 }
2580
2581 /*
2582 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2583 * mem_hardwall ancestor to the specified cpuset. Call holding
2584 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2585 * (an unusual configuration), then returns the root cpuset.
2586 */
2587 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2588 {
2589 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2590 cs = parent_cs(cs);
2591 return cs;
2592 }
2593
2594 /**
2595 * cpuset_node_allowed - Can we allocate on a memory node?
2596 * @node: is this an allowed node?
2597 * @gfp_mask: memory allocation flags
2598 *
2599 * If we're in interrupt, yes, we can always allocate. If @node is set in
2600 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2601 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2602 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2603 * Otherwise, no.
2604 *
2605 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2606 * and do not allow allocations outside the current tasks cpuset
2607 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2608 * GFP_KERNEL allocations are not so marked, so can escape to the
2609 * nearest enclosing hardwalled ancestor cpuset.
2610 *
2611 * Scanning up parent cpusets requires callback_lock. The
2612 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2613 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2614 * current tasks mems_allowed came up empty on the first pass over
2615 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2616 * cpuset are short of memory, might require taking the callback_lock.
2617 *
2618 * The first call here from mm/page_alloc:get_page_from_freelist()
2619 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2620 * so no allocation on a node outside the cpuset is allowed (unless
2621 * in interrupt, of course).
2622 *
2623 * The second pass through get_page_from_freelist() doesn't even call
2624 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2625 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2626 * in alloc_flags. That logic and the checks below have the combined
2627 * affect that:
2628 * in_interrupt - any node ok (current task context irrelevant)
2629 * GFP_ATOMIC - any node ok
2630 * TIF_MEMDIE - any node ok
2631 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2632 * GFP_USER - only nodes in current tasks mems allowed ok.
2633 */
2634 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2635 {
2636 struct cpuset *cs; /* current cpuset ancestors */
2637 int allowed; /* is allocation in zone z allowed? */
2638 unsigned long flags;
2639
2640 if (in_interrupt())
2641 return 1;
2642 if (node_isset(node, current->mems_allowed))
2643 return 1;
2644 /*
2645 * Allow tasks that have access to memory reserves because they have
2646 * been OOM killed to get memory anywhere.
2647 */
2648 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2649 return 1;
2650 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2651 return 0;
2652
2653 if (current->flags & PF_EXITING) /* Let dying task have memory */
2654 return 1;
2655
2656 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2657 spin_lock_irqsave(&callback_lock, flags);
2658
2659 rcu_read_lock();
2660 cs = nearest_hardwall_ancestor(task_cs(current));
2661 allowed = node_isset(node, cs->mems_allowed);
2662 rcu_read_unlock();
2663
2664 spin_unlock_irqrestore(&callback_lock, flags);
2665 return allowed;
2666 }
2667
2668 /**
2669 * cpuset_mem_spread_node() - On which node to begin search for a file page
2670 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2671 *
2672 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2673 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2674 * and if the memory allocation used cpuset_mem_spread_node()
2675 * to determine on which node to start looking, as it will for
2676 * certain page cache or slab cache pages such as used for file
2677 * system buffers and inode caches, then instead of starting on the
2678 * local node to look for a free page, rather spread the starting
2679 * node around the tasks mems_allowed nodes.
2680 *
2681 * We don't have to worry about the returned node being offline
2682 * because "it can't happen", and even if it did, it would be ok.
2683 *
2684 * The routines calling guarantee_online_mems() are careful to
2685 * only set nodes in task->mems_allowed that are online. So it
2686 * should not be possible for the following code to return an
2687 * offline node. But if it did, that would be ok, as this routine
2688 * is not returning the node where the allocation must be, only
2689 * the node where the search should start. The zonelist passed to
2690 * __alloc_pages() will include all nodes. If the slab allocator
2691 * is passed an offline node, it will fall back to the local node.
2692 * See kmem_cache_alloc_node().
2693 */
2694
2695 static int cpuset_spread_node(int *rotor)
2696 {
2697 int node;
2698
2699 node = next_node(*rotor, current->mems_allowed);
2700 if (node == MAX_NUMNODES)
2701 node = first_node(current->mems_allowed);
2702 *rotor = node;
2703 return node;
2704 }
2705
2706 int cpuset_mem_spread_node(void)
2707 {
2708 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2709 current->cpuset_mem_spread_rotor =
2710 node_random(&current->mems_allowed);
2711
2712 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2713 }
2714
2715 int cpuset_slab_spread_node(void)
2716 {
2717 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2718 current->cpuset_slab_spread_rotor =
2719 node_random(&current->mems_allowed);
2720
2721 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2722 }
2723
2724 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2725
2726 /**
2727 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2728 * @tsk1: pointer to task_struct of some task.
2729 * @tsk2: pointer to task_struct of some other task.
2730 *
2731 * Description: Return true if @tsk1's mems_allowed intersects the
2732 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2733 * one of the task's memory usage might impact the memory available
2734 * to the other.
2735 **/
2736
2737 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2738 const struct task_struct *tsk2)
2739 {
2740 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2741 }
2742
2743 /**
2744 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2745 *
2746 * Description: Prints current's name, cpuset name, and cached copy of its
2747 * mems_allowed to the kernel log.
2748 */
2749 void cpuset_print_current_mems_allowed(void)
2750 {
2751 struct cgroup *cgrp;
2752
2753 rcu_read_lock();
2754
2755 cgrp = task_cs(current)->css.cgroup;
2756 pr_info("%s cpuset=", current->comm);
2757 pr_cont_cgroup_name(cgrp);
2758 pr_cont(" mems_allowed=%*pbl\n",
2759 nodemask_pr_args(&current->mems_allowed));
2760
2761 rcu_read_unlock();
2762 }
2763
2764 /*
2765 * Collection of memory_pressure is suppressed unless
2766 * this flag is enabled by writing "1" to the special
2767 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2768 */
2769
2770 int cpuset_memory_pressure_enabled __read_mostly;
2771
2772 /**
2773 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2774 *
2775 * Keep a running average of the rate of synchronous (direct)
2776 * page reclaim efforts initiated by tasks in each cpuset.
2777 *
2778 * This represents the rate at which some task in the cpuset
2779 * ran low on memory on all nodes it was allowed to use, and
2780 * had to enter the kernels page reclaim code in an effort to
2781 * create more free memory by tossing clean pages or swapping
2782 * or writing dirty pages.
2783 *
2784 * Display to user space in the per-cpuset read-only file
2785 * "memory_pressure". Value displayed is an integer
2786 * representing the recent rate of entry into the synchronous
2787 * (direct) page reclaim by any task attached to the cpuset.
2788 **/
2789
2790 void __cpuset_memory_pressure_bump(void)
2791 {
2792 rcu_read_lock();
2793 fmeter_markevent(&task_cs(current)->fmeter);
2794 rcu_read_unlock();
2795 }
2796
2797 #ifdef CONFIG_PROC_PID_CPUSET
2798 /*
2799 * proc_cpuset_show()
2800 * - Print tasks cpuset path into seq_file.
2801 * - Used for /proc/<pid>/cpuset.
2802 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2803 * doesn't really matter if tsk->cpuset changes after we read it,
2804 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2805 * anyway.
2806 */
2807 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2808 struct pid *pid, struct task_struct *tsk)
2809 {
2810 char *buf, *p;
2811 struct cgroup_subsys_state *css;
2812 int retval;
2813
2814 retval = -ENOMEM;
2815 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2816 if (!buf)
2817 goto out;
2818
2819 retval = -ENAMETOOLONG;
2820 rcu_read_lock();
2821 css = task_css(tsk, cpuset_cgrp_id);
2822 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2823 rcu_read_unlock();
2824 if (!p)
2825 goto out_free;
2826 seq_puts(m, p);
2827 seq_putc(m, '\n');
2828 retval = 0;
2829 out_free:
2830 kfree(buf);
2831 out:
2832 return retval;
2833 }
2834 #endif /* CONFIG_PROC_PID_CPUSET */
2835
2836 /* Display task mems_allowed in /proc/<pid>/status file. */
2837 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2838 {
2839 seq_printf(m, "Mems_allowed:\t%*pb\n",
2840 nodemask_pr_args(&task->mems_allowed));
2841 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2842 nodemask_pr_args(&task->mems_allowed));
2843 }