Merge 4.4.68 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70
71 #include "audit.h"
72
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED -1
76 #define AUDIT_UNINITIALIZED 0
77 #define AUDIT_INITIALIZED 1
78 static int audit_initialized;
79
80 #define AUDIT_OFF 0
81 #define AUDIT_ON 1
82 #define AUDIT_LOCKED 2
83 u32 audit_enabled;
84 u32 audit_ever_enabled;
85
86 EXPORT_SYMBOL_GPL(audit_enabled);
87
88 /* Default state when kernel boots without any parameters. */
89 static u32 audit_default;
90
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94 /*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99 int audit_pid;
100 static __u32 audit_nlk_portid;
101
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105 static u32 audit_rate_limit;
106
107 /* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109 static u32 audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113 static u32 audit_backlog_wait_overflow = 0;
114
115 /* The identity of the user shutting down the audit system. */
116 kuid_t audit_sig_uid = INVALID_UID;
117 pid_t audit_sig_pid = -1;
118 u32 audit_sig_sid = 0;
119
120 /* Records can be lost in several ways:
121 0) [suppressed in audit_alloc]
122 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
123 2) out of memory in audit_log_move [alloc_skb]
124 3) suppressed due to audit_rate_limit
125 4) suppressed due to audit_backlog_limit
126 */
127 static atomic_t audit_lost = ATOMIC_INIT(0);
128
129 /* The netlink socket. */
130 static struct sock *audit_sock;
131 static int audit_net_id;
132
133 /* Hash for inode-based rules */
134 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
135
136 /* The audit_freelist is a list of pre-allocated audit buffers (if more
137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
138 * being placed on the freelist). */
139 static DEFINE_SPINLOCK(audit_freelist_lock);
140 static int audit_freelist_count;
141 static LIST_HEAD(audit_freelist);
142
143 static struct sk_buff_head audit_skb_queue;
144 /* queue of skbs to send to auditd when/if it comes back */
145 static struct sk_buff_head audit_skb_hold_queue;
146 static struct task_struct *kauditd_task;
147 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
148 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
149
150 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
151 .mask = -1,
152 .features = 0,
153 .lock = 0,};
154
155 static char *audit_feature_names[2] = {
156 "only_unset_loginuid",
157 "loginuid_immutable",
158 };
159
160
161 /* Serialize requests from userspace. */
162 DEFINE_MUTEX(audit_cmd_mutex);
163
164 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
165 * audit records. Since printk uses a 1024 byte buffer, this buffer
166 * should be at least that large. */
167 #define AUDIT_BUFSIZ 1024
168
169 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
170 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
171 #define AUDIT_MAXFREE (2*NR_CPUS)
172
173 /* The audit_buffer is used when formatting an audit record. The caller
174 * locks briefly to get the record off the freelist or to allocate the
175 * buffer, and locks briefly to send the buffer to the netlink layer or
176 * to place it on a transmit queue. Multiple audit_buffers can be in
177 * use simultaneously. */
178 struct audit_buffer {
179 struct list_head list;
180 struct sk_buff *skb; /* formatted skb ready to send */
181 struct audit_context *ctx; /* NULL or associated context */
182 gfp_t gfp_mask;
183 };
184
185 struct audit_reply {
186 __u32 portid;
187 struct net *net;
188 struct sk_buff *skb;
189 };
190
191 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
192 {
193 if (ab) {
194 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
195 nlh->nlmsg_pid = portid;
196 }
197 }
198
199 void audit_panic(const char *message)
200 {
201 switch (audit_failure) {
202 case AUDIT_FAIL_SILENT:
203 break;
204 case AUDIT_FAIL_PRINTK:
205 if (printk_ratelimit())
206 pr_err("%s\n", message);
207 break;
208 case AUDIT_FAIL_PANIC:
209 /* test audit_pid since printk is always losey, why bother? */
210 if (audit_pid)
211 panic("audit: %s\n", message);
212 break;
213 }
214 }
215
216 static inline int audit_rate_check(void)
217 {
218 static unsigned long last_check = 0;
219 static int messages = 0;
220 static DEFINE_SPINLOCK(lock);
221 unsigned long flags;
222 unsigned long now;
223 unsigned long elapsed;
224 int retval = 0;
225
226 if (!audit_rate_limit) return 1;
227
228 spin_lock_irqsave(&lock, flags);
229 if (++messages < audit_rate_limit) {
230 retval = 1;
231 } else {
232 now = jiffies;
233 elapsed = now - last_check;
234 if (elapsed > HZ) {
235 last_check = now;
236 messages = 0;
237 retval = 1;
238 }
239 }
240 spin_unlock_irqrestore(&lock, flags);
241
242 return retval;
243 }
244
245 /**
246 * audit_log_lost - conditionally log lost audit message event
247 * @message: the message stating reason for lost audit message
248 *
249 * Emit at least 1 message per second, even if audit_rate_check is
250 * throttling.
251 * Always increment the lost messages counter.
252 */
253 void audit_log_lost(const char *message)
254 {
255 static unsigned long last_msg = 0;
256 static DEFINE_SPINLOCK(lock);
257 unsigned long flags;
258 unsigned long now;
259 int print;
260
261 atomic_inc(&audit_lost);
262
263 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
264
265 if (!print) {
266 spin_lock_irqsave(&lock, flags);
267 now = jiffies;
268 if (now - last_msg > HZ) {
269 print = 1;
270 last_msg = now;
271 }
272 spin_unlock_irqrestore(&lock, flags);
273 }
274
275 if (print) {
276 if (printk_ratelimit())
277 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
278 atomic_read(&audit_lost),
279 audit_rate_limit,
280 audit_backlog_limit);
281 audit_panic(message);
282 }
283 }
284
285 static int audit_log_config_change(char *function_name, u32 new, u32 old,
286 int allow_changes)
287 {
288 struct audit_buffer *ab;
289 int rc = 0;
290
291 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
292 if (unlikely(!ab))
293 return rc;
294 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
295 audit_log_session_info(ab);
296 rc = audit_log_task_context(ab);
297 if (rc)
298 allow_changes = 0; /* Something weird, deny request */
299 audit_log_format(ab, " res=%d", allow_changes);
300 audit_log_end(ab);
301 return rc;
302 }
303
304 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
305 {
306 int allow_changes, rc = 0;
307 u32 old = *to_change;
308
309 /* check if we are locked */
310 if (audit_enabled == AUDIT_LOCKED)
311 allow_changes = 0;
312 else
313 allow_changes = 1;
314
315 if (audit_enabled != AUDIT_OFF) {
316 rc = audit_log_config_change(function_name, new, old, allow_changes);
317 if (rc)
318 allow_changes = 0;
319 }
320
321 /* If we are allowed, make the change */
322 if (allow_changes == 1)
323 *to_change = new;
324 /* Not allowed, update reason */
325 else if (rc == 0)
326 rc = -EPERM;
327 return rc;
328 }
329
330 static int audit_set_rate_limit(u32 limit)
331 {
332 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 }
334
335 static int audit_set_backlog_limit(u32 limit)
336 {
337 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 }
339
340 static int audit_set_backlog_wait_time(u32 timeout)
341 {
342 return audit_do_config_change("audit_backlog_wait_time",
343 &audit_backlog_wait_time_master, timeout);
344 }
345
346 static int audit_set_enabled(u32 state)
347 {
348 int rc;
349 if (state > AUDIT_LOCKED)
350 return -EINVAL;
351
352 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
353 if (!rc)
354 audit_ever_enabled |= !!state;
355
356 return rc;
357 }
358
359 static int audit_set_failure(u32 state)
360 {
361 if (state != AUDIT_FAIL_SILENT
362 && state != AUDIT_FAIL_PRINTK
363 && state != AUDIT_FAIL_PANIC)
364 return -EINVAL;
365
366 return audit_do_config_change("audit_failure", &audit_failure, state);
367 }
368
369 /*
370 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
371 * already have been sent via prink/syslog and so if these messages are dropped
372 * it is not a huge concern since we already passed the audit_log_lost()
373 * notification and stuff. This is just nice to get audit messages during
374 * boot before auditd is running or messages generated while auditd is stopped.
375 * This only holds messages is audit_default is set, aka booting with audit=1
376 * or building your kernel that way.
377 */
378 static void audit_hold_skb(struct sk_buff *skb)
379 {
380 if (audit_default &&
381 (!audit_backlog_limit ||
382 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
383 skb_queue_tail(&audit_skb_hold_queue, skb);
384 else
385 kfree_skb(skb);
386 }
387
388 /*
389 * For one reason or another this nlh isn't getting delivered to the userspace
390 * audit daemon, just send it to printk.
391 */
392 static void audit_printk_skb(struct sk_buff *skb)
393 {
394 struct nlmsghdr *nlh = nlmsg_hdr(skb);
395 char *data = nlmsg_data(nlh);
396
397 if (nlh->nlmsg_type != AUDIT_EOE) {
398 if (printk_ratelimit())
399 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
400 else
401 audit_log_lost("printk limit exceeded");
402 }
403
404 audit_hold_skb(skb);
405 }
406
407 static void kauditd_send_skb(struct sk_buff *skb)
408 {
409 int err;
410 int attempts = 0;
411 #define AUDITD_RETRIES 5
412
413 restart:
414 /* take a reference in case we can't send it and we want to hold it */
415 skb_get(skb);
416 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
417 if (err < 0) {
418 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
419 audit_pid, err);
420 if (audit_pid) {
421 if (err == -ECONNREFUSED || err == -EPERM
422 || ++attempts >= AUDITD_RETRIES) {
423 char s[32];
424
425 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
426 audit_log_lost(s);
427 audit_pid = 0;
428 audit_sock = NULL;
429 } else {
430 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
431 attempts, audit_pid);
432 set_current_state(TASK_INTERRUPTIBLE);
433 schedule();
434 __set_current_state(TASK_RUNNING);
435 goto restart;
436 }
437 }
438 /* we might get lucky and get this in the next auditd */
439 audit_hold_skb(skb);
440 } else
441 /* drop the extra reference if sent ok */
442 consume_skb(skb);
443 }
444
445 /*
446 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
447 *
448 * This function doesn't consume an skb as might be expected since it has to
449 * copy it anyways.
450 */
451 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
452 {
453 struct sk_buff *copy;
454 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
455 struct sock *sock = aunet->nlsk;
456
457 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
458 return;
459
460 /*
461 * The seemingly wasteful skb_copy() rather than bumping the refcount
462 * using skb_get() is necessary because non-standard mods are made to
463 * the skb by the original kaudit unicast socket send routine. The
464 * existing auditd daemon assumes this breakage. Fixing this would
465 * require co-ordinating a change in the established protocol between
466 * the kaudit kernel subsystem and the auditd userspace code. There is
467 * no reason for new multicast clients to continue with this
468 * non-compliance.
469 */
470 copy = skb_copy(skb, gfp_mask);
471 if (!copy)
472 return;
473
474 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
475 }
476
477 /*
478 * flush_hold_queue - empty the hold queue if auditd appears
479 *
480 * If auditd just started, drain the queue of messages already
481 * sent to syslog/printk. Remember loss here is ok. We already
482 * called audit_log_lost() if it didn't go out normally. so the
483 * race between the skb_dequeue and the next check for audit_pid
484 * doesn't matter.
485 *
486 * If you ever find kauditd to be too slow we can get a perf win
487 * by doing our own locking and keeping better track if there
488 * are messages in this queue. I don't see the need now, but
489 * in 5 years when I want to play with this again I'll see this
490 * note and still have no friggin idea what i'm thinking today.
491 */
492 static void flush_hold_queue(void)
493 {
494 struct sk_buff *skb;
495
496 if (!audit_default || !audit_pid)
497 return;
498
499 skb = skb_dequeue(&audit_skb_hold_queue);
500 if (likely(!skb))
501 return;
502
503 while (skb && audit_pid) {
504 kauditd_send_skb(skb);
505 skb = skb_dequeue(&audit_skb_hold_queue);
506 }
507
508 /*
509 * if auditd just disappeared but we
510 * dequeued an skb we need to drop ref
511 */
512 if (skb)
513 consume_skb(skb);
514 }
515
516 static int kauditd_thread(void *dummy)
517 {
518 set_freezable();
519 while (!kthread_should_stop()) {
520 struct sk_buff *skb;
521
522 flush_hold_queue();
523
524 skb = skb_dequeue(&audit_skb_queue);
525
526 if (skb) {
527 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
528 wake_up(&audit_backlog_wait);
529 if (audit_pid)
530 kauditd_send_skb(skb);
531 else
532 audit_printk_skb(skb);
533 continue;
534 }
535
536 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
537 }
538 return 0;
539 }
540
541 int audit_send_list(void *_dest)
542 {
543 struct audit_netlink_list *dest = _dest;
544 struct sk_buff *skb;
545 struct net *net = dest->net;
546 struct audit_net *aunet = net_generic(net, audit_net_id);
547
548 /* wait for parent to finish and send an ACK */
549 mutex_lock(&audit_cmd_mutex);
550 mutex_unlock(&audit_cmd_mutex);
551
552 while ((skb = __skb_dequeue(&dest->q)) != NULL)
553 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
554
555 put_net(net);
556 kfree(dest);
557
558 return 0;
559 }
560
561 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
562 int multi, const void *payload, int size)
563 {
564 struct sk_buff *skb;
565 struct nlmsghdr *nlh;
566 void *data;
567 int flags = multi ? NLM_F_MULTI : 0;
568 int t = done ? NLMSG_DONE : type;
569
570 skb = nlmsg_new(size, GFP_KERNEL);
571 if (!skb)
572 return NULL;
573
574 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
575 if (!nlh)
576 goto out_kfree_skb;
577 data = nlmsg_data(nlh);
578 memcpy(data, payload, size);
579 return skb;
580
581 out_kfree_skb:
582 kfree_skb(skb);
583 return NULL;
584 }
585
586 static int audit_send_reply_thread(void *arg)
587 {
588 struct audit_reply *reply = (struct audit_reply *)arg;
589 struct net *net = reply->net;
590 struct audit_net *aunet = net_generic(net, audit_net_id);
591
592 mutex_lock(&audit_cmd_mutex);
593 mutex_unlock(&audit_cmd_mutex);
594
595 /* Ignore failure. It'll only happen if the sender goes away,
596 because our timeout is set to infinite. */
597 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
598 put_net(net);
599 kfree(reply);
600 return 0;
601 }
602 /**
603 * audit_send_reply - send an audit reply message via netlink
604 * @request_skb: skb of request we are replying to (used to target the reply)
605 * @seq: sequence number
606 * @type: audit message type
607 * @done: done (last) flag
608 * @multi: multi-part message flag
609 * @payload: payload data
610 * @size: payload size
611 *
612 * Allocates an skb, builds the netlink message, and sends it to the port id.
613 * No failure notifications.
614 */
615 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
616 int multi, const void *payload, int size)
617 {
618 u32 portid = NETLINK_CB(request_skb).portid;
619 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
620 struct sk_buff *skb;
621 struct task_struct *tsk;
622 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
623 GFP_KERNEL);
624
625 if (!reply)
626 return;
627
628 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
629 if (!skb)
630 goto out;
631
632 reply->net = get_net(net);
633 reply->portid = portid;
634 reply->skb = skb;
635
636 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
637 if (!IS_ERR(tsk))
638 return;
639 kfree_skb(skb);
640 out:
641 kfree(reply);
642 }
643
644 /*
645 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
646 * control messages.
647 */
648 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
649 {
650 int err = 0;
651
652 /* Only support initial user namespace for now. */
653 /*
654 * We return ECONNREFUSED because it tricks userspace into thinking
655 * that audit was not configured into the kernel. Lots of users
656 * configure their PAM stack (because that's what the distro does)
657 * to reject login if unable to send messages to audit. If we return
658 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
659 * configured in and will let login proceed. If we return EPERM
660 * userspace will reject all logins. This should be removed when we
661 * support non init namespaces!!
662 */
663 if (current_user_ns() != &init_user_ns)
664 return -ECONNREFUSED;
665
666 switch (msg_type) {
667 case AUDIT_LIST:
668 case AUDIT_ADD:
669 case AUDIT_DEL:
670 return -EOPNOTSUPP;
671 case AUDIT_GET:
672 case AUDIT_SET:
673 case AUDIT_GET_FEATURE:
674 case AUDIT_SET_FEATURE:
675 case AUDIT_LIST_RULES:
676 case AUDIT_ADD_RULE:
677 case AUDIT_DEL_RULE:
678 case AUDIT_SIGNAL_INFO:
679 case AUDIT_TTY_GET:
680 case AUDIT_TTY_SET:
681 case AUDIT_TRIM:
682 case AUDIT_MAKE_EQUIV:
683 /* Only support auditd and auditctl in initial pid namespace
684 * for now. */
685 if (task_active_pid_ns(current) != &init_pid_ns)
686 return -EPERM;
687
688 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
689 err = -EPERM;
690 break;
691 case AUDIT_USER:
692 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
693 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
694 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
695 err = -EPERM;
696 break;
697 default: /* bad msg */
698 err = -EINVAL;
699 }
700
701 return err;
702 }
703
704 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
705 {
706 uid_t uid = from_kuid(&init_user_ns, current_uid());
707 pid_t pid = task_tgid_nr(current);
708
709 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
710 *ab = NULL;
711 return;
712 }
713
714 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
715 if (unlikely(!*ab))
716 return;
717 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
718 audit_log_session_info(*ab);
719 audit_log_task_context(*ab);
720 }
721
722 int is_audit_feature_set(int i)
723 {
724 return af.features & AUDIT_FEATURE_TO_MASK(i);
725 }
726
727
728 static int audit_get_feature(struct sk_buff *skb)
729 {
730 u32 seq;
731
732 seq = nlmsg_hdr(skb)->nlmsg_seq;
733
734 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
735
736 return 0;
737 }
738
739 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
740 u32 old_lock, u32 new_lock, int res)
741 {
742 struct audit_buffer *ab;
743
744 if (audit_enabled == AUDIT_OFF)
745 return;
746
747 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
748 audit_log_task_info(ab, current);
749 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
750 audit_feature_names[which], !!old_feature, !!new_feature,
751 !!old_lock, !!new_lock, res);
752 audit_log_end(ab);
753 }
754
755 static int audit_set_feature(struct sk_buff *skb)
756 {
757 struct audit_features *uaf;
758 int i;
759
760 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
761 uaf = nlmsg_data(nlmsg_hdr(skb));
762
763 /* if there is ever a version 2 we should handle that here */
764
765 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
766 u32 feature = AUDIT_FEATURE_TO_MASK(i);
767 u32 old_feature, new_feature, old_lock, new_lock;
768
769 /* if we are not changing this feature, move along */
770 if (!(feature & uaf->mask))
771 continue;
772
773 old_feature = af.features & feature;
774 new_feature = uaf->features & feature;
775 new_lock = (uaf->lock | af.lock) & feature;
776 old_lock = af.lock & feature;
777
778 /* are we changing a locked feature? */
779 if (old_lock && (new_feature != old_feature)) {
780 audit_log_feature_change(i, old_feature, new_feature,
781 old_lock, new_lock, 0);
782 return -EPERM;
783 }
784 }
785 /* nothing invalid, do the changes */
786 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
787 u32 feature = AUDIT_FEATURE_TO_MASK(i);
788 u32 old_feature, new_feature, old_lock, new_lock;
789
790 /* if we are not changing this feature, move along */
791 if (!(feature & uaf->mask))
792 continue;
793
794 old_feature = af.features & feature;
795 new_feature = uaf->features & feature;
796 old_lock = af.lock & feature;
797 new_lock = (uaf->lock | af.lock) & feature;
798
799 if (new_feature != old_feature)
800 audit_log_feature_change(i, old_feature, new_feature,
801 old_lock, new_lock, 1);
802
803 if (new_feature)
804 af.features |= feature;
805 else
806 af.features &= ~feature;
807 af.lock |= new_lock;
808 }
809
810 return 0;
811 }
812
813 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
814 {
815 u32 seq;
816 void *data;
817 int err;
818 struct audit_buffer *ab;
819 u16 msg_type = nlh->nlmsg_type;
820 struct audit_sig_info *sig_data;
821 char *ctx = NULL;
822 u32 len;
823
824 err = audit_netlink_ok(skb, msg_type);
825 if (err)
826 return err;
827
828 /* As soon as there's any sign of userspace auditd,
829 * start kauditd to talk to it */
830 if (!kauditd_task) {
831 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
832 if (IS_ERR(kauditd_task)) {
833 err = PTR_ERR(kauditd_task);
834 kauditd_task = NULL;
835 return err;
836 }
837 }
838 seq = nlh->nlmsg_seq;
839 data = nlmsg_data(nlh);
840
841 switch (msg_type) {
842 case AUDIT_GET: {
843 struct audit_status s;
844 memset(&s, 0, sizeof(s));
845 s.enabled = audit_enabled;
846 s.failure = audit_failure;
847 s.pid = audit_pid;
848 s.rate_limit = audit_rate_limit;
849 s.backlog_limit = audit_backlog_limit;
850 s.lost = atomic_read(&audit_lost);
851 s.backlog = skb_queue_len(&audit_skb_queue);
852 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
853 s.backlog_wait_time = audit_backlog_wait_time_master;
854 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
855 break;
856 }
857 case AUDIT_SET: {
858 struct audit_status s;
859 memset(&s, 0, sizeof(s));
860 /* guard against past and future API changes */
861 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
862 if (s.mask & AUDIT_STATUS_ENABLED) {
863 err = audit_set_enabled(s.enabled);
864 if (err < 0)
865 return err;
866 }
867 if (s.mask & AUDIT_STATUS_FAILURE) {
868 err = audit_set_failure(s.failure);
869 if (err < 0)
870 return err;
871 }
872 if (s.mask & AUDIT_STATUS_PID) {
873 /* NOTE: we are using task_tgid_vnr() below because
874 * the s.pid value is relative to the namespace
875 * of the caller; at present this doesn't matter
876 * much since you can really only run auditd
877 * from the initial pid namespace, but something
878 * to keep in mind if this changes */
879 int new_pid = s.pid;
880
881 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
882 return -EACCES;
883 if (audit_enabled != AUDIT_OFF)
884 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
885 audit_pid = new_pid;
886 audit_nlk_portid = NETLINK_CB(skb).portid;
887 audit_sock = skb->sk;
888 }
889 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
890 err = audit_set_rate_limit(s.rate_limit);
891 if (err < 0)
892 return err;
893 }
894 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
895 err = audit_set_backlog_limit(s.backlog_limit);
896 if (err < 0)
897 return err;
898 }
899 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
900 if (sizeof(s) > (size_t)nlh->nlmsg_len)
901 return -EINVAL;
902 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
903 return -EINVAL;
904 err = audit_set_backlog_wait_time(s.backlog_wait_time);
905 if (err < 0)
906 return err;
907 }
908 break;
909 }
910 case AUDIT_GET_FEATURE:
911 err = audit_get_feature(skb);
912 if (err)
913 return err;
914 break;
915 case AUDIT_SET_FEATURE:
916 err = audit_set_feature(skb);
917 if (err)
918 return err;
919 break;
920 case AUDIT_USER:
921 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
922 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
923 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
924 return 0;
925
926 err = audit_filter_user(msg_type);
927 if (err == 1) { /* match or error */
928 err = 0;
929 if (msg_type == AUDIT_USER_TTY) {
930 err = tty_audit_push_current();
931 if (err)
932 break;
933 }
934 mutex_unlock(&audit_cmd_mutex);
935 audit_log_common_recv_msg(&ab, msg_type);
936 if (msg_type != AUDIT_USER_TTY)
937 audit_log_format(ab, " msg='%.*s'",
938 AUDIT_MESSAGE_TEXT_MAX,
939 (char *)data);
940 else {
941 int size;
942
943 audit_log_format(ab, " data=");
944 size = nlmsg_len(nlh);
945 if (size > 0 &&
946 ((unsigned char *)data)[size - 1] == '\0')
947 size--;
948 audit_log_n_untrustedstring(ab, data, size);
949 }
950 audit_set_portid(ab, NETLINK_CB(skb).portid);
951 audit_log_end(ab);
952 mutex_lock(&audit_cmd_mutex);
953 }
954 break;
955 case AUDIT_ADD_RULE:
956 case AUDIT_DEL_RULE:
957 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
958 return -EINVAL;
959 if (audit_enabled == AUDIT_LOCKED) {
960 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
961 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
962 audit_log_end(ab);
963 return -EPERM;
964 }
965 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
966 seq, data, nlmsg_len(nlh));
967 break;
968 case AUDIT_LIST_RULES:
969 err = audit_list_rules_send(skb, seq);
970 break;
971 case AUDIT_TRIM:
972 audit_trim_trees();
973 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
974 audit_log_format(ab, " op=trim res=1");
975 audit_log_end(ab);
976 break;
977 case AUDIT_MAKE_EQUIV: {
978 void *bufp = data;
979 u32 sizes[2];
980 size_t msglen = nlmsg_len(nlh);
981 char *old, *new;
982
983 err = -EINVAL;
984 if (msglen < 2 * sizeof(u32))
985 break;
986 memcpy(sizes, bufp, 2 * sizeof(u32));
987 bufp += 2 * sizeof(u32);
988 msglen -= 2 * sizeof(u32);
989 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
990 if (IS_ERR(old)) {
991 err = PTR_ERR(old);
992 break;
993 }
994 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
995 if (IS_ERR(new)) {
996 err = PTR_ERR(new);
997 kfree(old);
998 break;
999 }
1000 /* OK, here comes... */
1001 err = audit_tag_tree(old, new);
1002
1003 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1004
1005 audit_log_format(ab, " op=make_equiv old=");
1006 audit_log_untrustedstring(ab, old);
1007 audit_log_format(ab, " new=");
1008 audit_log_untrustedstring(ab, new);
1009 audit_log_format(ab, " res=%d", !err);
1010 audit_log_end(ab);
1011 kfree(old);
1012 kfree(new);
1013 break;
1014 }
1015 case AUDIT_SIGNAL_INFO:
1016 len = 0;
1017 if (audit_sig_sid) {
1018 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1019 if (err)
1020 return err;
1021 }
1022 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1023 if (!sig_data) {
1024 if (audit_sig_sid)
1025 security_release_secctx(ctx, len);
1026 return -ENOMEM;
1027 }
1028 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1029 sig_data->pid = audit_sig_pid;
1030 if (audit_sig_sid) {
1031 memcpy(sig_data->ctx, ctx, len);
1032 security_release_secctx(ctx, len);
1033 }
1034 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1035 sig_data, sizeof(*sig_data) + len);
1036 kfree(sig_data);
1037 break;
1038 case AUDIT_TTY_GET: {
1039 struct audit_tty_status s;
1040 struct task_struct *tsk = current;
1041
1042 spin_lock(&tsk->sighand->siglock);
1043 s.enabled = tsk->signal->audit_tty;
1044 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1045 spin_unlock(&tsk->sighand->siglock);
1046
1047 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1048 break;
1049 }
1050 case AUDIT_TTY_SET: {
1051 struct audit_tty_status s, old;
1052 struct task_struct *tsk = current;
1053 struct audit_buffer *ab;
1054
1055 memset(&s, 0, sizeof(s));
1056 /* guard against past and future API changes */
1057 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1058 /* check if new data is valid */
1059 if ((s.enabled != 0 && s.enabled != 1) ||
1060 (s.log_passwd != 0 && s.log_passwd != 1))
1061 err = -EINVAL;
1062
1063 spin_lock(&tsk->sighand->siglock);
1064 old.enabled = tsk->signal->audit_tty;
1065 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1066 if (!err) {
1067 tsk->signal->audit_tty = s.enabled;
1068 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1069 }
1070 spin_unlock(&tsk->sighand->siglock);
1071
1072 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1073 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1074 " old-log_passwd=%d new-log_passwd=%d res=%d",
1075 old.enabled, s.enabled, old.log_passwd,
1076 s.log_passwd, !err);
1077 audit_log_end(ab);
1078 break;
1079 }
1080 default:
1081 err = -EINVAL;
1082 break;
1083 }
1084
1085 return err < 0 ? err : 0;
1086 }
1087
1088 /*
1089 * Get message from skb. Each message is processed by audit_receive_msg.
1090 * Malformed skbs with wrong length are discarded silently.
1091 */
1092 static void audit_receive_skb(struct sk_buff *skb)
1093 {
1094 struct nlmsghdr *nlh;
1095 /*
1096 * len MUST be signed for nlmsg_next to be able to dec it below 0
1097 * if the nlmsg_len was not aligned
1098 */
1099 int len;
1100 int err;
1101
1102 nlh = nlmsg_hdr(skb);
1103 len = skb->len;
1104
1105 while (nlmsg_ok(nlh, len)) {
1106 err = audit_receive_msg(skb, nlh);
1107 /* if err or if this message says it wants a response */
1108 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1109 netlink_ack(skb, nlh, err);
1110
1111 nlh = nlmsg_next(nlh, &len);
1112 }
1113 }
1114
1115 /* Receive messages from netlink socket. */
1116 static void audit_receive(struct sk_buff *skb)
1117 {
1118 mutex_lock(&audit_cmd_mutex);
1119 audit_receive_skb(skb);
1120 mutex_unlock(&audit_cmd_mutex);
1121 }
1122
1123 /* Run custom bind function on netlink socket group connect or bind requests. */
1124 static int audit_bind(struct net *net, int group)
1125 {
1126 if (!capable(CAP_AUDIT_READ))
1127 return -EPERM;
1128
1129 return 0;
1130 }
1131
1132 static int __net_init audit_net_init(struct net *net)
1133 {
1134 struct netlink_kernel_cfg cfg = {
1135 .input = audit_receive,
1136 .bind = audit_bind,
1137 .flags = NL_CFG_F_NONROOT_RECV,
1138 .groups = AUDIT_NLGRP_MAX,
1139 };
1140
1141 struct audit_net *aunet = net_generic(net, audit_net_id);
1142
1143 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1144 if (aunet->nlsk == NULL) {
1145 audit_panic("cannot initialize netlink socket in namespace");
1146 return -ENOMEM;
1147 }
1148 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1149 return 0;
1150 }
1151
1152 static void __net_exit audit_net_exit(struct net *net)
1153 {
1154 struct audit_net *aunet = net_generic(net, audit_net_id);
1155 struct sock *sock = aunet->nlsk;
1156 if (sock == audit_sock) {
1157 audit_pid = 0;
1158 audit_sock = NULL;
1159 }
1160
1161 RCU_INIT_POINTER(aunet->nlsk, NULL);
1162 synchronize_net();
1163 netlink_kernel_release(sock);
1164 }
1165
1166 static struct pernet_operations audit_net_ops __net_initdata = {
1167 .init = audit_net_init,
1168 .exit = audit_net_exit,
1169 .id = &audit_net_id,
1170 .size = sizeof(struct audit_net),
1171 };
1172
1173 /* Initialize audit support at boot time. */
1174 static int __init audit_init(void)
1175 {
1176 int i;
1177
1178 if (audit_initialized == AUDIT_DISABLED)
1179 return 0;
1180
1181 pr_info("initializing netlink subsys (%s)\n",
1182 audit_default ? "enabled" : "disabled");
1183 register_pernet_subsys(&audit_net_ops);
1184
1185 skb_queue_head_init(&audit_skb_queue);
1186 skb_queue_head_init(&audit_skb_hold_queue);
1187 audit_initialized = AUDIT_INITIALIZED;
1188 audit_enabled = audit_default;
1189 audit_ever_enabled |= !!audit_default;
1190
1191 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1192
1193 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1194 INIT_LIST_HEAD(&audit_inode_hash[i]);
1195
1196 return 0;
1197 }
1198 __initcall(audit_init);
1199
1200 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1201 static int __init audit_enable(char *str)
1202 {
1203 audit_default = !!simple_strtol(str, NULL, 0);
1204 if (!audit_default)
1205 audit_initialized = AUDIT_DISABLED;
1206
1207 pr_info("%s\n", audit_default ?
1208 "enabled (after initialization)" : "disabled (until reboot)");
1209
1210 return 1;
1211 }
1212 __setup("audit=", audit_enable);
1213
1214 /* Process kernel command-line parameter at boot time.
1215 * audit_backlog_limit=<n> */
1216 static int __init audit_backlog_limit_set(char *str)
1217 {
1218 u32 audit_backlog_limit_arg;
1219
1220 pr_info("audit_backlog_limit: ");
1221 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1222 pr_cont("using default of %u, unable to parse %s\n",
1223 audit_backlog_limit, str);
1224 return 1;
1225 }
1226
1227 audit_backlog_limit = audit_backlog_limit_arg;
1228 pr_cont("%d\n", audit_backlog_limit);
1229
1230 return 1;
1231 }
1232 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1233
1234 static void audit_buffer_free(struct audit_buffer *ab)
1235 {
1236 unsigned long flags;
1237
1238 if (!ab)
1239 return;
1240
1241 if (ab->skb)
1242 kfree_skb(ab->skb);
1243
1244 spin_lock_irqsave(&audit_freelist_lock, flags);
1245 if (audit_freelist_count > AUDIT_MAXFREE)
1246 kfree(ab);
1247 else {
1248 audit_freelist_count++;
1249 list_add(&ab->list, &audit_freelist);
1250 }
1251 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1252 }
1253
1254 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1255 gfp_t gfp_mask, int type)
1256 {
1257 unsigned long flags;
1258 struct audit_buffer *ab = NULL;
1259 struct nlmsghdr *nlh;
1260
1261 spin_lock_irqsave(&audit_freelist_lock, flags);
1262 if (!list_empty(&audit_freelist)) {
1263 ab = list_entry(audit_freelist.next,
1264 struct audit_buffer, list);
1265 list_del(&ab->list);
1266 --audit_freelist_count;
1267 }
1268 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1269
1270 if (!ab) {
1271 ab = kmalloc(sizeof(*ab), gfp_mask);
1272 if (!ab)
1273 goto err;
1274 }
1275
1276 ab->ctx = ctx;
1277 ab->gfp_mask = gfp_mask;
1278
1279 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1280 if (!ab->skb)
1281 goto err;
1282
1283 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1284 if (!nlh)
1285 goto out_kfree_skb;
1286
1287 return ab;
1288
1289 out_kfree_skb:
1290 kfree_skb(ab->skb);
1291 ab->skb = NULL;
1292 err:
1293 audit_buffer_free(ab);
1294 return NULL;
1295 }
1296
1297 /**
1298 * audit_serial - compute a serial number for the audit record
1299 *
1300 * Compute a serial number for the audit record. Audit records are
1301 * written to user-space as soon as they are generated, so a complete
1302 * audit record may be written in several pieces. The timestamp of the
1303 * record and this serial number are used by the user-space tools to
1304 * determine which pieces belong to the same audit record. The
1305 * (timestamp,serial) tuple is unique for each syscall and is live from
1306 * syscall entry to syscall exit.
1307 *
1308 * NOTE: Another possibility is to store the formatted records off the
1309 * audit context (for those records that have a context), and emit them
1310 * all at syscall exit. However, this could delay the reporting of
1311 * significant errors until syscall exit (or never, if the system
1312 * halts).
1313 */
1314 unsigned int audit_serial(void)
1315 {
1316 static atomic_t serial = ATOMIC_INIT(0);
1317
1318 return atomic_add_return(1, &serial);
1319 }
1320
1321 static inline void audit_get_stamp(struct audit_context *ctx,
1322 struct timespec *t, unsigned int *serial)
1323 {
1324 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1325 *t = CURRENT_TIME;
1326 *serial = audit_serial();
1327 }
1328 }
1329
1330 /*
1331 * Wait for auditd to drain the queue a little
1332 */
1333 static long wait_for_auditd(long sleep_time)
1334 {
1335 DECLARE_WAITQUEUE(wait, current);
1336 set_current_state(TASK_UNINTERRUPTIBLE);
1337 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1338
1339 if (audit_backlog_limit &&
1340 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1341 sleep_time = schedule_timeout(sleep_time);
1342
1343 __set_current_state(TASK_RUNNING);
1344 remove_wait_queue(&audit_backlog_wait, &wait);
1345
1346 return sleep_time;
1347 }
1348
1349 /**
1350 * audit_log_start - obtain an audit buffer
1351 * @ctx: audit_context (may be NULL)
1352 * @gfp_mask: type of allocation
1353 * @type: audit message type
1354 *
1355 * Returns audit_buffer pointer on success or NULL on error.
1356 *
1357 * Obtain an audit buffer. This routine does locking to obtain the
1358 * audit buffer, but then no locking is required for calls to
1359 * audit_log_*format. If the task (ctx) is a task that is currently in a
1360 * syscall, then the syscall is marked as auditable and an audit record
1361 * will be written at syscall exit. If there is no associated task, then
1362 * task context (ctx) should be NULL.
1363 */
1364 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1365 int type)
1366 {
1367 struct audit_buffer *ab = NULL;
1368 struct timespec t;
1369 unsigned int uninitialized_var(serial);
1370 int reserve = 5; /* Allow atomic callers to go up to five
1371 entries over the normal backlog limit */
1372 unsigned long timeout_start = jiffies;
1373
1374 if (audit_initialized != AUDIT_INITIALIZED)
1375 return NULL;
1376
1377 if (unlikely(audit_filter_type(type)))
1378 return NULL;
1379
1380 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1381 if (audit_pid && audit_pid == current->pid)
1382 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1383 else
1384 reserve = 0;
1385 }
1386
1387 while (audit_backlog_limit
1388 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1389 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1390 long sleep_time;
1391
1392 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1393 if (sleep_time > 0) {
1394 sleep_time = wait_for_auditd(sleep_time);
1395 if (sleep_time > 0)
1396 continue;
1397 }
1398 }
1399 if (audit_rate_check() && printk_ratelimit())
1400 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1401 skb_queue_len(&audit_skb_queue),
1402 audit_backlog_limit);
1403 audit_log_lost("backlog limit exceeded");
1404 audit_backlog_wait_time = audit_backlog_wait_overflow;
1405 wake_up(&audit_backlog_wait);
1406 return NULL;
1407 }
1408
1409 if (!reserve)
1410 audit_backlog_wait_time = audit_backlog_wait_time_master;
1411
1412 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1413 if (!ab) {
1414 audit_log_lost("out of memory in audit_log_start");
1415 return NULL;
1416 }
1417
1418 audit_get_stamp(ab->ctx, &t, &serial);
1419
1420 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1421 t.tv_sec, t.tv_nsec/1000000, serial);
1422 return ab;
1423 }
1424
1425 /**
1426 * audit_expand - expand skb in the audit buffer
1427 * @ab: audit_buffer
1428 * @extra: space to add at tail of the skb
1429 *
1430 * Returns 0 (no space) on failed expansion, or available space if
1431 * successful.
1432 */
1433 static inline int audit_expand(struct audit_buffer *ab, int extra)
1434 {
1435 struct sk_buff *skb = ab->skb;
1436 int oldtail = skb_tailroom(skb);
1437 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1438 int newtail = skb_tailroom(skb);
1439
1440 if (ret < 0) {
1441 audit_log_lost("out of memory in audit_expand");
1442 return 0;
1443 }
1444
1445 skb->truesize += newtail - oldtail;
1446 return newtail;
1447 }
1448
1449 /*
1450 * Format an audit message into the audit buffer. If there isn't enough
1451 * room in the audit buffer, more room will be allocated and vsnprint
1452 * will be called a second time. Currently, we assume that a printk
1453 * can't format message larger than 1024 bytes, so we don't either.
1454 */
1455 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1456 va_list args)
1457 {
1458 int len, avail;
1459 struct sk_buff *skb;
1460 va_list args2;
1461
1462 if (!ab)
1463 return;
1464
1465 BUG_ON(!ab->skb);
1466 skb = ab->skb;
1467 avail = skb_tailroom(skb);
1468 if (avail == 0) {
1469 avail = audit_expand(ab, AUDIT_BUFSIZ);
1470 if (!avail)
1471 goto out;
1472 }
1473 va_copy(args2, args);
1474 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1475 if (len >= avail) {
1476 /* The printk buffer is 1024 bytes long, so if we get
1477 * here and AUDIT_BUFSIZ is at least 1024, then we can
1478 * log everything that printk could have logged. */
1479 avail = audit_expand(ab,
1480 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1481 if (!avail)
1482 goto out_va_end;
1483 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1484 }
1485 if (len > 0)
1486 skb_put(skb, len);
1487 out_va_end:
1488 va_end(args2);
1489 out:
1490 return;
1491 }
1492
1493 /**
1494 * audit_log_format - format a message into the audit buffer.
1495 * @ab: audit_buffer
1496 * @fmt: format string
1497 * @...: optional parameters matching @fmt string
1498 *
1499 * All the work is done in audit_log_vformat.
1500 */
1501 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1502 {
1503 va_list args;
1504
1505 if (!ab)
1506 return;
1507 va_start(args, fmt);
1508 audit_log_vformat(ab, fmt, args);
1509 va_end(args);
1510 }
1511
1512 /**
1513 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1514 * @ab: the audit_buffer
1515 * @buf: buffer to convert to hex
1516 * @len: length of @buf to be converted
1517 *
1518 * No return value; failure to expand is silently ignored.
1519 *
1520 * This function will take the passed buf and convert it into a string of
1521 * ascii hex digits. The new string is placed onto the skb.
1522 */
1523 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1524 size_t len)
1525 {
1526 int i, avail, new_len;
1527 unsigned char *ptr;
1528 struct sk_buff *skb;
1529
1530 if (!ab)
1531 return;
1532
1533 BUG_ON(!ab->skb);
1534 skb = ab->skb;
1535 avail = skb_tailroom(skb);
1536 new_len = len<<1;
1537 if (new_len >= avail) {
1538 /* Round the buffer request up to the next multiple */
1539 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1540 avail = audit_expand(ab, new_len);
1541 if (!avail)
1542 return;
1543 }
1544
1545 ptr = skb_tail_pointer(skb);
1546 for (i = 0; i < len; i++)
1547 ptr = hex_byte_pack_upper(ptr, buf[i]);
1548 *ptr = 0;
1549 skb_put(skb, len << 1); /* new string is twice the old string */
1550 }
1551
1552 /*
1553 * Format a string of no more than slen characters into the audit buffer,
1554 * enclosed in quote marks.
1555 */
1556 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1557 size_t slen)
1558 {
1559 int avail, new_len;
1560 unsigned char *ptr;
1561 struct sk_buff *skb;
1562
1563 if (!ab)
1564 return;
1565
1566 BUG_ON(!ab->skb);
1567 skb = ab->skb;
1568 avail = skb_tailroom(skb);
1569 new_len = slen + 3; /* enclosing quotes + null terminator */
1570 if (new_len > avail) {
1571 avail = audit_expand(ab, new_len);
1572 if (!avail)
1573 return;
1574 }
1575 ptr = skb_tail_pointer(skb);
1576 *ptr++ = '"';
1577 memcpy(ptr, string, slen);
1578 ptr += slen;
1579 *ptr++ = '"';
1580 *ptr = 0;
1581 skb_put(skb, slen + 2); /* don't include null terminator */
1582 }
1583
1584 /**
1585 * audit_string_contains_control - does a string need to be logged in hex
1586 * @string: string to be checked
1587 * @len: max length of the string to check
1588 */
1589 bool audit_string_contains_control(const char *string, size_t len)
1590 {
1591 const unsigned char *p;
1592 for (p = string; p < (const unsigned char *)string + len; p++) {
1593 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1594 return true;
1595 }
1596 return false;
1597 }
1598
1599 /**
1600 * audit_log_n_untrustedstring - log a string that may contain random characters
1601 * @ab: audit_buffer
1602 * @len: length of string (not including trailing null)
1603 * @string: string to be logged
1604 *
1605 * This code will escape a string that is passed to it if the string
1606 * contains a control character, unprintable character, double quote mark,
1607 * or a space. Unescaped strings will start and end with a double quote mark.
1608 * Strings that are escaped are printed in hex (2 digits per char).
1609 *
1610 * The caller specifies the number of characters in the string to log, which may
1611 * or may not be the entire string.
1612 */
1613 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1614 size_t len)
1615 {
1616 if (audit_string_contains_control(string, len))
1617 audit_log_n_hex(ab, string, len);
1618 else
1619 audit_log_n_string(ab, string, len);
1620 }
1621
1622 /**
1623 * audit_log_untrustedstring - log a string that may contain random characters
1624 * @ab: audit_buffer
1625 * @string: string to be logged
1626 *
1627 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1628 * determine string length.
1629 */
1630 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1631 {
1632 audit_log_n_untrustedstring(ab, string, strlen(string));
1633 }
1634
1635 /* This is a helper-function to print the escaped d_path */
1636 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1637 const struct path *path)
1638 {
1639 char *p, *pathname;
1640
1641 if (prefix)
1642 audit_log_format(ab, "%s", prefix);
1643
1644 /* We will allow 11 spaces for ' (deleted)' to be appended */
1645 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1646 if (!pathname) {
1647 audit_log_string(ab, "<no_memory>");
1648 return;
1649 }
1650 p = d_path(path, pathname, PATH_MAX+11);
1651 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1652 /* FIXME: can we save some information here? */
1653 audit_log_string(ab, "<too_long>");
1654 } else
1655 audit_log_untrustedstring(ab, p);
1656 kfree(pathname);
1657 }
1658
1659 void audit_log_session_info(struct audit_buffer *ab)
1660 {
1661 unsigned int sessionid = audit_get_sessionid(current);
1662 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1663
1664 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1665 }
1666
1667 void audit_log_key(struct audit_buffer *ab, char *key)
1668 {
1669 audit_log_format(ab, " key=");
1670 if (key)
1671 audit_log_untrustedstring(ab, key);
1672 else
1673 audit_log_format(ab, "(null)");
1674 }
1675
1676 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1677 {
1678 int i;
1679
1680 audit_log_format(ab, " %s=", prefix);
1681 CAP_FOR_EACH_U32(i) {
1682 audit_log_format(ab, "%08x",
1683 cap->cap[CAP_LAST_U32 - i]);
1684 }
1685 }
1686
1687 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1688 {
1689 kernel_cap_t *perm = &name->fcap.permitted;
1690 kernel_cap_t *inh = &name->fcap.inheritable;
1691 int log = 0;
1692
1693 if (!cap_isclear(*perm)) {
1694 audit_log_cap(ab, "cap_fp", perm);
1695 log = 1;
1696 }
1697 if (!cap_isclear(*inh)) {
1698 audit_log_cap(ab, "cap_fi", inh);
1699 log = 1;
1700 }
1701
1702 if (log)
1703 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1704 name->fcap.fE, name->fcap_ver);
1705 }
1706
1707 static inline int audit_copy_fcaps(struct audit_names *name,
1708 const struct dentry *dentry)
1709 {
1710 struct cpu_vfs_cap_data caps;
1711 int rc;
1712
1713 if (!dentry)
1714 return 0;
1715
1716 rc = get_vfs_caps_from_disk(dentry, &caps);
1717 if (rc)
1718 return rc;
1719
1720 name->fcap.permitted = caps.permitted;
1721 name->fcap.inheritable = caps.inheritable;
1722 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1723 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1724 VFS_CAP_REVISION_SHIFT;
1725
1726 return 0;
1727 }
1728
1729 /* Copy inode data into an audit_names. */
1730 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1731 const struct inode *inode)
1732 {
1733 name->ino = inode->i_ino;
1734 name->dev = inode->i_sb->s_dev;
1735 name->mode = inode->i_mode;
1736 name->uid = inode->i_uid;
1737 name->gid = inode->i_gid;
1738 name->rdev = inode->i_rdev;
1739 security_inode_getsecid(inode, &name->osid);
1740 audit_copy_fcaps(name, dentry);
1741 }
1742
1743 /**
1744 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1745 * @context: audit_context for the task
1746 * @n: audit_names structure with reportable details
1747 * @path: optional path to report instead of audit_names->name
1748 * @record_num: record number to report when handling a list of names
1749 * @call_panic: optional pointer to int that will be updated if secid fails
1750 */
1751 void audit_log_name(struct audit_context *context, struct audit_names *n,
1752 struct path *path, int record_num, int *call_panic)
1753 {
1754 struct audit_buffer *ab;
1755 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1756 if (!ab)
1757 return;
1758
1759 audit_log_format(ab, "item=%d", record_num);
1760
1761 if (path)
1762 audit_log_d_path(ab, " name=", path);
1763 else if (n->name) {
1764 switch (n->name_len) {
1765 case AUDIT_NAME_FULL:
1766 /* log the full path */
1767 audit_log_format(ab, " name=");
1768 audit_log_untrustedstring(ab, n->name->name);
1769 break;
1770 case 0:
1771 /* name was specified as a relative path and the
1772 * directory component is the cwd */
1773 audit_log_d_path(ab, " name=", &context->pwd);
1774 break;
1775 default:
1776 /* log the name's directory component */
1777 audit_log_format(ab, " name=");
1778 audit_log_n_untrustedstring(ab, n->name->name,
1779 n->name_len);
1780 }
1781 } else
1782 audit_log_format(ab, " name=(null)");
1783
1784 if (n->ino != AUDIT_INO_UNSET)
1785 audit_log_format(ab, " inode=%lu"
1786 " dev=%02x:%02x mode=%#ho"
1787 " ouid=%u ogid=%u rdev=%02x:%02x",
1788 n->ino,
1789 MAJOR(n->dev),
1790 MINOR(n->dev),
1791 n->mode,
1792 from_kuid(&init_user_ns, n->uid),
1793 from_kgid(&init_user_ns, n->gid),
1794 MAJOR(n->rdev),
1795 MINOR(n->rdev));
1796 if (n->osid != 0) {
1797 char *ctx = NULL;
1798 u32 len;
1799 if (security_secid_to_secctx(
1800 n->osid, &ctx, &len)) {
1801 audit_log_format(ab, " osid=%u", n->osid);
1802 if (call_panic)
1803 *call_panic = 2;
1804 } else {
1805 audit_log_format(ab, " obj=%s", ctx);
1806 security_release_secctx(ctx, len);
1807 }
1808 }
1809
1810 /* log the audit_names record type */
1811 audit_log_format(ab, " nametype=");
1812 switch(n->type) {
1813 case AUDIT_TYPE_NORMAL:
1814 audit_log_format(ab, "NORMAL");
1815 break;
1816 case AUDIT_TYPE_PARENT:
1817 audit_log_format(ab, "PARENT");
1818 break;
1819 case AUDIT_TYPE_CHILD_DELETE:
1820 audit_log_format(ab, "DELETE");
1821 break;
1822 case AUDIT_TYPE_CHILD_CREATE:
1823 audit_log_format(ab, "CREATE");
1824 break;
1825 default:
1826 audit_log_format(ab, "UNKNOWN");
1827 break;
1828 }
1829
1830 audit_log_fcaps(ab, n);
1831 audit_log_end(ab);
1832 }
1833
1834 int audit_log_task_context(struct audit_buffer *ab)
1835 {
1836 char *ctx = NULL;
1837 unsigned len;
1838 int error;
1839 u32 sid;
1840
1841 security_task_getsecid(current, &sid);
1842 if (!sid)
1843 return 0;
1844
1845 error = security_secid_to_secctx(sid, &ctx, &len);
1846 if (error) {
1847 if (error != -EINVAL)
1848 goto error_path;
1849 return 0;
1850 }
1851
1852 audit_log_format(ab, " subj=%s", ctx);
1853 security_release_secctx(ctx, len);
1854 return 0;
1855
1856 error_path:
1857 audit_panic("error in audit_log_task_context");
1858 return error;
1859 }
1860 EXPORT_SYMBOL(audit_log_task_context);
1861
1862 void audit_log_d_path_exe(struct audit_buffer *ab,
1863 struct mm_struct *mm)
1864 {
1865 struct file *exe_file;
1866
1867 if (!mm)
1868 goto out_null;
1869
1870 exe_file = get_mm_exe_file(mm);
1871 if (!exe_file)
1872 goto out_null;
1873
1874 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1875 fput(exe_file);
1876 return;
1877 out_null:
1878 audit_log_format(ab, " exe=(null)");
1879 }
1880
1881 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1882 {
1883 const struct cred *cred;
1884 char comm[sizeof(tsk->comm)];
1885 char *tty;
1886
1887 if (!ab)
1888 return;
1889
1890 /* tsk == current */
1891 cred = current_cred();
1892
1893 spin_lock_irq(&tsk->sighand->siglock);
1894 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1895 tty = tsk->signal->tty->name;
1896 else
1897 tty = "(none)";
1898 spin_unlock_irq(&tsk->sighand->siglock);
1899
1900 audit_log_format(ab,
1901 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1902 " euid=%u suid=%u fsuid=%u"
1903 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1904 task_ppid_nr(tsk),
1905 task_tgid_nr(tsk),
1906 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1907 from_kuid(&init_user_ns, cred->uid),
1908 from_kgid(&init_user_ns, cred->gid),
1909 from_kuid(&init_user_ns, cred->euid),
1910 from_kuid(&init_user_ns, cred->suid),
1911 from_kuid(&init_user_ns, cred->fsuid),
1912 from_kgid(&init_user_ns, cred->egid),
1913 from_kgid(&init_user_ns, cred->sgid),
1914 from_kgid(&init_user_ns, cred->fsgid),
1915 tty, audit_get_sessionid(tsk));
1916
1917 audit_log_format(ab, " comm=");
1918 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1919
1920 audit_log_d_path_exe(ab, tsk->mm);
1921 audit_log_task_context(ab);
1922 }
1923 EXPORT_SYMBOL(audit_log_task_info);
1924
1925 /**
1926 * audit_log_link_denied - report a link restriction denial
1927 * @operation: specific link operation
1928 * @link: the path that triggered the restriction
1929 */
1930 void audit_log_link_denied(const char *operation, struct path *link)
1931 {
1932 struct audit_buffer *ab;
1933 struct audit_names *name;
1934
1935 name = kzalloc(sizeof(*name), GFP_NOFS);
1936 if (!name)
1937 return;
1938
1939 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1940 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1941 AUDIT_ANOM_LINK);
1942 if (!ab)
1943 goto out;
1944 audit_log_format(ab, "op=%s", operation);
1945 audit_log_task_info(ab, current);
1946 audit_log_format(ab, " res=0");
1947 audit_log_end(ab);
1948
1949 /* Generate AUDIT_PATH record with object. */
1950 name->type = AUDIT_TYPE_NORMAL;
1951 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1952 audit_log_name(current->audit_context, name, link, 0, NULL);
1953 out:
1954 kfree(name);
1955 }
1956
1957 /**
1958 * audit_log_end - end one audit record
1959 * @ab: the audit_buffer
1960 *
1961 * netlink_unicast() cannot be called inside an irq context because it blocks
1962 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1963 * on a queue and a tasklet is scheduled to remove them from the queue outside
1964 * the irq context. May be called in any context.
1965 */
1966 void audit_log_end(struct audit_buffer *ab)
1967 {
1968 if (!ab)
1969 return;
1970 if (!audit_rate_check()) {
1971 audit_log_lost("rate limit exceeded");
1972 } else {
1973 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1974
1975 nlh->nlmsg_len = ab->skb->len;
1976 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1977
1978 /*
1979 * The original kaudit unicast socket sends up messages with
1980 * nlmsg_len set to the payload length rather than the entire
1981 * message length. This breaks the standard set by netlink.
1982 * The existing auditd daemon assumes this breakage. Fixing
1983 * this would require co-ordinating a change in the established
1984 * protocol between the kaudit kernel subsystem and the auditd
1985 * userspace code.
1986 */
1987 nlh->nlmsg_len -= NLMSG_HDRLEN;
1988
1989 if (audit_pid) {
1990 skb_queue_tail(&audit_skb_queue, ab->skb);
1991 wake_up_interruptible(&kauditd_wait);
1992 } else {
1993 audit_printk_skb(ab->skb);
1994 }
1995 ab->skb = NULL;
1996 }
1997 audit_buffer_free(ab);
1998 }
1999
2000 /**
2001 * audit_log - Log an audit record
2002 * @ctx: audit context
2003 * @gfp_mask: type of allocation
2004 * @type: audit message type
2005 * @fmt: format string to use
2006 * @...: variable parameters matching the format string
2007 *
2008 * This is a convenience function that calls audit_log_start,
2009 * audit_log_vformat, and audit_log_end. It may be called
2010 * in any context.
2011 */
2012 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2013 const char *fmt, ...)
2014 {
2015 struct audit_buffer *ab;
2016 va_list args;
2017
2018 ab = audit_log_start(ctx, gfp_mask, type);
2019 if (ab) {
2020 va_start(args, fmt);
2021 audit_log_vformat(ab, fmt, args);
2022 va_end(args);
2023 audit_log_end(ab);
2024 }
2025 }
2026
2027 #ifdef CONFIG_SECURITY
2028 /**
2029 * audit_log_secctx - Converts and logs SELinux context
2030 * @ab: audit_buffer
2031 * @secid: security number
2032 *
2033 * This is a helper function that calls security_secid_to_secctx to convert
2034 * secid to secctx and then adds the (converted) SELinux context to the audit
2035 * log by calling audit_log_format, thus also preventing leak of internal secid
2036 * to userspace. If secid cannot be converted audit_panic is called.
2037 */
2038 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2039 {
2040 u32 len;
2041 char *secctx;
2042
2043 if (security_secid_to_secctx(secid, &secctx, &len)) {
2044 audit_panic("Cannot convert secid to context");
2045 } else {
2046 audit_log_format(ab, " obj=%s", secctx);
2047 security_release_secctx(secctx, len);
2048 }
2049 }
2050 EXPORT_SYMBOL(audit_log_secctx);
2051 #endif
2052
2053 EXPORT_SYMBOL(audit_log_start);
2054 EXPORT_SYMBOL(audit_log_end);
2055 EXPORT_SYMBOL(audit_log_format);
2056 EXPORT_SYMBOL(audit_log);