wireless: fix all kind of warnings
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / include / net / cfg80211.h
1 #ifndef __NET_CFG80211_H
2 #define __NET_CFG80211_H
3 /*
4 * 802.11 device and configuration interface
5 *
6 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright 2015 Intel Deutschland GmbH
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/netdevice.h>
16 #include <linux/debugfs.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/netlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/nl80211.h>
22 #include <linux/if_ether.h>
23 #include <linux/ieee80211.h>
24 #include <linux/net.h>
25 #include <net/regulatory.h>
26
27 /**
28 * DOC: Introduction
29 *
30 * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
31 * userspace and drivers, and offers some utility functionality associated
32 * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
33 * by all modern wireless drivers in Linux, so that they offer a consistent
34 * API through nl80211. For backward compatibility, cfg80211 also offers
35 * wireless extensions to userspace, but hides them from drivers completely.
36 *
37 * Additionally, cfg80211 contains code to help enforce regulatory spectrum
38 * use restrictions.
39 */
40
41
42 /**
43 * DOC: Device registration
44 *
45 * In order for a driver to use cfg80211, it must register the hardware device
46 * with cfg80211. This happens through a number of hardware capability structs
47 * described below.
48 *
49 * The fundamental structure for each device is the 'wiphy', of which each
50 * instance describes a physical wireless device connected to the system. Each
51 * such wiphy can have zero, one, or many virtual interfaces associated with
52 * it, which need to be identified as such by pointing the network interface's
53 * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
54 * the wireless part of the interface, normally this struct is embedded in the
55 * network interface's private data area. Drivers can optionally allow creating
56 * or destroying virtual interfaces on the fly, but without at least one or the
57 * ability to create some the wireless device isn't useful.
58 *
59 * Each wiphy structure contains device capability information, and also has
60 * a pointer to the various operations the driver offers. The definitions and
61 * structures here describe these capabilities in detail.
62 */
63
64 struct wiphy;
65
66 /*
67 * wireless hardware capability structures
68 */
69
70 /**
71 * enum ieee80211_channel_flags - channel flags
72 *
73 * Channel flags set by the regulatory control code.
74 *
75 * @IEEE80211_CHAN_DISABLED: This channel is disabled.
76 * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
77 * sending probe requests or beaconing.
78 * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
79 * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
80 * is not permitted.
81 * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
82 * is not permitted.
83 * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
84 * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
85 * this flag indicates that an 80 MHz channel cannot use this
86 * channel as the control or any of the secondary channels.
87 * This may be due to the driver or due to regulatory bandwidth
88 * restrictions.
89 * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
90 * this flag indicates that an 160 MHz channel cannot use this
91 * channel as the control or any of the secondary channels.
92 * This may be due to the driver or due to regulatory bandwidth
93 * restrictions.
94 * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
95 * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
96 * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
97 * on this channel.
98 * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
99 * on this channel.
100 *
101 */
102 enum ieee80211_channel_flags {
103 IEEE80211_CHAN_DISABLED = 1<<0,
104 IEEE80211_CHAN_NO_IR = 1<<1,
105 /* hole at 1<<2 */
106 IEEE80211_CHAN_RADAR = 1<<3,
107 IEEE80211_CHAN_NO_HT40PLUS = 1<<4,
108 IEEE80211_CHAN_NO_HT40MINUS = 1<<5,
109 IEEE80211_CHAN_NO_OFDM = 1<<6,
110 IEEE80211_CHAN_NO_80MHZ = 1<<7,
111 IEEE80211_CHAN_NO_160MHZ = 1<<8,
112 IEEE80211_CHAN_INDOOR_ONLY = 1<<9,
113 IEEE80211_CHAN_IR_CONCURRENT = 1<<10,
114 IEEE80211_CHAN_NO_20MHZ = 1<<11,
115 IEEE80211_CHAN_NO_10MHZ = 1<<12,
116 };
117
118 #define IEEE80211_CHAN_NO_HT40 \
119 (IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
120
121 #define IEEE80211_DFS_MIN_CAC_TIME_MS 60000
122 #define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000)
123
124 /**
125 * struct ieee80211_channel - channel definition
126 *
127 * This structure describes a single channel for use
128 * with cfg80211.
129 *
130 * @center_freq: center frequency in MHz
131 * @hw_value: hardware-specific value for the channel
132 * @flags: channel flags from &enum ieee80211_channel_flags.
133 * @orig_flags: channel flags at registration time, used by regulatory
134 * code to support devices with additional restrictions
135 * @band: band this channel belongs to.
136 * @max_antenna_gain: maximum antenna gain in dBi
137 * @max_power: maximum transmission power (in dBm)
138 * @max_reg_power: maximum regulatory transmission power (in dBm)
139 * @beacon_found: helper to regulatory code to indicate when a beacon
140 * has been found on this channel. Use regulatory_hint_found_beacon()
141 * to enable this, this is useful only on 5 GHz band.
142 * @orig_mag: internal use
143 * @orig_mpwr: internal use
144 * @dfs_state: current state of this channel. Only relevant if radar is required
145 * on this channel.
146 * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
147 * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
148 */
149 struct ieee80211_channel {
150 enum nl80211_band band;
151 u16 center_freq;
152 u16 hw_value;
153 u32 flags;
154 int max_antenna_gain;
155 int max_power;
156 int max_reg_power;
157 bool beacon_found;
158 u32 orig_flags;
159 int orig_mag, orig_mpwr;
160 enum nl80211_dfs_state dfs_state;
161 unsigned long dfs_state_entered;
162 unsigned int dfs_cac_ms;
163 };
164
165 /**
166 * enum ieee80211_rate_flags - rate flags
167 *
168 * Hardware/specification flags for rates. These are structured
169 * in a way that allows using the same bitrate structure for
170 * different bands/PHY modes.
171 *
172 * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
173 * preamble on this bitrate; only relevant in 2.4GHz band and
174 * with CCK rates.
175 * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
176 * when used with 802.11a (on the 5 GHz band); filled by the
177 * core code when registering the wiphy.
178 * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
179 * when used with 802.11b (on the 2.4 GHz band); filled by the
180 * core code when registering the wiphy.
181 * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
182 * when used with 802.11g (on the 2.4 GHz band); filled by the
183 * core code when registering the wiphy.
184 * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
185 * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
186 * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
187 */
188 enum ieee80211_rate_flags {
189 IEEE80211_RATE_SHORT_PREAMBLE = 1<<0,
190 IEEE80211_RATE_MANDATORY_A = 1<<1,
191 IEEE80211_RATE_MANDATORY_B = 1<<2,
192 IEEE80211_RATE_MANDATORY_G = 1<<3,
193 IEEE80211_RATE_ERP_G = 1<<4,
194 IEEE80211_RATE_SUPPORTS_5MHZ = 1<<5,
195 IEEE80211_RATE_SUPPORTS_10MHZ = 1<<6,
196 };
197
198 /**
199 * enum ieee80211_bss_type - BSS type filter
200 *
201 * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
202 * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
203 * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
204 * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
205 * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
206 */
207 enum ieee80211_bss_type {
208 IEEE80211_BSS_TYPE_ESS,
209 IEEE80211_BSS_TYPE_PBSS,
210 IEEE80211_BSS_TYPE_IBSS,
211 IEEE80211_BSS_TYPE_MBSS,
212 IEEE80211_BSS_TYPE_ANY
213 };
214
215 /**
216 * enum ieee80211_privacy - BSS privacy filter
217 *
218 * @IEEE80211_PRIVACY_ON: privacy bit set
219 * @IEEE80211_PRIVACY_OFF: privacy bit clear
220 * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
221 */
222 enum ieee80211_privacy {
223 IEEE80211_PRIVACY_ON,
224 IEEE80211_PRIVACY_OFF,
225 IEEE80211_PRIVACY_ANY
226 };
227
228 #define IEEE80211_PRIVACY(x) \
229 ((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
230
231 /**
232 * struct ieee80211_rate - bitrate definition
233 *
234 * This structure describes a bitrate that an 802.11 PHY can
235 * operate with. The two values @hw_value and @hw_value_short
236 * are only for driver use when pointers to this structure are
237 * passed around.
238 *
239 * @flags: rate-specific flags
240 * @bitrate: bitrate in units of 100 Kbps
241 * @hw_value: driver/hardware value for this rate
242 * @hw_value_short: driver/hardware value for this rate when
243 * short preamble is used
244 */
245 struct ieee80211_rate {
246 u32 flags;
247 u16 bitrate;
248 u16 hw_value, hw_value_short;
249 };
250
251 /**
252 * struct ieee80211_sta_ht_cap - STA's HT capabilities
253 *
254 * This structure describes most essential parameters needed
255 * to describe 802.11n HT capabilities for an STA.
256 *
257 * @ht_supported: is HT supported by the STA
258 * @cap: HT capabilities map as described in 802.11n spec
259 * @ampdu_factor: Maximum A-MPDU length factor
260 * @ampdu_density: Minimum A-MPDU spacing
261 * @mcs: Supported MCS rates
262 */
263 struct ieee80211_sta_ht_cap {
264 u16 cap; /* use IEEE80211_HT_CAP_ */
265 bool ht_supported;
266 u8 ampdu_factor;
267 u8 ampdu_density;
268 struct ieee80211_mcs_info mcs;
269 };
270
271 /**
272 * struct ieee80211_sta_vht_cap - STA's VHT capabilities
273 *
274 * This structure describes most essential parameters needed
275 * to describe 802.11ac VHT capabilities for an STA.
276 *
277 * @vht_supported: is VHT supported by the STA
278 * @cap: VHT capabilities map as described in 802.11ac spec
279 * @vht_mcs: Supported VHT MCS rates
280 */
281 struct ieee80211_sta_vht_cap {
282 bool vht_supported;
283 u32 cap; /* use IEEE80211_VHT_CAP_ */
284 struct ieee80211_vht_mcs_info vht_mcs;
285 };
286
287 /**
288 * struct ieee80211_supported_band - frequency band definition
289 *
290 * This structure describes a frequency band a wiphy
291 * is able to operate in.
292 *
293 * @channels: Array of channels the hardware can operate in
294 * in this band.
295 * @band: the band this structure represents
296 * @n_channels: Number of channels in @channels
297 * @bitrates: Array of bitrates the hardware can operate with
298 * in this band. Must be sorted to give a valid "supported
299 * rates" IE, i.e. CCK rates first, then OFDM.
300 * @n_bitrates: Number of bitrates in @bitrates
301 * @ht_cap: HT capabilities in this band
302 * @vht_cap: VHT capabilities in this band
303 */
304 struct ieee80211_supported_band {
305 struct ieee80211_channel *channels;
306 struct ieee80211_rate *bitrates;
307 enum nl80211_band band;
308 int n_channels;
309 int n_bitrates;
310 struct ieee80211_sta_ht_cap ht_cap;
311 struct ieee80211_sta_vht_cap vht_cap;
312 };
313
314 /*
315 * Wireless hardware/device configuration structures and methods
316 */
317
318 /**
319 * DOC: Actions and configuration
320 *
321 * Each wireless device and each virtual interface offer a set of configuration
322 * operations and other actions that are invoked by userspace. Each of these
323 * actions is described in the operations structure, and the parameters these
324 * operations use are described separately.
325 *
326 * Additionally, some operations are asynchronous and expect to get status
327 * information via some functions that drivers need to call.
328 *
329 * Scanning and BSS list handling with its associated functionality is described
330 * in a separate chapter.
331 */
332
333 /**
334 * struct vif_params - describes virtual interface parameters
335 * @use_4addr: use 4-address frames
336 * @macaddr: address to use for this virtual interface.
337 * If this parameter is set to zero address the driver may
338 * determine the address as needed.
339 * This feature is only fully supported by drivers that enable the
340 * %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating
341 ** only p2p devices with specified MAC.
342 */
343 struct vif_params {
344 int use_4addr;
345 u8 macaddr[ETH_ALEN];
346 };
347
348 /**
349 * struct key_params - key information
350 *
351 * Information about a key
352 *
353 * @key: key material
354 * @key_len: length of key material
355 * @cipher: cipher suite selector
356 * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
357 * with the get_key() callback, must be in little endian,
358 * length given by @seq_len.
359 * @seq_len: length of @seq.
360 */
361 struct key_params {
362 const u8 *key;
363 const u8 *seq;
364 int key_len;
365 int seq_len;
366 u32 cipher;
367 };
368
369 /**
370 * struct cfg80211_chan_def - channel definition
371 * @chan: the (control) channel
372 * @width: channel width
373 * @center_freq1: center frequency of first segment
374 * @center_freq2: center frequency of second segment
375 * (only with 80+80 MHz)
376 */
377 struct cfg80211_chan_def {
378 struct ieee80211_channel *chan;
379 enum nl80211_chan_width width;
380 u32 center_freq1;
381 u32 center_freq2;
382 };
383
384 /**
385 * cfg80211_get_chandef_type - return old channel type from chandef
386 * @chandef: the channel definition
387 *
388 * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
389 * chandef, which must have a bandwidth allowing this conversion.
390 */
391 static inline enum nl80211_channel_type
392 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
393 {
394 switch (chandef->width) {
395 case NL80211_CHAN_WIDTH_20_NOHT:
396 return NL80211_CHAN_NO_HT;
397 case NL80211_CHAN_WIDTH_20:
398 return NL80211_CHAN_HT20;
399 case NL80211_CHAN_WIDTH_40:
400 if (chandef->center_freq1 > chandef->chan->center_freq)
401 return NL80211_CHAN_HT40PLUS;
402 return NL80211_CHAN_HT40MINUS;
403 default:
404 WARN_ON(1);
405 return NL80211_CHAN_NO_HT;
406 }
407 }
408
409 /**
410 * cfg80211_chandef_create - create channel definition using channel type
411 * @chandef: the channel definition struct to fill
412 * @channel: the control channel
413 * @chantype: the channel type
414 *
415 * Given a channel type, create a channel definition.
416 */
417 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
418 struct ieee80211_channel *channel,
419 enum nl80211_channel_type chantype);
420
421 /**
422 * cfg80211_chandef_identical - check if two channel definitions are identical
423 * @chandef1: first channel definition
424 * @chandef2: second channel definition
425 *
426 * Return: %true if the channels defined by the channel definitions are
427 * identical, %false otherwise.
428 */
429 static inline bool
430 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
431 const struct cfg80211_chan_def *chandef2)
432 {
433 return (chandef1->chan == chandef2->chan &&
434 chandef1->width == chandef2->width &&
435 chandef1->center_freq1 == chandef2->center_freq1 &&
436 chandef1->center_freq2 == chandef2->center_freq2);
437 }
438
439 /**
440 * cfg80211_chandef_compatible - check if two channel definitions are compatible
441 * @chandef1: first channel definition
442 * @chandef2: second channel definition
443 *
444 * Return: %NULL if the given channel definitions are incompatible,
445 * chandef1 or chandef2 otherwise.
446 */
447 const struct cfg80211_chan_def *
448 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
449 const struct cfg80211_chan_def *chandef2);
450
451 /**
452 * cfg80211_chandef_valid - check if a channel definition is valid
453 * @chandef: the channel definition to check
454 * Return: %true if the channel definition is valid. %false otherwise.
455 */
456 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
457
458 /**
459 * cfg80211_chandef_usable - check if secondary channels can be used
460 * @wiphy: the wiphy to validate against
461 * @chandef: the channel definition to check
462 * @prohibited_flags: the regulatory channel flags that must not be set
463 * Return: %true if secondary channels are usable. %false otherwise.
464 */
465 bool cfg80211_chandef_usable(struct wiphy *wiphy,
466 const struct cfg80211_chan_def *chandef,
467 u32 prohibited_flags);
468
469 /**
470 * cfg80211_chandef_dfs_required - checks if radar detection is required
471 * @wiphy: the wiphy to validate against
472 * @chandef: the channel definition to check
473 * @iftype: the interface type as specified in &enum nl80211_iftype
474 * Returns:
475 * 1 if radar detection is required, 0 if it is not, < 0 on error
476 */
477 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
478 const struct cfg80211_chan_def *chandef,
479 enum nl80211_iftype iftype);
480
481 /**
482 * ieee80211_chandef_rate_flags - returns rate flags for a channel
483 *
484 * In some channel types, not all rates may be used - for example CCK
485 * rates may not be used in 5/10 MHz channels.
486 *
487 * @chandef: channel definition for the channel
488 *
489 * Returns: rate flags which apply for this channel
490 */
491 static inline enum ieee80211_rate_flags
492 ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef)
493 {
494 switch (chandef->width) {
495 case NL80211_CHAN_WIDTH_5:
496 return IEEE80211_RATE_SUPPORTS_5MHZ;
497 case NL80211_CHAN_WIDTH_10:
498 return IEEE80211_RATE_SUPPORTS_10MHZ;
499 default:
500 break;
501 }
502 return 0;
503 }
504
505 /**
506 * ieee80211_chandef_max_power - maximum transmission power for the chandef
507 *
508 * In some regulations, the transmit power may depend on the configured channel
509 * bandwidth which may be defined as dBm/MHz. This function returns the actual
510 * max_power for non-standard (20 MHz) channels.
511 *
512 * @chandef: channel definition for the channel
513 *
514 * Returns: maximum allowed transmission power in dBm for the chandef
515 */
516 static inline int
517 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
518 {
519 switch (chandef->width) {
520 case NL80211_CHAN_WIDTH_5:
521 return min(chandef->chan->max_reg_power - 6,
522 chandef->chan->max_power);
523 case NL80211_CHAN_WIDTH_10:
524 return min(chandef->chan->max_reg_power - 3,
525 chandef->chan->max_power);
526 default:
527 break;
528 }
529 return chandef->chan->max_power;
530 }
531
532 /**
533 * enum survey_info_flags - survey information flags
534 *
535 * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
536 * @SURVEY_INFO_IN_USE: channel is currently being used
537 * @SURVEY_INFO_TIME: active time (in ms) was filled in
538 * @SURVEY_INFO_TIME_BUSY: busy time was filled in
539 * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
540 * @SURVEY_INFO_TIME_RX: receive time was filled in
541 * @SURVEY_INFO_TIME_TX: transmit time was filled in
542 * @SURVEY_INFO_TIME_SCAN: scan time was filled in
543 *
544 * Used by the driver to indicate which info in &struct survey_info
545 * it has filled in during the get_survey().
546 */
547 enum survey_info_flags {
548 SURVEY_INFO_NOISE_DBM = BIT(0),
549 SURVEY_INFO_IN_USE = BIT(1),
550 SURVEY_INFO_TIME = BIT(2),
551 SURVEY_INFO_TIME_BUSY = BIT(3),
552 SURVEY_INFO_TIME_EXT_BUSY = BIT(4),
553 SURVEY_INFO_TIME_RX = BIT(5),
554 SURVEY_INFO_TIME_TX = BIT(6),
555 SURVEY_INFO_TIME_SCAN = BIT(7),
556 };
557
558 /**
559 * struct survey_info - channel survey response
560 *
561 * @channel: the channel this survey record reports, may be %NULL for a single
562 * record to report global statistics
563 * @filled: bitflag of flags from &enum survey_info_flags
564 * @noise: channel noise in dBm. This and all following fields are
565 * optional
566 * @time: amount of time in ms the radio was turn on (on the channel)
567 * @time_busy: amount of time the primary channel was sensed busy
568 * @time_ext_busy: amount of time the extension channel was sensed busy
569 * @time_rx: amount of time the radio spent receiving data
570 * @time_tx: amount of time the radio spent transmitting data
571 * @time_scan: amount of time the radio spent for scanning
572 *
573 * Used by dump_survey() to report back per-channel survey information.
574 *
575 * This structure can later be expanded with things like
576 * channel duty cycle etc.
577 */
578 struct survey_info {
579 struct ieee80211_channel *channel;
580 u64 time;
581 u64 time_busy;
582 u64 time_ext_busy;
583 u64 time_rx;
584 u64 time_tx;
585 u64 time_scan;
586 u32 filled;
587 s8 noise;
588 };
589
590 /**
591 * struct cfg80211_crypto_settings - Crypto settings
592 * @wpa_versions: indicates which, if any, WPA versions are enabled
593 * (from enum nl80211_wpa_versions)
594 * @cipher_group: group key cipher suite (or 0 if unset)
595 * @n_ciphers_pairwise: number of AP supported unicast ciphers
596 * @ciphers_pairwise: unicast key cipher suites
597 * @n_akm_suites: number of AKM suites
598 * @akm_suites: AKM suites
599 * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
600 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
601 * required to assume that the port is unauthorized until authorized by
602 * user space. Otherwise, port is marked authorized by default.
603 * @control_port_ethertype: the control port protocol that should be
604 * allowed through even on unauthorized ports
605 * @control_port_no_encrypt: TRUE to prevent encryption of control port
606 * protocol frames.
607 */
608 struct cfg80211_crypto_settings {
609 u32 wpa_versions;
610 u32 cipher_group;
611 int n_ciphers_pairwise;
612 u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
613 int n_akm_suites;
614 u32 akm_suites[NL80211_MAX_NR_AKM_SUITES];
615 bool control_port;
616 __be16 control_port_ethertype;
617 bool control_port_no_encrypt;
618 };
619
620 /**
621 * struct cfg80211_beacon_data - beacon data
622 * @head: head portion of beacon (before TIM IE)
623 * or %NULL if not changed
624 * @tail: tail portion of beacon (after TIM IE)
625 * or %NULL if not changed
626 * @head_len: length of @head
627 * @tail_len: length of @tail
628 * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
629 * @beacon_ies_len: length of beacon_ies in octets
630 * @proberesp_ies: extra information element(s) to add into Probe Response
631 * frames or %NULL
632 * @proberesp_ies_len: length of proberesp_ies in octets
633 * @assocresp_ies: extra information element(s) to add into (Re)Association
634 * Response frames or %NULL
635 * @assocresp_ies_len: length of assocresp_ies in octets
636 * @probe_resp_len: length of probe response template (@probe_resp)
637 * @probe_resp: probe response template (AP mode only)
638 */
639 struct cfg80211_beacon_data {
640 const u8 *head, *tail;
641 const u8 *beacon_ies;
642 const u8 *proberesp_ies;
643 const u8 *assocresp_ies;
644 const u8 *probe_resp;
645
646 size_t head_len, tail_len;
647 size_t beacon_ies_len;
648 size_t proberesp_ies_len;
649 size_t assocresp_ies_len;
650 size_t probe_resp_len;
651 };
652
653 struct mac_address {
654 u8 addr[ETH_ALEN];
655 };
656
657 /**
658 * struct cfg80211_acl_data - Access control list data
659 *
660 * @acl_policy: ACL policy to be applied on the station's
661 * entry specified by mac_addr
662 * @n_acl_entries: Number of MAC address entries passed
663 * @mac_addrs: List of MAC addresses of stations to be used for ACL
664 */
665 struct cfg80211_acl_data {
666 enum nl80211_acl_policy acl_policy;
667 int n_acl_entries;
668
669 /* Keep it last */
670 struct mac_address mac_addrs[];
671 };
672
673 /**
674 * struct cfg80211_ap_settings - AP configuration
675 *
676 * Used to configure an AP interface.
677 *
678 * @chandef: defines the channel to use
679 * @beacon: beacon data
680 * @beacon_interval: beacon interval
681 * @dtim_period: DTIM period
682 * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
683 * user space)
684 * @ssid_len: length of @ssid
685 * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
686 * @crypto: crypto settings
687 * @privacy: the BSS uses privacy
688 * @auth_type: Authentication type (algorithm)
689 * @smps_mode: SMPS mode
690 * @inactivity_timeout: time in seconds to determine station's inactivity.
691 * @p2p_ctwindow: P2P CT Window
692 * @p2p_opp_ps: P2P opportunistic PS
693 * @acl: ACL configuration used by the drivers which has support for
694 * MAC address based access control
695 */
696 struct cfg80211_ap_settings {
697 struct cfg80211_chan_def chandef;
698
699 struct cfg80211_beacon_data beacon;
700
701 int beacon_interval, dtim_period;
702 const u8 *ssid;
703 size_t ssid_len;
704 enum nl80211_hidden_ssid hidden_ssid;
705 struct cfg80211_crypto_settings crypto;
706 bool privacy;
707 enum nl80211_auth_type auth_type;
708 enum nl80211_smps_mode smps_mode;
709 int inactivity_timeout;
710 u8 p2p_ctwindow;
711 bool p2p_opp_ps;
712 const struct cfg80211_acl_data *acl;
713 };
714
715 /**
716 * struct cfg80211_csa_settings - channel switch settings
717 *
718 * Used for channel switch
719 *
720 * @chandef: defines the channel to use after the switch
721 * @beacon_csa: beacon data while performing the switch
722 * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
723 * @counter_offsets_presp: offsets of the counters within the probe response
724 * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
725 * @n_counter_offsets_presp: number of csa counters in the probe response
726 * @beacon_after: beacon data to be used on the new channel
727 * @radar_required: whether radar detection is required on the new channel
728 * @block_tx: whether transmissions should be blocked while changing
729 * @count: number of beacons until switch
730 */
731 struct cfg80211_csa_settings {
732 struct cfg80211_chan_def chandef;
733 struct cfg80211_beacon_data beacon_csa;
734 const u16 *counter_offsets_beacon;
735 const u16 *counter_offsets_presp;
736 unsigned int n_counter_offsets_beacon;
737 unsigned int n_counter_offsets_presp;
738 struct cfg80211_beacon_data beacon_after;
739 bool radar_required;
740 bool block_tx;
741 u8 count;
742 };
743
744 /**
745 * enum station_parameters_apply_mask - station parameter values to apply
746 * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
747 * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
748 * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
749 *
750 * Not all station parameters have in-band "no change" signalling,
751 * for those that don't these flags will are used.
752 */
753 enum station_parameters_apply_mask {
754 STATION_PARAM_APPLY_UAPSD = BIT(0),
755 STATION_PARAM_APPLY_CAPABILITY = BIT(1),
756 STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
757 };
758
759 /**
760 * struct station_parameters - station parameters
761 *
762 * Used to change and create a new station.
763 *
764 * @vlan: vlan interface station should belong to
765 * @supported_rates: supported rates in IEEE 802.11 format
766 * (or NULL for no change)
767 * @supported_rates_len: number of supported rates
768 * @sta_flags_mask: station flags that changed
769 * (bitmask of BIT(NL80211_STA_FLAG_...))
770 * @sta_flags_set: station flags values
771 * (bitmask of BIT(NL80211_STA_FLAG_...))
772 * @listen_interval: listen interval or -1 for no change
773 * @aid: AID or zero for no change
774 * @plink_action: plink action to take
775 * @plink_state: set the peer link state for a station
776 * @ht_capa: HT capabilities of station
777 * @vht_capa: VHT capabilities of station
778 * @uapsd_queues: bitmap of queues configured for uapsd. same format
779 * as the AC bitmap in the QoS info field
780 * @max_sp: max Service Period. same format as the MAX_SP in the
781 * QoS info field (but already shifted down)
782 * @sta_modify_mask: bitmap indicating which parameters changed
783 * (for those that don't have a natural "no change" value),
784 * see &enum station_parameters_apply_mask
785 * @local_pm: local link-specific mesh power save mode (no change when set
786 * to unknown)
787 * @capability: station capability
788 * @ext_capab: extended capabilities of the station
789 * @ext_capab_len: number of extended capabilities
790 * @supported_channels: supported channels in IEEE 802.11 format
791 * @supported_channels_len: number of supported channels
792 * @supported_oper_classes: supported oper classes in IEEE 802.11 format
793 * @supported_oper_classes_len: number of supported operating classes
794 * @opmode_notif: operating mode field from Operating Mode Notification
795 * @opmode_notif_used: information if operating mode field is used
796 */
797 struct station_parameters {
798 const u8 *supported_rates;
799 struct net_device *vlan;
800 u32 sta_flags_mask, sta_flags_set;
801 u32 sta_modify_mask;
802 int listen_interval;
803 u16 aid;
804 u8 supported_rates_len;
805 u8 plink_action;
806 u8 plink_state;
807 const struct ieee80211_ht_cap *ht_capa;
808 const struct ieee80211_vht_cap *vht_capa;
809 u8 uapsd_queues;
810 u8 max_sp;
811 enum nl80211_mesh_power_mode local_pm;
812 u16 capability;
813 const u8 *ext_capab;
814 u8 ext_capab_len;
815 const u8 *supported_channels;
816 u8 supported_channels_len;
817 const u8 *supported_oper_classes;
818 u8 supported_oper_classes_len;
819 u8 opmode_notif;
820 bool opmode_notif_used;
821 };
822
823 /**
824 * struct station_del_parameters - station deletion parameters
825 *
826 * Used to delete a station entry (or all stations).
827 *
828 * @mac: MAC address of the station to remove or NULL to remove all stations
829 * @subtype: Management frame subtype to use for indicating removal
830 * (10 = Disassociation, 12 = Deauthentication)
831 * @reason_code: Reason code for the Disassociation/Deauthentication frame
832 */
833 struct station_del_parameters {
834 const u8 *mac;
835 u8 subtype;
836 u16 reason_code;
837 };
838
839 /**
840 * enum cfg80211_station_type - the type of station being modified
841 * @CFG80211_STA_AP_CLIENT: client of an AP interface
842 * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
843 * unassociated (update properties for this type of client is permitted)
844 * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
845 * the AP MLME in the device
846 * @CFG80211_STA_AP_STA: AP station on managed interface
847 * @CFG80211_STA_IBSS: IBSS station
848 * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
849 * while TDLS setup is in progress, it moves out of this state when
850 * being marked authorized; use this only if TDLS with external setup is
851 * supported/used)
852 * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
853 * entry that is operating, has been marked authorized by userspace)
854 * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
855 * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
856 */
857 enum cfg80211_station_type {
858 CFG80211_STA_AP_CLIENT,
859 CFG80211_STA_AP_CLIENT_UNASSOC,
860 CFG80211_STA_AP_MLME_CLIENT,
861 CFG80211_STA_AP_STA,
862 CFG80211_STA_IBSS,
863 CFG80211_STA_TDLS_PEER_SETUP,
864 CFG80211_STA_TDLS_PEER_ACTIVE,
865 CFG80211_STA_MESH_PEER_KERNEL,
866 CFG80211_STA_MESH_PEER_USER,
867 };
868
869 /**
870 * cfg80211_check_station_change - validate parameter changes
871 * @wiphy: the wiphy this operates on
872 * @params: the new parameters for a station
873 * @statype: the type of station being modified
874 *
875 * Utility function for the @change_station driver method. Call this function
876 * with the appropriate station type looking up the station (and checking that
877 * it exists). It will verify whether the station change is acceptable, and if
878 * not will return an error code. Note that it may modify the parameters for
879 * backward compatibility reasons, so don't use them before calling this.
880 */
881 int cfg80211_check_station_change(struct wiphy *wiphy,
882 struct station_parameters *params,
883 enum cfg80211_station_type statype);
884
885 /**
886 * enum station_info_rate_flags - bitrate info flags
887 *
888 * Used by the driver to indicate the specific rate transmission
889 * type for 802.11n transmissions.
890 *
891 * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
892 * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
893 * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
894 * @RATE_INFO_FLAGS_60G: 60GHz MCS
895 */
896 enum rate_info_flags {
897 RATE_INFO_FLAGS_MCS = BIT(0),
898 RATE_INFO_FLAGS_VHT_MCS = BIT(1),
899 RATE_INFO_FLAGS_SHORT_GI = BIT(2),
900 RATE_INFO_FLAGS_60G = BIT(3),
901 };
902
903 /**
904 * enum rate_info_bw - rate bandwidth information
905 *
906 * Used by the driver to indicate the rate bandwidth.
907 *
908 * @RATE_INFO_BW_5: 5 MHz bandwidth
909 * @RATE_INFO_BW_10: 10 MHz bandwidth
910 * @RATE_INFO_BW_20: 20 MHz bandwidth
911 * @RATE_INFO_BW_40: 40 MHz bandwidth
912 * @RATE_INFO_BW_80: 80 MHz bandwidth
913 * @RATE_INFO_BW_160: 160 MHz bandwidth
914 */
915 enum rate_info_bw {
916 RATE_INFO_BW_5,
917 RATE_INFO_BW_10,
918 RATE_INFO_BW_20,
919 RATE_INFO_BW_40,
920 RATE_INFO_BW_80,
921 RATE_INFO_BW_160,
922 };
923
924 /**
925 * struct rate_info - bitrate information
926 *
927 * Information about a receiving or transmitting bitrate
928 *
929 * @flags: bitflag of flags from &enum rate_info_flags
930 * @mcs: mcs index if struct describes a 802.11n bitrate
931 * @legacy: bitrate in 100kbit/s for 802.11abg
932 * @nss: number of streams (VHT only)
933 * @bw: bandwidth (from &enum rate_info_bw)
934 */
935 struct rate_info {
936 u8 flags;
937 u8 mcs;
938 u16 legacy;
939 u8 nss;
940 u8 bw;
941 };
942
943 /**
944 * enum station_info_rate_flags - bitrate info flags
945 *
946 * Used by the driver to indicate the specific rate transmission
947 * type for 802.11n transmissions.
948 *
949 * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
950 * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
951 * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
952 */
953 enum bss_param_flags {
954 BSS_PARAM_FLAGS_CTS_PROT = 1<<0,
955 BSS_PARAM_FLAGS_SHORT_PREAMBLE = 1<<1,
956 BSS_PARAM_FLAGS_SHORT_SLOT_TIME = 1<<2,
957 };
958
959 /**
960 * struct sta_bss_parameters - BSS parameters for the attached station
961 *
962 * Information about the currently associated BSS
963 *
964 * @flags: bitflag of flags from &enum bss_param_flags
965 * @dtim_period: DTIM period for the BSS
966 * @beacon_interval: beacon interval
967 */
968 struct sta_bss_parameters {
969 u8 flags;
970 u8 dtim_period;
971 u16 beacon_interval;
972 };
973
974 /**
975 * struct cfg80211_tid_stats - per-TID statistics
976 * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
977 * indicate the relevant values in this struct are filled
978 * @rx_msdu: number of received MSDUs
979 * @tx_msdu: number of (attempted) transmitted MSDUs
980 * @tx_msdu_retries: number of retries (not counting the first) for
981 * transmitted MSDUs
982 * @tx_msdu_failed: number of failed transmitted MSDUs
983 */
984 struct cfg80211_tid_stats {
985 u32 filled;
986 u64 rx_msdu;
987 u64 tx_msdu;
988 u64 tx_msdu_retries;
989 u64 tx_msdu_failed;
990 };
991
992 #define IEEE80211_MAX_CHAINS 4
993
994 /**
995 * struct station_info - station information
996 *
997 * Station information filled by driver for get_station() and dump_station.
998 *
999 * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
1000 * indicate the relevant values in this struct for them
1001 * @connected_time: time(in secs) since a station is last connected
1002 * @inactive_time: time since last station activity (tx/rx) in milliseconds
1003 * @rx_bytes: bytes (size of MPDUs) received from this station
1004 * @tx_bytes: bytes (size of MPDUs) transmitted to this station
1005 * @llid: mesh local link id
1006 * @plid: mesh peer link id
1007 * @plink_state: mesh peer link state
1008 * @signal: The signal strength, type depends on the wiphy's signal_type.
1009 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
1010 * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
1011 * For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
1012 * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
1013 * @chain_signal: per-chain signal strength of last received packet in dBm
1014 * @chain_signal_avg: per-chain signal strength average in dBm
1015 * @txrate: current unicast bitrate from this station
1016 * @rxrate: current unicast bitrate to this station
1017 * @rx_packets: packets (MSDUs & MMPDUs) received from this station
1018 * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
1019 * @tx_retries: cumulative retry counts (MPDUs)
1020 * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
1021 * @rx_dropped_misc: Dropped for un-specified reason.
1022 * @bss_param: current BSS parameters
1023 * @generation: generation number for nl80211 dumps.
1024 * This number should increase every time the list of stations
1025 * changes, i.e. when a station is added or removed, so that
1026 * userspace can tell whether it got a consistent snapshot.
1027 * @assoc_req_ies: IEs from (Re)Association Request.
1028 * This is used only when in AP mode with drivers that do not use
1029 * user space MLME/SME implementation. The information is provided for
1030 * the cfg80211_new_sta() calls to notify user space of the IEs.
1031 * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
1032 * @sta_flags: station flags mask & values
1033 * @beacon_loss_count: Number of times beacon loss event has triggered.
1034 * @t_offset: Time offset of the station relative to this host.
1035 * @local_pm: local mesh STA power save mode
1036 * @peer_pm: peer mesh STA power save mode
1037 * @nonpeer_pm: non-peer mesh STA power save mode
1038 * @expected_throughput: expected throughput in kbps (including 802.11 headers)
1039 * towards this station.
1040 * @rx_beacon: number of beacons received from this peer
1041 * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
1042 * from this peer
1043 * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
1044 * (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
1045 */
1046 struct station_info {
1047 u32 filled;
1048 u32 connected_time;
1049 u32 inactive_time;
1050 u64 rx_bytes;
1051 u64 tx_bytes;
1052 u16 llid;
1053 u16 plid;
1054 u8 plink_state;
1055 s8 signal;
1056 s8 signal_avg;
1057
1058 u8 chains;
1059 s8 chain_signal[IEEE80211_MAX_CHAINS];
1060 s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
1061
1062 struct rate_info txrate;
1063 struct rate_info rxrate;
1064 u32 rx_packets;
1065 u32 tx_packets;
1066 u32 tx_retries;
1067 u32 tx_failed;
1068 u32 rx_dropped_misc;
1069 struct sta_bss_parameters bss_param;
1070 struct nl80211_sta_flag_update sta_flags;
1071
1072 int generation;
1073
1074 const u8 *assoc_req_ies;
1075 size_t assoc_req_ies_len;
1076
1077 u32 beacon_loss_count;
1078 s64 t_offset;
1079 enum nl80211_mesh_power_mode local_pm;
1080 enum nl80211_mesh_power_mode peer_pm;
1081 enum nl80211_mesh_power_mode nonpeer_pm;
1082
1083 u32 expected_throughput;
1084
1085 u64 rx_beacon;
1086 u8 rx_beacon_signal_avg;
1087 struct cfg80211_tid_stats pertid[IEEE80211_NUM_TIDS + 1];
1088 };
1089
1090 /**
1091 * cfg80211_get_station - retrieve information about a given station
1092 * @dev: the device where the station is supposed to be connected to
1093 * @mac_addr: the mac address of the station of interest
1094 * @sinfo: pointer to the structure to fill with the information
1095 *
1096 * Returns 0 on success and sinfo is filled with the available information
1097 * otherwise returns a negative error code and the content of sinfo has to be
1098 * considered undefined.
1099 */
1100 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1101 struct station_info *sinfo);
1102
1103 /**
1104 * enum monitor_flags - monitor flags
1105 *
1106 * Monitor interface configuration flags. Note that these must be the bits
1107 * according to the nl80211 flags.
1108 *
1109 * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
1110 * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
1111 * @MONITOR_FLAG_CONTROL: pass control frames
1112 * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
1113 * @MONITOR_FLAG_COOK_FRAMES: report frames after processing
1114 * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
1115 */
1116 enum monitor_flags {
1117 MONITOR_FLAG_FCSFAIL = 1<<NL80211_MNTR_FLAG_FCSFAIL,
1118 MONITOR_FLAG_PLCPFAIL = 1<<NL80211_MNTR_FLAG_PLCPFAIL,
1119 MONITOR_FLAG_CONTROL = 1<<NL80211_MNTR_FLAG_CONTROL,
1120 MONITOR_FLAG_OTHER_BSS = 1<<NL80211_MNTR_FLAG_OTHER_BSS,
1121 MONITOR_FLAG_COOK_FRAMES = 1<<NL80211_MNTR_FLAG_COOK_FRAMES,
1122 MONITOR_FLAG_ACTIVE = 1<<NL80211_MNTR_FLAG_ACTIVE,
1123 };
1124
1125 /**
1126 * enum mpath_info_flags - mesh path information flags
1127 *
1128 * Used by the driver to indicate which info in &struct mpath_info it has filled
1129 * in during get_station() or dump_station().
1130 *
1131 * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
1132 * @MPATH_INFO_SN: @sn filled
1133 * @MPATH_INFO_METRIC: @metric filled
1134 * @MPATH_INFO_EXPTIME: @exptime filled
1135 * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
1136 * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
1137 * @MPATH_INFO_FLAGS: @flags filled
1138 */
1139 enum mpath_info_flags {
1140 MPATH_INFO_FRAME_QLEN = BIT(0),
1141 MPATH_INFO_SN = BIT(1),
1142 MPATH_INFO_METRIC = BIT(2),
1143 MPATH_INFO_EXPTIME = BIT(3),
1144 MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4),
1145 MPATH_INFO_DISCOVERY_RETRIES = BIT(5),
1146 MPATH_INFO_FLAGS = BIT(6),
1147 };
1148
1149 /**
1150 * struct mpath_info - mesh path information
1151 *
1152 * Mesh path information filled by driver for get_mpath() and dump_mpath().
1153 *
1154 * @filled: bitfield of flags from &enum mpath_info_flags
1155 * @frame_qlen: number of queued frames for this destination
1156 * @sn: target sequence number
1157 * @metric: metric (cost) of this mesh path
1158 * @exptime: expiration time for the mesh path from now, in msecs
1159 * @flags: mesh path flags
1160 * @discovery_timeout: total mesh path discovery timeout, in msecs
1161 * @discovery_retries: mesh path discovery retries
1162 * @generation: generation number for nl80211 dumps.
1163 * This number should increase every time the list of mesh paths
1164 * changes, i.e. when a station is added or removed, so that
1165 * userspace can tell whether it got a consistent snapshot.
1166 */
1167 struct mpath_info {
1168 u32 filled;
1169 u32 frame_qlen;
1170 u32 sn;
1171 u32 metric;
1172 u32 exptime;
1173 u32 discovery_timeout;
1174 u8 discovery_retries;
1175 u8 flags;
1176
1177 int generation;
1178 };
1179
1180 /**
1181 * struct bss_parameters - BSS parameters
1182 *
1183 * Used to change BSS parameters (mainly for AP mode).
1184 *
1185 * @use_cts_prot: Whether to use CTS protection
1186 * (0 = no, 1 = yes, -1 = do not change)
1187 * @use_short_preamble: Whether the use of short preambles is allowed
1188 * (0 = no, 1 = yes, -1 = do not change)
1189 * @use_short_slot_time: Whether the use of short slot time is allowed
1190 * (0 = no, 1 = yes, -1 = do not change)
1191 * @basic_rates: basic rates in IEEE 802.11 format
1192 * (or NULL for no change)
1193 * @basic_rates_len: number of basic rates
1194 * @ap_isolate: do not forward packets between connected stations
1195 * @ht_opmode: HT Operation mode
1196 * (u16 = opmode, -1 = do not change)
1197 * @p2p_ctwindow: P2P CT Window (-1 = no change)
1198 * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
1199 */
1200 struct bss_parameters {
1201 int use_cts_prot;
1202 int use_short_preamble;
1203 int use_short_slot_time;
1204 const u8 *basic_rates;
1205 u8 basic_rates_len;
1206 int ap_isolate;
1207 int ht_opmode;
1208 s8 p2p_ctwindow, p2p_opp_ps;
1209 };
1210
1211 /**
1212 * struct mesh_config - 802.11s mesh configuration
1213 *
1214 * These parameters can be changed while the mesh is active.
1215 *
1216 * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
1217 * by the Mesh Peering Open message
1218 * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
1219 * used by the Mesh Peering Open message
1220 * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
1221 * the mesh peering management to close a mesh peering
1222 * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
1223 * mesh interface
1224 * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
1225 * be sent to establish a new peer link instance in a mesh
1226 * @dot11MeshTTL: the value of TTL field set at a source mesh STA
1227 * @element_ttl: the value of TTL field set at a mesh STA for path selection
1228 * elements
1229 * @auto_open_plinks: whether we should automatically open peer links when we
1230 * detect compatible mesh peers
1231 * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
1232 * synchronize to for 11s default synchronization method
1233 * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
1234 * that an originator mesh STA can send to a particular path target
1235 * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
1236 * @min_discovery_timeout: the minimum length of time to wait until giving up on
1237 * a path discovery in milliseconds
1238 * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
1239 * receiving a PREQ shall consider the forwarding information from the
1240 * root to be valid. (TU = time unit)
1241 * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
1242 * which a mesh STA can send only one action frame containing a PREQ
1243 * element
1244 * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
1245 * which a mesh STA can send only one Action frame containing a PERR
1246 * element
1247 * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
1248 * it takes for an HWMP information element to propagate across the mesh
1249 * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
1250 * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
1251 * announcements are transmitted
1252 * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
1253 * station has access to a broader network beyond the MBSS. (This is
1254 * missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
1255 * only means that the station will announce others it's a mesh gate, but
1256 * not necessarily using the gate announcement protocol. Still keeping the
1257 * same nomenclature to be in sync with the spec)
1258 * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
1259 * entity (default is TRUE - forwarding entity)
1260 * @rssi_threshold: the threshold for average signal strength of candidate
1261 * station to establish a peer link
1262 * @ht_opmode: mesh HT protection mode
1263 *
1264 * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
1265 * receiving a proactive PREQ shall consider the forwarding information to
1266 * the root mesh STA to be valid.
1267 *
1268 * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
1269 * PREQs are transmitted.
1270 * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
1271 * during which a mesh STA can send only one Action frame containing
1272 * a PREQ element for root path confirmation.
1273 * @power_mode: The default mesh power save mode which will be the initial
1274 * setting for new peer links.
1275 * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
1276 * after transmitting its beacon.
1277 * @plink_timeout: If no tx activity is seen from a STA we've established
1278 * peering with for longer than this time (in seconds), then remove it
1279 * from the STA's list of peers. Default is 30 minutes.
1280 */
1281 struct mesh_config {
1282 u16 dot11MeshRetryTimeout;
1283 u16 dot11MeshConfirmTimeout;
1284 u16 dot11MeshHoldingTimeout;
1285 u16 dot11MeshMaxPeerLinks;
1286 u8 dot11MeshMaxRetries;
1287 u8 dot11MeshTTL;
1288 u8 element_ttl;
1289 bool auto_open_plinks;
1290 u32 dot11MeshNbrOffsetMaxNeighbor;
1291 u8 dot11MeshHWMPmaxPREQretries;
1292 u32 path_refresh_time;
1293 u16 min_discovery_timeout;
1294 u32 dot11MeshHWMPactivePathTimeout;
1295 u16 dot11MeshHWMPpreqMinInterval;
1296 u16 dot11MeshHWMPperrMinInterval;
1297 u16 dot11MeshHWMPnetDiameterTraversalTime;
1298 u8 dot11MeshHWMPRootMode;
1299 u16 dot11MeshHWMPRannInterval;
1300 bool dot11MeshGateAnnouncementProtocol;
1301 bool dot11MeshForwarding;
1302 s32 rssi_threshold;
1303 u16 ht_opmode;
1304 u32 dot11MeshHWMPactivePathToRootTimeout;
1305 u16 dot11MeshHWMProotInterval;
1306 u16 dot11MeshHWMPconfirmationInterval;
1307 enum nl80211_mesh_power_mode power_mode;
1308 u16 dot11MeshAwakeWindowDuration;
1309 u32 plink_timeout;
1310 };
1311
1312 /**
1313 * struct mesh_setup - 802.11s mesh setup configuration
1314 * @chandef: defines the channel to use
1315 * @mesh_id: the mesh ID
1316 * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
1317 * @sync_method: which synchronization method to use
1318 * @path_sel_proto: which path selection protocol to use
1319 * @path_metric: which metric to use
1320 * @auth_id: which authentication method this mesh is using
1321 * @ie: vendor information elements (optional)
1322 * @ie_len: length of vendor information elements
1323 * @is_authenticated: this mesh requires authentication
1324 * @is_secure: this mesh uses security
1325 * @user_mpm: userspace handles all MPM functions
1326 * @dtim_period: DTIM period to use
1327 * @beacon_interval: beacon interval to use
1328 * @mcast_rate: multicat rate for Mesh Node [6Mbps is the default for 802.11a]
1329 * @basic_rates: basic rates to use when creating the mesh
1330 *
1331 * These parameters are fixed when the mesh is created.
1332 */
1333 struct mesh_setup {
1334 struct cfg80211_chan_def chandef;
1335 const u8 *mesh_id;
1336 u8 mesh_id_len;
1337 u8 sync_method;
1338 u8 path_sel_proto;
1339 u8 path_metric;
1340 u8 auth_id;
1341 const u8 *ie;
1342 u8 ie_len;
1343 bool is_authenticated;
1344 bool is_secure;
1345 bool user_mpm;
1346 u8 dtim_period;
1347 u16 beacon_interval;
1348 int mcast_rate[NUM_NL80211_BANDS];
1349 u32 basic_rates;
1350 };
1351
1352 /**
1353 * struct ocb_setup - 802.11p OCB mode setup configuration
1354 * @chandef: defines the channel to use
1355 *
1356 * These parameters are fixed when connecting to the network
1357 */
1358 struct ocb_setup {
1359 struct cfg80211_chan_def chandef;
1360 };
1361
1362 /**
1363 * struct ieee80211_txq_params - TX queue parameters
1364 * @ac: AC identifier
1365 * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
1366 * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
1367 * 1..32767]
1368 * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
1369 * 1..32767]
1370 * @aifs: Arbitration interframe space [0..255]
1371 */
1372 struct ieee80211_txq_params {
1373 enum nl80211_ac ac;
1374 u16 txop;
1375 u16 cwmin;
1376 u16 cwmax;
1377 u8 aifs;
1378 };
1379
1380 /**
1381 * DOC: Scanning and BSS list handling
1382 *
1383 * The scanning process itself is fairly simple, but cfg80211 offers quite
1384 * a bit of helper functionality. To start a scan, the scan operation will
1385 * be invoked with a scan definition. This scan definition contains the
1386 * channels to scan, and the SSIDs to send probe requests for (including the
1387 * wildcard, if desired). A passive scan is indicated by having no SSIDs to
1388 * probe. Additionally, a scan request may contain extra information elements
1389 * that should be added to the probe request. The IEs are guaranteed to be
1390 * well-formed, and will not exceed the maximum length the driver advertised
1391 * in the wiphy structure.
1392 *
1393 * When scanning finds a BSS, cfg80211 needs to be notified of that, because
1394 * it is responsible for maintaining the BSS list; the driver should not
1395 * maintain a list itself. For this notification, various functions exist.
1396 *
1397 * Since drivers do not maintain a BSS list, there are also a number of
1398 * functions to search for a BSS and obtain information about it from the
1399 * BSS structure cfg80211 maintains. The BSS list is also made available
1400 * to userspace.
1401 */
1402
1403 /**
1404 * struct cfg80211_ssid - SSID description
1405 * @ssid: the SSID
1406 * @ssid_len: length of the ssid
1407 */
1408 struct cfg80211_ssid {
1409 u8 ssid[IEEE80211_MAX_SSID_LEN];
1410 u8 ssid_len;
1411 };
1412
1413 /**
1414 * struct cfg80211_scan_request - scan request description
1415 *
1416 * @ssids: SSIDs to scan for (active scan only)
1417 * @n_ssids: number of SSIDs
1418 * @channels: channels to scan on.
1419 * @n_channels: total number of channels to scan
1420 * @scan_width: channel width for scanning
1421 * @ie: optional information element(s) to add into Probe Request or %NULL
1422 * @ie_len: length of ie in octets
1423 * @flags: bit field of flags controlling operation
1424 * @rates: bitmap of rates to advertise for each band
1425 * @wiphy: the wiphy this was for
1426 * @scan_start: time (in jiffies) when the scan started
1427 * @wdev: the wireless device to scan for
1428 * @aborted: (internal) scan request was notified as aborted
1429 * @notified: (internal) scan request was notified as done or aborted
1430 * @no_cck: used to send probe requests at non CCK rate in 2GHz band
1431 * @mac_addr: MAC address used with randomisation
1432 * @mac_addr_mask: MAC address mask used with randomisation, bits that
1433 * are 0 in the mask should be randomised, bits that are 1 should
1434 * be taken from the @mac_addr
1435 */
1436 struct cfg80211_scan_request {
1437 struct cfg80211_ssid *ssids;
1438 int n_ssids;
1439 u32 n_channels;
1440 enum nl80211_bss_scan_width scan_width;
1441 const u8 *ie;
1442 size_t ie_len;
1443 u32 flags;
1444
1445 u32 rates[NUM_NL80211_BANDS];
1446
1447 struct wireless_dev *wdev;
1448
1449 u8 mac_addr[ETH_ALEN] __aligned(2);
1450 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
1451
1452 /* internal */
1453 struct wiphy *wiphy;
1454 unsigned long scan_start;
1455 bool aborted, notified;
1456 bool no_cck;
1457
1458 /* keep last */
1459 struct ieee80211_channel *channels[0];
1460 };
1461
1462 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
1463 {
1464 int i;
1465
1466 get_random_bytes(buf, ETH_ALEN);
1467 for (i = 0; i < ETH_ALEN; i++) {
1468 buf[i] &= ~mask[i];
1469 buf[i] |= addr[i] & mask[i];
1470 }
1471 }
1472
1473 /**
1474 * struct cfg80211_match_set - sets of attributes to match
1475 *
1476 * @ssid: SSID to be matched; may be zero-length for no match (RSSI only)
1477 * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
1478 */
1479 struct cfg80211_match_set {
1480 struct cfg80211_ssid ssid;
1481 s32 rssi_thold;
1482 };
1483
1484 /**
1485 * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
1486 *
1487 * @interval: interval between scheduled scan iterations. In seconds.
1488 * @iterations: number of scan iterations in this scan plan. Zero means
1489 * infinite loop.
1490 * The last scan plan will always have this parameter set to zero,
1491 * all other scan plans will have a finite number of iterations.
1492 */
1493 struct cfg80211_sched_scan_plan {
1494 u32 interval;
1495 u32 iterations;
1496 };
1497
1498 /**
1499 * struct cfg80211_sched_scan_request - scheduled scan request description
1500 *
1501 * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
1502 * @n_ssids: number of SSIDs
1503 * @n_channels: total number of channels to scan
1504 * @scan_width: channel width for scanning
1505 * @ie: optional information element(s) to add into Probe Request or %NULL
1506 * @ie_len: length of ie in octets
1507 * @flags: bit field of flags controlling operation
1508 * @match_sets: sets of parameters to be matched for a scan result
1509 * entry to be considered valid and to be passed to the host
1510 * (others are filtered out).
1511 * If ommited, all results are passed.
1512 * @n_match_sets: number of match sets
1513 * @wiphy: the wiphy this was for
1514 * @dev: the interface
1515 * @scan_start: start time of the scheduled scan
1516 * @channels: channels to scan
1517 * @min_rssi_thold: for drivers only supporting a single threshold, this
1518 * contains the minimum over all matchsets
1519 * @mac_addr: MAC address used with randomisation
1520 * @mac_addr_mask: MAC address mask used with randomisation, bits that
1521 * are 0 in the mask should be randomised, bits that are 1 should
1522 * be taken from the @mac_addr
1523 * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
1524 * index must be executed first.
1525 * @n_scan_plans: number of scan plans, at least 1.
1526 * @rcu_head: RCU callback used to free the struct
1527 * @owner_nlportid: netlink portid of owner (if this should is a request
1528 * owned by a particular socket)
1529 * @delay: delay in seconds to use before starting the first scan
1530 * cycle. The driver may ignore this parameter and start
1531 * immediately (or at any other time), if this feature is not
1532 * supported.
1533 */
1534 struct cfg80211_sched_scan_request {
1535 struct cfg80211_ssid *ssids;
1536 int n_ssids;
1537 u32 n_channels;
1538 enum nl80211_bss_scan_width scan_width;
1539 const u8 *ie;
1540 size_t ie_len;
1541 u32 flags;
1542 struct cfg80211_match_set *match_sets;
1543 int n_match_sets;
1544 s32 min_rssi_thold;
1545 u32 delay;
1546 struct cfg80211_sched_scan_plan *scan_plans;
1547 int n_scan_plans;
1548
1549 u8 mac_addr[ETH_ALEN] __aligned(2);
1550 u8 mac_addr_mask[ETH_ALEN] __aligned(2);
1551
1552 /* internal */
1553 struct wiphy *wiphy;
1554 struct net_device *dev;
1555 unsigned long scan_start;
1556 struct rcu_head rcu_head;
1557 u32 owner_nlportid;
1558
1559 /* keep last */
1560 struct ieee80211_channel *channels[0];
1561 };
1562
1563 /**
1564 * enum cfg80211_signal_type - signal type
1565 *
1566 * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
1567 * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
1568 * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
1569 */
1570 enum cfg80211_signal_type {
1571 CFG80211_SIGNAL_TYPE_NONE,
1572 CFG80211_SIGNAL_TYPE_MBM,
1573 CFG80211_SIGNAL_TYPE_UNSPEC,
1574 };
1575
1576 /**
1577 * struct cfg80211_inform_bss - BSS inform data
1578 * @chan: channel the frame was received on
1579 * @scan_width: scan width that was used
1580 * @signal: signal strength value, according to the wiphy's
1581 * signal type
1582 * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
1583 * received; should match the time when the frame was actually
1584 * received by the device (not just by the host, in case it was
1585 * buffered on the device) and be accurate to about 10ms.
1586 * If the frame isn't buffered, just passing the return value of
1587 * ktime_get_boot_ns() is likely appropriate.
1588 */
1589 struct cfg80211_inform_bss {
1590 struct ieee80211_channel *chan;
1591 enum nl80211_bss_scan_width scan_width;
1592 s32 signal;
1593 u64 boottime_ns;
1594 };
1595
1596 /**
1597 * struct cfg80211_bss_ie_data - BSS entry IE data
1598 * @tsf: TSF contained in the frame that carried these IEs
1599 * @rcu_head: internal use, for freeing
1600 * @len: length of the IEs
1601 * @from_beacon: these IEs are known to come from a beacon
1602 * @data: IE data
1603 */
1604 struct cfg80211_bss_ies {
1605 u64 tsf;
1606 struct rcu_head rcu_head;
1607 int len;
1608 bool from_beacon;
1609 u8 data[];
1610 };
1611
1612 /**
1613 * struct cfg80211_bss - BSS description
1614 *
1615 * This structure describes a BSS (which may also be a mesh network)
1616 * for use in scan results and similar.
1617 *
1618 * @channel: channel this BSS is on
1619 * @scan_width: width of the control channel
1620 * @bssid: BSSID of the BSS
1621 * @beacon_interval: the beacon interval as from the frame
1622 * @capability: the capability field in host byte order
1623 * @ies: the information elements (Note that there is no guarantee that these
1624 * are well-formed!); this is a pointer to either the beacon_ies or
1625 * proberesp_ies depending on whether Probe Response frame has been
1626 * received. It is always non-%NULL.
1627 * @beacon_ies: the information elements from the last Beacon frame
1628 * (implementation note: if @hidden_beacon_bss is set this struct doesn't
1629 * own the beacon_ies, but they're just pointers to the ones from the
1630 * @hidden_beacon_bss struct)
1631 * @proberesp_ies: the information elements from the last Probe Response frame
1632 * @hidden_beacon_bss: in case this BSS struct represents a probe response from
1633 * a BSS that hides the SSID in its beacon, this points to the BSS struct
1634 * that holds the beacon data. @beacon_ies is still valid, of course, and
1635 * points to the same data as hidden_beacon_bss->beacon_ies in that case.
1636 * @signal: signal strength value (type depends on the wiphy's signal_type)
1637 * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
1638 */
1639 struct cfg80211_bss {
1640 struct ieee80211_channel *channel;
1641 enum nl80211_bss_scan_width scan_width;
1642
1643 const struct cfg80211_bss_ies __rcu *ies;
1644 const struct cfg80211_bss_ies __rcu *beacon_ies;
1645 const struct cfg80211_bss_ies __rcu *proberesp_ies;
1646
1647 struct cfg80211_bss *hidden_beacon_bss;
1648
1649 s32 signal;
1650
1651 u16 beacon_interval;
1652 u16 capability;
1653
1654 u8 bssid[ETH_ALEN];
1655
1656 u8 priv[0] __aligned(sizeof(void *));
1657 };
1658
1659 /**
1660 * ieee80211_bss_get_ie - find IE with given ID
1661 * @bss: the bss to search
1662 * @ie: the IE ID
1663 *
1664 * Note that the return value is an RCU-protected pointer, so
1665 * rcu_read_lock() must be held when calling this function.
1666 * Return: %NULL if not found.
1667 */
1668 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie);
1669
1670
1671 /**
1672 * struct cfg80211_auth_request - Authentication request data
1673 *
1674 * This structure provides information needed to complete IEEE 802.11
1675 * authentication.
1676 *
1677 * @bss: The BSS to authenticate with, the callee must obtain a reference
1678 * to it if it needs to keep it.
1679 * @auth_type: Authentication type (algorithm)
1680 * @ie: Extra IEs to add to Authentication frame or %NULL
1681 * @ie_len: Length of ie buffer in octets
1682 * @key_len: length of WEP key for shared key authentication
1683 * @key_idx: index of WEP key for shared key authentication
1684 * @key: WEP key for shared key authentication
1685 * @sae_data: Non-IE data to use with SAE or %NULL. This starts with
1686 * Authentication transaction sequence number field.
1687 * @sae_data_len: Length of sae_data buffer in octets
1688 */
1689 struct cfg80211_auth_request {
1690 struct cfg80211_bss *bss;
1691 const u8 *ie;
1692 size_t ie_len;
1693 enum nl80211_auth_type auth_type;
1694 const u8 *key;
1695 u8 key_len, key_idx;
1696 const u8 *sae_data;
1697 size_t sae_data_len;
1698 };
1699
1700 /**
1701 * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
1702 *
1703 * @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n)
1704 * @ASSOC_REQ_DISABLE_VHT: Disable VHT
1705 * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
1706 */
1707 enum cfg80211_assoc_req_flags {
1708 ASSOC_REQ_DISABLE_HT = BIT(0),
1709 ASSOC_REQ_DISABLE_VHT = BIT(1),
1710 ASSOC_REQ_USE_RRM = BIT(2),
1711 };
1712
1713 /**
1714 * struct cfg80211_assoc_request - (Re)Association request data
1715 *
1716 * This structure provides information needed to complete IEEE 802.11
1717 * (re)association.
1718 * @bss: The BSS to associate with. If the call is successful the driver is
1719 * given a reference that it must give back to cfg80211_send_rx_assoc()
1720 * or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
1721 * association requests while already associating must be rejected.
1722 * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
1723 * @ie_len: Length of ie buffer in octets
1724 * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
1725 * @crypto: crypto settings
1726 * @prev_bssid: previous BSSID, if not %NULL use reassociate frame
1727 * @flags: See &enum cfg80211_assoc_req_flags
1728 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
1729 * will be used in ht_capa. Un-supported values will be ignored.
1730 * @ht_capa_mask: The bits of ht_capa which are to be used.
1731 * @vht_capa: VHT capability override
1732 * @vht_capa_mask: VHT capability mask indicating which fields to use
1733 */
1734 struct cfg80211_assoc_request {
1735 struct cfg80211_bss *bss;
1736 const u8 *ie, *prev_bssid;
1737 size_t ie_len;
1738 struct cfg80211_crypto_settings crypto;
1739 bool use_mfp;
1740 u32 flags;
1741 struct ieee80211_ht_cap ht_capa;
1742 struct ieee80211_ht_cap ht_capa_mask;
1743 struct ieee80211_vht_cap vht_capa, vht_capa_mask;
1744 };
1745
1746 /**
1747 * struct cfg80211_deauth_request - Deauthentication request data
1748 *
1749 * This structure provides information needed to complete IEEE 802.11
1750 * deauthentication.
1751 *
1752 * @bssid: the BSSID of the BSS to deauthenticate from
1753 * @ie: Extra IEs to add to Deauthentication frame or %NULL
1754 * @ie_len: Length of ie buffer in octets
1755 * @reason_code: The reason code for the deauthentication
1756 * @local_state_change: if set, change local state only and
1757 * do not set a deauth frame
1758 */
1759 struct cfg80211_deauth_request {
1760 const u8 *bssid;
1761 const u8 *ie;
1762 size_t ie_len;
1763 u16 reason_code;
1764 bool local_state_change;
1765 };
1766
1767 /**
1768 * struct cfg80211_disassoc_request - Disassociation request data
1769 *
1770 * This structure provides information needed to complete IEEE 802.11
1771 * disassocation.
1772 *
1773 * @bss: the BSS to disassociate from
1774 * @ie: Extra IEs to add to Disassociation frame or %NULL
1775 * @ie_len: Length of ie buffer in octets
1776 * @reason_code: The reason code for the disassociation
1777 * @local_state_change: This is a request for a local state only, i.e., no
1778 * Disassociation frame is to be transmitted.
1779 */
1780 struct cfg80211_disassoc_request {
1781 struct cfg80211_bss *bss;
1782 const u8 *ie;
1783 size_t ie_len;
1784 u16 reason_code;
1785 bool local_state_change;
1786 };
1787
1788 /**
1789 * struct cfg80211_ibss_params - IBSS parameters
1790 *
1791 * This structure defines the IBSS parameters for the join_ibss()
1792 * method.
1793 *
1794 * @ssid: The SSID, will always be non-null.
1795 * @ssid_len: The length of the SSID, will always be non-zero.
1796 * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
1797 * search for IBSSs with a different BSSID.
1798 * @chandef: defines the channel to use if no other IBSS to join can be found
1799 * @channel_fixed: The channel should be fixed -- do not search for
1800 * IBSSs to join on other channels.
1801 * @ie: information element(s) to include in the beacon
1802 * @ie_len: length of that
1803 * @beacon_interval: beacon interval to use
1804 * @privacy: this is a protected network, keys will be configured
1805 * after joining
1806 * @control_port: whether user space controls IEEE 802.1X port, i.e.,
1807 * sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1808 * required to assume that the port is unauthorized until authorized by
1809 * user space. Otherwise, port is marked authorized by default.
1810 * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
1811 * changes the channel when a radar is detected. This is required
1812 * to operate on DFS channels.
1813 * @basic_rates: bitmap of basic rates to use when creating the IBSS
1814 * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
1815 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
1816 * will be used in ht_capa. Un-supported values will be ignored.
1817 * @ht_capa_mask: The bits of ht_capa which are to be used.
1818 */
1819 struct cfg80211_ibss_params {
1820 const u8 *ssid;
1821 const u8 *bssid;
1822 struct cfg80211_chan_def chandef;
1823 const u8 *ie;
1824 u8 ssid_len, ie_len;
1825 u16 beacon_interval;
1826 u32 basic_rates;
1827 bool channel_fixed;
1828 bool privacy;
1829 bool control_port;
1830 bool userspace_handles_dfs;
1831 int mcast_rate[NUM_NL80211_BANDS];
1832 struct ieee80211_ht_cap ht_capa;
1833 struct ieee80211_ht_cap ht_capa_mask;
1834 };
1835
1836 /**
1837 * struct cfg80211_connect_params - Connection parameters
1838 *
1839 * This structure provides information needed to complete IEEE 802.11
1840 * authentication and association.
1841 *
1842 * @channel: The channel to use or %NULL if not specified (auto-select based
1843 * on scan results)
1844 * @channel_hint: The channel of the recommended BSS for initial connection or
1845 * %NULL if not specified
1846 * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
1847 * results)
1848 * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
1849 * %NULL if not specified. Unlike the @bssid parameter, the driver is
1850 * allowed to ignore this @bssid_hint if it has knowledge of a better BSS
1851 * to use.
1852 * @ssid: SSID
1853 * @ssid_len: Length of ssid in octets
1854 * @auth_type: Authentication type (algorithm)
1855 * @ie: IEs for association request
1856 * @ie_len: Length of assoc_ie in octets
1857 * @privacy: indicates whether privacy-enabled APs should be used
1858 * @mfp: indicate whether management frame protection is used
1859 * @crypto: crypto settings
1860 * @key_len: length of WEP key for shared key authentication
1861 * @key_idx: index of WEP key for shared key authentication
1862 * @key: WEP key for shared key authentication
1863 * @flags: See &enum cfg80211_assoc_req_flags
1864 * @bg_scan_period: Background scan period in seconds
1865 * or -1 to indicate that default value is to be used.
1866 * @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
1867 * will be used in ht_capa. Un-supported values will be ignored.
1868 * @ht_capa_mask: The bits of ht_capa which are to be used.
1869 * @vht_capa: VHT Capability overrides
1870 * @vht_capa_mask: The bits of vht_capa which are to be used.
1871 */
1872 struct cfg80211_connect_params {
1873 struct ieee80211_channel *channel;
1874 struct ieee80211_channel *channel_hint;
1875 const u8 *bssid;
1876 const u8 *bssid_hint;
1877 const u8 *ssid;
1878 size_t ssid_len;
1879 enum nl80211_auth_type auth_type;
1880 const u8 *ie;
1881 size_t ie_len;
1882 bool privacy;
1883 enum nl80211_mfp mfp;
1884 struct cfg80211_crypto_settings crypto;
1885 const u8 *key;
1886 u8 key_len, key_idx;
1887 u32 flags;
1888 int bg_scan_period;
1889 struct ieee80211_ht_cap ht_capa;
1890 struct ieee80211_ht_cap ht_capa_mask;
1891 struct ieee80211_vht_cap vht_capa;
1892 struct ieee80211_vht_cap vht_capa_mask;
1893 };
1894
1895 /**
1896 * enum wiphy_params_flags - set_wiphy_params bitfield values
1897 * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
1898 * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
1899 * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
1900 * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
1901 * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
1902 * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
1903 */
1904 enum wiphy_params_flags {
1905 WIPHY_PARAM_RETRY_SHORT = 1 << 0,
1906 WIPHY_PARAM_RETRY_LONG = 1 << 1,
1907 WIPHY_PARAM_FRAG_THRESHOLD = 1 << 2,
1908 WIPHY_PARAM_RTS_THRESHOLD = 1 << 3,
1909 WIPHY_PARAM_COVERAGE_CLASS = 1 << 4,
1910 WIPHY_PARAM_DYN_ACK = 1 << 5,
1911 };
1912
1913 /*
1914 * cfg80211_bitrate_mask - masks for bitrate control
1915 */
1916 struct cfg80211_bitrate_mask {
1917 struct {
1918 u32 legacy;
1919 u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
1920 u16 vht_mcs[NL80211_VHT_NSS_MAX];
1921 enum nl80211_txrate_gi gi;
1922 } control[NUM_NL80211_BANDS];
1923 };
1924 /**
1925 * struct cfg80211_pmksa - PMK Security Association
1926 *
1927 * This structure is passed to the set/del_pmksa() method for PMKSA
1928 * caching.
1929 *
1930 * @bssid: The AP's BSSID.
1931 * @pmkid: The PMK material itself.
1932 */
1933 struct cfg80211_pmksa {
1934 const u8 *bssid;
1935 const u8 *pmkid;
1936 };
1937
1938 /**
1939 * struct cfg80211_pkt_pattern - packet pattern
1940 * @mask: bitmask where to match pattern and where to ignore bytes,
1941 * one bit per byte, in same format as nl80211
1942 * @pattern: bytes to match where bitmask is 1
1943 * @pattern_len: length of pattern (in bytes)
1944 * @pkt_offset: packet offset (in bytes)
1945 *
1946 * Internal note: @mask and @pattern are allocated in one chunk of
1947 * memory, free @mask only!
1948 */
1949 struct cfg80211_pkt_pattern {
1950 const u8 *mask, *pattern;
1951 int pattern_len;
1952 int pkt_offset;
1953 };
1954
1955 /**
1956 * struct cfg80211_wowlan_tcp - TCP connection parameters
1957 *
1958 * @sock: (internal) socket for source port allocation
1959 * @src: source IP address
1960 * @dst: destination IP address
1961 * @dst_mac: destination MAC address
1962 * @src_port: source port
1963 * @dst_port: destination port
1964 * @payload_len: data payload length
1965 * @payload: data payload buffer
1966 * @payload_seq: payload sequence stamping configuration
1967 * @data_interval: interval at which to send data packets
1968 * @wake_len: wakeup payload match length
1969 * @wake_data: wakeup payload match data
1970 * @wake_mask: wakeup payload match mask
1971 * @tokens_size: length of the tokens buffer
1972 * @payload_tok: payload token usage configuration
1973 */
1974 struct cfg80211_wowlan_tcp {
1975 struct socket *sock;
1976 __be32 src, dst;
1977 u16 src_port, dst_port;
1978 u8 dst_mac[ETH_ALEN];
1979 int payload_len;
1980 const u8 *payload;
1981 struct nl80211_wowlan_tcp_data_seq payload_seq;
1982 u32 data_interval;
1983 u32 wake_len;
1984 const u8 *wake_data, *wake_mask;
1985 u32 tokens_size;
1986 /* must be last, variable member */
1987 struct nl80211_wowlan_tcp_data_token payload_tok;
1988 };
1989
1990 /**
1991 * struct cfg80211_wowlan - Wake on Wireless-LAN support info
1992 *
1993 * This structure defines the enabled WoWLAN triggers for the device.
1994 * @any: wake up on any activity -- special trigger if device continues
1995 * operating as normal during suspend
1996 * @disconnect: wake up if getting disconnected
1997 * @magic_pkt: wake up on receiving magic packet
1998 * @patterns: wake up on receiving packet matching a pattern
1999 * @n_patterns: number of patterns
2000 * @gtk_rekey_failure: wake up on GTK rekey failure
2001 * @eap_identity_req: wake up on EAP identity request packet
2002 * @four_way_handshake: wake up on 4-way handshake
2003 * @rfkill_release: wake up when rfkill is released
2004 * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
2005 * NULL if not configured.
2006 * @nd_config: configuration for the scan to be used for net detect wake.
2007 */
2008 struct cfg80211_wowlan {
2009 bool any, disconnect, magic_pkt, gtk_rekey_failure,
2010 eap_identity_req, four_way_handshake,
2011 rfkill_release;
2012 struct cfg80211_pkt_pattern *patterns;
2013 struct cfg80211_wowlan_tcp *tcp;
2014 int n_patterns;
2015 struct cfg80211_sched_scan_request *nd_config;
2016 };
2017
2018 /**
2019 * struct cfg80211_coalesce_rules - Coalesce rule parameters
2020 *
2021 * This structure defines coalesce rule for the device.
2022 * @delay: maximum coalescing delay in msecs.
2023 * @condition: condition for packet coalescence.
2024 * see &enum nl80211_coalesce_condition.
2025 * @patterns: array of packet patterns
2026 * @n_patterns: number of patterns
2027 */
2028 struct cfg80211_coalesce_rules {
2029 int delay;
2030 enum nl80211_coalesce_condition condition;
2031 struct cfg80211_pkt_pattern *patterns;
2032 int n_patterns;
2033 };
2034
2035 /**
2036 * struct cfg80211_coalesce - Packet coalescing settings
2037 *
2038 * This structure defines coalescing settings.
2039 * @rules: array of coalesce rules
2040 * @n_rules: number of rules
2041 */
2042 struct cfg80211_coalesce {
2043 struct cfg80211_coalesce_rules *rules;
2044 int n_rules;
2045 };
2046
2047 /**
2048 * struct cfg80211_wowlan_nd_match - information about the match
2049 *
2050 * @ssid: SSID of the match that triggered the wake up
2051 * @n_channels: Number of channels where the match occurred. This
2052 * value may be zero if the driver can't report the channels.
2053 * @channels: center frequencies of the channels where a match
2054 * occurred (in MHz)
2055 */
2056 struct cfg80211_wowlan_nd_match {
2057 struct cfg80211_ssid ssid;
2058 int n_channels;
2059 u32 channels[];
2060 };
2061
2062 /**
2063 * struct cfg80211_wowlan_nd_info - net detect wake up information
2064 *
2065 * @n_matches: Number of match information instances provided in
2066 * @matches. This value may be zero if the driver can't provide
2067 * match information.
2068 * @matches: Array of pointers to matches containing information about
2069 * the matches that triggered the wake up.
2070 */
2071 struct cfg80211_wowlan_nd_info {
2072 int n_matches;
2073 struct cfg80211_wowlan_nd_match *matches[];
2074 };
2075
2076 /**
2077 * struct cfg80211_wowlan_wakeup - wakeup report
2078 * @disconnect: woke up by getting disconnected
2079 * @magic_pkt: woke up by receiving magic packet
2080 * @gtk_rekey_failure: woke up by GTK rekey failure
2081 * @eap_identity_req: woke up by EAP identity request packet
2082 * @four_way_handshake: woke up by 4-way handshake
2083 * @rfkill_release: woke up by rfkill being released
2084 * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
2085 * @packet_present_len: copied wakeup packet data
2086 * @packet_len: original wakeup packet length
2087 * @packet: The packet causing the wakeup, if any.
2088 * @packet_80211: For pattern match, magic packet and other data
2089 * frame triggers an 802.3 frame should be reported, for
2090 * disconnect due to deauth 802.11 frame. This indicates which
2091 * it is.
2092 * @tcp_match: TCP wakeup packet received
2093 * @tcp_connlost: TCP connection lost or failed to establish
2094 * @tcp_nomoretokens: TCP data ran out of tokens
2095 * @net_detect: if not %NULL, woke up because of net detect
2096 */
2097 struct cfg80211_wowlan_wakeup {
2098 bool disconnect, magic_pkt, gtk_rekey_failure,
2099 eap_identity_req, four_way_handshake,
2100 rfkill_release, packet_80211,
2101 tcp_match, tcp_connlost, tcp_nomoretokens;
2102 s32 pattern_idx;
2103 u32 packet_present_len, packet_len;
2104 const void *packet;
2105 struct cfg80211_wowlan_nd_info *net_detect;
2106 };
2107
2108 /**
2109 * struct cfg80211_gtk_rekey_data - rekey data
2110 * @kek: key encryption key (NL80211_KEK_LEN bytes)
2111 * @kck: key confirmation key (NL80211_KCK_LEN bytes)
2112 * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
2113 */
2114 struct cfg80211_gtk_rekey_data {
2115 const u8 *kek, *kck, *replay_ctr;
2116 };
2117
2118 /**
2119 * struct cfg80211_update_ft_ies_params - FT IE Information
2120 *
2121 * This structure provides information needed to update the fast transition IE
2122 *
2123 * @md: The Mobility Domain ID, 2 Octet value
2124 * @ie: Fast Transition IEs
2125 * @ie_len: Length of ft_ie in octets
2126 */
2127 struct cfg80211_update_ft_ies_params {
2128 u16 md;
2129 const u8 *ie;
2130 size_t ie_len;
2131 };
2132
2133 /**
2134 * struct cfg80211_mgmt_tx_params - mgmt tx parameters
2135 *
2136 * This structure provides information needed to transmit a mgmt frame
2137 *
2138 * @chan: channel to use
2139 * @offchan: indicates wether off channel operation is required
2140 * @wait: duration for ROC
2141 * @buf: buffer to transmit
2142 * @len: buffer length
2143 * @no_cck: don't use cck rates for this frame
2144 * @dont_wait_for_ack: tells the low level not to wait for an ack
2145 * @n_csa_offsets: length of csa_offsets array
2146 * @csa_offsets: array of all the csa offsets in the frame
2147 */
2148 struct cfg80211_mgmt_tx_params {
2149 struct ieee80211_channel *chan;
2150 bool offchan;
2151 unsigned int wait;
2152 const u8 *buf;
2153 size_t len;
2154 bool no_cck;
2155 bool dont_wait_for_ack;
2156 int n_csa_offsets;
2157 const u16 *csa_offsets;
2158 };
2159
2160 /**
2161 * struct cfg80211_dscp_exception - DSCP exception
2162 *
2163 * @dscp: DSCP value that does not adhere to the user priority range definition
2164 * @up: user priority value to which the corresponding DSCP value belongs
2165 */
2166 struct cfg80211_dscp_exception {
2167 u8 dscp;
2168 u8 up;
2169 };
2170
2171 /**
2172 * struct cfg80211_dscp_range - DSCP range definition for user priority
2173 *
2174 * @low: lowest DSCP value of this user priority range, inclusive
2175 * @high: highest DSCP value of this user priority range, inclusive
2176 */
2177 struct cfg80211_dscp_range {
2178 u8 low;
2179 u8 high;
2180 };
2181
2182 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
2183 #define IEEE80211_QOS_MAP_MAX_EX 21
2184 #define IEEE80211_QOS_MAP_LEN_MIN 16
2185 #define IEEE80211_QOS_MAP_LEN_MAX \
2186 (IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
2187
2188 /**
2189 * struct cfg80211_qos_map - QoS Map Information
2190 *
2191 * This struct defines the Interworking QoS map setting for DSCP values
2192 *
2193 * @num_des: number of DSCP exceptions (0..21)
2194 * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
2195 * the user priority DSCP range definition
2196 * @up: DSCP range definition for a particular user priority
2197 */
2198 struct cfg80211_qos_map {
2199 u8 num_des;
2200 struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
2201 struct cfg80211_dscp_range up[8];
2202 };
2203
2204 /**
2205 * struct cfg80211_ops - backend description for wireless configuration
2206 *
2207 * This struct is registered by fullmac card drivers and/or wireless stacks
2208 * in order to handle configuration requests on their interfaces.
2209 *
2210 * All callbacks except where otherwise noted should return 0
2211 * on success or a negative error code.
2212 *
2213 * All operations are currently invoked under rtnl for consistency with the
2214 * wireless extensions but this is subject to reevaluation as soon as this
2215 * code is used more widely and we have a first user without wext.
2216 *
2217 * @suspend: wiphy device needs to be suspended. The variable @wow will
2218 * be %NULL or contain the enabled Wake-on-Wireless triggers that are
2219 * configured for the device.
2220 * @resume: wiphy device needs to be resumed
2221 * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
2222 * to call device_set_wakeup_enable() to enable/disable wakeup from
2223 * the device.
2224 *
2225 * @add_virtual_intf: create a new virtual interface with the given name,
2226 * must set the struct wireless_dev's iftype. Beware: You must create
2227 * the new netdev in the wiphy's network namespace! Returns the struct
2228 * wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
2229 * also set the address member in the wdev.
2230 *
2231 * @del_virtual_intf: remove the virtual interface
2232 *
2233 * @change_virtual_intf: change type/configuration of virtual interface,
2234 * keep the struct wireless_dev's iftype updated.
2235 *
2236 * @add_key: add a key with the given parameters. @mac_addr will be %NULL
2237 * when adding a group key.
2238 *
2239 * @get_key: get information about the key with the given parameters.
2240 * @mac_addr will be %NULL when requesting information for a group
2241 * key. All pointers given to the @callback function need not be valid
2242 * after it returns. This function should return an error if it is
2243 * not possible to retrieve the key, -ENOENT if it doesn't exist.
2244 *
2245 * @del_key: remove a key given the @mac_addr (%NULL for a group key)
2246 * and @key_index, return -ENOENT if the key doesn't exist.
2247 *
2248 * @set_default_key: set the default key on an interface
2249 *
2250 * @set_default_mgmt_key: set the default management frame key on an interface
2251 *
2252 * @set_rekey_data: give the data necessary for GTK rekeying to the driver
2253 *
2254 * @start_ap: Start acting in AP mode defined by the parameters.
2255 * @change_beacon: Change the beacon parameters for an access point mode
2256 * interface. This should reject the call when AP mode wasn't started.
2257 * @stop_ap: Stop being an AP, including stopping beaconing.
2258 *
2259 * @add_station: Add a new station.
2260 * @del_station: Remove a station
2261 * @change_station: Modify a given station. Note that flags changes are not much
2262 * validated in cfg80211, in particular the auth/assoc/authorized flags
2263 * might come to the driver in invalid combinations -- make sure to check
2264 * them, also against the existing state! Drivers must call
2265 * cfg80211_check_station_change() to validate the information.
2266 * @get_station: get station information for the station identified by @mac
2267 * @dump_station: dump station callback -- resume dump at index @idx
2268 *
2269 * @add_mpath: add a fixed mesh path
2270 * @del_mpath: delete a given mesh path
2271 * @change_mpath: change a given mesh path
2272 * @get_mpath: get a mesh path for the given parameters
2273 * @dump_mpath: dump mesh path callback -- resume dump at index @idx
2274 * @get_mpp: get a mesh proxy path for the given parameters
2275 * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
2276 * @join_mesh: join the mesh network with the specified parameters
2277 * (invoked with the wireless_dev mutex held)
2278 * @leave_mesh: leave the current mesh network
2279 * (invoked with the wireless_dev mutex held)
2280 *
2281 * @get_mesh_config: Get the current mesh configuration
2282 *
2283 * @update_mesh_config: Update mesh parameters on a running mesh.
2284 * The mask is a bitfield which tells us which parameters to
2285 * set, and which to leave alone.
2286 *
2287 * @change_bss: Modify parameters for a given BSS.
2288 *
2289 * @set_txq_params: Set TX queue parameters
2290 *
2291 * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
2292 * as it doesn't implement join_mesh and needs to set the channel to
2293 * join the mesh instead.
2294 *
2295 * @set_monitor_channel: Set the monitor mode channel for the device. If other
2296 * interfaces are active this callback should reject the configuration.
2297 * If no interfaces are active or the device is down, the channel should
2298 * be stored for when a monitor interface becomes active.
2299 *
2300 * @scan: Request to do a scan. If returning zero, the scan request is given
2301 * the driver, and will be valid until passed to cfg80211_scan_done().
2302 * For scan results, call cfg80211_inform_bss(); you can call this outside
2303 * the scan/scan_done bracket too.
2304 *
2305 * @auth: Request to authenticate with the specified peer
2306 * (invoked with the wireless_dev mutex held)
2307 * @assoc: Request to (re)associate with the specified peer
2308 * (invoked with the wireless_dev mutex held)
2309 * @deauth: Request to deauthenticate from the specified peer
2310 * (invoked with the wireless_dev mutex held)
2311 * @disassoc: Request to disassociate from the specified peer
2312 * (invoked with the wireless_dev mutex held)
2313 *
2314 * @connect: Connect to the ESS with the specified parameters. When connected,
2315 * call cfg80211_connect_result() with status code %WLAN_STATUS_SUCCESS.
2316 * If the connection fails for some reason, call cfg80211_connect_result()
2317 * with the status from the AP.
2318 * (invoked with the wireless_dev mutex held)
2319 * @disconnect: Disconnect from the BSS/ESS.
2320 * (invoked with the wireless_dev mutex held)
2321 *
2322 * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
2323 * cfg80211_ibss_joined(), also call that function when changing BSSID due
2324 * to a merge.
2325 * (invoked with the wireless_dev mutex held)
2326 * @leave_ibss: Leave the IBSS.
2327 * (invoked with the wireless_dev mutex held)
2328 *
2329 * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
2330 * MESH mode)
2331 *
2332 * @set_wiphy_params: Notify that wiphy parameters have changed;
2333 * @changed bitfield (see &enum wiphy_params_flags) describes which values
2334 * have changed. The actual parameter values are available in
2335 * struct wiphy. If returning an error, no value should be changed.
2336 *
2337 * @set_tx_power: set the transmit power according to the parameters,
2338 * the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
2339 * wdev may be %NULL if power was set for the wiphy, and will
2340 * always be %NULL unless the driver supports per-vif TX power
2341 * (as advertised by the nl80211 feature flag.)
2342 * @get_tx_power: store the current TX power into the dbm variable;
2343 * return 0 if successful
2344 *
2345 * @set_wds_peer: set the WDS peer for a WDS interface
2346 *
2347 * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
2348 * functions to adjust rfkill hw state
2349 *
2350 * @dump_survey: get site survey information.
2351 *
2352 * @remain_on_channel: Request the driver to remain awake on the specified
2353 * channel for the specified duration to complete an off-channel
2354 * operation (e.g., public action frame exchange). When the driver is
2355 * ready on the requested channel, it must indicate this with an event
2356 * notification by calling cfg80211_ready_on_channel().
2357 * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
2358 * This allows the operation to be terminated prior to timeout based on
2359 * the duration value.
2360 * @mgmt_tx: Transmit a management frame.
2361 * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
2362 * frame on another channel
2363 *
2364 * @testmode_cmd: run a test mode command; @wdev may be %NULL
2365 * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
2366 * used by the function, but 0 and 1 must not be touched. Additionally,
2367 * return error codes other than -ENOBUFS and -ENOENT will terminate the
2368 * dump and return to userspace with an error, so be careful. If any data
2369 * was passed in from userspace then the data/len arguments will be present
2370 * and point to the data contained in %NL80211_ATTR_TESTDATA.
2371 *
2372 * @set_bitrate_mask: set the bitrate mask configuration
2373 *
2374 * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
2375 * devices running firmwares capable of generating the (re) association
2376 * RSN IE. It allows for faster roaming between WPA2 BSSIDs.
2377 * @del_pmksa: Delete a cached PMKID.
2378 * @flush_pmksa: Flush all cached PMKIDs.
2379 * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
2380 * allows the driver to adjust the dynamic ps timeout value.
2381 * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
2382 * After configuration, the driver should (soon) send an event indicating
2383 * the current level is above/below the configured threshold; this may
2384 * need some care when the configuration is changed (without first being
2385 * disabled.)
2386 * @set_cqm_txe_config: Configure connection quality monitor TX error
2387 * thresholds.
2388 * @sched_scan_start: Tell the driver to start a scheduled scan.
2389 * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan. This
2390 * call must stop the scheduled scan and be ready for starting a new one
2391 * before it returns, i.e. @sched_scan_start may be called immediately
2392 * after that again and should not fail in that case. The driver should
2393 * not call cfg80211_sched_scan_stopped() for a requested stop (when this
2394 * method returns 0.)
2395 *
2396 * @mgmt_frame_register: Notify driver that a management frame type was
2397 * registered. The callback is allowed to sleep.
2398 *
2399 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
2400 * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
2401 * reject TX/RX mask combinations they cannot support by returning -EINVAL
2402 * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
2403 *
2404 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
2405 *
2406 * @tdls_mgmt: Transmit a TDLS management frame.
2407 * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
2408 *
2409 * @probe_client: probe an associated client, must return a cookie that it
2410 * later passes to cfg80211_probe_status().
2411 *
2412 * @set_noack_map: Set the NoAck Map for the TIDs.
2413 *
2414 * @get_channel: Get the current operating channel for the virtual interface.
2415 * For monitor interfaces, it should return %NULL unless there's a single
2416 * current monitoring channel.
2417 *
2418 * @start_p2p_device: Start the given P2P device.
2419 * @stop_p2p_device: Stop the given P2P device.
2420 *
2421 * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
2422 * Parameters include ACL policy, an array of MAC address of stations
2423 * and the number of MAC addresses. If there is already a list in driver
2424 * this new list replaces the existing one. Driver has to clear its ACL
2425 * when number of MAC addresses entries is passed as 0. Drivers which
2426 * advertise the support for MAC based ACL have to implement this callback.
2427 *
2428 * @start_radar_detection: Start radar detection in the driver.
2429 *
2430 * @update_ft_ies: Provide updated Fast BSS Transition information to the
2431 * driver. If the SME is in the driver/firmware, this information can be
2432 * used in building Authentication and Reassociation Request frames.
2433 *
2434 * @crit_proto_start: Indicates a critical protocol needs more link reliability
2435 * for a given duration (milliseconds). The protocol is provided so the
2436 * driver can take the most appropriate actions.
2437 * @crit_proto_stop: Indicates critical protocol no longer needs increased link
2438 * reliability. This operation can not fail.
2439 * @set_coalesce: Set coalesce parameters.
2440 *
2441 * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
2442 * responsible for veryfing if the switch is possible. Since this is
2443 * inherently tricky driver may decide to disconnect an interface later
2444 * with cfg80211_stop_iface(). This doesn't mean driver can accept
2445 * everything. It should do it's best to verify requests and reject them
2446 * as soon as possible.
2447 *
2448 * @set_qos_map: Set QoS mapping information to the driver
2449 *
2450 * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
2451 * given interface This is used e.g. for dynamic HT 20/40 MHz channel width
2452 * changes during the lifetime of the BSS.
2453 *
2454 * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
2455 * with the given parameters; action frame exchange has been handled by
2456 * userspace so this just has to modify the TX path to take the TS into
2457 * account.
2458 * If the admitted time is 0 just validate the parameters to make sure
2459 * the session can be created at all; it is valid to just always return
2460 * success for that but that may result in inefficient behaviour (handshake
2461 * with the peer followed by immediate teardown when the addition is later
2462 * rejected)
2463 * @del_tx_ts: remove an existing TX TS
2464 *
2465 * @join_ocb: join the OCB network with the specified parameters
2466 * (invoked with the wireless_dev mutex held)
2467 * @leave_ocb: leave the current OCB network
2468 * (invoked with the wireless_dev mutex held)
2469 *
2470 * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
2471 * is responsible for continually initiating channel-switching operations
2472 * and returning to the base channel for communication with the AP.
2473 * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
2474 * peers must be on the base channel when the call completes.
2475 */
2476 struct cfg80211_ops {
2477 int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
2478 int (*resume)(struct wiphy *wiphy);
2479 void (*set_wakeup)(struct wiphy *wiphy, bool enabled);
2480
2481 struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
2482 const char *name,
2483 unsigned char name_assign_type,
2484 enum nl80211_iftype type,
2485 u32 *flags,
2486 struct vif_params *params);
2487 int (*del_virtual_intf)(struct wiphy *wiphy,
2488 struct wireless_dev *wdev);
2489 int (*change_virtual_intf)(struct wiphy *wiphy,
2490 struct net_device *dev,
2491 enum nl80211_iftype type, u32 *flags,
2492 struct vif_params *params);
2493
2494 int (*add_key)(struct wiphy *wiphy, struct net_device *netdev,
2495 u8 key_index, bool pairwise, const u8 *mac_addr,
2496 struct key_params *params);
2497 int (*get_key)(struct wiphy *wiphy, struct net_device *netdev,
2498 u8 key_index, bool pairwise, const u8 *mac_addr,
2499 void *cookie,
2500 void (*callback)(void *cookie, struct key_params*));
2501 int (*del_key)(struct wiphy *wiphy, struct net_device *netdev,
2502 u8 key_index, bool pairwise, const u8 *mac_addr);
2503 int (*set_default_key)(struct wiphy *wiphy,
2504 struct net_device *netdev,
2505 u8 key_index, bool unicast, bool multicast);
2506 int (*set_default_mgmt_key)(struct wiphy *wiphy,
2507 struct net_device *netdev,
2508 u8 key_index);
2509
2510 int (*start_ap)(struct wiphy *wiphy, struct net_device *dev,
2511 struct cfg80211_ap_settings *settings);
2512 int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
2513 struct cfg80211_beacon_data *info);
2514 int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev);
2515
2516
2517 int (*add_station)(struct wiphy *wiphy, struct net_device *dev,
2518 const u8 *mac,
2519 struct station_parameters *params);
2520 int (*del_station)(struct wiphy *wiphy, struct net_device *dev,
2521 struct station_del_parameters *params);
2522 int (*change_station)(struct wiphy *wiphy, struct net_device *dev,
2523 const u8 *mac,
2524 struct station_parameters *params);
2525 int (*get_station)(struct wiphy *wiphy, struct net_device *dev,
2526 const u8 *mac, struct station_info *sinfo);
2527 int (*dump_station)(struct wiphy *wiphy, struct net_device *dev,
2528 int idx, u8 *mac, struct station_info *sinfo);
2529
2530 int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
2531 const u8 *dst, const u8 *next_hop);
2532 int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
2533 const u8 *dst);
2534 int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
2535 const u8 *dst, const u8 *next_hop);
2536 int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
2537 u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
2538 int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
2539 int idx, u8 *dst, u8 *next_hop,
2540 struct mpath_info *pinfo);
2541 int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
2542 u8 *dst, u8 *mpp, struct mpath_info *pinfo);
2543 int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
2544 int idx, u8 *dst, u8 *mpp,
2545 struct mpath_info *pinfo);
2546 int (*get_mesh_config)(struct wiphy *wiphy,
2547 struct net_device *dev,
2548 struct mesh_config *conf);
2549 int (*update_mesh_config)(struct wiphy *wiphy,
2550 struct net_device *dev, u32 mask,
2551 const struct mesh_config *nconf);
2552 int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
2553 const struct mesh_config *conf,
2554 const struct mesh_setup *setup);
2555 int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
2556
2557 int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
2558 struct ocb_setup *setup);
2559 int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
2560
2561 int (*change_bss)(struct wiphy *wiphy, struct net_device *dev,
2562 struct bss_parameters *params);
2563
2564 int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
2565 struct ieee80211_txq_params *params);
2566
2567 int (*libertas_set_mesh_channel)(struct wiphy *wiphy,
2568 struct net_device *dev,
2569 struct ieee80211_channel *chan);
2570
2571 int (*set_monitor_channel)(struct wiphy *wiphy,
2572 struct cfg80211_chan_def *chandef);
2573
2574 int (*scan)(struct wiphy *wiphy,
2575 struct cfg80211_scan_request *request);
2576
2577 int (*auth)(struct wiphy *wiphy, struct net_device *dev,
2578 struct cfg80211_auth_request *req);
2579 int (*assoc)(struct wiphy *wiphy, struct net_device *dev,
2580 struct cfg80211_assoc_request *req);
2581 int (*deauth)(struct wiphy *wiphy, struct net_device *dev,
2582 struct cfg80211_deauth_request *req);
2583 int (*disassoc)(struct wiphy *wiphy, struct net_device *dev,
2584 struct cfg80211_disassoc_request *req);
2585
2586 int (*connect)(struct wiphy *wiphy, struct net_device *dev,
2587 struct cfg80211_connect_params *sme);
2588 int (*disconnect)(struct wiphy *wiphy, struct net_device *dev,
2589 u16 reason_code);
2590
2591 int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
2592 struct cfg80211_ibss_params *params);
2593 int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
2594
2595 int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
2596 int rate[NUM_NL80211_BANDS]);
2597
2598 int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed);
2599
2600 int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
2601 enum nl80211_tx_power_setting type, int mbm);
2602 int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
2603 int *dbm);
2604
2605 int (*set_wds_peer)(struct wiphy *wiphy, struct net_device *dev,
2606 const u8 *addr);
2607
2608 void (*rfkill_poll)(struct wiphy *wiphy);
2609
2610 #ifdef CONFIG_NL80211_TESTMODE
2611 int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
2612 void *data, int len);
2613 int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
2614 struct netlink_callback *cb,
2615 void *data, int len);
2616 #endif
2617
2618 int (*set_bitrate_mask)(struct wiphy *wiphy,
2619 struct net_device *dev,
2620 const u8 *peer,
2621 const struct cfg80211_bitrate_mask *mask);
2622
2623 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
2624 int idx, struct survey_info *info);
2625
2626 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
2627 struct cfg80211_pmksa *pmksa);
2628 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
2629 struct cfg80211_pmksa *pmksa);
2630 int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
2631
2632 int (*remain_on_channel)(struct wiphy *wiphy,
2633 struct wireless_dev *wdev,
2634 struct ieee80211_channel *chan,
2635 unsigned int duration,
2636 u64 *cookie);
2637 int (*cancel_remain_on_channel)(struct wiphy *wiphy,
2638 struct wireless_dev *wdev,
2639 u64 cookie);
2640
2641 int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
2642 struct cfg80211_mgmt_tx_params *params,
2643 u64 *cookie);
2644 int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
2645 struct wireless_dev *wdev,
2646 u64 cookie);
2647
2648 int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
2649 bool enabled, int timeout);
2650
2651 int (*set_cqm_rssi_config)(struct wiphy *wiphy,
2652 struct net_device *dev,
2653 s32 rssi_thold, u32 rssi_hyst);
2654
2655 int (*set_cqm_txe_config)(struct wiphy *wiphy,
2656 struct net_device *dev,
2657 u32 rate, u32 pkts, u32 intvl);
2658
2659 void (*mgmt_frame_register)(struct wiphy *wiphy,
2660 struct wireless_dev *wdev,
2661 u16 frame_type, bool reg);
2662
2663 int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
2664 int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
2665
2666 int (*sched_scan_start)(struct wiphy *wiphy,
2667 struct net_device *dev,
2668 struct cfg80211_sched_scan_request *request);
2669 int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev);
2670
2671 int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
2672 struct cfg80211_gtk_rekey_data *data);
2673
2674 int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
2675 const u8 *peer, u8 action_code, u8 dialog_token,
2676 u16 status_code, u32 peer_capability,
2677 bool initiator, const u8 *buf, size_t len);
2678 int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
2679 const u8 *peer, enum nl80211_tdls_operation oper);
2680
2681 int (*probe_client)(struct wiphy *wiphy, struct net_device *dev,
2682 const u8 *peer, u64 *cookie);
2683
2684 int (*set_noack_map)(struct wiphy *wiphy,
2685 struct net_device *dev,
2686 u16 noack_map);
2687
2688 int (*get_channel)(struct wiphy *wiphy,
2689 struct wireless_dev *wdev,
2690 struct cfg80211_chan_def *chandef);
2691
2692 int (*start_p2p_device)(struct wiphy *wiphy,
2693 struct wireless_dev *wdev);
2694 void (*stop_p2p_device)(struct wiphy *wiphy,
2695 struct wireless_dev *wdev);
2696
2697 int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
2698 const struct cfg80211_acl_data *params);
2699
2700 int (*start_radar_detection)(struct wiphy *wiphy,
2701 struct net_device *dev,
2702 struct cfg80211_chan_def *chandef,
2703 u32 cac_time_ms);
2704 int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
2705 struct cfg80211_update_ft_ies_params *ftie);
2706 int (*crit_proto_start)(struct wiphy *wiphy,
2707 struct wireless_dev *wdev,
2708 enum nl80211_crit_proto_id protocol,
2709 u16 duration);
2710 void (*crit_proto_stop)(struct wiphy *wiphy,
2711 struct wireless_dev *wdev);
2712 int (*set_coalesce)(struct wiphy *wiphy,
2713 struct cfg80211_coalesce *coalesce);
2714
2715 int (*channel_switch)(struct wiphy *wiphy,
2716 struct net_device *dev,
2717 struct cfg80211_csa_settings *params);
2718
2719 int (*set_qos_map)(struct wiphy *wiphy,
2720 struct net_device *dev,
2721 struct cfg80211_qos_map *qos_map);
2722
2723 int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
2724 struct cfg80211_chan_def *chandef);
2725
2726 int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
2727 u8 tsid, const u8 *peer, u8 user_prio,
2728 u16 admitted_time);
2729 int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
2730 u8 tsid, const u8 *peer);
2731
2732 int (*tdls_channel_switch)(struct wiphy *wiphy,
2733 struct net_device *dev,
2734 const u8 *addr, u8 oper_class,
2735 struct cfg80211_chan_def *chandef);
2736 void (*tdls_cancel_channel_switch)(struct wiphy *wiphy,
2737 struct net_device *dev,
2738 const u8 *addr);
2739 };
2740
2741 /*
2742 * wireless hardware and networking interfaces structures
2743 * and registration/helper functions
2744 */
2745
2746 /**
2747 * enum wiphy_flags - wiphy capability flags
2748 *
2749 * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
2750 * wiphy at all
2751 * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
2752 * by default -- this flag will be set depending on the kernel's default
2753 * on wiphy_new(), but can be changed by the driver if it has a good
2754 * reason to override the default
2755 * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
2756 * on a VLAN interface)
2757 * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
2758 * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
2759 * control port protocol ethertype. The device also honours the
2760 * control_port_no_encrypt flag.
2761 * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
2762 * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
2763 * auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
2764 * @WIPHY_FLAG_SUPPORTS_SCHED_SCAN: The device supports scheduled scans.
2765 * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
2766 * firmware.
2767 * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
2768 * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
2769 * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
2770 * link setup/discovery operations internally. Setup, discovery and
2771 * teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
2772 * command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
2773 * used for asking the driver/firmware to perform a TDLS operation.
2774 * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
2775 * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
2776 * when there are virtual interfaces in AP mode by calling
2777 * cfg80211_report_obss_beacon().
2778 * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
2779 * responds to probe-requests in hardware.
2780 * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
2781 * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
2782 * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
2783 * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
2784 * beaconing mode (AP, IBSS, Mesh, ...).
2785 */
2786 enum wiphy_flags {
2787 /* use hole at 0 */
2788 /* use hole at 1 */
2789 /* use hole at 2 */
2790 WIPHY_FLAG_NETNS_OK = BIT(3),
2791 WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4),
2792 WIPHY_FLAG_4ADDR_AP = BIT(5),
2793 WIPHY_FLAG_4ADDR_STATION = BIT(6),
2794 WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7),
2795 WIPHY_FLAG_IBSS_RSN = BIT(8),
2796 WIPHY_FLAG_MESH_AUTH = BIT(10),
2797 WIPHY_FLAG_SUPPORTS_SCHED_SCAN = BIT(11),
2798 /* use hole at 12 */
2799 WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13),
2800 WIPHY_FLAG_AP_UAPSD = BIT(14),
2801 WIPHY_FLAG_SUPPORTS_TDLS = BIT(15),
2802 WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16),
2803 WIPHY_FLAG_HAVE_AP_SME = BIT(17),
2804 WIPHY_FLAG_REPORTS_OBSS = BIT(18),
2805 WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19),
2806 WIPHY_FLAG_OFFCHAN_TX = BIT(20),
2807 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21),
2808 WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22),
2809 WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23),
2810 };
2811
2812 /**
2813 * struct ieee80211_iface_limit - limit on certain interface types
2814 * @max: maximum number of interfaces of these types
2815 * @types: interface types (bits)
2816 */
2817 struct ieee80211_iface_limit {
2818 u16 max;
2819 u16 types;
2820 };
2821
2822 /**
2823 * struct ieee80211_iface_combination - possible interface combination
2824 * @limits: limits for the given interface types
2825 * @n_limits: number of limitations
2826 * @num_different_channels: can use up to this many different channels
2827 * @max_interfaces: maximum number of interfaces in total allowed in this
2828 * group
2829 * @beacon_int_infra_match: In this combination, the beacon intervals
2830 * between infrastructure and AP types must match. This is required
2831 * only in special cases.
2832 * @radar_detect_widths: bitmap of channel widths supported for radar detection
2833 * @radar_detect_regions: bitmap of regions supported for radar detection
2834 *
2835 * With this structure the driver can describe which interface
2836 * combinations it supports concurrently.
2837 *
2838 * Examples:
2839 *
2840 * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
2841 *
2842 * struct ieee80211_iface_limit limits1[] = {
2843 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
2844 * { .max = 1, .types = BIT(NL80211_IFTYPE_AP}, },
2845 * };
2846 * struct ieee80211_iface_combination combination1 = {
2847 * .limits = limits1,
2848 * .n_limits = ARRAY_SIZE(limits1),
2849 * .max_interfaces = 2,
2850 * .beacon_int_infra_match = true,
2851 * };
2852 *
2853 *
2854 * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
2855 *
2856 * struct ieee80211_iface_limit limits2[] = {
2857 * { .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
2858 * BIT(NL80211_IFTYPE_P2P_GO), },
2859 * };
2860 * struct ieee80211_iface_combination combination2 = {
2861 * .limits = limits2,
2862 * .n_limits = ARRAY_SIZE(limits2),
2863 * .max_interfaces = 8,
2864 * .num_different_channels = 1,
2865 * };
2866 *
2867 *
2868 * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
2869 *
2870 * This allows for an infrastructure connection and three P2P connections.
2871 *
2872 * struct ieee80211_iface_limit limits3[] = {
2873 * { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
2874 * { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
2875 * BIT(NL80211_IFTYPE_P2P_CLIENT), },
2876 * };
2877 * struct ieee80211_iface_combination combination3 = {
2878 * .limits = limits3,
2879 * .n_limits = ARRAY_SIZE(limits3),
2880 * .max_interfaces = 4,
2881 * .num_different_channels = 2,
2882 * };
2883 */
2884 struct ieee80211_iface_combination {
2885 const struct ieee80211_iface_limit *limits;
2886 u32 num_different_channels;
2887 u16 max_interfaces;
2888 u8 n_limits;
2889 bool beacon_int_infra_match;
2890 u8 radar_detect_widths;
2891 u8 radar_detect_regions;
2892 };
2893
2894 struct ieee80211_txrx_stypes {
2895 u16 tx, rx;
2896 };
2897
2898 /**
2899 * enum wiphy_wowlan_support_flags - WoWLAN support flags
2900 * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
2901 * trigger that keeps the device operating as-is and
2902 * wakes up the host on any activity, for example a
2903 * received packet that passed filtering; note that the
2904 * packet should be preserved in that case
2905 * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
2906 * (see nl80211.h)
2907 * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
2908 * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
2909 * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
2910 * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
2911 * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
2912 * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
2913 * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
2914 */
2915 enum wiphy_wowlan_support_flags {
2916 WIPHY_WOWLAN_ANY = BIT(0),
2917 WIPHY_WOWLAN_MAGIC_PKT = BIT(1),
2918 WIPHY_WOWLAN_DISCONNECT = BIT(2),
2919 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3),
2920 WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4),
2921 WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5),
2922 WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6),
2923 WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7),
2924 WIPHY_WOWLAN_NET_DETECT = BIT(8),
2925 };
2926
2927 struct wiphy_wowlan_tcp_support {
2928 const struct nl80211_wowlan_tcp_data_token_feature *tok;
2929 u32 data_payload_max;
2930 u32 data_interval_max;
2931 u32 wake_payload_max;
2932 bool seq;
2933 };
2934
2935 /**
2936 * struct wiphy_wowlan_support - WoWLAN support data
2937 * @flags: see &enum wiphy_wowlan_support_flags
2938 * @n_patterns: number of supported wakeup patterns
2939 * (see nl80211.h for the pattern definition)
2940 * @pattern_max_len: maximum length of each pattern
2941 * @pattern_min_len: minimum length of each pattern
2942 * @max_pkt_offset: maximum Rx packet offset
2943 * @max_nd_match_sets: maximum number of matchsets for net-detect,
2944 * similar, but not necessarily identical, to max_match_sets for
2945 * scheduled scans.
2946 * See &struct cfg80211_sched_scan_request.@match_sets for more
2947 * details.
2948 * @tcp: TCP wakeup support information
2949 */
2950 struct wiphy_wowlan_support {
2951 u32 flags;
2952 int n_patterns;
2953 int pattern_max_len;
2954 int pattern_min_len;
2955 int max_pkt_offset;
2956 int max_nd_match_sets;
2957 const struct wiphy_wowlan_tcp_support *tcp;
2958 };
2959
2960 /**
2961 * struct wiphy_coalesce_support - coalesce support data
2962 * @n_rules: maximum number of coalesce rules
2963 * @max_delay: maximum supported coalescing delay in msecs
2964 * @n_patterns: number of supported patterns in a rule
2965 * (see nl80211.h for the pattern definition)
2966 * @pattern_max_len: maximum length of each pattern
2967 * @pattern_min_len: minimum length of each pattern
2968 * @max_pkt_offset: maximum Rx packet offset
2969 */
2970 struct wiphy_coalesce_support {
2971 int n_rules;
2972 int max_delay;
2973 int n_patterns;
2974 int pattern_max_len;
2975 int pattern_min_len;
2976 int max_pkt_offset;
2977 };
2978
2979 /**
2980 * enum wiphy_vendor_command_flags - validation flags for vendor commands
2981 * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
2982 * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
2983 * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
2984 * (must be combined with %_WDEV or %_NETDEV)
2985 */
2986 enum wiphy_vendor_command_flags {
2987 WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
2988 WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
2989 WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
2990 };
2991
2992 /**
2993 * struct wiphy_vendor_command - vendor command definition
2994 * @info: vendor command identifying information, as used in nl80211
2995 * @flags: flags, see &enum wiphy_vendor_command_flags
2996 * @doit: callback for the operation, note that wdev is %NULL if the
2997 * flags didn't ask for a wdev and non-%NULL otherwise; the data
2998 * pointer may be %NULL if userspace provided no data at all
2999 * @dumpit: dump callback, for transferring bigger/multiple items. The
3000 * @storage points to cb->args[5], ie. is preserved over the multiple
3001 * dumpit calls.
3002 * It's recommended to not have the same sub command with both @doit and
3003 * @dumpit, so that userspace can assume certain ones are get and others
3004 * are used with dump requests.
3005 */
3006 struct wiphy_vendor_command {
3007 struct nl80211_vendor_cmd_info info;
3008 u32 flags;
3009 int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
3010 const void *data, int data_len);
3011 int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
3012 struct sk_buff *skb, const void *data, int data_len,
3013 unsigned long *storage);
3014 };
3015
3016 /**
3017 * struct wiphy - wireless hardware description
3018 * @reg_notifier: the driver's regulatory notification callback,
3019 * note that if your driver uses wiphy_apply_custom_regulatory()
3020 * the reg_notifier's request can be passed as NULL
3021 * @regd: the driver's regulatory domain, if one was requested via
3022 * the regulatory_hint() API. This can be used by the driver
3023 * on the reg_notifier() if it chooses to ignore future
3024 * regulatory domain changes caused by other drivers.
3025 * @signal_type: signal type reported in &struct cfg80211_bss.
3026 * @cipher_suites: supported cipher suites
3027 * @n_cipher_suites: number of supported cipher suites
3028 * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
3029 * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
3030 * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
3031 * -1 = fragmentation disabled, only odd values >= 256 used
3032 * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
3033 * @_net: the network namespace this wiphy currently lives in
3034 * @perm_addr: permanent MAC address of this device
3035 * @addr_mask: If the device supports multiple MAC addresses by masking,
3036 * set this to a mask with variable bits set to 1, e.g. if the last
3037 * four bits are variable then set it to 00-00-00-00-00-0f. The actual
3038 * variable bits shall be determined by the interfaces added, with
3039 * interfaces not matching the mask being rejected to be brought up.
3040 * @n_addresses: number of addresses in @addresses.
3041 * @addresses: If the device has more than one address, set this pointer
3042 * to a list of addresses (6 bytes each). The first one will be used
3043 * by default for perm_addr. In this case, the mask should be set to
3044 * all-zeroes. In this case it is assumed that the device can handle
3045 * the same number of arbitrary MAC addresses.
3046 * @registered: protects ->resume and ->suspend sysfs callbacks against
3047 * unregister hardware
3048 * @debugfsdir: debugfs directory used for this wiphy, will be renamed
3049 * automatically on wiphy renames
3050 * @dev: (virtual) struct device for this wiphy
3051 * @registered: helps synchronize suspend/resume with wiphy unregister
3052 * @wext: wireless extension handlers
3053 * @priv: driver private data (sized according to wiphy_new() parameter)
3054 * @interface_modes: bitmask of interfaces types valid for this wiphy,
3055 * must be set by driver
3056 * @iface_combinations: Valid interface combinations array, should not
3057 * list single interface types.
3058 * @n_iface_combinations: number of entries in @iface_combinations array.
3059 * @software_iftypes: bitmask of software interface types, these are not
3060 * subject to any restrictions since they are purely managed in SW.
3061 * @flags: wiphy flags, see &enum wiphy_flags
3062 * @regulatory_flags: wiphy regulatory flags, see
3063 * &enum ieee80211_regulatory_flags
3064 * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
3065 * @ext_features: extended features advertised to nl80211, see
3066 * &enum nl80211_ext_feature_index.
3067 * @bss_priv_size: each BSS struct has private data allocated with it,
3068 * this variable determines its size
3069 * @max_scan_ssids: maximum number of SSIDs the device can scan for in
3070 * any given scan
3071 * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
3072 * for in any given scheduled scan
3073 * @max_match_sets: maximum number of match sets the device can handle
3074 * when performing a scheduled scan, 0 if filtering is not
3075 * supported.
3076 * @max_scan_ie_len: maximum length of user-controlled IEs device can
3077 * add to probe request frames transmitted during a scan, must not
3078 * include fixed IEs like supported rates
3079 * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
3080 * scans
3081 * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
3082 * of iterations) for scheduled scan supported by the device.
3083 * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
3084 * single scan plan supported by the device.
3085 * @max_sched_scan_plan_iterations: maximum number of iterations for a single
3086 * scan plan supported by the device.
3087 * @coverage_class: current coverage class
3088 * @fw_version: firmware version for ethtool reporting
3089 * @hw_version: hardware version for ethtool reporting
3090 * @max_num_pmkids: maximum number of PMKIDs supported by device
3091 * @privid: a pointer that drivers can use to identify if an arbitrary
3092 * wiphy is theirs, e.g. in global notifiers
3093 * @bands: information about bands/channels supported by this device
3094 *
3095 * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
3096 * transmitted through nl80211, points to an array indexed by interface
3097 * type
3098 *
3099 * @available_antennas_tx: bitmap of antennas which are available to be
3100 * configured as TX antennas. Antenna configuration commands will be
3101 * rejected unless this or @available_antennas_rx is set.
3102 *
3103 * @available_antennas_rx: bitmap of antennas which are available to be
3104 * configured as RX antennas. Antenna configuration commands will be
3105 * rejected unless this or @available_antennas_tx is set.
3106 *
3107 * @probe_resp_offload:
3108 * Bitmap of supported protocols for probe response offloading.
3109 * See &enum nl80211_probe_resp_offload_support_attr. Only valid
3110 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
3111 *
3112 * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
3113 * may request, if implemented.
3114 *
3115 * @wowlan: WoWLAN support information
3116 * @wowlan_config: current WoWLAN configuration; this should usually not be
3117 * used since access to it is necessarily racy, use the parameter passed
3118 * to the suspend() operation instead.
3119 *
3120 * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
3121 * @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden.
3122 * If null, then none can be over-ridden.
3123 * @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden.
3124 * If null, then none can be over-ridden.
3125 *
3126 * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
3127 * supports for ACL.
3128 *
3129 * @extended_capabilities: extended capabilities supported by the driver,
3130 * additional capabilities might be supported by userspace; these are
3131 * the 802.11 extended capabilities ("Extended Capabilities element")
3132 * and are in the same format as in the information element. See
3133 * 802.11-2012 8.4.2.29 for the defined fields.
3134 * @extended_capabilities_mask: mask of the valid values
3135 * @extended_capabilities_len: length of the extended capabilities
3136 * @coalesce: packet coalescing support information
3137 *
3138 * @vendor_commands: array of vendor commands supported by the hardware
3139 * @n_vendor_commands: number of vendor commands
3140 * @vendor_events: array of vendor events supported by the hardware
3141 * @n_vendor_events: number of vendor events
3142 *
3143 * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
3144 * (including P2P GO) or 0 to indicate no such limit is advertised. The
3145 * driver is allowed to advertise a theoretical limit that it can reach in
3146 * some cases, but may not always reach.
3147 *
3148 * @max_num_csa_counters: Number of supported csa_counters in beacons
3149 * and probe responses. This value should be set if the driver
3150 * wishes to limit the number of csa counters. Default (0) means
3151 * infinite.
3152 * @max_adj_channel_rssi_comp: max offset of between the channel on which the
3153 * frame was sent and the channel on which the frame was heard for which
3154 * the reported rssi is still valid. If a driver is able to compensate the
3155 * low rssi when a frame is heard on different channel, then it should set
3156 * this variable to the maximal offset for which it can compensate.
3157 * This value should be set in MHz.
3158 */
3159 struct wiphy {
3160 /* assign these fields before you register the wiphy */
3161
3162 /* permanent MAC address(es) */
3163 u8 perm_addr[ETH_ALEN];
3164 u8 addr_mask[ETH_ALEN];
3165
3166 struct mac_address *addresses;
3167
3168 const struct ieee80211_txrx_stypes *mgmt_stypes;
3169
3170 const struct ieee80211_iface_combination *iface_combinations;
3171 int n_iface_combinations;
3172 u16 software_iftypes;
3173
3174 u16 n_addresses;
3175
3176 /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
3177 u16 interface_modes;
3178
3179 u16 max_acl_mac_addrs;
3180
3181 u32 flags, regulatory_flags, features;
3182 u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
3183
3184 u32 ap_sme_capa;
3185
3186 enum cfg80211_signal_type signal_type;
3187
3188 int bss_priv_size;
3189 u8 max_scan_ssids;
3190 u8 max_sched_scan_ssids;
3191 u8 max_match_sets;
3192 u16 max_scan_ie_len;
3193 u16 max_sched_scan_ie_len;
3194 u32 max_sched_scan_plans;
3195 u32 max_sched_scan_plan_interval;
3196 u32 max_sched_scan_plan_iterations;
3197
3198 int n_cipher_suites;
3199 const u32 *cipher_suites;
3200
3201 u8 retry_short;
3202 u8 retry_long;
3203 u32 frag_threshold;
3204 u32 rts_threshold;
3205 u8 coverage_class;
3206
3207 char fw_version[ETHTOOL_FWVERS_LEN];
3208 u32 hw_version;
3209
3210 #ifdef CONFIG_PM
3211 const struct wiphy_wowlan_support *wowlan;
3212 struct cfg80211_wowlan *wowlan_config;
3213 #endif
3214
3215 u16 max_remain_on_channel_duration;
3216
3217 u8 max_num_pmkids;
3218
3219 u32 available_antennas_tx;
3220 u32 available_antennas_rx;
3221
3222 /*
3223 * Bitmap of supported protocols for probe response offloading
3224 * see &enum nl80211_probe_resp_offload_support_attr. Only valid
3225 * when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
3226 */
3227 u32 probe_resp_offload;
3228
3229 const u8 *extended_capabilities, *extended_capabilities_mask;
3230 u8 extended_capabilities_len;
3231
3232 /* If multiple wiphys are registered and you're handed e.g.
3233 * a regular netdev with assigned ieee80211_ptr, you won't
3234 * know whether it points to a wiphy your driver has registered
3235 * or not. Assign this to something global to your driver to
3236 * help determine whether you own this wiphy or not. */
3237 const void *privid;
3238
3239 struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
3240
3241 /* Lets us get back the wiphy on the callback */
3242 void (*reg_notifier)(struct wiphy *wiphy,
3243 struct regulatory_request *request);
3244
3245 /* fields below are read-only, assigned by cfg80211 */
3246
3247 const struct ieee80211_regdomain __rcu *regd;
3248
3249 /* the item in /sys/class/ieee80211/ points to this,
3250 * you need use set_wiphy_dev() (see below) */
3251 struct device dev;
3252
3253 /* protects ->resume, ->suspend sysfs callbacks against unregister hw */
3254 bool registered;
3255
3256 /* dir in debugfs: ieee80211/<wiphyname> */
3257 struct dentry *debugfsdir;
3258
3259 const struct ieee80211_ht_cap *ht_capa_mod_mask;
3260 const struct ieee80211_vht_cap *vht_capa_mod_mask;
3261
3262 /* the network namespace this phy lives in currently */
3263 possible_net_t _net;
3264
3265 #ifdef CONFIG_CFG80211_WEXT
3266 const struct iw_handler_def *wext;
3267 #endif
3268
3269 const struct wiphy_coalesce_support *coalesce;
3270
3271 const struct wiphy_vendor_command *vendor_commands;
3272 const struct nl80211_vendor_cmd_info *vendor_events;
3273 int n_vendor_commands, n_vendor_events;
3274
3275 u16 max_ap_assoc_sta;
3276
3277 u8 max_num_csa_counters;
3278 u8 max_adj_channel_rssi_comp;
3279
3280 char priv[0] __aligned(NETDEV_ALIGN);
3281 };
3282
3283 static inline struct net *wiphy_net(struct wiphy *wiphy)
3284 {
3285 return read_pnet(&wiphy->_net);
3286 }
3287
3288 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
3289 {
3290 write_pnet(&wiphy->_net, net);
3291 }
3292
3293 /**
3294 * wiphy_priv - return priv from wiphy
3295 *
3296 * @wiphy: the wiphy whose priv pointer to return
3297 * Return: The priv of @wiphy.
3298 */
3299 static inline void *wiphy_priv(struct wiphy *wiphy)
3300 {
3301 BUG_ON(!wiphy);
3302 return &wiphy->priv;
3303 }
3304
3305 /**
3306 * priv_to_wiphy - return the wiphy containing the priv
3307 *
3308 * @priv: a pointer previously returned by wiphy_priv
3309 * Return: The wiphy of @priv.
3310 */
3311 static inline struct wiphy *priv_to_wiphy(void *priv)
3312 {
3313 BUG_ON(!priv);
3314 return container_of(priv, struct wiphy, priv);
3315 }
3316
3317 /**
3318 * set_wiphy_dev - set device pointer for wiphy
3319 *
3320 * @wiphy: The wiphy whose device to bind
3321 * @dev: The device to parent it to
3322 */
3323 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
3324 {
3325 wiphy->dev.parent = dev;
3326 }
3327
3328 /**
3329 * wiphy_dev - get wiphy dev pointer
3330 *
3331 * @wiphy: The wiphy whose device struct to look up
3332 * Return: The dev of @wiphy.
3333 */
3334 static inline struct device *wiphy_dev(struct wiphy *wiphy)
3335 {
3336 return wiphy->dev.parent;
3337 }
3338
3339 /**
3340 * wiphy_name - get wiphy name
3341 *
3342 * @wiphy: The wiphy whose name to return
3343 * Return: The name of @wiphy.
3344 */
3345 static inline const char *wiphy_name(const struct wiphy *wiphy)
3346 {
3347 return dev_name(&wiphy->dev);
3348 }
3349
3350 /**
3351 * wiphy_new_nm - create a new wiphy for use with cfg80211
3352 *
3353 * @ops: The configuration operations for this device
3354 * @sizeof_priv: The size of the private area to allocate
3355 * @requested_name: Request a particular name.
3356 * NULL is valid value, and means use the default phy%d naming.
3357 *
3358 * Create a new wiphy and associate the given operations with it.
3359 * @sizeof_priv bytes are allocated for private use.
3360 *
3361 * Return: A pointer to the new wiphy. This pointer must be
3362 * assigned to each netdev's ieee80211_ptr for proper operation.
3363 */
3364 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
3365 const char *requested_name);
3366
3367 /**
3368 * wiphy_new - create a new wiphy for use with cfg80211
3369 *
3370 * @ops: The configuration operations for this device
3371 * @sizeof_priv: The size of the private area to allocate
3372 *
3373 * Create a new wiphy and associate the given operations with it.
3374 * @sizeof_priv bytes are allocated for private use.
3375 *
3376 * Return: A pointer to the new wiphy. This pointer must be
3377 * assigned to each netdev's ieee80211_ptr for proper operation.
3378 */
3379 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
3380 int sizeof_priv)
3381 {
3382 return wiphy_new_nm(ops, sizeof_priv, NULL);
3383 }
3384
3385 /**
3386 * wiphy_register - register a wiphy with cfg80211
3387 *
3388 * @wiphy: The wiphy to register.
3389 *
3390 * Return: A non-negative wiphy index or a negative error code.
3391 */
3392 int wiphy_register(struct wiphy *wiphy);
3393
3394 /**
3395 * wiphy_unregister - deregister a wiphy from cfg80211
3396 *
3397 * @wiphy: The wiphy to unregister.
3398 *
3399 * After this call, no more requests can be made with this priv
3400 * pointer, but the call may sleep to wait for an outstanding
3401 * request that is being handled.
3402 */
3403 void wiphy_unregister(struct wiphy *wiphy);
3404
3405 /**
3406 * wiphy_free - free wiphy
3407 *
3408 * @wiphy: The wiphy to free
3409 */
3410 void wiphy_free(struct wiphy *wiphy);
3411
3412 /* internal structs */
3413 struct cfg80211_conn;
3414 struct cfg80211_internal_bss;
3415 struct cfg80211_cached_keys;
3416
3417 /**
3418 * struct wireless_dev - wireless device state
3419 *
3420 * For netdevs, this structure must be allocated by the driver
3421 * that uses the ieee80211_ptr field in struct net_device (this
3422 * is intentional so it can be allocated along with the netdev.)
3423 * It need not be registered then as netdev registration will
3424 * be intercepted by cfg80211 to see the new wireless device.
3425 *
3426 * For non-netdev uses, it must also be allocated by the driver
3427 * in response to the cfg80211 callbacks that require it, as
3428 * there's no netdev registration in that case it may not be
3429 * allocated outside of callback operations that return it.
3430 *
3431 * @wiphy: pointer to hardware description
3432 * @iftype: interface type
3433 * @list: (private) Used to collect the interfaces
3434 * @netdev: (private) Used to reference back to the netdev, may be %NULL
3435 * @identifier: (private) Identifier used in nl80211 to identify this
3436 * wireless device if it has no netdev
3437 * @current_bss: (private) Used by the internal configuration code
3438 * @chandef: (private) Used by the internal configuration code to track
3439 * the user-set channel definition.
3440 * @preset_chandef: (private) Used by the internal configuration code to
3441 * track the channel to be used for AP later
3442 * @bssid: (private) Used by the internal configuration code
3443 * @ssid: (private) Used by the internal configuration code
3444 * @ssid_len: (private) Used by the internal configuration code
3445 * @mesh_id_len: (private) Used by the internal configuration code
3446 * @mesh_id_up_len: (private) Used by the internal configuration code
3447 * @wext: (private) Used by the internal wireless extensions compat code
3448 * @use_4addr: indicates 4addr mode is used on this interface, must be
3449 * set by driver (if supported) on add_interface BEFORE registering the
3450 * netdev and may otherwise be used by driver read-only, will be update
3451 * by cfg80211 on change_interface
3452 * @mgmt_registrations: list of registrations for management frames
3453 * @mgmt_registrations_lock: lock for the list
3454 * @mtx: mutex used to lock data in this struct, may be used by drivers
3455 * and some API functions require it held
3456 * @beacon_interval: beacon interval used on this device for transmitting
3457 * beacons, 0 when not valid
3458 * @address: The address for this device, valid only if @netdev is %NULL
3459 * @p2p_started: true if this is a P2P Device that has been started
3460 * @cac_started: true if DFS channel availability check has been started
3461 * @cac_start_time: timestamp (jiffies) when the dfs state was entered.
3462 * @cac_time_ms: CAC time in ms
3463 * @ps: powersave mode is enabled
3464 * @ps_timeout: dynamic powersave timeout
3465 * @ap_unexpected_nlportid: (private) netlink port ID of application
3466 * registered for unexpected class 3 frames (AP mode)
3467 * @conn: (private) cfg80211 software SME connection state machine data
3468 * @connect_keys: (private) keys to set after connection is established
3469 * @ibss_fixed: (private) IBSS is using fixed BSSID
3470 * @ibss_dfs_possible: (private) IBSS may change to a DFS channel
3471 * @event_list: (private) list for internal event processing
3472 * @event_lock: (private) lock for event list
3473 * @owner_nlportid: (private) owner socket port ID
3474 */
3475 struct wireless_dev {
3476 struct wiphy *wiphy;
3477 enum nl80211_iftype iftype;
3478
3479 /* the remainder of this struct should be private to cfg80211 */
3480 struct list_head list;
3481 struct net_device *netdev;
3482
3483 u32 identifier;
3484
3485 struct list_head mgmt_registrations;
3486 spinlock_t mgmt_registrations_lock;
3487
3488 struct mutex mtx;
3489
3490 bool use_4addr, p2p_started;
3491
3492 u8 address[ETH_ALEN] __aligned(sizeof(u16));
3493
3494 /* currently used for IBSS and SME - might be rearranged later */
3495 u8 ssid[IEEE80211_MAX_SSID_LEN];
3496 u8 ssid_len, mesh_id_len, mesh_id_up_len;
3497 struct cfg80211_conn *conn;
3498 struct cfg80211_cached_keys *connect_keys;
3499
3500 struct list_head event_list;
3501 spinlock_t event_lock;
3502
3503 struct cfg80211_internal_bss *current_bss; /* associated / joined */
3504 struct cfg80211_chan_def preset_chandef;
3505 struct cfg80211_chan_def chandef;
3506
3507 bool ibss_fixed;
3508 bool ibss_dfs_possible;
3509
3510 bool ps;
3511 int ps_timeout;
3512
3513 int beacon_interval;
3514
3515 u32 ap_unexpected_nlportid;
3516
3517 bool cac_started;
3518 unsigned long cac_start_time;
3519 unsigned int cac_time_ms;
3520
3521 u32 owner_nlportid;
3522
3523 #ifdef CONFIG_CFG80211_WEXT
3524 /* wext data */
3525 struct {
3526 struct cfg80211_ibss_params ibss;
3527 struct cfg80211_connect_params connect;
3528 struct cfg80211_cached_keys *keys;
3529 const u8 *ie;
3530 size_t ie_len;
3531 u8 bssid[ETH_ALEN], prev_bssid[ETH_ALEN];
3532 u8 ssid[IEEE80211_MAX_SSID_LEN];
3533 s8 default_key, default_mgmt_key;
3534 bool prev_bssid_valid;
3535 } wext;
3536 #endif
3537 };
3538
3539 static inline u8 *wdev_address(struct wireless_dev *wdev)
3540 {
3541 if (wdev->netdev)
3542 return wdev->netdev->dev_addr;
3543 return wdev->address;
3544 }
3545
3546 /**
3547 * wdev_priv - return wiphy priv from wireless_dev
3548 *
3549 * @wdev: The wireless device whose wiphy's priv pointer to return
3550 * Return: The wiphy priv of @wdev.
3551 */
3552 static inline void *wdev_priv(struct wireless_dev *wdev)
3553 {
3554 BUG_ON(!wdev);
3555 return wiphy_priv(wdev->wiphy);
3556 }
3557
3558 /**
3559 * DOC: Utility functions
3560 *
3561 * cfg80211 offers a number of utility functions that can be useful.
3562 */
3563
3564 /**
3565 * ieee80211_channel_to_frequency - convert channel number to frequency
3566 * @chan: channel number
3567 * @band: band, necessary due to channel number overlap
3568 * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
3569 */
3570 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band);
3571
3572 /**
3573 * ieee80211_frequency_to_channel - convert frequency to channel number
3574 * @freq: center frequency
3575 * Return: The corresponding channel, or 0 if the conversion failed.
3576 */
3577 int ieee80211_frequency_to_channel(int freq);
3578
3579 /*
3580 * Name indirection necessary because the ieee80211 code also has
3581 * a function named "ieee80211_get_channel", so if you include
3582 * cfg80211's header file you get cfg80211's version, if you try
3583 * to include both header files you'll (rightfully!) get a symbol
3584 * clash.
3585 */
3586 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
3587 int freq);
3588 /**
3589 * ieee80211_get_channel - get channel struct from wiphy for specified frequency
3590 * @wiphy: the struct wiphy to get the channel for
3591 * @freq: the center frequency of the channel
3592 * Return: The channel struct from @wiphy at @freq.
3593 */
3594 static inline struct ieee80211_channel *
3595 ieee80211_get_channel(struct wiphy *wiphy, int freq)
3596 {
3597 return __ieee80211_get_channel(wiphy, freq);
3598 }
3599
3600 /**
3601 * ieee80211_get_response_rate - get basic rate for a given rate
3602 *
3603 * @sband: the band to look for rates in
3604 * @basic_rates: bitmap of basic rates
3605 * @bitrate: the bitrate for which to find the basic rate
3606 *
3607 * Return: The basic rate corresponding to a given bitrate, that
3608 * is the next lower bitrate contained in the basic rate map,
3609 * which is, for this function, given as a bitmap of indices of
3610 * rates in the band's bitrate table.
3611 */
3612 struct ieee80211_rate *
3613 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
3614 u32 basic_rates, int bitrate);
3615
3616 /**
3617 * ieee80211_mandatory_rates - get mandatory rates for a given band
3618 * @sband: the band to look for rates in
3619 * @scan_width: width of the control channel
3620 *
3621 * This function returns a bitmap of the mandatory rates for the given
3622 * band, bits are set according to the rate position in the bitrates array.
3623 */
3624 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
3625 enum nl80211_bss_scan_width scan_width);
3626
3627 /*
3628 * Radiotap parsing functions -- for controlled injection support
3629 *
3630 * Implemented in net/wireless/radiotap.c
3631 * Documentation in Documentation/networking/radiotap-headers.txt
3632 */
3633
3634 struct radiotap_align_size {
3635 uint8_t align:4, size:4;
3636 };
3637
3638 struct ieee80211_radiotap_namespace {
3639 const struct radiotap_align_size *align_size;
3640 int n_bits;
3641 uint32_t oui;
3642 uint8_t subns;
3643 };
3644
3645 struct ieee80211_radiotap_vendor_namespaces {
3646 const struct ieee80211_radiotap_namespace *ns;
3647 int n_ns;
3648 };
3649
3650 /**
3651 * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
3652 * @this_arg_index: index of current arg, valid after each successful call
3653 * to ieee80211_radiotap_iterator_next()
3654 * @this_arg: pointer to current radiotap arg; it is valid after each
3655 * call to ieee80211_radiotap_iterator_next() but also after
3656 * ieee80211_radiotap_iterator_init() where it will point to
3657 * the beginning of the actual data portion
3658 * @this_arg_size: length of the current arg, for convenience
3659 * @current_namespace: pointer to the current namespace definition
3660 * (or internally %NULL if the current namespace is unknown)
3661 * @is_radiotap_ns: indicates whether the current namespace is the default
3662 * radiotap namespace or not
3663 *
3664 * @_rtheader: pointer to the radiotap header we are walking through
3665 * @_max_length: length of radiotap header in cpu byte ordering
3666 * @_arg_index: next argument index
3667 * @_arg: next argument pointer
3668 * @_next_bitmap: internal pointer to next present u32
3669 * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
3670 * @_vns: vendor namespace definitions
3671 * @_next_ns_data: beginning of the next namespace's data
3672 * @_reset_on_ext: internal; reset the arg index to 0 when going to the
3673 * next bitmap word
3674 *
3675 * Describes the radiotap parser state. Fields prefixed with an underscore
3676 * must not be used by users of the parser, only by the parser internally.
3677 */
3678
3679 struct ieee80211_radiotap_iterator {
3680 struct ieee80211_radiotap_header *_rtheader;
3681 const struct ieee80211_radiotap_vendor_namespaces *_vns;
3682 const struct ieee80211_radiotap_namespace *current_namespace;
3683
3684 unsigned char *_arg, *_next_ns_data;
3685 __le32 *_next_bitmap;
3686
3687 unsigned char *this_arg;
3688 int this_arg_index;
3689 int this_arg_size;
3690
3691 int is_radiotap_ns;
3692
3693 int _max_length;
3694 int _arg_index;
3695 uint32_t _bitmap_shifter;
3696 int _reset_on_ext;
3697 };
3698
3699 int
3700 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
3701 struct ieee80211_radiotap_header *radiotap_header,
3702 int max_length,
3703 const struct ieee80211_radiotap_vendor_namespaces *vns);
3704
3705 int
3706 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
3707
3708
3709 extern const unsigned char rfc1042_header[6];
3710 extern const unsigned char bridge_tunnel_header[6];
3711
3712 /**
3713 * ieee80211_get_hdrlen_from_skb - get header length from data
3714 *
3715 * @skb: the frame
3716 *
3717 * Given an skb with a raw 802.11 header at the data pointer this function
3718 * returns the 802.11 header length.
3719 *
3720 * Return: The 802.11 header length in bytes (not including encryption
3721 * headers). Or 0 if the data in the sk_buff is too short to contain a valid
3722 * 802.11 header.
3723 */
3724 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
3725
3726 /**
3727 * ieee80211_hdrlen - get header length in bytes from frame control
3728 * @fc: frame control field in little-endian format
3729 * Return: The header length in bytes.
3730 */
3731 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
3732
3733 /**
3734 * ieee80211_get_mesh_hdrlen - get mesh extension header length
3735 * @meshhdr: the mesh extension header, only the flags field
3736 * (first byte) will be accessed
3737 * Return: The length of the extension header, which is always at
3738 * least 6 bytes and at most 18 if address 5 and 6 are present.
3739 */
3740 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
3741
3742 /**
3743 * DOC: Data path helpers
3744 *
3745 * In addition to generic utilities, cfg80211 also offers
3746 * functions that help implement the data path for devices
3747 * that do not do the 802.11/802.3 conversion on the device.
3748 */
3749
3750 /**
3751 * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
3752 * @skb: the 802.11 data frame
3753 * @addr: the device MAC address
3754 * @iftype: the virtual interface type
3755 * Return: 0 on success. Non-zero on error.
3756 */
3757 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
3758 enum nl80211_iftype iftype);
3759
3760 /**
3761 * ieee80211_data_from_8023 - convert an 802.3 frame to 802.11
3762 * @skb: the 802.3 frame
3763 * @addr: the device MAC address
3764 * @iftype: the virtual interface type
3765 * @bssid: the network bssid (used only for iftype STATION and ADHOC)
3766 * @qos: build 802.11 QoS data frame
3767 * Return: 0 on success, or a negative error code.
3768 */
3769 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
3770 enum nl80211_iftype iftype, const u8 *bssid,
3771 bool qos);
3772
3773 /**
3774 * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
3775 *
3776 * Decode an IEEE 802.11n A-MSDU frame and convert it to a list of
3777 * 802.3 frames. The @list will be empty if the decode fails. The
3778 * @skb is consumed after the function returns.
3779 *
3780 * @skb: The input IEEE 802.11n A-MSDU frame.
3781 * @list: The output list of 802.3 frames. It must be allocated and
3782 * initialized by by the caller.
3783 * @addr: The device MAC address.
3784 * @iftype: The device interface type.
3785 * @extra_headroom: The hardware extra headroom for SKBs in the @list.
3786 * @has_80211_header: Set it true if SKB is with IEEE 802.11 header.
3787 */
3788 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
3789 const u8 *addr, enum nl80211_iftype iftype,
3790 const unsigned int extra_headroom,
3791 bool has_80211_header);
3792
3793 /**
3794 * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
3795 * @skb: the data frame
3796 * @qos_map: Interworking QoS mapping or %NULL if not in use
3797 * Return: The 802.1p/1d tag.
3798 */
3799 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
3800 struct cfg80211_qos_map *qos_map);
3801
3802 /**
3803 * cfg80211_find_ie - find information element in data
3804 *
3805 * @eid: element ID
3806 * @ies: data consisting of IEs
3807 * @len: length of data
3808 *
3809 * Return: %NULL if the element ID could not be found or if
3810 * the element is invalid (claims to be longer than the given
3811 * data), or a pointer to the first byte of the requested
3812 * element, that is the byte containing the element ID.
3813 *
3814 * Note: There are no checks on the element length other than
3815 * having to fit into the given data.
3816 */
3817 const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len);
3818
3819 /**
3820 * cfg80211_find_vendor_ie - find vendor specific information element in data
3821 *
3822 * @oui: vendor OUI
3823 * @oui_type: vendor-specific OUI type
3824 * @ies: data consisting of IEs
3825 * @len: length of data
3826 *
3827 * Return: %NULL if the vendor specific element ID could not be found or if the
3828 * element is invalid (claims to be longer than the given data), or a pointer to
3829 * the first byte of the requested element, that is the byte containing the
3830 * element ID.
3831 *
3832 * Note: There are no checks on the element length other than having to fit into
3833 * the given data.
3834 */
3835 const u8 *cfg80211_find_vendor_ie(unsigned int oui, u8 oui_type,
3836 const u8 *ies, int len);
3837
3838 /**
3839 * DOC: Regulatory enforcement infrastructure
3840 *
3841 * TODO
3842 */
3843
3844 /**
3845 * regulatory_hint - driver hint to the wireless core a regulatory domain
3846 * @wiphy: the wireless device giving the hint (used only for reporting
3847 * conflicts)
3848 * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
3849 * should be in. If @rd is set this should be NULL. Note that if you
3850 * set this to NULL you should still set rd->alpha2 to some accepted
3851 * alpha2.
3852 *
3853 * Wireless drivers can use this function to hint to the wireless core
3854 * what it believes should be the current regulatory domain by
3855 * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
3856 * domain should be in or by providing a completely build regulatory domain.
3857 * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
3858 * for a regulatory domain structure for the respective country.
3859 *
3860 * The wiphy must have been registered to cfg80211 prior to this call.
3861 * For cfg80211 drivers this means you must first use wiphy_register(),
3862 * for mac80211 drivers you must first use ieee80211_register_hw().
3863 *
3864 * Drivers should check the return value, its possible you can get
3865 * an -ENOMEM.
3866 *
3867 * Return: 0 on success. -ENOMEM.
3868 */
3869 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
3870
3871 /**
3872 * regulatory_set_wiphy_regd - set regdom info for self managed drivers
3873 * @wiphy: the wireless device we want to process the regulatory domain on
3874 * @rd: the regulatory domain informatoin to use for this wiphy
3875 *
3876 * Set the regulatory domain information for self-managed wiphys, only they
3877 * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
3878 * information.
3879 *
3880 * Return: 0 on success. -EINVAL, -EPERM
3881 */
3882 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3883 struct ieee80211_regdomain *rd);
3884
3885 /**
3886 * regulatory_set_wiphy_regd_sync_rtnl - set regdom for self-managed drivers
3887 * @wiphy: the wireless device we want to process the regulatory domain on
3888 * @rd: the regulatory domain information to use for this wiphy
3889 *
3890 * This functions requires the RTNL to be held and applies the new regdomain
3891 * synchronously to this wiphy. For more details see
3892 * regulatory_set_wiphy_regd().
3893 *
3894 * Return: 0 on success. -EINVAL, -EPERM
3895 */
3896 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3897 struct ieee80211_regdomain *rd);
3898
3899 /**
3900 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
3901 * @wiphy: the wireless device we want to process the regulatory domain on
3902 * @regd: the custom regulatory domain to use for this wiphy
3903 *
3904 * Drivers can sometimes have custom regulatory domains which do not apply
3905 * to a specific country. Drivers can use this to apply such custom regulatory
3906 * domains. This routine must be called prior to wiphy registration. The
3907 * custom regulatory domain will be trusted completely and as such previous
3908 * default channel settings will be disregarded. If no rule is found for a
3909 * channel on the regulatory domain the channel will be disabled.
3910 * Drivers using this for a wiphy should also set the wiphy flag
3911 * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
3912 * that called this helper.
3913 */
3914 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
3915 const struct ieee80211_regdomain *regd);
3916
3917 /**
3918 * freq_reg_info - get regulatory information for the given frequency
3919 * @wiphy: the wiphy for which we want to process this rule for
3920 * @center_freq: Frequency in KHz for which we want regulatory information for
3921 *
3922 * Use this function to get the regulatory rule for a specific frequency on
3923 * a given wireless device. If the device has a specific regulatory domain
3924 * it wants to follow we respect that unless a country IE has been received
3925 * and processed already.
3926 *
3927 * Return: A valid pointer, or, when an error occurs, for example if no rule
3928 * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
3929 * check and PTR_ERR() to obtain the numeric return value. The numeric return
3930 * value will be -ERANGE if we determine the given center_freq does not even
3931 * have a regulatory rule for a frequency range in the center_freq's band.
3932 * See freq_in_rule_band() for our current definition of a band -- this is
3933 * purely subjective and right now it's 802.11 specific.
3934 */
3935 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
3936 u32 center_freq);
3937
3938 /**
3939 * reg_initiator_name - map regulatory request initiator enum to name
3940 * @initiator: the regulatory request initiator
3941 *
3942 * You can use this to map the regulatory request initiator enum to a
3943 * proper string representation.
3944 */
3945 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
3946
3947 /*
3948 * callbacks for asynchronous cfg80211 methods, notification
3949 * functions and BSS handling helpers
3950 */
3951
3952 /**
3953 * cfg80211_scan_done - notify that scan finished
3954 *
3955 * @request: the corresponding scan request
3956 * @aborted: set to true if the scan was aborted for any reason,
3957 * userspace will be notified of that
3958 */
3959 void cfg80211_scan_done(struct cfg80211_scan_request *request, bool aborted);
3960
3961 /**
3962 * cfg80211_sched_scan_results - notify that new scan results are available
3963 *
3964 * @wiphy: the wiphy which got scheduled scan results
3965 */
3966 void cfg80211_sched_scan_results(struct wiphy *wiphy);
3967
3968 /**
3969 * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
3970 *
3971 * @wiphy: the wiphy on which the scheduled scan stopped
3972 *
3973 * The driver can call this function to inform cfg80211 that the
3974 * scheduled scan had to be stopped, for whatever reason. The driver
3975 * is then called back via the sched_scan_stop operation when done.
3976 */
3977 void cfg80211_sched_scan_stopped(struct wiphy *wiphy);
3978
3979 /**
3980 * cfg80211_sched_scan_stopped_rtnl - notify that the scheduled scan has stopped
3981 *
3982 * @wiphy: the wiphy on which the scheduled scan stopped
3983 *
3984 * The driver can call this function to inform cfg80211 that the
3985 * scheduled scan had to be stopped, for whatever reason. The driver
3986 * is then called back via the sched_scan_stop operation when done.
3987 * This function should be called with rtnl locked.
3988 */
3989 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy);
3990
3991 /**
3992 * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
3993 * @wiphy: the wiphy reporting the BSS
3994 * @data: the BSS metadata
3995 * @mgmt: the management frame (probe response or beacon)
3996 * @len: length of the management frame
3997 * @gfp: context flags
3998 *
3999 * This informs cfg80211 that BSS information was found and
4000 * the BSS should be updated/added.
4001 *
4002 * Return: A referenced struct, must be released with cfg80211_put_bss()!
4003 * Or %NULL on error.
4004 */
4005 struct cfg80211_bss * __must_check
4006 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
4007 struct cfg80211_inform_bss *data,
4008 struct ieee80211_mgmt *mgmt, size_t len,
4009 gfp_t gfp);
4010
4011 static inline struct cfg80211_bss * __must_check
4012 cfg80211_inform_bss_width_frame(struct wiphy *wiphy,
4013 struct ieee80211_channel *rx_channel,
4014 enum nl80211_bss_scan_width scan_width,
4015 struct ieee80211_mgmt *mgmt, size_t len,
4016 s32 signal, gfp_t gfp)
4017 {
4018 struct cfg80211_inform_bss data = {
4019 .chan = rx_channel,
4020 .scan_width = scan_width,
4021 .signal = signal,
4022 };
4023
4024 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
4025 }
4026
4027 static inline struct cfg80211_bss * __must_check
4028 cfg80211_inform_bss_frame(struct wiphy *wiphy,
4029 struct ieee80211_channel *rx_channel,
4030 struct ieee80211_mgmt *mgmt, size_t len,
4031 s32 signal, gfp_t gfp)
4032 {
4033 struct cfg80211_inform_bss data = {
4034 .chan = rx_channel,
4035 .scan_width = NL80211_BSS_CHAN_WIDTH_20,
4036 .signal = signal,
4037 };
4038
4039 return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
4040 }
4041
4042 /**
4043 * enum cfg80211_bss_frame_type - frame type that the BSS data came from
4044 * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
4045 * from a beacon or probe response
4046 * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
4047 * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
4048 */
4049 enum cfg80211_bss_frame_type {
4050 CFG80211_BSS_FTYPE_UNKNOWN,
4051 CFG80211_BSS_FTYPE_BEACON,
4052 CFG80211_BSS_FTYPE_PRESP,
4053 };
4054
4055 /**
4056 * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
4057 *
4058 * @wiphy: the wiphy reporting the BSS
4059 * @data: the BSS metadata
4060 * @ftype: frame type (if known)
4061 * @bssid: the BSSID of the BSS
4062 * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
4063 * @capability: the capability field sent by the peer
4064 * @beacon_interval: the beacon interval announced by the peer
4065 * @ie: additional IEs sent by the peer
4066 * @ielen: length of the additional IEs
4067 * @gfp: context flags
4068 *
4069 * This informs cfg80211 that BSS information was found and
4070 * the BSS should be updated/added.
4071 *
4072 * Return: A referenced struct, must be released with cfg80211_put_bss()!
4073 * Or %NULL on error.
4074 */
4075 struct cfg80211_bss * __must_check
4076 cfg80211_inform_bss_data(struct wiphy *wiphy,
4077 struct cfg80211_inform_bss *data,
4078 enum cfg80211_bss_frame_type ftype,
4079 const u8 *bssid, u64 tsf, u16 capability,
4080 u16 beacon_interval, const u8 *ie, size_t ielen,
4081 gfp_t gfp);
4082
4083 static inline struct cfg80211_bss * __must_check
4084 cfg80211_inform_bss_width(struct wiphy *wiphy,
4085 struct ieee80211_channel *rx_channel,
4086 enum nl80211_bss_scan_width scan_width,
4087 enum cfg80211_bss_frame_type ftype,
4088 const u8 *bssid, u64 tsf, u16 capability,
4089 u16 beacon_interval, const u8 *ie, size_t ielen,
4090 s32 signal, gfp_t gfp)
4091 {
4092 struct cfg80211_inform_bss data = {
4093 .chan = rx_channel,
4094 .scan_width = scan_width,
4095 .signal = signal,
4096 };
4097
4098 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
4099 capability, beacon_interval, ie, ielen,
4100 gfp);
4101 }
4102
4103 static inline struct cfg80211_bss * __must_check
4104 cfg80211_inform_bss(struct wiphy *wiphy,
4105 struct ieee80211_channel *rx_channel,
4106 enum cfg80211_bss_frame_type ftype,
4107 const u8 *bssid, u64 tsf, u16 capability,
4108 u16 beacon_interval, const u8 *ie, size_t ielen,
4109 s32 signal, gfp_t gfp)
4110 {
4111 struct cfg80211_inform_bss data = {
4112 .chan = rx_channel,
4113 .scan_width = NL80211_BSS_CHAN_WIDTH_20,
4114 .signal = signal,
4115 };
4116
4117 return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
4118 capability, beacon_interval, ie, ielen,
4119 gfp);
4120 }
4121
4122 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
4123 struct ieee80211_channel *channel,
4124 const u8 *bssid,
4125 const u8 *ssid, size_t ssid_len,
4126 enum ieee80211_bss_type bss_type,
4127 enum ieee80211_privacy);
4128 static inline struct cfg80211_bss *
4129 cfg80211_get_ibss(struct wiphy *wiphy,
4130 struct ieee80211_channel *channel,
4131 const u8 *ssid, size_t ssid_len)
4132 {
4133 return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
4134 IEEE80211_BSS_TYPE_IBSS,
4135 IEEE80211_PRIVACY_ANY);
4136 }
4137
4138 /**
4139 * cfg80211_ref_bss - reference BSS struct
4140 * @wiphy: the wiphy this BSS struct belongs to
4141 * @bss: the BSS struct to reference
4142 *
4143 * Increments the refcount of the given BSS struct.
4144 */
4145 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
4146
4147 /**
4148 * cfg80211_put_bss - unref BSS struct
4149 * @wiphy: the wiphy this BSS struct belongs to
4150 * @bss: the BSS struct
4151 *
4152 * Decrements the refcount of the given BSS struct.
4153 */
4154 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
4155
4156 /**
4157 * cfg80211_unlink_bss - unlink BSS from internal data structures
4158 * @wiphy: the wiphy
4159 * @bss: the bss to remove
4160 *
4161 * This function removes the given BSS from the internal data structures
4162 * thereby making it no longer show up in scan results etc. Use this
4163 * function when you detect a BSS is gone. Normally BSSes will also time
4164 * out, so it is not necessary to use this function at all.
4165 */
4166 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
4167
4168 static inline enum nl80211_bss_scan_width
4169 cfg80211_chandef_to_scan_width(const struct cfg80211_chan_def *chandef)
4170 {
4171 switch (chandef->width) {
4172 case NL80211_CHAN_WIDTH_5:
4173 return NL80211_BSS_CHAN_WIDTH_5;
4174 case NL80211_CHAN_WIDTH_10:
4175 return NL80211_BSS_CHAN_WIDTH_10;
4176 default:
4177 return NL80211_BSS_CHAN_WIDTH_20;
4178 }
4179 }
4180
4181 /**
4182 * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
4183 * @dev: network device
4184 * @buf: authentication frame (header + body)
4185 * @len: length of the frame data
4186 *
4187 * This function is called whenever an authentication, disassociation or
4188 * deauthentication frame has been received and processed in station mode.
4189 * After being asked to authenticate via cfg80211_ops::auth() the driver must
4190 * call either this function or cfg80211_auth_timeout().
4191 * After being asked to associate via cfg80211_ops::assoc() the driver must
4192 * call either this function or cfg80211_auth_timeout().
4193 * While connected, the driver must calls this for received and processed
4194 * disassociation and deauthentication frames. If the frame couldn't be used
4195 * because it was unprotected, the driver must call the function
4196 * cfg80211_rx_unprot_mlme_mgmt() instead.
4197 *
4198 * This function may sleep. The caller must hold the corresponding wdev's mutex.
4199 */
4200 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
4201
4202 /**
4203 * cfg80211_auth_timeout - notification of timed out authentication
4204 * @dev: network device
4205 * @addr: The MAC address of the device with which the authentication timed out
4206 *
4207 * This function may sleep. The caller must hold the corresponding wdev's
4208 * mutex.
4209 */
4210 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
4211
4212 /**
4213 * cfg80211_rx_assoc_resp - notification of processed association response
4214 * @dev: network device
4215 * @bss: the BSS that association was requested with, ownership of the pointer
4216 * moves to cfg80211 in this call
4217 * @buf: authentication frame (header + body)
4218 * @len: length of the frame data
4219 * @uapsd_queues: bitmap of ACs configured to uapsd. -1 if n/a.
4220 *
4221 * After being asked to associate via cfg80211_ops::assoc() the driver must
4222 * call either this function or cfg80211_auth_timeout().
4223 *
4224 * This function may sleep. The caller must hold the corresponding wdev's mutex.
4225 */
4226 void cfg80211_rx_assoc_resp(struct net_device *dev,
4227 struct cfg80211_bss *bss,
4228 const u8 *buf, size_t len,
4229 int uapsd_queues);
4230
4231 /**
4232 * cfg80211_assoc_timeout - notification of timed out association
4233 * @dev: network device
4234 * @bss: The BSS entry with which association timed out.
4235 *
4236 * This function may sleep. The caller must hold the corresponding wdev's mutex.
4237 */
4238 void cfg80211_assoc_timeout(struct net_device *dev, struct cfg80211_bss *bss);
4239
4240 /**
4241 * cfg80211_abandon_assoc - notify cfg80211 of abandoned association attempt
4242 * @dev: network device
4243 * @bss: The BSS entry with which association was abandoned.
4244 *
4245 * Call this whenever - for reasons reported through other API, like deauth RX,
4246 * an association attempt was abandoned.
4247 * This function may sleep. The caller must hold the corresponding wdev's mutex.
4248 */
4249 void cfg80211_abandon_assoc(struct net_device *dev, struct cfg80211_bss *bss);
4250
4251 /**
4252 * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
4253 * @dev: network device
4254 * @buf: 802.11 frame (header + body)
4255 * @len: length of the frame data
4256 *
4257 * This function is called whenever deauthentication has been processed in
4258 * station mode. This includes both received deauthentication frames and
4259 * locally generated ones. This function may sleep. The caller must hold the
4260 * corresponding wdev's mutex.
4261 */
4262 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
4263
4264 /**
4265 * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
4266 * @dev: network device
4267 * @buf: deauthentication frame (header + body)
4268 * @len: length of the frame data
4269 *
4270 * This function is called whenever a received deauthentication or dissassoc
4271 * frame has been dropped in station mode because of MFP being used but the
4272 * frame was not protected. This function may sleep.
4273 */
4274 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
4275 const u8 *buf, size_t len);
4276
4277 /**
4278 * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
4279 * @dev: network device
4280 * @addr: The source MAC address of the frame
4281 * @key_type: The key type that the received frame used
4282 * @key_id: Key identifier (0..3). Can be -1 if missing.
4283 * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
4284 * @gfp: allocation flags
4285 *
4286 * This function is called whenever the local MAC detects a MIC failure in a
4287 * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
4288 * primitive.
4289 */
4290 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
4291 enum nl80211_key_type key_type, int key_id,
4292 const u8 *tsc, gfp_t gfp);
4293
4294 /**
4295 * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
4296 *
4297 * @dev: network device
4298 * @bssid: the BSSID of the IBSS joined
4299 * @channel: the channel of the IBSS joined
4300 * @gfp: allocation flags
4301 *
4302 * This function notifies cfg80211 that the device joined an IBSS or
4303 * switched to a different BSSID. Before this function can be called,
4304 * either a beacon has to have been received from the IBSS, or one of
4305 * the cfg80211_inform_bss{,_frame} functions must have been called
4306 * with the locally generated beacon -- this guarantees that there is
4307 * always a scan result for this IBSS. cfg80211 will handle the rest.
4308 */
4309 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
4310 struct ieee80211_channel *channel, gfp_t gfp);
4311
4312 /**
4313 * cfg80211_notify_new_candidate - notify cfg80211 of a new mesh peer candidate
4314 *
4315 * @dev: network device
4316 * @macaddr: the MAC address of the new candidate
4317 * @ie: information elements advertised by the peer candidate
4318 * @ie_len: lenght of the information elements buffer
4319 * @gfp: allocation flags
4320 *
4321 * This function notifies cfg80211 that the mesh peer candidate has been
4322 * detected, most likely via a beacon or, less likely, via a probe response.
4323 * cfg80211 then sends a notification to userspace.
4324 */
4325 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
4326 const u8 *macaddr, const u8 *ie, u8 ie_len, gfp_t gfp);
4327
4328 /**
4329 * DOC: RFkill integration
4330 *
4331 * RFkill integration in cfg80211 is almost invisible to drivers,
4332 * as cfg80211 automatically registers an rfkill instance for each
4333 * wireless device it knows about. Soft kill is also translated
4334 * into disconnecting and turning all interfaces off, drivers are
4335 * expected to turn off the device when all interfaces are down.
4336 *
4337 * However, devices may have a hard RFkill line, in which case they
4338 * also need to interact with the rfkill subsystem, via cfg80211.
4339 * They can do this with a few helper functions documented here.
4340 */
4341
4342 /**
4343 * wiphy_rfkill_set_hw_state - notify cfg80211 about hw block state
4344 * @wiphy: the wiphy
4345 * @blocked: block status
4346 */
4347 void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked);
4348
4349 /**
4350 * wiphy_rfkill_start_polling - start polling rfkill
4351 * @wiphy: the wiphy
4352 */
4353 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
4354
4355 /**
4356 * wiphy_rfkill_stop_polling - stop polling rfkill
4357 * @wiphy: the wiphy
4358 */
4359 void wiphy_rfkill_stop_polling(struct wiphy *wiphy);
4360
4361 /**
4362 * DOC: Vendor commands
4363 *
4364 * Occasionally, there are special protocol or firmware features that
4365 * can't be implemented very openly. For this and similar cases, the
4366 * vendor command functionality allows implementing the features with
4367 * (typically closed-source) userspace and firmware, using nl80211 as
4368 * the configuration mechanism.
4369 *
4370 * A driver supporting vendor commands must register them as an array
4371 * in struct wiphy, with handlers for each one, each command has an
4372 * OUI and sub command ID to identify it.
4373 *
4374 * Note that this feature should not be (ab)used to implement protocol
4375 * features that could openly be shared across drivers. In particular,
4376 * it must never be required to use vendor commands to implement any
4377 * "normal" functionality that higher-level userspace like connection
4378 * managers etc. need.
4379 */
4380
4381 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
4382 enum nl80211_commands cmd,
4383 enum nl80211_attrs attr,
4384 int approxlen);
4385
4386 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
4387 struct wireless_dev *wdev,
4388 enum nl80211_commands cmd,
4389 enum nl80211_attrs attr,
4390 int vendor_event_idx,
4391 int approxlen, gfp_t gfp);
4392
4393 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
4394
4395 /**
4396 * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
4397 * @wiphy: the wiphy
4398 * @approxlen: an upper bound of the length of the data that will
4399 * be put into the skb
4400 *
4401 * This function allocates and pre-fills an skb for a reply to
4402 * a vendor command. Since it is intended for a reply, calling
4403 * it outside of a vendor command's doit() operation is invalid.
4404 *
4405 * The returned skb is pre-filled with some identifying data in
4406 * a way that any data that is put into the skb (with skb_put(),
4407 * nla_put() or similar) will end up being within the
4408 * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
4409 * with the skb is adding data for the corresponding userspace tool
4410 * which can then read that data out of the vendor data attribute.
4411 * You must not modify the skb in any other way.
4412 *
4413 * When done, call cfg80211_vendor_cmd_reply() with the skb and return
4414 * its error code as the result of the doit() operation.
4415 *
4416 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4417 */
4418 static inline struct sk_buff *
4419 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
4420 {
4421 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
4422 NL80211_ATTR_VENDOR_DATA, approxlen);
4423 }
4424
4425 /**
4426 * cfg80211_vendor_cmd_reply - send the reply skb
4427 * @skb: The skb, must have been allocated with
4428 * cfg80211_vendor_cmd_alloc_reply_skb()
4429 *
4430 * Since calling this function will usually be the last thing
4431 * before returning from the vendor command doit() you should
4432 * return the error code. Note that this function consumes the
4433 * skb regardless of the return value.
4434 *
4435 * Return: An error code or 0 on success.
4436 */
4437 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
4438
4439 /**
4440 * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
4441 * @wiphy: the wiphy
4442 * @wdev: the wireless device
4443 * @event_idx: index of the vendor event in the wiphy's vendor_events
4444 * @approxlen: an upper bound of the length of the data that will
4445 * be put into the skb
4446 * @gfp: allocation flags
4447 *
4448 * This function allocates and pre-fills an skb for an event on the
4449 * vendor-specific multicast group.
4450 *
4451 * If wdev != NULL, both the ifindex and identifier of the specified
4452 * wireless device are added to the event message before the vendor data
4453 * attribute.
4454 *
4455 * When done filling the skb, call cfg80211_vendor_event() with the
4456 * skb to send the event.
4457 *
4458 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4459 */
4460 static inline struct sk_buff *
4461 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
4462 int approxlen, int event_idx, gfp_t gfp)
4463 {
4464 return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
4465 NL80211_ATTR_VENDOR_DATA,
4466 event_idx, approxlen, gfp);
4467 }
4468
4469 /**
4470 * cfg80211_vendor_event - send the event
4471 * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
4472 * @gfp: allocation flags
4473 *
4474 * This function sends the given @skb, which must have been allocated
4475 * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
4476 */
4477 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
4478 {
4479 __cfg80211_send_event_skb(skb, gfp);
4480 }
4481
4482 #ifdef CONFIG_NL80211_TESTMODE
4483 /**
4484 * DOC: Test mode
4485 *
4486 * Test mode is a set of utility functions to allow drivers to
4487 * interact with driver-specific tools to aid, for instance,
4488 * factory programming.
4489 *
4490 * This chapter describes how drivers interact with it, for more
4491 * information see the nl80211 book's chapter on it.
4492 */
4493
4494 /**
4495 * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
4496 * @wiphy: the wiphy
4497 * @approxlen: an upper bound of the length of the data that will
4498 * be put into the skb
4499 *
4500 * This function allocates and pre-fills an skb for a reply to
4501 * the testmode command. Since it is intended for a reply, calling
4502 * it outside of the @testmode_cmd operation is invalid.
4503 *
4504 * The returned skb is pre-filled with the wiphy index and set up in
4505 * a way that any data that is put into the skb (with skb_put(),
4506 * nla_put() or similar) will end up being within the
4507 * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
4508 * with the skb is adding data for the corresponding userspace tool
4509 * which can then read that data out of the testdata attribute. You
4510 * must not modify the skb in any other way.
4511 *
4512 * When done, call cfg80211_testmode_reply() with the skb and return
4513 * its error code as the result of the @testmode_cmd operation.
4514 *
4515 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4516 */
4517 static inline struct sk_buff *
4518 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
4519 {
4520 return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
4521 NL80211_ATTR_TESTDATA, approxlen);
4522 }
4523
4524 /**
4525 * cfg80211_testmode_reply - send the reply skb
4526 * @skb: The skb, must have been allocated with
4527 * cfg80211_testmode_alloc_reply_skb()
4528 *
4529 * Since calling this function will usually be the last thing
4530 * before returning from the @testmode_cmd you should return
4531 * the error code. Note that this function consumes the skb
4532 * regardless of the return value.
4533 *
4534 * Return: An error code or 0 on success.
4535 */
4536 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
4537 {
4538 return cfg80211_vendor_cmd_reply(skb);
4539 }
4540
4541 /**
4542 * cfg80211_testmode_alloc_event_skb - allocate testmode event
4543 * @wiphy: the wiphy
4544 * @approxlen: an upper bound of the length of the data that will
4545 * be put into the skb
4546 * @gfp: allocation flags
4547 *
4548 * This function allocates and pre-fills an skb for an event on the
4549 * testmode multicast group.
4550 *
4551 * The returned skb is set up in the same way as with
4552 * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
4553 * there, you should simply add data to it that will then end up in the
4554 * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
4555 * in any other way.
4556 *
4557 * When done filling the skb, call cfg80211_testmode_event() with the
4558 * skb to send the event.
4559 *
4560 * Return: An allocated and pre-filled skb. %NULL if any errors happen.
4561 */
4562 static inline struct sk_buff *
4563 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
4564 {
4565 return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
4566 NL80211_ATTR_TESTDATA, -1,
4567 approxlen, gfp);
4568 }
4569
4570 /**
4571 * cfg80211_testmode_event - send the event
4572 * @skb: The skb, must have been allocated with
4573 * cfg80211_testmode_alloc_event_skb()
4574 * @gfp: allocation flags
4575 *
4576 * This function sends the given @skb, which must have been allocated
4577 * by cfg80211_testmode_alloc_event_skb(), as an event. It always
4578 * consumes it.
4579 */
4580 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
4581 {
4582 __cfg80211_send_event_skb(skb, gfp);
4583 }
4584
4585 #define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd),
4586 #define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd),
4587 #else
4588 #define CFG80211_TESTMODE_CMD(cmd)
4589 #define CFG80211_TESTMODE_DUMP(cmd)
4590 #endif
4591
4592 /**
4593 * cfg80211_connect_result - notify cfg80211 of connection result
4594 *
4595 * @dev: network device
4596 * @bssid: the BSSID of the AP
4597 * @req_ie: association request IEs (maybe be %NULL)
4598 * @req_ie_len: association request IEs length
4599 * @resp_ie: association response IEs (may be %NULL)
4600 * @resp_ie_len: assoc response IEs length
4601 * @status: status code, 0 for successful connection, use
4602 * %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
4603 * the real status code for failures.
4604 * @gfp: allocation flags
4605 *
4606 * It should be called by the underlying driver whenever connect() has
4607 * succeeded.
4608 */
4609 void cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
4610 const u8 *req_ie, size_t req_ie_len,
4611 const u8 *resp_ie, size_t resp_ie_len,
4612 u16 status, gfp_t gfp);
4613
4614 /**
4615 * cfg80211_roamed - notify cfg80211 of roaming
4616 *
4617 * @dev: network device
4618 * @channel: the channel of the new AP
4619 * @bssid: the BSSID of the new AP
4620 * @req_ie: association request IEs (maybe be %NULL)
4621 * @req_ie_len: association request IEs length
4622 * @resp_ie: association response IEs (may be %NULL)
4623 * @resp_ie_len: assoc response IEs length
4624 * @gfp: allocation flags
4625 *
4626 * It should be called by the underlying driver whenever it roamed
4627 * from one AP to another while connected.
4628 */
4629 void cfg80211_roamed(struct net_device *dev,
4630 struct ieee80211_channel *channel,
4631 const u8 *bssid,
4632 const u8 *req_ie, size_t req_ie_len,
4633 const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp);
4634
4635 /**
4636 * cfg80211_roamed_bss - notify cfg80211 of roaming
4637 *
4638 * @dev: network device
4639 * @bss: entry of bss to which STA got roamed
4640 * @req_ie: association request IEs (maybe be %NULL)
4641 * @req_ie_len: association request IEs length
4642 * @resp_ie: association response IEs (may be %NULL)
4643 * @resp_ie_len: assoc response IEs length
4644 * @gfp: allocation flags
4645 *
4646 * This is just a wrapper to notify cfg80211 of roaming event with driver
4647 * passing bss to avoid a race in timeout of the bss entry. It should be
4648 * called by the underlying driver whenever it roamed from one AP to another
4649 * while connected. Drivers which have roaming implemented in firmware
4650 * may use this function to avoid a race in bss entry timeout where the bss
4651 * entry of the new AP is seen in the driver, but gets timed out by the time
4652 * it is accessed in __cfg80211_roamed() due to delay in scheduling
4653 * rdev->event_work. In case of any failures, the reference is released
4654 * either in cfg80211_roamed_bss() or in __cfg80211_romed(), Otherwise,
4655 * it will be released while diconneting from the current bss.
4656 */
4657 void cfg80211_roamed_bss(struct net_device *dev, struct cfg80211_bss *bss,
4658 const u8 *req_ie, size_t req_ie_len,
4659 const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp);
4660
4661 /**
4662 * cfg80211_disconnected - notify cfg80211 that connection was dropped
4663 *
4664 * @dev: network device
4665 * @ie: information elements of the deauth/disassoc frame (may be %NULL)
4666 * @ie_len: length of IEs
4667 * @reason: reason code for the disconnection, set it to 0 if unknown
4668 * @locally_generated: disconnection was requested locally
4669 * @gfp: allocation flags
4670 *
4671 * After it calls this function, the driver should enter an idle state
4672 * and not try to connect to any AP any more.
4673 */
4674 void cfg80211_disconnected(struct net_device *dev, u16 reason,
4675 const u8 *ie, size_t ie_len,
4676 bool locally_generated, gfp_t gfp);
4677
4678 /**
4679 * cfg80211_ready_on_channel - notification of remain_on_channel start
4680 * @wdev: wireless device
4681 * @cookie: the request cookie
4682 * @chan: The current channel (from remain_on_channel request)
4683 * @duration: Duration in milliseconds that the driver intents to remain on the
4684 * channel
4685 * @gfp: allocation flags
4686 */
4687 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
4688 struct ieee80211_channel *chan,
4689 unsigned int duration, gfp_t gfp);
4690
4691 /**
4692 * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
4693 * @wdev: wireless device
4694 * @cookie: the request cookie
4695 * @chan: The current channel (from remain_on_channel request)
4696 * @gfp: allocation flags
4697 */
4698 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
4699 struct ieee80211_channel *chan,
4700 gfp_t gfp);
4701
4702
4703 /**
4704 * cfg80211_new_sta - notify userspace about station
4705 *
4706 * @dev: the netdev
4707 * @mac_addr: the station's address
4708 * @sinfo: the station information
4709 * @gfp: allocation flags
4710 */
4711 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
4712 struct station_info *sinfo, gfp_t gfp);
4713
4714 /**
4715 * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
4716 * @dev: the netdev
4717 * @mac_addr: the station's address
4718 * @sinfo: the station information/statistics
4719 * @gfp: allocation flags
4720 */
4721 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
4722 struct station_info *sinfo, gfp_t gfp);
4723
4724 /**
4725 * cfg80211_del_sta - notify userspace about deletion of a station
4726 *
4727 * @dev: the netdev
4728 * @mac_addr: the station's address
4729 * @gfp: allocation flags
4730 */
4731 static inline void cfg80211_del_sta(struct net_device *dev,
4732 const u8 *mac_addr, gfp_t gfp)
4733 {
4734 cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
4735 }
4736
4737 /**
4738 * cfg80211_conn_failed - connection request failed notification
4739 *
4740 * @dev: the netdev
4741 * @mac_addr: the station's address
4742 * @reason: the reason for connection failure
4743 * @gfp: allocation flags
4744 *
4745 * Whenever a station tries to connect to an AP and if the station
4746 * could not connect to the AP as the AP has rejected the connection
4747 * for some reasons, this function is called.
4748 *
4749 * The reason for connection failure can be any of the value from
4750 * nl80211_connect_failed_reason enum
4751 */
4752 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
4753 enum nl80211_connect_failed_reason reason,
4754 gfp_t gfp);
4755
4756 /**
4757 * cfg80211_rx_mgmt - notification of received, unprocessed management frame
4758 * @wdev: wireless device receiving the frame
4759 * @freq: Frequency on which the frame was received in MHz
4760 * @sig_dbm: signal strength in mBm, or 0 if unknown
4761 * @buf: Management frame (header + body)
4762 * @len: length of the frame data
4763 * @flags: flags, as defined in enum nl80211_rxmgmt_flags
4764 *
4765 * This function is called whenever an Action frame is received for a station
4766 * mode interface, but is not processed in kernel.
4767 *
4768 * Return: %true if a user space application has registered for this frame.
4769 * For action frames, that makes it responsible for rejecting unrecognized
4770 * action frames; %false otherwise, in which case for action frames the
4771 * driver is responsible for rejecting the frame.
4772 */
4773 bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, int sig_dbm,
4774 const u8 *buf, size_t len, u32 flags);
4775
4776 /**
4777 * cfg80211_mgmt_tx_status - notification of TX status for management frame
4778 * @wdev: wireless device receiving the frame
4779 * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
4780 * @buf: Management frame (header + body)
4781 * @len: length of the frame data
4782 * @ack: Whether frame was acknowledged
4783 * @gfp: context flags
4784 *
4785 * This function is called whenever a management frame was requested to be
4786 * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
4787 * transmission attempt.
4788 */
4789 void cfg80211_mgmt_tx_status(struct wireless_dev *wdev, u64 cookie,
4790 const u8 *buf, size_t len, bool ack, gfp_t gfp);
4791
4792
4793 /**
4794 * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
4795 * @dev: network device
4796 * @rssi_event: the triggered RSSI event
4797 * @gfp: context flags
4798 *
4799 * This function is called when a configured connection quality monitoring
4800 * rssi threshold reached event occurs.
4801 */
4802 void cfg80211_cqm_rssi_notify(struct net_device *dev,
4803 enum nl80211_cqm_rssi_threshold_event rssi_event,
4804 gfp_t gfp);
4805
4806 /**
4807 * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
4808 * @dev: network device
4809 * @peer: peer's MAC address
4810 * @num_packets: how many packets were lost -- should be a fixed threshold
4811 * but probably no less than maybe 50, or maybe a throughput dependent
4812 * threshold (to account for temporary interference)
4813 * @gfp: context flags
4814 */
4815 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
4816 const u8 *peer, u32 num_packets, gfp_t gfp);
4817
4818 /**
4819 * cfg80211_cqm_txe_notify - TX error rate event
4820 * @dev: network device
4821 * @peer: peer's MAC address
4822 * @num_packets: how many packets were lost
4823 * @rate: % of packets which failed transmission
4824 * @intvl: interval (in s) over which the TX failure threshold was breached.
4825 * @gfp: context flags
4826 *
4827 * Notify userspace when configured % TX failures over number of packets in a
4828 * given interval is exceeded.
4829 */
4830 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
4831 u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
4832
4833 /**
4834 * cfg80211_cqm_beacon_loss_notify - beacon loss event
4835 * @dev: network device
4836 * @gfp: context flags
4837 *
4838 * Notify userspace about beacon loss from the connected AP.
4839 */
4840 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
4841
4842 /**
4843 * cfg80211_radar_event - radar detection event
4844 * @wiphy: the wiphy
4845 * @chandef: chandef for the current channel
4846 * @gfp: context flags
4847 *
4848 * This function is called when a radar is detected on the current chanenl.
4849 */
4850 void cfg80211_radar_event(struct wiphy *wiphy,
4851 struct cfg80211_chan_def *chandef, gfp_t gfp);
4852
4853 /**
4854 * cfg80211_cac_event - Channel availability check (CAC) event
4855 * @netdev: network device
4856 * @chandef: chandef for the current channel
4857 * @event: type of event
4858 * @gfp: context flags
4859 *
4860 * This function is called when a Channel availability check (CAC) is finished
4861 * or aborted. This must be called to notify the completion of a CAC process,
4862 * also by full-MAC drivers.
4863 */
4864 void cfg80211_cac_event(struct net_device *netdev,
4865 const struct cfg80211_chan_def *chandef,
4866 enum nl80211_radar_event event, gfp_t gfp);
4867
4868
4869 /**
4870 * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
4871 * @dev: network device
4872 * @bssid: BSSID of AP (to avoid races)
4873 * @replay_ctr: new replay counter
4874 * @gfp: allocation flags
4875 */
4876 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
4877 const u8 *replay_ctr, gfp_t gfp);
4878
4879 /**
4880 * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
4881 * @dev: network device
4882 * @index: candidate index (the smaller the index, the higher the priority)
4883 * @bssid: BSSID of AP
4884 * @preauth: Whether AP advertises support for RSN pre-authentication
4885 * @gfp: allocation flags
4886 */
4887 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
4888 const u8 *bssid, bool preauth, gfp_t gfp);
4889
4890 /**
4891 * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
4892 * @dev: The device the frame matched to
4893 * @addr: the transmitter address
4894 * @gfp: context flags
4895 *
4896 * This function is used in AP mode (only!) to inform userspace that
4897 * a spurious class 3 frame was received, to be able to deauth the
4898 * sender.
4899 * Return: %true if the frame was passed to userspace (or this failed
4900 * for a reason other than not having a subscription.)
4901 */
4902 bool cfg80211_rx_spurious_frame(struct net_device *dev,
4903 const u8 *addr, gfp_t gfp);
4904
4905 /**
4906 * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
4907 * @dev: The device the frame matched to
4908 * @addr: the transmitter address
4909 * @gfp: context flags
4910 *
4911 * This function is used in AP mode (only!) to inform userspace that
4912 * an associated station sent a 4addr frame but that wasn't expected.
4913 * It is allowed and desirable to send this event only once for each
4914 * station to avoid event flooding.
4915 * Return: %true if the frame was passed to userspace (or this failed
4916 * for a reason other than not having a subscription.)
4917 */
4918 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev,
4919 const u8 *addr, gfp_t gfp);
4920
4921 /**
4922 * cfg80211_probe_status - notify userspace about probe status
4923 * @dev: the device the probe was sent on
4924 * @addr: the address of the peer
4925 * @cookie: the cookie filled in @probe_client previously
4926 * @acked: indicates whether probe was acked or not
4927 * @gfp: allocation flags
4928 */
4929 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
4930 u64 cookie, bool acked, gfp_t gfp);
4931
4932 /**
4933 * cfg80211_report_obss_beacon - report beacon from other APs
4934 * @wiphy: The wiphy that received the beacon
4935 * @frame: the frame
4936 * @len: length of the frame
4937 * @freq: frequency the frame was received on
4938 * @sig_dbm: signal strength in mBm, or 0 if unknown
4939 *
4940 * Use this function to report to userspace when a beacon was
4941 * received. It is not useful to call this when there is no
4942 * netdev that is in AP/GO mode.
4943 */
4944 void cfg80211_report_obss_beacon(struct wiphy *wiphy,
4945 const u8 *frame, size_t len,
4946 int freq, int sig_dbm);
4947
4948 /**
4949 * cfg80211_reg_can_beacon - check if beaconing is allowed
4950 * @wiphy: the wiphy
4951 * @chandef: the channel definition
4952 * @iftype: interface type
4953 *
4954 * Return: %true if there is no secondary channel or the secondary channel(s)
4955 * can be used for beaconing (i.e. is not a radar channel etc.)
4956 */
4957 bool cfg80211_reg_can_beacon(struct wiphy *wiphy,
4958 struct cfg80211_chan_def *chandef,
4959 enum nl80211_iftype iftype);
4960
4961 /**
4962 * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
4963 * @wiphy: the wiphy
4964 * @chandef: the channel definition
4965 * @iftype: interface type
4966 *
4967 * Return: %true if there is no secondary channel or the secondary channel(s)
4968 * can be used for beaconing (i.e. is not a radar channel etc.). This version
4969 * also checks if IR-relaxation conditions apply, to allow beaconing under
4970 * more permissive conditions.
4971 *
4972 * Requires the RTNL to be held.
4973 */
4974 bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
4975 struct cfg80211_chan_def *chandef,
4976 enum nl80211_iftype iftype);
4977
4978 /*
4979 * cfg80211_ch_switch_notify - update wdev channel and notify userspace
4980 * @dev: the device which switched channels
4981 * @chandef: the new channel definition
4982 *
4983 * Caller must acquire wdev_lock, therefore must only be called from sleepable
4984 * driver context!
4985 */
4986 void cfg80211_ch_switch_notify(struct net_device *dev,
4987 struct cfg80211_chan_def *chandef);
4988
4989 /*
4990 * cfg80211_ch_switch_started_notify - notify channel switch start
4991 * @dev: the device on which the channel switch started
4992 * @chandef: the future channel definition
4993 * @count: the number of TBTTs until the channel switch happens
4994 *
4995 * Inform the userspace about the channel switch that has just
4996 * started, so that it can take appropriate actions (eg. starting
4997 * channel switch on other vifs), if necessary.
4998 */
4999 void cfg80211_ch_switch_started_notify(struct net_device *dev,
5000 struct cfg80211_chan_def *chandef,
5001 u8 count);
5002
5003 /**
5004 * ieee80211_operating_class_to_band - convert operating class to band
5005 *
5006 * @operating_class: the operating class to convert
5007 * @band: band pointer to fill
5008 *
5009 * Returns %true if the conversion was successful, %false otherwise.
5010 */
5011 bool ieee80211_operating_class_to_band(u8 operating_class,
5012 enum nl80211_band *band);
5013
5014 /**
5015 * ieee80211_chandef_to_operating_class - convert chandef to operation class
5016 *
5017 * @chandef: the chandef to convert
5018 * @op_class: a pointer to the resulting operating class
5019 *
5020 * Returns %true if the conversion was successful, %false otherwise.
5021 */
5022 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
5023 u8 *op_class);
5024
5025 /*
5026 * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
5027 * @dev: the device on which the operation is requested
5028 * @peer: the MAC address of the peer device
5029 * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
5030 * NL80211_TDLS_TEARDOWN)
5031 * @reason_code: the reason code for teardown request
5032 * @gfp: allocation flags
5033 *
5034 * This function is used to request userspace to perform TDLS operation that
5035 * requires knowledge of keys, i.e., link setup or teardown when the AP
5036 * connection uses encryption. This is optional mechanism for the driver to use
5037 * if it can automatically determine when a TDLS link could be useful (e.g.,
5038 * based on traffic and signal strength for a peer).
5039 */
5040 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
5041 enum nl80211_tdls_operation oper,
5042 u16 reason_code, gfp_t gfp);
5043
5044 /*
5045 * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
5046 * @rate: given rate_info to calculate bitrate from
5047 *
5048 * return 0 if MCS index >= 32
5049 */
5050 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
5051
5052 /**
5053 * cfg80211_unregister_wdev - remove the given wdev
5054 * @wdev: struct wireless_dev to remove
5055 *
5056 * Call this function only for wdevs that have no netdev assigned,
5057 * e.g. P2P Devices. It removes the device from the list so that
5058 * it can no longer be used. It is necessary to call this function
5059 * even when cfg80211 requests the removal of the interface by
5060 * calling the del_virtual_intf() callback. The function must also
5061 * be called when the driver wishes to unregister the wdev, e.g.
5062 * when the device is unbound from the driver.
5063 *
5064 * Requires the RTNL to be held.
5065 */
5066 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
5067
5068 /**
5069 * struct cfg80211_ft_event - FT Information Elements
5070 * @ies: FT IEs
5071 * @ies_len: length of the FT IE in bytes
5072 * @target_ap: target AP's MAC address
5073 * @ric_ies: RIC IE
5074 * @ric_ies_len: length of the RIC IE in bytes
5075 */
5076 struct cfg80211_ft_event_params {
5077 const u8 *ies;
5078 size_t ies_len;
5079 const u8 *target_ap;
5080 const u8 *ric_ies;
5081 size_t ric_ies_len;
5082 };
5083
5084 /**
5085 * cfg80211_ft_event - notify userspace about FT IE and RIC IE
5086 * @netdev: network device
5087 * @ft_event: IE information
5088 */
5089 void cfg80211_ft_event(struct net_device *netdev,
5090 struct cfg80211_ft_event_params *ft_event);
5091
5092 /**
5093 * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
5094 * @ies: the input IE buffer
5095 * @len: the input length
5096 * @attr: the attribute ID to find
5097 * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
5098 * if the function is only called to get the needed buffer size
5099 * @bufsize: size of the output buffer
5100 *
5101 * The function finds a given P2P attribute in the (vendor) IEs and
5102 * copies its contents to the given buffer.
5103 *
5104 * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
5105 * malformed or the attribute can't be found (respectively), or the
5106 * length of the found attribute (which can be zero).
5107 */
5108 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
5109 enum ieee80211_p2p_attr_id attr,
5110 u8 *buf, unsigned int bufsize);
5111
5112 /**
5113 * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
5114 * @ies: the IE buffer
5115 * @ielen: the length of the IE buffer
5116 * @ids: an array with element IDs that are allowed before
5117 * the split
5118 * @n_ids: the size of the element ID array
5119 * @after_ric: array IE types that come after the RIC element
5120 * @n_after_ric: size of the @after_ric array
5121 * @offset: offset where to start splitting in the buffer
5122 *
5123 * This function splits an IE buffer by updating the @offset
5124 * variable to point to the location where the buffer should be
5125 * split.
5126 *
5127 * It assumes that the given IE buffer is well-formed, this
5128 * has to be guaranteed by the caller!
5129 *
5130 * It also assumes that the IEs in the buffer are ordered
5131 * correctly, if not the result of using this function will not
5132 * be ordered correctly either, i.e. it does no reordering.
5133 *
5134 * The function returns the offset where the next part of the
5135 * buffer starts, which may be @ielen if the entire (remainder)
5136 * of the buffer should be used.
5137 */
5138 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
5139 const u8 *ids, int n_ids,
5140 const u8 *after_ric, int n_after_ric,
5141 size_t offset);
5142
5143 /**
5144 * ieee80211_ie_split - split an IE buffer according to ordering
5145 * @ies: the IE buffer
5146 * @ielen: the length of the IE buffer
5147 * @ids: an array with element IDs that are allowed before
5148 * the split
5149 * @n_ids: the size of the element ID array
5150 * @offset: offset where to start splitting in the buffer
5151 *
5152 * This function splits an IE buffer by updating the @offset
5153 * variable to point to the location where the buffer should be
5154 * split.
5155 *
5156 * It assumes that the given IE buffer is well-formed, this
5157 * has to be guaranteed by the caller!
5158 *
5159 * It also assumes that the IEs in the buffer are ordered
5160 * correctly, if not the result of using this function will not
5161 * be ordered correctly either, i.e. it does no reordering.
5162 *
5163 * The function returns the offset where the next part of the
5164 * buffer starts, which may be @ielen if the entire (remainder)
5165 * of the buffer should be used.
5166 */
5167 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
5168 const u8 *ids, int n_ids, size_t offset);
5169
5170 /**
5171 * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
5172 * @wdev: the wireless device reporting the wakeup
5173 * @wakeup: the wakeup report
5174 * @gfp: allocation flags
5175 *
5176 * This function reports that the given device woke up. If it
5177 * caused the wakeup, report the reason(s), otherwise you may
5178 * pass %NULL as the @wakeup parameter to advertise that something
5179 * else caused the wakeup.
5180 */
5181 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
5182 struct cfg80211_wowlan_wakeup *wakeup,
5183 gfp_t gfp);
5184
5185 /**
5186 * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
5187 *
5188 * @wdev: the wireless device for which critical protocol is stopped.
5189 * @gfp: allocation flags
5190 *
5191 * This function can be called by the driver to indicate it has reverted
5192 * operation back to normal. One reason could be that the duration given
5193 * by .crit_proto_start() has expired.
5194 */
5195 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
5196
5197 /**
5198 * ieee80211_get_num_supported_channels - get number of channels device has
5199 * @wiphy: the wiphy
5200 *
5201 * Return: the number of channels supported by the device.
5202 */
5203 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
5204
5205 /**
5206 * cfg80211_check_combinations - check interface combinations
5207 *
5208 * @wiphy: the wiphy
5209 * @num_different_channels: the number of different channels we want
5210 * to use for verification
5211 * @radar_detect: a bitmap where each bit corresponds to a channel
5212 * width where radar detection is needed, as in the definition of
5213 * &struct ieee80211_iface_combination.@radar_detect_widths
5214 * @iftype_num: array with the numbers of interfaces of each interface
5215 * type. The index is the interface type as specified in &enum
5216 * nl80211_iftype.
5217 *
5218 * This function can be called by the driver to check whether a
5219 * combination of interfaces and their types are allowed according to
5220 * the interface combinations.
5221 */
5222 int cfg80211_check_combinations(struct wiphy *wiphy,
5223 const int num_different_channels,
5224 const u8 radar_detect,
5225 const int iftype_num[NUM_NL80211_IFTYPES]);
5226
5227 /**
5228 * cfg80211_iter_combinations - iterate over matching combinations
5229 *
5230 * @wiphy: the wiphy
5231 * @num_different_channels: the number of different channels we want
5232 * to use for verification
5233 * @radar_detect: a bitmap where each bit corresponds to a channel
5234 * width where radar detection is needed, as in the definition of
5235 * &struct ieee80211_iface_combination.@radar_detect_widths
5236 * @iftype_num: array with the numbers of interfaces of each interface
5237 * type. The index is the interface type as specified in &enum
5238 * nl80211_iftype.
5239 * @iter: function to call for each matching combination
5240 * @data: pointer to pass to iter function
5241 *
5242 * This function can be called by the driver to check what possible
5243 * combinations it fits in at a given moment, e.g. for channel switching
5244 * purposes.
5245 */
5246 int cfg80211_iter_combinations(struct wiphy *wiphy,
5247 const int num_different_channels,
5248 const u8 radar_detect,
5249 const int iftype_num[NUM_NL80211_IFTYPES],
5250 void (*iter)(const struct ieee80211_iface_combination *c,
5251 void *data),
5252 void *data);
5253
5254 /*
5255 * cfg80211_stop_iface - trigger interface disconnection
5256 *
5257 * @wiphy: the wiphy
5258 * @wdev: wireless device
5259 * @gfp: context flags
5260 *
5261 * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
5262 * disconnected.
5263 *
5264 * Note: This doesn't need any locks and is asynchronous.
5265 */
5266 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
5267 gfp_t gfp);
5268
5269 /**
5270 * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
5271 * @wiphy: the wiphy to shut down
5272 *
5273 * This function shuts down all interfaces belonging to this wiphy by
5274 * calling dev_close() (and treating non-netdev interfaces as needed).
5275 * It shouldn't really be used unless there are some fatal device errors
5276 * that really can't be recovered in any other way.
5277 *
5278 * Callers must hold the RTNL and be able to deal with callbacks into
5279 * the driver while the function is running.
5280 */
5281 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
5282
5283 /**
5284 * wiphy_ext_feature_set - set the extended feature flag
5285 *
5286 * @wiphy: the wiphy to modify.
5287 * @ftidx: extended feature bit index.
5288 *
5289 * The extended features are flagged in multiple bytes (see
5290 * &struct wiphy.@ext_features)
5291 */
5292 static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
5293 enum nl80211_ext_feature_index ftidx)
5294 {
5295 u8 *ft_byte;
5296
5297 ft_byte = &wiphy->ext_features[ftidx / 8];
5298 *ft_byte |= BIT(ftidx % 8);
5299 }
5300
5301 /**
5302 * wiphy_ext_feature_isset - check the extended feature flag
5303 *
5304 * @wiphy: the wiphy to modify.
5305 * @ftidx: extended feature bit index.
5306 *
5307 * The extended features are flagged in multiple bytes (see
5308 * &struct wiphy.@ext_features)
5309 */
5310 static inline bool
5311 wiphy_ext_feature_isset(struct wiphy *wiphy,
5312 enum nl80211_ext_feature_index ftidx)
5313 {
5314 u8 ft_byte;
5315
5316 ft_byte = wiphy->ext_features[ftidx / 8];
5317 return (ft_byte & BIT(ftidx % 8)) != 0;
5318 }
5319
5320 /* ethtool helper */
5321 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
5322
5323 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5324
5325 /* wiphy_printk helpers, similar to dev_printk */
5326
5327 #define wiphy_printk(level, wiphy, format, args...) \
5328 dev_printk(level, &(wiphy)->dev, format, ##args)
5329 #define wiphy_emerg(wiphy, format, args...) \
5330 dev_emerg(&(wiphy)->dev, format, ##args)
5331 #define wiphy_alert(wiphy, format, args...) \
5332 dev_alert(&(wiphy)->dev, format, ##args)
5333 #define wiphy_crit(wiphy, format, args...) \
5334 dev_crit(&(wiphy)->dev, format, ##args)
5335 #define wiphy_err(wiphy, format, args...) \
5336 dev_err(&(wiphy)->dev, format, ##args)
5337 #define wiphy_warn(wiphy, format, args...) \
5338 dev_warn(&(wiphy)->dev, format, ##args)
5339 #define wiphy_notice(wiphy, format, args...) \
5340 dev_notice(&(wiphy)->dev, format, ##args)
5341 #define wiphy_info(wiphy, format, args...) \
5342 dev_info(&(wiphy)->dev, format, ##args)
5343
5344 #define wiphy_debug(wiphy, format, args...) \
5345 wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
5346
5347 #define wiphy_dbg(wiphy, format, args...) \
5348 dev_dbg(&(wiphy)->dev, format, ##args)
5349
5350 #if defined(VERBOSE_DEBUG)
5351 #define wiphy_vdbg wiphy_dbg
5352 #else
5353 #define wiphy_vdbg(wiphy, format, args...) \
5354 ({ \
5355 if (0) \
5356 wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \
5357 0; \
5358 })
5359 #endif
5360
5361 /*
5362 * wiphy_WARN() acts like wiphy_printk(), but with the key difference
5363 * of using a WARN/WARN_ON to get the message out, including the
5364 * file/line information and a backtrace.
5365 */
5366 #define wiphy_WARN(wiphy, format, args...) \
5367 WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
5368
5369 #endif /* __NET_CFG80211_H */