e01461869c46dc5b82c2014b51322f80135c2935
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / include / linux / cpumask.h
1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
3
4 /*
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number. In general,
7 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
8 */
9 #include <linux/kernel.h>
10 #include <linux/threads.h>
11 #include <linux/bitmap.h>
12 #include <linux/bug.h>
13
14 /* Don't assign or return these: may not be this big! */
15 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
16
17 /**
18 * cpumask_bits - get the bits in a cpumask
19 * @maskp: the struct cpumask *
20 *
21 * You should only assume nr_cpu_ids bits of this mask are valid. This is
22 * a macro so it's const-correct.
23 */
24 #define cpumask_bits(maskp) ((maskp)->bits)
25
26 /**
27 * cpumask_pr_args - printf args to output a cpumask
28 * @maskp: cpumask to be printed
29 *
30 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
31 */
32 #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
33
34 #if NR_CPUS == 1
35 #define nr_cpu_ids 1
36 #else
37 extern int nr_cpu_ids;
38 #endif
39
40 #ifdef CONFIG_CPUMASK_OFFSTACK
41 /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also,
42 * not all bits may be allocated. */
43 #define nr_cpumask_bits nr_cpu_ids
44 #else
45 #define nr_cpumask_bits NR_CPUS
46 #endif
47
48 /*
49 * The following particular system cpumasks and operations manage
50 * possible, present, active and online cpus.
51 *
52 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
53 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
54 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
55 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
56 *
57 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
58 *
59 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's
60 * that it is possible might ever be plugged in at anytime during the
61 * life of that system boot. The cpu_present_mask is dynamic(*),
62 * representing which CPUs are currently plugged in. And
63 * cpu_online_mask is the dynamic subset of cpu_present_mask,
64 * indicating those CPUs available for scheduling.
65 *
66 * If HOTPLUG is enabled, then cpu_possible_mask is forced to have
67 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
68 * ACPI reports present at boot.
69 *
70 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
71 * depending on what ACPI reports as currently plugged in, otherwise
72 * cpu_present_mask is just a copy of cpu_possible_mask.
73 *
74 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
75 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
76 *
77 * Subtleties:
78 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
79 * assumption that their single CPU is online. The UP
80 * cpu_{online,possible,present}_masks are placebos. Changing them
81 * will have no useful affect on the following num_*_cpus()
82 * and cpu_*() macros in the UP case. This ugliness is a UP
83 * optimization - don't waste any instructions or memory references
84 * asking if you're online or how many CPUs there are if there is
85 * only one CPU.
86 */
87
88 extern const struct cpumask *const cpu_possible_mask;
89 extern const struct cpumask *const cpu_online_mask;
90 extern const struct cpumask *const cpu_present_mask;
91 extern const struct cpumask *const cpu_active_mask;
92
93 #if NR_CPUS > 1
94 #define num_online_cpus() cpumask_weight(cpu_online_mask)
95 #define num_possible_cpus() cpumask_weight(cpu_possible_mask)
96 #define num_present_cpus() cpumask_weight(cpu_present_mask)
97 #define num_active_cpus() cpumask_weight(cpu_active_mask)
98 #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask)
99 #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask)
100 #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask)
101 #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask)
102 #ifdef CONFIG_SCHED_HMP
103 extern struct cpumask hmp_slow_cpu_mask;
104 extern struct cpumask hmp_fast_cpu_mask;
105 #define num_hmp_fast_cpus() cpumask_weight(&hmp_fast_cpu_mask)
106 #define num_hmp_slow_cpus() cpumask_weight(&hmp_slow_cpu_mask)
107 #endif
108 #else
109 #define num_online_cpus() 1U
110 #define num_possible_cpus() 1U
111 #define num_present_cpus() 1U
112 #define num_active_cpus() 1U
113 #define cpu_online(cpu) ((cpu) == 0)
114 #define cpu_possible(cpu) ((cpu) == 0)
115 #define cpu_present(cpu) ((cpu) == 0)
116 #define cpu_active(cpu) ((cpu) == 0)
117 #endif
118
119 /* verify cpu argument to cpumask_* operators */
120 static inline unsigned int cpumask_check(unsigned int cpu)
121 {
122 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
123 WARN_ON_ONCE(cpu >= nr_cpumask_bits);
124 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
125 return cpu;
126 }
127
128 #if NR_CPUS == 1
129 /* Uniprocessor. Assume all masks are "1". */
130 static inline unsigned int cpumask_first(const struct cpumask *srcp)
131 {
132 return 0;
133 }
134
135 /* Valid inputs for n are -1 and 0. */
136 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
137 {
138 return n+1;
139 }
140
141 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
142 {
143 return n+1;
144 }
145
146 static inline unsigned int cpumask_next_and(int n,
147 const struct cpumask *srcp,
148 const struct cpumask *andp)
149 {
150 return n+1;
151 }
152
153 /* cpu must be a valid cpu, ie 0, so there's no other choice. */
154 static inline unsigned int cpumask_any_but(const struct cpumask *mask,
155 unsigned int cpu)
156 {
157 return 1;
158 }
159
160 static inline unsigned int cpumask_local_spread(unsigned int i, int node)
161 {
162 return 0;
163 }
164
165 #define for_each_cpu(cpu, mask) \
166 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
167 #define for_each_cpu_not(cpu, mask) \
168 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
169 #define for_each_cpu_and(cpu, mask, and) \
170 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)and)
171 #else
172 /**
173 * cpumask_first - get the first cpu in a cpumask
174 * @srcp: the cpumask pointer
175 *
176 * Returns >= nr_cpu_ids if no cpus set.
177 */
178 static inline unsigned int cpumask_first(const struct cpumask *srcp)
179 {
180 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits);
181 }
182
183 /**
184 * cpumask_next - get the next cpu in a cpumask
185 * @n: the cpu prior to the place to search (ie. return will be > @n)
186 * @srcp: the cpumask pointer
187 *
188 * Returns >= nr_cpu_ids if no further cpus set.
189 */
190 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
191 {
192 /* -1 is a legal arg here. */
193 if (n != -1)
194 cpumask_check(n);
195 return find_next_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
196 }
197
198 /**
199 * cpumask_next_zero - get the next unset cpu in a cpumask
200 * @n: the cpu prior to the place to search (ie. return will be > @n)
201 * @srcp: the cpumask pointer
202 *
203 * Returns >= nr_cpu_ids if no further cpus unset.
204 */
205 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
206 {
207 /* -1 is a legal arg here. */
208 if (n != -1)
209 cpumask_check(n);
210 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
211 }
212
213 int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *);
214 int cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
215 unsigned int cpumask_local_spread(unsigned int i, int node);
216
217 /**
218 * for_each_cpu - iterate over every cpu in a mask
219 * @cpu: the (optionally unsigned) integer iterator
220 * @mask: the cpumask pointer
221 *
222 * After the loop, cpu is >= nr_cpu_ids.
223 */
224 #define for_each_cpu(cpu, mask) \
225 for ((cpu) = -1; \
226 (cpu) = cpumask_next((cpu), (mask)), \
227 (cpu) < nr_cpu_ids;)
228
229 /**
230 * for_each_cpu_not - iterate over every cpu in a complemented mask
231 * @cpu: the (optionally unsigned) integer iterator
232 * @mask: the cpumask pointer
233 *
234 * After the loop, cpu is >= nr_cpu_ids.
235 */
236 #define for_each_cpu_not(cpu, mask) \
237 for ((cpu) = -1; \
238 (cpu) = cpumask_next_zero((cpu), (mask)), \
239 (cpu) < nr_cpu_ids;)
240
241 /**
242 * for_each_cpu_and - iterate over every cpu in both masks
243 * @cpu: the (optionally unsigned) integer iterator
244 * @mask: the first cpumask pointer
245 * @and: the second cpumask pointer
246 *
247 * This saves a temporary CPU mask in many places. It is equivalent to:
248 * struct cpumask tmp;
249 * cpumask_and(&tmp, &mask, &and);
250 * for_each_cpu(cpu, &tmp)
251 * ...
252 *
253 * After the loop, cpu is >= nr_cpu_ids.
254 */
255 #define for_each_cpu_and(cpu, mask, and) \
256 for ((cpu) = -1; \
257 (cpu) = cpumask_next_and((cpu), (mask), (and)), \
258 (cpu) < nr_cpu_ids;)
259 #endif /* SMP */
260
261 #define CPU_BITS_NONE \
262 { \
263 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
264 }
265
266 #define CPU_BITS_CPU0 \
267 { \
268 [0] = 1UL \
269 }
270
271 /**
272 * cpumask_set_cpu - set a cpu in a cpumask
273 * @cpu: cpu number (< nr_cpu_ids)
274 * @dstp: the cpumask pointer
275 */
276 static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
277 {
278 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
279 }
280
281 /**
282 * cpumask_clear_cpu - clear a cpu in a cpumask
283 * @cpu: cpu number (< nr_cpu_ids)
284 * @dstp: the cpumask pointer
285 */
286 static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
287 {
288 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
289 }
290
291 /**
292 * cpumask_test_cpu - test for a cpu in a cpumask
293 * @cpu: cpu number (< nr_cpu_ids)
294 * @cpumask: the cpumask pointer
295 *
296 * Returns 1 if @cpu is set in @cpumask, else returns 0
297 */
298 static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
299 {
300 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
301 }
302
303 /**
304 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
305 * @cpu: cpu number (< nr_cpu_ids)
306 * @cpumask: the cpumask pointer
307 *
308 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
309 *
310 * test_and_set_bit wrapper for cpumasks.
311 */
312 static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
313 {
314 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
315 }
316
317 /**
318 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
319 * @cpu: cpu number (< nr_cpu_ids)
320 * @cpumask: the cpumask pointer
321 *
322 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
323 *
324 * test_and_clear_bit wrapper for cpumasks.
325 */
326 static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
327 {
328 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
329 }
330
331 /**
332 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
333 * @dstp: the cpumask pointer
334 */
335 static inline void cpumask_setall(struct cpumask *dstp)
336 {
337 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
338 }
339
340 /**
341 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
342 * @dstp: the cpumask pointer
343 */
344 static inline void cpumask_clear(struct cpumask *dstp)
345 {
346 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits);
347 }
348
349 /**
350 * cpumask_and - *dstp = *src1p & *src2p
351 * @dstp: the cpumask result
352 * @src1p: the first input
353 * @src2p: the second input
354 *
355 * If *@dstp is empty, returns 0, else returns 1
356 */
357 static inline int cpumask_and(struct cpumask *dstp,
358 const struct cpumask *src1p,
359 const struct cpumask *src2p)
360 {
361 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
362 cpumask_bits(src2p), nr_cpumask_bits);
363 }
364
365 /**
366 * cpumask_or - *dstp = *src1p | *src2p
367 * @dstp: the cpumask result
368 * @src1p: the first input
369 * @src2p: the second input
370 */
371 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
372 const struct cpumask *src2p)
373 {
374 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
375 cpumask_bits(src2p), nr_cpumask_bits);
376 }
377
378 /**
379 * cpumask_xor - *dstp = *src1p ^ *src2p
380 * @dstp: the cpumask result
381 * @src1p: the first input
382 * @src2p: the second input
383 */
384 static inline void cpumask_xor(struct cpumask *dstp,
385 const struct cpumask *src1p,
386 const struct cpumask *src2p)
387 {
388 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
389 cpumask_bits(src2p), nr_cpumask_bits);
390 }
391
392 /**
393 * cpumask_andnot - *dstp = *src1p & ~*src2p
394 * @dstp: the cpumask result
395 * @src1p: the first input
396 * @src2p: the second input
397 *
398 * If *@dstp is empty, returns 0, else returns 1
399 */
400 static inline int cpumask_andnot(struct cpumask *dstp,
401 const struct cpumask *src1p,
402 const struct cpumask *src2p)
403 {
404 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
405 cpumask_bits(src2p), nr_cpumask_bits);
406 }
407
408 /**
409 * cpumask_complement - *dstp = ~*srcp
410 * @dstp: the cpumask result
411 * @srcp: the input to invert
412 */
413 static inline void cpumask_complement(struct cpumask *dstp,
414 const struct cpumask *srcp)
415 {
416 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp),
417 nr_cpumask_bits);
418 }
419
420 /**
421 * cpumask_equal - *src1p == *src2p
422 * @src1p: the first input
423 * @src2p: the second input
424 */
425 static inline bool cpumask_equal(const struct cpumask *src1p,
426 const struct cpumask *src2p)
427 {
428 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
429 nr_cpumask_bits);
430 }
431
432 /**
433 * cpumask_intersects - (*src1p & *src2p) != 0
434 * @src1p: the first input
435 * @src2p: the second input
436 */
437 static inline bool cpumask_intersects(const struct cpumask *src1p,
438 const struct cpumask *src2p)
439 {
440 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
441 nr_cpumask_bits);
442 }
443
444 /**
445 * cpumask_subset - (*src1p & ~*src2p) == 0
446 * @src1p: the first input
447 * @src2p: the second input
448 *
449 * Returns 1 if *@src1p is a subset of *@src2p, else returns 0
450 */
451 static inline int cpumask_subset(const struct cpumask *src1p,
452 const struct cpumask *src2p)
453 {
454 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
455 nr_cpumask_bits);
456 }
457
458 /**
459 * cpumask_empty - *srcp == 0
460 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
461 */
462 static inline bool cpumask_empty(const struct cpumask *srcp)
463 {
464 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits);
465 }
466
467 /**
468 * cpumask_full - *srcp == 0xFFFFFFFF...
469 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
470 */
471 static inline bool cpumask_full(const struct cpumask *srcp)
472 {
473 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
474 }
475
476 /**
477 * cpumask_weight - Count of bits in *srcp
478 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
479 */
480 static inline unsigned int cpumask_weight(const struct cpumask *srcp)
481 {
482 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits);
483 }
484
485 /**
486 * cpumask_shift_right - *dstp = *srcp >> n
487 * @dstp: the cpumask result
488 * @srcp: the input to shift
489 * @n: the number of bits to shift by
490 */
491 static inline void cpumask_shift_right(struct cpumask *dstp,
492 const struct cpumask *srcp, int n)
493 {
494 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
495 nr_cpumask_bits);
496 }
497
498 /**
499 * cpumask_shift_left - *dstp = *srcp << n
500 * @dstp: the cpumask result
501 * @srcp: the input to shift
502 * @n: the number of bits to shift by
503 */
504 static inline void cpumask_shift_left(struct cpumask *dstp,
505 const struct cpumask *srcp, int n)
506 {
507 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
508 nr_cpumask_bits);
509 }
510
511 /**
512 * cpumask_copy - *dstp = *srcp
513 * @dstp: the result
514 * @srcp: the input cpumask
515 */
516 static inline void cpumask_copy(struct cpumask *dstp,
517 const struct cpumask *srcp)
518 {
519 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits);
520 }
521
522 /**
523 * cpumask_any - pick a "random" cpu from *srcp
524 * @srcp: the input cpumask
525 *
526 * Returns >= nr_cpu_ids if no cpus set.
527 */
528 #define cpumask_any(srcp) cpumask_first(srcp)
529
530 /**
531 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
532 * @src1p: the first input
533 * @src2p: the second input
534 *
535 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
536 */
537 #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p))
538
539 /**
540 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
541 * @mask1: the first input cpumask
542 * @mask2: the second input cpumask
543 *
544 * Returns >= nr_cpu_ids if no cpus set.
545 */
546 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
547
548 /**
549 * cpumask_of - the cpumask containing just a given cpu
550 * @cpu: the cpu (<= nr_cpu_ids)
551 */
552 #define cpumask_of(cpu) (get_cpu_mask(cpu))
553
554 /**
555 * cpumask_parse_user - extract a cpumask from a user string
556 * @buf: the buffer to extract from
557 * @len: the length of the buffer
558 * @dstp: the cpumask to set.
559 *
560 * Returns -errno, or 0 for success.
561 */
562 static inline int cpumask_parse_user(const char __user *buf, int len,
563 struct cpumask *dstp)
564 {
565 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
566 }
567
568 /**
569 * cpumask_parselist_user - extract a cpumask from a user string
570 * @buf: the buffer to extract from
571 * @len: the length of the buffer
572 * @dstp: the cpumask to set.
573 *
574 * Returns -errno, or 0 for success.
575 */
576 static inline int cpumask_parselist_user(const char __user *buf, int len,
577 struct cpumask *dstp)
578 {
579 return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
580 nr_cpumask_bits);
581 }
582
583 /**
584 * cpumask_parse - extract a cpumask from from a string
585 * @buf: the buffer to extract from
586 * @dstp: the cpumask to set.
587 *
588 * Returns -errno, or 0 for success.
589 */
590 static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
591 {
592 char *nl = strchr(buf, '\n');
593 unsigned int len = nl ? (unsigned int)(nl - buf) : strlen(buf);
594
595 return bitmap_parse(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
596 }
597
598 /**
599 * cpulist_parse - extract a cpumask from a user string of ranges
600 * @buf: the buffer to extract from
601 * @dstp: the cpumask to set.
602 *
603 * Returns -errno, or 0 for success.
604 */
605 static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
606 {
607 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
608 }
609
610 /**
611 * cpumask_size - size to allocate for a 'struct cpumask' in bytes
612 *
613 * This will eventually be a runtime variable, depending on nr_cpu_ids.
614 */
615 static inline size_t cpumask_size(void)
616 {
617 return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long);
618 }
619
620 /*
621 * cpumask_var_t: struct cpumask for stack usage.
622 *
623 * Oh, the wicked games we play! In order to make kernel coding a
624 * little more difficult, we typedef cpumask_var_t to an array or a
625 * pointer: doing &mask on an array is a noop, so it still works.
626 *
627 * ie.
628 * cpumask_var_t tmpmask;
629 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
630 * return -ENOMEM;
631 *
632 * ... use 'tmpmask' like a normal struct cpumask * ...
633 *
634 * free_cpumask_var(tmpmask);
635 *
636 *
637 * However, one notable exception is there. alloc_cpumask_var() allocates
638 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
639 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
640 *
641 * cpumask_var_t tmpmask;
642 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
643 * return -ENOMEM;
644 *
645 * var = *tmpmask;
646 *
647 * This code makes NR_CPUS length memcopy and brings to a memory corruption.
648 * cpumask_copy() provide safe copy functionality.
649 *
650 * Note that there is another evil here: If you define a cpumask_var_t
651 * as a percpu variable then the way to obtain the address of the cpumask
652 * structure differently influences what this_cpu_* operation needs to be
653 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use
654 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the
655 * other type of cpumask_var_t implementation is configured.
656 */
657 #ifdef CONFIG_CPUMASK_OFFSTACK
658 typedef struct cpumask *cpumask_var_t;
659
660 #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
661
662 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
663 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
664 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
665 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
666 void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
667 void free_cpumask_var(cpumask_var_t mask);
668 void free_bootmem_cpumask_var(cpumask_var_t mask);
669
670 #else
671 typedef struct cpumask cpumask_var_t[1];
672
673 #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
674
675 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
676 {
677 return true;
678 }
679
680 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
681 int node)
682 {
683 return true;
684 }
685
686 static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
687 {
688 cpumask_clear(*mask);
689 return true;
690 }
691
692 static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
693 int node)
694 {
695 cpumask_clear(*mask);
696 return true;
697 }
698
699 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
700 {
701 }
702
703 static inline void free_cpumask_var(cpumask_var_t mask)
704 {
705 }
706
707 static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
708 {
709 }
710 #endif /* CONFIG_CPUMASK_OFFSTACK */
711
712 /* It's common to want to use cpu_all_mask in struct member initializers,
713 * so it has to refer to an address rather than a pointer. */
714 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
715 #define cpu_all_mask to_cpumask(cpu_all_bits)
716
717 /* First bits of cpu_bit_bitmap are in fact unset. */
718 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
719
720 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
721 #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
722 #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
723
724 /* Wrappers for arch boot code to manipulate normally-constant masks */
725 void set_cpu_possible(unsigned int cpu, bool possible);
726 void set_cpu_present(unsigned int cpu, bool present);
727 void set_cpu_online(unsigned int cpu, bool online);
728 void set_cpu_active(unsigned int cpu, bool active);
729 void init_cpu_present(const struct cpumask *src);
730 void init_cpu_possible(const struct cpumask *src);
731 void init_cpu_online(const struct cpumask *src);
732
733 /**
734 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
735 * @bitmap: the bitmap
736 *
737 * There are a few places where cpumask_var_t isn't appropriate and
738 * static cpumasks must be used (eg. very early boot), yet we don't
739 * expose the definition of 'struct cpumask'.
740 *
741 * This does the conversion, and can be used as a constant initializer.
742 */
743 #define to_cpumask(bitmap) \
744 ((struct cpumask *)(1 ? (bitmap) \
745 : (void *)sizeof(__check_is_bitmap(bitmap))))
746
747 static inline int __check_is_bitmap(const unsigned long *bitmap)
748 {
749 return 1;
750 }
751
752 /*
753 * Special-case data structure for "single bit set only" constant CPU masks.
754 *
755 * We pre-generate all the 64 (or 32) possible bit positions, with enough
756 * padding to the left and the right, and return the constant pointer
757 * appropriately offset.
758 */
759 extern const unsigned long
760 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
761
762 static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
763 {
764 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
765 p -= cpu / BITS_PER_LONG;
766 return to_cpumask(p);
767 }
768
769 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
770
771 #if NR_CPUS <= BITS_PER_LONG
772 #define CPU_BITS_ALL \
773 { \
774 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
775 }
776
777 #else /* NR_CPUS > BITS_PER_LONG */
778
779 #define CPU_BITS_ALL \
780 { \
781 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
782 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
783 }
784 #endif /* NR_CPUS > BITS_PER_LONG */
785
786 /**
787 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
788 * as comma-separated list of cpus or hex values of cpumask
789 * @list: indicates whether the cpumap must be list
790 * @mask: the cpumask to copy
791 * @buf: the buffer to copy into
792 *
793 * Returns the length of the (null-terminated) @buf string, zero if
794 * nothing is copied.
795 */
796 static inline ssize_t
797 cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
798 {
799 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
800 nr_cpu_ids);
801 }
802
803 #if NR_CPUS <= BITS_PER_LONG
804 #define CPU_MASK_ALL \
805 (cpumask_t) { { \
806 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
807 } }
808 #else
809 #define CPU_MASK_ALL \
810 (cpumask_t) { { \
811 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
812 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
813 } }
814 #endif /* NR_CPUS > BITS_PER_LONG */
815
816 #define CPU_MASK_NONE \
817 (cpumask_t) { { \
818 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
819 } }
820
821 #define CPU_MASK_CPU0 \
822 (cpumask_t) { { \
823 [0] = 1UL \
824 } }
825
826 #endif /* __LINUX_CPUMASK_H */