audit: return on memory error to avoid null pointer dereference
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include <linux/slub_def.h>
28 #include <linux/fslog.h>
29 #include "pnode.h"
30 #include "internal.h"
31
32 /* Maximum number of mounts in a mount namespace */
33 unsigned int sysctl_mount_max __read_mostly = 100000;
34
35 static unsigned int sys_umount_trace_status;
36
37 static unsigned int m_hash_mask __read_mostly;
38 static unsigned int m_hash_shift __read_mostly;
39 static unsigned int mp_hash_mask __read_mostly;
40 static unsigned int mp_hash_shift __read_mostly;
41
42 static __initdata unsigned long mhash_entries;
43 static int __init set_mhash_entries(char *str)
44 {
45 if (!str)
46 return 0;
47 mhash_entries = simple_strtoul(str, &str, 0);
48 return 1;
49 }
50 __setup("mhash_entries=", set_mhash_entries);
51
52 static __initdata unsigned long mphash_entries;
53 static int __init set_mphash_entries(char *str)
54 {
55 if (!str)
56 return 0;
57 mphash_entries = simple_strtoul(str, &str, 0);
58 return 1;
59 }
60 __setup("mphash_entries=", set_mphash_entries);
61
62 static u64 event;
63 static DEFINE_IDA(mnt_id_ida);
64 static DEFINE_IDA(mnt_group_ida);
65 static DEFINE_SPINLOCK(mnt_id_lock);
66 #ifdef CONFIG_RKP_NS_PROT
67 static DEFINE_SPINLOCK(mnt_vfsmnt_lock);
68 #endif
69 static int mnt_id_start = 0;
70 static int mnt_group_start = 1;
71
72 static struct hlist_head *mount_hashtable __read_mostly;
73 static struct hlist_head *mountpoint_hashtable __read_mostly;
74 static struct kmem_cache *mnt_cache __read_mostly;
75 #ifdef CONFIG_RKP_NS_PROT
76 static struct kmem_cache *vfsmnt_cache __read_mostly;
77 RKP_RO_AREA struct super_block *sys_sb;
78 RKP_RO_AREA struct super_block *rootfs_sb;
79 #endif
80
81 static DECLARE_RWSEM(namespace_sem);
82
83 /* /sys/fs */
84 struct kobject *fs_kobj;
85 EXPORT_SYMBOL_GPL(fs_kobj);
86
87 /*
88 * vfsmount lock may be taken for read to prevent changes to the
89 * vfsmount hash, ie. during mountpoint lookups or walking back
90 * up the tree.
91 *
92 * It should be taken for write in all cases where the vfsmount
93 * tree or hash is modified or when a vfsmount structure is modified.
94 */
95 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
96
97 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
98 {
99 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
100 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> m_hash_shift);
102 return &mount_hashtable[tmp & m_hash_mask];
103 }
104
105 static inline int sys_umount_trace_start(struct mount *mnt, int flags)
106 {
107 #ifdef CONFIG_RKP_NS_PROT
108 struct super_block *sb = mnt->mnt->mnt_sb;
109 int mnt_flags = mnt->mnt->mnt_flags;
110 #else
111 struct super_block *sb = mnt->mnt.mnt_sb;
112 int mnt_flags = mnt->mnt.mnt_flags;
113 #endif
114 if ((sb->s_magic == SDFAT_SUPER_MAGIC) ||
115 (sb->s_magic == MSDOS_SUPER_MAGIC)) {
116 struct block_device *bdev = sb->s_bdev;
117 dev_t bd_dev = bdev ? bdev->bd_dev : 0;
118
119 ST_LOG("[SYSCALL](%s[%d:%d]): "
120 "enter umount(mf:0x%x, f:0x%x, %s)\n",
121 sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), mnt_flags,
122 flags, mnt->mnt_mountpoint->d_name.name);
123 return 1;
124 }
125 return 0;
126 }
127
128 #define UMOUNT_END_ADD_TASK (0x00)
129 #define UMOUNT_END_REMAIN_NS (0x01)
130 #define UMOUNT_END_REMAIN_MNT_COUNT (0x02)
131 #define UMOUNT_END_ADD_DELAYED_WORK (0x03)
132
133 static inline void sys_umount_trace_set_status(unsigned int status)
134 {
135 sys_umount_trace_status = status;
136 }
137
138 static inline void sys_umount_trace_end(struct mount *mnt, unsigned int stlog)
139 {
140 #ifdef CONFIG_RKP_NS_PROT
141 struct super_block *sb = mnt->mnt->mnt_sb;
142 #else
143 struct super_block *sb = mnt->mnt.mnt_sb;
144 #endif
145 if (stlog) {
146 struct block_device *bdev = sb->s_bdev;
147 dev_t bd_dev = bdev ? bdev->bd_dev : 0;
148
149 ST_LOG("[SYSCALL](%s[%d:%d]): exit umount(%d)\n",
150 sb->s_id, MAJOR(bd_dev), MINOR(bd_dev),
151 sys_umount_trace_status);
152 }
153 }
154
155 #ifdef CONFIG_RKP_NS_PROT
156 extern u8 ns_prot;
157 unsigned int cmp_ns_integrity(void)
158 {
159 struct mount *root = NULL;
160 struct nsproxy *nsp = NULL;
161 int ret = 0;
162
163 if((in_interrupt()
164 || in_softirq())){
165 return 0;
166 }
167 nsp = current->nsproxy;
168 if(!ns_prot || !nsp ||
169 !nsp->mnt_ns) {
170 return 0;
171 }
172 root = current->nsproxy->mnt_ns->root;
173 if(root != root->mnt->bp_mount){
174 printk("\n RKP44_3 Name Space Mismatch %p != %p\n nsp = %p mnt_ns %p\n",root,root->mnt->bp_mount,nsp,nsp->mnt_ns);
175 ret = 1;
176 }
177 return ret;
178 }
179
180 #endif
181 static inline struct hlist_head *mp_hash(struct dentry *dentry)
182 {
183 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
184 tmp = tmp + (tmp >> mp_hash_shift);
185 return &mountpoint_hashtable[tmp & mp_hash_mask];
186 }
187
188 /*
189 * allocation is serialized by namespace_sem, but we need the spinlock to
190 * serialize with freeing.
191 */
192 static int mnt_alloc_id(struct mount *mnt)
193 {
194 int res;
195
196 retry:
197 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
198 spin_lock(&mnt_id_lock);
199 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
200 if (!res)
201 mnt_id_start = mnt->mnt_id + 1;
202 spin_unlock(&mnt_id_lock);
203 if (res == -EAGAIN)
204 goto retry;
205
206 return res;
207 }
208 #ifdef CONFIG_RKP_NS_PROT
209 void rkp_init_ns(struct vfsmount *vfsmnt,struct mount *mnt)
210 {
211 rkp_call(RKP_CMDID(0x52),(u64)vfsmnt,(u64)mnt,0,0,0);
212 }
213 static int mnt_alloc_vfsmount(struct mount *mnt)
214 {
215 struct vfsmount *vfsmnt = NULL;
216
217 vfsmnt = kmem_cache_alloc(vfsmnt_cache, GFP_KERNEL);
218 if(!vfsmnt)
219 return 1;
220
221 spin_lock(&mnt_vfsmnt_lock);
222 rkp_init_ns(vfsmnt,mnt);
223 // vfsmnt->bp_mount = mnt;
224 mnt->mnt = vfsmnt;
225 spin_unlock(&mnt_vfsmnt_lock);
226 return 0;
227 }
228 #endif
229 static void mnt_free_id(struct mount *mnt)
230 {
231 int id = mnt->mnt_id;
232 spin_lock(&mnt_id_lock);
233 ida_remove(&mnt_id_ida, id);
234 if (mnt_id_start > id)
235 mnt_id_start = id;
236 spin_unlock(&mnt_id_lock);
237 }
238
239 /*
240 * Allocate a new peer group ID
241 *
242 * mnt_group_ida is protected by namespace_sem
243 */
244 static int mnt_alloc_group_id(struct mount *mnt)
245 {
246 int res;
247
248 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
249 return -ENOMEM;
250
251 res = ida_get_new_above(&mnt_group_ida,
252 mnt_group_start,
253 &mnt->mnt_group_id);
254 if (!res)
255 mnt_group_start = mnt->mnt_group_id + 1;
256
257 return res;
258 }
259
260 /*
261 * Release a peer group ID
262 */
263 void mnt_release_group_id(struct mount *mnt)
264 {
265 int id = mnt->mnt_group_id;
266 ida_remove(&mnt_group_ida, id);
267 if (mnt_group_start > id)
268 mnt_group_start = id;
269 mnt->mnt_group_id = 0;
270 }
271
272 /*
273 * vfsmount lock must be held for read
274 */
275 static inline void mnt_add_count(struct mount *mnt, int n)
276 {
277 #ifdef CONFIG_SMP
278 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
279 #else
280 preempt_disable();
281 mnt->mnt_count += n;
282 preempt_enable();
283 #endif
284 }
285
286 /*
287 * vfsmount lock must be held for write
288 */
289 unsigned int mnt_get_count(struct mount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 unsigned int count = 0;
293 int cpu;
294
295 for_each_possible_cpu(cpu) {
296 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
297 }
298
299 return count;
300 #else
301 return mnt->mnt_count;
302 #endif
303 }
304
305 static void drop_mountpoint(struct fs_pin *p)
306 {
307 struct mount *m = container_of(p, struct mount, mnt_umount);
308 dput(m->mnt_ex_mountpoint);
309 pin_remove(p);
310 #ifdef CONFIG_RKP_NS_PROT
311 mntput(m->mnt);
312 #else
313 mntput(&m->mnt);
314 #endif
315 }
316
317 static struct mount *alloc_vfsmnt(const char *name)
318 {
319 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
320 if (mnt) {
321 int err;
322
323 err = mnt_alloc_id(mnt);
324 if (err)
325 goto out_free_cache;
326 #ifdef CONFIG_RKP_NS_PROT
327 err = mnt_alloc_vfsmount(mnt);
328 if (err)
329 goto out_free_cache;
330 #endif
331 if (name) {
332 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
333 if (!mnt->mnt_devname)
334 goto out_free_id;
335 }
336
337 #ifdef CONFIG_SMP
338 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
339 if (!mnt->mnt_pcp)
340 goto out_free_devname;
341
342 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
343 #else
344 mnt->mnt_count = 1;
345 mnt->mnt_writers = 0;
346 #endif
347
348 INIT_HLIST_NODE(&mnt->mnt_hash);
349 INIT_LIST_HEAD(&mnt->mnt_child);
350 INIT_LIST_HEAD(&mnt->mnt_mounts);
351 INIT_LIST_HEAD(&mnt->mnt_list);
352 INIT_LIST_HEAD(&mnt->mnt_expire);
353 INIT_LIST_HEAD(&mnt->mnt_share);
354 INIT_LIST_HEAD(&mnt->mnt_slave_list);
355 INIT_LIST_HEAD(&mnt->mnt_slave);
356 INIT_HLIST_NODE(&mnt->mnt_mp_list);
357 INIT_LIST_HEAD(&mnt->mnt_umounting);
358 #ifdef CONFIG_FSNOTIFY
359 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
360 #endif
361 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
362 }
363 return mnt;
364
365 #ifdef CONFIG_SMP
366 out_free_devname:
367 kfree_const(mnt->mnt_devname);
368 #endif
369 out_free_id:
370 mnt_free_id(mnt);
371 out_free_cache:
372 kmem_cache_free(mnt_cache, mnt);
373 return NULL;
374 }
375
376 /*
377 * Most r/o checks on a fs are for operations that take
378 * discrete amounts of time, like a write() or unlink().
379 * We must keep track of when those operations start
380 * (for permission checks) and when they end, so that
381 * we can determine when writes are able to occur to
382 * a filesystem.
383 */
384 /*
385 * __mnt_is_readonly: check whether a mount is read-only
386 * @mnt: the mount to check for its write status
387 *
388 * This shouldn't be used directly ouside of the VFS.
389 * It does not guarantee that the filesystem will stay
390 * r/w, just that it is right *now*. This can not and
391 * should not be used in place of IS_RDONLY(inode).
392 * mnt_want/drop_write() will _keep_ the filesystem
393 * r/w.
394 */
395 int __mnt_is_readonly(struct vfsmount *mnt)
396 {
397 if (mnt->mnt_flags & MNT_READONLY)
398 return 1;
399 if (mnt->mnt_sb->s_flags & MS_RDONLY)
400 return 1;
401 return 0;
402 }
403 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
404
405 static inline void mnt_inc_writers(struct mount *mnt)
406 {
407 #ifdef CONFIG_SMP
408 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
409 #else
410 mnt->mnt_writers++;
411 #endif
412 }
413
414 static inline void mnt_dec_writers(struct mount *mnt)
415 {
416 #ifdef CONFIG_SMP
417 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
418 #else
419 mnt->mnt_writers--;
420 #endif
421 }
422
423 static unsigned int mnt_get_writers(struct mount *mnt)
424 {
425 #ifdef CONFIG_SMP
426 unsigned int count = 0;
427 int cpu;
428
429 for_each_possible_cpu(cpu) {
430 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
431 }
432
433 return count;
434 #else
435 return mnt->mnt_writers;
436 #endif
437 }
438
439 static int mnt_is_readonly(struct vfsmount *mnt)
440 {
441 if (mnt->mnt_sb->s_readonly_remount)
442 return 1;
443 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
444 smp_rmb();
445 return __mnt_is_readonly(mnt);
446 }
447
448 /*
449 * Most r/o & frozen checks on a fs are for operations that take discrete
450 * amounts of time, like a write() or unlink(). We must keep track of when
451 * those operations start (for permission checks) and when they end, so that we
452 * can determine when writes are able to occur to a filesystem.
453 */
454 /**
455 * __mnt_want_write - get write access to a mount without freeze protection
456 * @m: the mount on which to take a write
457 *
458 * This tells the low-level filesystem that a write is about to be performed to
459 * it, and makes sure that writes are allowed (mnt it read-write) before
460 * returning success. This operation does not protect against filesystem being
461 * frozen. When the write operation is finished, __mnt_drop_write() must be
462 * called. This is effectively a refcount.
463 */
464 int __mnt_want_write(struct vfsmount *m)
465 {
466 struct mount *mnt = real_mount(m);
467 int ret = 0;
468
469 preempt_disable();
470 mnt_inc_writers(mnt);
471 /*
472 * The store to mnt_inc_writers must be visible before we pass
473 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
474 * incremented count after it has set MNT_WRITE_HOLD.
475 */
476 smp_mb();
477 #ifdef CONFIG_RKP_NS_PROT
478 while (ACCESS_ONCE(mnt->mnt->mnt_flags) & MNT_WRITE_HOLD)
479 #else
480 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
481 #endif
482 cpu_relax();
483 /*
484 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
485 * be set to match its requirements. So we must not load that until
486 * MNT_WRITE_HOLD is cleared.
487 */
488 smp_rmb();
489 if (mnt_is_readonly(m)) {
490 mnt_dec_writers(mnt);
491 ret = -EROFS;
492 }
493 preempt_enable();
494
495 return ret;
496 }
497
498 /**
499 * mnt_want_write - get write access to a mount
500 * @m: the mount on which to take a write
501 *
502 * This tells the low-level filesystem that a write is about to be performed to
503 * it, and makes sure that writes are allowed (mount is read-write, filesystem
504 * is not frozen) before returning success. When the write operation is
505 * finished, mnt_drop_write() must be called. This is effectively a refcount.
506 */
507 int mnt_want_write(struct vfsmount *m)
508 {
509 int ret;
510
511 sb_start_write(m->mnt_sb);
512 ret = __mnt_want_write(m);
513 if (ret)
514 sb_end_write(m->mnt_sb);
515 return ret;
516 }
517 EXPORT_SYMBOL_GPL(mnt_want_write);
518
519 /**
520 * mnt_clone_write - get write access to a mount
521 * @mnt: the mount on which to take a write
522 *
523 * This is effectively like mnt_want_write, except
524 * it must only be used to take an extra write reference
525 * on a mountpoint that we already know has a write reference
526 * on it. This allows some optimisation.
527 *
528 * After finished, mnt_drop_write must be called as usual to
529 * drop the reference.
530 */
531 int mnt_clone_write(struct vfsmount *mnt)
532 {
533 /* superblock may be r/o */
534 if (__mnt_is_readonly(mnt))
535 return -EROFS;
536 preempt_disable();
537 mnt_inc_writers(real_mount(mnt));
538 preempt_enable();
539 return 0;
540 }
541 EXPORT_SYMBOL_GPL(mnt_clone_write);
542
543 /**
544 * __mnt_want_write_file - get write access to a file's mount
545 * @file: the file who's mount on which to take a write
546 *
547 * This is like __mnt_want_write, but it takes a file and can
548 * do some optimisations if the file is open for write already
549 */
550 int __mnt_want_write_file(struct file *file)
551 {
552 if (!(file->f_mode & FMODE_WRITER))
553 return __mnt_want_write(file->f_path.mnt);
554 else
555 return mnt_clone_write(file->f_path.mnt);
556 }
557
558 /**
559 * mnt_want_write_file - get write access to a file's mount
560 * @file: the file who's mount on which to take a write
561 *
562 * This is like mnt_want_write, but it takes a file and can
563 * do some optimisations if the file is open for write already
564 */
565 int mnt_want_write_file(struct file *file)
566 {
567 int ret;
568
569 sb_start_write(file->f_path.mnt->mnt_sb);
570 ret = __mnt_want_write_file(file);
571 if (ret)
572 sb_end_write(file->f_path.mnt->mnt_sb);
573 return ret;
574 }
575 EXPORT_SYMBOL_GPL(mnt_want_write_file);
576
577 /**
578 * __mnt_drop_write - give up write access to a mount
579 * @mnt: the mount on which to give up write access
580 *
581 * Tells the low-level filesystem that we are done
582 * performing writes to it. Must be matched with
583 * __mnt_want_write() call above.
584 */
585 void __mnt_drop_write(struct vfsmount *mnt)
586 {
587 preempt_disable();
588 mnt_dec_writers(real_mount(mnt));
589 preempt_enable();
590 }
591
592 /**
593 * mnt_drop_write - give up write access to a mount
594 * @mnt: the mount on which to give up write access
595 *
596 * Tells the low-level filesystem that we are done performing writes to it and
597 * also allows filesystem to be frozen again. Must be matched with
598 * mnt_want_write() call above.
599 */
600 void mnt_drop_write(struct vfsmount *mnt)
601 {
602 __mnt_drop_write(mnt);
603 sb_end_write(mnt->mnt_sb);
604 }
605 EXPORT_SYMBOL_GPL(mnt_drop_write);
606
607 void __mnt_drop_write_file(struct file *file)
608 {
609 __mnt_drop_write(file->f_path.mnt);
610 }
611
612 void mnt_drop_write_file(struct file *file)
613 {
614 mnt_drop_write(file->f_path.mnt);
615 }
616 EXPORT_SYMBOL(mnt_drop_write_file);
617 #ifdef CONFIG_RKP_NS_PROT
618 void rkp_set_mnt_root_sb(struct vfsmount *mnt, struct dentry *mnt_root,struct super_block *mnt_sb)
619 {
620 rkp_call(RKP_CMDID(0x53),(u64)mnt,(u64)mnt_root,(u64)mnt_sb,0,0);
621 }
622 void rkp_assign_mnt_flags(struct vfsmount *mnt,int flags)
623 {
624 rkp_call(RKP_CMDID(0x54),(u64)mnt,(u64)flags,0,0,0);
625 }
626 void rkp_set_mnt_flags(struct vfsmount *mnt,int flags)
627 {
628 int f = mnt->mnt_flags;
629 f |= flags;
630 rkp_assign_mnt_flags(mnt,f);
631 }
632
633 void rkp_reset_mnt_flags(struct vfsmount *mnt,int flags)
634 {
635 int f = mnt->mnt_flags;
636 f &= ~flags;
637 rkp_assign_mnt_flags(mnt,f);
638 }
639 #endif
640
641 static int mnt_make_readonly(struct mount *mnt)
642 {
643 int ret = 0;
644
645 lock_mount_hash();
646 #ifdef CONFIG_RKP_NS_PROT
647 rkp_set_mnt_flags(mnt->mnt,MNT_WRITE_HOLD);
648 #else
649 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
650 #endif
651 /*
652 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
653 * should be visible before we do.
654 */
655 smp_mb();
656
657 /*
658 * With writers on hold, if this value is zero, then there are
659 * definitely no active writers (although held writers may subsequently
660 * increment the count, they'll have to wait, and decrement it after
661 * seeing MNT_READONLY).
662 *
663 * It is OK to have counter incremented on one CPU and decremented on
664 * another: the sum will add up correctly. The danger would be when we
665 * sum up each counter, if we read a counter before it is incremented,
666 * but then read another CPU's count which it has been subsequently
667 * decremented from -- we would see more decrements than we should.
668 * MNT_WRITE_HOLD protects against this scenario, because
669 * mnt_want_write first increments count, then smp_mb, then spins on
670 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
671 * we're counting up here.
672 */
673 if (mnt_get_writers(mnt) > 0)
674 ret = -EBUSY;
675 else {
676 #ifdef CONFIG_RKP_NS_PROT
677 rkp_set_mnt_flags(mnt->mnt,MNT_READONLY);
678 #else
679 mnt->mnt.mnt_flags |= MNT_READONLY;
680 #endif
681 }
682 /*
683 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
684 * that become unheld will see MNT_READONLY.
685 */
686 smp_wmb();
687 #ifdef CONFIG_RKP_NS_PROT
688 rkp_reset_mnt_flags(mnt->mnt,MNT_WRITE_HOLD);
689 #else
690 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
691 #endif
692 unlock_mount_hash();
693 return ret;
694 }
695
696 static void __mnt_unmake_readonly(struct mount *mnt)
697 {
698 lock_mount_hash();
699 #ifdef CONFIG_RKP_NS_PROT
700 rkp_reset_mnt_flags(mnt->mnt,MNT_READONLY);
701 #else
702 mnt->mnt.mnt_flags &= ~MNT_READONLY;
703 #endif
704 unlock_mount_hash();
705 }
706
707 int sb_prepare_remount_readonly(struct super_block *sb)
708 {
709 struct mount *mnt;
710 int err = 0;
711
712 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
713 if (atomic_long_read(&sb->s_remove_count))
714 return -EBUSY;
715
716 lock_mount_hash();
717 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
718 #ifdef CONFIG_RKP_NS_PROT
719 if (!(mnt->mnt->mnt_flags & MNT_READONLY)) {
720 rkp_set_mnt_flags(mnt->mnt,MNT_WRITE_HOLD);
721 #else
722 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
723 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
724 #endif
725 smp_mb();
726 if (mnt_get_writers(mnt) > 0) {
727 err = -EBUSY;
728 break;
729 }
730 }
731 }
732 if (!err && atomic_long_read(&sb->s_remove_count))
733 err = -EBUSY;
734
735 if (!err) {
736 sb->s_readonly_remount = 1;
737 smp_wmb();
738 }
739 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
740 #ifdef CONFIG_RKP_NS_PROT
741 if (mnt->mnt->mnt_flags & MNT_WRITE_HOLD)
742 rkp_reset_mnt_flags(mnt->mnt,MNT_WRITE_HOLD);
743 #else
744 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
745 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
746 #endif
747 }
748 unlock_mount_hash();
749
750 return err;
751 }
752 #ifdef CONFIG_RKP_NS_PROT
753 extern int rkp_from_vfsmnt_cache(unsigned long addr);
754 #endif
755 static void free_vfsmnt(struct mount *mnt)
756 {
757 #ifdef CONFIG_RKP_NS_PROT
758 kfree(mnt->mnt->data);
759 #else
760 kfree(mnt->mnt.data);
761 #endif
762 kfree_const(mnt->mnt_devname);
763 #ifdef CONFIG_SMP
764 free_percpu(mnt->mnt_pcp);
765 #endif
766 #ifdef CONFIG_RKP_NS_PROT
767 if(mnt->mnt &&
768 rkp_from_vfsmnt_cache((unsigned long)mnt->mnt))
769 kmem_cache_free(vfsmnt_cache,mnt->mnt);
770 #endif
771 kmem_cache_free(mnt_cache, mnt);
772 }
773
774 static void delayed_free_vfsmnt(struct rcu_head *head)
775 {
776 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
777 }
778
779 /* call under rcu_read_lock */
780 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
781 {
782 struct mount *mnt;
783 if (read_seqretry(&mount_lock, seq))
784 return 1;
785 if (bastard == NULL)
786 return 0;
787 mnt = real_mount(bastard);
788 mnt_add_count(mnt, 1);
789 smp_mb(); // see mntput_no_expire()
790 if (likely(!read_seqretry(&mount_lock, seq)))
791 return 0;
792 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
793 mnt_add_count(mnt, -1);
794 return 1;
795 }
796 lock_mount_hash();
797 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
798 mnt_add_count(mnt, -1);
799 unlock_mount_hash();
800 return 1;
801 }
802 unlock_mount_hash();
803 /* caller will mntput() */
804 return -1;
805 }
806
807 /* call under rcu_read_lock */
808 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
809 {
810 int res = __legitimize_mnt(bastard, seq);
811 if (likely(!res))
812 return true;
813 if (unlikely(res < 0)) {
814 rcu_read_unlock();
815 mntput(bastard);
816 rcu_read_lock();
817 }
818 return false;
819 }
820
821 /*
822 * find the first mount at @dentry on vfsmount @mnt.
823 * call under rcu_read_lock()
824 */
825 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
826 {
827 struct hlist_head *head = m_hash(mnt, dentry);
828 struct mount *p;
829
830 hlist_for_each_entry_rcu(p, head, mnt_hash)
831 #ifdef CONFIG_RKP_NS_PROT
832 if (p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
833 #else
834 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
835 #endif
836 return p;
837 return NULL;
838 }
839
840 /*
841 * lookup_mnt - Return the first child mount mounted at path
842 *
843 * "First" means first mounted chronologically. If you create the
844 * following mounts:
845 *
846 * mount /dev/sda1 /mnt
847 * mount /dev/sda2 /mnt
848 * mount /dev/sda3 /mnt
849 *
850 * Then lookup_mnt() on the base /mnt dentry in the root mount will
851 * return successively the root dentry and vfsmount of /dev/sda1, then
852 * /dev/sda2, then /dev/sda3, then NULL.
853 *
854 * lookup_mnt takes a reference to the found vfsmount.
855 */
856 struct vfsmount *lookup_mnt(struct path *path)
857 {
858 struct mount *child_mnt;
859 struct vfsmount *m;
860 unsigned seq;
861
862 rcu_read_lock();
863 do {
864 seq = read_seqbegin(&mount_lock);
865 child_mnt = __lookup_mnt(path->mnt, path->dentry);
866 #ifdef CONFIG_RKP_NS_PROT
867 m = child_mnt ? child_mnt->mnt : NULL;
868 #else
869 m = child_mnt ? &child_mnt->mnt : NULL;
870 #endif
871 } while (!legitimize_mnt(m, seq));
872 rcu_read_unlock();
873 return m;
874 }
875
876 /*
877 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
878 * current mount namespace.
879 *
880 * The common case is dentries are not mountpoints at all and that
881 * test is handled inline. For the slow case when we are actually
882 * dealing with a mountpoint of some kind, walk through all of the
883 * mounts in the current mount namespace and test to see if the dentry
884 * is a mountpoint.
885 *
886 * The mount_hashtable is not usable in the context because we
887 * need to identify all mounts that may be in the current mount
888 * namespace not just a mount that happens to have some specified
889 * parent mount.
890 */
891 bool __is_local_mountpoint(struct dentry *dentry)
892 {
893 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
894 struct mount *mnt;
895 bool is_covered = false;
896
897 if (!d_mountpoint(dentry))
898 goto out;
899
900 down_read(&namespace_sem);
901 list_for_each_entry(mnt, &ns->list, mnt_list) {
902 is_covered = (mnt->mnt_mountpoint == dentry);
903 if (is_covered)
904 break;
905 }
906 up_read(&namespace_sem);
907 out:
908 return is_covered;
909 }
910
911 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
912 {
913 struct hlist_head *chain = mp_hash(dentry);
914 struct mountpoint *mp;
915
916 hlist_for_each_entry(mp, chain, m_hash) {
917 if (mp->m_dentry == dentry) {
918 /* might be worth a WARN_ON() */
919 if (d_unlinked(dentry))
920 return ERR_PTR(-ENOENT);
921 mp->m_count++;
922 return mp;
923 }
924 }
925 return NULL;
926 }
927
928 static struct mountpoint *get_mountpoint(struct dentry *dentry)
929 {
930 struct mountpoint *mp, *new = NULL;
931 int ret;
932
933 if (d_mountpoint(dentry)) {
934 mountpoint:
935 read_seqlock_excl(&mount_lock);
936 mp = lookup_mountpoint(dentry);
937 read_sequnlock_excl(&mount_lock);
938 if (mp)
939 goto done;
940 }
941
942 if (!new)
943 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
944 if (!new)
945 return ERR_PTR(-ENOMEM);
946
947
948 /* Exactly one processes may set d_mounted */
949 ret = d_set_mounted(dentry);
950
951 /* Someone else set d_mounted? */
952 if (ret == -EBUSY)
953 goto mountpoint;
954
955 /* The dentry is not available as a mountpoint? */
956 mp = ERR_PTR(ret);
957 if (ret)
958 goto done;
959
960 /* Add the new mountpoint to the hash table */
961 read_seqlock_excl(&mount_lock);
962 new->m_dentry = dentry;
963 new->m_count = 1;
964 hlist_add_head(&new->m_hash, mp_hash(dentry));
965 INIT_HLIST_HEAD(&new->m_list);
966 read_sequnlock_excl(&mount_lock);
967
968 mp = new;
969 new = NULL;
970 done:
971 kfree(new);
972 return mp;
973 }
974
975 static void put_mountpoint(struct mountpoint *mp)
976 {
977 if (!--mp->m_count) {
978 struct dentry *dentry = mp->m_dentry;
979 BUG_ON(!hlist_empty(&mp->m_list));
980 spin_lock(&dentry->d_lock);
981 dentry->d_flags &= ~DCACHE_MOUNTED;
982 spin_unlock(&dentry->d_lock);
983 hlist_del(&mp->m_hash);
984 kfree(mp);
985 }
986 }
987
988 static inline int check_mnt(struct mount *mnt)
989 {
990 return mnt->mnt_ns == current->nsproxy->mnt_ns;
991 }
992
993 /*
994 * vfsmount lock must be held for write
995 */
996 static void touch_mnt_namespace(struct mnt_namespace *ns)
997 {
998 if (ns) {
999 ns->event = ++event;
1000 wake_up_interruptible(&ns->poll);
1001 }
1002 }
1003
1004 /*
1005 * vfsmount lock must be held for write
1006 */
1007 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1008 {
1009 if (ns && ns->event != event) {
1010 ns->event = event;
1011 wake_up_interruptible(&ns->poll);
1012 }
1013 }
1014
1015 /*
1016 * vfsmount lock must be held for write
1017 */
1018 static void unhash_mnt(struct mount *mnt)
1019 {
1020 mnt->mnt_parent = mnt;
1021 #ifdef CONFIG_RKP_NS_PROT
1022 mnt->mnt_mountpoint = mnt->mnt->mnt_root;
1023 #else
1024 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1025 #endif
1026 list_del_init(&mnt->mnt_child);
1027 hlist_del_init_rcu(&mnt->mnt_hash);
1028 hlist_del_init(&mnt->mnt_mp_list);
1029 put_mountpoint(mnt->mnt_mp);
1030 mnt->mnt_mp = NULL;
1031 }
1032
1033 /*
1034 * vfsmount lock must be held for write
1035 */
1036 static void detach_mnt(struct mount *mnt, struct path *old_path)
1037 {
1038 old_path->dentry = mnt->mnt_mountpoint;
1039 #ifdef CONFIG_RKP_NS_PROT
1040 old_path->mnt = mnt->mnt_parent->mnt;
1041 #else
1042 old_path->mnt = &mnt->mnt_parent->mnt;
1043 #endif
1044 unhash_mnt(mnt);
1045 }
1046
1047 /*
1048 * vfsmount lock must be held for write
1049 */
1050 static void umount_mnt(struct mount *mnt)
1051 {
1052 /* old mountpoint will be dropped when we can do that */
1053 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
1054 unhash_mnt(mnt);
1055 }
1056
1057 /*
1058 * vfsmount lock must be held for write
1059 */
1060 void mnt_set_mountpoint(struct mount *mnt,
1061 struct mountpoint *mp,
1062 struct mount *child_mnt)
1063 {
1064 mp->m_count++;
1065 mnt_add_count(mnt, 1); /* essentially, that's mntget */
1066 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
1067 child_mnt->mnt_parent = mnt;
1068 child_mnt->mnt_mp = mp;
1069 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1070 }
1071
1072 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1073 {
1074 #ifdef CONFIG_RKP_NS_PROT
1075 hlist_add_head_rcu(&mnt->mnt_hash,
1076 m_hash(parent->mnt, mnt->mnt_mountpoint));
1077 #else
1078 hlist_add_head_rcu(&mnt->mnt_hash,
1079 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1080 #endif
1081 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1082 }
1083
1084 /*
1085 * vfsmount lock must be held for write
1086 */
1087 static void attach_mnt(struct mount *mnt,
1088 struct mount *parent,
1089 struct mountpoint *mp)
1090 {
1091 mnt_set_mountpoint(parent, mp, mnt);
1092 __attach_mnt(mnt, parent);
1093 }
1094
1095 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1096 {
1097 struct mountpoint *old_mp = mnt->mnt_mp;
1098 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
1099 struct mount *old_parent = mnt->mnt_parent;
1100
1101 list_del_init(&mnt->mnt_child);
1102 hlist_del_init(&mnt->mnt_mp_list);
1103 hlist_del_init_rcu(&mnt->mnt_hash);
1104
1105 attach_mnt(mnt, parent, mp);
1106
1107 put_mountpoint(old_mp);
1108
1109 /*
1110 * Safely avoid even the suggestion this code might sleep or
1111 * lock the mount hash by taking advantage of the knowledge that
1112 * mnt_change_mountpoint will not release the final reference
1113 * to a mountpoint.
1114 *
1115 * During mounting, the mount passed in as the parent mount will
1116 * continue to use the old mountpoint and during unmounting, the
1117 * old mountpoint will continue to exist until namespace_unlock,
1118 * which happens well after mnt_change_mountpoint.
1119 */
1120 spin_lock(&old_mountpoint->d_lock);
1121 old_mountpoint->d_lockref.count--;
1122 spin_unlock(&old_mountpoint->d_lock);
1123
1124 mnt_add_count(old_parent, -1);
1125 }
1126
1127 /*
1128 * vfsmount lock must be held for write
1129 */
1130 static void commit_tree(struct mount *mnt)
1131 {
1132 struct mount *parent = mnt->mnt_parent;
1133 struct mount *m;
1134 LIST_HEAD(head);
1135 struct mnt_namespace *n = parent->mnt_ns;
1136
1137 BUG_ON(parent == mnt);
1138
1139 list_add_tail(&head, &mnt->mnt_list);
1140 list_for_each_entry(m, &head, mnt_list)
1141 m->mnt_ns = n;
1142
1143 list_splice(&head, n->list.prev);
1144
1145 n->mounts += n->pending_mounts;
1146 n->pending_mounts = 0;
1147
1148 __attach_mnt(mnt, parent);
1149 touch_mnt_namespace(n);
1150 }
1151
1152 static struct mount *next_mnt(struct mount *p, struct mount *root)
1153 {
1154 struct list_head *next = p->mnt_mounts.next;
1155 if (next == &p->mnt_mounts) {
1156 while (1) {
1157 if (p == root)
1158 return NULL;
1159 next = p->mnt_child.next;
1160 if (next != &p->mnt_parent->mnt_mounts)
1161 break;
1162 p = p->mnt_parent;
1163 }
1164 }
1165 return list_entry(next, struct mount, mnt_child);
1166 }
1167
1168 static struct mount *skip_mnt_tree(struct mount *p)
1169 {
1170 struct list_head *prev = p->mnt_mounts.prev;
1171 while (prev != &p->mnt_mounts) {
1172 p = list_entry(prev, struct mount, mnt_child);
1173 prev = p->mnt_mounts.prev;
1174 }
1175 return p;
1176 }
1177
1178 struct vfsmount *
1179 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1180 {
1181 struct mount *mnt;
1182 struct dentry *root;
1183
1184 if (!type)
1185 return ERR_PTR(-ENODEV);
1186
1187 mnt = alloc_vfsmnt(name);
1188 if (!mnt)
1189 return ERR_PTR(-ENOMEM);
1190
1191 #ifdef CONFIG_RKP_NS_PROT
1192 rkp_call(RKP_CMDID(0x56), (u64)(mnt->mnt), (u64)NULL, 0, 0, 0);
1193 #else
1194 mnt->mnt.data = NULL;
1195 #endif
1196 if (type->alloc_mnt_data) {
1197 #ifdef CONFIG_RKP_NS_PROT
1198 u64 *mnt_data = (u64 *)(type->alloc_mnt_data());
1199
1200 rkp_call(RKP_CMDID(0x56), (u64)(mnt->mnt), (u64)mnt_data, 0, 0, 0);
1201 if (!mnt->mnt->data) {
1202 #else
1203 mnt->mnt.data = type->alloc_mnt_data();
1204 if (!mnt->mnt.data) {
1205 #endif
1206 mnt_free_id(mnt);
1207 free_vfsmnt(mnt);
1208 return ERR_PTR(-ENOMEM);
1209 }
1210 }
1211
1212 if (flags & MS_KERNMOUNT) {
1213 #ifdef CONFIG_RKP_NS_PROT
1214 rkp_set_mnt_flags(mnt->mnt,MNT_INTERNAL);
1215 #else
1216 mnt->mnt.mnt_flags = MNT_INTERNAL;
1217 #endif
1218 }
1219 #ifdef CONFIG_RKP_NS_PROT
1220 root = mount_fs(type, flags, name, mnt->mnt, data);
1221 #else
1222 root = mount_fs(type, flags, name, &mnt->mnt, data);
1223 #endif
1224 if (IS_ERR(root)) {
1225 mnt_free_id(mnt);
1226 free_vfsmnt(mnt);
1227 return ERR_CAST(root);
1228 }
1229 #ifdef CONFIG_RKP_NS_PROT
1230 rkp_set_mnt_root_sb(mnt->mnt,root,root->d_sb);
1231 mnt->mnt_mountpoint = mnt->mnt->mnt_root;
1232 #else
1233 mnt->mnt.mnt_root = root;
1234 mnt->mnt.mnt_sb = root->d_sb;
1235 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1236 #endif
1237 mnt->mnt_parent = mnt;
1238 lock_mount_hash();
1239 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1240 unlock_mount_hash();
1241 #ifdef CONFIG_RKP_NS_PROT
1242 return mnt->mnt;
1243 #else
1244 return &mnt->mnt;
1245 #endif
1246 }
1247 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1248
1249 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1250 int flag)
1251 {
1252 #ifdef CONFIG_RKP_NS_PROT
1253 struct super_block *sb = old->mnt->mnt_sb;
1254 #else
1255 struct super_block *sb = old->mnt.mnt_sb;
1256 #endif
1257 struct mount *mnt;
1258 int err;
1259 #ifdef CONFIG_RKP_NS_PROT
1260 int nsflags;
1261 #endif
1262
1263 mnt = alloc_vfsmnt(old->mnt_devname);
1264 if (!mnt)
1265 return ERR_PTR(-ENOMEM);
1266
1267 if (sb->s_op->clone_mnt_data) {
1268 #ifdef CONFIG_RKP_NS_PROT
1269 u64 *mnt_data = (u64 *)(sb->s_op->clone_mnt_data(old->mnt->data));
1270
1271 rkp_call(RKP_CMDID(0x56), (u64)(mnt->mnt), (u64)mnt_data, 0, 0, 0);
1272 if (!mnt->mnt->data) {
1273 err = -ENOMEM;
1274 goto out_free;
1275 }
1276 #else
1277 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1278 if (!mnt->mnt.data) {
1279 err = -ENOMEM;
1280 goto out_free;
1281 }
1282 #endif
1283 }
1284
1285 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1286 mnt->mnt_group_id = 0; /* not a peer of original */
1287 else
1288 mnt->mnt_group_id = old->mnt_group_id;
1289
1290 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1291 err = mnt_alloc_group_id(mnt);
1292 if (err)
1293 goto out_free;
1294 }
1295
1296 #ifdef CONFIG_RKP_NS_PROT
1297 nsflags = old->mnt->mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1298 /* Don't allow unprivileged users to change mount flags */
1299 if (flag & CL_UNPRIVILEGED) {
1300 nsflags |= MNT_LOCK_ATIME;
1301
1302 if (nsflags & MNT_READONLY)
1303 nsflags |= MNT_LOCK_READONLY;
1304
1305 if (nsflags & MNT_NODEV)
1306 nsflags |= MNT_LOCK_NODEV;
1307
1308 if (nsflags & MNT_NOSUID)
1309 nsflags |= MNT_LOCK_NOSUID;
1310
1311 if (nsflags & MNT_NOEXEC)
1312 nsflags |= MNT_LOCK_NOEXEC;
1313 }
1314 if ((flag & CL_UNPRIVILEGED) &&
1315 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1316 nsflags |= MNT_LOCKED;
1317 rkp_assign_mnt_flags(mnt->mnt,nsflags);
1318 #else
1319 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1320 /* Don't allow unprivileged users to change mount flags */
1321 if (flag & CL_UNPRIVILEGED) {
1322 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1323
1324 if (mnt->mnt.mnt_flags & MNT_READONLY)
1325 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1326
1327 if (mnt->mnt.mnt_flags & MNT_NODEV)
1328 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1329
1330 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1331 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1332
1333 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1334 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1335 }
1336 if ((flag & CL_UNPRIVILEGED) &&
1337 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1338 mnt->mnt.mnt_flags |= MNT_LOCKED;
1339 #endif
1340 /* Don't allow unprivileged users to reveal what is under a mount */
1341 atomic_inc(&sb->s_active);
1342 #ifdef CONFIG_RKP_NS_PROT
1343 rkp_set_mnt_root_sb(mnt->mnt,dget(root),sb);
1344 mnt->mnt_mountpoint = mnt->mnt->mnt_root;
1345 #else
1346 mnt->mnt.mnt_sb = sb;
1347 mnt->mnt.mnt_root = dget(root);
1348 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1349 #endif
1350 mnt->mnt_parent = mnt;
1351 lock_mount_hash();
1352 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1353 unlock_mount_hash();
1354
1355 if ((flag & CL_SLAVE) ||
1356 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1357 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1358 mnt->mnt_master = old;
1359 CLEAR_MNT_SHARED(mnt);
1360 } else if (!(flag & CL_PRIVATE)) {
1361 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1362 list_add(&mnt->mnt_share, &old->mnt_share);
1363 if (IS_MNT_SLAVE(old))
1364 list_add(&mnt->mnt_slave, &old->mnt_slave);
1365 mnt->mnt_master = old->mnt_master;
1366 }
1367 if (flag & CL_MAKE_SHARED)
1368 set_mnt_shared(mnt);
1369
1370 /* stick the duplicate mount on the same expiry list
1371 * as the original if that was on one */
1372 if (flag & CL_EXPIRE) {
1373 if (!list_empty(&old->mnt_expire))
1374 list_add(&mnt->mnt_expire, &old->mnt_expire);
1375 }
1376
1377 return mnt;
1378
1379 out_free:
1380 mnt_free_id(mnt);
1381 free_vfsmnt(mnt);
1382 return ERR_PTR(err);
1383 }
1384
1385 static void cleanup_mnt(struct mount *mnt)
1386 {
1387 /*
1388 * This probably indicates that somebody messed
1389 * up a mnt_want/drop_write() pair. If this
1390 * happens, the filesystem was probably unable
1391 * to make r/w->r/o transitions.
1392 */
1393 /*
1394 * The locking used to deal with mnt_count decrement provides barriers,
1395 * so mnt_get_writers() below is safe.
1396 */
1397 WARN_ON(mnt_get_writers(mnt));
1398 if (unlikely(mnt->mnt_pins.first))
1399 mnt_pin_kill(mnt);
1400 #ifdef CONFIG_RKP_NS_PROT
1401 fsnotify_vfsmount_delete(mnt->mnt);
1402 dput(mnt->mnt->mnt_root);
1403 deactivate_super(mnt->mnt->mnt_sb);
1404 #else
1405 fsnotify_vfsmount_delete(&mnt->mnt);
1406 dput(mnt->mnt.mnt_root);
1407 deactivate_super(mnt->mnt.mnt_sb);
1408 #endif
1409 mnt_free_id(mnt);
1410 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1411 }
1412
1413 static void __cleanup_mnt(struct rcu_head *head)
1414 {
1415 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1416 }
1417
1418 static LLIST_HEAD(delayed_mntput_list);
1419 static void delayed_mntput(struct work_struct *unused)
1420 {
1421 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1422 struct llist_node *next;
1423
1424 for (; node; node = next) {
1425 next = llist_next(node);
1426 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1427 }
1428 }
1429 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1430
1431 static void mntput_no_expire(struct mount *mnt)
1432 {
1433 rcu_read_lock();
1434 if (likely(READ_ONCE(mnt->mnt_ns))) {
1435 /*
1436 * Since we don't do lock_mount_hash() here,
1437 * ->mnt_ns can change under us. However, if it's
1438 * non-NULL, then there's a reference that won't
1439 * be dropped until after an RCU delay done after
1440 * turning ->mnt_ns NULL. So if we observe it
1441 * non-NULL under rcu_read_lock(), the reference
1442 * we are dropping is not the final one.
1443 */
1444 mnt_add_count(mnt, -1);
1445 rcu_read_unlock();
1446 sys_umount_trace_set_status(UMOUNT_END_REMAIN_NS);
1447 return;
1448 }
1449 lock_mount_hash();
1450 /*
1451 * make sure that if __legitimize_mnt() has not seen us grab
1452 * mount_lock, we'll see their refcount increment here.
1453 */
1454 smp_mb();
1455 mnt_add_count(mnt, -1);
1456 if (mnt_get_count(mnt)) {
1457 rcu_read_unlock();
1458 unlock_mount_hash();
1459 sys_umount_trace_set_status(UMOUNT_END_REMAIN_MNT_COUNT);
1460 return;
1461 }
1462
1463 #ifdef CONFIG_RKP_NS_PROT
1464 if (unlikely(mnt->mnt->mnt_flags & MNT_DOOMED)) {
1465 #else
1466 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1467 #endif
1468 rcu_read_unlock();
1469 unlock_mount_hash();
1470 return;
1471 }
1472 #ifdef CONFIG_RKP_NS_PROT
1473 rkp_set_mnt_flags(mnt->mnt,MNT_DOOMED);
1474 #else
1475 mnt->mnt.mnt_flags |= MNT_DOOMED;
1476 #endif
1477 rcu_read_unlock();
1478
1479 list_del(&mnt->mnt_instance);
1480
1481 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1482 struct mount *p, *tmp;
1483 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1484 umount_mnt(p);
1485 }
1486 }
1487 unlock_mount_hash();
1488
1489 #ifdef CONFIG_RKP_NS_PROT
1490 if (likely(!(mnt->mnt->mnt_flags & MNT_INTERNAL))) {
1491 #else
1492 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1493 #endif
1494 struct task_struct *task = current;
1495 if (likely(!(task->flags & PF_KTHREAD))) {
1496 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1497 if (!task_work_add(task, &mnt->mnt_rcu, true)) {
1498 sys_umount_trace_set_status(UMOUNT_END_ADD_TASK);
1499 return;
1500 }
1501 }
1502 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) {
1503 schedule_delayed_work(&delayed_mntput_work, 1);
1504 sys_umount_trace_set_status(UMOUNT_END_ADD_DELAYED_WORK);
1505 }
1506 return;
1507 }
1508 cleanup_mnt(mnt);
1509 }
1510
1511 void mntput(struct vfsmount *mnt)
1512 {
1513 if (mnt) {
1514 struct mount *m = real_mount(mnt);
1515 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1516 if (unlikely(m->mnt_expiry_mark))
1517 m->mnt_expiry_mark = 0;
1518 mntput_no_expire(m);
1519 }
1520 }
1521 EXPORT_SYMBOL(mntput);
1522
1523 struct vfsmount *mntget(struct vfsmount *mnt)
1524 {
1525 if (mnt)
1526 mnt_add_count(real_mount(mnt), 1);
1527 return mnt;
1528 }
1529 EXPORT_SYMBOL(mntget);
1530
1531 struct vfsmount *mnt_clone_internal(struct path *path)
1532 {
1533 struct mount *p;
1534 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1535 if (IS_ERR(p))
1536 return ERR_CAST(p);
1537 #ifdef CONFIG_RKP_NS_PROT
1538 rkp_set_mnt_flags(p->mnt,MNT_INTERNAL);
1539 return p->mnt;
1540 #else
1541 p->mnt.mnt_flags |= MNT_INTERNAL;
1542 return &p->mnt;
1543 #endif
1544 }
1545
1546 static inline void mangle(struct seq_file *m, const char *s)
1547 {
1548 seq_escape(m, s, " \t\n\\");
1549 }
1550
1551 /*
1552 * Simple .show_options callback for filesystems which don't want to
1553 * implement more complex mount option showing.
1554 *
1555 * See also save_mount_options().
1556 */
1557 int generic_show_options(struct seq_file *m, struct dentry *root)
1558 {
1559 const char *options;
1560
1561 rcu_read_lock();
1562 options = rcu_dereference(root->d_sb->s_options);
1563
1564 if (options != NULL && options[0]) {
1565 seq_putc(m, ',');
1566 mangle(m, options);
1567 }
1568 rcu_read_unlock();
1569
1570 return 0;
1571 }
1572 EXPORT_SYMBOL(generic_show_options);
1573
1574 /*
1575 * If filesystem uses generic_show_options(), this function should be
1576 * called from the fill_super() callback.
1577 *
1578 * The .remount_fs callback usually needs to be handled in a special
1579 * way, to make sure, that previous options are not overwritten if the
1580 * remount fails.
1581 *
1582 * Also note, that if the filesystem's .remount_fs function doesn't
1583 * reset all options to their default value, but changes only newly
1584 * given options, then the displayed options will not reflect reality
1585 * any more.
1586 */
1587 void save_mount_options(struct super_block *sb, char *options)
1588 {
1589 BUG_ON(sb->s_options);
1590 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1591 }
1592 EXPORT_SYMBOL(save_mount_options);
1593
1594 void replace_mount_options(struct super_block *sb, char *options)
1595 {
1596 char *old = sb->s_options;
1597 rcu_assign_pointer(sb->s_options, options);
1598 if (old) {
1599 synchronize_rcu();
1600 kfree(old);
1601 }
1602 }
1603 EXPORT_SYMBOL(replace_mount_options);
1604
1605 #ifdef CONFIG_PROC_FS
1606 /* iterator; we want it to have access to namespace_sem, thus here... */
1607 static void *m_start(struct seq_file *m, loff_t *pos)
1608 {
1609 struct proc_mounts *p = m->private;
1610
1611 down_read(&namespace_sem);
1612 if (p->cached_event == p->ns->event) {
1613 void *v = p->cached_mount;
1614 if (*pos == p->cached_index)
1615 return v;
1616 if (*pos == p->cached_index + 1) {
1617 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1618 return p->cached_mount = v;
1619 }
1620 }
1621
1622 p->cached_event = p->ns->event;
1623 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1624 p->cached_index = *pos;
1625 return p->cached_mount;
1626 }
1627
1628 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1629 {
1630 struct proc_mounts *p = m->private;
1631
1632 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1633 p->cached_index = *pos;
1634 return p->cached_mount;
1635 }
1636
1637 static void m_stop(struct seq_file *m, void *v)
1638 {
1639 up_read(&namespace_sem);
1640 }
1641
1642 static int m_show(struct seq_file *m, void *v)
1643 {
1644 struct proc_mounts *p = m->private;
1645 struct mount *r = list_entry(v, struct mount, mnt_list);
1646 #ifdef CONFIG_RKP_NS_PROT
1647 return p->show(m, r->mnt);
1648 #else
1649 return p->show(m, &r->mnt);
1650 #endif
1651 }
1652
1653 const struct seq_operations mounts_op = {
1654 .start = m_start,
1655 .next = m_next,
1656 .stop = m_stop,
1657 .show = m_show,
1658 };
1659 #endif /* CONFIG_PROC_FS */
1660
1661 /**
1662 * may_umount_tree - check if a mount tree is busy
1663 * @mnt: root of mount tree
1664 *
1665 * This is called to check if a tree of mounts has any
1666 * open files, pwds, chroots or sub mounts that are
1667 * busy.
1668 */
1669 int may_umount_tree(struct vfsmount *m)
1670 {
1671 struct mount *mnt = real_mount(m);
1672 int actual_refs = 0;
1673 int minimum_refs = 0;
1674 struct mount *p;
1675 BUG_ON(!m);
1676
1677 /* write lock needed for mnt_get_count */
1678 lock_mount_hash();
1679 for (p = mnt; p; p = next_mnt(p, mnt)) {
1680 actual_refs += mnt_get_count(p);
1681 minimum_refs += 2;
1682 }
1683 unlock_mount_hash();
1684
1685 if (actual_refs > minimum_refs)
1686 return 0;
1687
1688 return 1;
1689 }
1690
1691 EXPORT_SYMBOL(may_umount_tree);
1692
1693 /**
1694 * may_umount - check if a mount point is busy
1695 * @mnt: root of mount
1696 *
1697 * This is called to check if a mount point has any
1698 * open files, pwds, chroots or sub mounts. If the
1699 * mount has sub mounts this will return busy
1700 * regardless of whether the sub mounts are busy.
1701 *
1702 * Doesn't take quota and stuff into account. IOW, in some cases it will
1703 * give false negatives. The main reason why it's here is that we need
1704 * a non-destructive way to look for easily umountable filesystems.
1705 */
1706 int may_umount(struct vfsmount *mnt)
1707 {
1708 int ret = 1;
1709 down_read(&namespace_sem);
1710 lock_mount_hash();
1711 if (propagate_mount_busy(real_mount(mnt), 2))
1712 ret = 0;
1713 unlock_mount_hash();
1714 up_read(&namespace_sem);
1715 return ret;
1716 }
1717
1718 EXPORT_SYMBOL(may_umount);
1719
1720 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1721
1722 static void namespace_unlock(void)
1723 {
1724 struct hlist_head head;
1725
1726 hlist_move_list(&unmounted, &head);
1727
1728 up_write(&namespace_sem);
1729
1730 if (likely(hlist_empty(&head)))
1731 return;
1732
1733 synchronize_rcu();
1734
1735 group_pin_kill(&head);
1736 }
1737
1738 static inline void namespace_lock(void)
1739 {
1740 down_write(&namespace_sem);
1741 }
1742
1743 enum umount_tree_flags {
1744 UMOUNT_SYNC = 1,
1745 UMOUNT_PROPAGATE = 2,
1746 UMOUNT_CONNECTED = 4,
1747 };
1748
1749 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1750 {
1751 /* Leaving mounts connected is only valid for lazy umounts */
1752 if (how & UMOUNT_SYNC)
1753 return true;
1754
1755 /* A mount without a parent has nothing to be connected to */
1756 if (!mnt_has_parent(mnt))
1757 return true;
1758
1759 /* Because the reference counting rules change when mounts are
1760 * unmounted and connected, umounted mounts may not be
1761 * connected to mounted mounts.
1762 */
1763 #ifdef CONFIG_RKP_NS_PROT
1764 if (!(mnt->mnt_parent->mnt->mnt_flags & MNT_UMOUNT))
1765 #else
1766 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1767 #endif
1768 return true;
1769
1770 /* Has it been requested that the mount remain connected? */
1771 if (how & UMOUNT_CONNECTED)
1772 return false;
1773
1774 /* Is the mount locked such that it needs to remain connected? */
1775 if (IS_MNT_LOCKED(mnt))
1776 return false;
1777
1778 /* By default disconnect the mount */
1779 return true;
1780 }
1781
1782 /*
1783 * mount_lock must be held
1784 * namespace_sem must be held for write
1785 */
1786 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1787 {
1788 LIST_HEAD(tmp_list);
1789 struct mount *p;
1790
1791 if (how & UMOUNT_PROPAGATE)
1792 propagate_mount_unlock(mnt);
1793
1794 /* Gather the mounts to umount */
1795 for (p = mnt; p; p = next_mnt(p, mnt)) {
1796
1797 #ifdef CONFIG_RKP_NS_PROT
1798 rkp_set_mnt_flags(p->mnt,MNT_UMOUNT);
1799 #else
1800 p->mnt.mnt_flags |= MNT_UMOUNT;
1801 #endif
1802 list_move(&p->mnt_list, &tmp_list);
1803 }
1804
1805 /* Hide the mounts from mnt_mounts */
1806 list_for_each_entry(p, &tmp_list, mnt_list) {
1807 list_del_init(&p->mnt_child);
1808 }
1809
1810 /* Add propogated mounts to the tmp_list */
1811 if (how & UMOUNT_PROPAGATE)
1812 propagate_umount(&tmp_list);
1813
1814 while (!list_empty(&tmp_list)) {
1815 struct mnt_namespace *ns;
1816 bool disconnect;
1817 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1818 list_del_init(&p->mnt_expire);
1819 list_del_init(&p->mnt_list);
1820 ns = p->mnt_ns;
1821 if (ns) {
1822 ns->mounts--;
1823 __touch_mnt_namespace(ns);
1824 }
1825 p->mnt_ns = NULL;
1826 if (how & UMOUNT_SYNC)
1827 #ifdef CONFIG_RKP_NS_PROT
1828 rkp_set_mnt_flags(p->mnt,MNT_SYNC_UMOUNT);
1829 #else
1830 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1831 #endif
1832 disconnect = disconnect_mount(p, how);
1833
1834 #ifdef CONFIG_RKP_NS_PROT
1835 pin_insert_group(&p->mnt_umount, p->mnt_parent->mnt,
1836 #else
1837 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1838 #endif
1839 disconnect ? &unmounted : NULL);
1840 if (mnt_has_parent(p)) {
1841 mnt_add_count(p->mnt_parent, -1);
1842 if (!disconnect) {
1843 /* Don't forget about p */
1844 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1845 } else {
1846 umount_mnt(p);
1847 }
1848 }
1849 change_mnt_propagation(p, MS_PRIVATE);
1850 }
1851 }
1852
1853 static void shrink_submounts(struct mount *mnt);
1854
1855 static int do_umount(struct mount *mnt, int flags)
1856 {
1857 #ifdef CONFIG_RKP_NS_PROT
1858 struct super_block *sb = mnt->mnt->mnt_sb;
1859 #else
1860 struct super_block *sb = mnt->mnt.mnt_sb;
1861 #endif
1862 int retval;
1863
1864 #ifdef CONFIG_RKP_NS_PROT
1865 retval = security_sb_umount(mnt->mnt, flags);
1866 #else
1867 retval = security_sb_umount(&mnt->mnt, flags);
1868 #endif
1869 if (retval)
1870 return retval;
1871
1872 /*
1873 * Allow userspace to request a mountpoint be expired rather than
1874 * unmounting unconditionally. Unmount only happens if:
1875 * (1) the mark is already set (the mark is cleared by mntput())
1876 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1877 */
1878 if (flags & MNT_EXPIRE) {
1879 #ifdef CONFIG_RKP_NS_PROT
1880 if (mnt->mnt == current->fs->root.mnt ||
1881 #else
1882 if (&mnt->mnt == current->fs->root.mnt ||
1883 #endif
1884 flags & (MNT_FORCE | MNT_DETACH))
1885 return -EINVAL;
1886
1887 /*
1888 * probably don't strictly need the lock here if we examined
1889 * all race cases, but it's a slowpath.
1890 */
1891 lock_mount_hash();
1892 if (mnt_get_count(mnt) != 2) {
1893 unlock_mount_hash();
1894 return -EBUSY;
1895 }
1896 unlock_mount_hash();
1897
1898 if (!xchg(&mnt->mnt_expiry_mark, 1))
1899 return -EAGAIN;
1900 }
1901
1902 /*
1903 * If we may have to abort operations to get out of this
1904 * mount, and they will themselves hold resources we must
1905 * allow the fs to do things. In the Unix tradition of
1906 * 'Gee thats tricky lets do it in userspace' the umount_begin
1907 * might fail to complete on the first run through as other tasks
1908 * must return, and the like. Thats for the mount program to worry
1909 * about for the moment.
1910 */
1911
1912 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1913 sb->s_op->umount_begin(sb);
1914 }
1915
1916 /*
1917 * No sense to grab the lock for this test, but test itself looks
1918 * somewhat bogus. Suggestions for better replacement?
1919 * Ho-hum... In principle, we might treat that as umount + switch
1920 * to rootfs. GC would eventually take care of the old vfsmount.
1921 * Actually it makes sense, especially if rootfs would contain a
1922 * /reboot - static binary that would close all descriptors and
1923 * call reboot(9). Then init(8) could umount root and exec /reboot.
1924 */
1925 #ifdef CONFIG_RKP_NS_PROT
1926 if (mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1927 #else
1928 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1929 #endif
1930 /*
1931 * Special case for "unmounting" root ...
1932 * we just try to remount it readonly.
1933 */
1934 if (!capable(CAP_SYS_ADMIN))
1935 return -EPERM;
1936 down_write(&sb->s_umount);
1937 if (!(sb->s_flags & MS_RDONLY))
1938 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1939 up_write(&sb->s_umount);
1940 return retval;
1941 }
1942
1943 namespace_lock();
1944 lock_mount_hash();
1945 event++;
1946
1947 if (flags & MNT_DETACH) {
1948 if (!list_empty(&mnt->mnt_list))
1949 umount_tree(mnt, UMOUNT_PROPAGATE);
1950 retval = 0;
1951 } else {
1952 shrink_submounts(mnt);
1953 retval = -EBUSY;
1954 if (!propagate_mount_busy(mnt, 2)) {
1955 if (!list_empty(&mnt->mnt_list))
1956 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1957 retval = 0;
1958 }
1959 }
1960 unlock_mount_hash();
1961 namespace_unlock();
1962 return retval;
1963 }
1964
1965 /*
1966 * __detach_mounts - lazily unmount all mounts on the specified dentry
1967 *
1968 * During unlink, rmdir, and d_drop it is possible to loose the path
1969 * to an existing mountpoint, and wind up leaking the mount.
1970 * detach_mounts allows lazily unmounting those mounts instead of
1971 * leaking them.
1972 *
1973 * The caller may hold dentry->d_inode->i_mutex.
1974 */
1975 void __detach_mounts(struct dentry *dentry)
1976 {
1977 struct mountpoint *mp;
1978 struct mount *mnt;
1979
1980 namespace_lock();
1981 lock_mount_hash();
1982 mp = lookup_mountpoint(dentry);
1983 if (IS_ERR_OR_NULL(mp))
1984 goto out_unlock;
1985
1986 event++;
1987 while (!hlist_empty(&mp->m_list)) {
1988 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1989 #ifdef CONFIG_RKP_NS_PROT
1990 if (mnt->mnt->mnt_flags & MNT_UMOUNT) {
1991 #else
1992 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1993 #endif
1994 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1995 umount_mnt(mnt);
1996 }
1997 else umount_tree(mnt, UMOUNT_CONNECTED);
1998 }
1999 put_mountpoint(mp);
2000 out_unlock:
2001 unlock_mount_hash();
2002 namespace_unlock();
2003 }
2004
2005 /*
2006 * Is the caller allowed to modify his namespace?
2007 */
2008 static inline bool may_mount(void)
2009 {
2010 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2011 }
2012
2013 /*
2014 * Now umount can handle mount points as well as block devices.
2015 * This is important for filesystems which use unnamed block devices.
2016 *
2017 * We now support a flag for forced unmount like the other 'big iron'
2018 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
2019 */
2020
2021 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2022 {
2023 struct path path;
2024 struct mount *mnt;
2025 int retval;
2026 int lookup_flags = 0, stlog = 0;
2027
2028 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2029 return -EINVAL;
2030
2031 if (!may_mount())
2032 return -EPERM;
2033
2034 if (!(flags & UMOUNT_NOFOLLOW))
2035 lookup_flags |= LOOKUP_FOLLOW;
2036
2037 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
2038 if (retval)
2039 goto out;
2040 mnt = real_mount(path.mnt);
2041 retval = -EINVAL;
2042 if (path.dentry != path.mnt->mnt_root)
2043 goto dput_and_out;
2044 if (!check_mnt(mnt))
2045 goto dput_and_out;
2046
2047 #ifdef CONFIG_RKP_NS_PROT
2048 if (mnt->mnt->mnt_flags & MNT_LOCKED)
2049 #else
2050 if (mnt->mnt.mnt_flags & MNT_LOCKED)
2051 #endif
2052 goto dput_and_out;
2053 retval = -EPERM;
2054 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2055 goto dput_and_out;
2056
2057 stlog = sys_umount_trace_start(mnt, flags);
2058 retval = do_umount(mnt, flags);
2059 dput_and_out:
2060 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2061 dput(path.dentry);
2062 mntput_no_expire(mnt);
2063 sys_umount_trace_end(mnt, stlog);
2064 out:
2065 return retval;
2066 }
2067
2068 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2069
2070 /*
2071 * The 2.0 compatible umount. No flags.
2072 */
2073 SYSCALL_DEFINE1(oldumount, char __user *, name)
2074 {
2075 return sys_umount(name, 0);
2076 }
2077
2078 #endif
2079
2080 static bool is_mnt_ns_file(struct dentry *dentry)
2081 {
2082 /* Is this a proxy for a mount namespace? */
2083 return dentry->d_op == &ns_dentry_operations &&
2084 dentry->d_fsdata == &mntns_operations;
2085 }
2086
2087 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
2088 {
2089 return container_of(ns, struct mnt_namespace, ns);
2090 }
2091
2092 static bool mnt_ns_loop(struct dentry *dentry)
2093 {
2094 /* Could bind mounting the mount namespace inode cause a
2095 * mount namespace loop?
2096 */
2097 struct mnt_namespace *mnt_ns;
2098 if (!is_mnt_ns_file(dentry))
2099 return false;
2100
2101 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2102 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2103 }
2104
2105 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
2106 int flag)
2107 {
2108 struct mount *res, *p, *q, *r, *parent;
2109
2110 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
2111 return ERR_PTR(-EINVAL);
2112
2113 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2114 return ERR_PTR(-EINVAL);
2115
2116 res = q = clone_mnt(mnt, dentry, flag);
2117 if (IS_ERR(q))
2118 return q;
2119
2120 q->mnt_mountpoint = mnt->mnt_mountpoint;
2121
2122 p = mnt;
2123 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
2124 struct mount *s;
2125 if (!is_subdir(r->mnt_mountpoint, dentry))
2126 continue;
2127
2128 for (s = r; s; s = next_mnt(s, r)) {
2129 if (!(flag & CL_COPY_UNBINDABLE) &&
2130 IS_MNT_UNBINDABLE(s)) {
2131 s = skip_mnt_tree(s);
2132 continue;
2133 }
2134 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2135 #ifdef CONFIG_RKP_NS_PROT
2136 is_mnt_ns_file(s->mnt->mnt_root)) {
2137 #else
2138 is_mnt_ns_file(s->mnt.mnt_root)) {
2139 #endif
2140 s = skip_mnt_tree(s);
2141 continue;
2142 }
2143 while (p != s->mnt_parent) {
2144 p = p->mnt_parent;
2145 q = q->mnt_parent;
2146 }
2147 p = s;
2148 parent = q;
2149 #ifdef CONFIG_RKP_NS_PROT
2150 q = clone_mnt(p, p->mnt->mnt_root, flag);
2151 #else
2152 q = clone_mnt(p, p->mnt.mnt_root, flag);
2153 #endif
2154 if (IS_ERR(q))
2155 goto out;
2156 lock_mount_hash();
2157 list_add_tail(&q->mnt_list, &res->mnt_list);
2158 attach_mnt(q, parent, p->mnt_mp);
2159 unlock_mount_hash();
2160 }
2161 }
2162 return res;
2163 out:
2164 if (res) {
2165 lock_mount_hash();
2166 umount_tree(res, UMOUNT_SYNC);
2167 unlock_mount_hash();
2168 }
2169 return q;
2170 }
2171
2172 /* Caller should check returned pointer for errors */
2173
2174 struct vfsmount *collect_mounts(struct path *path)
2175 {
2176 struct mount *tree;
2177 namespace_lock();
2178 if (!check_mnt(real_mount(path->mnt)))
2179 tree = ERR_PTR(-EINVAL);
2180 else
2181 tree = copy_tree(real_mount(path->mnt), path->dentry,
2182 CL_COPY_ALL | CL_PRIVATE);
2183 namespace_unlock();
2184 if (IS_ERR(tree))
2185 return ERR_CAST(tree);
2186 #ifdef CONFIG_RKP_NS_PROT
2187 return tree->mnt;
2188 #else
2189 return &tree->mnt;
2190 #endif
2191 }
2192
2193 void drop_collected_mounts(struct vfsmount *mnt)
2194 {
2195 namespace_lock();
2196 lock_mount_hash();
2197 umount_tree(real_mount(mnt), UMOUNT_SYNC);
2198 unlock_mount_hash();
2199 namespace_unlock();
2200 }
2201
2202 /**
2203 * clone_private_mount - create a private clone of a path
2204 *
2205 * This creates a new vfsmount, which will be the clone of @path. The new will
2206 * not be attached anywhere in the namespace and will be private (i.e. changes
2207 * to the originating mount won't be propagated into this).
2208 *
2209 * Release with mntput().
2210 */
2211 struct vfsmount *clone_private_mount(struct path *path)
2212 {
2213 struct mount *old_mnt = real_mount(path->mnt);
2214 struct mount *new_mnt;
2215
2216 if (IS_MNT_UNBINDABLE(old_mnt))
2217 return ERR_PTR(-EINVAL);
2218
2219 down_read(&namespace_sem);
2220 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2221 up_read(&namespace_sem);
2222 if (IS_ERR(new_mnt))
2223 return ERR_CAST(new_mnt);
2224
2225 #ifdef CONFIG_RKP_NS_PROT
2226 return new_mnt->mnt;
2227 #else
2228 return &new_mnt->mnt;
2229 #endif
2230 }
2231 EXPORT_SYMBOL_GPL(clone_private_mount);
2232
2233 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2234 struct vfsmount *root)
2235 {
2236 struct mount *mnt;
2237 int res = f(root, arg);
2238 if (res)
2239 return res;
2240 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2241 #ifdef CONFIG_RKP_NS_PROT
2242 res = f(mnt->mnt, arg);
2243 #else
2244 res = f(&mnt->mnt, arg);
2245 #endif
2246 if (res)
2247 return res;
2248 }
2249 return 0;
2250 }
2251
2252 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2253 {
2254 struct mount *p;
2255
2256 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2257 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2258 mnt_release_group_id(p);
2259 }
2260 }
2261
2262 static int invent_group_ids(struct mount *mnt, bool recurse)
2263 {
2264 struct mount *p;
2265
2266 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2267 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2268 int err = mnt_alloc_group_id(p);
2269 if (err) {
2270 cleanup_group_ids(mnt, p);
2271 return err;
2272 }
2273 }
2274 }
2275
2276 return 0;
2277 }
2278
2279 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2280 {
2281 unsigned int max = READ_ONCE(sysctl_mount_max);
2282 unsigned int mounts = 0, old, pending, sum;
2283 struct mount *p;
2284
2285 for (p = mnt; p; p = next_mnt(p, mnt))
2286 mounts++;
2287
2288 old = ns->mounts;
2289 pending = ns->pending_mounts;
2290 sum = old + pending;
2291 if ((old > sum) ||
2292 (pending > sum) ||
2293 (max < sum) ||
2294 (mounts > (max - sum)))
2295 return -ENOSPC;
2296
2297 ns->pending_mounts = pending + mounts;
2298 return 0;
2299 }
2300
2301 /*
2302 * @source_mnt : mount tree to be attached
2303 * @nd : place the mount tree @source_mnt is attached
2304 * @parent_nd : if non-null, detach the source_mnt from its parent and
2305 * store the parent mount and mountpoint dentry.
2306 * (done when source_mnt is moved)
2307 *
2308 * NOTE: in the table below explains the semantics when a source mount
2309 * of a given type is attached to a destination mount of a given type.
2310 * ---------------------------------------------------------------------------
2311 * | BIND MOUNT OPERATION |
2312 * |**************************************************************************
2313 * | source-->| shared | private | slave | unbindable |
2314 * | dest | | | | |
2315 * | | | | | | |
2316 * | v | | | | |
2317 * |**************************************************************************
2318 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2319 * | | | | | |
2320 * |non-shared| shared (+) | private | slave (*) | invalid |
2321 * ***************************************************************************
2322 * A bind operation clones the source mount and mounts the clone on the
2323 * destination mount.
2324 *
2325 * (++) the cloned mount is propagated to all the mounts in the propagation
2326 * tree of the destination mount and the cloned mount is added to
2327 * the peer group of the source mount.
2328 * (+) the cloned mount is created under the destination mount and is marked
2329 * as shared. The cloned mount is added to the peer group of the source
2330 * mount.
2331 * (+++) the mount is propagated to all the mounts in the propagation tree
2332 * of the destination mount and the cloned mount is made slave
2333 * of the same master as that of the source mount. The cloned mount
2334 * is marked as 'shared and slave'.
2335 * (*) the cloned mount is made a slave of the same master as that of the
2336 * source mount.
2337 *
2338 * ---------------------------------------------------------------------------
2339 * | MOVE MOUNT OPERATION |
2340 * |**************************************************************************
2341 * | source-->| shared | private | slave | unbindable |
2342 * | dest | | | | |
2343 * | | | | | | |
2344 * | v | | | | |
2345 * |**************************************************************************
2346 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2347 * | | | | | |
2348 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2349 * ***************************************************************************
2350 *
2351 * (+) the mount is moved to the destination. And is then propagated to
2352 * all the mounts in the propagation tree of the destination mount.
2353 * (+*) the mount is moved to the destination.
2354 * (+++) the mount is moved to the destination and is then propagated to
2355 * all the mounts belonging to the destination mount's propagation tree.
2356 * the mount is marked as 'shared and slave'.
2357 * (*) the mount continues to be a slave at the new location.
2358 *
2359 * if the source mount is a tree, the operations explained above is
2360 * applied to each mount in the tree.
2361 * Must be called without spinlocks held, since this function can sleep
2362 * in allocations.
2363 */
2364 static int attach_recursive_mnt(struct mount *source_mnt,
2365 struct mount *dest_mnt,
2366 struct mountpoint *dest_mp,
2367 struct path *parent_path)
2368 {
2369 HLIST_HEAD(tree_list);
2370 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2371 struct mountpoint *smp;
2372 struct mount *child, *p;
2373 struct hlist_node *n;
2374 int err;
2375
2376 /* Preallocate a mountpoint in case the new mounts need
2377 * to be tucked under other mounts.
2378 */
2379 #ifdef CONFIG_RKP_NS_PROT
2380 smp = get_mountpoint(source_mnt->mnt->mnt_root);
2381 #else
2382 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2383 #endif
2384 if (IS_ERR(smp))
2385 return PTR_ERR(smp);
2386
2387 /* Is there space to add these mounts to the mount namespace? */
2388 if (!parent_path) {
2389 err = count_mounts(ns, source_mnt);
2390 if (err)
2391 goto out;
2392 }
2393
2394 if (IS_MNT_SHARED(dest_mnt)) {
2395 err = invent_group_ids(source_mnt, true);
2396 if (err)
2397 goto out;
2398 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2399 lock_mount_hash();
2400 if (err)
2401 goto out_cleanup_ids;
2402 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2403 set_mnt_shared(p);
2404 } else {
2405 lock_mount_hash();
2406 }
2407 if (parent_path) {
2408 detach_mnt(source_mnt, parent_path);
2409 attach_mnt(source_mnt, dest_mnt, dest_mp);
2410 touch_mnt_namespace(source_mnt->mnt_ns);
2411 } else {
2412 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2413 commit_tree(source_mnt);
2414 }
2415
2416 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2417 struct mount *q;
2418 hlist_del_init(&child->mnt_hash);
2419 #ifdef CONFIG_RKP_NS_PROT
2420 q = __lookup_mnt(child->mnt_parent->mnt,
2421 child->mnt_mountpoint);
2422 #else
2423 q = __lookup_mnt(&child->mnt_parent->mnt,
2424 child->mnt_mountpoint);
2425 #endif
2426 if (q)
2427 mnt_change_mountpoint(child, smp, q);
2428 commit_tree(child);
2429 }
2430 put_mountpoint(smp);
2431 unlock_mount_hash();
2432
2433 return 0;
2434
2435 out_cleanup_ids:
2436 while (!hlist_empty(&tree_list)) {
2437 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2438 child->mnt_parent->mnt_ns->pending_mounts = 0;
2439 umount_tree(child, UMOUNT_SYNC);
2440 }
2441 unlock_mount_hash();
2442 cleanup_group_ids(source_mnt, NULL);
2443 out:
2444 ns->pending_mounts = 0;
2445
2446 read_seqlock_excl(&mount_lock);
2447 put_mountpoint(smp);
2448 read_sequnlock_excl(&mount_lock);
2449
2450 return err;
2451 }
2452
2453 static struct mountpoint *lock_mount(struct path *path)
2454 {
2455 struct vfsmount *mnt;
2456 struct dentry *dentry = path->dentry;
2457 retry:
2458 mutex_lock(&dentry->d_inode->i_mutex);
2459 if (unlikely(cant_mount(dentry))) {
2460 mutex_unlock(&dentry->d_inode->i_mutex);
2461 return ERR_PTR(-ENOENT);
2462 }
2463 namespace_lock();
2464 mnt = lookup_mnt(path);
2465 if (likely(!mnt)) {
2466 struct mountpoint *mp = get_mountpoint(dentry);
2467 if (IS_ERR(mp)) {
2468 namespace_unlock();
2469 mutex_unlock(&dentry->d_inode->i_mutex);
2470 return mp;
2471 }
2472 return mp;
2473 }
2474 namespace_unlock();
2475 mutex_unlock(&path->dentry->d_inode->i_mutex);
2476 path_put(path);
2477 path->mnt = mnt;
2478 dentry = path->dentry = dget(mnt->mnt_root);
2479 goto retry;
2480 }
2481
2482 static void unlock_mount(struct mountpoint *where)
2483 {
2484 struct dentry *dentry = where->m_dentry;
2485
2486 read_seqlock_excl(&mount_lock);
2487 put_mountpoint(where);
2488 read_sequnlock_excl(&mount_lock);
2489
2490 namespace_unlock();
2491 mutex_unlock(&dentry->d_inode->i_mutex);
2492 }
2493
2494 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2495 {
2496 #ifdef CONFIG_RKP_NS_PROT
2497 if (mnt->mnt->mnt_sb->s_flags & MS_NOUSER)
2498 #else
2499 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2500 #endif
2501 return -EINVAL;
2502
2503 if (d_is_dir(mp->m_dentry) !=
2504 #ifdef CONFIG_RKP_NS_PROT
2505 d_is_dir(mnt->mnt->mnt_root))
2506 #else
2507 d_is_dir(mnt->mnt.mnt_root))
2508 #endif
2509 return -ENOTDIR;
2510
2511 return attach_recursive_mnt(mnt, p, mp, NULL);
2512 }
2513
2514 /*
2515 * Sanity check the flags to change_mnt_propagation.
2516 */
2517
2518 static int flags_to_propagation_type(int flags)
2519 {
2520 int type = flags & ~(MS_REC | MS_SILENT);
2521
2522 /* Fail if any non-propagation flags are set */
2523 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2524 return 0;
2525 /* Only one propagation flag should be set */
2526 if (!is_power_of_2(type))
2527 return 0;
2528 return type;
2529 }
2530
2531 /*
2532 * recursively change the type of the mountpoint.
2533 */
2534 static int do_change_type(struct path *path, int flag)
2535 {
2536 struct mount *m;
2537 struct mount *mnt = real_mount(path->mnt);
2538 int recurse = flag & MS_REC;
2539 int type;
2540 int err = 0;
2541
2542 if (path->dentry != path->mnt->mnt_root)
2543 return -EINVAL;
2544
2545 type = flags_to_propagation_type(flag);
2546 if (!type)
2547 return -EINVAL;
2548
2549 namespace_lock();
2550 if (type == MS_SHARED) {
2551 err = invent_group_ids(mnt, recurse);
2552 if (err)
2553 goto out_unlock;
2554 }
2555
2556 lock_mount_hash();
2557 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2558 change_mnt_propagation(m, type);
2559 unlock_mount_hash();
2560
2561 out_unlock:
2562 namespace_unlock();
2563 return err;
2564 }
2565
2566 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2567 {
2568 struct mount *child;
2569 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2570 if (!is_subdir(child->mnt_mountpoint, dentry))
2571 continue;
2572
2573 #ifdef CONFIG_RKP_NS_PROT
2574 if (child->mnt->mnt_flags & MNT_LOCKED)
2575 #else
2576 if (child->mnt.mnt_flags & MNT_LOCKED)
2577 #endif
2578 return true;
2579 }
2580 return false;
2581 }
2582
2583 /*
2584 * do loopback mount.
2585 */
2586 static int do_loopback(struct path *path, const char *old_name,
2587 int recurse)
2588 {
2589 struct path old_path;
2590 struct mount *mnt = NULL, *old, *parent;
2591 struct mountpoint *mp;
2592 int err;
2593 if (!old_name || !*old_name)
2594 return -EINVAL;
2595 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2596 if (err)
2597 return err;
2598
2599 err = -EINVAL;
2600 if (mnt_ns_loop(old_path.dentry))
2601 goto out;
2602
2603 mp = lock_mount(path);
2604 err = PTR_ERR(mp);
2605 if (IS_ERR(mp))
2606 goto out;
2607
2608 old = real_mount(old_path.mnt);
2609 parent = real_mount(path->mnt);
2610
2611 err = -EINVAL;
2612 if (IS_MNT_UNBINDABLE(old))
2613 goto out2;
2614
2615 if (!check_mnt(parent))
2616 goto out2;
2617
2618 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2619 goto out2;
2620
2621 if (!recurse && has_locked_children(old, old_path.dentry))
2622 goto out2;
2623
2624 if (recurse)
2625 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2626 else
2627 mnt = clone_mnt(old, old_path.dentry, 0);
2628
2629 if (IS_ERR(mnt)) {
2630 err = PTR_ERR(mnt);
2631 goto out2;
2632 }
2633
2634 #ifdef CONFIG_RKP_NS_PROT
2635 rkp_reset_mnt_flags(mnt->mnt,MNT_LOCKED);
2636 #else
2637 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2638 #endif
2639 err = graft_tree(mnt, parent, mp);
2640 if (err) {
2641 lock_mount_hash();
2642 umount_tree(mnt, UMOUNT_SYNC);
2643 unlock_mount_hash();
2644 }
2645 out2:
2646 unlock_mount(mp);
2647 out:
2648 path_put(&old_path);
2649 return err;
2650 }
2651
2652 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2653 {
2654 int error = 0;
2655 int readonly_request = 0;
2656
2657 if (ms_flags & MS_RDONLY)
2658 readonly_request = 1;
2659 if (readonly_request == __mnt_is_readonly(mnt))
2660 return 0;
2661
2662 if (readonly_request)
2663 error = mnt_make_readonly(real_mount(mnt));
2664 else
2665 __mnt_unmake_readonly(real_mount(mnt));
2666 return error;
2667 }
2668
2669 /*
2670 * change filesystem flags. dir should be a physical root of filesystem.
2671 * If you've mounted a non-root directory somewhere and want to do remount
2672 * on it - tough luck.
2673 */
2674 static int do_remount(struct path *path, int flags, int mnt_flags,
2675 void *data)
2676 {
2677 int err;
2678 struct super_block *sb = path->mnt->mnt_sb;
2679 struct mount *mnt = real_mount(path->mnt);
2680
2681 if (!check_mnt(mnt))
2682 return -EINVAL;
2683
2684 if (path->dentry != path->mnt->mnt_root)
2685 return -EINVAL;
2686
2687 /* Don't allow changing of locked mnt flags.
2688 *
2689 * No locks need to be held here while testing the various
2690 * MNT_LOCK flags because those flags can never be cleared
2691 * once they are set.
2692 */
2693 #ifdef CONFIG_RKP_NS_PROT
2694 if ((mnt->mnt->mnt_flags & MNT_LOCK_READONLY) &&
2695 #else
2696 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2697 #endif
2698 !(mnt_flags & MNT_READONLY)) {
2699 return -EPERM;
2700 }
2701 #ifdef CONFIG_RKP_NS_PROT
2702 if ((mnt->mnt->mnt_flags & MNT_LOCK_NODEV) &&
2703 #else
2704 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2705 #endif
2706 !(mnt_flags & MNT_NODEV)) {
2707 /* Was the nodev implicitly added in mount? */
2708 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2709 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2710 mnt_flags |= MNT_NODEV;
2711 } else {
2712 return -EPERM;
2713 }
2714 }
2715
2716 #ifdef CONFIG_RKP_NS_PROT
2717 if ((mnt->mnt->mnt_flags & MNT_LOCK_NOSUID) &&
2718 #else
2719 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2720 #endif
2721 !(mnt_flags & MNT_NOSUID)) {
2722 return -EPERM;
2723 }
2724 #ifdef CONFIG_RKP_NS_PROT
2725 if ((mnt->mnt->mnt_flags & MNT_LOCK_NOEXEC) &&
2726 #else
2727 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2728 #endif
2729 !(mnt_flags & MNT_NOEXEC)) {
2730 return -EPERM;
2731 }
2732 #ifdef CONFIG_RKP_NS_PROT
2733 if ((mnt->mnt->mnt_flags & MNT_LOCK_ATIME) &&
2734 ((mnt->mnt->mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2735 #else
2736 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2737 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2738 #endif
2739 return -EPERM;
2740 }
2741
2742 err = security_sb_remount(sb, data);
2743 if (err)
2744 return err;
2745
2746 down_write(&sb->s_umount);
2747 if (flags & MS_BIND)
2748 err = change_mount_flags(path->mnt, flags);
2749 else if (!capable(CAP_SYS_ADMIN))
2750 err = -EPERM;
2751 else {
2752 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
2753 namespace_lock();
2754 lock_mount_hash();
2755 propagate_remount(mnt);
2756 unlock_mount_hash();
2757 namespace_unlock();
2758 }
2759 if (!err) {
2760 lock_mount_hash();
2761 #ifdef CONFIG_RKP_NS_PROT
2762 mnt_flags |= mnt->mnt->mnt_flags & ~MNT_USER_SETTABLE_MASK;
2763 rkp_assign_mnt_flags(mnt->mnt,mnt_flags);
2764 #else
2765 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2766 mnt->mnt.mnt_flags = mnt_flags;
2767 #endif
2768 touch_mnt_namespace(mnt->mnt_ns);
2769 unlock_mount_hash();
2770 }
2771 up_write(&sb->s_umount);
2772 return err;
2773 }
2774
2775 static inline int tree_contains_unbindable(struct mount *mnt)
2776 {
2777 struct mount *p;
2778 for (p = mnt; p; p = next_mnt(p, mnt)) {
2779 if (IS_MNT_UNBINDABLE(p))
2780 return 1;
2781 }
2782 return 0;
2783 }
2784
2785 static int do_move_mount(struct path *path, const char *old_name)
2786 {
2787 struct path old_path, parent_path;
2788 struct mount *p;
2789 struct mount *old;
2790 struct mountpoint *mp;
2791 int err;
2792 if (!old_name || !*old_name)
2793 return -EINVAL;
2794 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2795 if (err)
2796 return err;
2797
2798 mp = lock_mount(path);
2799 err = PTR_ERR(mp);
2800 if (IS_ERR(mp))
2801 goto out;
2802
2803 old = real_mount(old_path.mnt);
2804 p = real_mount(path->mnt);
2805
2806 err = -EINVAL;
2807 if (!check_mnt(p) || !check_mnt(old))
2808 goto out1;
2809
2810 #ifdef CONFIG_RKP_NS_PROT
2811 if (old->mnt->mnt_flags & MNT_LOCKED)
2812 goto out1;
2813 #else
2814 if (old->mnt.mnt_flags & MNT_LOCKED)
2815 goto out1;
2816 #endif
2817 err = -EINVAL;
2818 if (old_path.dentry != old_path.mnt->mnt_root)
2819 goto out1;
2820
2821 if (!mnt_has_parent(old))
2822 goto out1;
2823
2824 if (d_is_dir(path->dentry) !=
2825 d_is_dir(old_path.dentry))
2826 goto out1;
2827 /*
2828 * Don't move a mount residing in a shared parent.
2829 */
2830 if (IS_MNT_SHARED(old->mnt_parent))
2831 goto out1;
2832 /*
2833 * Don't move a mount tree containing unbindable mounts to a destination
2834 * mount which is shared.
2835 */
2836 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2837 goto out1;
2838 err = -ELOOP;
2839 for (; mnt_has_parent(p); p = p->mnt_parent)
2840 if (p == old)
2841 goto out1;
2842
2843 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2844 if (err)
2845 goto out1;
2846
2847 /* if the mount is moved, it should no longer be expire
2848 * automatically */
2849 list_del_init(&old->mnt_expire);
2850 out1:
2851 unlock_mount(mp);
2852 out:
2853 if (!err)
2854 path_put(&parent_path);
2855 path_put(&old_path);
2856 return err;
2857 }
2858
2859 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2860 {
2861 int err;
2862 const char *subtype = strchr(fstype, '.');
2863 if (subtype) {
2864 subtype++;
2865 err = -EINVAL;
2866 if (!subtype[0])
2867 goto err;
2868 } else
2869 subtype = "";
2870
2871 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2872 err = -ENOMEM;
2873 if (!mnt->mnt_sb->s_subtype)
2874 goto err;
2875 return mnt;
2876
2877 err:
2878 mntput(mnt);
2879 return ERR_PTR(err);
2880 }
2881
2882 /*
2883 * add a mount into a namespace's mount tree
2884 */
2885 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2886 {
2887 struct mountpoint *mp;
2888 struct mount *parent;
2889 int err;
2890
2891 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2892
2893 mp = lock_mount(path);
2894 if (IS_ERR(mp))
2895 return PTR_ERR(mp);
2896
2897 parent = real_mount(path->mnt);
2898 err = -EINVAL;
2899 if (unlikely(!check_mnt(parent))) {
2900 /* that's acceptable only for automounts done in private ns */
2901 if (!(mnt_flags & MNT_SHRINKABLE))
2902 goto unlock;
2903 /* ... and for those we'd better have mountpoint still alive */
2904 if (!parent->mnt_ns)
2905 goto unlock;
2906 }
2907
2908 /* Refuse the same filesystem on the same mount point */
2909 err = -EBUSY;
2910 #ifdef CONFIG_RKP_NS_PROT
2911 if (path->mnt->mnt_sb == newmnt->mnt->mnt_sb &&
2912 #else
2913 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2914 #endif
2915 path->mnt->mnt_root == path->dentry)
2916 goto unlock;
2917
2918 err = -EINVAL;
2919 #ifdef CONFIG_RKP_NS_PROT
2920 if (d_is_symlink(newmnt->mnt->mnt_root))
2921 #else
2922 if (d_is_symlink(newmnt->mnt.mnt_root))
2923 #endif
2924 goto unlock;
2925
2926 #ifdef CONFIG_RKP_NS_PROT
2927 rkp_assign_mnt_flags(newmnt->mnt,mnt_flags);
2928 #else
2929 newmnt->mnt.mnt_flags = mnt_flags;
2930 #endif
2931 err = graft_tree(newmnt, parent, mp);
2932
2933 unlock:
2934 unlock_mount(mp);
2935 return err;
2936 }
2937
2938 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2939
2940 /*
2941 * create a new mount for userspace and request it to be added into the
2942 * namespace's tree
2943 */
2944 #ifdef CONFIG_RKP_NS_PROT
2945 static int do_new_mount(const char __user *dir_name,struct path *path, const char *fstype, int flags,
2946 int mnt_flags, const char *name, void *data)
2947 #else
2948 static int do_new_mount(struct path *path, const char *fstype, int flags,
2949 int mnt_flags, const char *name, void *data)
2950 #endif
2951 {
2952 struct file_system_type *type;
2953 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2954 struct vfsmount *mnt;
2955 int err;
2956
2957 if (!fstype)
2958 return -EINVAL;
2959
2960 type = get_fs_type(fstype);
2961 if (!type)
2962 return -ENODEV;
2963
2964 if (user_ns != &init_user_ns) {
2965 /* Only in special cases allow devices from mounts
2966 * created outside the initial user namespace.
2967 */
2968 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2969 flags |= MS_NODEV;
2970 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2971 }
2972 if (type->fs_flags & FS_USERNS_VISIBLE) {
2973 if (!fs_fully_visible(type, &mnt_flags)) {
2974 put_filesystem(type);
2975 return -EPERM;
2976 }
2977 }
2978 }
2979
2980 mnt = vfs_kern_mount(type, flags, name, data);
2981 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2982 !mnt->mnt_sb->s_subtype)
2983 mnt = fs_set_subtype(mnt, fstype);
2984
2985 put_filesystem(type);
2986 if (IS_ERR(mnt))
2987 return PTR_ERR(mnt);
2988
2989 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2990 if (err)
2991 mntput(mnt);
2992 #ifdef CONFIG_RKP_NS_PROT
2993 if(!sys_sb)
2994 {
2995 char *mount_point;
2996 mount_point = copy_mount_string(dir_name);
2997 if(!strcmp(mount_point,"/system")) {
2998 rkp_call(RKP_CMDID(0x55),(u64)&sys_sb,(u64)mnt,0,0,0);
2999 }
3000 kfree(mount_point);
3001 }
3002
3003 #endif
3004 return err;
3005 }
3006
3007 int finish_automount(struct vfsmount *m, struct path *path)
3008 {
3009 struct mount *mnt = real_mount(m);
3010 int err;
3011 /* The new mount record should have at least 2 refs to prevent it being
3012 * expired before we get a chance to add it
3013 */
3014 BUG_ON(mnt_get_count(mnt) < 2);
3015
3016 if (m->mnt_sb == path->mnt->mnt_sb &&
3017 m->mnt_root == path->dentry) {
3018 err = -ELOOP;
3019 goto fail;
3020 }
3021
3022 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3023 if (!err)
3024 return 0;
3025 fail:
3026 /* remove m from any expiration list it may be on */
3027 if (!list_empty(&mnt->mnt_expire)) {
3028 namespace_lock();
3029 list_del_init(&mnt->mnt_expire);
3030 namespace_unlock();
3031 }
3032 mntput(m);
3033 mntput(m);
3034 return err;
3035 }
3036
3037 /**
3038 * mnt_set_expiry - Put a mount on an expiration list
3039 * @mnt: The mount to list.
3040 * @expiry_list: The list to add the mount to.
3041 */
3042 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3043 {
3044 namespace_lock();
3045
3046 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3047
3048 namespace_unlock();
3049 }
3050 EXPORT_SYMBOL(mnt_set_expiry);
3051
3052 /*
3053 * process a list of expirable mountpoints with the intent of discarding any
3054 * mountpoints that aren't in use and haven't been touched since last we came
3055 * here
3056 */
3057 void mark_mounts_for_expiry(struct list_head *mounts)
3058 {
3059 struct mount *mnt, *next;
3060 LIST_HEAD(graveyard);
3061
3062 if (list_empty(mounts))
3063 return;
3064
3065 namespace_lock();
3066 lock_mount_hash();
3067
3068 /* extract from the expiration list every vfsmount that matches the
3069 * following criteria:
3070 * - only referenced by its parent vfsmount
3071 * - still marked for expiry (marked on the last call here; marks are
3072 * cleared by mntput())
3073 */
3074 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3075 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3076 propagate_mount_busy(mnt, 1))
3077 continue;
3078 list_move(&mnt->mnt_expire, &graveyard);
3079 }
3080 while (!list_empty(&graveyard)) {
3081 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3082 touch_mnt_namespace(mnt->mnt_ns);
3083 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3084 }
3085 unlock_mount_hash();
3086 namespace_unlock();
3087 }
3088
3089 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3090
3091 /*
3092 * Ripoff of 'select_parent()'
3093 *
3094 * search the list of submounts for a given mountpoint, and move any
3095 * shrinkable submounts to the 'graveyard' list.
3096 */
3097 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3098 {
3099 struct mount *this_parent = parent;
3100 struct list_head *next;
3101 int found = 0;
3102
3103 repeat:
3104 next = this_parent->mnt_mounts.next;
3105 resume:
3106 while (next != &this_parent->mnt_mounts) {
3107 struct list_head *tmp = next;
3108 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3109
3110 next = tmp->next;
3111 #ifdef CONFIG_RKP_NS_PROT
3112 if (!(mnt->mnt->mnt_flags & MNT_SHRINKABLE))
3113 #else
3114 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3115 #endif
3116 continue;
3117 /*
3118 * Descend a level if the d_mounts list is non-empty.
3119 */
3120 if (!list_empty(&mnt->mnt_mounts)) {
3121 this_parent = mnt;
3122 goto repeat;
3123 }
3124
3125 if (!propagate_mount_busy(mnt, 1)) {
3126 list_move_tail(&mnt->mnt_expire, graveyard);
3127 found++;
3128 }
3129 }
3130 /*
3131 * All done at this level ... ascend and resume the search
3132 */
3133 if (this_parent != parent) {
3134 next = this_parent->mnt_child.next;
3135 this_parent = this_parent->mnt_parent;
3136 goto resume;
3137 }
3138 return found;
3139 }
3140
3141 /*
3142 * process a list of expirable mountpoints with the intent of discarding any
3143 * submounts of a specific parent mountpoint
3144 *
3145 * mount_lock must be held for write
3146 */
3147 static void shrink_submounts(struct mount *mnt)
3148 {
3149 LIST_HEAD(graveyard);
3150 struct mount *m;
3151
3152 /* extract submounts of 'mountpoint' from the expiration list */
3153 while (select_submounts(mnt, &graveyard)) {
3154 while (!list_empty(&graveyard)) {
3155 m = list_first_entry(&graveyard, struct mount,
3156 mnt_expire);
3157 touch_mnt_namespace(m->mnt_ns);
3158 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3159 }
3160 }
3161 }
3162
3163 /*
3164 * Some copy_from_user() implementations do not return the exact number of
3165 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
3166 * Note that this function differs from copy_from_user() in that it will oops
3167 * on bad values of `to', rather than returning a short copy.
3168 */
3169 static long exact_copy_from_user(void *to, const void __user * from,
3170 unsigned long n)
3171 {
3172 char *t = to;
3173 const char __user *f = from;
3174 char c;
3175
3176 if (!access_ok(VERIFY_READ, from, n))
3177 return n;
3178
3179 while (n) {
3180 if (__get_user(c, f)) {
3181 memset(t, 0, n);
3182 break;
3183 }
3184 *t++ = c;
3185 f++;
3186 n--;
3187 }
3188 return n;
3189 }
3190
3191 int copy_mount_options(const void __user * data, unsigned long *where)
3192 {
3193 int i;
3194 unsigned long page;
3195 unsigned long size;
3196
3197 *where = 0;
3198 if (!data)
3199 return 0;
3200
3201 if (!(page = __get_free_page(GFP_KERNEL)))
3202 return -ENOMEM;
3203
3204 /* We only care that *some* data at the address the user
3205 * gave us is valid. Just in case, we'll zero
3206 * the remainder of the page.
3207 */
3208 /* copy_from_user cannot cross TASK_SIZE ! */
3209 size = TASK_SIZE - (unsigned long)data;
3210 if (size > PAGE_SIZE)
3211 size = PAGE_SIZE;
3212
3213 i = size - exact_copy_from_user((void *)page, data, size);
3214 if (!i) {
3215 free_page(page);
3216 return -EFAULT;
3217 }
3218 if (i != PAGE_SIZE)
3219 memset((char *)page + i, 0, PAGE_SIZE - i);
3220 *where = page;
3221 return 0;
3222 }
3223
3224 char *copy_mount_string(const void __user *data)
3225 {
3226 return data ? strndup_user(data, PAGE_SIZE) : NULL;
3227 }
3228
3229 /*
3230 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3231 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3232 *
3233 * data is a (void *) that can point to any structure up to
3234 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3235 * information (or be NULL).
3236 *
3237 * Pre-0.97 versions of mount() didn't have a flags word.
3238 * When the flags word was introduced its top half was required
3239 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3240 * Therefore, if this magic number is present, it carries no information
3241 * and must be discarded.
3242 */
3243 long do_mount(const char *dev_name, const char __user *dir_name,
3244 const char *type_page, unsigned long flags, void *data_page)
3245 {
3246 struct path path;
3247 int retval = 0;
3248 int mnt_flags = 0;
3249
3250 /* Discard magic */
3251 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3252 flags &= ~MS_MGC_MSK;
3253
3254 /* Basic sanity checks */
3255 if (data_page)
3256 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3257
3258 /* ... and get the mountpoint */
3259 retval = user_path(dir_name, &path);
3260 if (retval)
3261 return retval;
3262
3263 retval = security_sb_mount(dev_name, &path,
3264 type_page, flags, data_page);
3265 if (!retval && !may_mount())
3266 retval = -EPERM;
3267 if (retval)
3268 goto dput_out;
3269
3270 /* Default to relatime unless overriden */
3271 if (!(flags & MS_NOATIME))
3272 mnt_flags |= MNT_RELATIME;
3273
3274 /* Separate the per-mountpoint flags */
3275 if (flags & MS_NOSUID)
3276 mnt_flags |= MNT_NOSUID;
3277 if (flags & MS_NODEV)
3278 mnt_flags |= MNT_NODEV;
3279 if (flags & MS_NOEXEC)
3280 mnt_flags |= MNT_NOEXEC;
3281 if (flags & MS_NOATIME)
3282 mnt_flags |= MNT_NOATIME;
3283 if (flags & MS_NODIRATIME)
3284 mnt_flags |= MNT_NODIRATIME;
3285 if (flags & MS_STRICTATIME)
3286 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3287 if (flags & MS_RDONLY)
3288 mnt_flags |= MNT_READONLY;
3289
3290 /* The default atime for remount is preservation */
3291 if ((flags & MS_REMOUNT) &&
3292 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3293 MS_STRICTATIME)) == 0)) {
3294 mnt_flags &= ~MNT_ATIME_MASK;
3295 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3296 }
3297
3298 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
3299 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
3300 MS_STRICTATIME);
3301
3302 if (flags & MS_REMOUNT)
3303 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
3304 data_page);
3305 else if (flags & MS_BIND)
3306 retval = do_loopback(&path, dev_name, flags & MS_REC);
3307 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3308 retval = do_change_type(&path, flags);
3309 else if (flags & MS_MOVE)
3310 retval = do_move_mount(&path, dev_name);
3311 else
3312 #ifdef CONFIG_RKP_NS_PROT
3313 retval = do_new_mount(dir_name,&path, type_page, flags, mnt_flags,
3314 dev_name, data_page);
3315 #else
3316 retval = do_new_mount(&path, type_page, flags, mnt_flags,
3317 dev_name, data_page);
3318 #endif
3319 dput_out:
3320 path_put(&path);
3321 return retval;
3322 }
3323
3324 static void free_mnt_ns(struct mnt_namespace *ns)
3325 {
3326 ns_free_inum(&ns->ns);
3327 put_user_ns(ns->user_ns);
3328 kfree(ns);
3329 }
3330
3331 /*
3332 * Assign a sequence number so we can detect when we attempt to bind
3333 * mount a reference to an older mount namespace into the current
3334 * mount namespace, preventing reference counting loops. A 64bit
3335 * number incrementing at 10Ghz will take 12,427 years to wrap which
3336 * is effectively never, so we can ignore the possibility.
3337 */
3338 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3339
3340 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
3341 {
3342 struct mnt_namespace *new_ns;
3343 int ret;
3344
3345 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3346 if (!new_ns)
3347 return ERR_PTR(-ENOMEM);
3348 ret = ns_alloc_inum(&new_ns->ns);
3349 if (ret) {
3350 kfree(new_ns);
3351 return ERR_PTR(ret);
3352 }
3353 new_ns->ns.ops = &mntns_operations;
3354 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3355 atomic_set(&new_ns->count, 1);
3356 new_ns->root = NULL;
3357 INIT_LIST_HEAD(&new_ns->list);
3358 init_waitqueue_head(&new_ns->poll);
3359 new_ns->event = 0;
3360 new_ns->user_ns = get_user_ns(user_ns);
3361 new_ns->mounts = 0;
3362 new_ns->pending_mounts = 0;
3363 return new_ns;
3364 }
3365
3366 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3367 struct user_namespace *user_ns, struct fs_struct *new_fs)
3368 {
3369 struct mnt_namespace *new_ns;
3370 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3371 struct mount *p, *q;
3372 struct mount *old;
3373 struct mount *new;
3374 int copy_flags;
3375
3376 BUG_ON(!ns);
3377
3378 if (likely(!(flags & CLONE_NEWNS))) {
3379 get_mnt_ns(ns);
3380 return ns;
3381 }
3382
3383 old = ns->root;
3384
3385 new_ns = alloc_mnt_ns(user_ns);
3386 if (IS_ERR(new_ns))
3387 return new_ns;
3388
3389 namespace_lock();
3390 /* First pass: copy the tree topology */
3391 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3392 if (user_ns != ns->user_ns)
3393 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
3394 #ifdef CONFIG_RKP_NS_PROT
3395 new = copy_tree(old, old->mnt->mnt_root, copy_flags);
3396 #else
3397 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3398 #endif
3399 if (IS_ERR(new)) {
3400 namespace_unlock();
3401 free_mnt_ns(new_ns);
3402 return ERR_CAST(new);
3403 }
3404 new_ns->root = new;
3405 list_add_tail(&new_ns->list, &new->mnt_list);
3406
3407 /*
3408 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3409 * as belonging to new namespace. We have already acquired a private
3410 * fs_struct, so tsk->fs->lock is not needed.
3411 */
3412 p = old;
3413 q = new;
3414 while (p) {
3415 q->mnt_ns = new_ns;
3416 new_ns->mounts++;
3417 if (new_fs) {
3418 #ifdef CONFIG_RKP_NS_PROT
3419 if (p->mnt == new_fs->root.mnt) {
3420 new_fs->root.mnt = mntget(q->mnt);
3421 rootmnt = p->mnt;
3422 }
3423 if (p->mnt == new_fs->pwd.mnt) {
3424 new_fs->pwd.mnt = mntget(q->mnt);
3425 pwdmnt = p->mnt;
3426 }
3427 }
3428 #else
3429 if (&p->mnt == new_fs->root.mnt) {
3430 new_fs->root.mnt = mntget(&q->mnt);
3431 rootmnt = &p->mnt;
3432 }
3433 if (&p->mnt == new_fs->pwd.mnt) {
3434 new_fs->pwd.mnt = mntget(&q->mnt);
3435 pwdmnt = &p->mnt;
3436 }
3437 }
3438 #endif
3439 p = next_mnt(p, old);
3440 q = next_mnt(q, new);
3441 if (!q)
3442 break;
3443 #ifdef CONFIG_RKP_NS_PROT
3444 while (p->mnt->mnt_root != q->mnt->mnt_root)
3445 #else
3446 while (p->mnt.mnt_root != q->mnt.mnt_root)
3447 #endif
3448 p = next_mnt(p, old);
3449 }
3450 namespace_unlock();
3451
3452 if (rootmnt)
3453 mntput(rootmnt);
3454 if (pwdmnt)
3455 mntput(pwdmnt);
3456
3457 return new_ns;
3458 }
3459
3460 /**
3461 * create_mnt_ns - creates a private namespace and adds a root filesystem
3462 * @mnt: pointer to the new root filesystem mountpoint
3463 */
3464 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3465 {
3466 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3467 if (!IS_ERR(new_ns)) {
3468 struct mount *mnt = real_mount(m);
3469 mnt->mnt_ns = new_ns;
3470 new_ns->root = mnt;
3471 new_ns->mounts++;
3472 list_add(&mnt->mnt_list, &new_ns->list);
3473 } else {
3474 mntput(m);
3475 }
3476 return new_ns;
3477 }
3478
3479 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3480 {
3481 struct mnt_namespace *ns;
3482 struct super_block *s;
3483 struct path path;
3484 int err;
3485
3486 ns = create_mnt_ns(mnt);
3487 if (IS_ERR(ns))
3488 return ERR_CAST(ns);
3489
3490 err = vfs_path_lookup(mnt->mnt_root, mnt,
3491 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3492
3493 put_mnt_ns(ns);
3494
3495 if (err)
3496 return ERR_PTR(err);
3497
3498 /* trade a vfsmount reference for active sb one */
3499 s = path.mnt->mnt_sb;
3500 atomic_inc(&s->s_active);
3501 mntput(path.mnt);
3502 /* lock the sucker */
3503 down_write(&s->s_umount);
3504 /* ... and return the root of (sub)tree on it */
3505 return path.dentry;
3506 }
3507 EXPORT_SYMBOL(mount_subtree);
3508
3509 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3510 char __user *, type, unsigned long, flags, void __user *, data)
3511 {
3512 int ret;
3513 char *kernel_type;
3514 char *kernel_dev;
3515 unsigned long data_page;
3516
3517 kernel_type = copy_mount_string(type);
3518 ret = PTR_ERR(kernel_type);
3519 if (IS_ERR(kernel_type))
3520 goto out_type;
3521
3522 kernel_dev = copy_mount_string(dev_name);
3523 ret = PTR_ERR(kernel_dev);
3524 if (IS_ERR(kernel_dev))
3525 goto out_dev;
3526
3527 ret = copy_mount_options(data, &data_page);
3528 if (ret < 0)
3529 goto out_data;
3530
3531 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
3532 (void *) data_page);
3533
3534 free_page(data_page);
3535 out_data:
3536 kfree(kernel_dev);
3537 out_dev:
3538 kfree(kernel_type);
3539 out_type:
3540 return ret;
3541 }
3542
3543 /*
3544 * Return true if path is reachable from root
3545 *
3546 * namespace_sem or mount_lock is held
3547 */
3548 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3549 const struct path *root)
3550 {
3551 #ifdef CONFIG_RKP_NS_PROT
3552 while (mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3553 #else
3554 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3555 #endif
3556 dentry = mnt->mnt_mountpoint;
3557 mnt = mnt->mnt_parent;
3558 }
3559 #ifdef CONFIG_RKP_NS_PROT
3560 return mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3561 #else
3562 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3563 #endif
3564 }
3565
3566 int path_is_under(struct path *path1, struct path *path2)
3567 {
3568 int res;
3569 read_seqlock_excl(&mount_lock);
3570 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3571 read_sequnlock_excl(&mount_lock);
3572 return res;
3573 }
3574 EXPORT_SYMBOL(path_is_under);
3575
3576 /*
3577 * pivot_root Semantics:
3578 * Moves the root file system of the current process to the directory put_old,
3579 * makes new_root as the new root file system of the current process, and sets
3580 * root/cwd of all processes which had them on the current root to new_root.
3581 *
3582 * Restrictions:
3583 * The new_root and put_old must be directories, and must not be on the
3584 * same file system as the current process root. The put_old must be
3585 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3586 * pointed to by put_old must yield the same directory as new_root. No other
3587 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3588 *
3589 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3590 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3591 * in this situation.
3592 *
3593 * Notes:
3594 * - we don't move root/cwd if they are not at the root (reason: if something
3595 * cared enough to change them, it's probably wrong to force them elsewhere)
3596 * - it's okay to pick a root that isn't the root of a file system, e.g.
3597 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3598 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3599 * first.
3600 */
3601 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3602 const char __user *, put_old)
3603 {
3604 struct path new, old, parent_path, root_parent, root;
3605 struct mount *new_mnt, *root_mnt, *old_mnt;
3606 struct mountpoint *old_mp, *root_mp;
3607 int error;
3608
3609 if (!may_mount())
3610 return -EPERM;
3611
3612 error = user_path_dir(new_root, &new);
3613 if (error)
3614 goto out0;
3615
3616 error = user_path_dir(put_old, &old);
3617 if (error)
3618 goto out1;
3619
3620 error = security_sb_pivotroot(&old, &new);
3621 if (error)
3622 goto out2;
3623
3624 get_fs_root(current->fs, &root);
3625 old_mp = lock_mount(&old);
3626 error = PTR_ERR(old_mp);
3627 if (IS_ERR(old_mp))
3628 goto out3;
3629
3630 error = -EINVAL;
3631 new_mnt = real_mount(new.mnt);
3632 root_mnt = real_mount(root.mnt);
3633 old_mnt = real_mount(old.mnt);
3634 if (IS_MNT_SHARED(old_mnt) ||
3635 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3636 IS_MNT_SHARED(root_mnt->mnt_parent))
3637 goto out4;
3638 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3639 goto out4;
3640 #ifdef CONFIG_RKP_NS_PROT
3641 if (new_mnt->mnt->mnt_flags & MNT_LOCKED)
3642 #else
3643 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3644 #endif
3645 goto out4;
3646 error = -ENOENT;
3647 if (d_unlinked(new.dentry))
3648 goto out4;
3649 error = -EBUSY;
3650 if (new_mnt == root_mnt || old_mnt == root_mnt)
3651 goto out4; /* loop, on the same file system */
3652 error = -EINVAL;
3653 if (root.mnt->mnt_root != root.dentry)
3654 goto out4; /* not a mountpoint */
3655 if (!mnt_has_parent(root_mnt))
3656 goto out4; /* not attached */
3657 root_mp = root_mnt->mnt_mp;
3658 if (new.mnt->mnt_root != new.dentry)
3659 goto out4; /* not a mountpoint */
3660 if (!mnt_has_parent(new_mnt))
3661 goto out4; /* not attached */
3662 /* make sure we can reach put_old from new_root */
3663 if (!is_path_reachable(old_mnt, old.dentry, &new))
3664 goto out4;
3665 /* make certain new is below the root */
3666 if (!is_path_reachable(new_mnt, new.dentry, &root))
3667 goto out4;
3668 root_mp->m_count++; /* pin it so it won't go away */
3669 lock_mount_hash();
3670 detach_mnt(new_mnt, &parent_path);
3671 detach_mnt(root_mnt, &root_parent);
3672 #ifdef CONFIG_RKP_NS_PROT
3673 if (root_mnt->mnt->mnt_flags & MNT_LOCKED) {
3674 rkp_set_mnt_flags(new_mnt->mnt,MNT_LOCKED);
3675 rkp_reset_mnt_flags(root_mnt->mnt,MNT_LOCKED);
3676 }
3677 #else
3678 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3679 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3680 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3681 }
3682 #endif
3683 /* mount old root on put_old */
3684 attach_mnt(root_mnt, old_mnt, old_mp);
3685 /* mount new_root on / */
3686 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3687 touch_mnt_namespace(current->nsproxy->mnt_ns);
3688 /* A moved mount should not expire automatically */
3689 list_del_init(&new_mnt->mnt_expire);
3690 put_mountpoint(root_mp);
3691 unlock_mount_hash();
3692 chroot_fs_refs(&root, &new);
3693 error = 0;
3694 out4:
3695 unlock_mount(old_mp);
3696 if (!error) {
3697 path_put(&root_parent);
3698 path_put(&parent_path);
3699 }
3700 out3:
3701 path_put(&root);
3702 out2:
3703 path_put(&old);
3704 out1:
3705 path_put(&new);
3706 out0:
3707 return error;
3708 }
3709
3710 static void __init init_mount_tree(void)
3711 {
3712 struct vfsmount *mnt;
3713 struct mnt_namespace *ns;
3714 struct path root;
3715 struct file_system_type *type;
3716
3717 type = get_fs_type("rootfs");
3718 if (!type)
3719 panic("Can't find rootfs type");
3720 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3721 put_filesystem(type);
3722 if (IS_ERR(mnt))
3723 panic("Can't create rootfs");
3724 #ifdef CONFIG_RKP_NS_PROT
3725 if(!rootfs_sb) {
3726 rkp_call(RKP_CMDID(0x55),(u64)&rootfs_sb,(u64)mnt,0,0,0);
3727 }
3728 #endif
3729 ns = create_mnt_ns(mnt);
3730 if (IS_ERR(ns))
3731 panic("Can't allocate initial namespace");
3732
3733 init_task.nsproxy->mnt_ns = ns;
3734 get_mnt_ns(ns);
3735
3736 root.mnt = mnt;
3737 root.dentry = mnt->mnt_root;
3738 #ifdef CONFIG_RKP_NS_PROT
3739 rkp_set_mnt_flags(mnt,MNT_LOCKED);
3740 #else
3741 mnt->mnt_flags |= MNT_LOCKED;
3742 #endif
3743 set_fs_pwd(current->fs, &root);
3744 set_fs_root(current->fs, &root);
3745 }
3746 #ifdef CONFIG_RKP_NS_PROT
3747 void cred_ctor_vfsmount(void *data)
3748 {
3749 /* Dummy constructor to make sure we have separate slabs caches. */
3750 }
3751 #endif
3752
3753 void __init mnt_init(void)
3754 {
3755 unsigned u;
3756 int err;
3757 #ifdef CONFIG_RKP_NS_PROT
3758 struct vfsmount_offset voff;
3759 #endif
3760 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3761 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3762
3763 #ifdef CONFIG_RKP_NS_PROT
3764 vfsmnt_cache = kmem_cache_create("vfsmnt_cache", sizeof(struct vfsmount),
3765 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, cred_ctor_vfsmount);
3766
3767 if(!vfsmnt_cache)
3768 panic("Failed to allocate vfsmnt_cache \n");
3769 voff.bp_mount_offset = (u64)offsetof(struct vfsmount, bp_mount);
3770 voff.mnt_sb_offset = (u64)offsetof(struct vfsmount, mnt_sb);
3771 voff.mnt_flags_offset = (u64)offsetof(struct vfsmount, mnt_flags);
3772 voff.data_offset = (u64)offsetof(struct vfsmount, data);
3773
3774 rkp_call(RKP_CMDID(0x41), (u64)vfsmnt_cache->size, (u64)sizeof(struct vfsmount),
3775 (u64)&voff, 0, 0);
3776 #endif
3777
3778 mount_hashtable = alloc_large_system_hash("Mount-cache",
3779 sizeof(struct hlist_head),
3780 mhash_entries, 19,
3781 0,
3782 &m_hash_shift, &m_hash_mask, 0, 0);
3783 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3784 sizeof(struct hlist_head),
3785 mphash_entries, 19,
3786 0,
3787 &mp_hash_shift, &mp_hash_mask, 0, 0);
3788
3789 if (!mount_hashtable || !mountpoint_hashtable)
3790 panic("Failed to allocate mount hash table\n");
3791
3792 for (u = 0; u <= m_hash_mask; u++)
3793 INIT_HLIST_HEAD(&mount_hashtable[u]);
3794 for (u = 0; u <= mp_hash_mask; u++)
3795 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3796
3797 kernfs_init();
3798
3799 err = sysfs_init();
3800 if (err)
3801 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3802 __func__, err);
3803 fs_kobj = kobject_create_and_add("fs", NULL);
3804 if (!fs_kobj)
3805 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3806 init_rootfs();
3807 init_mount_tree();
3808 }
3809
3810 void put_mnt_ns(struct mnt_namespace *ns)
3811 {
3812 if (!atomic_dec_and_test(&ns->count))
3813 return;
3814 #ifdef CONFIG_RKP_NS_PROT
3815 drop_collected_mounts(ns->root->mnt);
3816 #else
3817 drop_collected_mounts(&ns->root->mnt);
3818 #endif
3819 free_mnt_ns(ns);
3820 }
3821
3822 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3823 {
3824 struct vfsmount *mnt;
3825 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3826 if (!IS_ERR(mnt)) {
3827 /*
3828 * it is a longterm mount, don't release mnt until
3829 * we unmount before file sys is unregistered
3830 */
3831 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3832 }
3833 return mnt;
3834 }
3835 EXPORT_SYMBOL_GPL(kern_mount_data);
3836
3837 void kern_unmount(struct vfsmount *mnt)
3838 {
3839 /* release long term mount so mount point can be released */
3840 if (!IS_ERR_OR_NULL(mnt)) {
3841 real_mount(mnt)->mnt_ns = NULL;
3842 synchronize_rcu(); /* yecchhh... */
3843 mntput(mnt);
3844 }
3845 }
3846 EXPORT_SYMBOL(kern_unmount);
3847
3848 bool our_mnt(struct vfsmount *mnt)
3849 {
3850 return check_mnt(real_mount(mnt));
3851 }
3852
3853 bool current_chrooted(void)
3854 {
3855 /* Does the current process have a non-standard root */
3856 struct path ns_root;
3857 struct path fs_root;
3858 bool chrooted;
3859
3860 /* Find the namespace root */
3861 #ifdef CONFIG_RKP_NS_PROT
3862 ns_root.mnt = current->nsproxy->mnt_ns->root->mnt;
3863 #else
3864 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3865 #endif
3866 ns_root.dentry = ns_root.mnt->mnt_root;
3867 path_get(&ns_root);
3868 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3869 ;
3870
3871 get_fs_root(current->fs, &fs_root);
3872
3873 chrooted = !path_equal(&fs_root, &ns_root);
3874
3875 path_put(&fs_root);
3876 path_put(&ns_root);
3877
3878 return chrooted;
3879 }
3880
3881 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3882 {
3883 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3884 int new_flags = *new_mnt_flags;
3885 struct mount *mnt;
3886 bool visible = false;
3887
3888 if (unlikely(!ns))
3889 return false;
3890
3891 down_read(&namespace_sem);
3892 list_for_each_entry(mnt, &ns->list, mnt_list) {
3893 struct mount *child;
3894 int mnt_flags;
3895
3896 #ifdef CONFIG_RKP_NS_PROT
3897 if (mnt->mnt->mnt_sb->s_type != type)
3898 continue;
3899
3900 /* This mount is not fully visible if it's root directory
3901 * is not the root directory of the filesystem.
3902 */
3903 if (mnt->mnt->mnt_root != mnt->mnt->mnt_sb->s_root)
3904 continue;
3905
3906 /* Read the mount flags and filter out flags that
3907 * may safely be ignored.
3908 */
3909 mnt_flags = mnt->mnt->mnt_flags;
3910 if (mnt->mnt->mnt_sb->s_iflags & SB_I_NOEXEC)
3911 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3912
3913 /* Don't miss readonly hidden in the superblock flags */
3914 if (mnt->mnt->mnt_sb->s_flags & MS_RDONLY)
3915 mnt_flags |= MNT_LOCK_READONLY;
3916 #else
3917 if (mnt->mnt.mnt_sb->s_type != type)
3918 continue;
3919
3920 /* This mount is not fully visible if it's root directory
3921 * is not the root directory of the filesystem.
3922 */
3923 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3924 continue;
3925
3926 /* Read the mount flags and filter out flags that
3927 * may safely be ignored.
3928 */
3929 mnt_flags = mnt->mnt.mnt_flags;
3930 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3931 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3932
3933 /* Don't miss readonly hidden in the superblock flags */
3934 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3935 mnt_flags |= MNT_LOCK_READONLY;
3936 #endif
3937
3938 /* Verify the mount flags are equal to or more permissive
3939 * than the proposed new mount.
3940 */
3941 if ((mnt_flags & MNT_LOCK_READONLY) &&
3942 !(new_flags & MNT_READONLY))
3943 continue;
3944 if ((mnt_flags & MNT_LOCK_NODEV) &&
3945 !(new_flags & MNT_NODEV))
3946 continue;
3947 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3948 !(new_flags & MNT_NOSUID))
3949 continue;
3950 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3951 !(new_flags & MNT_NOEXEC))
3952 continue;
3953 if ((mnt_flags & MNT_LOCK_ATIME) &&
3954 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3955 continue;
3956
3957 /* This mount is not fully visible if there are any
3958 * locked child mounts that cover anything except for
3959 * empty directories.
3960 */
3961 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3962 struct inode *inode = child->mnt_mountpoint->d_inode;
3963 /* Only worry about locked mounts */
3964 #ifdef CONFIG_RKP_NS_PROT
3965 if (!(child->mnt->mnt_flags & MNT_LOCKED))
3966 #else
3967 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3968 #endif
3969 continue;
3970 /* Is the directory permanetly empty? */
3971 if (!is_empty_dir_inode(inode))
3972 goto next;
3973 }
3974 /* Preserve the locked attributes */
3975 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3976 MNT_LOCK_NODEV | \
3977 MNT_LOCK_NOSUID | \
3978 MNT_LOCK_NOEXEC | \
3979 MNT_LOCK_ATIME);
3980 visible = true;
3981 goto found;
3982 next: ;
3983 }
3984 found:
3985 up_read(&namespace_sem);
3986 return visible;
3987 }
3988
3989 static struct ns_common *mntns_get(struct task_struct *task)
3990 {
3991 struct ns_common *ns = NULL;
3992 struct nsproxy *nsproxy;
3993
3994 task_lock(task);
3995 nsproxy = task->nsproxy;
3996 if (nsproxy) {
3997 ns = &nsproxy->mnt_ns->ns;
3998 get_mnt_ns(to_mnt_ns(ns));
3999 }
4000 task_unlock(task);
4001
4002 return ns;
4003 }
4004
4005 static void mntns_put(struct ns_common *ns)
4006 {
4007 put_mnt_ns(to_mnt_ns(ns));
4008 }
4009
4010 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
4011 {
4012 struct fs_struct *fs = current->fs;
4013 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
4014 struct path root;
4015
4016 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4017 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
4018 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
4019 return -EPERM;
4020
4021 if (fs->users != 1)
4022 return -EINVAL;
4023
4024 get_mnt_ns(mnt_ns);
4025 put_mnt_ns(nsproxy->mnt_ns);
4026 nsproxy->mnt_ns = mnt_ns;
4027
4028 /* Find the root */
4029 #ifdef CONFIG_RKP_NS_PROT
4030 root.mnt = mnt_ns->root->mnt;
4031 root.dentry = mnt_ns->root->mnt->mnt_root;
4032 #else
4033 root.mnt = &mnt_ns->root->mnt;
4034 root.dentry = mnt_ns->root->mnt.mnt_root;
4035 #endif
4036 path_get(&root);
4037 while(d_mountpoint(root.dentry) && follow_down_one(&root))
4038 ;
4039
4040 /* Update the pwd and root */
4041 set_fs_pwd(fs, &root);
4042 set_fs_root(fs, &root);
4043
4044 path_put(&root);
4045 return 0;
4046 }
4047
4048 const struct proc_ns_operations mntns_operations = {
4049 .name = "mnt",
4050 .type = CLONE_NEWNS,
4051 .get = mntns_get,
4052 .put = mntns_put,
4053 .install = mntns_install,
4054 };