audit: return on memory error to avoid null pointer dereference
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/freezer.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/mman.h>
41 #include <linux/atomic.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/compat.h>
45 #include <linux/rculist.h>
46
47 /*
48 * LOCKING:
49 * There are three level of locking required by epoll :
50 *
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->lock (spinlock)
54 *
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
93 */
94
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
97
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
107 struct epoll_filefd {
108 struct file *file;
109 int fd;
110 } __packed;
111
112 /*
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
115 */
116 struct nested_call_node {
117 struct list_head llink;
118 void *cookie;
119 void *ctx;
120 };
121
122 /*
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
125 */
126 struct nested_calls {
127 struct list_head tasks_call_list;
128 spinlock_t lock;
129 };
130
131 /*
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
136 */
137 struct epitem {
138 union {
139 /* RB tree node links this structure to the eventpoll RB tree */
140 struct rb_node rbn;
141 /* Used to free the struct epitem */
142 struct rcu_head rcu;
143 };
144
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink;
147
148 /*
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
151 */
152 struct epitem *next;
153
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd;
156
157 /* Number of active wait queue attached to poll operations */
158 int nwait;
159
160 /* List containing poll wait queues */
161 struct list_head pwqlist;
162
163 /* The "container" of this item */
164 struct eventpoll *ep;
165
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink;
168
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu *ws;
171
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event;
174 };
175
176 /*
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
179 * interface.
180 */
181 struct eventpoll {
182 /* Protect the access to this structure */
183 spinlock_t lock;
184
185 /*
186 * This mutex is used to ensure that files are not removed
187 * while epoll is using them. This is held during the event
188 * collection loop, the file cleanup path, the epoll file exit
189 * code and the ctl operations.
190 */
191 struct mutex mtx;
192
193 /* Wait queue used by sys_epoll_wait() */
194 wait_queue_head_t wq;
195
196 /* Wait queue used by file->poll() */
197 wait_queue_head_t poll_wait;
198
199 /* List of ready file descriptors */
200 struct list_head rdllist;
201
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root rbr;
204
205 /*
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
208 * holding ->lock.
209 */
210 struct epitem *ovflist;
211
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source *ws;
214
215 /* The user that created the eventpoll descriptor */
216 struct user_struct *user;
217
218 struct file *file;
219
220 /* used to optimize loop detection check */
221 int visited;
222 struct list_head visited_list_link;
223 };
224
225 /* Wait structure used by the poll hooks */
226 struct eppoll_entry {
227 /* List header used to link this structure to the "struct epitem" */
228 struct list_head llink;
229
230 /* The "base" pointer is set to the container "struct epitem" */
231 struct epitem *base;
232
233 /*
234 * Wait queue item that will be linked to the target file wait
235 * queue head.
236 */
237 wait_queue_t wait;
238
239 /* The wait queue head that linked the "wait" wait queue item */
240 wait_queue_head_t *whead;
241 };
242
243 /* Wrapper struct used by poll queueing */
244 struct ep_pqueue {
245 poll_table pt;
246 struct epitem *epi;
247 };
248
249 /* Used by the ep_send_events() function as callback private data */
250 struct ep_send_events_data {
251 int maxevents;
252 struct epoll_event __user *events;
253 };
254
255 /*
256 * Configuration options available inside /proc/sys/fs/epoll/
257 */
258 /* Maximum number of epoll watched descriptors, per user */
259 static long max_user_watches __read_mostly;
260
261 /*
262 * This mutex is used to serialize ep_free() and eventpoll_release_file().
263 */
264 static DEFINE_MUTEX(epmutex);
265
266 /* Used to check for epoll file descriptor inclusion loops */
267 static struct nested_calls poll_loop_ncalls;
268
269 /* Used for safe wake up implementation */
270 static struct nested_calls poll_safewake_ncalls;
271
272 /* Used to call file's f_op->poll() under the nested calls boundaries */
273 static struct nested_calls poll_readywalk_ncalls;
274
275 /* Slab cache used to allocate "struct epitem" */
276 static struct kmem_cache *epi_cache __read_mostly;
277
278 /* Slab cache used to allocate "struct eppoll_entry" */
279 static struct kmem_cache *pwq_cache __read_mostly;
280
281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
282 static LIST_HEAD(visited_list);
283
284 /*
285 * List of files with newly added links, where we may need to limit the number
286 * of emanating paths. Protected by the epmutex.
287 */
288 static LIST_HEAD(tfile_check_list);
289
290 #ifdef CONFIG_SYSCTL
291
292 #include <linux/sysctl.h>
293
294 static long zero;
295 static long long_max = LONG_MAX;
296
297 struct ctl_table epoll_table[] = {
298 {
299 .procname = "max_user_watches",
300 .data = &max_user_watches,
301 .maxlen = sizeof(max_user_watches),
302 .mode = 0644,
303 .proc_handler = proc_doulongvec_minmax,
304 .extra1 = &zero,
305 .extra2 = &long_max,
306 },
307 { }
308 };
309 #endif /* CONFIG_SYSCTL */
310
311 static const struct file_operations eventpoll_fops;
312
313 #if defined(CONFIG_SEC_FD_DETECT)
314 int is_file_epoll(struct file *f)
315 #else
316 static inline int is_file_epoll(struct file *f)
317 #endif
318 {
319 return f->f_op == &eventpoll_fops;
320 }
321
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 struct file *file, int fd)
325 {
326 ffd->file = file;
327 ffd->fd = fd;
328 }
329
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 struct epoll_filefd *p2)
333 {
334 return (p1->file > p2->file ? +1:
335 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
336 }
337
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct list_head *p)
340 {
341 return !list_empty(p);
342 }
343
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
345 {
346 return container_of(p, struct eppoll_entry, wait);
347 }
348
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
351 {
352 return container_of(p, struct eppoll_entry, wait)->base;
353 }
354
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
357 {
358 return container_of(p, struct ep_pqueue, pt)->epi;
359 }
360
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
363 {
364 return op != EPOLL_CTL_DEL;
365 }
366
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
369 {
370 INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 spin_lock_init(&ncalls->lock);
372 }
373
374 /**
375 * ep_events_available - Checks if ready events might be available.
376 *
377 * @ep: Pointer to the eventpoll context.
378 *
379 * Returns: Returns a value different than zero if ready events are available,
380 * or zero otherwise.
381 */
382 static inline int ep_events_available(struct eventpoll *ep)
383 {
384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
385 }
386
387 /**
388 * ep_call_nested - Perform a bound (possibly) nested call, by checking
389 * that the recursion limit is not exceeded, and that
390 * the same nested call (by the meaning of same cookie) is
391 * no re-entered.
392 *
393 * @ncalls: Pointer to the nested_calls structure to be used for this call.
394 * @max_nests: Maximum number of allowed nesting calls.
395 * @nproc: Nested call core function pointer.
396 * @priv: Opaque data to be passed to the @nproc callback.
397 * @cookie: Cookie to be used to identify this nested call.
398 * @ctx: This instance context.
399 *
400 * Returns: Returns the code returned by the @nproc callback, or -1 if
401 * the maximum recursion limit has been exceeded.
402 */
403 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
404 int (*nproc)(void *, void *, int), void *priv,
405 void *cookie, void *ctx)
406 {
407 int error, call_nests = 0;
408 unsigned long flags;
409 struct list_head *lsthead = &ncalls->tasks_call_list;
410 struct nested_call_node *tncur;
411 struct nested_call_node tnode;
412
413 spin_lock_irqsave(&ncalls->lock, flags);
414
415 /*
416 * Try to see if the current task is already inside this wakeup call.
417 * We use a list here, since the population inside this set is always
418 * very much limited.
419 */
420 list_for_each_entry(tncur, lsthead, llink) {
421 if (tncur->ctx == ctx &&
422 (tncur->cookie == cookie || ++call_nests > max_nests)) {
423 /*
424 * Ops ... loop detected or maximum nest level reached.
425 * We abort this wake by breaking the cycle itself.
426 */
427 error = -1;
428 goto out_unlock;
429 }
430 }
431
432 /* Add the current task and cookie to the list */
433 tnode.ctx = ctx;
434 tnode.cookie = cookie;
435 list_add(&tnode.llink, lsthead);
436
437 spin_unlock_irqrestore(&ncalls->lock, flags);
438
439 /* Call the nested function */
440 error = (*nproc)(priv, cookie, call_nests);
441
442 /* Remove the current task from the list */
443 spin_lock_irqsave(&ncalls->lock, flags);
444 list_del(&tnode.llink);
445 out_unlock:
446 spin_unlock_irqrestore(&ncalls->lock, flags);
447
448 return error;
449 }
450
451 /*
452 * As described in commit 0ccf831cb lockdep: annotate epoll
453 * the use of wait queues used by epoll is done in a very controlled
454 * manner. Wake ups can nest inside each other, but are never done
455 * with the same locking. For example:
456 *
457 * dfd = socket(...);
458 * efd1 = epoll_create();
459 * efd2 = epoll_create();
460 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
461 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
462 *
463 * When a packet arrives to the device underneath "dfd", the net code will
464 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
465 * callback wakeup entry on that queue, and the wake_up() performed by the
466 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
467 * (efd1) notices that it may have some event ready, so it needs to wake up
468 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
469 * that ends up in another wake_up(), after having checked about the
470 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
471 * avoid stack blasting.
472 *
473 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
474 * this special case of epoll.
475 */
476 #ifdef CONFIG_DEBUG_LOCK_ALLOC
477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
478 unsigned long events, int subclass)
479 {
480 unsigned long flags;
481
482 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
483 wake_up_locked_poll(wqueue, events);
484 spin_unlock_irqrestore(&wqueue->lock, flags);
485 }
486 #else
487 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
488 unsigned long events, int subclass)
489 {
490 wake_up_poll(wqueue, events);
491 }
492 #endif
493
494 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
495 {
496 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
497 1 + call_nests);
498 return 0;
499 }
500
501 /*
502 * Perform a safe wake up of the poll wait list. The problem is that
503 * with the new callback'd wake up system, it is possible that the
504 * poll callback is reentered from inside the call to wake_up() done
505 * on the poll wait queue head. The rule is that we cannot reenter the
506 * wake up code from the same task more than EP_MAX_NESTS times,
507 * and we cannot reenter the same wait queue head at all. This will
508 * enable to have a hierarchy of epoll file descriptor of no more than
509 * EP_MAX_NESTS deep.
510 */
511 static void ep_poll_safewake(wait_queue_head_t *wq)
512 {
513 int this_cpu = get_cpu();
514
515 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
516 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
517
518 put_cpu();
519 }
520
521 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
522 {
523 wait_queue_head_t *whead;
524
525 rcu_read_lock();
526 /*
527 * If it is cleared by POLLFREE, it should be rcu-safe.
528 * If we read NULL we need a barrier paired with
529 * smp_store_release() in ep_poll_callback(), otherwise
530 * we rely on whead->lock.
531 */
532 whead = smp_load_acquire(&pwq->whead);
533 if (whead)
534 remove_wait_queue(whead, &pwq->wait);
535 rcu_read_unlock();
536 }
537
538 /*
539 * This function unregisters poll callbacks from the associated file
540 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
541 * ep_free).
542 */
543 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
544 {
545 struct list_head *lsthead = &epi->pwqlist;
546 struct eppoll_entry *pwq;
547
548 while (!list_empty(lsthead)) {
549 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
550
551 list_del(&pwq->llink);
552 ep_remove_wait_queue(pwq);
553 kmem_cache_free(pwq_cache, pwq);
554 }
555 }
556
557 /* call only when ep->mtx is held */
558 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
559 {
560 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
561 }
562
563 /* call only when ep->mtx is held */
564 static inline void ep_pm_stay_awake(struct epitem *epi)
565 {
566 struct wakeup_source *ws = ep_wakeup_source(epi);
567
568 if (ws)
569 __pm_stay_awake(ws);
570 }
571
572 static inline bool ep_has_wakeup_source(struct epitem *epi)
573 {
574 return rcu_access_pointer(epi->ws) ? true : false;
575 }
576
577 /* call when ep->mtx cannot be held (ep_poll_callback) */
578 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
579 {
580 struct wakeup_source *ws;
581
582 rcu_read_lock();
583 ws = rcu_dereference(epi->ws);
584 if (ws)
585 __pm_stay_awake(ws);
586 rcu_read_unlock();
587 }
588
589 /**
590 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
591 * the scan code, to call f_op->poll(). Also allows for
592 * O(NumReady) performance.
593 *
594 * @ep: Pointer to the epoll private data structure.
595 * @sproc: Pointer to the scan callback.
596 * @priv: Private opaque data passed to the @sproc callback.
597 * @depth: The current depth of recursive f_op->poll calls.
598 * @ep_locked: caller already holds ep->mtx
599 *
600 * Returns: The same integer error code returned by the @sproc callback.
601 */
602 static int ep_scan_ready_list(struct eventpoll *ep,
603 int (*sproc)(struct eventpoll *,
604 struct list_head *, void *),
605 void *priv, int depth, bool ep_locked)
606 {
607 int error, pwake = 0;
608 unsigned long flags;
609 struct epitem *epi, *nepi;
610 LIST_HEAD(txlist);
611
612 /*
613 * We need to lock this because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
615 */
616
617 if (!ep_locked)
618 mutex_lock_nested(&ep->mtx, depth);
619
620 /*
621 * Steal the ready list, and re-init the original one to the
622 * empty list. Also, set ep->ovflist to NULL so that events
623 * happening while looping w/out locks, are not lost. We cannot
624 * have the poll callback to queue directly on ep->rdllist,
625 * because we want the "sproc" callback to be able to do it
626 * in a lockless way.
627 */
628 spin_lock_irqsave(&ep->lock, flags);
629 list_splice_init(&ep->rdllist, &txlist);
630 ep->ovflist = NULL;
631 spin_unlock_irqrestore(&ep->lock, flags);
632
633 /*
634 * Now call the callback function.
635 */
636 error = (*sproc)(ep, &txlist, priv);
637
638 spin_lock_irqsave(&ep->lock, flags);
639 /*
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
643 */
644 for (nepi = ep->ovflist; (epi = nepi) != NULL;
645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 /*
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
651 */
652 if (!ep_is_linked(&epi->rdllink)) {
653 list_add_tail(&epi->rdllink, &ep->rdllist);
654 ep_pm_stay_awake(epi);
655 }
656 }
657 /*
658 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
659 * releasing the lock, events will be queued in the normal way inside
660 * ep->rdllist.
661 */
662 ep->ovflist = EP_UNACTIVE_PTR;
663
664 /*
665 * Quickly re-inject items left on "txlist".
666 */
667 list_splice(&txlist, &ep->rdllist);
668 __pm_relax(ep->ws);
669
670 if (!list_empty(&ep->rdllist)) {
671 /*
672 * Wake up (if active) both the eventpoll wait list and
673 * the ->poll() wait list (delayed after we release the lock).
674 */
675 if (waitqueue_active(&ep->wq))
676 wake_up_locked(&ep->wq);
677 if (waitqueue_active(&ep->poll_wait))
678 pwake++;
679 }
680 spin_unlock_irqrestore(&ep->lock, flags);
681
682 if (!ep_locked)
683 mutex_unlock(&ep->mtx);
684
685 /* We have to call this outside the lock */
686 if (pwake)
687 ep_poll_safewake(&ep->poll_wait);
688
689 return error;
690 }
691
692 static void epi_rcu_free(struct rcu_head *head)
693 {
694 struct epitem *epi = container_of(head, struct epitem, rcu);
695 kmem_cache_free(epi_cache, epi);
696 }
697
698 /*
699 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
700 * all the associated resources. Must be called with "mtx" held.
701 */
702 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
703 {
704 unsigned long flags;
705 struct file *file = epi->ffd.file;
706
707 /*
708 * Removes poll wait queue hooks. We _have_ to do this without holding
709 * the "ep->lock" otherwise a deadlock might occur. This because of the
710 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
711 * queue head lock when unregistering the wait queue. The wakeup callback
712 * will run by holding the wait queue head lock and will call our callback
713 * that will try to get "ep->lock".
714 */
715 ep_unregister_pollwait(ep, epi);
716
717 /* Remove the current item from the list of epoll hooks */
718 spin_lock(&file->f_lock);
719 list_del_rcu(&epi->fllink);
720 spin_unlock(&file->f_lock);
721
722 rb_erase(&epi->rbn, &ep->rbr);
723
724 spin_lock_irqsave(&ep->lock, flags);
725 if (ep_is_linked(&epi->rdllink))
726 list_del_init(&epi->rdllink);
727 spin_unlock_irqrestore(&ep->lock, flags);
728
729 wakeup_source_unregister(ep_wakeup_source(epi));
730 /*
731 * At this point it is safe to free the eventpoll item. Use the union
732 * field epi->rcu, since we are trying to minimize the size of
733 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
734 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
735 * use of the rbn field.
736 */
737 call_rcu(&epi->rcu, epi_rcu_free);
738
739 atomic_long_dec(&ep->user->epoll_watches);
740
741 return 0;
742 }
743
744 static void ep_free(struct eventpoll *ep)
745 {
746 struct rb_node *rbp;
747 struct epitem *epi;
748
749 /* We need to release all tasks waiting for these file */
750 if (waitqueue_active(&ep->poll_wait))
751 ep_poll_safewake(&ep->poll_wait);
752
753 /*
754 * We need to lock this because we could be hit by
755 * eventpoll_release_file() while we're freeing the "struct eventpoll".
756 * We do not need to hold "ep->mtx" here because the epoll file
757 * is on the way to be removed and no one has references to it
758 * anymore. The only hit might come from eventpoll_release_file() but
759 * holding "epmutex" is sufficient here.
760 */
761 mutex_lock(&epmutex);
762
763 /*
764 * Walks through the whole tree by unregistering poll callbacks.
765 */
766 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
767 epi = rb_entry(rbp, struct epitem, rbn);
768
769 ep_unregister_pollwait(ep, epi);
770 cond_resched();
771 }
772
773 /*
774 * Walks through the whole tree by freeing each "struct epitem". At this
775 * point we are sure no poll callbacks will be lingering around, and also by
776 * holding "epmutex" we can be sure that no file cleanup code will hit
777 * us during this operation. So we can avoid the lock on "ep->lock".
778 * We do not need to lock ep->mtx, either, we only do it to prevent
779 * a lockdep warning.
780 */
781 mutex_lock(&ep->mtx);
782 while ((rbp = rb_first(&ep->rbr)) != NULL) {
783 epi = rb_entry(rbp, struct epitem, rbn);
784 ep_remove(ep, epi);
785 cond_resched();
786 }
787 mutex_unlock(&ep->mtx);
788
789 mutex_unlock(&epmutex);
790 mutex_destroy(&ep->mtx);
791 free_uid(ep->user);
792 wakeup_source_unregister(ep->ws);
793 kfree(ep);
794 }
795
796 static int ep_eventpoll_release(struct inode *inode, struct file *file)
797 {
798 struct eventpoll *ep = file->private_data;
799
800 if (ep)
801 ep_free(ep);
802
803 return 0;
804 }
805
806 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
807 {
808 pt->_key = epi->event.events;
809
810 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
811 }
812
813 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
814 void *priv)
815 {
816 struct epitem *epi, *tmp;
817 poll_table pt;
818
819 init_poll_funcptr(&pt, NULL);
820
821 list_for_each_entry_safe(epi, tmp, head, rdllink) {
822 if (ep_item_poll(epi, &pt))
823 return POLLIN | POLLRDNORM;
824 else {
825 /*
826 * Item has been dropped into the ready list by the poll
827 * callback, but it's not actually ready, as far as
828 * caller requested events goes. We can remove it here.
829 */
830 __pm_relax(ep_wakeup_source(epi));
831 list_del_init(&epi->rdllink);
832 }
833 }
834
835 return 0;
836 }
837
838 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
839 poll_table *pt);
840
841 struct readyevents_arg {
842 struct eventpoll *ep;
843 bool locked;
844 };
845
846 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
847 {
848 struct readyevents_arg *arg = priv;
849
850 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
851 call_nests + 1, arg->locked);
852 }
853
854 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
855 {
856 int pollflags;
857 struct eventpoll *ep = file->private_data;
858 struct readyevents_arg arg;
859
860 /*
861 * During ep_insert() we already hold the ep->mtx for the tfile.
862 * Prevent re-aquisition.
863 */
864 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
865 arg.ep = ep;
866
867 /* Insert inside our poll wait queue */
868 poll_wait(file, &ep->poll_wait, wait);
869
870 /*
871 * Proceed to find out if wanted events are really available inside
872 * the ready list. This need to be done under ep_call_nested()
873 * supervision, since the call to f_op->poll() done on listed files
874 * could re-enter here.
875 */
876 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
877 ep_poll_readyevents_proc, &arg, ep, current);
878
879 return pollflags != -1 ? pollflags : 0;
880 }
881
882 #ifdef CONFIG_PROC_FS
883 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
884 {
885 struct eventpoll *ep = f->private_data;
886 struct rb_node *rbp;
887
888 mutex_lock(&ep->mtx);
889 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
890 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
891
892 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
893 epi->ffd.fd, epi->event.events,
894 (long long)epi->event.data);
895 if (seq_has_overflowed(m))
896 break;
897 }
898 mutex_unlock(&ep->mtx);
899 }
900 #endif
901
902 /* File callbacks that implement the eventpoll file behaviour */
903 static const struct file_operations eventpoll_fops = {
904 #ifdef CONFIG_PROC_FS
905 .show_fdinfo = ep_show_fdinfo,
906 #endif
907 .release = ep_eventpoll_release,
908 .poll = ep_eventpoll_poll,
909 .llseek = noop_llseek,
910 };
911
912 /*
913 * This is called from eventpoll_release() to unlink files from the eventpoll
914 * interface. We need to have this facility to cleanup correctly files that are
915 * closed without being removed from the eventpoll interface.
916 */
917 void eventpoll_release_file(struct file *file)
918 {
919 struct eventpoll *ep;
920 struct epitem *epi, *next;
921
922 /*
923 * We don't want to get "file->f_lock" because it is not
924 * necessary. It is not necessary because we're in the "struct file"
925 * cleanup path, and this means that no one is using this file anymore.
926 * So, for example, epoll_ctl() cannot hit here since if we reach this
927 * point, the file counter already went to zero and fget() would fail.
928 * The only hit might come from ep_free() but by holding the mutex
929 * will correctly serialize the operation. We do need to acquire
930 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
931 * from anywhere but ep_free().
932 *
933 * Besides, ep_remove() acquires the lock, so we can't hold it here.
934 */
935 mutex_lock(&epmutex);
936 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
937 ep = epi->ep;
938 mutex_lock_nested(&ep->mtx, 0);
939 ep_remove(ep, epi);
940 mutex_unlock(&ep->mtx);
941 }
942 mutex_unlock(&epmutex);
943 }
944
945 static int ep_alloc(struct eventpoll **pep)
946 {
947 int error;
948 struct user_struct *user;
949 struct eventpoll *ep;
950
951 user = get_current_user();
952 error = -ENOMEM;
953 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
954 if (unlikely(!ep))
955 goto free_uid;
956
957 spin_lock_init(&ep->lock);
958 mutex_init(&ep->mtx);
959 init_waitqueue_head(&ep->wq);
960 init_waitqueue_head(&ep->poll_wait);
961 INIT_LIST_HEAD(&ep->rdllist);
962 ep->rbr = RB_ROOT;
963 ep->ovflist = EP_UNACTIVE_PTR;
964 ep->user = user;
965
966 *pep = ep;
967
968 return 0;
969
970 free_uid:
971 free_uid(user);
972 return error;
973 }
974
975 /*
976 * Search the file inside the eventpoll tree. The RB tree operations
977 * are protected by the "mtx" mutex, and ep_find() must be called with
978 * "mtx" held.
979 */
980 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
981 {
982 int kcmp;
983 struct rb_node *rbp;
984 struct epitem *epi, *epir = NULL;
985 struct epoll_filefd ffd;
986
987 ep_set_ffd(&ffd, file, fd);
988 for (rbp = ep->rbr.rb_node; rbp; ) {
989 epi = rb_entry(rbp, struct epitem, rbn);
990 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
991 if (kcmp > 0)
992 rbp = rbp->rb_right;
993 else if (kcmp < 0)
994 rbp = rbp->rb_left;
995 else {
996 epir = epi;
997 break;
998 }
999 }
1000
1001 return epir;
1002 }
1003
1004 /*
1005 * This is the callback that is passed to the wait queue wakeup
1006 * mechanism. It is called by the stored file descriptors when they
1007 * have events to report.
1008 */
1009 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1010 {
1011 int pwake = 0;
1012 unsigned long flags;
1013 struct epitem *epi = ep_item_from_wait(wait);
1014 struct eventpoll *ep = epi->ep;
1015
1016 spin_lock_irqsave(&ep->lock, flags);
1017
1018 /*
1019 * If the event mask does not contain any poll(2) event, we consider the
1020 * descriptor to be disabled. This condition is likely the effect of the
1021 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1022 * until the next EPOLL_CTL_MOD will be issued.
1023 */
1024 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1025 goto out_unlock;
1026
1027 /*
1028 * Check the events coming with the callback. At this stage, not
1029 * every device reports the events in the "key" parameter of the
1030 * callback. We need to be able to handle both cases here, hence the
1031 * test for "key" != NULL before the event match test.
1032 */
1033 if (key && !((unsigned long) key & epi->event.events))
1034 goto out_unlock;
1035
1036 /*
1037 * If we are transferring events to userspace, we can hold no locks
1038 * (because we're accessing user memory, and because of linux f_op->poll()
1039 * semantics). All the events that happen during that period of time are
1040 * chained in ep->ovflist and requeued later on.
1041 */
1042 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1043 if (epi->next == EP_UNACTIVE_PTR) {
1044 epi->next = ep->ovflist;
1045 ep->ovflist = epi;
1046 if (epi->ws) {
1047 /*
1048 * Activate ep->ws since epi->ws may get
1049 * deactivated at any time.
1050 */
1051 __pm_stay_awake(ep->ws);
1052 }
1053
1054 }
1055 goto out_unlock;
1056 }
1057
1058 /* If this file is already in the ready list we exit soon */
1059 if (!ep_is_linked(&epi->rdllink)) {
1060 list_add_tail(&epi->rdllink, &ep->rdllist);
1061 ep_pm_stay_awake_rcu(epi);
1062 }
1063
1064 /*
1065 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1066 * wait list.
1067 */
1068 if (waitqueue_active(&ep->wq))
1069 wake_up_locked(&ep->wq);
1070 if (waitqueue_active(&ep->poll_wait))
1071 pwake++;
1072
1073 out_unlock:
1074 spin_unlock_irqrestore(&ep->lock, flags);
1075
1076 /* We have to call this outside the lock */
1077 if (pwake)
1078 ep_poll_safewake(&ep->poll_wait);
1079
1080
1081 if ((unsigned long)key & POLLFREE) {
1082 /*
1083 * If we race with ep_remove_wait_queue() it can miss
1084 * ->whead = NULL and do another remove_wait_queue() after
1085 * us, so we can't use __remove_wait_queue().
1086 */
1087 list_del_init(&wait->task_list);
1088 /*
1089 * ->whead != NULL protects us from the race with ep_free()
1090 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1091 * held by the caller. Once we nullify it, nothing protects
1092 * ep/epi or even wait.
1093 */
1094 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1095 }
1096
1097 return 1;
1098 }
1099
1100 /*
1101 * This is the callback that is used to add our wait queue to the
1102 * target file wakeup lists.
1103 */
1104 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1105 poll_table *pt)
1106 {
1107 struct epitem *epi = ep_item_from_epqueue(pt);
1108 struct eppoll_entry *pwq;
1109
1110 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1111 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1112 pwq->whead = whead;
1113 pwq->base = epi;
1114 add_wait_queue(whead, &pwq->wait);
1115 list_add_tail(&pwq->llink, &epi->pwqlist);
1116 epi->nwait++;
1117 } else {
1118 /* We have to signal that an error occurred */
1119 epi->nwait = -1;
1120 }
1121 }
1122
1123 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1124 {
1125 int kcmp;
1126 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1127 struct epitem *epic;
1128
1129 while (*p) {
1130 parent = *p;
1131 epic = rb_entry(parent, struct epitem, rbn);
1132 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1133 if (kcmp > 0)
1134 p = &parent->rb_right;
1135 else
1136 p = &parent->rb_left;
1137 }
1138 rb_link_node(&epi->rbn, parent, p);
1139 rb_insert_color(&epi->rbn, &ep->rbr);
1140 }
1141
1142
1143
1144 #define PATH_ARR_SIZE 5
1145 /*
1146 * These are the number paths of length 1 to 5, that we are allowing to emanate
1147 * from a single file of interest. For example, we allow 1000 paths of length
1148 * 1, to emanate from each file of interest. This essentially represents the
1149 * potential wakeup paths, which need to be limited in order to avoid massive
1150 * uncontrolled wakeup storms. The common use case should be a single ep which
1151 * is connected to n file sources. In this case each file source has 1 path
1152 * of length 1. Thus, the numbers below should be more than sufficient. These
1153 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1154 * and delete can't add additional paths. Protected by the epmutex.
1155 */
1156 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1157 static int path_count[PATH_ARR_SIZE];
1158
1159 static int path_count_inc(int nests)
1160 {
1161 /* Allow an arbitrary number of depth 1 paths */
1162 if (nests == 0)
1163 return 0;
1164
1165 if (++path_count[nests] > path_limits[nests])
1166 return -1;
1167 return 0;
1168 }
1169
1170 static void path_count_init(void)
1171 {
1172 int i;
1173
1174 for (i = 0; i < PATH_ARR_SIZE; i++)
1175 path_count[i] = 0;
1176 }
1177
1178 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1179 {
1180 int error = 0;
1181 struct file *file = priv;
1182 struct file *child_file;
1183 struct epitem *epi;
1184
1185 /* CTL_DEL can remove links here, but that can't increase our count */
1186 rcu_read_lock();
1187 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1188 child_file = epi->ep->file;
1189 if (is_file_epoll(child_file)) {
1190 if (list_empty(&child_file->f_ep_links)) {
1191 if (path_count_inc(call_nests)) {
1192 error = -1;
1193 break;
1194 }
1195 } else {
1196 error = ep_call_nested(&poll_loop_ncalls,
1197 EP_MAX_NESTS,
1198 reverse_path_check_proc,
1199 child_file, child_file,
1200 current);
1201 }
1202 if (error != 0)
1203 break;
1204 } else {
1205 printk(KERN_ERR "reverse_path_check_proc: "
1206 "file is not an ep!\n");
1207 }
1208 }
1209 rcu_read_unlock();
1210 return error;
1211 }
1212
1213 /**
1214 * reverse_path_check - The tfile_check_list is list of file *, which have
1215 * links that are proposed to be newly added. We need to
1216 * make sure that those added links don't add too many
1217 * paths such that we will spend all our time waking up
1218 * eventpoll objects.
1219 *
1220 * Returns: Returns zero if the proposed links don't create too many paths,
1221 * -1 otherwise.
1222 */
1223 static int reverse_path_check(void)
1224 {
1225 int error = 0;
1226 struct file *current_file;
1227
1228 /* let's call this for all tfiles */
1229 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1230 path_count_init();
1231 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1232 reverse_path_check_proc, current_file,
1233 current_file, current);
1234 if (error)
1235 break;
1236 }
1237 return error;
1238 }
1239
1240 static int ep_create_wakeup_source(struct epitem *epi)
1241 {
1242 const char *name;
1243 struct wakeup_source *ws;
1244
1245 if (!epi->ep->ws) {
1246 epi->ep->ws = wakeup_source_register("eventpoll");
1247 if (!epi->ep->ws)
1248 return -ENOMEM;
1249 }
1250
1251 name = epi->ffd.file->f_path.dentry->d_name.name;
1252 ws = wakeup_source_register(name);
1253
1254 if (!ws)
1255 return -ENOMEM;
1256 rcu_assign_pointer(epi->ws, ws);
1257
1258 return 0;
1259 }
1260
1261 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1262 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1263 {
1264 struct wakeup_source *ws = ep_wakeup_source(epi);
1265
1266 RCU_INIT_POINTER(epi->ws, NULL);
1267
1268 /*
1269 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1270 * used internally by wakeup_source_remove, too (called by
1271 * wakeup_source_unregister), so we cannot use call_rcu
1272 */
1273 synchronize_rcu();
1274 wakeup_source_unregister(ws);
1275 }
1276
1277 /*
1278 * Must be called with "mtx" held.
1279 */
1280 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1281 struct file *tfile, int fd, int full_check)
1282 {
1283 int error, revents, pwake = 0;
1284 unsigned long flags;
1285 long user_watches;
1286 struct epitem *epi;
1287 struct ep_pqueue epq;
1288
1289 user_watches = atomic_long_read(&ep->user->epoll_watches);
1290 if (unlikely(user_watches >= max_user_watches))
1291 return -ENOSPC;
1292 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1293 return -ENOMEM;
1294
1295 /* Item initialization follow here ... */
1296 INIT_LIST_HEAD(&epi->rdllink);
1297 INIT_LIST_HEAD(&epi->fllink);
1298 INIT_LIST_HEAD(&epi->pwqlist);
1299 epi->ep = ep;
1300 ep_set_ffd(&epi->ffd, tfile, fd);
1301 epi->event = *event;
1302 epi->nwait = 0;
1303 epi->next = EP_UNACTIVE_PTR;
1304 if (epi->event.events & EPOLLWAKEUP) {
1305 error = ep_create_wakeup_source(epi);
1306 if (error)
1307 goto error_create_wakeup_source;
1308 } else {
1309 RCU_INIT_POINTER(epi->ws, NULL);
1310 }
1311
1312 /* Initialize the poll table using the queue callback */
1313 epq.epi = epi;
1314 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1315
1316 /*
1317 * Attach the item to the poll hooks and get current event bits.
1318 * We can safely use the file* here because its usage count has
1319 * been increased by the caller of this function. Note that after
1320 * this operation completes, the poll callback can start hitting
1321 * the new item.
1322 */
1323 revents = ep_item_poll(epi, &epq.pt);
1324
1325 /*
1326 * We have to check if something went wrong during the poll wait queue
1327 * install process. Namely an allocation for a wait queue failed due
1328 * high memory pressure.
1329 */
1330 error = -ENOMEM;
1331 if (epi->nwait < 0)
1332 goto error_unregister;
1333
1334 /* Add the current item to the list of active epoll hook for this file */
1335 spin_lock(&tfile->f_lock);
1336 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1337 spin_unlock(&tfile->f_lock);
1338
1339 /*
1340 * Add the current item to the RB tree. All RB tree operations are
1341 * protected by "mtx", and ep_insert() is called with "mtx" held.
1342 */
1343 ep_rbtree_insert(ep, epi);
1344
1345 /* now check if we've created too many backpaths */
1346 error = -EINVAL;
1347 if (full_check && reverse_path_check())
1348 goto error_remove_epi;
1349
1350 /* We have to drop the new item inside our item list to keep track of it */
1351 spin_lock_irqsave(&ep->lock, flags);
1352
1353 /* If the file is already "ready" we drop it inside the ready list */
1354 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1355 list_add_tail(&epi->rdllink, &ep->rdllist);
1356 ep_pm_stay_awake(epi);
1357
1358 /* Notify waiting tasks that events are available */
1359 if (waitqueue_active(&ep->wq))
1360 wake_up_locked(&ep->wq);
1361 if (waitqueue_active(&ep->poll_wait))
1362 pwake++;
1363 }
1364
1365 spin_unlock_irqrestore(&ep->lock, flags);
1366
1367 atomic_long_inc(&ep->user->epoll_watches);
1368
1369 /* We have to call this outside the lock */
1370 if (pwake)
1371 ep_poll_safewake(&ep->poll_wait);
1372
1373 return 0;
1374
1375 error_remove_epi:
1376 spin_lock(&tfile->f_lock);
1377 list_del_rcu(&epi->fllink);
1378 spin_unlock(&tfile->f_lock);
1379
1380 rb_erase(&epi->rbn, &ep->rbr);
1381
1382 error_unregister:
1383 ep_unregister_pollwait(ep, epi);
1384
1385 /*
1386 * We need to do this because an event could have been arrived on some
1387 * allocated wait queue. Note that we don't care about the ep->ovflist
1388 * list, since that is used/cleaned only inside a section bound by "mtx".
1389 * And ep_insert() is called with "mtx" held.
1390 */
1391 spin_lock_irqsave(&ep->lock, flags);
1392 if (ep_is_linked(&epi->rdllink))
1393 list_del_init(&epi->rdllink);
1394 spin_unlock_irqrestore(&ep->lock, flags);
1395
1396 wakeup_source_unregister(ep_wakeup_source(epi));
1397
1398 error_create_wakeup_source:
1399 kmem_cache_free(epi_cache, epi);
1400
1401 return error;
1402 }
1403
1404 /*
1405 * Modify the interest event mask by dropping an event if the new mask
1406 * has a match in the current file status. Must be called with "mtx" held.
1407 */
1408 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1409 {
1410 int pwake = 0;
1411 unsigned int revents;
1412 poll_table pt;
1413
1414 init_poll_funcptr(&pt, NULL);
1415
1416 /*
1417 * Set the new event interest mask before calling f_op->poll();
1418 * otherwise we might miss an event that happens between the
1419 * f_op->poll() call and the new event set registering.
1420 */
1421 epi->event.events = event->events; /* need barrier below */
1422 epi->event.data = event->data; /* protected by mtx */
1423 if (epi->event.events & EPOLLWAKEUP) {
1424 if (!ep_has_wakeup_source(epi))
1425 ep_create_wakeup_source(epi);
1426 } else if (ep_has_wakeup_source(epi)) {
1427 ep_destroy_wakeup_source(epi);
1428 }
1429
1430 /*
1431 * The following barrier has two effects:
1432 *
1433 * 1) Flush epi changes above to other CPUs. This ensures
1434 * we do not miss events from ep_poll_callback if an
1435 * event occurs immediately after we call f_op->poll().
1436 * We need this because we did not take ep->lock while
1437 * changing epi above (but ep_poll_callback does take
1438 * ep->lock).
1439 *
1440 * 2) We also need to ensure we do not miss _past_ events
1441 * when calling f_op->poll(). This barrier also
1442 * pairs with the barrier in wq_has_sleeper (see
1443 * comments for wq_has_sleeper).
1444 *
1445 * This barrier will now guarantee ep_poll_callback or f_op->poll
1446 * (or both) will notice the readiness of an item.
1447 */
1448 smp_mb();
1449
1450 /*
1451 * Get current event bits. We can safely use the file* here because
1452 * its usage count has been increased by the caller of this function.
1453 */
1454 revents = ep_item_poll(epi, &pt);
1455
1456 /*
1457 * If the item is "hot" and it is not registered inside the ready
1458 * list, push it inside.
1459 */
1460 if (revents & event->events) {
1461 spin_lock_irq(&ep->lock);
1462 if (!ep_is_linked(&epi->rdllink)) {
1463 list_add_tail(&epi->rdllink, &ep->rdllist);
1464 ep_pm_stay_awake(epi);
1465
1466 /* Notify waiting tasks that events are available */
1467 if (waitqueue_active(&ep->wq))
1468 wake_up_locked(&ep->wq);
1469 if (waitqueue_active(&ep->poll_wait))
1470 pwake++;
1471 }
1472 spin_unlock_irq(&ep->lock);
1473 }
1474
1475 /* We have to call this outside the lock */
1476 if (pwake)
1477 ep_poll_safewake(&ep->poll_wait);
1478
1479 return 0;
1480 }
1481
1482 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1483 void *priv)
1484 {
1485 struct ep_send_events_data *esed = priv;
1486 int eventcnt;
1487 unsigned int revents;
1488 struct epitem *epi;
1489 struct epoll_event __user *uevent;
1490 struct wakeup_source *ws;
1491 poll_table pt;
1492
1493 init_poll_funcptr(&pt, NULL);
1494
1495 /*
1496 * We can loop without lock because we are passed a task private list.
1497 * Items cannot vanish during the loop because ep_scan_ready_list() is
1498 * holding "mtx" during this call.
1499 */
1500 for (eventcnt = 0, uevent = esed->events;
1501 !list_empty(head) && eventcnt < esed->maxevents;) {
1502 epi = list_first_entry(head, struct epitem, rdllink);
1503
1504 /*
1505 * Activate ep->ws before deactivating epi->ws to prevent
1506 * triggering auto-suspend here (in case we reactive epi->ws
1507 * below).
1508 *
1509 * This could be rearranged to delay the deactivation of epi->ws
1510 * instead, but then epi->ws would temporarily be out of sync
1511 * with ep_is_linked().
1512 */
1513 ws = ep_wakeup_source(epi);
1514 if (ws) {
1515 if (ws->active)
1516 __pm_stay_awake(ep->ws);
1517 __pm_relax(ws);
1518 }
1519
1520 list_del_init(&epi->rdllink);
1521
1522 revents = ep_item_poll(epi, &pt);
1523
1524 /*
1525 * If the event mask intersect the caller-requested one,
1526 * deliver the event to userspace. Again, ep_scan_ready_list()
1527 * is holding "mtx", so no operations coming from userspace
1528 * can change the item.
1529 */
1530 if (revents) {
1531 if (__put_user(revents, &uevent->events) ||
1532 __put_user(epi->event.data, &uevent->data)) {
1533 list_add(&epi->rdllink, head);
1534 ep_pm_stay_awake(epi);
1535 return eventcnt ? eventcnt : -EFAULT;
1536 }
1537 eventcnt++;
1538 uevent++;
1539 if (epi->event.events & EPOLLONESHOT)
1540 epi->event.events &= EP_PRIVATE_BITS;
1541 else if (!(epi->event.events & EPOLLET)) {
1542 /*
1543 * If this file has been added with Level
1544 * Trigger mode, we need to insert back inside
1545 * the ready list, so that the next call to
1546 * epoll_wait() will check again the events
1547 * availability. At this point, no one can insert
1548 * into ep->rdllist besides us. The epoll_ctl()
1549 * callers are locked out by
1550 * ep_scan_ready_list() holding "mtx" and the
1551 * poll callback will queue them in ep->ovflist.
1552 */
1553 list_add_tail(&epi->rdllink, &ep->rdllist);
1554 ep_pm_stay_awake(epi);
1555 }
1556 }
1557 }
1558
1559 return eventcnt;
1560 }
1561
1562 static int ep_send_events(struct eventpoll *ep,
1563 struct epoll_event __user *events, int maxevents)
1564 {
1565 struct ep_send_events_data esed;
1566
1567 esed.maxevents = maxevents;
1568 esed.events = events;
1569
1570 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1571 }
1572
1573 static inline struct timespec ep_set_mstimeout(long ms)
1574 {
1575 struct timespec now, ts = {
1576 .tv_sec = ms / MSEC_PER_SEC,
1577 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1578 };
1579
1580 ktime_get_ts(&now);
1581 return timespec_add_safe(now, ts);
1582 }
1583
1584 /**
1585 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1586 * event buffer.
1587 *
1588 * @ep: Pointer to the eventpoll context.
1589 * @events: Pointer to the userspace buffer where the ready events should be
1590 * stored.
1591 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1592 * @timeout: Maximum timeout for the ready events fetch operation, in
1593 * milliseconds. If the @timeout is zero, the function will not block,
1594 * while if the @timeout is less than zero, the function will block
1595 * until at least one event has been retrieved (or an error
1596 * occurred).
1597 *
1598 * Returns: Returns the number of ready events which have been fetched, or an
1599 * error code, in case of error.
1600 */
1601 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1602 int maxevents, long timeout)
1603 {
1604 int res = 0, eavail, timed_out = 0;
1605 unsigned long flags;
1606 u64 slack = 0;
1607 wait_queue_t wait;
1608 ktime_t expires, *to = NULL;
1609
1610 if (timeout > 0) {
1611 struct timespec end_time = ep_set_mstimeout(timeout);
1612
1613 slack = select_estimate_accuracy(&end_time);
1614 to = &expires;
1615 *to = timespec_to_ktime(end_time);
1616 } else if (timeout == 0) {
1617 /*
1618 * Avoid the unnecessary trip to the wait queue loop, if the
1619 * caller specified a non blocking operation.
1620 */
1621 timed_out = 1;
1622 spin_lock_irqsave(&ep->lock, flags);
1623 goto check_events;
1624 }
1625
1626 fetch_events:
1627 spin_lock_irqsave(&ep->lock, flags);
1628
1629 if (!ep_events_available(ep)) {
1630 /*
1631 * We don't have any available event to return to the caller.
1632 * We need to sleep here, and we will be wake up by
1633 * ep_poll_callback() when events will become available.
1634 */
1635 init_waitqueue_entry(&wait, current);
1636 __add_wait_queue_exclusive(&ep->wq, &wait);
1637
1638 for (;;) {
1639 /*
1640 * We don't want to sleep if the ep_poll_callback() sends us
1641 * a wakeup in between. That's why we set the task state
1642 * to TASK_INTERRUPTIBLE before doing the checks.
1643 */
1644 set_current_state(TASK_INTERRUPTIBLE);
1645 if (ep_events_available(ep) || timed_out)
1646 break;
1647 if (signal_pending(current)) {
1648 res = -EINTR;
1649 break;
1650 }
1651
1652 spin_unlock_irqrestore(&ep->lock, flags);
1653 if (!freezable_schedule_hrtimeout_range(to, slack,
1654 HRTIMER_MODE_ABS))
1655 timed_out = 1;
1656
1657 spin_lock_irqsave(&ep->lock, flags);
1658 }
1659
1660 __remove_wait_queue(&ep->wq, &wait);
1661 __set_current_state(TASK_RUNNING);
1662 }
1663 check_events:
1664 /* Is it worth to try to dig for events ? */
1665 eavail = ep_events_available(ep);
1666
1667 spin_unlock_irqrestore(&ep->lock, flags);
1668
1669 /*
1670 * Try to transfer events to user space. In case we get 0 events and
1671 * there's still timeout left over, we go trying again in search of
1672 * more luck.
1673 */
1674 if (!res && eavail &&
1675 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1676 goto fetch_events;
1677
1678 return res;
1679 }
1680
1681 /**
1682 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1683 * API, to verify that adding an epoll file inside another
1684 * epoll structure, does not violate the constraints, in
1685 * terms of closed loops, or too deep chains (which can
1686 * result in excessive stack usage).
1687 *
1688 * @priv: Pointer to the epoll file to be currently checked.
1689 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1690 * data structure pointer.
1691 * @call_nests: Current dept of the @ep_call_nested() call stack.
1692 *
1693 * Returns: Returns zero if adding the epoll @file inside current epoll
1694 * structure @ep does not violate the constraints, or -1 otherwise.
1695 */
1696 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1697 {
1698 int error = 0;
1699 struct file *file = priv;
1700 struct eventpoll *ep = file->private_data;
1701 struct eventpoll *ep_tovisit;
1702 struct rb_node *rbp;
1703 struct epitem *epi;
1704
1705 mutex_lock_nested(&ep->mtx, call_nests + 1);
1706 ep->visited = 1;
1707 list_add(&ep->visited_list_link, &visited_list);
1708 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1709 epi = rb_entry(rbp, struct epitem, rbn);
1710 if (unlikely(is_file_epoll(epi->ffd.file))) {
1711 ep_tovisit = epi->ffd.file->private_data;
1712 if (ep_tovisit->visited)
1713 continue;
1714 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1715 ep_loop_check_proc, epi->ffd.file,
1716 ep_tovisit, current);
1717 if (error != 0)
1718 break;
1719 } else {
1720 /*
1721 * If we've reached a file that is not associated with
1722 * an ep, then we need to check if the newly added
1723 * links are going to add too many wakeup paths. We do
1724 * this by adding it to the tfile_check_list, if it's
1725 * not already there, and calling reverse_path_check()
1726 * during ep_insert().
1727 */
1728 if (list_empty(&epi->ffd.file->f_tfile_llink))
1729 list_add(&epi->ffd.file->f_tfile_llink,
1730 &tfile_check_list);
1731 }
1732 }
1733 mutex_unlock(&ep->mtx);
1734
1735 return error;
1736 }
1737
1738 /**
1739 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1740 * another epoll file (represented by @ep) does not create
1741 * closed loops or too deep chains.
1742 *
1743 * @ep: Pointer to the epoll private data structure.
1744 * @file: Pointer to the epoll file to be checked.
1745 *
1746 * Returns: Returns zero if adding the epoll @file inside current epoll
1747 * structure @ep does not violate the constraints, or -1 otherwise.
1748 */
1749 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1750 {
1751 int ret;
1752 struct eventpoll *ep_cur, *ep_next;
1753
1754 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1755 ep_loop_check_proc, file, ep, current);
1756 /* clear visited list */
1757 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1758 visited_list_link) {
1759 ep_cur->visited = 0;
1760 list_del(&ep_cur->visited_list_link);
1761 }
1762 return ret;
1763 }
1764
1765 static void clear_tfile_check_list(void)
1766 {
1767 struct file *file;
1768
1769 /* first clear the tfile_check_list */
1770 while (!list_empty(&tfile_check_list)) {
1771 file = list_first_entry(&tfile_check_list, struct file,
1772 f_tfile_llink);
1773 list_del_init(&file->f_tfile_llink);
1774 }
1775 INIT_LIST_HEAD(&tfile_check_list);
1776 }
1777
1778 /*
1779 * Open an eventpoll file descriptor.
1780 */
1781 SYSCALL_DEFINE1(epoll_create1, int, flags)
1782 {
1783 int error, fd;
1784 struct eventpoll *ep = NULL;
1785 struct file *file;
1786
1787 /* Check the EPOLL_* constant for consistency. */
1788 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1789
1790 if (flags & ~EPOLL_CLOEXEC)
1791 return -EINVAL;
1792 /*
1793 * Create the internal data structure ("struct eventpoll").
1794 */
1795 error = ep_alloc(&ep);
1796 if (error < 0)
1797 return error;
1798 /*
1799 * Creates all the items needed to setup an eventpoll file. That is,
1800 * a file structure and a free file descriptor.
1801 */
1802 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1803 if (fd < 0) {
1804 error = fd;
1805 goto out_free_ep;
1806 }
1807 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1808 O_RDWR | (flags & O_CLOEXEC));
1809 if (IS_ERR(file)) {
1810 error = PTR_ERR(file);
1811 goto out_free_fd;
1812 }
1813 ep->file = file;
1814 fd_install(fd, file);
1815 return fd;
1816
1817 out_free_fd:
1818 put_unused_fd(fd);
1819 out_free_ep:
1820 ep_free(ep);
1821 return error;
1822 }
1823
1824 SYSCALL_DEFINE1(epoll_create, int, size)
1825 {
1826 if (size <= 0)
1827 return -EINVAL;
1828
1829 return sys_epoll_create1(0);
1830 }
1831
1832 /*
1833 * The following function implements the controller interface for
1834 * the eventpoll file that enables the insertion/removal/change of
1835 * file descriptors inside the interest set.
1836 */
1837 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1838 struct epoll_event __user *, event)
1839 {
1840 int error;
1841 int full_check = 0;
1842 struct fd f, tf;
1843 struct eventpoll *ep;
1844 struct epitem *epi;
1845 struct epoll_event epds;
1846 struct eventpoll *tep = NULL;
1847
1848 error = -EFAULT;
1849 if (ep_op_has_event(op) &&
1850 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1851 goto error_return;
1852
1853 error = -EBADF;
1854 f = fdget(epfd);
1855 if (!f.file)
1856 goto error_return;
1857
1858 /* Get the "struct file *" for the target file */
1859 tf = fdget(fd);
1860 if (!tf.file)
1861 goto error_fput;
1862
1863 /* The target file descriptor must support poll */
1864 error = -EPERM;
1865 if (!tf.file->f_op->poll)
1866 goto error_tgt_fput;
1867
1868 /* Check if EPOLLWAKEUP is allowed */
1869 if (ep_op_has_event(op))
1870 ep_take_care_of_epollwakeup(&epds);
1871
1872 /*
1873 * We have to check that the file structure underneath the file descriptor
1874 * the user passed to us _is_ an eventpoll file. And also we do not permit
1875 * adding an epoll file descriptor inside itself.
1876 */
1877 error = -EINVAL;
1878 if (f.file == tf.file || !is_file_epoll(f.file))
1879 goto error_tgt_fput;
1880
1881 /*
1882 * At this point it is safe to assume that the "private_data" contains
1883 * our own data structure.
1884 */
1885 ep = f.file->private_data;
1886
1887 /*
1888 * When we insert an epoll file descriptor, inside another epoll file
1889 * descriptor, there is the change of creating closed loops, which are
1890 * better be handled here, than in more critical paths. While we are
1891 * checking for loops we also determine the list of files reachable
1892 * and hang them on the tfile_check_list, so we can check that we
1893 * haven't created too many possible wakeup paths.
1894 *
1895 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1896 * the epoll file descriptor is attaching directly to a wakeup source,
1897 * unless the epoll file descriptor is nested. The purpose of taking the
1898 * 'epmutex' on add is to prevent complex toplogies such as loops and
1899 * deep wakeup paths from forming in parallel through multiple
1900 * EPOLL_CTL_ADD operations.
1901 */
1902 mutex_lock_nested(&ep->mtx, 0);
1903 if (op == EPOLL_CTL_ADD) {
1904 if (!list_empty(&f.file->f_ep_links) ||
1905 is_file_epoll(tf.file)) {
1906 full_check = 1;
1907 mutex_unlock(&ep->mtx);
1908 mutex_lock(&epmutex);
1909 if (is_file_epoll(tf.file)) {
1910 error = -ELOOP;
1911 if (ep_loop_check(ep, tf.file) != 0) {
1912 clear_tfile_check_list();
1913 goto error_tgt_fput;
1914 }
1915 } else
1916 list_add(&tf.file->f_tfile_llink,
1917 &tfile_check_list);
1918 mutex_lock_nested(&ep->mtx, 0);
1919 if (is_file_epoll(tf.file)) {
1920 tep = tf.file->private_data;
1921 mutex_lock_nested(&tep->mtx, 1);
1922 }
1923 }
1924 }
1925
1926 /*
1927 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1928 * above, we can be sure to be able to use the item looked up by
1929 * ep_find() till we release the mutex.
1930 */
1931 epi = ep_find(ep, tf.file, fd);
1932
1933 error = -EINVAL;
1934 switch (op) {
1935 case EPOLL_CTL_ADD:
1936 if (!epi) {
1937 epds.events |= POLLERR | POLLHUP;
1938 error = ep_insert(ep, &epds, tf.file, fd, full_check);
1939 } else
1940 error = -EEXIST;
1941 if (full_check)
1942 clear_tfile_check_list();
1943 break;
1944 case EPOLL_CTL_DEL:
1945 if (epi)
1946 error = ep_remove(ep, epi);
1947 else
1948 error = -ENOENT;
1949 break;
1950 case EPOLL_CTL_MOD:
1951 if (epi) {
1952 epds.events |= POLLERR | POLLHUP;
1953 error = ep_modify(ep, epi, &epds);
1954 } else
1955 error = -ENOENT;
1956 break;
1957 }
1958 if (tep != NULL)
1959 mutex_unlock(&tep->mtx);
1960 mutex_unlock(&ep->mtx);
1961
1962 error_tgt_fput:
1963 if (full_check)
1964 mutex_unlock(&epmutex);
1965
1966 fdput(tf);
1967 error_fput:
1968 fdput(f);
1969 error_return:
1970
1971 return error;
1972 }
1973
1974 /*
1975 * Implement the event wait interface for the eventpoll file. It is the kernel
1976 * part of the user space epoll_wait(2).
1977 */
1978 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1979 int, maxevents, int, timeout)
1980 {
1981 int error;
1982 struct fd f;
1983 struct eventpoll *ep;
1984
1985 /* The maximum number of event must be greater than zero */
1986 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1987 return -EINVAL;
1988
1989 /* Verify that the area passed by the user is writeable */
1990 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1991 return -EFAULT;
1992
1993 /* Get the "struct file *" for the eventpoll file */
1994 f = fdget(epfd);
1995 if (!f.file)
1996 return -EBADF;
1997
1998 /*
1999 * We have to check that the file structure underneath the fd
2000 * the user passed to us _is_ an eventpoll file.
2001 */
2002 error = -EINVAL;
2003 if (!is_file_epoll(f.file))
2004 goto error_fput;
2005
2006 /*
2007 * At this point it is safe to assume that the "private_data" contains
2008 * our own data structure.
2009 */
2010 ep = f.file->private_data;
2011
2012 /* Time to fish for events ... */
2013 error = ep_poll(ep, events, maxevents, timeout);
2014
2015 error_fput:
2016 fdput(f);
2017 return error;
2018 }
2019
2020 /*
2021 * Implement the event wait interface for the eventpoll file. It is the kernel
2022 * part of the user space epoll_pwait(2).
2023 */
2024 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2025 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2026 size_t, sigsetsize)
2027 {
2028 int error;
2029 sigset_t ksigmask, sigsaved;
2030
2031 /*
2032 * If the caller wants a certain signal mask to be set during the wait,
2033 * we apply it here.
2034 */
2035 if (sigmask) {
2036 if (sigsetsize != sizeof(sigset_t))
2037 return -EINVAL;
2038 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2039 return -EFAULT;
2040 sigsaved = current->blocked;
2041 set_current_blocked(&ksigmask);
2042 }
2043
2044 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2045
2046 /*
2047 * If we changed the signal mask, we need to restore the original one.
2048 * In case we've got a signal while waiting, we do not restore the
2049 * signal mask yet, and we allow do_signal() to deliver the signal on
2050 * the way back to userspace, before the signal mask is restored.
2051 */
2052 if (sigmask) {
2053 if (error == -EINTR) {
2054 memcpy(&current->saved_sigmask, &sigsaved,
2055 sizeof(sigsaved));
2056 set_restore_sigmask();
2057 } else
2058 set_current_blocked(&sigsaved);
2059 }
2060
2061 return error;
2062 }
2063
2064 #ifdef CONFIG_COMPAT
2065 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2066 struct epoll_event __user *, events,
2067 int, maxevents, int, timeout,
2068 const compat_sigset_t __user *, sigmask,
2069 compat_size_t, sigsetsize)
2070 {
2071 long err;
2072 compat_sigset_t csigmask;
2073 sigset_t ksigmask, sigsaved;
2074
2075 /*
2076 * If the caller wants a certain signal mask to be set during the wait,
2077 * we apply it here.
2078 */
2079 if (sigmask) {
2080 if (sigsetsize != sizeof(compat_sigset_t))
2081 return -EINVAL;
2082 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2083 return -EFAULT;
2084 sigset_from_compat(&ksigmask, &csigmask);
2085 sigsaved = current->blocked;
2086 set_current_blocked(&ksigmask);
2087 }
2088
2089 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2090
2091 /*
2092 * If we changed the signal mask, we need to restore the original one.
2093 * In case we've got a signal while waiting, we do not restore the
2094 * signal mask yet, and we allow do_signal() to deliver the signal on
2095 * the way back to userspace, before the signal mask is restored.
2096 */
2097 if (sigmask) {
2098 if (err == -EINTR) {
2099 memcpy(&current->saved_sigmask, &sigsaved,
2100 sizeof(sigsaved));
2101 set_restore_sigmask();
2102 } else
2103 set_current_blocked(&sigsaved);
2104 }
2105
2106 return err;
2107 }
2108 #endif
2109
2110 static int __init eventpoll_init(void)
2111 {
2112 struct sysinfo si;
2113
2114 si_meminfo(&si);
2115 /*
2116 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2117 */
2118 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2119 EP_ITEM_COST;
2120 BUG_ON(max_user_watches < 0);
2121
2122 /*
2123 * Initialize the structure used to perform epoll file descriptor
2124 * inclusion loops checks.
2125 */
2126 ep_nested_calls_init(&poll_loop_ncalls);
2127
2128 /* Initialize the structure used to perform safe poll wait head wake ups */
2129 ep_nested_calls_init(&poll_safewake_ncalls);
2130
2131 /* Initialize the structure used to perform file's f_op->poll() calls */
2132 ep_nested_calls_init(&poll_readywalk_ncalls);
2133
2134 /*
2135 * We can have many thousands of epitems, so prevent this from
2136 * using an extra cache line on 64-bit (and smaller) CPUs
2137 */
2138 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2139
2140 /* Allocates slab cache used to allocate "struct epitem" items */
2141 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2142 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2143
2144 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2145 pwq_cache = kmem_cache_create("eventpoll_pwq",
2146 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2147
2148 return 0;
2149 }
2150 fs_initcall(eventpoll_init);