122702d957a62d7cfb008984c61fb2f0395889c4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
230 bi->bi_iter.bi_size = 0;
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
233 bio_endio(bi);
234 }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
250 int thread_cnt;
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
262 group->stripes_cnt++;
263 sh->group = group;
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
291 {
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 list_add_tail(&sh->lru, &conf->delayed_list);
298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
321 }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
326 {
327 if (atomic_dec_and_test(&sh->count))
328 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341 {
342 int size;
343 unsigned long do_wakeup = 0;
344 int i = 0;
345 unsigned long flags;
346
347 if (hash == NR_STRIPE_HASH_LOCKS) {
348 size = NR_STRIPE_HASH_LOCKS;
349 hash = NR_STRIPE_HASH_LOCKS - 1;
350 } else
351 size = 1;
352 while (size) {
353 struct list_head *list = &temp_inactive_list[size - 1];
354
355 /*
356 * We don't hold any lock here yet, raid5_get_active_stripe() might
357 * remove stripes from the list
358 */
359 if (!list_empty_careful(list)) {
360 spin_lock_irqsave(conf->hash_locks + hash, flags);
361 if (list_empty(conf->inactive_list + hash) &&
362 !list_empty(list))
363 atomic_dec(&conf->empty_inactive_list_nr);
364 list_splice_tail_init(list, conf->inactive_list + hash);
365 do_wakeup |= 1 << hash;
366 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 }
368 size--;
369 hash--;
370 }
371
372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 if (do_wakeup & (1 << i))
374 wake_up(&conf->wait_for_stripe[i]);
375 }
376
377 if (do_wakeup) {
378 if (atomic_read(&conf->active_stripes) == 0)
379 wake_up(&conf->wait_for_quiescent);
380 if (conf->retry_read_aligned)
381 md_wakeup_thread(conf->mddev->thread);
382 }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387 struct list_head *temp_inactive_list)
388 {
389 struct stripe_head *sh;
390 int count = 0;
391 struct llist_node *head;
392
393 head = llist_del_all(&conf->released_stripes);
394 head = llist_reverse_order(head);
395 while (head) {
396 int hash;
397
398 sh = llist_entry(head, struct stripe_head, release_list);
399 head = llist_next(head);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 smp_mb();
402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 /*
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
407 */
408 hash = sh->hash_lock_index;
409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410 count++;
411 }
412
413 return count;
414 }
415
416 void raid5_release_stripe(struct stripe_head *sh)
417 {
418 struct r5conf *conf = sh->raid_conf;
419 unsigned long flags;
420 struct list_head list;
421 int hash;
422 bool wakeup;
423
424 /* Avoid release_list until the last reference.
425 */
426 if (atomic_add_unless(&sh->count, -1, 1))
427 return;
428
429 if (unlikely(!conf->mddev->thread) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 goto slow_path;
432 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 if (wakeup)
434 md_wakeup_thread(conf->mddev->thread);
435 return;
436 slow_path:
437 local_irq_save(flags);
438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 INIT_LIST_HEAD(&list);
441 hash = sh->hash_lock_index;
442 do_release_stripe(conf, sh, &list);
443 spin_unlock(&conf->device_lock);
444 release_inactive_stripe_list(conf, &list, hash);
445 }
446 local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
453
454 hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459 struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh->sector);
463
464 hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 struct stripe_head *sh = NULL;
471 struct list_head *first;
472
473 if (list_empty(conf->inactive_list + hash))
474 goto out;
475 first = (conf->inactive_list + hash)->next;
476 sh = list_entry(first, struct stripe_head, lru);
477 list_del_init(first);
478 remove_hash(sh);
479 atomic_inc(&conf->active_stripes);
480 BUG_ON(hash != sh->hash_lock_index);
481 if (list_empty(conf->inactive_list + hash))
482 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 struct page *p;
490 int i;
491 int num = sh->raid_conf->pool_size;
492
493 for (i = 0; i < num ; i++) {
494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 p = sh->dev[i].page;
496 if (!p)
497 continue;
498 sh->dev[i].page = NULL;
499 put_page(p);
500 }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505 int i;
506 int num = sh->raid_conf->pool_size;
507
508 for (i = 0; i < num; i++) {
509 struct page *page;
510
511 if (!(page = alloc_page(gfp))) {
512 return 1;
513 }
514 sh->dev[i].page = page;
515 sh->dev[i].orig_page = page;
516 }
517 return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 struct r5conf *conf = sh->raid_conf;
527 int i, seq;
528
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 BUG_ON(stripe_operations_active(sh));
532 BUG_ON(sh->batch_head);
533
534 pr_debug("init_stripe called, stripe %llu\n",
535 (unsigned long long)sector);
536 retry:
537 seq = read_seqcount_begin(&conf->gen_lock);
538 sh->generation = conf->generation - previous;
539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540 sh->sector = sector;
541 stripe_set_idx(sector, conf, previous, sh);
542 sh->state = 0;
543
544 for (i = sh->disks; i--; ) {
545 struct r5dev *dev = &sh->dev[i];
546
547 if (dev->toread || dev->read || dev->towrite || dev->written ||
548 test_bit(R5_LOCKED, &dev->flags)) {
549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550 (unsigned long long)sh->sector, i, dev->toread,
551 dev->read, dev->towrite, dev->written,
552 test_bit(R5_LOCKED, &dev->flags));
553 WARN_ON(1);
554 }
555 dev->flags = 0;
556 raid5_build_block(sh, i, previous);
557 }
558 if (read_seqcount_retry(&conf->gen_lock, seq))
559 goto retry;
560 sh->overwrite_disks = 0;
561 insert_hash(conf, sh);
562 sh->cpu = smp_processor_id();
563 set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 short generation)
568 {
569 struct stripe_head *sh;
570
571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 if (sh->sector == sector && sh->generation == generation)
574 return sh;
575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 return NULL;
577 }
578
579 /*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 int degraded, degraded2;
595 int i;
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
623 rcu_read_lock();
624 degraded2 = 0;
625 for (i = 0; i < conf->raid_disks; i++) {
626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
629 if (!rdev || test_bit(Faulty, &rdev->flags))
630 degraded2++;
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
640 degraded2++;
641 }
642 rcu_read_unlock();
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659 }
660
661 struct stripe_head *
662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 int previous, int noblock, int noquiesce)
664 {
665 struct stripe_head *sh;
666 int hash = stripe_hash_locks_hash(sector);
667
668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670 spin_lock_irq(conf->hash_locks + hash);
671
672 do {
673 wait_event_lock_irq(conf->wait_for_quiescent,
674 conf->quiesce == 0 || noquiesce,
675 *(conf->hash_locks + hash));
676 sh = __find_stripe(conf, sector, conf->generation - previous);
677 if (!sh) {
678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679 sh = get_free_stripe(conf, hash);
680 if (!sh && !test_bit(R5_DID_ALLOC,
681 &conf->cache_state))
682 set_bit(R5_ALLOC_MORE,
683 &conf->cache_state);
684 }
685 if (noblock && sh == NULL)
686 break;
687 if (!sh) {
688 set_bit(R5_INACTIVE_BLOCKED,
689 &conf->cache_state);
690 wait_event_exclusive_cmd(
691 conf->wait_for_stripe[hash],
692 !list_empty(conf->inactive_list + hash) &&
693 (atomic_read(&conf->active_stripes)
694 < (conf->max_nr_stripes * 3 / 4)
695 || !test_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state)),
697 spin_unlock_irq(conf->hash_locks + hash),
698 spin_lock_irq(conf->hash_locks + hash));
699 clear_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state);
701 } else {
702 init_stripe(sh, sector, previous);
703 atomic_inc(&sh->count);
704 }
705 } else if (!atomic_inc_not_zero(&sh->count)) {
706 spin_lock(&conf->device_lock);
707 if (!atomic_read(&sh->count)) {
708 if (!test_bit(STRIPE_HANDLE, &sh->state))
709 atomic_inc(&conf->active_stripes);
710 BUG_ON(list_empty(&sh->lru) &&
711 !test_bit(STRIPE_EXPANDING, &sh->state));
712 list_del_init(&sh->lru);
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
717 }
718 atomic_inc(&sh->count);
719 spin_unlock(&conf->device_lock);
720 }
721 } while (sh == NULL);
722
723 if (!list_empty(conf->inactive_list + hash))
724 wake_up(&conf->wait_for_stripe[hash]);
725
726 spin_unlock_irq(conf->hash_locks + hash);
727 return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738 local_irq_disable();
739 if (sh1 > sh2) {
740 spin_lock(&sh2->stripe_lock);
741 spin_lock_nested(&sh1->stripe_lock, 1);
742 } else {
743 spin_lock(&sh1->stripe_lock);
744 spin_lock_nested(&sh2->stripe_lock, 1);
745 }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750 spin_unlock(&sh1->stripe_lock);
751 spin_unlock(&sh2->stripe_lock);
752 local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758 struct r5conf *conf = sh->raid_conf;
759
760 if (conf->log)
761 return false;
762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
775 if (!stripe_can_batch(sh))
776 return;
777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 tmp_sec = sh->sector;
779 if (!sector_div(tmp_sec, conf->chunk_sectors))
780 return;
781 head_sector = sh->sector - STRIPE_SECTORS;
782
783 hash = stripe_hash_locks_hash(head_sector);
784 spin_lock_irq(conf->hash_locks + hash);
785 head = __find_stripe(conf, head_sector, conf->generation);
786 if (head && !atomic_inc_not_zero(&head->count)) {
787 spin_lock(&conf->device_lock);
788 if (!atomic_read(&head->count)) {
789 if (!test_bit(STRIPE_HANDLE, &head->state))
790 atomic_inc(&conf->active_stripes);
791 BUG_ON(list_empty(&head->lru) &&
792 !test_bit(STRIPE_EXPANDING, &head->state));
793 list_del_init(&head->lru);
794 if (head->group) {
795 head->group->stripes_cnt--;
796 head->group = NULL;
797 }
798 }
799 atomic_inc(&head->count);
800 spin_unlock(&conf->device_lock);
801 }
802 spin_unlock_irq(conf->hash_locks + hash);
803
804 if (!head)
805 return;
806 if (!stripe_can_batch(head))
807 goto out;
808
809 lock_two_stripes(head, sh);
810 /* clear_batch_ready clear the flag */
811 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 goto unlock_out;
813
814 if (sh->batch_head)
815 goto unlock_out;
816
817 dd_idx = 0;
818 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 dd_idx++;
820 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 goto unlock_out;
822
823 if (head->batch_head) {
824 spin_lock(&head->batch_head->batch_lock);
825 /* This batch list is already running */
826 if (!stripe_can_batch(head)) {
827 spin_unlock(&head->batch_head->batch_lock);
828 goto unlock_out;
829 }
830
831 /*
832 * at this point, head's BATCH_READY could be cleared, but we
833 * can still add the stripe to batch list
834 */
835 list_add(&sh->batch_list, &head->batch_list);
836 spin_unlock(&head->batch_head->batch_lock);
837
838 sh->batch_head = head->batch_head;
839 } else {
840 head->batch_head = head;
841 sh->batch_head = head->batch_head;
842 spin_lock(&head->batch_lock);
843 list_add_tail(&sh->batch_list, &head->batch_list);
844 spin_unlock(&head->batch_lock);
845 }
846
847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 if (atomic_dec_return(&conf->preread_active_stripes)
849 < IO_THRESHOLD)
850 md_wakeup_thread(conf->mddev->thread);
851
852 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 int seq = sh->bm_seq;
854 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 sh->batch_head->bm_seq > seq)
856 seq = sh->batch_head->bm_seq;
857 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 sh->batch_head->bm_seq = seq;
859 }
860
861 atomic_inc(&sh->count);
862 unlock_out:
863 unlock_two_stripes(head, sh);
864 out:
865 raid5_release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869 * in this stripe_head.
870 */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873 sector_t progress = conf->reshape_progress;
874 /* Need a memory barrier to make sure we see the value
875 * of conf->generation, or ->data_offset that was set before
876 * reshape_progress was updated.
877 */
878 smp_rmb();
879 if (progress == MaxSector)
880 return 0;
881 if (sh->generation == conf->generation - 1)
882 return 0;
883 /* We are in a reshape, and this is a new-generation stripe,
884 * so use new_data_offset.
885 */
886 return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi);
891 static void
892 raid5_end_write_request(struct bio *bi);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896 struct r5conf *conf = sh->raid_conf;
897 int i, disks = sh->disks;
898 struct stripe_head *head_sh = sh;
899
900 might_sleep();
901
902 if (r5l_write_stripe(conf->log, sh) == 0)
903 return;
904 for (i = disks; i--; ) {
905 int rw;
906 int replace_only = 0;
907 struct bio *bi, *rbi;
908 struct md_rdev *rdev, *rrdev = NULL;
909
910 sh = head_sh;
911 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
912 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
913 rw = WRITE_FUA;
914 else
915 rw = WRITE;
916 if (test_bit(R5_Discard, &sh->dev[i].flags))
917 rw |= REQ_DISCARD;
918 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
919 rw = READ;
920 else if (test_and_clear_bit(R5_WantReplace,
921 &sh->dev[i].flags)) {
922 rw = WRITE;
923 replace_only = 1;
924 } else
925 continue;
926 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
927 rw |= REQ_SYNC;
928
929 again:
930 bi = &sh->dev[i].req;
931 rbi = &sh->dev[i].rreq; /* For writing to replacement */
932
933 rcu_read_lock();
934 rrdev = rcu_dereference(conf->disks[i].replacement);
935 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
936 rdev = rcu_dereference(conf->disks[i].rdev);
937 if (!rdev) {
938 rdev = rrdev;
939 rrdev = NULL;
940 }
941 if (rw & WRITE) {
942 if (replace_only)
943 rdev = NULL;
944 if (rdev == rrdev)
945 /* We raced and saw duplicates */
946 rrdev = NULL;
947 } else {
948 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
949 rdev = rrdev;
950 rrdev = NULL;
951 }
952
953 if (rdev && test_bit(Faulty, &rdev->flags))
954 rdev = NULL;
955 if (rdev)
956 atomic_inc(&rdev->nr_pending);
957 if (rrdev && test_bit(Faulty, &rrdev->flags))
958 rrdev = NULL;
959 if (rrdev)
960 atomic_inc(&rrdev->nr_pending);
961 rcu_read_unlock();
962
963 /* We have already checked bad blocks for reads. Now
964 * need to check for writes. We never accept write errors
965 * on the replacement, so we don't to check rrdev.
966 */
967 while ((rw & WRITE) && rdev &&
968 test_bit(WriteErrorSeen, &rdev->flags)) {
969 sector_t first_bad;
970 int bad_sectors;
971 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
972 &first_bad, &bad_sectors);
973 if (!bad)
974 break;
975
976 if (bad < 0) {
977 set_bit(BlockedBadBlocks, &rdev->flags);
978 if (!conf->mddev->external &&
979 conf->mddev->flags) {
980 /* It is very unlikely, but we might
981 * still need to write out the
982 * bad block log - better give it
983 * a chance*/
984 md_check_recovery(conf->mddev);
985 }
986 /*
987 * Because md_wait_for_blocked_rdev
988 * will dec nr_pending, we must
989 * increment it first.
990 */
991 atomic_inc(&rdev->nr_pending);
992 md_wait_for_blocked_rdev(rdev, conf->mddev);
993 } else {
994 /* Acknowledged bad block - skip the write */
995 rdev_dec_pending(rdev, conf->mddev);
996 rdev = NULL;
997 }
998 }
999
1000 if (rdev) {
1001 if (s->syncing || s->expanding || s->expanded
1002 || s->replacing)
1003 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1004
1005 set_bit(STRIPE_IO_STARTED, &sh->state);
1006
1007 bio_reset(bi);
1008 bi->bi_bdev = rdev->bdev;
1009 bi->bi_rw = rw;
1010 bi->bi_end_io = (rw & WRITE)
1011 ? raid5_end_write_request
1012 : raid5_end_read_request;
1013 bi->bi_private = sh;
1014
1015 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1016 __func__, (unsigned long long)sh->sector,
1017 bi->bi_rw, i);
1018 atomic_inc(&sh->count);
1019 if (sh != head_sh)
1020 atomic_inc(&head_sh->count);
1021 if (use_new_offset(conf, sh))
1022 bi->bi_iter.bi_sector = (sh->sector
1023 + rdev->new_data_offset);
1024 else
1025 bi->bi_iter.bi_sector = (sh->sector
1026 + rdev->data_offset);
1027 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028 bi->bi_rw |= REQ_NOMERGE;
1029
1030 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032 sh->dev[i].vec.bv_page = sh->dev[i].page;
1033 bi->bi_vcnt = 1;
1034 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035 bi->bi_io_vec[0].bv_offset = 0;
1036 bi->bi_iter.bi_size = STRIPE_SIZE;
1037 /*
1038 * If this is discard request, set bi_vcnt 0. We don't
1039 * want to confuse SCSI because SCSI will replace payload
1040 */
1041 if (rw & REQ_DISCARD)
1042 bi->bi_vcnt = 0;
1043 if (rrdev)
1044 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046 if (conf->mddev->gendisk)
1047 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048 bi, disk_devt(conf->mddev->gendisk),
1049 sh->dev[i].sector);
1050 generic_make_request(bi);
1051 }
1052 if (rrdev) {
1053 if (s->syncing || s->expanding || s->expanded
1054 || s->replacing)
1055 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057 set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059 bio_reset(rbi);
1060 rbi->bi_bdev = rrdev->bdev;
1061 rbi->bi_rw = rw;
1062 BUG_ON(!(rw & WRITE));
1063 rbi->bi_end_io = raid5_end_write_request;
1064 rbi->bi_private = sh;
1065
1066 pr_debug("%s: for %llu schedule op %ld on "
1067 "replacement disc %d\n",
1068 __func__, (unsigned long long)sh->sector,
1069 rbi->bi_rw, i);
1070 atomic_inc(&sh->count);
1071 if (sh != head_sh)
1072 atomic_inc(&head_sh->count);
1073 if (use_new_offset(conf, sh))
1074 rbi->bi_iter.bi_sector = (sh->sector
1075 + rrdev->new_data_offset);
1076 else
1077 rbi->bi_iter.bi_sector = (sh->sector
1078 + rrdev->data_offset);
1079 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1080 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1081 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1082 rbi->bi_vcnt = 1;
1083 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1084 rbi->bi_io_vec[0].bv_offset = 0;
1085 rbi->bi_iter.bi_size = STRIPE_SIZE;
1086 /*
1087 * If this is discard request, set bi_vcnt 0. We don't
1088 * want to confuse SCSI because SCSI will replace payload
1089 */
1090 if (rw & REQ_DISCARD)
1091 rbi->bi_vcnt = 0;
1092 if (conf->mddev->gendisk)
1093 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1094 rbi, disk_devt(conf->mddev->gendisk),
1095 sh->dev[i].sector);
1096 generic_make_request(rbi);
1097 }
1098 if (!rdev && !rrdev) {
1099 if (rw & WRITE)
1100 set_bit(STRIPE_DEGRADED, &sh->state);
1101 pr_debug("skip op %ld on disc %d for sector %llu\n",
1102 bi->bi_rw, i, (unsigned long long)sh->sector);
1103 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1104 set_bit(STRIPE_HANDLE, &sh->state);
1105 }
1106
1107 if (!head_sh->batch_head)
1108 continue;
1109 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1110 batch_list);
1111 if (sh != head_sh)
1112 goto again;
1113 }
1114 }
1115
1116 static struct dma_async_tx_descriptor *
1117 async_copy_data(int frombio, struct bio *bio, struct page **page,
1118 sector_t sector, struct dma_async_tx_descriptor *tx,
1119 struct stripe_head *sh)
1120 {
1121 struct bio_vec bvl;
1122 struct bvec_iter iter;
1123 struct page *bio_page;
1124 int page_offset;
1125 struct async_submit_ctl submit;
1126 enum async_tx_flags flags = 0;
1127
1128 if (bio->bi_iter.bi_sector >= sector)
1129 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1130 else
1131 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1132
1133 if (frombio)
1134 flags |= ASYNC_TX_FENCE;
1135 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1136
1137 bio_for_each_segment(bvl, bio, iter) {
1138 int len = bvl.bv_len;
1139 int clen;
1140 int b_offset = 0;
1141
1142 if (page_offset < 0) {
1143 b_offset = -page_offset;
1144 page_offset += b_offset;
1145 len -= b_offset;
1146 }
1147
1148 if (len > 0 && page_offset + len > STRIPE_SIZE)
1149 clen = STRIPE_SIZE - page_offset;
1150 else
1151 clen = len;
1152
1153 if (clen > 0) {
1154 b_offset += bvl.bv_offset;
1155 bio_page = bvl.bv_page;
1156 if (frombio) {
1157 if (sh->raid_conf->skip_copy &&
1158 b_offset == 0 && page_offset == 0 &&
1159 clen == STRIPE_SIZE)
1160 *page = bio_page;
1161 else
1162 tx = async_memcpy(*page, bio_page, page_offset,
1163 b_offset, clen, &submit);
1164 } else
1165 tx = async_memcpy(bio_page, *page, b_offset,
1166 page_offset, clen, &submit);
1167 }
1168 /* chain the operations */
1169 submit.depend_tx = tx;
1170
1171 if (clen < len) /* hit end of page */
1172 break;
1173 page_offset += len;
1174 }
1175
1176 return tx;
1177 }
1178
1179 static void ops_complete_biofill(void *stripe_head_ref)
1180 {
1181 struct stripe_head *sh = stripe_head_ref;
1182 struct bio_list return_bi = BIO_EMPTY_LIST;
1183 int i;
1184
1185 pr_debug("%s: stripe %llu\n", __func__,
1186 (unsigned long long)sh->sector);
1187
1188 /* clear completed biofills */
1189 for (i = sh->disks; i--; ) {
1190 struct r5dev *dev = &sh->dev[i];
1191
1192 /* acknowledge completion of a biofill operation */
1193 /* and check if we need to reply to a read request,
1194 * new R5_Wantfill requests are held off until
1195 * !STRIPE_BIOFILL_RUN
1196 */
1197 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1198 struct bio *rbi, *rbi2;
1199
1200 BUG_ON(!dev->read);
1201 rbi = dev->read;
1202 dev->read = NULL;
1203 while (rbi && rbi->bi_iter.bi_sector <
1204 dev->sector + STRIPE_SECTORS) {
1205 rbi2 = r5_next_bio(rbi, dev->sector);
1206 if (!raid5_dec_bi_active_stripes(rbi))
1207 bio_list_add(&return_bi, rbi);
1208 rbi = rbi2;
1209 }
1210 }
1211 }
1212 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214 return_io(&return_bi);
1215
1216 set_bit(STRIPE_HANDLE, &sh->state);
1217 raid5_release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222 struct dma_async_tx_descriptor *tx = NULL;
1223 struct async_submit_ctl submit;
1224 int i;
1225
1226 BUG_ON(sh->batch_head);
1227 pr_debug("%s: stripe %llu\n", __func__,
1228 (unsigned long long)sh->sector);
1229
1230 for (i = sh->disks; i--; ) {
1231 struct r5dev *dev = &sh->dev[i];
1232 if (test_bit(R5_Wantfill, &dev->flags)) {
1233 struct bio *rbi;
1234 spin_lock_irq(&sh->stripe_lock);
1235 dev->read = rbi = dev->toread;
1236 dev->toread = NULL;
1237 spin_unlock_irq(&sh->stripe_lock);
1238 while (rbi && rbi->bi_iter.bi_sector <
1239 dev->sector + STRIPE_SECTORS) {
1240 tx = async_copy_data(0, rbi, &dev->page,
1241 dev->sector, tx, sh);
1242 rbi = r5_next_bio(rbi, dev->sector);
1243 }
1244 }
1245 }
1246
1247 atomic_inc(&sh->count);
1248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254 struct r5dev *tgt;
1255
1256 if (target < 0)
1257 return;
1258
1259 tgt = &sh->dev[target];
1260 set_bit(R5_UPTODATE, &tgt->flags);
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267 struct stripe_head *sh = stripe_head_ref;
1268
1269 pr_debug("%s: stripe %llu\n", __func__,
1270 (unsigned long long)sh->sector);
1271
1272 /* mark the computed target(s) as uptodate */
1273 mark_target_uptodate(sh, sh->ops.target);
1274 mark_target_uptodate(sh, sh->ops.target2);
1275
1276 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 if (sh->check_state == check_state_compute_run)
1278 sh->check_state = check_state_compute_result;
1279 set_bit(STRIPE_HANDLE, &sh->state);
1280 raid5_release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285 struct raid5_percpu *percpu, int i)
1286 {
1287 void *addr;
1288
1289 addr = flex_array_get(percpu->scribble, i);
1290 return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296 void *addr;
1297
1298 addr = flex_array_get(percpu->scribble, i);
1299 return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305 int disks = sh->disks;
1306 struct page **xor_srcs = to_addr_page(percpu, 0);
1307 int target = sh->ops.target;
1308 struct r5dev *tgt = &sh->dev[target];
1309 struct page *xor_dest = tgt->page;
1310 int count = 0;
1311 struct dma_async_tx_descriptor *tx;
1312 struct async_submit_ctl submit;
1313 int i;
1314
1315 BUG_ON(sh->batch_head);
1316
1317 pr_debug("%s: stripe %llu block: %d\n",
1318 __func__, (unsigned long long)sh->sector, target);
1319 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321 for (i = disks; i--; )
1322 if (i != target)
1323 xor_srcs[count++] = sh->dev[i].page;
1324
1325 atomic_inc(&sh->count);
1326
1327 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329 if (unlikely(count == 1))
1330 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331 else
1332 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334 return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338 * @srcs - (struct page *) array of size sh->disks
1339 * @sh - stripe_head to parse
1340 *
1341 * Populates srcs in proper layout order for the stripe and returns the
1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1343 * destination buffer is recorded in srcs[count] and the Q destination
1344 * is recorded in srcs[count+1]].
1345 */
1346 static int set_syndrome_sources(struct page **srcs,
1347 struct stripe_head *sh,
1348 int srctype)
1349 {
1350 int disks = sh->disks;
1351 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 int d0_idx = raid6_d0(sh);
1353 int count;
1354 int i;
1355
1356 for (i = 0; i < disks; i++)
1357 srcs[i] = NULL;
1358
1359 count = 0;
1360 i = d0_idx;
1361 do {
1362 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363 struct r5dev *dev = &sh->dev[i];
1364
1365 if (i == sh->qd_idx || i == sh->pd_idx ||
1366 (srctype == SYNDROME_SRC_ALL) ||
1367 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 test_bit(R5_Wantdrain, &dev->flags)) ||
1369 (srctype == SYNDROME_SRC_WRITTEN &&
1370 dev->written))
1371 srcs[slot] = sh->dev[i].page;
1372 i = raid6_next_disk(i, disks);
1373 } while (i != d0_idx);
1374
1375 return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381 int disks = sh->disks;
1382 struct page **blocks = to_addr_page(percpu, 0);
1383 int target;
1384 int qd_idx = sh->qd_idx;
1385 struct dma_async_tx_descriptor *tx;
1386 struct async_submit_ctl submit;
1387 struct r5dev *tgt;
1388 struct page *dest;
1389 int i;
1390 int count;
1391
1392 BUG_ON(sh->batch_head);
1393 if (sh->ops.target < 0)
1394 target = sh->ops.target2;
1395 else if (sh->ops.target2 < 0)
1396 target = sh->ops.target;
1397 else
1398 /* we should only have one valid target */
1399 BUG();
1400 BUG_ON(target < 0);
1401 pr_debug("%s: stripe %llu block: %d\n",
1402 __func__, (unsigned long long)sh->sector, target);
1403
1404 tgt = &sh->dev[target];
1405 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 dest = tgt->page;
1407
1408 atomic_inc(&sh->count);
1409
1410 if (target == qd_idx) {
1411 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 blocks[count] = NULL; /* regenerating p is not necessary */
1413 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 ops_complete_compute, sh,
1416 to_addr_conv(sh, percpu, 0));
1417 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 } else {
1419 /* Compute any data- or p-drive using XOR */
1420 count = 0;
1421 for (i = disks; i-- ; ) {
1422 if (i == target || i == qd_idx)
1423 continue;
1424 blocks[count++] = sh->dev[i].page;
1425 }
1426
1427 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 NULL, ops_complete_compute, sh,
1429 to_addr_conv(sh, percpu, 0));
1430 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 }
1432
1433 return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439 int i, count, disks = sh->disks;
1440 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 int d0_idx = raid6_d0(sh);
1442 int faila = -1, failb = -1;
1443 int target = sh->ops.target;
1444 int target2 = sh->ops.target2;
1445 struct r5dev *tgt = &sh->dev[target];
1446 struct r5dev *tgt2 = &sh->dev[target2];
1447 struct dma_async_tx_descriptor *tx;
1448 struct page **blocks = to_addr_page(percpu, 0);
1449 struct async_submit_ctl submit;
1450
1451 BUG_ON(sh->batch_head);
1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 __func__, (unsigned long long)sh->sector, target, target2);
1454 BUG_ON(target < 0 || target2 < 0);
1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458 /* we need to open-code set_syndrome_sources to handle the
1459 * slot number conversion for 'faila' and 'failb'
1460 */
1461 for (i = 0; i < disks ; i++)
1462 blocks[i] = NULL;
1463 count = 0;
1464 i = d0_idx;
1465 do {
1466 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468 blocks[slot] = sh->dev[i].page;
1469
1470 if (i == target)
1471 faila = slot;
1472 if (i == target2)
1473 failb = slot;
1474 i = raid6_next_disk(i, disks);
1475 } while (i != d0_idx);
1476
1477 BUG_ON(faila == failb);
1478 if (failb < faila)
1479 swap(faila, failb);
1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483 atomic_inc(&sh->count);
1484
1485 if (failb == syndrome_disks+1) {
1486 /* Q disk is one of the missing disks */
1487 if (faila == syndrome_disks) {
1488 /* Missing P+Q, just recompute */
1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 ops_complete_compute, sh,
1491 to_addr_conv(sh, percpu, 0));
1492 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 STRIPE_SIZE, &submit);
1494 } else {
1495 struct page *dest;
1496 int data_target;
1497 int qd_idx = sh->qd_idx;
1498
1499 /* Missing D+Q: recompute D from P, then recompute Q */
1500 if (target == qd_idx)
1501 data_target = target2;
1502 else
1503 data_target = target;
1504
1505 count = 0;
1506 for (i = disks; i-- ; ) {
1507 if (i == data_target || i == qd_idx)
1508 continue;
1509 blocks[count++] = sh->dev[i].page;
1510 }
1511 dest = sh->dev[data_target].page;
1512 init_async_submit(&submit,
1513 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 NULL, NULL, NULL,
1515 to_addr_conv(sh, percpu, 0));
1516 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 &submit);
1518
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 ops_complete_compute, sh,
1522 to_addr_conv(sh, percpu, 0));
1523 return async_gen_syndrome(blocks, 0, count+2,
1524 STRIPE_SIZE, &submit);
1525 }
1526 } else {
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
1529 to_addr_conv(sh, percpu, 0));
1530 if (failb == syndrome_disks) {
1531 /* We're missing D+P. */
1532 return async_raid6_datap_recov(syndrome_disks+2,
1533 STRIPE_SIZE, faila,
1534 blocks, &submit);
1535 } else {
1536 /* We're missing D+D. */
1537 return async_raid6_2data_recov(syndrome_disks+2,
1538 STRIPE_SIZE, faila, failb,
1539 blocks, &submit);
1540 }
1541 }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546 struct stripe_head *sh = stripe_head_ref;
1547
1548 pr_debug("%s: stripe %llu\n", __func__,
1549 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 struct dma_async_tx_descriptor *tx)
1555 {
1556 int disks = sh->disks;
1557 struct page **xor_srcs = to_addr_page(percpu, 0);
1558 int count = 0, pd_idx = sh->pd_idx, i;
1559 struct async_submit_ctl submit;
1560
1561 /* existing parity data subtracted */
1562 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564 BUG_ON(sh->batch_head);
1565 pr_debug("%s: stripe %llu\n", __func__,
1566 (unsigned long long)sh->sector);
1567
1568 for (i = disks; i--; ) {
1569 struct r5dev *dev = &sh->dev[i];
1570 /* Only process blocks that are known to be uptodate */
1571 if (test_bit(R5_Wantdrain, &dev->flags))
1572 xor_srcs[count++] = dev->page;
1573 }
1574
1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579 return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 struct dma_async_tx_descriptor *tx)
1585 {
1586 struct page **blocks = to_addr_page(percpu, 0);
1587 int count;
1588 struct async_submit_ctl submit;
1589
1590 pr_debug("%s: stripe %llu\n", __func__,
1591 (unsigned long long)sh->sector);
1592
1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1598
1599 return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 int disks = sh->disks;
1606 int i;
1607 struct stripe_head *head_sh = sh;
1608
1609 pr_debug("%s: stripe %llu\n", __func__,
1610 (unsigned long long)sh->sector);
1611
1612 for (i = disks; i--; ) {
1613 struct r5dev *dev;
1614 struct bio *chosen;
1615
1616 sh = head_sh;
1617 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 struct bio *wbi;
1619
1620 again:
1621 dev = &sh->dev[i];
1622 spin_lock_irq(&sh->stripe_lock);
1623 chosen = dev->towrite;
1624 dev->towrite = NULL;
1625 sh->overwrite_disks = 0;
1626 BUG_ON(dev->written);
1627 wbi = dev->written = chosen;
1628 spin_unlock_irq(&sh->stripe_lock);
1629 WARN_ON(dev->page != dev->orig_page);
1630
1631 while (wbi && wbi->bi_iter.bi_sector <
1632 dev->sector + STRIPE_SECTORS) {
1633 if (wbi->bi_rw & REQ_FUA)
1634 set_bit(R5_WantFUA, &dev->flags);
1635 if (wbi->bi_rw & REQ_SYNC)
1636 set_bit(R5_SyncIO, &dev->flags);
1637 if (wbi->bi_rw & REQ_DISCARD)
1638 set_bit(R5_Discard, &dev->flags);
1639 else {
1640 tx = async_copy_data(1, wbi, &dev->page,
1641 dev->sector, tx, sh);
1642 if (dev->page != dev->orig_page) {
1643 set_bit(R5_SkipCopy, &dev->flags);
1644 clear_bit(R5_UPTODATE, &dev->flags);
1645 clear_bit(R5_OVERWRITE, &dev->flags);
1646 }
1647 }
1648 wbi = r5_next_bio(wbi, dev->sector);
1649 }
1650
1651 if (head_sh->batch_head) {
1652 sh = list_first_entry(&sh->batch_list,
1653 struct stripe_head,
1654 batch_list);
1655 if (sh == head_sh)
1656 continue;
1657 goto again;
1658 }
1659 }
1660 }
1661
1662 return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667 struct stripe_head *sh = stripe_head_ref;
1668 int disks = sh->disks;
1669 int pd_idx = sh->pd_idx;
1670 int qd_idx = sh->qd_idx;
1671 int i;
1672 bool fua = false, sync = false, discard = false;
1673
1674 pr_debug("%s: stripe %llu\n", __func__,
1675 (unsigned long long)sh->sector);
1676
1677 for (i = disks; i--; ) {
1678 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681 }
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685
1686 if (dev->written || i == pd_idx || i == qd_idx) {
1687 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688 set_bit(R5_UPTODATE, &dev->flags);
1689 if (fua)
1690 set_bit(R5_WantFUA, &dev->flags);
1691 if (sync)
1692 set_bit(R5_SyncIO, &dev->flags);
1693 }
1694 }
1695
1696 if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 sh->reconstruct_state = reconstruct_state_drain_result;
1698 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 else {
1701 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 sh->reconstruct_state = reconstruct_state_result;
1703 }
1704
1705 set_bit(STRIPE_HANDLE, &sh->state);
1706 raid5_release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 struct dma_async_tx_descriptor *tx)
1712 {
1713 int disks = sh->disks;
1714 struct page **xor_srcs;
1715 struct async_submit_ctl submit;
1716 int count, pd_idx = sh->pd_idx, i;
1717 struct page *xor_dest;
1718 int prexor = 0;
1719 unsigned long flags;
1720 int j = 0;
1721 struct stripe_head *head_sh = sh;
1722 int last_stripe;
1723
1724 pr_debug("%s: stripe %llu\n", __func__,
1725 (unsigned long long)sh->sector);
1726
1727 for (i = 0; i < sh->disks; i++) {
1728 if (pd_idx == i)
1729 continue;
1730 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 break;
1732 }
1733 if (i >= sh->disks) {
1734 atomic_inc(&sh->count);
1735 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 ops_complete_reconstruct(sh);
1737 return;
1738 }
1739 again:
1740 count = 0;
1741 xor_srcs = to_addr_page(percpu, j);
1742 /* check if prexor is active which means only process blocks
1743 * that are part of a read-modify-write (written)
1744 */
1745 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746 prexor = 1;
1747 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
1750 if (head_sh->dev[i].written)
1751 xor_srcs[count++] = dev->page;
1752 }
1753 } else {
1754 xor_dest = sh->dev[pd_idx].page;
1755 for (i = disks; i--; ) {
1756 struct r5dev *dev = &sh->dev[i];
1757 if (i != pd_idx)
1758 xor_srcs[count++] = dev->page;
1759 }
1760 }
1761
1762 /* 1/ if we prexor'd then the dest is reused as a source
1763 * 2/ if we did not prexor then we are redoing the parity
1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 * for the synchronous xor case
1766 */
1767 last_stripe = !head_sh->batch_head ||
1768 list_first_entry(&sh->batch_list,
1769 struct stripe_head, batch_list) == head_sh;
1770 if (last_stripe) {
1771 flags = ASYNC_TX_ACK |
1772 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774 atomic_inc(&head_sh->count);
1775 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 to_addr_conv(sh, percpu, j));
1777 } else {
1778 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 init_async_submit(&submit, flags, tx, NULL, NULL,
1780 to_addr_conv(sh, percpu, j));
1781 }
1782
1783 if (unlikely(count == 1))
1784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 else
1786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 if (!last_stripe) {
1788 j++;
1789 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 batch_list);
1791 goto again;
1792 }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 struct dma_async_tx_descriptor *tx)
1798 {
1799 struct async_submit_ctl submit;
1800 struct page **blocks;
1801 int count, i, j = 0;
1802 struct stripe_head *head_sh = sh;
1803 int last_stripe;
1804 int synflags;
1805 unsigned long txflags;
1806
1807 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809 for (i = 0; i < sh->disks; i++) {
1810 if (sh->pd_idx == i || sh->qd_idx == i)
1811 continue;
1812 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 break;
1814 }
1815 if (i >= sh->disks) {
1816 atomic_inc(&sh->count);
1817 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 ops_complete_reconstruct(sh);
1820 return;
1821 }
1822
1823 again:
1824 blocks = to_addr_page(percpu, j);
1825
1826 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 synflags = SYNDROME_SRC_WRITTEN;
1828 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 } else {
1830 synflags = SYNDROME_SRC_ALL;
1831 txflags = ASYNC_TX_ACK;
1832 }
1833
1834 count = set_syndrome_sources(blocks, sh, synflags);
1835 last_stripe = !head_sh->batch_head ||
1836 list_first_entry(&sh->batch_list,
1837 struct stripe_head, batch_list) == head_sh;
1838
1839 if (last_stripe) {
1840 atomic_inc(&head_sh->count);
1841 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 head_sh, to_addr_conv(sh, percpu, j));
1843 } else
1844 init_async_submit(&submit, 0, tx, NULL, NULL,
1845 to_addr_conv(sh, percpu, j));
1846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1847 if (!last_stripe) {
1848 j++;
1849 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 batch_list);
1851 goto again;
1852 }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857 struct stripe_head *sh = stripe_head_ref;
1858
1859 pr_debug("%s: stripe %llu\n", __func__,
1860 (unsigned long long)sh->sector);
1861
1862 sh->check_state = check_state_check_result;
1863 set_bit(STRIPE_HANDLE, &sh->state);
1864 raid5_release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869 int disks = sh->disks;
1870 int pd_idx = sh->pd_idx;
1871 int qd_idx = sh->qd_idx;
1872 struct page *xor_dest;
1873 struct page **xor_srcs = to_addr_page(percpu, 0);
1874 struct dma_async_tx_descriptor *tx;
1875 struct async_submit_ctl submit;
1876 int count;
1877 int i;
1878
1879 pr_debug("%s: stripe %llu\n", __func__,
1880 (unsigned long long)sh->sector);
1881
1882 BUG_ON(sh->batch_head);
1883 count = 0;
1884 xor_dest = sh->dev[pd_idx].page;
1885 xor_srcs[count++] = xor_dest;
1886 for (i = disks; i--; ) {
1887 if (i == pd_idx || i == qd_idx)
1888 continue;
1889 xor_srcs[count++] = sh->dev[i].page;
1890 }
1891
1892 init_async_submit(&submit, 0, NULL, NULL, NULL,
1893 to_addr_conv(sh, percpu, 0));
1894 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895 &sh->ops.zero_sum_result, &submit);
1896
1897 atomic_inc(&sh->count);
1898 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904 struct page **srcs = to_addr_page(percpu, 0);
1905 struct async_submit_ctl submit;
1906 int count;
1907
1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 (unsigned long long)sh->sector, checkp);
1910
1911 BUG_ON(sh->batch_head);
1912 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 if (!checkp)
1914 srcs[count] = NULL;
1915
1916 atomic_inc(&sh->count);
1917 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918 sh, to_addr_conv(sh, percpu, 0));
1919 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925 int overlap_clear = 0, i, disks = sh->disks;
1926 struct dma_async_tx_descriptor *tx = NULL;
1927 struct r5conf *conf = sh->raid_conf;
1928 int level = conf->level;
1929 struct raid5_percpu *percpu;
1930 unsigned long cpu;
1931
1932 cpu = get_cpu();
1933 percpu = per_cpu_ptr(conf->percpu, cpu);
1934 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 ops_run_biofill(sh);
1936 overlap_clear++;
1937 }
1938
1939 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 if (level < 6)
1941 tx = ops_run_compute5(sh, percpu);
1942 else {
1943 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 tx = ops_run_compute6_1(sh, percpu);
1945 else
1946 tx = ops_run_compute6_2(sh, percpu);
1947 }
1948 /* terminate the chain if reconstruct is not set to be run */
1949 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 async_tx_ack(tx);
1951 }
1952
1953 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 if (level < 6)
1955 tx = ops_run_prexor5(sh, percpu, tx);
1956 else
1957 tx = ops_run_prexor6(sh, percpu, tx);
1958 }
1959
1960 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961 tx = ops_run_biodrain(sh, tx);
1962 overlap_clear++;
1963 }
1964
1965 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 if (level < 6)
1967 ops_run_reconstruct5(sh, percpu, tx);
1968 else
1969 ops_run_reconstruct6(sh, percpu, tx);
1970 }
1971
1972 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 if (sh->check_state == check_state_run)
1974 ops_run_check_p(sh, percpu);
1975 else if (sh->check_state == check_state_run_q)
1976 ops_run_check_pq(sh, percpu, 0);
1977 else if (sh->check_state == check_state_run_pq)
1978 ops_run_check_pq(sh, percpu, 1);
1979 else
1980 BUG();
1981 }
1982
1983 if (overlap_clear && !sh->batch_head)
1984 for (i = disks; i--; ) {
1985 struct r5dev *dev = &sh->dev[i];
1986 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 wake_up(&sh->raid_conf->wait_for_overlap);
1988 }
1989 put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994 struct stripe_head *sh;
1995
1996 sh = kmem_cache_zalloc(sc, gfp);
1997 if (sh) {
1998 spin_lock_init(&sh->stripe_lock);
1999 spin_lock_init(&sh->batch_lock);
2000 INIT_LIST_HEAD(&sh->batch_list);
2001 INIT_LIST_HEAD(&sh->lru);
2002 atomic_set(&sh->count, 1);
2003 }
2004 return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008 struct stripe_head *sh;
2009
2010 sh = alloc_stripe(conf->slab_cache, gfp);
2011 if (!sh)
2012 return 0;
2013
2014 sh->raid_conf = conf;
2015
2016 if (grow_buffers(sh, gfp)) {
2017 shrink_buffers(sh);
2018 kmem_cache_free(conf->slab_cache, sh);
2019 return 0;
2020 }
2021 sh->hash_lock_index =
2022 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 /* we just created an active stripe so... */
2024 atomic_inc(&conf->active_stripes);
2025
2026 raid5_release_stripe(sh);
2027 conf->max_nr_stripes++;
2028 return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033 struct kmem_cache *sc;
2034 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036 if (conf->mddev->gendisk)
2037 sprintf(conf->cache_name[0],
2038 "raid%d-%s", conf->level, mdname(conf->mddev));
2039 else
2040 sprintf(conf->cache_name[0],
2041 "raid%d-%p", conf->level, conf->mddev);
2042 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044 conf->active_name = 0;
2045 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047 0, 0, NULL);
2048 if (!sc)
2049 return 1;
2050 conf->slab_cache = sc;
2051 conf->pool_size = devs;
2052 while (num--)
2053 if (!grow_one_stripe(conf, GFP_KERNEL))
2054 return 1;
2055
2056 return 0;
2057 }
2058
2059 /**
2060 * scribble_len - return the required size of the scribble region
2061 * @num - total number of disks in the array
2062 *
2063 * The size must be enough to contain:
2064 * 1/ a struct page pointer for each device in the array +2
2065 * 2/ room to convert each entry in (1) to its corresponding dma
2066 * (dma_map_page()) or page (page_address()) address.
2067 *
2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069 * calculate over all devices (not just the data blocks), using zeros in place
2070 * of the P and Q blocks.
2071 */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074 struct flex_array *ret;
2075 size_t len;
2076
2077 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 ret = flex_array_alloc(len, cnt, flags);
2079 if (!ret)
2080 return NULL;
2081 /* always prealloc all elements, so no locking is required */
2082 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 flex_array_free(ret);
2084 return NULL;
2085 }
2086 return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091 unsigned long cpu;
2092 int err = 0;
2093
2094 mddev_suspend(conf->mddev);
2095 get_online_cpus();
2096 for_each_present_cpu(cpu) {
2097 struct raid5_percpu *percpu;
2098 struct flex_array *scribble;
2099
2100 percpu = per_cpu_ptr(conf->percpu, cpu);
2101 scribble = scribble_alloc(new_disks,
2102 new_sectors / STRIPE_SECTORS,
2103 GFP_NOIO);
2104
2105 if (scribble) {
2106 flex_array_free(percpu->scribble);
2107 percpu->scribble = scribble;
2108 } else {
2109 err = -ENOMEM;
2110 break;
2111 }
2112 }
2113 put_online_cpus();
2114 mddev_resume(conf->mddev);
2115 return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120 /* Make all the stripes able to hold 'newsize' devices.
2121 * New slots in each stripe get 'page' set to a new page.
2122 *
2123 * This happens in stages:
2124 * 1/ create a new kmem_cache and allocate the required number of
2125 * stripe_heads.
2126 * 2/ gather all the old stripe_heads and transfer the pages across
2127 * to the new stripe_heads. This will have the side effect of
2128 * freezing the array as once all stripe_heads have been collected,
2129 * no IO will be possible. Old stripe heads are freed once their
2130 * pages have been transferred over, and the old kmem_cache is
2131 * freed when all stripes are done.
2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2133 * we simple return a failre status - no need to clean anything up.
2134 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 * If this fails, we don't bother trying the shrink the
2136 * stripe_heads down again, we just leave them as they are.
2137 * As each stripe_head is processed the new one is released into
2138 * active service.
2139 *
2140 * Once step2 is started, we cannot afford to wait for a write,
2141 * so we use GFP_NOIO allocations.
2142 */
2143 struct stripe_head *osh, *nsh;
2144 LIST_HEAD(newstripes);
2145 struct disk_info *ndisks;
2146 int err;
2147 struct kmem_cache *sc;
2148 int i;
2149 int hash, cnt;
2150
2151 if (newsize <= conf->pool_size)
2152 return 0; /* never bother to shrink */
2153
2154 err = md_allow_write(conf->mddev);
2155 if (err)
2156 return err;
2157
2158 /* Step 1 */
2159 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161 0, 0, NULL);
2162 if (!sc)
2163 return -ENOMEM;
2164
2165 /* Need to ensure auto-resizing doesn't interfere */
2166 mutex_lock(&conf->cache_size_mutex);
2167
2168 for (i = conf->max_nr_stripes; i; i--) {
2169 nsh = alloc_stripe(sc, GFP_KERNEL);
2170 if (!nsh)
2171 break;
2172
2173 nsh->raid_conf = conf;
2174 list_add(&nsh->lru, &newstripes);
2175 }
2176 if (i) {
2177 /* didn't get enough, give up */
2178 while (!list_empty(&newstripes)) {
2179 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2180 list_del(&nsh->lru);
2181 kmem_cache_free(sc, nsh);
2182 }
2183 kmem_cache_destroy(sc);
2184 mutex_unlock(&conf->cache_size_mutex);
2185 return -ENOMEM;
2186 }
2187 /* Step 2 - Must use GFP_NOIO now.
2188 * OK, we have enough stripes, start collecting inactive
2189 * stripes and copying them over
2190 */
2191 hash = 0;
2192 cnt = 0;
2193 list_for_each_entry(nsh, &newstripes, lru) {
2194 lock_device_hash_lock(conf, hash);
2195 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2196 !list_empty(conf->inactive_list + hash),
2197 unlock_device_hash_lock(conf, hash),
2198 lock_device_hash_lock(conf, hash));
2199 osh = get_free_stripe(conf, hash);
2200 unlock_device_hash_lock(conf, hash);
2201
2202 for(i=0; i<conf->pool_size; i++) {
2203 nsh->dev[i].page = osh->dev[i].page;
2204 nsh->dev[i].orig_page = osh->dev[i].page;
2205 }
2206 nsh->hash_lock_index = hash;
2207 kmem_cache_free(conf->slab_cache, osh);
2208 cnt++;
2209 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2210 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2211 hash++;
2212 cnt = 0;
2213 }
2214 }
2215 kmem_cache_destroy(conf->slab_cache);
2216
2217 /* Step 3.
2218 * At this point, we are holding all the stripes so the array
2219 * is completely stalled, so now is a good time to resize
2220 * conf->disks and the scribble region
2221 */
2222 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2223 if (ndisks) {
2224 for (i=0; i<conf->raid_disks; i++)
2225 ndisks[i] = conf->disks[i];
2226 kfree(conf->disks);
2227 conf->disks = ndisks;
2228 } else
2229 err = -ENOMEM;
2230
2231 mutex_unlock(&conf->cache_size_mutex);
2232 /* Step 4, return new stripes to service */
2233 while(!list_empty(&newstripes)) {
2234 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2235 list_del_init(&nsh->lru);
2236
2237 for (i=conf->raid_disks; i < newsize; i++)
2238 if (nsh->dev[i].page == NULL) {
2239 struct page *p = alloc_page(GFP_NOIO);
2240 nsh->dev[i].page = p;
2241 nsh->dev[i].orig_page = p;
2242 if (!p)
2243 err = -ENOMEM;
2244 }
2245 raid5_release_stripe(nsh);
2246 }
2247 /* critical section pass, GFP_NOIO no longer needed */
2248
2249 conf->slab_cache = sc;
2250 conf->active_name = 1-conf->active_name;
2251 if (!err)
2252 conf->pool_size = newsize;
2253 return err;
2254 }
2255
2256 static int drop_one_stripe(struct r5conf *conf)
2257 {
2258 struct stripe_head *sh;
2259 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2260
2261 spin_lock_irq(conf->hash_locks + hash);
2262 sh = get_free_stripe(conf, hash);
2263 spin_unlock_irq(conf->hash_locks + hash);
2264 if (!sh)
2265 return 0;
2266 BUG_ON(atomic_read(&sh->count));
2267 shrink_buffers(sh);
2268 kmem_cache_free(conf->slab_cache, sh);
2269 atomic_dec(&conf->active_stripes);
2270 conf->max_nr_stripes--;
2271 return 1;
2272 }
2273
2274 static void shrink_stripes(struct r5conf *conf)
2275 {
2276 while (conf->max_nr_stripes &&
2277 drop_one_stripe(conf))
2278 ;
2279
2280 kmem_cache_destroy(conf->slab_cache);
2281 conf->slab_cache = NULL;
2282 }
2283
2284 static void raid5_end_read_request(struct bio * bi)
2285 {
2286 struct stripe_head *sh = bi->bi_private;
2287 struct r5conf *conf = sh->raid_conf;
2288 int disks = sh->disks, i;
2289 char b[BDEVNAME_SIZE];
2290 struct md_rdev *rdev = NULL;
2291 sector_t s;
2292
2293 for (i=0 ; i<disks; i++)
2294 if (bi == &sh->dev[i].req)
2295 break;
2296
2297 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2298 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2299 bi->bi_error);
2300 if (i == disks) {
2301 BUG();
2302 return;
2303 }
2304 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2305 /* If replacement finished while this request was outstanding,
2306 * 'replacement' might be NULL already.
2307 * In that case it moved down to 'rdev'.
2308 * rdev is not removed until all requests are finished.
2309 */
2310 rdev = conf->disks[i].replacement;
2311 if (!rdev)
2312 rdev = conf->disks[i].rdev;
2313
2314 if (use_new_offset(conf, sh))
2315 s = sh->sector + rdev->new_data_offset;
2316 else
2317 s = sh->sector + rdev->data_offset;
2318 if (!bi->bi_error) {
2319 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2320 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2321 /* Note that this cannot happen on a
2322 * replacement device. We just fail those on
2323 * any error
2324 */
2325 printk_ratelimited(
2326 KERN_INFO
2327 "md/raid:%s: read error corrected"
2328 " (%lu sectors at %llu on %s)\n",
2329 mdname(conf->mddev), STRIPE_SECTORS,
2330 (unsigned long long)s,
2331 bdevname(rdev->bdev, b));
2332 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2333 clear_bit(R5_ReadError, &sh->dev[i].flags);
2334 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2335 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2336 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2337
2338 if (atomic_read(&rdev->read_errors))
2339 atomic_set(&rdev->read_errors, 0);
2340 } else {
2341 const char *bdn = bdevname(rdev->bdev, b);
2342 int retry = 0;
2343 int set_bad = 0;
2344
2345 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2346 atomic_inc(&rdev->read_errors);
2347 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2348 printk_ratelimited(
2349 KERN_WARNING
2350 "md/raid:%s: read error on replacement device "
2351 "(sector %llu on %s).\n",
2352 mdname(conf->mddev),
2353 (unsigned long long)s,
2354 bdn);
2355 else if (conf->mddev->degraded >= conf->max_degraded) {
2356 set_bad = 1;
2357 printk_ratelimited(
2358 KERN_WARNING
2359 "md/raid:%s: read error not correctable "
2360 "(sector %llu on %s).\n",
2361 mdname(conf->mddev),
2362 (unsigned long long)s,
2363 bdn);
2364 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2365 /* Oh, no!!! */
2366 set_bad = 1;
2367 printk_ratelimited(
2368 KERN_WARNING
2369 "md/raid:%s: read error NOT corrected!! "
2370 "(sector %llu on %s).\n",
2371 mdname(conf->mddev),
2372 (unsigned long long)s,
2373 bdn);
2374 } else if (atomic_read(&rdev->read_errors)
2375 > conf->max_nr_stripes)
2376 printk(KERN_WARNING
2377 "md/raid:%s: Too many read errors, failing device %s.\n",
2378 mdname(conf->mddev), bdn);
2379 else
2380 retry = 1;
2381 if (set_bad && test_bit(In_sync, &rdev->flags)
2382 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2383 retry = 1;
2384 if (retry)
2385 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2386 set_bit(R5_ReadError, &sh->dev[i].flags);
2387 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2388 } else
2389 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2390 else {
2391 clear_bit(R5_ReadError, &sh->dev[i].flags);
2392 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2393 if (!(set_bad
2394 && test_bit(In_sync, &rdev->flags)
2395 && rdev_set_badblocks(
2396 rdev, sh->sector, STRIPE_SECTORS, 0)))
2397 md_error(conf->mddev, rdev);
2398 }
2399 }
2400 rdev_dec_pending(rdev, conf->mddev);
2401 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2402 set_bit(STRIPE_HANDLE, &sh->state);
2403 raid5_release_stripe(sh);
2404 }
2405
2406 static void raid5_end_write_request(struct bio *bi)
2407 {
2408 struct stripe_head *sh = bi->bi_private;
2409 struct r5conf *conf = sh->raid_conf;
2410 int disks = sh->disks, i;
2411 struct md_rdev *uninitialized_var(rdev);
2412 sector_t first_bad;
2413 int bad_sectors;
2414 int replacement = 0;
2415
2416 for (i = 0 ; i < disks; i++) {
2417 if (bi == &sh->dev[i].req) {
2418 rdev = conf->disks[i].rdev;
2419 break;
2420 }
2421 if (bi == &sh->dev[i].rreq) {
2422 rdev = conf->disks[i].replacement;
2423 if (rdev)
2424 replacement = 1;
2425 else
2426 /* rdev was removed and 'replacement'
2427 * replaced it. rdev is not removed
2428 * until all requests are finished.
2429 */
2430 rdev = conf->disks[i].rdev;
2431 break;
2432 }
2433 }
2434 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2435 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2436 bi->bi_error);
2437 if (i == disks) {
2438 BUG();
2439 return;
2440 }
2441
2442 if (replacement) {
2443 if (bi->bi_error)
2444 md_error(conf->mddev, rdev);
2445 else if (is_badblock(rdev, sh->sector,
2446 STRIPE_SECTORS,
2447 &first_bad, &bad_sectors))
2448 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2449 } else {
2450 if (bi->bi_error) {
2451 set_bit(STRIPE_DEGRADED, &sh->state);
2452 set_bit(WriteErrorSeen, &rdev->flags);
2453 set_bit(R5_WriteError, &sh->dev[i].flags);
2454 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2455 set_bit(MD_RECOVERY_NEEDED,
2456 &rdev->mddev->recovery);
2457 } else if (is_badblock(rdev, sh->sector,
2458 STRIPE_SECTORS,
2459 &first_bad, &bad_sectors)) {
2460 set_bit(R5_MadeGood, &sh->dev[i].flags);
2461 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2462 /* That was a successful write so make
2463 * sure it looks like we already did
2464 * a re-write.
2465 */
2466 set_bit(R5_ReWrite, &sh->dev[i].flags);
2467 }
2468 }
2469 rdev_dec_pending(rdev, conf->mddev);
2470
2471 if (sh->batch_head && bi->bi_error && !replacement)
2472 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2473
2474 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2475 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2476 set_bit(STRIPE_HANDLE, &sh->state);
2477 raid5_release_stripe(sh);
2478
2479 if (sh->batch_head && sh != sh->batch_head)
2480 raid5_release_stripe(sh->batch_head);
2481 }
2482
2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2484 {
2485 struct r5dev *dev = &sh->dev[i];
2486
2487 bio_init(&dev->req);
2488 dev->req.bi_io_vec = &dev->vec;
2489 dev->req.bi_max_vecs = 1;
2490 dev->req.bi_private = sh;
2491
2492 bio_init(&dev->rreq);
2493 dev->rreq.bi_io_vec = &dev->rvec;
2494 dev->rreq.bi_max_vecs = 1;
2495 dev->rreq.bi_private = sh;
2496
2497 dev->flags = 0;
2498 dev->sector = raid5_compute_blocknr(sh, i, previous);
2499 }
2500
2501 static void error(struct mddev *mddev, struct md_rdev *rdev)
2502 {
2503 char b[BDEVNAME_SIZE];
2504 struct r5conf *conf = mddev->private;
2505 unsigned long flags;
2506 pr_debug("raid456: error called\n");
2507
2508 spin_lock_irqsave(&conf->device_lock, flags);
2509 clear_bit(In_sync, &rdev->flags);
2510 mddev->degraded = calc_degraded(conf);
2511 spin_unlock_irqrestore(&conf->device_lock, flags);
2512 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2513
2514 set_bit(Blocked, &rdev->flags);
2515 set_bit(Faulty, &rdev->flags);
2516 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2517 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2518 printk(KERN_ALERT
2519 "md/raid:%s: Disk failure on %s, disabling device.\n"
2520 "md/raid:%s: Operation continuing on %d devices.\n",
2521 mdname(mddev),
2522 bdevname(rdev->bdev, b),
2523 mdname(mddev),
2524 conf->raid_disks - mddev->degraded);
2525 }
2526
2527 /*
2528 * Input: a 'big' sector number,
2529 * Output: index of the data and parity disk, and the sector # in them.
2530 */
2531 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2532 int previous, int *dd_idx,
2533 struct stripe_head *sh)
2534 {
2535 sector_t stripe, stripe2;
2536 sector_t chunk_number;
2537 unsigned int chunk_offset;
2538 int pd_idx, qd_idx;
2539 int ddf_layout = 0;
2540 sector_t new_sector;
2541 int algorithm = previous ? conf->prev_algo
2542 : conf->algorithm;
2543 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2544 : conf->chunk_sectors;
2545 int raid_disks = previous ? conf->previous_raid_disks
2546 : conf->raid_disks;
2547 int data_disks = raid_disks - conf->max_degraded;
2548
2549 /* First compute the information on this sector */
2550
2551 /*
2552 * Compute the chunk number and the sector offset inside the chunk
2553 */
2554 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2555 chunk_number = r_sector;
2556
2557 /*
2558 * Compute the stripe number
2559 */
2560 stripe = chunk_number;
2561 *dd_idx = sector_div(stripe, data_disks);
2562 stripe2 = stripe;
2563 /*
2564 * Select the parity disk based on the user selected algorithm.
2565 */
2566 pd_idx = qd_idx = -1;
2567 switch(conf->level) {
2568 case 4:
2569 pd_idx = data_disks;
2570 break;
2571 case 5:
2572 switch (algorithm) {
2573 case ALGORITHM_LEFT_ASYMMETRIC:
2574 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2575 if (*dd_idx >= pd_idx)
2576 (*dd_idx)++;
2577 break;
2578 case ALGORITHM_RIGHT_ASYMMETRIC:
2579 pd_idx = sector_div(stripe2, raid_disks);
2580 if (*dd_idx >= pd_idx)
2581 (*dd_idx)++;
2582 break;
2583 case ALGORITHM_LEFT_SYMMETRIC:
2584 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2585 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2586 break;
2587 case ALGORITHM_RIGHT_SYMMETRIC:
2588 pd_idx = sector_div(stripe2, raid_disks);
2589 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2590 break;
2591 case ALGORITHM_PARITY_0:
2592 pd_idx = 0;
2593 (*dd_idx)++;
2594 break;
2595 case ALGORITHM_PARITY_N:
2596 pd_idx = data_disks;
2597 break;
2598 default:
2599 BUG();
2600 }
2601 break;
2602 case 6:
2603
2604 switch (algorithm) {
2605 case ALGORITHM_LEFT_ASYMMETRIC:
2606 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2607 qd_idx = pd_idx + 1;
2608 if (pd_idx == raid_disks-1) {
2609 (*dd_idx)++; /* Q D D D P */
2610 qd_idx = 0;
2611 } else if (*dd_idx >= pd_idx)
2612 (*dd_idx) += 2; /* D D P Q D */
2613 break;
2614 case ALGORITHM_RIGHT_ASYMMETRIC:
2615 pd_idx = sector_div(stripe2, raid_disks);
2616 qd_idx = pd_idx + 1;
2617 if (pd_idx == raid_disks-1) {
2618 (*dd_idx)++; /* Q D D D P */
2619 qd_idx = 0;
2620 } else if (*dd_idx >= pd_idx)
2621 (*dd_idx) += 2; /* D D P Q D */
2622 break;
2623 case ALGORITHM_LEFT_SYMMETRIC:
2624 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625 qd_idx = (pd_idx + 1) % raid_disks;
2626 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2627 break;
2628 case ALGORITHM_RIGHT_SYMMETRIC:
2629 pd_idx = sector_div(stripe2, raid_disks);
2630 qd_idx = (pd_idx + 1) % raid_disks;
2631 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2632 break;
2633
2634 case ALGORITHM_PARITY_0:
2635 pd_idx = 0;
2636 qd_idx = 1;
2637 (*dd_idx) += 2;
2638 break;
2639 case ALGORITHM_PARITY_N:
2640 pd_idx = data_disks;
2641 qd_idx = data_disks + 1;
2642 break;
2643
2644 case ALGORITHM_ROTATING_ZERO_RESTART:
2645 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2646 * of blocks for computing Q is different.
2647 */
2648 pd_idx = sector_div(stripe2, raid_disks);
2649 qd_idx = pd_idx + 1;
2650 if (pd_idx == raid_disks-1) {
2651 (*dd_idx)++; /* Q D D D P */
2652 qd_idx = 0;
2653 } else if (*dd_idx >= pd_idx)
2654 (*dd_idx) += 2; /* D D P Q D */
2655 ddf_layout = 1;
2656 break;
2657
2658 case ALGORITHM_ROTATING_N_RESTART:
2659 /* Same a left_asymmetric, by first stripe is
2660 * D D D P Q rather than
2661 * Q D D D P
2662 */
2663 stripe2 += 1;
2664 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2665 qd_idx = pd_idx + 1;
2666 if (pd_idx == raid_disks-1) {
2667 (*dd_idx)++; /* Q D D D P */
2668 qd_idx = 0;
2669 } else if (*dd_idx >= pd_idx)
2670 (*dd_idx) += 2; /* D D P Q D */
2671 ddf_layout = 1;
2672 break;
2673
2674 case ALGORITHM_ROTATING_N_CONTINUE:
2675 /* Same as left_symmetric but Q is before P */
2676 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2677 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2678 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2679 ddf_layout = 1;
2680 break;
2681
2682 case ALGORITHM_LEFT_ASYMMETRIC_6:
2683 /* RAID5 left_asymmetric, with Q on last device */
2684 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2685 if (*dd_idx >= pd_idx)
2686 (*dd_idx)++;
2687 qd_idx = raid_disks - 1;
2688 break;
2689
2690 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2691 pd_idx = sector_div(stripe2, raid_disks-1);
2692 if (*dd_idx >= pd_idx)
2693 (*dd_idx)++;
2694 qd_idx = raid_disks - 1;
2695 break;
2696
2697 case ALGORITHM_LEFT_SYMMETRIC_6:
2698 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2699 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2700 qd_idx = raid_disks - 1;
2701 break;
2702
2703 case ALGORITHM_RIGHT_SYMMETRIC_6:
2704 pd_idx = sector_div(stripe2, raid_disks-1);
2705 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2706 qd_idx = raid_disks - 1;
2707 break;
2708
2709 case ALGORITHM_PARITY_0_6:
2710 pd_idx = 0;
2711 (*dd_idx)++;
2712 qd_idx = raid_disks - 1;
2713 break;
2714
2715 default:
2716 BUG();
2717 }
2718 break;
2719 }
2720
2721 if (sh) {
2722 sh->pd_idx = pd_idx;
2723 sh->qd_idx = qd_idx;
2724 sh->ddf_layout = ddf_layout;
2725 }
2726 /*
2727 * Finally, compute the new sector number
2728 */
2729 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2730 return new_sector;
2731 }
2732
2733 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2734 {
2735 struct r5conf *conf = sh->raid_conf;
2736 int raid_disks = sh->disks;
2737 int data_disks = raid_disks - conf->max_degraded;
2738 sector_t new_sector = sh->sector, check;
2739 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2740 : conf->chunk_sectors;
2741 int algorithm = previous ? conf->prev_algo
2742 : conf->algorithm;
2743 sector_t stripe;
2744 int chunk_offset;
2745 sector_t chunk_number;
2746 int dummy1, dd_idx = i;
2747 sector_t r_sector;
2748 struct stripe_head sh2;
2749
2750 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2751 stripe = new_sector;
2752
2753 if (i == sh->pd_idx)
2754 return 0;
2755 switch(conf->level) {
2756 case 4: break;
2757 case 5:
2758 switch (algorithm) {
2759 case ALGORITHM_LEFT_ASYMMETRIC:
2760 case ALGORITHM_RIGHT_ASYMMETRIC:
2761 if (i > sh->pd_idx)
2762 i--;
2763 break;
2764 case ALGORITHM_LEFT_SYMMETRIC:
2765 case ALGORITHM_RIGHT_SYMMETRIC:
2766 if (i < sh->pd_idx)
2767 i += raid_disks;
2768 i -= (sh->pd_idx + 1);
2769 break;
2770 case ALGORITHM_PARITY_0:
2771 i -= 1;
2772 break;
2773 case ALGORITHM_PARITY_N:
2774 break;
2775 default:
2776 BUG();
2777 }
2778 break;
2779 case 6:
2780 if (i == sh->qd_idx)
2781 return 0; /* It is the Q disk */
2782 switch (algorithm) {
2783 case ALGORITHM_LEFT_ASYMMETRIC:
2784 case ALGORITHM_RIGHT_ASYMMETRIC:
2785 case ALGORITHM_ROTATING_ZERO_RESTART:
2786 case ALGORITHM_ROTATING_N_RESTART:
2787 if (sh->pd_idx == raid_disks-1)
2788 i--; /* Q D D D P */
2789 else if (i > sh->pd_idx)
2790 i -= 2; /* D D P Q D */
2791 break;
2792 case ALGORITHM_LEFT_SYMMETRIC:
2793 case ALGORITHM_RIGHT_SYMMETRIC:
2794 if (sh->pd_idx == raid_disks-1)
2795 i--; /* Q D D D P */
2796 else {
2797 /* D D P Q D */
2798 if (i < sh->pd_idx)
2799 i += raid_disks;
2800 i -= (sh->pd_idx + 2);
2801 }
2802 break;
2803 case ALGORITHM_PARITY_0:
2804 i -= 2;
2805 break;
2806 case ALGORITHM_PARITY_N:
2807 break;
2808 case ALGORITHM_ROTATING_N_CONTINUE:
2809 /* Like left_symmetric, but P is before Q */
2810 if (sh->pd_idx == 0)
2811 i--; /* P D D D Q */
2812 else {
2813 /* D D Q P D */
2814 if (i < sh->pd_idx)
2815 i += raid_disks;
2816 i -= (sh->pd_idx + 1);
2817 }
2818 break;
2819 case ALGORITHM_LEFT_ASYMMETRIC_6:
2820 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2821 if (i > sh->pd_idx)
2822 i--;
2823 break;
2824 case ALGORITHM_LEFT_SYMMETRIC_6:
2825 case ALGORITHM_RIGHT_SYMMETRIC_6:
2826 if (i < sh->pd_idx)
2827 i += data_disks + 1;
2828 i -= (sh->pd_idx + 1);
2829 break;
2830 case ALGORITHM_PARITY_0_6:
2831 i -= 1;
2832 break;
2833 default:
2834 BUG();
2835 }
2836 break;
2837 }
2838
2839 chunk_number = stripe * data_disks + i;
2840 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2841
2842 check = raid5_compute_sector(conf, r_sector,
2843 previous, &dummy1, &sh2);
2844 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2845 || sh2.qd_idx != sh->qd_idx) {
2846 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2847 mdname(conf->mddev));
2848 return 0;
2849 }
2850 return r_sector;
2851 }
2852
2853 static void
2854 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2855 int rcw, int expand)
2856 {
2857 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2858 struct r5conf *conf = sh->raid_conf;
2859 int level = conf->level;
2860
2861 if (rcw) {
2862
2863 for (i = disks; i--; ) {
2864 struct r5dev *dev = &sh->dev[i];
2865
2866 if (dev->towrite) {
2867 set_bit(R5_LOCKED, &dev->flags);
2868 set_bit(R5_Wantdrain, &dev->flags);
2869 if (!expand)
2870 clear_bit(R5_UPTODATE, &dev->flags);
2871 s->locked++;
2872 }
2873 }
2874 /* if we are not expanding this is a proper write request, and
2875 * there will be bios with new data to be drained into the
2876 * stripe cache
2877 */
2878 if (!expand) {
2879 if (!s->locked)
2880 /* False alarm, nothing to do */
2881 return;
2882 sh->reconstruct_state = reconstruct_state_drain_run;
2883 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2884 } else
2885 sh->reconstruct_state = reconstruct_state_run;
2886
2887 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2888
2889 if (s->locked + conf->max_degraded == disks)
2890 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2891 atomic_inc(&conf->pending_full_writes);
2892 } else {
2893 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2894 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2895 BUG_ON(level == 6 &&
2896 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2897 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2898
2899 for (i = disks; i--; ) {
2900 struct r5dev *dev = &sh->dev[i];
2901 if (i == pd_idx || i == qd_idx)
2902 continue;
2903
2904 if (dev->towrite &&
2905 (test_bit(R5_UPTODATE, &dev->flags) ||
2906 test_bit(R5_Wantcompute, &dev->flags))) {
2907 set_bit(R5_Wantdrain, &dev->flags);
2908 set_bit(R5_LOCKED, &dev->flags);
2909 clear_bit(R5_UPTODATE, &dev->flags);
2910 s->locked++;
2911 }
2912 }
2913 if (!s->locked)
2914 /* False alarm - nothing to do */
2915 return;
2916 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2917 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2918 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2919 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2920 }
2921
2922 /* keep the parity disk(s) locked while asynchronous operations
2923 * are in flight
2924 */
2925 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2926 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2927 s->locked++;
2928
2929 if (level == 6) {
2930 int qd_idx = sh->qd_idx;
2931 struct r5dev *dev = &sh->dev[qd_idx];
2932
2933 set_bit(R5_LOCKED, &dev->flags);
2934 clear_bit(R5_UPTODATE, &dev->flags);
2935 s->locked++;
2936 }
2937
2938 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2939 __func__, (unsigned long long)sh->sector,
2940 s->locked, s->ops_request);
2941 }
2942
2943 /*
2944 * Each stripe/dev can have one or more bion attached.
2945 * toread/towrite point to the first in a chain.
2946 * The bi_next chain must be in order.
2947 */
2948 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2949 int forwrite, int previous)
2950 {
2951 struct bio **bip;
2952 struct r5conf *conf = sh->raid_conf;
2953 int firstwrite=0;
2954
2955 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2956 (unsigned long long)bi->bi_iter.bi_sector,
2957 (unsigned long long)sh->sector);
2958
2959 /*
2960 * If several bio share a stripe. The bio bi_phys_segments acts as a
2961 * reference count to avoid race. The reference count should already be
2962 * increased before this function is called (for example, in
2963 * make_request()), so other bio sharing this stripe will not free the
2964 * stripe. If a stripe is owned by one stripe, the stripe lock will
2965 * protect it.
2966 */
2967 spin_lock_irq(&sh->stripe_lock);
2968 /* Don't allow new IO added to stripes in batch list */
2969 if (sh->batch_head)
2970 goto overlap;
2971 if (forwrite) {
2972 bip = &sh->dev[dd_idx].towrite;
2973 if (*bip == NULL)
2974 firstwrite = 1;
2975 } else
2976 bip = &sh->dev[dd_idx].toread;
2977 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2978 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2979 goto overlap;
2980 bip = & (*bip)->bi_next;
2981 }
2982 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2983 goto overlap;
2984
2985 if (!forwrite || previous)
2986 clear_bit(STRIPE_BATCH_READY, &sh->state);
2987
2988 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2989 if (*bip)
2990 bi->bi_next = *bip;
2991 *bip = bi;
2992 raid5_inc_bi_active_stripes(bi);
2993
2994 if (forwrite) {
2995 /* check if page is covered */
2996 sector_t sector = sh->dev[dd_idx].sector;
2997 for (bi=sh->dev[dd_idx].towrite;
2998 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2999 bi && bi->bi_iter.bi_sector <= sector;
3000 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3001 if (bio_end_sector(bi) >= sector)
3002 sector = bio_end_sector(bi);
3003 }
3004 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3005 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3006 sh->overwrite_disks++;
3007 }
3008
3009 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3010 (unsigned long long)(*bip)->bi_iter.bi_sector,
3011 (unsigned long long)sh->sector, dd_idx);
3012
3013 if (conf->mddev->bitmap && firstwrite) {
3014 /* Cannot hold spinlock over bitmap_startwrite,
3015 * but must ensure this isn't added to a batch until
3016 * we have added to the bitmap and set bm_seq.
3017 * So set STRIPE_BITMAP_PENDING to prevent
3018 * batching.
3019 * If multiple add_stripe_bio() calls race here they
3020 * much all set STRIPE_BITMAP_PENDING. So only the first one
3021 * to complete "bitmap_startwrite" gets to set
3022 * STRIPE_BIT_DELAY. This is important as once a stripe
3023 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3024 * any more.
3025 */
3026 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3027 spin_unlock_irq(&sh->stripe_lock);
3028 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3029 STRIPE_SECTORS, 0);
3030 spin_lock_irq(&sh->stripe_lock);
3031 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3032 if (!sh->batch_head) {
3033 sh->bm_seq = conf->seq_flush+1;
3034 set_bit(STRIPE_BIT_DELAY, &sh->state);
3035 }
3036 }
3037 spin_unlock_irq(&sh->stripe_lock);
3038
3039 if (stripe_can_batch(sh))
3040 stripe_add_to_batch_list(conf, sh);
3041 return 1;
3042
3043 overlap:
3044 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3045 spin_unlock_irq(&sh->stripe_lock);
3046 return 0;
3047 }
3048
3049 static void end_reshape(struct r5conf *conf);
3050
3051 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3052 struct stripe_head *sh)
3053 {
3054 int sectors_per_chunk =
3055 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3056 int dd_idx;
3057 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3058 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3059
3060 raid5_compute_sector(conf,
3061 stripe * (disks - conf->max_degraded)
3062 *sectors_per_chunk + chunk_offset,
3063 previous,
3064 &dd_idx, sh);
3065 }
3066
3067 static void
3068 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3069 struct stripe_head_state *s, int disks,
3070 struct bio_list *return_bi)
3071 {
3072 int i;
3073 BUG_ON(sh->batch_head);
3074 for (i = disks; i--; ) {
3075 struct bio *bi;
3076 int bitmap_end = 0;
3077
3078 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3079 struct md_rdev *rdev;
3080 rcu_read_lock();
3081 rdev = rcu_dereference(conf->disks[i].rdev);
3082 if (rdev && test_bit(In_sync, &rdev->flags))
3083 atomic_inc(&rdev->nr_pending);
3084 else
3085 rdev = NULL;
3086 rcu_read_unlock();
3087 if (rdev) {
3088 if (!rdev_set_badblocks(
3089 rdev,
3090 sh->sector,
3091 STRIPE_SECTORS, 0))
3092 md_error(conf->mddev, rdev);
3093 rdev_dec_pending(rdev, conf->mddev);
3094 }
3095 }
3096 spin_lock_irq(&sh->stripe_lock);
3097 /* fail all writes first */
3098 bi = sh->dev[i].towrite;
3099 sh->dev[i].towrite = NULL;
3100 sh->overwrite_disks = 0;
3101 spin_unlock_irq(&sh->stripe_lock);
3102 if (bi)
3103 bitmap_end = 1;
3104
3105 r5l_stripe_write_finished(sh);
3106
3107 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3108 wake_up(&conf->wait_for_overlap);
3109
3110 while (bi && bi->bi_iter.bi_sector <
3111 sh->dev[i].sector + STRIPE_SECTORS) {
3112 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3113
3114 bi->bi_error = -EIO;
3115 if (!raid5_dec_bi_active_stripes(bi)) {
3116 md_write_end(conf->mddev);
3117 bio_list_add(return_bi, bi);
3118 }
3119 bi = nextbi;
3120 }
3121 if (bitmap_end)
3122 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3123 STRIPE_SECTORS, 0, 0);
3124 bitmap_end = 0;
3125 /* and fail all 'written' */
3126 bi = sh->dev[i].written;
3127 sh->dev[i].written = NULL;
3128 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3129 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3130 sh->dev[i].page = sh->dev[i].orig_page;
3131 }
3132
3133 if (bi) bitmap_end = 1;
3134 while (bi && bi->bi_iter.bi_sector <
3135 sh->dev[i].sector + STRIPE_SECTORS) {
3136 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3137
3138 bi->bi_error = -EIO;
3139 if (!raid5_dec_bi_active_stripes(bi)) {
3140 md_write_end(conf->mddev);
3141 bio_list_add(return_bi, bi);
3142 }
3143 bi = bi2;
3144 }
3145
3146 /* fail any reads if this device is non-operational and
3147 * the data has not reached the cache yet.
3148 */
3149 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3150 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3151 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3152 spin_lock_irq(&sh->stripe_lock);
3153 bi = sh->dev[i].toread;
3154 sh->dev[i].toread = NULL;
3155 spin_unlock_irq(&sh->stripe_lock);
3156 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3157 wake_up(&conf->wait_for_overlap);
3158 if (bi)
3159 s->to_read--;
3160 while (bi && bi->bi_iter.bi_sector <
3161 sh->dev[i].sector + STRIPE_SECTORS) {
3162 struct bio *nextbi =
3163 r5_next_bio(bi, sh->dev[i].sector);
3164
3165 bi->bi_error = -EIO;
3166 if (!raid5_dec_bi_active_stripes(bi))
3167 bio_list_add(return_bi, bi);
3168 bi = nextbi;
3169 }
3170 }
3171 if (bitmap_end)
3172 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3173 STRIPE_SECTORS, 0, 0);
3174 /* If we were in the middle of a write the parity block might
3175 * still be locked - so just clear all R5_LOCKED flags
3176 */
3177 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3178 }
3179 s->to_write = 0;
3180 s->written = 0;
3181
3182 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3183 if (atomic_dec_and_test(&conf->pending_full_writes))
3184 md_wakeup_thread(conf->mddev->thread);
3185 }
3186
3187 static void
3188 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3189 struct stripe_head_state *s)
3190 {
3191 int abort = 0;
3192 int i;
3193
3194 BUG_ON(sh->batch_head);
3195 clear_bit(STRIPE_SYNCING, &sh->state);
3196 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3197 wake_up(&conf->wait_for_overlap);
3198 s->syncing = 0;
3199 s->replacing = 0;
3200 /* There is nothing more to do for sync/check/repair.
3201 * Don't even need to abort as that is handled elsewhere
3202 * if needed, and not always wanted e.g. if there is a known
3203 * bad block here.
3204 * For recover/replace we need to record a bad block on all
3205 * non-sync devices, or abort the recovery
3206 */
3207 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3208 /* During recovery devices cannot be removed, so
3209 * locking and refcounting of rdevs is not needed
3210 */
3211 for (i = 0; i < conf->raid_disks; i++) {
3212 struct md_rdev *rdev = conf->disks[i].rdev;
3213 if (rdev
3214 && !test_bit(Faulty, &rdev->flags)
3215 && !test_bit(In_sync, &rdev->flags)
3216 && !rdev_set_badblocks(rdev, sh->sector,
3217 STRIPE_SECTORS, 0))
3218 abort = 1;
3219 rdev = conf->disks[i].replacement;
3220 if (rdev
3221 && !test_bit(Faulty, &rdev->flags)
3222 && !test_bit(In_sync, &rdev->flags)
3223 && !rdev_set_badblocks(rdev, sh->sector,
3224 STRIPE_SECTORS, 0))
3225 abort = 1;
3226 }
3227 if (abort)
3228 conf->recovery_disabled =
3229 conf->mddev->recovery_disabled;
3230 }
3231 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3232 }
3233
3234 static int want_replace(struct stripe_head *sh, int disk_idx)
3235 {
3236 struct md_rdev *rdev;
3237 int rv = 0;
3238 /* Doing recovery so rcu locking not required */
3239 rdev = sh->raid_conf->disks[disk_idx].replacement;
3240 if (rdev
3241 && !test_bit(Faulty, &rdev->flags)
3242 && !test_bit(In_sync, &rdev->flags)
3243 && (rdev->recovery_offset <= sh->sector
3244 || rdev->mddev->recovery_cp <= sh->sector))
3245 rv = 1;
3246
3247 return rv;
3248 }
3249
3250 /* fetch_block - checks the given member device to see if its data needs
3251 * to be read or computed to satisfy a request.
3252 *
3253 * Returns 1 when no more member devices need to be checked, otherwise returns
3254 * 0 to tell the loop in handle_stripe_fill to continue
3255 */
3256
3257 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3258 int disk_idx, int disks)
3259 {
3260 struct r5dev *dev = &sh->dev[disk_idx];
3261 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3262 &sh->dev[s->failed_num[1]] };
3263 int i;
3264
3265
3266 if (test_bit(R5_LOCKED, &dev->flags) ||
3267 test_bit(R5_UPTODATE, &dev->flags))
3268 /* No point reading this as we already have it or have
3269 * decided to get it.
3270 */
3271 return 0;
3272
3273 if (dev->toread ||
3274 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3275 /* We need this block to directly satisfy a request */
3276 return 1;
3277
3278 if (s->syncing || s->expanding ||
3279 (s->replacing && want_replace(sh, disk_idx)))
3280 /* When syncing, or expanding we read everything.
3281 * When replacing, we need the replaced block.
3282 */
3283 return 1;
3284
3285 if ((s->failed >= 1 && fdev[0]->toread) ||
3286 (s->failed >= 2 && fdev[1]->toread))
3287 /* If we want to read from a failed device, then
3288 * we need to actually read every other device.
3289 */
3290 return 1;
3291
3292 /* Sometimes neither read-modify-write nor reconstruct-write
3293 * cycles can work. In those cases we read every block we
3294 * can. Then the parity-update is certain to have enough to
3295 * work with.
3296 * This can only be a problem when we need to write something,
3297 * and some device has failed. If either of those tests
3298 * fail we need look no further.
3299 */
3300 if (!s->failed || !s->to_write)
3301 return 0;
3302
3303 if (test_bit(R5_Insync, &dev->flags) &&
3304 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3305 /* Pre-reads at not permitted until after short delay
3306 * to gather multiple requests. However if this
3307 * device is no Insync, the block could only be be computed
3308 * and there is no need to delay that.
3309 */
3310 return 0;
3311
3312 for (i = 0; i < s->failed && i < 2; i++) {
3313 if (fdev[i]->towrite &&
3314 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3315 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3316 /* If we have a partial write to a failed
3317 * device, then we will need to reconstruct
3318 * the content of that device, so all other
3319 * devices must be read.
3320 */
3321 return 1;
3322 }
3323
3324 /* If we are forced to do a reconstruct-write, either because
3325 * the current RAID6 implementation only supports that, or
3326 * or because parity cannot be trusted and we are currently
3327 * recovering it, there is extra need to be careful.
3328 * If one of the devices that we would need to read, because
3329 * it is not being overwritten (and maybe not written at all)
3330 * is missing/faulty, then we need to read everything we can.
3331 */
3332 if (sh->raid_conf->level != 6 &&
3333 sh->sector < sh->raid_conf->mddev->recovery_cp)
3334 /* reconstruct-write isn't being forced */
3335 return 0;
3336 for (i = 0; i < s->failed && i < 2; i++) {
3337 if (s->failed_num[i] != sh->pd_idx &&
3338 s->failed_num[i] != sh->qd_idx &&
3339 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3340 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3341 return 1;
3342 }
3343
3344 return 0;
3345 }
3346
3347 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3348 int disk_idx, int disks)
3349 {
3350 struct r5dev *dev = &sh->dev[disk_idx];
3351
3352 /* is the data in this block needed, and can we get it? */
3353 if (need_this_block(sh, s, disk_idx, disks)) {
3354 /* we would like to get this block, possibly by computing it,
3355 * otherwise read it if the backing disk is insync
3356 */
3357 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3358 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3359 BUG_ON(sh->batch_head);
3360 if ((s->uptodate == disks - 1) &&
3361 (s->failed && (disk_idx == s->failed_num[0] ||
3362 disk_idx == s->failed_num[1]))) {
3363 /* have disk failed, and we're requested to fetch it;
3364 * do compute it
3365 */
3366 pr_debug("Computing stripe %llu block %d\n",
3367 (unsigned long long)sh->sector, disk_idx);
3368 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3369 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3370 set_bit(R5_Wantcompute, &dev->flags);
3371 sh->ops.target = disk_idx;
3372 sh->ops.target2 = -1; /* no 2nd target */
3373 s->req_compute = 1;
3374 /* Careful: from this point on 'uptodate' is in the eye
3375 * of raid_run_ops which services 'compute' operations
3376 * before writes. R5_Wantcompute flags a block that will
3377 * be R5_UPTODATE by the time it is needed for a
3378 * subsequent operation.
3379 */
3380 s->uptodate++;
3381 return 1;
3382 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3383 /* Computing 2-failure is *very* expensive; only
3384 * do it if failed >= 2
3385 */
3386 int other;
3387 for (other = disks; other--; ) {
3388 if (other == disk_idx)
3389 continue;
3390 if (!test_bit(R5_UPTODATE,
3391 &sh->dev[other].flags))
3392 break;
3393 }
3394 BUG_ON(other < 0);
3395 pr_debug("Computing stripe %llu blocks %d,%d\n",
3396 (unsigned long long)sh->sector,
3397 disk_idx, other);
3398 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3399 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3400 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3401 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3402 sh->ops.target = disk_idx;
3403 sh->ops.target2 = other;
3404 s->uptodate += 2;
3405 s->req_compute = 1;
3406 return 1;
3407 } else if (test_bit(R5_Insync, &dev->flags)) {
3408 set_bit(R5_LOCKED, &dev->flags);
3409 set_bit(R5_Wantread, &dev->flags);
3410 s->locked++;
3411 pr_debug("Reading block %d (sync=%d)\n",
3412 disk_idx, s->syncing);
3413 }
3414 }
3415
3416 return 0;
3417 }
3418
3419 /**
3420 * handle_stripe_fill - read or compute data to satisfy pending requests.
3421 */
3422 static void handle_stripe_fill(struct stripe_head *sh,
3423 struct stripe_head_state *s,
3424 int disks)
3425 {
3426 int i;
3427
3428 /* look for blocks to read/compute, skip this if a compute
3429 * is already in flight, or if the stripe contents are in the
3430 * midst of changing due to a write
3431 */
3432 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3433 !sh->reconstruct_state)
3434 for (i = disks; i--; )
3435 if (fetch_block(sh, s, i, disks))
3436 break;
3437 set_bit(STRIPE_HANDLE, &sh->state);
3438 }
3439
3440 static void break_stripe_batch_list(struct stripe_head *head_sh,
3441 unsigned long handle_flags);
3442 /* handle_stripe_clean_event
3443 * any written block on an uptodate or failed drive can be returned.
3444 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3445 * never LOCKED, so we don't need to test 'failed' directly.
3446 */
3447 static void handle_stripe_clean_event(struct r5conf *conf,
3448 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3449 {
3450 int i;
3451 struct r5dev *dev;
3452 int discard_pending = 0;
3453 struct stripe_head *head_sh = sh;
3454 bool do_endio = false;
3455
3456 for (i = disks; i--; )
3457 if (sh->dev[i].written) {
3458 dev = &sh->dev[i];
3459 if (!test_bit(R5_LOCKED, &dev->flags) &&
3460 (test_bit(R5_UPTODATE, &dev->flags) ||
3461 test_bit(R5_Discard, &dev->flags) ||
3462 test_bit(R5_SkipCopy, &dev->flags))) {
3463 /* We can return any write requests */
3464 struct bio *wbi, *wbi2;
3465 pr_debug("Return write for disc %d\n", i);
3466 if (test_and_clear_bit(R5_Discard, &dev->flags))
3467 clear_bit(R5_UPTODATE, &dev->flags);
3468 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3469 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3470 }
3471 do_endio = true;
3472
3473 returnbi:
3474 dev->page = dev->orig_page;
3475 wbi = dev->written;
3476 dev->written = NULL;
3477 while (wbi && wbi->bi_iter.bi_sector <
3478 dev->sector + STRIPE_SECTORS) {
3479 wbi2 = r5_next_bio(wbi, dev->sector);
3480 if (!raid5_dec_bi_active_stripes(wbi)) {
3481 md_write_end(conf->mddev);
3482 bio_list_add(return_bi, wbi);
3483 }
3484 wbi = wbi2;
3485 }
3486 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3487 STRIPE_SECTORS,
3488 !test_bit(STRIPE_DEGRADED, &sh->state),
3489 0);
3490 if (head_sh->batch_head) {
3491 sh = list_first_entry(&sh->batch_list,
3492 struct stripe_head,
3493 batch_list);
3494 if (sh != head_sh) {
3495 dev = &sh->dev[i];
3496 goto returnbi;
3497 }
3498 }
3499 sh = head_sh;
3500 dev = &sh->dev[i];
3501 } else if (test_bit(R5_Discard, &dev->flags))
3502 discard_pending = 1;
3503 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3504 WARN_ON(dev->page != dev->orig_page);
3505 }
3506
3507 r5l_stripe_write_finished(sh);
3508
3509 if (!discard_pending &&
3510 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3511 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3512 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3513 if (sh->qd_idx >= 0) {
3514 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3515 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3516 }
3517 /* now that discard is done we can proceed with any sync */
3518 clear_bit(STRIPE_DISCARD, &sh->state);
3519 /*
3520 * SCSI discard will change some bio fields and the stripe has
3521 * no updated data, so remove it from hash list and the stripe
3522 * will be reinitialized
3523 */
3524 spin_lock_irq(&conf->device_lock);
3525 unhash:
3526 remove_hash(sh);
3527 if (head_sh->batch_head) {
3528 sh = list_first_entry(&sh->batch_list,
3529 struct stripe_head, batch_list);
3530 if (sh != head_sh)
3531 goto unhash;
3532 }
3533 spin_unlock_irq(&conf->device_lock);
3534 sh = head_sh;
3535
3536 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3537 set_bit(STRIPE_HANDLE, &sh->state);
3538
3539 }
3540
3541 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3542 if (atomic_dec_and_test(&conf->pending_full_writes))
3543 md_wakeup_thread(conf->mddev->thread);
3544
3545 if (head_sh->batch_head && do_endio)
3546 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3547 }
3548
3549 static void handle_stripe_dirtying(struct r5conf *conf,
3550 struct stripe_head *sh,
3551 struct stripe_head_state *s,
3552 int disks)
3553 {
3554 int rmw = 0, rcw = 0, i;
3555 sector_t recovery_cp = conf->mddev->recovery_cp;
3556
3557 /* Check whether resync is now happening or should start.
3558 * If yes, then the array is dirty (after unclean shutdown or
3559 * initial creation), so parity in some stripes might be inconsistent.
3560 * In this case, we need to always do reconstruct-write, to ensure
3561 * that in case of drive failure or read-error correction, we
3562 * generate correct data from the parity.
3563 */
3564 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3565 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3566 s->failed == 0)) {
3567 /* Calculate the real rcw later - for now make it
3568 * look like rcw is cheaper
3569 */
3570 rcw = 1; rmw = 2;
3571 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3572 conf->rmw_level, (unsigned long long)recovery_cp,
3573 (unsigned long long)sh->sector);
3574 } else for (i = disks; i--; ) {
3575 /* would I have to read this buffer for read_modify_write */
3576 struct r5dev *dev = &sh->dev[i];
3577 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3578 !test_bit(R5_LOCKED, &dev->flags) &&
3579 !(test_bit(R5_UPTODATE, &dev->flags) ||
3580 test_bit(R5_Wantcompute, &dev->flags))) {
3581 if (test_bit(R5_Insync, &dev->flags))
3582 rmw++;
3583 else
3584 rmw += 2*disks; /* cannot read it */
3585 }
3586 /* Would I have to read this buffer for reconstruct_write */
3587 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3588 i != sh->pd_idx && i != sh->qd_idx &&
3589 !test_bit(R5_LOCKED, &dev->flags) &&
3590 !(test_bit(R5_UPTODATE, &dev->flags) ||
3591 test_bit(R5_Wantcompute, &dev->flags))) {
3592 if (test_bit(R5_Insync, &dev->flags))
3593 rcw++;
3594 else
3595 rcw += 2*disks;
3596 }
3597 }
3598 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3599 (unsigned long long)sh->sector, rmw, rcw);
3600 set_bit(STRIPE_HANDLE, &sh->state);
3601 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3602 /* prefer read-modify-write, but need to get some data */
3603 if (conf->mddev->queue)
3604 blk_add_trace_msg(conf->mddev->queue,
3605 "raid5 rmw %llu %d",
3606 (unsigned long long)sh->sector, rmw);
3607 for (i = disks; i--; ) {
3608 struct r5dev *dev = &sh->dev[i];
3609 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3610 !test_bit(R5_LOCKED, &dev->flags) &&
3611 !(test_bit(R5_UPTODATE, &dev->flags) ||
3612 test_bit(R5_Wantcompute, &dev->flags)) &&
3613 test_bit(R5_Insync, &dev->flags)) {
3614 if (test_bit(STRIPE_PREREAD_ACTIVE,
3615 &sh->state)) {
3616 pr_debug("Read_old block %d for r-m-w\n",
3617 i);
3618 set_bit(R5_LOCKED, &dev->flags);
3619 set_bit(R5_Wantread, &dev->flags);
3620 s->locked++;
3621 } else {
3622 set_bit(STRIPE_DELAYED, &sh->state);
3623 set_bit(STRIPE_HANDLE, &sh->state);
3624 }
3625 }
3626 }
3627 }
3628 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3629 /* want reconstruct write, but need to get some data */
3630 int qread =0;
3631 rcw = 0;
3632 for (i = disks; i--; ) {
3633 struct r5dev *dev = &sh->dev[i];
3634 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3635 i != sh->pd_idx && i != sh->qd_idx &&
3636 !test_bit(R5_LOCKED, &dev->flags) &&
3637 !(test_bit(R5_UPTODATE, &dev->flags) ||
3638 test_bit(R5_Wantcompute, &dev->flags))) {
3639 rcw++;
3640 if (test_bit(R5_Insync, &dev->flags) &&
3641 test_bit(STRIPE_PREREAD_ACTIVE,
3642 &sh->state)) {
3643 pr_debug("Read_old block "
3644 "%d for Reconstruct\n", i);
3645 set_bit(R5_LOCKED, &dev->flags);
3646 set_bit(R5_Wantread, &dev->flags);
3647 s->locked++;
3648 qread++;
3649 } else {
3650 set_bit(STRIPE_DELAYED, &sh->state);
3651 set_bit(STRIPE_HANDLE, &sh->state);
3652 }
3653 }
3654 }
3655 if (rcw && conf->mddev->queue)
3656 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3657 (unsigned long long)sh->sector,
3658 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3659 }
3660
3661 if (rcw > disks && rmw > disks &&
3662 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3663 set_bit(STRIPE_DELAYED, &sh->state);
3664
3665 /* now if nothing is locked, and if we have enough data,
3666 * we can start a write request
3667 */
3668 /* since handle_stripe can be called at any time we need to handle the
3669 * case where a compute block operation has been submitted and then a
3670 * subsequent call wants to start a write request. raid_run_ops only
3671 * handles the case where compute block and reconstruct are requested
3672 * simultaneously. If this is not the case then new writes need to be
3673 * held off until the compute completes.
3674 */
3675 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3676 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3677 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3678 schedule_reconstruction(sh, s, rcw == 0, 0);
3679 }
3680
3681 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3682 struct stripe_head_state *s, int disks)
3683 {
3684 struct r5dev *dev = NULL;
3685
3686 BUG_ON(sh->batch_head);
3687 set_bit(STRIPE_HANDLE, &sh->state);
3688
3689 switch (sh->check_state) {
3690 case check_state_idle:
3691 /* start a new check operation if there are no failures */
3692 if (s->failed == 0) {
3693 BUG_ON(s->uptodate != disks);
3694 sh->check_state = check_state_run;
3695 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3696 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3697 s->uptodate--;
3698 break;
3699 }
3700 dev = &sh->dev[s->failed_num[0]];
3701 /* fall through */
3702 case check_state_compute_result:
3703 sh->check_state = check_state_idle;
3704 if (!dev)
3705 dev = &sh->dev[sh->pd_idx];
3706
3707 /* check that a write has not made the stripe insync */
3708 if (test_bit(STRIPE_INSYNC, &sh->state))
3709 break;
3710
3711 /* either failed parity check, or recovery is happening */
3712 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3713 BUG_ON(s->uptodate != disks);
3714
3715 set_bit(R5_LOCKED, &dev->flags);
3716 s->locked++;
3717 set_bit(R5_Wantwrite, &dev->flags);
3718
3719 clear_bit(STRIPE_DEGRADED, &sh->state);
3720 set_bit(STRIPE_INSYNC, &sh->state);
3721 break;
3722 case check_state_run:
3723 break; /* we will be called again upon completion */
3724 case check_state_check_result:
3725 sh->check_state = check_state_idle;
3726
3727 /* if a failure occurred during the check operation, leave
3728 * STRIPE_INSYNC not set and let the stripe be handled again
3729 */
3730 if (s->failed)
3731 break;
3732
3733 /* handle a successful check operation, if parity is correct
3734 * we are done. Otherwise update the mismatch count and repair
3735 * parity if !MD_RECOVERY_CHECK
3736 */
3737 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3738 /* parity is correct (on disc,
3739 * not in buffer any more)
3740 */
3741 set_bit(STRIPE_INSYNC, &sh->state);
3742 else {
3743 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3744 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3745 /* don't try to repair!! */
3746 set_bit(STRIPE_INSYNC, &sh->state);
3747 else {
3748 sh->check_state = check_state_compute_run;
3749 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3750 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3751 set_bit(R5_Wantcompute,
3752 &sh->dev[sh->pd_idx].flags);
3753 sh->ops.target = sh->pd_idx;
3754 sh->ops.target2 = -1;
3755 s->uptodate++;
3756 }
3757 }
3758 break;
3759 case check_state_compute_run:
3760 break;
3761 default:
3762 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3763 __func__, sh->check_state,
3764 (unsigned long long) sh->sector);
3765 BUG();
3766 }
3767 }
3768
3769 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3770 struct stripe_head_state *s,
3771 int disks)
3772 {
3773 int pd_idx = sh->pd_idx;
3774 int qd_idx = sh->qd_idx;
3775 struct r5dev *dev;
3776
3777 BUG_ON(sh->batch_head);
3778 set_bit(STRIPE_HANDLE, &sh->state);
3779
3780 BUG_ON(s->failed > 2);
3781
3782 /* Want to check and possibly repair P and Q.
3783 * However there could be one 'failed' device, in which
3784 * case we can only check one of them, possibly using the
3785 * other to generate missing data
3786 */
3787
3788 switch (sh->check_state) {
3789 case check_state_idle:
3790 /* start a new check operation if there are < 2 failures */
3791 if (s->failed == s->q_failed) {
3792 /* The only possible failed device holds Q, so it
3793 * makes sense to check P (If anything else were failed,
3794 * we would have used P to recreate it).
3795 */
3796 sh->check_state = check_state_run;
3797 }
3798 if (!s->q_failed && s->failed < 2) {
3799 /* Q is not failed, and we didn't use it to generate
3800 * anything, so it makes sense to check it
3801 */
3802 if (sh->check_state == check_state_run)
3803 sh->check_state = check_state_run_pq;
3804 else
3805 sh->check_state = check_state_run_q;
3806 }
3807
3808 /* discard potentially stale zero_sum_result */
3809 sh->ops.zero_sum_result = 0;
3810
3811 if (sh->check_state == check_state_run) {
3812 /* async_xor_zero_sum destroys the contents of P */
3813 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3814 s->uptodate--;
3815 }
3816 if (sh->check_state >= check_state_run &&
3817 sh->check_state <= check_state_run_pq) {
3818 /* async_syndrome_zero_sum preserves P and Q, so
3819 * no need to mark them !uptodate here
3820 */
3821 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3822 break;
3823 }
3824
3825 /* we have 2-disk failure */
3826 BUG_ON(s->failed != 2);
3827 /* fall through */
3828 case check_state_compute_result:
3829 sh->check_state = check_state_idle;
3830
3831 /* check that a write has not made the stripe insync */
3832 if (test_bit(STRIPE_INSYNC, &sh->state))
3833 break;
3834
3835 /* now write out any block on a failed drive,
3836 * or P or Q if they were recomputed
3837 */
3838 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3839 if (s->failed == 2) {
3840 dev = &sh->dev[s->failed_num[1]];
3841 s->locked++;
3842 set_bit(R5_LOCKED, &dev->flags);
3843 set_bit(R5_Wantwrite, &dev->flags);
3844 }
3845 if (s->failed >= 1) {
3846 dev = &sh->dev[s->failed_num[0]];
3847 s->locked++;
3848 set_bit(R5_LOCKED, &dev->flags);
3849 set_bit(R5_Wantwrite, &dev->flags);
3850 }
3851 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3852 dev = &sh->dev[pd_idx];
3853 s->locked++;
3854 set_bit(R5_LOCKED, &dev->flags);
3855 set_bit(R5_Wantwrite, &dev->flags);
3856 }
3857 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3858 dev = &sh->dev[qd_idx];
3859 s->locked++;
3860 set_bit(R5_LOCKED, &dev->flags);
3861 set_bit(R5_Wantwrite, &dev->flags);
3862 }
3863 clear_bit(STRIPE_DEGRADED, &sh->state);
3864
3865 set_bit(STRIPE_INSYNC, &sh->state);
3866 break;
3867 case check_state_run:
3868 case check_state_run_q:
3869 case check_state_run_pq:
3870 break; /* we will be called again upon completion */
3871 case check_state_check_result:
3872 sh->check_state = check_state_idle;
3873
3874 /* handle a successful check operation, if parity is correct
3875 * we are done. Otherwise update the mismatch count and repair
3876 * parity if !MD_RECOVERY_CHECK
3877 */
3878 if (sh->ops.zero_sum_result == 0) {
3879 /* both parities are correct */
3880 if (!s->failed)
3881 set_bit(STRIPE_INSYNC, &sh->state);
3882 else {
3883 /* in contrast to the raid5 case we can validate
3884 * parity, but still have a failure to write
3885 * back
3886 */
3887 sh->check_state = check_state_compute_result;
3888 /* Returning at this point means that we may go
3889 * off and bring p and/or q uptodate again so
3890 * we make sure to check zero_sum_result again
3891 * to verify if p or q need writeback
3892 */
3893 }
3894 } else {
3895 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3896 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3897 /* don't try to repair!! */
3898 set_bit(STRIPE_INSYNC, &sh->state);
3899 else {
3900 int *target = &sh->ops.target;
3901
3902 sh->ops.target = -1;
3903 sh->ops.target2 = -1;
3904 sh->check_state = check_state_compute_run;
3905 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3906 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3907 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3908 set_bit(R5_Wantcompute,
3909 &sh->dev[pd_idx].flags);
3910 *target = pd_idx;
3911 target = &sh->ops.target2;
3912 s->uptodate++;
3913 }
3914 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3915 set_bit(R5_Wantcompute,
3916 &sh->dev[qd_idx].flags);
3917 *target = qd_idx;
3918 s->uptodate++;
3919 }
3920 }
3921 }
3922 break;
3923 case check_state_compute_run:
3924 break;
3925 default:
3926 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3927 __func__, sh->check_state,
3928 (unsigned long long) sh->sector);
3929 BUG();
3930 }
3931 }
3932
3933 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3934 {
3935 int i;
3936
3937 /* We have read all the blocks in this stripe and now we need to
3938 * copy some of them into a target stripe for expand.
3939 */
3940 struct dma_async_tx_descriptor *tx = NULL;
3941 BUG_ON(sh->batch_head);
3942 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3943 for (i = 0; i < sh->disks; i++)
3944 if (i != sh->pd_idx && i != sh->qd_idx) {
3945 int dd_idx, j;
3946 struct stripe_head *sh2;
3947 struct async_submit_ctl submit;
3948
3949 sector_t bn = raid5_compute_blocknr(sh, i, 1);
3950 sector_t s = raid5_compute_sector(conf, bn, 0,
3951 &dd_idx, NULL);
3952 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3953 if (sh2 == NULL)
3954 /* so far only the early blocks of this stripe
3955 * have been requested. When later blocks
3956 * get requested, we will try again
3957 */
3958 continue;
3959 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3960 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3961 /* must have already done this block */
3962 raid5_release_stripe(sh2);
3963 continue;
3964 }
3965
3966 /* place all the copies on one channel */
3967 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3968 tx = async_memcpy(sh2->dev[dd_idx].page,
3969 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3970 &submit);
3971
3972 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3973 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3974 for (j = 0; j < conf->raid_disks; j++)
3975 if (j != sh2->pd_idx &&
3976 j != sh2->qd_idx &&
3977 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3978 break;
3979 if (j == conf->raid_disks) {
3980 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3981 set_bit(STRIPE_HANDLE, &sh2->state);
3982 }
3983 raid5_release_stripe(sh2);
3984
3985 }
3986 /* done submitting copies, wait for them to complete */
3987 async_tx_quiesce(&tx);
3988 }
3989
3990 /*
3991 * handle_stripe - do things to a stripe.
3992 *
3993 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3994 * state of various bits to see what needs to be done.
3995 * Possible results:
3996 * return some read requests which now have data
3997 * return some write requests which are safely on storage
3998 * schedule a read on some buffers
3999 * schedule a write of some buffers
4000 * return confirmation of parity correctness
4001 *
4002 */
4003
4004 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4005 {
4006 struct r5conf *conf = sh->raid_conf;
4007 int disks = sh->disks;
4008 struct r5dev *dev;
4009 int i;
4010 int do_recovery = 0;
4011
4012 memset(s, 0, sizeof(*s));
4013
4014 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4015 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4016 s->failed_num[0] = -1;
4017 s->failed_num[1] = -1;
4018
4019 /* Now to look around and see what can be done */
4020 rcu_read_lock();
4021 for (i=disks; i--; ) {
4022 struct md_rdev *rdev;
4023 sector_t first_bad;
4024 int bad_sectors;
4025 int is_bad = 0;
4026
4027 dev = &sh->dev[i];
4028
4029 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4030 i, dev->flags,
4031 dev->toread, dev->towrite, dev->written);
4032 /* maybe we can reply to a read
4033 *
4034 * new wantfill requests are only permitted while
4035 * ops_complete_biofill is guaranteed to be inactive
4036 */
4037 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4038 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4039 set_bit(R5_Wantfill, &dev->flags);
4040
4041 /* now count some things */
4042 if (test_bit(R5_LOCKED, &dev->flags))
4043 s->locked++;
4044 if (test_bit(R5_UPTODATE, &dev->flags))
4045 s->uptodate++;
4046 if (test_bit(R5_Wantcompute, &dev->flags)) {
4047 s->compute++;
4048 BUG_ON(s->compute > 2);
4049 }
4050
4051 if (test_bit(R5_Wantfill, &dev->flags))
4052 s->to_fill++;
4053 else if (dev->toread)
4054 s->to_read++;
4055 if (dev->towrite) {
4056 s->to_write++;
4057 if (!test_bit(R5_OVERWRITE, &dev->flags))
4058 s->non_overwrite++;
4059 }
4060 if (dev->written)
4061 s->written++;
4062 /* Prefer to use the replacement for reads, but only
4063 * if it is recovered enough and has no bad blocks.
4064 */
4065 rdev = rcu_dereference(conf->disks[i].replacement);
4066 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4067 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4068 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4069 &first_bad, &bad_sectors))
4070 set_bit(R5_ReadRepl, &dev->flags);
4071 else {
4072 if (rdev && !test_bit(Faulty, &rdev->flags))
4073 set_bit(R5_NeedReplace, &dev->flags);
4074 else
4075 clear_bit(R5_NeedReplace, &dev->flags);
4076 rdev = rcu_dereference(conf->disks[i].rdev);
4077 clear_bit(R5_ReadRepl, &dev->flags);
4078 }
4079 if (rdev && test_bit(Faulty, &rdev->flags))
4080 rdev = NULL;
4081 if (rdev) {
4082 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4083 &first_bad, &bad_sectors);
4084 if (s->blocked_rdev == NULL
4085 && (test_bit(Blocked, &rdev->flags)
4086 || is_bad < 0)) {
4087 if (is_bad < 0)
4088 set_bit(BlockedBadBlocks,
4089 &rdev->flags);
4090 s->blocked_rdev = rdev;
4091 atomic_inc(&rdev->nr_pending);
4092 }
4093 }
4094 clear_bit(R5_Insync, &dev->flags);
4095 if (!rdev)
4096 /* Not in-sync */;
4097 else if (is_bad) {
4098 /* also not in-sync */
4099 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4100 test_bit(R5_UPTODATE, &dev->flags)) {
4101 /* treat as in-sync, but with a read error
4102 * which we can now try to correct
4103 */
4104 set_bit(R5_Insync, &dev->flags);
4105 set_bit(R5_ReadError, &dev->flags);
4106 }
4107 } else if (test_bit(In_sync, &rdev->flags))
4108 set_bit(R5_Insync, &dev->flags);
4109 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4110 /* in sync if before recovery_offset */
4111 set_bit(R5_Insync, &dev->flags);
4112 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4113 test_bit(R5_Expanded, &dev->flags))
4114 /* If we've reshaped into here, we assume it is Insync.
4115 * We will shortly update recovery_offset to make
4116 * it official.
4117 */
4118 set_bit(R5_Insync, &dev->flags);
4119
4120 if (test_bit(R5_WriteError, &dev->flags)) {
4121 /* This flag does not apply to '.replacement'
4122 * only to .rdev, so make sure to check that*/
4123 struct md_rdev *rdev2 = rcu_dereference(
4124 conf->disks[i].rdev);
4125 if (rdev2 == rdev)
4126 clear_bit(R5_Insync, &dev->flags);
4127 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4128 s->handle_bad_blocks = 1;
4129 atomic_inc(&rdev2->nr_pending);
4130 } else
4131 clear_bit(R5_WriteError, &dev->flags);
4132 }
4133 if (test_bit(R5_MadeGood, &dev->flags)) {
4134 /* This flag does not apply to '.replacement'
4135 * only to .rdev, so make sure to check that*/
4136 struct md_rdev *rdev2 = rcu_dereference(
4137 conf->disks[i].rdev);
4138 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4139 s->handle_bad_blocks = 1;
4140 atomic_inc(&rdev2->nr_pending);
4141 } else
4142 clear_bit(R5_MadeGood, &dev->flags);
4143 }
4144 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4145 struct md_rdev *rdev2 = rcu_dereference(
4146 conf->disks[i].replacement);
4147 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4148 s->handle_bad_blocks = 1;
4149 atomic_inc(&rdev2->nr_pending);
4150 } else
4151 clear_bit(R5_MadeGoodRepl, &dev->flags);
4152 }
4153 if (!test_bit(R5_Insync, &dev->flags)) {
4154 /* The ReadError flag will just be confusing now */
4155 clear_bit(R5_ReadError, &dev->flags);
4156 clear_bit(R5_ReWrite, &dev->flags);
4157 }
4158 if (test_bit(R5_ReadError, &dev->flags))
4159 clear_bit(R5_Insync, &dev->flags);
4160 if (!test_bit(R5_Insync, &dev->flags)) {
4161 if (s->failed < 2)
4162 s->failed_num[s->failed] = i;
4163 s->failed++;
4164 if (rdev && !test_bit(Faulty, &rdev->flags))
4165 do_recovery = 1;
4166 }
4167 }
4168 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4169 /* If there is a failed device being replaced,
4170 * we must be recovering.
4171 * else if we are after recovery_cp, we must be syncing
4172 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4173 * else we can only be replacing
4174 * sync and recovery both need to read all devices, and so
4175 * use the same flag.
4176 */
4177 if (do_recovery ||
4178 sh->sector >= conf->mddev->recovery_cp ||
4179 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4180 s->syncing = 1;
4181 else
4182 s->replacing = 1;
4183 }
4184 rcu_read_unlock();
4185 }
4186
4187 static int clear_batch_ready(struct stripe_head *sh)
4188 {
4189 /* Return '1' if this is a member of batch, or
4190 * '0' if it is a lone stripe or a head which can now be
4191 * handled.
4192 */
4193 struct stripe_head *tmp;
4194 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4195 return (sh->batch_head && sh->batch_head != sh);
4196 spin_lock(&sh->stripe_lock);
4197 if (!sh->batch_head) {
4198 spin_unlock(&sh->stripe_lock);
4199 return 0;
4200 }
4201
4202 /*
4203 * this stripe could be added to a batch list before we check
4204 * BATCH_READY, skips it
4205 */
4206 if (sh->batch_head != sh) {
4207 spin_unlock(&sh->stripe_lock);
4208 return 1;
4209 }
4210 spin_lock(&sh->batch_lock);
4211 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4212 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4213 spin_unlock(&sh->batch_lock);
4214 spin_unlock(&sh->stripe_lock);
4215
4216 /*
4217 * BATCH_READY is cleared, no new stripes can be added.
4218 * batch_list can be accessed without lock
4219 */
4220 return 0;
4221 }
4222
4223 static void break_stripe_batch_list(struct stripe_head *head_sh,
4224 unsigned long handle_flags)
4225 {
4226 struct stripe_head *sh, *next;
4227 int i;
4228 int do_wakeup = 0;
4229
4230 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4231
4232 list_del_init(&sh->batch_list);
4233
4234 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4235 (1 << STRIPE_SYNCING) |
4236 (1 << STRIPE_REPLACED) |
4237 (1 << STRIPE_PREREAD_ACTIVE) |
4238 (1 << STRIPE_DELAYED) |
4239 (1 << STRIPE_BIT_DELAY) |
4240 (1 << STRIPE_FULL_WRITE) |
4241 (1 << STRIPE_BIOFILL_RUN) |
4242 (1 << STRIPE_COMPUTE_RUN) |
4243 (1 << STRIPE_OPS_REQ_PENDING) |
4244 (1 << STRIPE_DISCARD) |
4245 (1 << STRIPE_BATCH_READY) |
4246 (1 << STRIPE_BATCH_ERR) |
4247 (1 << STRIPE_BITMAP_PENDING)));
4248 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4249 (1 << STRIPE_REPLACED)));
4250
4251 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4252 (1 << STRIPE_DEGRADED)),
4253 head_sh->state & (1 << STRIPE_INSYNC));
4254
4255 sh->check_state = head_sh->check_state;
4256 sh->reconstruct_state = head_sh->reconstruct_state;
4257 for (i = 0; i < sh->disks; i++) {
4258 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4259 do_wakeup = 1;
4260 sh->dev[i].flags = head_sh->dev[i].flags &
4261 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4262 }
4263 spin_lock_irq(&sh->stripe_lock);
4264 sh->batch_head = NULL;
4265 spin_unlock_irq(&sh->stripe_lock);
4266 if (handle_flags == 0 ||
4267 sh->state & handle_flags)
4268 set_bit(STRIPE_HANDLE, &sh->state);
4269 raid5_release_stripe(sh);
4270 }
4271 spin_lock_irq(&head_sh->stripe_lock);
4272 head_sh->batch_head = NULL;
4273 spin_unlock_irq(&head_sh->stripe_lock);
4274 for (i = 0; i < head_sh->disks; i++)
4275 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4276 do_wakeup = 1;
4277 if (head_sh->state & handle_flags)
4278 set_bit(STRIPE_HANDLE, &head_sh->state);
4279
4280 if (do_wakeup)
4281 wake_up(&head_sh->raid_conf->wait_for_overlap);
4282 }
4283
4284 static void handle_stripe(struct stripe_head *sh)
4285 {
4286 struct stripe_head_state s;
4287 struct r5conf *conf = sh->raid_conf;
4288 int i;
4289 int prexor;
4290 int disks = sh->disks;
4291 struct r5dev *pdev, *qdev;
4292
4293 clear_bit(STRIPE_HANDLE, &sh->state);
4294 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4295 /* already being handled, ensure it gets handled
4296 * again when current action finishes */
4297 set_bit(STRIPE_HANDLE, &sh->state);
4298 return;
4299 }
4300
4301 if (clear_batch_ready(sh) ) {
4302 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4303 return;
4304 }
4305
4306 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4307 break_stripe_batch_list(sh, 0);
4308
4309 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4310 spin_lock(&sh->stripe_lock);
4311 /* Cannot process 'sync' concurrently with 'discard' */
4312 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4313 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4314 set_bit(STRIPE_SYNCING, &sh->state);
4315 clear_bit(STRIPE_INSYNC, &sh->state);
4316 clear_bit(STRIPE_REPLACED, &sh->state);
4317 }
4318 spin_unlock(&sh->stripe_lock);
4319 }
4320 clear_bit(STRIPE_DELAYED, &sh->state);
4321
4322 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4323 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4324 (unsigned long long)sh->sector, sh->state,
4325 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4326 sh->check_state, sh->reconstruct_state);
4327
4328 analyse_stripe(sh, &s);
4329
4330 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4331 goto finish;
4332
4333 if (s.handle_bad_blocks) {
4334 set_bit(STRIPE_HANDLE, &sh->state);
4335 goto finish;
4336 }
4337
4338 if (unlikely(s.blocked_rdev)) {
4339 if (s.syncing || s.expanding || s.expanded ||
4340 s.replacing || s.to_write || s.written) {
4341 set_bit(STRIPE_HANDLE, &sh->state);
4342 goto finish;
4343 }
4344 /* There is nothing for the blocked_rdev to block */
4345 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4346 s.blocked_rdev = NULL;
4347 }
4348
4349 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4350 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4351 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4352 }
4353
4354 pr_debug("locked=%d uptodate=%d to_read=%d"
4355 " to_write=%d failed=%d failed_num=%d,%d\n",
4356 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4357 s.failed_num[0], s.failed_num[1]);
4358 /* check if the array has lost more than max_degraded devices and,
4359 * if so, some requests might need to be failed.
4360 */
4361 if (s.failed > conf->max_degraded) {
4362 sh->check_state = 0;
4363 sh->reconstruct_state = 0;
4364 break_stripe_batch_list(sh, 0);
4365 if (s.to_read+s.to_write+s.written)
4366 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4367 if (s.syncing + s.replacing)
4368 handle_failed_sync(conf, sh, &s);
4369 }
4370
4371 /* Now we check to see if any write operations have recently
4372 * completed
4373 */
4374 prexor = 0;
4375 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4376 prexor = 1;
4377 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4378 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4379 sh->reconstruct_state = reconstruct_state_idle;
4380
4381 /* All the 'written' buffers and the parity block are ready to
4382 * be written back to disk
4383 */
4384 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4385 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4386 BUG_ON(sh->qd_idx >= 0 &&
4387 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4388 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4389 for (i = disks; i--; ) {
4390 struct r5dev *dev = &sh->dev[i];
4391 if (test_bit(R5_LOCKED, &dev->flags) &&
4392 (i == sh->pd_idx || i == sh->qd_idx ||
4393 dev->written)) {
4394 pr_debug("Writing block %d\n", i);
4395 set_bit(R5_Wantwrite, &dev->flags);
4396 if (prexor)
4397 continue;
4398 if (s.failed > 1)
4399 continue;
4400 if (!test_bit(R5_Insync, &dev->flags) ||
4401 ((i == sh->pd_idx || i == sh->qd_idx) &&
4402 s.failed == 0))
4403 set_bit(STRIPE_INSYNC, &sh->state);
4404 }
4405 }
4406 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4407 s.dec_preread_active = 1;
4408 }
4409
4410 /*
4411 * might be able to return some write requests if the parity blocks
4412 * are safe, or on a failed drive
4413 */
4414 pdev = &sh->dev[sh->pd_idx];
4415 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4416 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4417 qdev = &sh->dev[sh->qd_idx];
4418 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4419 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4420 || conf->level < 6;
4421
4422 if (s.written &&
4423 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4424 && !test_bit(R5_LOCKED, &pdev->flags)
4425 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4426 test_bit(R5_Discard, &pdev->flags))))) &&
4427 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4428 && !test_bit(R5_LOCKED, &qdev->flags)
4429 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4430 test_bit(R5_Discard, &qdev->flags))))))
4431 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4432
4433 /* Now we might consider reading some blocks, either to check/generate
4434 * parity, or to satisfy requests
4435 * or to load a block that is being partially written.
4436 */
4437 if (s.to_read || s.non_overwrite
4438 || (conf->level == 6 && s.to_write && s.failed)
4439 || (s.syncing && (s.uptodate + s.compute < disks))
4440 || s.replacing
4441 || s.expanding)
4442 handle_stripe_fill(sh, &s, disks);
4443
4444 /* Now to consider new write requests and what else, if anything
4445 * should be read. We do not handle new writes when:
4446 * 1/ A 'write' operation (copy+xor) is already in flight.
4447 * 2/ A 'check' operation is in flight, as it may clobber the parity
4448 * block.
4449 */
4450 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4451 handle_stripe_dirtying(conf, sh, &s, disks);
4452
4453 /* maybe we need to check and possibly fix the parity for this stripe
4454 * Any reads will already have been scheduled, so we just see if enough
4455 * data is available. The parity check is held off while parity
4456 * dependent operations are in flight.
4457 */
4458 if (sh->check_state ||
4459 (s.syncing && s.locked == 0 &&
4460 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4461 !test_bit(STRIPE_INSYNC, &sh->state))) {
4462 if (conf->level == 6)
4463 handle_parity_checks6(conf, sh, &s, disks);
4464 else
4465 handle_parity_checks5(conf, sh, &s, disks);
4466 }
4467
4468 if ((s.replacing || s.syncing) && s.locked == 0
4469 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4470 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4471 /* Write out to replacement devices where possible */
4472 for (i = 0; i < conf->raid_disks; i++)
4473 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4474 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4475 set_bit(R5_WantReplace, &sh->dev[i].flags);
4476 set_bit(R5_LOCKED, &sh->dev[i].flags);
4477 s.locked++;
4478 }
4479 if (s.replacing)
4480 set_bit(STRIPE_INSYNC, &sh->state);
4481 set_bit(STRIPE_REPLACED, &sh->state);
4482 }
4483 if ((s.syncing || s.replacing) && s.locked == 0 &&
4484 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4485 test_bit(STRIPE_INSYNC, &sh->state)) {
4486 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4487 clear_bit(STRIPE_SYNCING, &sh->state);
4488 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4489 wake_up(&conf->wait_for_overlap);
4490 }
4491
4492 /* If the failed drives are just a ReadError, then we might need
4493 * to progress the repair/check process
4494 */
4495 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4496 for (i = 0; i < s.failed; i++) {
4497 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4498 if (test_bit(R5_ReadError, &dev->flags)
4499 && !test_bit(R5_LOCKED, &dev->flags)
4500 && test_bit(R5_UPTODATE, &dev->flags)
4501 ) {
4502 if (!test_bit(R5_ReWrite, &dev->flags)) {
4503 set_bit(R5_Wantwrite, &dev->flags);
4504 set_bit(R5_ReWrite, &dev->flags);
4505 set_bit(R5_LOCKED, &dev->flags);
4506 s.locked++;
4507 } else {
4508 /* let's read it back */
4509 set_bit(R5_Wantread, &dev->flags);
4510 set_bit(R5_LOCKED, &dev->flags);
4511 s.locked++;
4512 }
4513 }
4514 }
4515
4516 /* Finish reconstruct operations initiated by the expansion process */
4517 if (sh->reconstruct_state == reconstruct_state_result) {
4518 struct stripe_head *sh_src
4519 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4520 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4521 /* sh cannot be written until sh_src has been read.
4522 * so arrange for sh to be delayed a little
4523 */
4524 set_bit(STRIPE_DELAYED, &sh->state);
4525 set_bit(STRIPE_HANDLE, &sh->state);
4526 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4527 &sh_src->state))
4528 atomic_inc(&conf->preread_active_stripes);
4529 raid5_release_stripe(sh_src);
4530 goto finish;
4531 }
4532 if (sh_src)
4533 raid5_release_stripe(sh_src);
4534
4535 sh->reconstruct_state = reconstruct_state_idle;
4536 clear_bit(STRIPE_EXPANDING, &sh->state);
4537 for (i = conf->raid_disks; i--; ) {
4538 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4539 set_bit(R5_LOCKED, &sh->dev[i].flags);
4540 s.locked++;
4541 }
4542 }
4543
4544 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4545 !sh->reconstruct_state) {
4546 /* Need to write out all blocks after computing parity */
4547 sh->disks = conf->raid_disks;
4548 stripe_set_idx(sh->sector, conf, 0, sh);
4549 schedule_reconstruction(sh, &s, 1, 1);
4550 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4551 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4552 atomic_dec(&conf->reshape_stripes);
4553 wake_up(&conf->wait_for_overlap);
4554 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4555 }
4556
4557 if (s.expanding && s.locked == 0 &&
4558 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4559 handle_stripe_expansion(conf, sh);
4560
4561 finish:
4562 /* wait for this device to become unblocked */
4563 if (unlikely(s.blocked_rdev)) {
4564 if (conf->mddev->external)
4565 md_wait_for_blocked_rdev(s.blocked_rdev,
4566 conf->mddev);
4567 else
4568 /* Internal metadata will immediately
4569 * be written by raid5d, so we don't
4570 * need to wait here.
4571 */
4572 rdev_dec_pending(s.blocked_rdev,
4573 conf->mddev);
4574 }
4575
4576 if (s.handle_bad_blocks)
4577 for (i = disks; i--; ) {
4578 struct md_rdev *rdev;
4579 struct r5dev *dev = &sh->dev[i];
4580 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4581 /* We own a safe reference to the rdev */
4582 rdev = conf->disks[i].rdev;
4583 if (!rdev_set_badblocks(rdev, sh->sector,
4584 STRIPE_SECTORS, 0))
4585 md_error(conf->mddev, rdev);
4586 rdev_dec_pending(rdev, conf->mddev);
4587 }
4588 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4589 rdev = conf->disks[i].rdev;
4590 rdev_clear_badblocks(rdev, sh->sector,
4591 STRIPE_SECTORS, 0);
4592 rdev_dec_pending(rdev, conf->mddev);
4593 }
4594 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4595 rdev = conf->disks[i].replacement;
4596 if (!rdev)
4597 /* rdev have been moved down */
4598 rdev = conf->disks[i].rdev;
4599 rdev_clear_badblocks(rdev, sh->sector,
4600 STRIPE_SECTORS, 0);
4601 rdev_dec_pending(rdev, conf->mddev);
4602 }
4603 }
4604
4605 if (s.ops_request)
4606 raid_run_ops(sh, s.ops_request);
4607
4608 ops_run_io(sh, &s);
4609
4610 if (s.dec_preread_active) {
4611 /* We delay this until after ops_run_io so that if make_request
4612 * is waiting on a flush, it won't continue until the writes
4613 * have actually been submitted.
4614 */
4615 atomic_dec(&conf->preread_active_stripes);
4616 if (atomic_read(&conf->preread_active_stripes) <
4617 IO_THRESHOLD)
4618 md_wakeup_thread(conf->mddev->thread);
4619 }
4620
4621 if (!bio_list_empty(&s.return_bi)) {
4622 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4623 spin_lock_irq(&conf->device_lock);
4624 bio_list_merge(&conf->return_bi, &s.return_bi);
4625 spin_unlock_irq(&conf->device_lock);
4626 md_wakeup_thread(conf->mddev->thread);
4627 } else
4628 return_io(&s.return_bi);
4629 }
4630
4631 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4632 }
4633
4634 static void raid5_activate_delayed(struct r5conf *conf)
4635 {
4636 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4637 while (!list_empty(&conf->delayed_list)) {
4638 struct list_head *l = conf->delayed_list.next;
4639 struct stripe_head *sh;
4640 sh = list_entry(l, struct stripe_head, lru);
4641 list_del_init(l);
4642 clear_bit(STRIPE_DELAYED, &sh->state);
4643 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4644 atomic_inc(&conf->preread_active_stripes);
4645 list_add_tail(&sh->lru, &conf->hold_list);
4646 raid5_wakeup_stripe_thread(sh);
4647 }
4648 }
4649 }
4650
4651 static void activate_bit_delay(struct r5conf *conf,
4652 struct list_head *temp_inactive_list)
4653 {
4654 /* device_lock is held */
4655 struct list_head head;
4656 list_add(&head, &conf->bitmap_list);
4657 list_del_init(&conf->bitmap_list);
4658 while (!list_empty(&head)) {
4659 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4660 int hash;
4661 list_del_init(&sh->lru);
4662 atomic_inc(&sh->count);
4663 hash = sh->hash_lock_index;
4664 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4665 }
4666 }
4667
4668 static int raid5_congested(struct mddev *mddev, int bits)
4669 {
4670 struct r5conf *conf = mddev->private;
4671
4672 /* No difference between reads and writes. Just check
4673 * how busy the stripe_cache is
4674 */
4675
4676 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4677 return 1;
4678 if (conf->quiesce)
4679 return 1;
4680 if (atomic_read(&conf->empty_inactive_list_nr))
4681 return 1;
4682
4683 return 0;
4684 }
4685
4686 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4687 {
4688 struct r5conf *conf = mddev->private;
4689 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4690 unsigned int chunk_sectors;
4691 unsigned int bio_sectors = bio_sectors(bio);
4692
4693 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4694 return chunk_sectors >=
4695 ((sector & (chunk_sectors - 1)) + bio_sectors);
4696 }
4697
4698 /*
4699 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4700 * later sampled by raid5d.
4701 */
4702 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4703 {
4704 unsigned long flags;
4705
4706 spin_lock_irqsave(&conf->device_lock, flags);
4707
4708 bi->bi_next = conf->retry_read_aligned_list;
4709 conf->retry_read_aligned_list = bi;
4710
4711 spin_unlock_irqrestore(&conf->device_lock, flags);
4712 md_wakeup_thread(conf->mddev->thread);
4713 }
4714
4715 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4716 {
4717 struct bio *bi;
4718
4719 bi = conf->retry_read_aligned;
4720 if (bi) {
4721 conf->retry_read_aligned = NULL;
4722 return bi;
4723 }
4724 bi = conf->retry_read_aligned_list;
4725 if(bi) {
4726 conf->retry_read_aligned_list = bi->bi_next;
4727 bi->bi_next = NULL;
4728 /*
4729 * this sets the active strip count to 1 and the processed
4730 * strip count to zero (upper 8 bits)
4731 */
4732 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4733 }
4734
4735 return bi;
4736 }
4737
4738 /*
4739 * The "raid5_align_endio" should check if the read succeeded and if it
4740 * did, call bio_endio on the original bio (having bio_put the new bio
4741 * first).
4742 * If the read failed..
4743 */
4744 static void raid5_align_endio(struct bio *bi)
4745 {
4746 struct bio* raid_bi = bi->bi_private;
4747 struct mddev *mddev;
4748 struct r5conf *conf;
4749 struct md_rdev *rdev;
4750 int error = bi->bi_error;
4751
4752 bio_put(bi);
4753
4754 rdev = (void*)raid_bi->bi_next;
4755 raid_bi->bi_next = NULL;
4756 mddev = rdev->mddev;
4757 conf = mddev->private;
4758
4759 rdev_dec_pending(rdev, conf->mddev);
4760
4761 if (!error) {
4762 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4763 raid_bi, 0);
4764 bio_endio(raid_bi);
4765 if (atomic_dec_and_test(&conf->active_aligned_reads))
4766 wake_up(&conf->wait_for_quiescent);
4767 return;
4768 }
4769
4770 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4771
4772 add_bio_to_retry(raid_bi, conf);
4773 }
4774
4775 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4776 {
4777 struct r5conf *conf = mddev->private;
4778 int dd_idx;
4779 struct bio* align_bi;
4780 struct md_rdev *rdev;
4781 sector_t end_sector;
4782
4783 if (!in_chunk_boundary(mddev, raid_bio)) {
4784 pr_debug("%s: non aligned\n", __func__);
4785 return 0;
4786 }
4787 /*
4788 * use bio_clone_mddev to make a copy of the bio
4789 */
4790 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4791 if (!align_bi)
4792 return 0;
4793 /*
4794 * set bi_end_io to a new function, and set bi_private to the
4795 * original bio.
4796 */
4797 align_bi->bi_end_io = raid5_align_endio;
4798 align_bi->bi_private = raid_bio;
4799 /*
4800 * compute position
4801 */
4802 align_bi->bi_iter.bi_sector =
4803 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4804 0, &dd_idx, NULL);
4805
4806 end_sector = bio_end_sector(align_bi);
4807 rcu_read_lock();
4808 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4809 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4810 rdev->recovery_offset < end_sector) {
4811 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4812 if (rdev &&
4813 (test_bit(Faulty, &rdev->flags) ||
4814 !(test_bit(In_sync, &rdev->flags) ||
4815 rdev->recovery_offset >= end_sector)))
4816 rdev = NULL;
4817 }
4818 if (rdev) {
4819 sector_t first_bad;
4820 int bad_sectors;
4821
4822 atomic_inc(&rdev->nr_pending);
4823 rcu_read_unlock();
4824 raid_bio->bi_next = (void*)rdev;
4825 align_bi->bi_bdev = rdev->bdev;
4826 bio_clear_flag(align_bi, BIO_SEG_VALID);
4827
4828 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4829 bio_sectors(align_bi),
4830 &first_bad, &bad_sectors)) {
4831 bio_put(align_bi);
4832 rdev_dec_pending(rdev, mddev);
4833 return 0;
4834 }
4835
4836 /* No reshape active, so we can trust rdev->data_offset */
4837 align_bi->bi_iter.bi_sector += rdev->data_offset;
4838
4839 spin_lock_irq(&conf->device_lock);
4840 wait_event_lock_irq(conf->wait_for_quiescent,
4841 conf->quiesce == 0,
4842 conf->device_lock);
4843 atomic_inc(&conf->active_aligned_reads);
4844 spin_unlock_irq(&conf->device_lock);
4845
4846 if (mddev->gendisk)
4847 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4848 align_bi, disk_devt(mddev->gendisk),
4849 raid_bio->bi_iter.bi_sector);
4850 generic_make_request(align_bi);
4851 return 1;
4852 } else {
4853 rcu_read_unlock();
4854 bio_put(align_bi);
4855 return 0;
4856 }
4857 }
4858
4859 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4860 {
4861 struct bio *split;
4862
4863 do {
4864 sector_t sector = raid_bio->bi_iter.bi_sector;
4865 unsigned chunk_sects = mddev->chunk_sectors;
4866 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4867
4868 if (sectors < bio_sectors(raid_bio)) {
4869 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4870 bio_chain(split, raid_bio);
4871 } else
4872 split = raid_bio;
4873
4874 if (!raid5_read_one_chunk(mddev, split)) {
4875 if (split != raid_bio)
4876 generic_make_request(raid_bio);
4877 return split;
4878 }
4879 } while (split != raid_bio);
4880
4881 return NULL;
4882 }
4883
4884 /* __get_priority_stripe - get the next stripe to process
4885 *
4886 * Full stripe writes are allowed to pass preread active stripes up until
4887 * the bypass_threshold is exceeded. In general the bypass_count
4888 * increments when the handle_list is handled before the hold_list; however, it
4889 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4890 * stripe with in flight i/o. The bypass_count will be reset when the
4891 * head of the hold_list has changed, i.e. the head was promoted to the
4892 * handle_list.
4893 */
4894 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4895 {
4896 struct stripe_head *sh = NULL, *tmp;
4897 struct list_head *handle_list = NULL;
4898 struct r5worker_group *wg = NULL;
4899
4900 if (conf->worker_cnt_per_group == 0) {
4901 handle_list = &conf->handle_list;
4902 } else if (group != ANY_GROUP) {
4903 handle_list = &conf->worker_groups[group].handle_list;
4904 wg = &conf->worker_groups[group];
4905 } else {
4906 int i;
4907 for (i = 0; i < conf->group_cnt; i++) {
4908 handle_list = &conf->worker_groups[i].handle_list;
4909 wg = &conf->worker_groups[i];
4910 if (!list_empty(handle_list))
4911 break;
4912 }
4913 }
4914
4915 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4916 __func__,
4917 list_empty(handle_list) ? "empty" : "busy",
4918 list_empty(&conf->hold_list) ? "empty" : "busy",
4919 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4920
4921 if (!list_empty(handle_list)) {
4922 sh = list_entry(handle_list->next, typeof(*sh), lru);
4923
4924 if (list_empty(&conf->hold_list))
4925 conf->bypass_count = 0;
4926 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4927 if (conf->hold_list.next == conf->last_hold)
4928 conf->bypass_count++;
4929 else {
4930 conf->last_hold = conf->hold_list.next;
4931 conf->bypass_count -= conf->bypass_threshold;
4932 if (conf->bypass_count < 0)
4933 conf->bypass_count = 0;
4934 }
4935 }
4936 } else if (!list_empty(&conf->hold_list) &&
4937 ((conf->bypass_threshold &&
4938 conf->bypass_count > conf->bypass_threshold) ||
4939 atomic_read(&conf->pending_full_writes) == 0)) {
4940
4941 list_for_each_entry(tmp, &conf->hold_list, lru) {
4942 if (conf->worker_cnt_per_group == 0 ||
4943 group == ANY_GROUP ||
4944 !cpu_online(tmp->cpu) ||
4945 cpu_to_group(tmp->cpu) == group) {
4946 sh = tmp;
4947 break;
4948 }
4949 }
4950
4951 if (sh) {
4952 conf->bypass_count -= conf->bypass_threshold;
4953 if (conf->bypass_count < 0)
4954 conf->bypass_count = 0;
4955 }
4956 wg = NULL;
4957 }
4958
4959 if (!sh)
4960 return NULL;
4961
4962 if (wg) {
4963 wg->stripes_cnt--;
4964 sh->group = NULL;
4965 }
4966 list_del_init(&sh->lru);
4967 BUG_ON(atomic_inc_return(&sh->count) != 1);
4968 return sh;
4969 }
4970
4971 struct raid5_plug_cb {
4972 struct blk_plug_cb cb;
4973 struct list_head list;
4974 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4975 };
4976
4977 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4978 {
4979 struct raid5_plug_cb *cb = container_of(
4980 blk_cb, struct raid5_plug_cb, cb);
4981 struct stripe_head *sh;
4982 struct mddev *mddev = cb->cb.data;
4983 struct r5conf *conf = mddev->private;
4984 int cnt = 0;
4985 int hash;
4986
4987 if (cb->list.next && !list_empty(&cb->list)) {
4988 spin_lock_irq(&conf->device_lock);
4989 while (!list_empty(&cb->list)) {
4990 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4991 list_del_init(&sh->lru);
4992 /*
4993 * avoid race release_stripe_plug() sees
4994 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4995 * is still in our list
4996 */
4997 smp_mb__before_atomic();
4998 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4999 /*
5000 * STRIPE_ON_RELEASE_LIST could be set here. In that
5001 * case, the count is always > 1 here
5002 */
5003 hash = sh->hash_lock_index;
5004 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5005 cnt++;
5006 }
5007 spin_unlock_irq(&conf->device_lock);
5008 }
5009 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5010 NR_STRIPE_HASH_LOCKS);
5011 if (mddev->queue)
5012 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5013 kfree(cb);
5014 }
5015
5016 static void release_stripe_plug(struct mddev *mddev,
5017 struct stripe_head *sh)
5018 {
5019 struct blk_plug_cb *blk_cb = blk_check_plugged(
5020 raid5_unplug, mddev,
5021 sizeof(struct raid5_plug_cb));
5022 struct raid5_plug_cb *cb;
5023
5024 if (!blk_cb) {
5025 raid5_release_stripe(sh);
5026 return;
5027 }
5028
5029 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5030
5031 if (cb->list.next == NULL) {
5032 int i;
5033 INIT_LIST_HEAD(&cb->list);
5034 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5035 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5036 }
5037
5038 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5039 list_add_tail(&sh->lru, &cb->list);
5040 else
5041 raid5_release_stripe(sh);
5042 }
5043
5044 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5045 {
5046 struct r5conf *conf = mddev->private;
5047 sector_t logical_sector, last_sector;
5048 struct stripe_head *sh;
5049 int remaining;
5050 int stripe_sectors;
5051
5052 if (mddev->reshape_position != MaxSector)
5053 /* Skip discard while reshape is happening */
5054 return;
5055
5056 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5057 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5058
5059 bi->bi_next = NULL;
5060 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5061
5062 stripe_sectors = conf->chunk_sectors *
5063 (conf->raid_disks - conf->max_degraded);
5064 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5065 stripe_sectors);
5066 sector_div(last_sector, stripe_sectors);
5067
5068 logical_sector *= conf->chunk_sectors;
5069 last_sector *= conf->chunk_sectors;
5070
5071 for (; logical_sector < last_sector;
5072 logical_sector += STRIPE_SECTORS) {
5073 DEFINE_WAIT(w);
5074 int d;
5075 again:
5076 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5077 prepare_to_wait(&conf->wait_for_overlap, &w,
5078 TASK_UNINTERRUPTIBLE);
5079 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5080 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5081 raid5_release_stripe(sh);
5082 schedule();
5083 goto again;
5084 }
5085 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5086 spin_lock_irq(&sh->stripe_lock);
5087 for (d = 0; d < conf->raid_disks; d++) {
5088 if (d == sh->pd_idx || d == sh->qd_idx)
5089 continue;
5090 if (sh->dev[d].towrite || sh->dev[d].toread) {
5091 set_bit(R5_Overlap, &sh->dev[d].flags);
5092 spin_unlock_irq(&sh->stripe_lock);
5093 raid5_release_stripe(sh);
5094 schedule();
5095 goto again;
5096 }
5097 }
5098 set_bit(STRIPE_DISCARD, &sh->state);
5099 finish_wait(&conf->wait_for_overlap, &w);
5100 sh->overwrite_disks = 0;
5101 for (d = 0; d < conf->raid_disks; d++) {
5102 if (d == sh->pd_idx || d == sh->qd_idx)
5103 continue;
5104 sh->dev[d].towrite = bi;
5105 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5106 raid5_inc_bi_active_stripes(bi);
5107 sh->overwrite_disks++;
5108 }
5109 spin_unlock_irq(&sh->stripe_lock);
5110 if (conf->mddev->bitmap) {
5111 for (d = 0;
5112 d < conf->raid_disks - conf->max_degraded;
5113 d++)
5114 bitmap_startwrite(mddev->bitmap,
5115 sh->sector,
5116 STRIPE_SECTORS,
5117 0);
5118 sh->bm_seq = conf->seq_flush + 1;
5119 set_bit(STRIPE_BIT_DELAY, &sh->state);
5120 }
5121
5122 set_bit(STRIPE_HANDLE, &sh->state);
5123 clear_bit(STRIPE_DELAYED, &sh->state);
5124 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5125 atomic_inc(&conf->preread_active_stripes);
5126 release_stripe_plug(mddev, sh);
5127 }
5128
5129 remaining = raid5_dec_bi_active_stripes(bi);
5130 if (remaining == 0) {
5131 md_write_end(mddev);
5132 bio_endio(bi);
5133 }
5134 }
5135
5136 static void make_request(struct mddev *mddev, struct bio * bi)
5137 {
5138 struct r5conf *conf = mddev->private;
5139 int dd_idx;
5140 sector_t new_sector;
5141 sector_t logical_sector, last_sector;
5142 struct stripe_head *sh;
5143 const int rw = bio_data_dir(bi);
5144 int remaining;
5145 DEFINE_WAIT(w);
5146 bool do_prepare;
5147
5148 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5149 md_flush_request(mddev, bi);
5150 return;
5151 }
5152
5153 md_write_start(mddev, bi);
5154
5155 /*
5156 * If array is degraded, better not do chunk aligned read because
5157 * later we might have to read it again in order to reconstruct
5158 * data on failed drives.
5159 */
5160 if (rw == READ && mddev->degraded == 0 &&
5161 mddev->reshape_position == MaxSector) {
5162 bi = chunk_aligned_read(mddev, bi);
5163 if (!bi)
5164 return;
5165 }
5166
5167 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5168 make_discard_request(mddev, bi);
5169 return;
5170 }
5171
5172 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5173 last_sector = bio_end_sector(bi);
5174 bi->bi_next = NULL;
5175 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5176
5177 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5178 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5179 int previous;
5180 int seq;
5181
5182 do_prepare = false;
5183 retry:
5184 seq = read_seqcount_begin(&conf->gen_lock);
5185 previous = 0;
5186 if (do_prepare)
5187 prepare_to_wait(&conf->wait_for_overlap, &w,
5188 TASK_UNINTERRUPTIBLE);
5189 if (unlikely(conf->reshape_progress != MaxSector)) {
5190 /* spinlock is needed as reshape_progress may be
5191 * 64bit on a 32bit platform, and so it might be
5192 * possible to see a half-updated value
5193 * Of course reshape_progress could change after
5194 * the lock is dropped, so once we get a reference
5195 * to the stripe that we think it is, we will have
5196 * to check again.
5197 */
5198 spin_lock_irq(&conf->device_lock);
5199 if (mddev->reshape_backwards
5200 ? logical_sector < conf->reshape_progress
5201 : logical_sector >= conf->reshape_progress) {
5202 previous = 1;
5203 } else {
5204 if (mddev->reshape_backwards
5205 ? logical_sector < conf->reshape_safe
5206 : logical_sector >= conf->reshape_safe) {
5207 spin_unlock_irq(&conf->device_lock);
5208 schedule();
5209 do_prepare = true;
5210 goto retry;
5211 }
5212 }
5213 spin_unlock_irq(&conf->device_lock);
5214 }
5215
5216 new_sector = raid5_compute_sector(conf, logical_sector,
5217 previous,
5218 &dd_idx, NULL);
5219 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5220 (unsigned long long)new_sector,
5221 (unsigned long long)logical_sector);
5222
5223 sh = raid5_get_active_stripe(conf, new_sector, previous,
5224 (bi->bi_rw&RWA_MASK), 0);
5225 if (sh) {
5226 if (unlikely(previous)) {
5227 /* expansion might have moved on while waiting for a
5228 * stripe, so we must do the range check again.
5229 * Expansion could still move past after this
5230 * test, but as we are holding a reference to
5231 * 'sh', we know that if that happens,
5232 * STRIPE_EXPANDING will get set and the expansion
5233 * won't proceed until we finish with the stripe.
5234 */
5235 int must_retry = 0;
5236 spin_lock_irq(&conf->device_lock);
5237 if (mddev->reshape_backwards
5238 ? logical_sector >= conf->reshape_progress
5239 : logical_sector < conf->reshape_progress)
5240 /* mismatch, need to try again */
5241 must_retry = 1;
5242 spin_unlock_irq(&conf->device_lock);
5243 if (must_retry) {
5244 raid5_release_stripe(sh);
5245 schedule();
5246 do_prepare = true;
5247 goto retry;
5248 }
5249 }
5250 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5251 /* Might have got the wrong stripe_head
5252 * by accident
5253 */
5254 raid5_release_stripe(sh);
5255 goto retry;
5256 }
5257
5258 if (rw == WRITE &&
5259 logical_sector >= mddev->suspend_lo &&
5260 logical_sector < mddev->suspend_hi) {
5261 raid5_release_stripe(sh);
5262 /* As the suspend_* range is controlled by
5263 * userspace, we want an interruptible
5264 * wait.
5265 */
5266 flush_signals(current);
5267 prepare_to_wait(&conf->wait_for_overlap,
5268 &w, TASK_INTERRUPTIBLE);
5269 if (logical_sector >= mddev->suspend_lo &&
5270 logical_sector < mddev->suspend_hi) {
5271 schedule();
5272 do_prepare = true;
5273 }
5274 goto retry;
5275 }
5276
5277 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5278 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5279 /* Stripe is busy expanding or
5280 * add failed due to overlap. Flush everything
5281 * and wait a while
5282 */
5283 md_wakeup_thread(mddev->thread);
5284 raid5_release_stripe(sh);
5285 schedule();
5286 do_prepare = true;
5287 goto retry;
5288 }
5289 set_bit(STRIPE_HANDLE, &sh->state);
5290 clear_bit(STRIPE_DELAYED, &sh->state);
5291 if ((!sh->batch_head || sh == sh->batch_head) &&
5292 (bi->bi_rw & REQ_SYNC) &&
5293 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5294 atomic_inc(&conf->preread_active_stripes);
5295 release_stripe_plug(mddev, sh);
5296 } else {
5297 /* cannot get stripe for read-ahead, just give-up */
5298 bi->bi_error = -EIO;
5299 break;
5300 }
5301 }
5302 finish_wait(&conf->wait_for_overlap, &w);
5303
5304 remaining = raid5_dec_bi_active_stripes(bi);
5305 if (remaining == 0) {
5306
5307 if ( rw == WRITE )
5308 md_write_end(mddev);
5309
5310 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5311 bi, 0);
5312 bio_endio(bi);
5313 }
5314 }
5315
5316 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5317
5318 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5319 {
5320 /* reshaping is quite different to recovery/resync so it is
5321 * handled quite separately ... here.
5322 *
5323 * On each call to sync_request, we gather one chunk worth of
5324 * destination stripes and flag them as expanding.
5325 * Then we find all the source stripes and request reads.
5326 * As the reads complete, handle_stripe will copy the data
5327 * into the destination stripe and release that stripe.
5328 */
5329 struct r5conf *conf = mddev->private;
5330 struct stripe_head *sh;
5331 sector_t first_sector, last_sector;
5332 int raid_disks = conf->previous_raid_disks;
5333 int data_disks = raid_disks - conf->max_degraded;
5334 int new_data_disks = conf->raid_disks - conf->max_degraded;
5335 int i;
5336 int dd_idx;
5337 sector_t writepos, readpos, safepos;
5338 sector_t stripe_addr;
5339 int reshape_sectors;
5340 struct list_head stripes;
5341 sector_t retn;
5342
5343 if (sector_nr == 0) {
5344 /* If restarting in the middle, skip the initial sectors */
5345 if (mddev->reshape_backwards &&
5346 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5347 sector_nr = raid5_size(mddev, 0, 0)
5348 - conf->reshape_progress;
5349 } else if (mddev->reshape_backwards &&
5350 conf->reshape_progress == MaxSector) {
5351 /* shouldn't happen, but just in case, finish up.*/
5352 sector_nr = MaxSector;
5353 } else if (!mddev->reshape_backwards &&
5354 conf->reshape_progress > 0)
5355 sector_nr = conf->reshape_progress;
5356 sector_div(sector_nr, new_data_disks);
5357 if (sector_nr) {
5358 mddev->curr_resync_completed = sector_nr;
5359 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5360 *skipped = 1;
5361 retn = sector_nr;
5362 goto finish;
5363 }
5364 }
5365
5366 /* We need to process a full chunk at a time.
5367 * If old and new chunk sizes differ, we need to process the
5368 * largest of these
5369 */
5370
5371 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5372
5373 /* We update the metadata at least every 10 seconds, or when
5374 * the data about to be copied would over-write the source of
5375 * the data at the front of the range. i.e. one new_stripe
5376 * along from reshape_progress new_maps to after where
5377 * reshape_safe old_maps to
5378 */
5379 writepos = conf->reshape_progress;
5380 sector_div(writepos, new_data_disks);
5381 readpos = conf->reshape_progress;
5382 sector_div(readpos, data_disks);
5383 safepos = conf->reshape_safe;
5384 sector_div(safepos, data_disks);
5385 if (mddev->reshape_backwards) {
5386 BUG_ON(writepos < reshape_sectors);
5387 writepos -= reshape_sectors;
5388 readpos += reshape_sectors;
5389 safepos += reshape_sectors;
5390 } else {
5391 writepos += reshape_sectors;
5392 /* readpos and safepos are worst-case calculations.
5393 * A negative number is overly pessimistic, and causes
5394 * obvious problems for unsigned storage. So clip to 0.
5395 */
5396 readpos -= min_t(sector_t, reshape_sectors, readpos);
5397 safepos -= min_t(sector_t, reshape_sectors, safepos);
5398 }
5399
5400 /* Having calculated the 'writepos' possibly use it
5401 * to set 'stripe_addr' which is where we will write to.
5402 */
5403 if (mddev->reshape_backwards) {
5404 BUG_ON(conf->reshape_progress == 0);
5405 stripe_addr = writepos;
5406 BUG_ON((mddev->dev_sectors &
5407 ~((sector_t)reshape_sectors - 1))
5408 - reshape_sectors - stripe_addr
5409 != sector_nr);
5410 } else {
5411 BUG_ON(writepos != sector_nr + reshape_sectors);
5412 stripe_addr = sector_nr;
5413 }
5414
5415 /* 'writepos' is the most advanced device address we might write.
5416 * 'readpos' is the least advanced device address we might read.
5417 * 'safepos' is the least address recorded in the metadata as having
5418 * been reshaped.
5419 * If there is a min_offset_diff, these are adjusted either by
5420 * increasing the safepos/readpos if diff is negative, or
5421 * increasing writepos if diff is positive.
5422 * If 'readpos' is then behind 'writepos', there is no way that we can
5423 * ensure safety in the face of a crash - that must be done by userspace
5424 * making a backup of the data. So in that case there is no particular
5425 * rush to update metadata.
5426 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5427 * update the metadata to advance 'safepos' to match 'readpos' so that
5428 * we can be safe in the event of a crash.
5429 * So we insist on updating metadata if safepos is behind writepos and
5430 * readpos is beyond writepos.
5431 * In any case, update the metadata every 10 seconds.
5432 * Maybe that number should be configurable, but I'm not sure it is
5433 * worth it.... maybe it could be a multiple of safemode_delay???
5434 */
5435 if (conf->min_offset_diff < 0) {
5436 safepos += -conf->min_offset_diff;
5437 readpos += -conf->min_offset_diff;
5438 } else
5439 writepos += conf->min_offset_diff;
5440
5441 if ((mddev->reshape_backwards
5442 ? (safepos > writepos && readpos < writepos)
5443 : (safepos < writepos && readpos > writepos)) ||
5444 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5445 /* Cannot proceed until we've updated the superblock... */
5446 wait_event(conf->wait_for_overlap,
5447 atomic_read(&conf->reshape_stripes)==0
5448 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5449 if (atomic_read(&conf->reshape_stripes) != 0)
5450 return 0;
5451 mddev->reshape_position = conf->reshape_progress;
5452 mddev->curr_resync_completed = sector_nr;
5453 conf->reshape_checkpoint = jiffies;
5454 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5455 md_wakeup_thread(mddev->thread);
5456 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5457 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5458 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5459 return 0;
5460 spin_lock_irq(&conf->device_lock);
5461 conf->reshape_safe = mddev->reshape_position;
5462 spin_unlock_irq(&conf->device_lock);
5463 wake_up(&conf->wait_for_overlap);
5464 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5465 }
5466
5467 INIT_LIST_HEAD(&stripes);
5468 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5469 int j;
5470 int skipped_disk = 0;
5471 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5472 set_bit(STRIPE_EXPANDING, &sh->state);
5473 atomic_inc(&conf->reshape_stripes);
5474 /* If any of this stripe is beyond the end of the old
5475 * array, then we need to zero those blocks
5476 */
5477 for (j=sh->disks; j--;) {
5478 sector_t s;
5479 if (j == sh->pd_idx)
5480 continue;
5481 if (conf->level == 6 &&
5482 j == sh->qd_idx)
5483 continue;
5484 s = raid5_compute_blocknr(sh, j, 0);
5485 if (s < raid5_size(mddev, 0, 0)) {
5486 skipped_disk = 1;
5487 continue;
5488 }
5489 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5490 set_bit(R5_Expanded, &sh->dev[j].flags);
5491 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5492 }
5493 if (!skipped_disk) {
5494 set_bit(STRIPE_EXPAND_READY, &sh->state);
5495 set_bit(STRIPE_HANDLE, &sh->state);
5496 }
5497 list_add(&sh->lru, &stripes);
5498 }
5499 spin_lock_irq(&conf->device_lock);
5500 if (mddev->reshape_backwards)
5501 conf->reshape_progress -= reshape_sectors * new_data_disks;
5502 else
5503 conf->reshape_progress += reshape_sectors * new_data_disks;
5504 spin_unlock_irq(&conf->device_lock);
5505 /* Ok, those stripe are ready. We can start scheduling
5506 * reads on the source stripes.
5507 * The source stripes are determined by mapping the first and last
5508 * block on the destination stripes.
5509 */
5510 first_sector =
5511 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5512 1, &dd_idx, NULL);
5513 last_sector =
5514 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5515 * new_data_disks - 1),
5516 1, &dd_idx, NULL);
5517 if (last_sector >= mddev->dev_sectors)
5518 last_sector = mddev->dev_sectors - 1;
5519 while (first_sector <= last_sector) {
5520 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5521 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5522 set_bit(STRIPE_HANDLE, &sh->state);
5523 raid5_release_stripe(sh);
5524 first_sector += STRIPE_SECTORS;
5525 }
5526 /* Now that the sources are clearly marked, we can release
5527 * the destination stripes
5528 */
5529 while (!list_empty(&stripes)) {
5530 sh = list_entry(stripes.next, struct stripe_head, lru);
5531 list_del_init(&sh->lru);
5532 raid5_release_stripe(sh);
5533 }
5534 /* If this takes us to the resync_max point where we have to pause,
5535 * then we need to write out the superblock.
5536 */
5537 sector_nr += reshape_sectors;
5538 retn = reshape_sectors;
5539 finish:
5540 if (mddev->curr_resync_completed > mddev->resync_max ||
5541 (sector_nr - mddev->curr_resync_completed) * 2
5542 >= mddev->resync_max - mddev->curr_resync_completed) {
5543 /* Cannot proceed until we've updated the superblock... */
5544 wait_event(conf->wait_for_overlap,
5545 atomic_read(&conf->reshape_stripes) == 0
5546 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5547 if (atomic_read(&conf->reshape_stripes) != 0)
5548 goto ret;
5549 mddev->reshape_position = conf->reshape_progress;
5550 mddev->curr_resync_completed = sector_nr;
5551 conf->reshape_checkpoint = jiffies;
5552 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5553 md_wakeup_thread(mddev->thread);
5554 wait_event(mddev->sb_wait,
5555 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5556 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5557 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5558 goto ret;
5559 spin_lock_irq(&conf->device_lock);
5560 conf->reshape_safe = mddev->reshape_position;
5561 spin_unlock_irq(&conf->device_lock);
5562 wake_up(&conf->wait_for_overlap);
5563 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5564 }
5565 ret:
5566 return retn;
5567 }
5568
5569 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5570 {
5571 struct r5conf *conf = mddev->private;
5572 struct stripe_head *sh;
5573 sector_t max_sector = mddev->dev_sectors;
5574 sector_t sync_blocks;
5575 int still_degraded = 0;
5576 int i;
5577
5578 if (sector_nr >= max_sector) {
5579 /* just being told to finish up .. nothing much to do */
5580
5581 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5582 end_reshape(conf);
5583 return 0;
5584 }
5585
5586 if (mddev->curr_resync < max_sector) /* aborted */
5587 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5588 &sync_blocks, 1);
5589 else /* completed sync */
5590 conf->fullsync = 0;
5591 bitmap_close_sync(mddev->bitmap);
5592
5593 return 0;
5594 }
5595
5596 /* Allow raid5_quiesce to complete */
5597 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5598
5599 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5600 return reshape_request(mddev, sector_nr, skipped);
5601
5602 /* No need to check resync_max as we never do more than one
5603 * stripe, and as resync_max will always be on a chunk boundary,
5604 * if the check in md_do_sync didn't fire, there is no chance
5605 * of overstepping resync_max here
5606 */
5607
5608 /* if there is too many failed drives and we are trying
5609 * to resync, then assert that we are finished, because there is
5610 * nothing we can do.
5611 */
5612 if (mddev->degraded >= conf->max_degraded &&
5613 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5614 sector_t rv = mddev->dev_sectors - sector_nr;
5615 *skipped = 1;
5616 return rv;
5617 }
5618 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5619 !conf->fullsync &&
5620 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5621 sync_blocks >= STRIPE_SECTORS) {
5622 /* we can skip this block, and probably more */
5623 sync_blocks /= STRIPE_SECTORS;
5624 *skipped = 1;
5625 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5626 }
5627
5628 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5629
5630 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5631 if (sh == NULL) {
5632 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5633 /* make sure we don't swamp the stripe cache if someone else
5634 * is trying to get access
5635 */
5636 schedule_timeout_uninterruptible(1);
5637 }
5638 /* Need to check if array will still be degraded after recovery/resync
5639 * Note in case of > 1 drive failures it's possible we're rebuilding
5640 * one drive while leaving another faulty drive in array.
5641 */
5642 rcu_read_lock();
5643 for (i = 0; i < conf->raid_disks; i++) {
5644 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5645
5646 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5647 still_degraded = 1;
5648 }
5649 rcu_read_unlock();
5650
5651 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5652
5653 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5654 set_bit(STRIPE_HANDLE, &sh->state);
5655
5656 raid5_release_stripe(sh);
5657
5658 return STRIPE_SECTORS;
5659 }
5660
5661 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5662 {
5663 /* We may not be able to submit a whole bio at once as there
5664 * may not be enough stripe_heads available.
5665 * We cannot pre-allocate enough stripe_heads as we may need
5666 * more than exist in the cache (if we allow ever large chunks).
5667 * So we do one stripe head at a time and record in
5668 * ->bi_hw_segments how many have been done.
5669 *
5670 * We *know* that this entire raid_bio is in one chunk, so
5671 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5672 */
5673 struct stripe_head *sh;
5674 int dd_idx;
5675 sector_t sector, logical_sector, last_sector;
5676 int scnt = 0;
5677 int remaining;
5678 int handled = 0;
5679
5680 logical_sector = raid_bio->bi_iter.bi_sector &
5681 ~((sector_t)STRIPE_SECTORS-1);
5682 sector = raid5_compute_sector(conf, logical_sector,
5683 0, &dd_idx, NULL);
5684 last_sector = bio_end_sector(raid_bio);
5685
5686 for (; logical_sector < last_sector;
5687 logical_sector += STRIPE_SECTORS,
5688 sector += STRIPE_SECTORS,
5689 scnt++) {
5690
5691 if (scnt < raid5_bi_processed_stripes(raid_bio))
5692 /* already done this stripe */
5693 continue;
5694
5695 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5696
5697 if (!sh) {
5698 /* failed to get a stripe - must wait */
5699 raid5_set_bi_processed_stripes(raid_bio, scnt);
5700 conf->retry_read_aligned = raid_bio;
5701 return handled;
5702 }
5703
5704 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5705 raid5_release_stripe(sh);
5706 raid5_set_bi_processed_stripes(raid_bio, scnt);
5707 conf->retry_read_aligned = raid_bio;
5708 return handled;
5709 }
5710
5711 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5712 handle_stripe(sh);
5713 raid5_release_stripe(sh);
5714 handled++;
5715 }
5716 remaining = raid5_dec_bi_active_stripes(raid_bio);
5717 if (remaining == 0) {
5718 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5719 raid_bio, 0);
5720 bio_endio(raid_bio);
5721 }
5722 if (atomic_dec_and_test(&conf->active_aligned_reads))
5723 wake_up(&conf->wait_for_quiescent);
5724 return handled;
5725 }
5726
5727 static int handle_active_stripes(struct r5conf *conf, int group,
5728 struct r5worker *worker,
5729 struct list_head *temp_inactive_list)
5730 {
5731 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5732 int i, batch_size = 0, hash;
5733 bool release_inactive = false;
5734
5735 while (batch_size < MAX_STRIPE_BATCH &&
5736 (sh = __get_priority_stripe(conf, group)) != NULL)
5737 batch[batch_size++] = sh;
5738
5739 if (batch_size == 0) {
5740 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5741 if (!list_empty(temp_inactive_list + i))
5742 break;
5743 if (i == NR_STRIPE_HASH_LOCKS)
5744 return batch_size;
5745 release_inactive = true;
5746 }
5747 spin_unlock_irq(&conf->device_lock);
5748
5749 release_inactive_stripe_list(conf, temp_inactive_list,
5750 NR_STRIPE_HASH_LOCKS);
5751
5752 if (release_inactive) {
5753 spin_lock_irq(&conf->device_lock);
5754 return 0;
5755 }
5756
5757 for (i = 0; i < batch_size; i++)
5758 handle_stripe(batch[i]);
5759 r5l_write_stripe_run(conf->log);
5760
5761 cond_resched();
5762
5763 spin_lock_irq(&conf->device_lock);
5764 for (i = 0; i < batch_size; i++) {
5765 hash = batch[i]->hash_lock_index;
5766 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5767 }
5768 return batch_size;
5769 }
5770
5771 static void raid5_do_work(struct work_struct *work)
5772 {
5773 struct r5worker *worker = container_of(work, struct r5worker, work);
5774 struct r5worker_group *group = worker->group;
5775 struct r5conf *conf = group->conf;
5776 int group_id = group - conf->worker_groups;
5777 int handled;
5778 struct blk_plug plug;
5779
5780 pr_debug("+++ raid5worker active\n");
5781
5782 blk_start_plug(&plug);
5783 handled = 0;
5784 spin_lock_irq(&conf->device_lock);
5785 while (1) {
5786 int batch_size, released;
5787
5788 released = release_stripe_list(conf, worker->temp_inactive_list);
5789
5790 batch_size = handle_active_stripes(conf, group_id, worker,
5791 worker->temp_inactive_list);
5792 worker->working = false;
5793 if (!batch_size && !released)
5794 break;
5795 handled += batch_size;
5796 }
5797 pr_debug("%d stripes handled\n", handled);
5798
5799 spin_unlock_irq(&conf->device_lock);
5800 blk_finish_plug(&plug);
5801
5802 pr_debug("--- raid5worker inactive\n");
5803 }
5804
5805 /*
5806 * This is our raid5 kernel thread.
5807 *
5808 * We scan the hash table for stripes which can be handled now.
5809 * During the scan, completed stripes are saved for us by the interrupt
5810 * handler, so that they will not have to wait for our next wakeup.
5811 */
5812 static void raid5d(struct md_thread *thread)
5813 {
5814 struct mddev *mddev = thread->mddev;
5815 struct r5conf *conf = mddev->private;
5816 int handled;
5817 struct blk_plug plug;
5818
5819 pr_debug("+++ raid5d active\n");
5820
5821 md_check_recovery(mddev);
5822
5823 if (!bio_list_empty(&conf->return_bi) &&
5824 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5825 struct bio_list tmp = BIO_EMPTY_LIST;
5826 spin_lock_irq(&conf->device_lock);
5827 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5828 bio_list_merge(&tmp, &conf->return_bi);
5829 bio_list_init(&conf->return_bi);
5830 }
5831 spin_unlock_irq(&conf->device_lock);
5832 return_io(&tmp);
5833 }
5834
5835 blk_start_plug(&plug);
5836 handled = 0;
5837 spin_lock_irq(&conf->device_lock);
5838 while (1) {
5839 struct bio *bio;
5840 int batch_size, released;
5841
5842 released = release_stripe_list(conf, conf->temp_inactive_list);
5843 if (released)
5844 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5845
5846 if (
5847 !list_empty(&conf->bitmap_list)) {
5848 /* Now is a good time to flush some bitmap updates */
5849 conf->seq_flush++;
5850 spin_unlock_irq(&conf->device_lock);
5851 bitmap_unplug(mddev->bitmap);
5852 spin_lock_irq(&conf->device_lock);
5853 conf->seq_write = conf->seq_flush;
5854 activate_bit_delay(conf, conf->temp_inactive_list);
5855 }
5856 raid5_activate_delayed(conf);
5857
5858 while ((bio = remove_bio_from_retry(conf))) {
5859 int ok;
5860 spin_unlock_irq(&conf->device_lock);
5861 ok = retry_aligned_read(conf, bio);
5862 spin_lock_irq(&conf->device_lock);
5863 if (!ok)
5864 break;
5865 handled++;
5866 }
5867
5868 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5869 conf->temp_inactive_list);
5870 if (!batch_size && !released)
5871 break;
5872 handled += batch_size;
5873
5874 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5875 spin_unlock_irq(&conf->device_lock);
5876 md_check_recovery(mddev);
5877 spin_lock_irq(&conf->device_lock);
5878 }
5879 }
5880 pr_debug("%d stripes handled\n", handled);
5881
5882 spin_unlock_irq(&conf->device_lock);
5883 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5884 mutex_trylock(&conf->cache_size_mutex)) {
5885 grow_one_stripe(conf, __GFP_NOWARN);
5886 /* Set flag even if allocation failed. This helps
5887 * slow down allocation requests when mem is short
5888 */
5889 set_bit(R5_DID_ALLOC, &conf->cache_state);
5890 mutex_unlock(&conf->cache_size_mutex);
5891 }
5892
5893 r5l_flush_stripe_to_raid(conf->log);
5894
5895 async_tx_issue_pending_all();
5896 blk_finish_plug(&plug);
5897
5898 pr_debug("--- raid5d inactive\n");
5899 }
5900
5901 static ssize_t
5902 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5903 {
5904 struct r5conf *conf;
5905 int ret = 0;
5906 spin_lock(&mddev->lock);
5907 conf = mddev->private;
5908 if (conf)
5909 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5910 spin_unlock(&mddev->lock);
5911 return ret;
5912 }
5913
5914 int
5915 raid5_set_cache_size(struct mddev *mddev, int size)
5916 {
5917 struct r5conf *conf = mddev->private;
5918 int err;
5919
5920 if (size <= 16 || size > 32768)
5921 return -EINVAL;
5922
5923 conf->min_nr_stripes = size;
5924 mutex_lock(&conf->cache_size_mutex);
5925 while (size < conf->max_nr_stripes &&
5926 drop_one_stripe(conf))
5927 ;
5928 mutex_unlock(&conf->cache_size_mutex);
5929
5930
5931 err = md_allow_write(mddev);
5932 if (err)
5933 return err;
5934
5935 mutex_lock(&conf->cache_size_mutex);
5936 while (size > conf->max_nr_stripes)
5937 if (!grow_one_stripe(conf, GFP_KERNEL))
5938 break;
5939 mutex_unlock(&conf->cache_size_mutex);
5940
5941 return 0;
5942 }
5943 EXPORT_SYMBOL(raid5_set_cache_size);
5944
5945 static ssize_t
5946 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5947 {
5948 struct r5conf *conf;
5949 unsigned long new;
5950 int err;
5951
5952 if (len >= PAGE_SIZE)
5953 return -EINVAL;
5954 if (kstrtoul(page, 10, &new))
5955 return -EINVAL;
5956 err = mddev_lock(mddev);
5957 if (err)
5958 return err;
5959 conf = mddev->private;
5960 if (!conf)
5961 err = -ENODEV;
5962 else
5963 err = raid5_set_cache_size(mddev, new);
5964 mddev_unlock(mddev);
5965
5966 return err ?: len;
5967 }
5968
5969 static struct md_sysfs_entry
5970 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5971 raid5_show_stripe_cache_size,
5972 raid5_store_stripe_cache_size);
5973
5974 static ssize_t
5975 raid5_show_rmw_level(struct mddev *mddev, char *page)
5976 {
5977 struct r5conf *conf = mddev->private;
5978 if (conf)
5979 return sprintf(page, "%d\n", conf->rmw_level);
5980 else
5981 return 0;
5982 }
5983
5984 static ssize_t
5985 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5986 {
5987 struct r5conf *conf = mddev->private;
5988 unsigned long new;
5989
5990 if (!conf)
5991 return -ENODEV;
5992
5993 if (len >= PAGE_SIZE)
5994 return -EINVAL;
5995
5996 if (kstrtoul(page, 10, &new))
5997 return -EINVAL;
5998
5999 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6000 return -EINVAL;
6001
6002 if (new != PARITY_DISABLE_RMW &&
6003 new != PARITY_ENABLE_RMW &&
6004 new != PARITY_PREFER_RMW)
6005 return -EINVAL;
6006
6007 conf->rmw_level = new;
6008 return len;
6009 }
6010
6011 static struct md_sysfs_entry
6012 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6013 raid5_show_rmw_level,
6014 raid5_store_rmw_level);
6015
6016
6017 static ssize_t
6018 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6019 {
6020 struct r5conf *conf;
6021 int ret = 0;
6022 spin_lock(&mddev->lock);
6023 conf = mddev->private;
6024 if (conf)
6025 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6026 spin_unlock(&mddev->lock);
6027 return ret;
6028 }
6029
6030 static ssize_t
6031 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6032 {
6033 struct r5conf *conf;
6034 unsigned long new;
6035 int err;
6036
6037 if (len >= PAGE_SIZE)
6038 return -EINVAL;
6039 if (kstrtoul(page, 10, &new))
6040 return -EINVAL;
6041
6042 err = mddev_lock(mddev);
6043 if (err)
6044 return err;
6045 conf = mddev->private;
6046 if (!conf)
6047 err = -ENODEV;
6048 else if (new > conf->min_nr_stripes)
6049 err = -EINVAL;
6050 else
6051 conf->bypass_threshold = new;
6052 mddev_unlock(mddev);
6053 return err ?: len;
6054 }
6055
6056 static struct md_sysfs_entry
6057 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6058 S_IRUGO | S_IWUSR,
6059 raid5_show_preread_threshold,
6060 raid5_store_preread_threshold);
6061
6062 static ssize_t
6063 raid5_show_skip_copy(struct mddev *mddev, char *page)
6064 {
6065 struct r5conf *conf;
6066 int ret = 0;
6067 spin_lock(&mddev->lock);
6068 conf = mddev->private;
6069 if (conf)
6070 ret = sprintf(page, "%d\n", conf->skip_copy);
6071 spin_unlock(&mddev->lock);
6072 return ret;
6073 }
6074
6075 static ssize_t
6076 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6077 {
6078 struct r5conf *conf;
6079 unsigned long new;
6080 int err;
6081
6082 if (len >= PAGE_SIZE)
6083 return -EINVAL;
6084 if (kstrtoul(page, 10, &new))
6085 return -EINVAL;
6086 new = !!new;
6087
6088 err = mddev_lock(mddev);
6089 if (err)
6090 return err;
6091 conf = mddev->private;
6092 if (!conf)
6093 err = -ENODEV;
6094 else if (new != conf->skip_copy) {
6095 mddev_suspend(mddev);
6096 conf->skip_copy = new;
6097 if (new)
6098 mddev->queue->backing_dev_info.capabilities |=
6099 BDI_CAP_STABLE_WRITES;
6100 else
6101 mddev->queue->backing_dev_info.capabilities &=
6102 ~BDI_CAP_STABLE_WRITES;
6103 mddev_resume(mddev);
6104 }
6105 mddev_unlock(mddev);
6106 return err ?: len;
6107 }
6108
6109 static struct md_sysfs_entry
6110 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6111 raid5_show_skip_copy,
6112 raid5_store_skip_copy);
6113
6114 static ssize_t
6115 stripe_cache_active_show(struct mddev *mddev, char *page)
6116 {
6117 struct r5conf *conf = mddev->private;
6118 if (conf)
6119 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6120 else
6121 return 0;
6122 }
6123
6124 static struct md_sysfs_entry
6125 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6126
6127 static ssize_t
6128 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6129 {
6130 struct r5conf *conf;
6131 int ret = 0;
6132 spin_lock(&mddev->lock);
6133 conf = mddev->private;
6134 if (conf)
6135 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6136 spin_unlock(&mddev->lock);
6137 return ret;
6138 }
6139
6140 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6141 int *group_cnt,
6142 int *worker_cnt_per_group,
6143 struct r5worker_group **worker_groups);
6144 static ssize_t
6145 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6146 {
6147 struct r5conf *conf;
6148 unsigned long new;
6149 int err;
6150 struct r5worker_group *new_groups, *old_groups;
6151 int group_cnt, worker_cnt_per_group;
6152
6153 if (len >= PAGE_SIZE)
6154 return -EINVAL;
6155 if (kstrtoul(page, 10, &new))
6156 return -EINVAL;
6157
6158 err = mddev_lock(mddev);
6159 if (err)
6160 return err;
6161 conf = mddev->private;
6162 if (!conf)
6163 err = -ENODEV;
6164 else if (new != conf->worker_cnt_per_group) {
6165 mddev_suspend(mddev);
6166
6167 old_groups = conf->worker_groups;
6168 if (old_groups)
6169 flush_workqueue(raid5_wq);
6170
6171 err = alloc_thread_groups(conf, new,
6172 &group_cnt, &worker_cnt_per_group,
6173 &new_groups);
6174 if (!err) {
6175 spin_lock_irq(&conf->device_lock);
6176 conf->group_cnt = group_cnt;
6177 conf->worker_cnt_per_group = worker_cnt_per_group;
6178 conf->worker_groups = new_groups;
6179 spin_unlock_irq(&conf->device_lock);
6180
6181 if (old_groups)
6182 kfree(old_groups[0].workers);
6183 kfree(old_groups);
6184 }
6185 mddev_resume(mddev);
6186 }
6187 mddev_unlock(mddev);
6188
6189 return err ?: len;
6190 }
6191
6192 static struct md_sysfs_entry
6193 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6194 raid5_show_group_thread_cnt,
6195 raid5_store_group_thread_cnt);
6196
6197 static struct attribute *raid5_attrs[] = {
6198 &raid5_stripecache_size.attr,
6199 &raid5_stripecache_active.attr,
6200 &raid5_preread_bypass_threshold.attr,
6201 &raid5_group_thread_cnt.attr,
6202 &raid5_skip_copy.attr,
6203 &raid5_rmw_level.attr,
6204 NULL,
6205 };
6206 static struct attribute_group raid5_attrs_group = {
6207 .name = NULL,
6208 .attrs = raid5_attrs,
6209 };
6210
6211 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6212 int *group_cnt,
6213 int *worker_cnt_per_group,
6214 struct r5worker_group **worker_groups)
6215 {
6216 int i, j, k;
6217 ssize_t size;
6218 struct r5worker *workers;
6219
6220 *worker_cnt_per_group = cnt;
6221 if (cnt == 0) {
6222 *group_cnt = 0;
6223 *worker_groups = NULL;
6224 return 0;
6225 }
6226 *group_cnt = num_possible_nodes();
6227 size = sizeof(struct r5worker) * cnt;
6228 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6229 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6230 *group_cnt, GFP_NOIO);
6231 if (!*worker_groups || !workers) {
6232 kfree(workers);
6233 kfree(*worker_groups);
6234 return -ENOMEM;
6235 }
6236
6237 for (i = 0; i < *group_cnt; i++) {
6238 struct r5worker_group *group;
6239
6240 group = &(*worker_groups)[i];
6241 INIT_LIST_HEAD(&group->handle_list);
6242 group->conf = conf;
6243 group->workers = workers + i * cnt;
6244
6245 for (j = 0; j < cnt; j++) {
6246 struct r5worker *worker = group->workers + j;
6247 worker->group = group;
6248 INIT_WORK(&worker->work, raid5_do_work);
6249
6250 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6251 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6252 }
6253 }
6254
6255 return 0;
6256 }
6257
6258 static void free_thread_groups(struct r5conf *conf)
6259 {
6260 if (conf->worker_groups)
6261 kfree(conf->worker_groups[0].workers);
6262 kfree(conf->worker_groups);
6263 conf->worker_groups = NULL;
6264 }
6265
6266 static sector_t
6267 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6268 {
6269 struct r5conf *conf = mddev->private;
6270
6271 if (!sectors)
6272 sectors = mddev->dev_sectors;
6273 if (!raid_disks)
6274 /* size is defined by the smallest of previous and new size */
6275 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6276
6277 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6278 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6279 return sectors * (raid_disks - conf->max_degraded);
6280 }
6281
6282 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6283 {
6284 safe_put_page(percpu->spare_page);
6285 if (percpu->scribble)
6286 flex_array_free(percpu->scribble);
6287 percpu->spare_page = NULL;
6288 percpu->scribble = NULL;
6289 }
6290
6291 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6292 {
6293 if (conf->level == 6 && !percpu->spare_page)
6294 percpu->spare_page = alloc_page(GFP_KERNEL);
6295 if (!percpu->scribble)
6296 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6297 conf->previous_raid_disks),
6298 max(conf->chunk_sectors,
6299 conf->prev_chunk_sectors)
6300 / STRIPE_SECTORS,
6301 GFP_KERNEL);
6302
6303 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6304 free_scratch_buffer(conf, percpu);
6305 return -ENOMEM;
6306 }
6307
6308 return 0;
6309 }
6310
6311 static void raid5_free_percpu(struct r5conf *conf)
6312 {
6313 unsigned long cpu;
6314
6315 if (!conf->percpu)
6316 return;
6317
6318 #ifdef CONFIG_HOTPLUG_CPU
6319 unregister_cpu_notifier(&conf->cpu_notify);
6320 #endif
6321
6322 get_online_cpus();
6323 for_each_possible_cpu(cpu)
6324 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6325 put_online_cpus();
6326
6327 free_percpu(conf->percpu);
6328 }
6329
6330 static void free_conf(struct r5conf *conf)
6331 {
6332 if (conf->shrinker.seeks)
6333 unregister_shrinker(&conf->shrinker);
6334 free_thread_groups(conf);
6335 shrink_stripes(conf);
6336 raid5_free_percpu(conf);
6337 kfree(conf->disks);
6338 kfree(conf->stripe_hashtbl);
6339 kfree(conf);
6340 }
6341
6342 #ifdef CONFIG_HOTPLUG_CPU
6343 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6344 void *hcpu)
6345 {
6346 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6347 long cpu = (long)hcpu;
6348 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6349
6350 switch (action) {
6351 case CPU_UP_PREPARE:
6352 case CPU_UP_PREPARE_FROZEN:
6353 if (alloc_scratch_buffer(conf, percpu)) {
6354 pr_err("%s: failed memory allocation for cpu%ld\n",
6355 __func__, cpu);
6356 return notifier_from_errno(-ENOMEM);
6357 }
6358 break;
6359 case CPU_DEAD:
6360 case CPU_DEAD_FROZEN:
6361 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6362 break;
6363 default:
6364 break;
6365 }
6366 return NOTIFY_OK;
6367 }
6368 #endif
6369
6370 static int raid5_alloc_percpu(struct r5conf *conf)
6371 {
6372 unsigned long cpu;
6373 int err = 0;
6374
6375 conf->percpu = alloc_percpu(struct raid5_percpu);
6376 if (!conf->percpu)
6377 return -ENOMEM;
6378
6379 #ifdef CONFIG_HOTPLUG_CPU
6380 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6381 conf->cpu_notify.priority = 0;
6382 err = register_cpu_notifier(&conf->cpu_notify);
6383 if (err)
6384 return err;
6385 #endif
6386
6387 get_online_cpus();
6388 for_each_present_cpu(cpu) {
6389 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6390 if (err) {
6391 pr_err("%s: failed memory allocation for cpu%ld\n",
6392 __func__, cpu);
6393 break;
6394 }
6395 }
6396 put_online_cpus();
6397
6398 return err;
6399 }
6400
6401 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6402 struct shrink_control *sc)
6403 {
6404 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6405 unsigned long ret = SHRINK_STOP;
6406
6407 if (mutex_trylock(&conf->cache_size_mutex)) {
6408 ret= 0;
6409 while (ret < sc->nr_to_scan &&
6410 conf->max_nr_stripes > conf->min_nr_stripes) {
6411 if (drop_one_stripe(conf) == 0) {
6412 ret = SHRINK_STOP;
6413 break;
6414 }
6415 ret++;
6416 }
6417 mutex_unlock(&conf->cache_size_mutex);
6418 }
6419 return ret;
6420 }
6421
6422 static unsigned long raid5_cache_count(struct shrinker *shrink,
6423 struct shrink_control *sc)
6424 {
6425 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6426
6427 if (conf->max_nr_stripes < conf->min_nr_stripes)
6428 /* unlikely, but not impossible */
6429 return 0;
6430 return conf->max_nr_stripes - conf->min_nr_stripes;
6431 }
6432
6433 static struct r5conf *setup_conf(struct mddev *mddev)
6434 {
6435 struct r5conf *conf;
6436 int raid_disk, memory, max_disks;
6437 struct md_rdev *rdev;
6438 struct disk_info *disk;
6439 char pers_name[6];
6440 int i;
6441 int group_cnt, worker_cnt_per_group;
6442 struct r5worker_group *new_group;
6443
6444 if (mddev->new_level != 5
6445 && mddev->new_level != 4
6446 && mddev->new_level != 6) {
6447 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6448 mdname(mddev), mddev->new_level);
6449 return ERR_PTR(-EIO);
6450 }
6451 if ((mddev->new_level == 5
6452 && !algorithm_valid_raid5(mddev->new_layout)) ||
6453 (mddev->new_level == 6
6454 && !algorithm_valid_raid6(mddev->new_layout))) {
6455 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6456 mdname(mddev), mddev->new_layout);
6457 return ERR_PTR(-EIO);
6458 }
6459 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6460 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6461 mdname(mddev), mddev->raid_disks);
6462 return ERR_PTR(-EINVAL);
6463 }
6464
6465 if (!mddev->new_chunk_sectors ||
6466 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6467 !is_power_of_2(mddev->new_chunk_sectors)) {
6468 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6469 mdname(mddev), mddev->new_chunk_sectors << 9);
6470 return ERR_PTR(-EINVAL);
6471 }
6472
6473 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6474 if (conf == NULL)
6475 goto abort;
6476 /* Don't enable multi-threading by default*/
6477 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6478 &new_group)) {
6479 conf->group_cnt = group_cnt;
6480 conf->worker_cnt_per_group = worker_cnt_per_group;
6481 conf->worker_groups = new_group;
6482 } else
6483 goto abort;
6484 spin_lock_init(&conf->device_lock);
6485 seqcount_init(&conf->gen_lock);
6486 mutex_init(&conf->cache_size_mutex);
6487 init_waitqueue_head(&conf->wait_for_quiescent);
6488 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6489 init_waitqueue_head(&conf->wait_for_stripe[i]);
6490 }
6491 init_waitqueue_head(&conf->wait_for_overlap);
6492 INIT_LIST_HEAD(&conf->handle_list);
6493 INIT_LIST_HEAD(&conf->hold_list);
6494 INIT_LIST_HEAD(&conf->delayed_list);
6495 INIT_LIST_HEAD(&conf->bitmap_list);
6496 bio_list_init(&conf->return_bi);
6497 init_llist_head(&conf->released_stripes);
6498 atomic_set(&conf->active_stripes, 0);
6499 atomic_set(&conf->preread_active_stripes, 0);
6500 atomic_set(&conf->active_aligned_reads, 0);
6501 conf->bypass_threshold = BYPASS_THRESHOLD;
6502 conf->recovery_disabled = mddev->recovery_disabled - 1;
6503
6504 conf->raid_disks = mddev->raid_disks;
6505 if (mddev->reshape_position == MaxSector)
6506 conf->previous_raid_disks = mddev->raid_disks;
6507 else
6508 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6509 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6510
6511 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6512 GFP_KERNEL);
6513 if (!conf->disks)
6514 goto abort;
6515
6516 conf->mddev = mddev;
6517
6518 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6519 goto abort;
6520
6521 /* We init hash_locks[0] separately to that it can be used
6522 * as the reference lock in the spin_lock_nest_lock() call
6523 * in lock_all_device_hash_locks_irq in order to convince
6524 * lockdep that we know what we are doing.
6525 */
6526 spin_lock_init(conf->hash_locks);
6527 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6528 spin_lock_init(conf->hash_locks + i);
6529
6530 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6531 INIT_LIST_HEAD(conf->inactive_list + i);
6532
6533 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6534 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6535
6536 conf->level = mddev->new_level;
6537 conf->chunk_sectors = mddev->new_chunk_sectors;
6538 if (raid5_alloc_percpu(conf) != 0)
6539 goto abort;
6540
6541 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6542
6543 rdev_for_each(rdev, mddev) {
6544 raid_disk = rdev->raid_disk;
6545 if (raid_disk >= max_disks
6546 || raid_disk < 0)
6547 continue;
6548 disk = conf->disks + raid_disk;
6549
6550 if (test_bit(Replacement, &rdev->flags)) {
6551 if (disk->replacement)
6552 goto abort;
6553 disk->replacement = rdev;
6554 } else {
6555 if (disk->rdev)
6556 goto abort;
6557 disk->rdev = rdev;
6558 }
6559
6560 if (test_bit(In_sync, &rdev->flags)) {
6561 char b[BDEVNAME_SIZE];
6562 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6563 " disk %d\n",
6564 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6565 } else if (rdev->saved_raid_disk != raid_disk)
6566 /* Cannot rely on bitmap to complete recovery */
6567 conf->fullsync = 1;
6568 }
6569
6570 conf->level = mddev->new_level;
6571 if (conf->level == 6) {
6572 conf->max_degraded = 2;
6573 if (raid6_call.xor_syndrome)
6574 conf->rmw_level = PARITY_ENABLE_RMW;
6575 else
6576 conf->rmw_level = PARITY_DISABLE_RMW;
6577 } else {
6578 conf->max_degraded = 1;
6579 conf->rmw_level = PARITY_ENABLE_RMW;
6580 }
6581 conf->algorithm = mddev->new_layout;
6582 conf->reshape_progress = mddev->reshape_position;
6583 if (conf->reshape_progress != MaxSector) {
6584 conf->prev_chunk_sectors = mddev->chunk_sectors;
6585 conf->prev_algo = mddev->layout;
6586 } else {
6587 conf->prev_chunk_sectors = conf->chunk_sectors;
6588 conf->prev_algo = conf->algorithm;
6589 }
6590
6591 conf->min_nr_stripes = NR_STRIPES;
6592 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6593 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6594 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6595 if (grow_stripes(conf, conf->min_nr_stripes)) {
6596 printk(KERN_ERR
6597 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6598 mdname(mddev), memory);
6599 goto abort;
6600 } else
6601 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6602 mdname(mddev), memory);
6603 /*
6604 * Losing a stripe head costs more than the time to refill it,
6605 * it reduces the queue depth and so can hurt throughput.
6606 * So set it rather large, scaled by number of devices.
6607 */
6608 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6609 conf->shrinker.scan_objects = raid5_cache_scan;
6610 conf->shrinker.count_objects = raid5_cache_count;
6611 conf->shrinker.batch = 128;
6612 conf->shrinker.flags = 0;
6613 register_shrinker(&conf->shrinker);
6614
6615 sprintf(pers_name, "raid%d", mddev->new_level);
6616 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6617 if (!conf->thread) {
6618 printk(KERN_ERR
6619 "md/raid:%s: couldn't allocate thread.\n",
6620 mdname(mddev));
6621 goto abort;
6622 }
6623
6624 return conf;
6625
6626 abort:
6627 if (conf) {
6628 free_conf(conf);
6629 return ERR_PTR(-EIO);
6630 } else
6631 return ERR_PTR(-ENOMEM);
6632 }
6633
6634 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6635 {
6636 switch (algo) {
6637 case ALGORITHM_PARITY_0:
6638 if (raid_disk < max_degraded)
6639 return 1;
6640 break;
6641 case ALGORITHM_PARITY_N:
6642 if (raid_disk >= raid_disks - max_degraded)
6643 return 1;
6644 break;
6645 case ALGORITHM_PARITY_0_6:
6646 if (raid_disk == 0 ||
6647 raid_disk == raid_disks - 1)
6648 return 1;
6649 break;
6650 case ALGORITHM_LEFT_ASYMMETRIC_6:
6651 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6652 case ALGORITHM_LEFT_SYMMETRIC_6:
6653 case ALGORITHM_RIGHT_SYMMETRIC_6:
6654 if (raid_disk == raid_disks - 1)
6655 return 1;
6656 }
6657 return 0;
6658 }
6659
6660 static int run(struct mddev *mddev)
6661 {
6662 struct r5conf *conf;
6663 int working_disks = 0;
6664 int dirty_parity_disks = 0;
6665 struct md_rdev *rdev;
6666 struct md_rdev *journal_dev = NULL;
6667 sector_t reshape_offset = 0;
6668 int i;
6669 long long min_offset_diff = 0;
6670 int first = 1;
6671
6672 if (mddev->recovery_cp != MaxSector)
6673 printk(KERN_NOTICE "md/raid:%s: not clean"
6674 " -- starting background reconstruction\n",
6675 mdname(mddev));
6676
6677 rdev_for_each(rdev, mddev) {
6678 long long diff;
6679
6680 if (test_bit(Journal, &rdev->flags))
6681 journal_dev = rdev;
6682 if (rdev->raid_disk < 0)
6683 continue;
6684 diff = (rdev->new_data_offset - rdev->data_offset);
6685 if (first) {
6686 min_offset_diff = diff;
6687 first = 0;
6688 } else if (mddev->reshape_backwards &&
6689 diff < min_offset_diff)
6690 min_offset_diff = diff;
6691 else if (!mddev->reshape_backwards &&
6692 diff > min_offset_diff)
6693 min_offset_diff = diff;
6694 }
6695
6696 if (mddev->reshape_position != MaxSector) {
6697 /* Check that we can continue the reshape.
6698 * Difficulties arise if the stripe we would write to
6699 * next is at or after the stripe we would read from next.
6700 * For a reshape that changes the number of devices, this
6701 * is only possible for a very short time, and mdadm makes
6702 * sure that time appears to have past before assembling
6703 * the array. So we fail if that time hasn't passed.
6704 * For a reshape that keeps the number of devices the same
6705 * mdadm must be monitoring the reshape can keeping the
6706 * critical areas read-only and backed up. It will start
6707 * the array in read-only mode, so we check for that.
6708 */
6709 sector_t here_new, here_old;
6710 int old_disks;
6711 int max_degraded = (mddev->level == 6 ? 2 : 1);
6712 int chunk_sectors;
6713 int new_data_disks;
6714
6715 if (journal_dev) {
6716 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6717 mdname(mddev));
6718 return -EINVAL;
6719 }
6720
6721 if (mddev->new_level != mddev->level) {
6722 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6723 "required - aborting.\n",
6724 mdname(mddev));
6725 return -EINVAL;
6726 }
6727 old_disks = mddev->raid_disks - mddev->delta_disks;
6728 /* reshape_position must be on a new-stripe boundary, and one
6729 * further up in new geometry must map after here in old
6730 * geometry.
6731 * If the chunk sizes are different, then as we perform reshape
6732 * in units of the largest of the two, reshape_position needs
6733 * be a multiple of the largest chunk size times new data disks.
6734 */
6735 here_new = mddev->reshape_position;
6736 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6737 new_data_disks = mddev->raid_disks - max_degraded;
6738 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6739 printk(KERN_ERR "md/raid:%s: reshape_position not "
6740 "on a stripe boundary\n", mdname(mddev));
6741 return -EINVAL;
6742 }
6743 reshape_offset = here_new * chunk_sectors;
6744 /* here_new is the stripe we will write to */
6745 here_old = mddev->reshape_position;
6746 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6747 /* here_old is the first stripe that we might need to read
6748 * from */
6749 if (mddev->delta_disks == 0) {
6750 /* We cannot be sure it is safe to start an in-place
6751 * reshape. It is only safe if user-space is monitoring
6752 * and taking constant backups.
6753 * mdadm always starts a situation like this in
6754 * readonly mode so it can take control before
6755 * allowing any writes. So just check for that.
6756 */
6757 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6758 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6759 /* not really in-place - so OK */;
6760 else if (mddev->ro == 0) {
6761 printk(KERN_ERR "md/raid:%s: in-place reshape "
6762 "must be started in read-only mode "
6763 "- aborting\n",
6764 mdname(mddev));
6765 return -EINVAL;
6766 }
6767 } else if (mddev->reshape_backwards
6768 ? (here_new * chunk_sectors + min_offset_diff <=
6769 here_old * chunk_sectors)
6770 : (here_new * chunk_sectors >=
6771 here_old * chunk_sectors + (-min_offset_diff))) {
6772 /* Reading from the same stripe as writing to - bad */
6773 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6774 "auto-recovery - aborting.\n",
6775 mdname(mddev));
6776 return -EINVAL;
6777 }
6778 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6779 mdname(mddev));
6780 /* OK, we should be able to continue; */
6781 } else {
6782 BUG_ON(mddev->level != mddev->new_level);
6783 BUG_ON(mddev->layout != mddev->new_layout);
6784 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6785 BUG_ON(mddev->delta_disks != 0);
6786 }
6787
6788 if (mddev->private == NULL)
6789 conf = setup_conf(mddev);
6790 else
6791 conf = mddev->private;
6792
6793 if (IS_ERR(conf))
6794 return PTR_ERR(conf);
6795
6796 conf->min_offset_diff = min_offset_diff;
6797 mddev->thread = conf->thread;
6798 conf->thread = NULL;
6799 mddev->private = conf;
6800
6801 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6802 i++) {
6803 rdev = conf->disks[i].rdev;
6804 if (!rdev && conf->disks[i].replacement) {
6805 /* The replacement is all we have yet */
6806 rdev = conf->disks[i].replacement;
6807 conf->disks[i].replacement = NULL;
6808 clear_bit(Replacement, &rdev->flags);
6809 conf->disks[i].rdev = rdev;
6810 }
6811 if (!rdev)
6812 continue;
6813 if (conf->disks[i].replacement &&
6814 conf->reshape_progress != MaxSector) {
6815 /* replacements and reshape simply do not mix. */
6816 printk(KERN_ERR "md: cannot handle concurrent "
6817 "replacement and reshape.\n");
6818 goto abort;
6819 }
6820 if (test_bit(In_sync, &rdev->flags)) {
6821 working_disks++;
6822 continue;
6823 }
6824 /* This disc is not fully in-sync. However if it
6825 * just stored parity (beyond the recovery_offset),
6826 * when we don't need to be concerned about the
6827 * array being dirty.
6828 * When reshape goes 'backwards', we never have
6829 * partially completed devices, so we only need
6830 * to worry about reshape going forwards.
6831 */
6832 /* Hack because v0.91 doesn't store recovery_offset properly. */
6833 if (mddev->major_version == 0 &&
6834 mddev->minor_version > 90)
6835 rdev->recovery_offset = reshape_offset;
6836
6837 if (rdev->recovery_offset < reshape_offset) {
6838 /* We need to check old and new layout */
6839 if (!only_parity(rdev->raid_disk,
6840 conf->algorithm,
6841 conf->raid_disks,
6842 conf->max_degraded))
6843 continue;
6844 }
6845 if (!only_parity(rdev->raid_disk,
6846 conf->prev_algo,
6847 conf->previous_raid_disks,
6848 conf->max_degraded))
6849 continue;
6850 dirty_parity_disks++;
6851 }
6852
6853 /*
6854 * 0 for a fully functional array, 1 or 2 for a degraded array.
6855 */
6856 mddev->degraded = calc_degraded(conf);
6857
6858 if (has_failed(conf)) {
6859 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6860 " (%d/%d failed)\n",
6861 mdname(mddev), mddev->degraded, conf->raid_disks);
6862 goto abort;
6863 }
6864
6865 /* device size must be a multiple of chunk size */
6866 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6867 mddev->resync_max_sectors = mddev->dev_sectors;
6868
6869 if (mddev->degraded > dirty_parity_disks &&
6870 mddev->recovery_cp != MaxSector) {
6871 if (mddev->ok_start_degraded)
6872 printk(KERN_WARNING
6873 "md/raid:%s: starting dirty degraded array"
6874 " - data corruption possible.\n",
6875 mdname(mddev));
6876 else {
6877 printk(KERN_ERR
6878 "md/raid:%s: cannot start dirty degraded array.\n",
6879 mdname(mddev));
6880 goto abort;
6881 }
6882 }
6883
6884 if (mddev->degraded == 0)
6885 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6886 " devices, algorithm %d\n", mdname(mddev), conf->level,
6887 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6888 mddev->new_layout);
6889 else
6890 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6891 " out of %d devices, algorithm %d\n",
6892 mdname(mddev), conf->level,
6893 mddev->raid_disks - mddev->degraded,
6894 mddev->raid_disks, mddev->new_layout);
6895
6896 print_raid5_conf(conf);
6897
6898 if (conf->reshape_progress != MaxSector) {
6899 conf->reshape_safe = conf->reshape_progress;
6900 atomic_set(&conf->reshape_stripes, 0);
6901 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6902 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6903 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6904 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6905 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6906 "reshape");
6907 }
6908
6909 /* Ok, everything is just fine now */
6910 if (mddev->to_remove == &raid5_attrs_group)
6911 mddev->to_remove = NULL;
6912 else if (mddev->kobj.sd &&
6913 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6914 printk(KERN_WARNING
6915 "raid5: failed to create sysfs attributes for %s\n",
6916 mdname(mddev));
6917 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6918
6919 if (mddev->queue) {
6920 int chunk_size;
6921 bool discard_supported = true;
6922 /* read-ahead size must cover two whole stripes, which
6923 * is 2 * (datadisks) * chunksize where 'n' is the
6924 * number of raid devices
6925 */
6926 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6927 int stripe = data_disks *
6928 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6929 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6930 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6931
6932 chunk_size = mddev->chunk_sectors << 9;
6933 blk_queue_io_min(mddev->queue, chunk_size);
6934 blk_queue_io_opt(mddev->queue, chunk_size *
6935 (conf->raid_disks - conf->max_degraded));
6936 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6937 /*
6938 * We can only discard a whole stripe. It doesn't make sense to
6939 * discard data disk but write parity disk
6940 */
6941 stripe = stripe * PAGE_SIZE;
6942 /* Round up to power of 2, as discard handling
6943 * currently assumes that */
6944 while ((stripe-1) & stripe)
6945 stripe = (stripe | (stripe-1)) + 1;
6946 mddev->queue->limits.discard_alignment = stripe;
6947 mddev->queue->limits.discard_granularity = stripe;
6948 /*
6949 * unaligned part of discard request will be ignored, so can't
6950 * guarantee discard_zeroes_data
6951 */
6952 mddev->queue->limits.discard_zeroes_data = 0;
6953
6954 blk_queue_max_write_same_sectors(mddev->queue, 0);
6955
6956 rdev_for_each(rdev, mddev) {
6957 disk_stack_limits(mddev->gendisk, rdev->bdev,
6958 rdev->data_offset << 9);
6959 disk_stack_limits(mddev->gendisk, rdev->bdev,
6960 rdev->new_data_offset << 9);
6961 /*
6962 * discard_zeroes_data is required, otherwise data
6963 * could be lost. Consider a scenario: discard a stripe
6964 * (the stripe could be inconsistent if
6965 * discard_zeroes_data is 0); write one disk of the
6966 * stripe (the stripe could be inconsistent again
6967 * depending on which disks are used to calculate
6968 * parity); the disk is broken; The stripe data of this
6969 * disk is lost.
6970 */
6971 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6972 !bdev_get_queue(rdev->bdev)->
6973 limits.discard_zeroes_data)
6974 discard_supported = false;
6975 /* Unfortunately, discard_zeroes_data is not currently
6976 * a guarantee - just a hint. So we only allow DISCARD
6977 * if the sysadmin has confirmed that only safe devices
6978 * are in use by setting a module parameter.
6979 */
6980 if (!devices_handle_discard_safely) {
6981 if (discard_supported) {
6982 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6983 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6984 }
6985 discard_supported = false;
6986 }
6987 }
6988
6989 if (discard_supported &&
6990 mddev->queue->limits.max_discard_sectors >= stripe &&
6991 mddev->queue->limits.discard_granularity >= stripe)
6992 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6993 mddev->queue);
6994 else
6995 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6996 mddev->queue);
6997 }
6998
6999 return 0;
7000 abort:
7001 md_unregister_thread(&mddev->thread);
7002 print_raid5_conf(conf);
7003 free_conf(conf);
7004 mddev->private = NULL;
7005 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7006 return -EIO;
7007 }
7008
7009 static void raid5_free(struct mddev *mddev, void *priv)
7010 {
7011 struct r5conf *conf = priv;
7012
7013 free_conf(conf);
7014 mddev->to_remove = &raid5_attrs_group;
7015 }
7016
7017 static void status(struct seq_file *seq, struct mddev *mddev)
7018 {
7019 struct r5conf *conf = mddev->private;
7020 int i;
7021
7022 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7023 conf->chunk_sectors / 2, mddev->layout);
7024 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7025 for (i = 0; i < conf->raid_disks; i++)
7026 seq_printf (seq, "%s",
7027 conf->disks[i].rdev &&
7028 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7029 seq_printf (seq, "]");
7030 }
7031
7032 static void print_raid5_conf (struct r5conf *conf)
7033 {
7034 int i;
7035 struct disk_info *tmp;
7036
7037 printk(KERN_DEBUG "RAID conf printout:\n");
7038 if (!conf) {
7039 printk("(conf==NULL)\n");
7040 return;
7041 }
7042 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7043 conf->raid_disks,
7044 conf->raid_disks - conf->mddev->degraded);
7045
7046 for (i = 0; i < conf->raid_disks; i++) {
7047 char b[BDEVNAME_SIZE];
7048 tmp = conf->disks + i;
7049 if (tmp->rdev)
7050 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7051 i, !test_bit(Faulty, &tmp->rdev->flags),
7052 bdevname(tmp->rdev->bdev, b));
7053 }
7054 }
7055
7056 static int raid5_spare_active(struct mddev *mddev)
7057 {
7058 int i;
7059 struct r5conf *conf = mddev->private;
7060 struct disk_info *tmp;
7061 int count = 0;
7062 unsigned long flags;
7063
7064 for (i = 0; i < conf->raid_disks; i++) {
7065 tmp = conf->disks + i;
7066 if (tmp->replacement
7067 && tmp->replacement->recovery_offset == MaxSector
7068 && !test_bit(Faulty, &tmp->replacement->flags)
7069 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7070 /* Replacement has just become active. */
7071 if (!tmp->rdev
7072 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7073 count++;
7074 if (tmp->rdev) {
7075 /* Replaced device not technically faulty,
7076 * but we need to be sure it gets removed
7077 * and never re-added.
7078 */
7079 set_bit(Faulty, &tmp->rdev->flags);
7080 sysfs_notify_dirent_safe(
7081 tmp->rdev->sysfs_state);
7082 }
7083 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7084 } else if (tmp->rdev
7085 && tmp->rdev->recovery_offset == MaxSector
7086 && !test_bit(Faulty, &tmp->rdev->flags)
7087 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7088 count++;
7089 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7090 }
7091 }
7092 spin_lock_irqsave(&conf->device_lock, flags);
7093 mddev->degraded = calc_degraded(conf);
7094 spin_unlock_irqrestore(&conf->device_lock, flags);
7095 print_raid5_conf(conf);
7096 return count;
7097 }
7098
7099 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7100 {
7101 struct r5conf *conf = mddev->private;
7102 int err = 0;
7103 int number = rdev->raid_disk;
7104 struct md_rdev **rdevp;
7105 struct disk_info *p = conf->disks + number;
7106
7107 print_raid5_conf(conf);
7108 if (rdev == p->rdev)
7109 rdevp = &p->rdev;
7110 else if (rdev == p->replacement)
7111 rdevp = &p->replacement;
7112 else
7113 return 0;
7114
7115 if (number >= conf->raid_disks &&
7116 conf->reshape_progress == MaxSector)
7117 clear_bit(In_sync, &rdev->flags);
7118
7119 if (test_bit(In_sync, &rdev->flags) ||
7120 atomic_read(&rdev->nr_pending)) {
7121 err = -EBUSY;
7122 goto abort;
7123 }
7124 /* Only remove non-faulty devices if recovery
7125 * isn't possible.
7126 */
7127 if (!test_bit(Faulty, &rdev->flags) &&
7128 mddev->recovery_disabled != conf->recovery_disabled &&
7129 !has_failed(conf) &&
7130 (!p->replacement || p->replacement == rdev) &&
7131 number < conf->raid_disks) {
7132 err = -EBUSY;
7133 goto abort;
7134 }
7135 *rdevp = NULL;
7136 synchronize_rcu();
7137 if (atomic_read(&rdev->nr_pending)) {
7138 /* lost the race, try later */
7139 err = -EBUSY;
7140 *rdevp = rdev;
7141 } else if (p->replacement) {
7142 /* We must have just cleared 'rdev' */
7143 p->rdev = p->replacement;
7144 clear_bit(Replacement, &p->replacement->flags);
7145 smp_mb(); /* Make sure other CPUs may see both as identical
7146 * but will never see neither - if they are careful
7147 */
7148 p->replacement = NULL;
7149 clear_bit(WantReplacement, &rdev->flags);
7150 } else
7151 /* We might have just removed the Replacement as faulty-
7152 * clear the bit just in case
7153 */
7154 clear_bit(WantReplacement, &rdev->flags);
7155 abort:
7156
7157 print_raid5_conf(conf);
7158 return err;
7159 }
7160
7161 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7162 {
7163 struct r5conf *conf = mddev->private;
7164 int err = -EEXIST;
7165 int disk;
7166 struct disk_info *p;
7167 int first = 0;
7168 int last = conf->raid_disks - 1;
7169
7170 if (mddev->recovery_disabled == conf->recovery_disabled)
7171 return -EBUSY;
7172
7173 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7174 /* no point adding a device */
7175 return -EINVAL;
7176
7177 if (rdev->raid_disk >= 0)
7178 first = last = rdev->raid_disk;
7179
7180 /*
7181 * find the disk ... but prefer rdev->saved_raid_disk
7182 * if possible.
7183 */
7184 if (rdev->saved_raid_disk >= 0 &&
7185 rdev->saved_raid_disk >= first &&
7186 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7187 first = rdev->saved_raid_disk;
7188
7189 for (disk = first; disk <= last; disk++) {
7190 p = conf->disks + disk;
7191 if (p->rdev == NULL) {
7192 clear_bit(In_sync, &rdev->flags);
7193 rdev->raid_disk = disk;
7194 err = 0;
7195 if (rdev->saved_raid_disk != disk)
7196 conf->fullsync = 1;
7197 rcu_assign_pointer(p->rdev, rdev);
7198 goto out;
7199 }
7200 }
7201 for (disk = first; disk <= last; disk++) {
7202 p = conf->disks + disk;
7203 if (test_bit(WantReplacement, &p->rdev->flags) &&
7204 p->replacement == NULL) {
7205 clear_bit(In_sync, &rdev->flags);
7206 set_bit(Replacement, &rdev->flags);
7207 rdev->raid_disk = disk;
7208 err = 0;
7209 conf->fullsync = 1;
7210 rcu_assign_pointer(p->replacement, rdev);
7211 break;
7212 }
7213 }
7214 out:
7215 print_raid5_conf(conf);
7216 return err;
7217 }
7218
7219 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7220 {
7221 /* no resync is happening, and there is enough space
7222 * on all devices, so we can resize.
7223 * We need to make sure resync covers any new space.
7224 * If the array is shrinking we should possibly wait until
7225 * any io in the removed space completes, but it hardly seems
7226 * worth it.
7227 */
7228 sector_t newsize;
7229 struct r5conf *conf = mddev->private;
7230
7231 if (conf->log)
7232 return -EINVAL;
7233 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7234 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7235 if (mddev->external_size &&
7236 mddev->array_sectors > newsize)
7237 return -EINVAL;
7238 if (mddev->bitmap) {
7239 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7240 if (ret)
7241 return ret;
7242 }
7243 md_set_array_sectors(mddev, newsize);
7244 set_capacity(mddev->gendisk, mddev->array_sectors);
7245 revalidate_disk(mddev->gendisk);
7246 if (sectors > mddev->dev_sectors &&
7247 mddev->recovery_cp > mddev->dev_sectors) {
7248 mddev->recovery_cp = mddev->dev_sectors;
7249 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7250 }
7251 mddev->dev_sectors = sectors;
7252 mddev->resync_max_sectors = sectors;
7253 return 0;
7254 }
7255
7256 static int check_stripe_cache(struct mddev *mddev)
7257 {
7258 /* Can only proceed if there are plenty of stripe_heads.
7259 * We need a minimum of one full stripe,, and for sensible progress
7260 * it is best to have about 4 times that.
7261 * If we require 4 times, then the default 256 4K stripe_heads will
7262 * allow for chunk sizes up to 256K, which is probably OK.
7263 * If the chunk size is greater, user-space should request more
7264 * stripe_heads first.
7265 */
7266 struct r5conf *conf = mddev->private;
7267 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7268 > conf->min_nr_stripes ||
7269 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7270 > conf->min_nr_stripes) {
7271 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7272 mdname(mddev),
7273 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7274 / STRIPE_SIZE)*4);
7275 return 0;
7276 }
7277 return 1;
7278 }
7279
7280 static int check_reshape(struct mddev *mddev)
7281 {
7282 struct r5conf *conf = mddev->private;
7283
7284 if (conf->log)
7285 return -EINVAL;
7286 if (mddev->delta_disks == 0 &&
7287 mddev->new_layout == mddev->layout &&
7288 mddev->new_chunk_sectors == mddev->chunk_sectors)
7289 return 0; /* nothing to do */
7290 if (has_failed(conf))
7291 return -EINVAL;
7292 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7293 /* We might be able to shrink, but the devices must
7294 * be made bigger first.
7295 * For raid6, 4 is the minimum size.
7296 * Otherwise 2 is the minimum
7297 */
7298 int min = 2;
7299 if (mddev->level == 6)
7300 min = 4;
7301 if (mddev->raid_disks + mddev->delta_disks < min)
7302 return -EINVAL;
7303 }
7304
7305 if (!check_stripe_cache(mddev))
7306 return -ENOSPC;
7307
7308 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7309 mddev->delta_disks > 0)
7310 if (resize_chunks(conf,
7311 conf->previous_raid_disks
7312 + max(0, mddev->delta_disks),
7313 max(mddev->new_chunk_sectors,
7314 mddev->chunk_sectors)
7315 ) < 0)
7316 return -ENOMEM;
7317 return resize_stripes(conf, (conf->previous_raid_disks
7318 + mddev->delta_disks));
7319 }
7320
7321 static int raid5_start_reshape(struct mddev *mddev)
7322 {
7323 struct r5conf *conf = mddev->private;
7324 struct md_rdev *rdev;
7325 int spares = 0;
7326 unsigned long flags;
7327
7328 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7329 return -EBUSY;
7330
7331 if (!check_stripe_cache(mddev))
7332 return -ENOSPC;
7333
7334 if (has_failed(conf))
7335 return -EINVAL;
7336
7337 rdev_for_each(rdev, mddev) {
7338 if (!test_bit(In_sync, &rdev->flags)
7339 && !test_bit(Faulty, &rdev->flags))
7340 spares++;
7341 }
7342
7343 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7344 /* Not enough devices even to make a degraded array
7345 * of that size
7346 */
7347 return -EINVAL;
7348
7349 /* Refuse to reduce size of the array. Any reductions in
7350 * array size must be through explicit setting of array_size
7351 * attribute.
7352 */
7353 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7354 < mddev->array_sectors) {
7355 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7356 "before number of disks\n", mdname(mddev));
7357 return -EINVAL;
7358 }
7359
7360 atomic_set(&conf->reshape_stripes, 0);
7361 spin_lock_irq(&conf->device_lock);
7362 write_seqcount_begin(&conf->gen_lock);
7363 conf->previous_raid_disks = conf->raid_disks;
7364 conf->raid_disks += mddev->delta_disks;
7365 conf->prev_chunk_sectors = conf->chunk_sectors;
7366 conf->chunk_sectors = mddev->new_chunk_sectors;
7367 conf->prev_algo = conf->algorithm;
7368 conf->algorithm = mddev->new_layout;
7369 conf->generation++;
7370 /* Code that selects data_offset needs to see the generation update
7371 * if reshape_progress has been set - so a memory barrier needed.
7372 */
7373 smp_mb();
7374 if (mddev->reshape_backwards)
7375 conf->reshape_progress = raid5_size(mddev, 0, 0);
7376 else
7377 conf->reshape_progress = 0;
7378 conf->reshape_safe = conf->reshape_progress;
7379 write_seqcount_end(&conf->gen_lock);
7380 spin_unlock_irq(&conf->device_lock);
7381
7382 /* Now make sure any requests that proceeded on the assumption
7383 * the reshape wasn't running - like Discard or Read - have
7384 * completed.
7385 */
7386 mddev_suspend(mddev);
7387 mddev_resume(mddev);
7388
7389 /* Add some new drives, as many as will fit.
7390 * We know there are enough to make the newly sized array work.
7391 * Don't add devices if we are reducing the number of
7392 * devices in the array. This is because it is not possible
7393 * to correctly record the "partially reconstructed" state of
7394 * such devices during the reshape and confusion could result.
7395 */
7396 if (mddev->delta_disks >= 0) {
7397 rdev_for_each(rdev, mddev)
7398 if (rdev->raid_disk < 0 &&
7399 !test_bit(Faulty, &rdev->flags)) {
7400 if (raid5_add_disk(mddev, rdev) == 0) {
7401 if (rdev->raid_disk
7402 >= conf->previous_raid_disks)
7403 set_bit(In_sync, &rdev->flags);
7404 else
7405 rdev->recovery_offset = 0;
7406
7407 if (sysfs_link_rdev(mddev, rdev))
7408 /* Failure here is OK */;
7409 }
7410 } else if (rdev->raid_disk >= conf->previous_raid_disks
7411 && !test_bit(Faulty, &rdev->flags)) {
7412 /* This is a spare that was manually added */
7413 set_bit(In_sync, &rdev->flags);
7414 }
7415
7416 /* When a reshape changes the number of devices,
7417 * ->degraded is measured against the larger of the
7418 * pre and post number of devices.
7419 */
7420 spin_lock_irqsave(&conf->device_lock, flags);
7421 mddev->degraded = calc_degraded(conf);
7422 spin_unlock_irqrestore(&conf->device_lock, flags);
7423 }
7424 mddev->raid_disks = conf->raid_disks;
7425 mddev->reshape_position = conf->reshape_progress;
7426 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7427
7428 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7429 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7430 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7431 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7432 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7433 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7434 "reshape");
7435 if (!mddev->sync_thread) {
7436 mddev->recovery = 0;
7437 spin_lock_irq(&conf->device_lock);
7438 write_seqcount_begin(&conf->gen_lock);
7439 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7440 mddev->new_chunk_sectors =
7441 conf->chunk_sectors = conf->prev_chunk_sectors;
7442 mddev->new_layout = conf->algorithm = conf->prev_algo;
7443 rdev_for_each(rdev, mddev)
7444 rdev->new_data_offset = rdev->data_offset;
7445 smp_wmb();
7446 conf->generation --;
7447 conf->reshape_progress = MaxSector;
7448 mddev->reshape_position = MaxSector;
7449 write_seqcount_end(&conf->gen_lock);
7450 spin_unlock_irq(&conf->device_lock);
7451 return -EAGAIN;
7452 }
7453 conf->reshape_checkpoint = jiffies;
7454 md_wakeup_thread(mddev->sync_thread);
7455 md_new_event(mddev);
7456 return 0;
7457 }
7458
7459 /* This is called from the reshape thread and should make any
7460 * changes needed in 'conf'
7461 */
7462 static void end_reshape(struct r5conf *conf)
7463 {
7464
7465 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7466 struct md_rdev *rdev;
7467
7468 spin_lock_irq(&conf->device_lock);
7469 conf->previous_raid_disks = conf->raid_disks;
7470 rdev_for_each(rdev, conf->mddev)
7471 rdev->data_offset = rdev->new_data_offset;
7472 smp_wmb();
7473 conf->reshape_progress = MaxSector;
7474 conf->mddev->reshape_position = MaxSector;
7475 spin_unlock_irq(&conf->device_lock);
7476 wake_up(&conf->wait_for_overlap);
7477
7478 /* read-ahead size must cover two whole stripes, which is
7479 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7480 */
7481 if (conf->mddev->queue) {
7482 int data_disks = conf->raid_disks - conf->max_degraded;
7483 int stripe = data_disks * ((conf->chunk_sectors << 9)
7484 / PAGE_SIZE);
7485 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7486 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7487 }
7488 }
7489 }
7490
7491 /* This is called from the raid5d thread with mddev_lock held.
7492 * It makes config changes to the device.
7493 */
7494 static void raid5_finish_reshape(struct mddev *mddev)
7495 {
7496 struct r5conf *conf = mddev->private;
7497
7498 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7499
7500 if (mddev->delta_disks > 0) {
7501 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7502 set_capacity(mddev->gendisk, mddev->array_sectors);
7503 revalidate_disk(mddev->gendisk);
7504 } else {
7505 int d;
7506 spin_lock_irq(&conf->device_lock);
7507 mddev->degraded = calc_degraded(conf);
7508 spin_unlock_irq(&conf->device_lock);
7509 for (d = conf->raid_disks ;
7510 d < conf->raid_disks - mddev->delta_disks;
7511 d++) {
7512 struct md_rdev *rdev = conf->disks[d].rdev;
7513 if (rdev)
7514 clear_bit(In_sync, &rdev->flags);
7515 rdev = conf->disks[d].replacement;
7516 if (rdev)
7517 clear_bit(In_sync, &rdev->flags);
7518 }
7519 }
7520 mddev->layout = conf->algorithm;
7521 mddev->chunk_sectors = conf->chunk_sectors;
7522 mddev->reshape_position = MaxSector;
7523 mddev->delta_disks = 0;
7524 mddev->reshape_backwards = 0;
7525 }
7526 }
7527
7528 static void raid5_quiesce(struct mddev *mddev, int state)
7529 {
7530 struct r5conf *conf = mddev->private;
7531
7532 switch(state) {
7533 case 2: /* resume for a suspend */
7534 wake_up(&conf->wait_for_overlap);
7535 break;
7536
7537 case 1: /* stop all writes */
7538 lock_all_device_hash_locks_irq(conf);
7539 /* '2' tells resync/reshape to pause so that all
7540 * active stripes can drain
7541 */
7542 conf->quiesce = 2;
7543 wait_event_cmd(conf->wait_for_quiescent,
7544 atomic_read(&conf->active_stripes) == 0 &&
7545 atomic_read(&conf->active_aligned_reads) == 0,
7546 unlock_all_device_hash_locks_irq(conf),
7547 lock_all_device_hash_locks_irq(conf));
7548 conf->quiesce = 1;
7549 unlock_all_device_hash_locks_irq(conf);
7550 /* allow reshape to continue */
7551 wake_up(&conf->wait_for_overlap);
7552 break;
7553
7554 case 0: /* re-enable writes */
7555 lock_all_device_hash_locks_irq(conf);
7556 conf->quiesce = 0;
7557 wake_up(&conf->wait_for_quiescent);
7558 wake_up(&conf->wait_for_overlap);
7559 unlock_all_device_hash_locks_irq(conf);
7560 break;
7561 }
7562 }
7563
7564 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7565 {
7566 struct r0conf *raid0_conf = mddev->private;
7567 sector_t sectors;
7568
7569 /* for raid0 takeover only one zone is supported */
7570 if (raid0_conf->nr_strip_zones > 1) {
7571 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7572 mdname(mddev));
7573 return ERR_PTR(-EINVAL);
7574 }
7575
7576 sectors = raid0_conf->strip_zone[0].zone_end;
7577 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7578 mddev->dev_sectors = sectors;
7579 mddev->new_level = level;
7580 mddev->new_layout = ALGORITHM_PARITY_N;
7581 mddev->new_chunk_sectors = mddev->chunk_sectors;
7582 mddev->raid_disks += 1;
7583 mddev->delta_disks = 1;
7584 /* make sure it will be not marked as dirty */
7585 mddev->recovery_cp = MaxSector;
7586
7587 return setup_conf(mddev);
7588 }
7589
7590 static void *raid5_takeover_raid1(struct mddev *mddev)
7591 {
7592 int chunksect;
7593
7594 if (mddev->raid_disks != 2 ||
7595 mddev->degraded > 1)
7596 return ERR_PTR(-EINVAL);
7597
7598 /* Should check if there are write-behind devices? */
7599
7600 chunksect = 64*2; /* 64K by default */
7601
7602 /* The array must be an exact multiple of chunksize */
7603 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7604 chunksect >>= 1;
7605
7606 if ((chunksect<<9) < STRIPE_SIZE)
7607 /* array size does not allow a suitable chunk size */
7608 return ERR_PTR(-EINVAL);
7609
7610 mddev->new_level = 5;
7611 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7612 mddev->new_chunk_sectors = chunksect;
7613
7614 return setup_conf(mddev);
7615 }
7616
7617 static void *raid5_takeover_raid6(struct mddev *mddev)
7618 {
7619 int new_layout;
7620
7621 switch (mddev->layout) {
7622 case ALGORITHM_LEFT_ASYMMETRIC_6:
7623 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7624 break;
7625 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7626 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7627 break;
7628 case ALGORITHM_LEFT_SYMMETRIC_6:
7629 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7630 break;
7631 case ALGORITHM_RIGHT_SYMMETRIC_6:
7632 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7633 break;
7634 case ALGORITHM_PARITY_0_6:
7635 new_layout = ALGORITHM_PARITY_0;
7636 break;
7637 case ALGORITHM_PARITY_N:
7638 new_layout = ALGORITHM_PARITY_N;
7639 break;
7640 default:
7641 return ERR_PTR(-EINVAL);
7642 }
7643 mddev->new_level = 5;
7644 mddev->new_layout = new_layout;
7645 mddev->delta_disks = -1;
7646 mddev->raid_disks -= 1;
7647 return setup_conf(mddev);
7648 }
7649
7650 static int raid5_check_reshape(struct mddev *mddev)
7651 {
7652 /* For a 2-drive array, the layout and chunk size can be changed
7653 * immediately as not restriping is needed.
7654 * For larger arrays we record the new value - after validation
7655 * to be used by a reshape pass.
7656 */
7657 struct r5conf *conf = mddev->private;
7658 int new_chunk = mddev->new_chunk_sectors;
7659
7660 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7661 return -EINVAL;
7662 if (new_chunk > 0) {
7663 if (!is_power_of_2(new_chunk))
7664 return -EINVAL;
7665 if (new_chunk < (PAGE_SIZE>>9))
7666 return -EINVAL;
7667 if (mddev->array_sectors & (new_chunk-1))
7668 /* not factor of array size */
7669 return -EINVAL;
7670 }
7671
7672 /* They look valid */
7673
7674 if (mddev->raid_disks == 2) {
7675 /* can make the change immediately */
7676 if (mddev->new_layout >= 0) {
7677 conf->algorithm = mddev->new_layout;
7678 mddev->layout = mddev->new_layout;
7679 }
7680 if (new_chunk > 0) {
7681 conf->chunk_sectors = new_chunk ;
7682 mddev->chunk_sectors = new_chunk;
7683 }
7684 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7685 md_wakeup_thread(mddev->thread);
7686 }
7687 return check_reshape(mddev);
7688 }
7689
7690 static int raid6_check_reshape(struct mddev *mddev)
7691 {
7692 int new_chunk = mddev->new_chunk_sectors;
7693
7694 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7695 return -EINVAL;
7696 if (new_chunk > 0) {
7697 if (!is_power_of_2(new_chunk))
7698 return -EINVAL;
7699 if (new_chunk < (PAGE_SIZE >> 9))
7700 return -EINVAL;
7701 if (mddev->array_sectors & (new_chunk-1))
7702 /* not factor of array size */
7703 return -EINVAL;
7704 }
7705
7706 /* They look valid */
7707 return check_reshape(mddev);
7708 }
7709
7710 static void *raid5_takeover(struct mddev *mddev)
7711 {
7712 /* raid5 can take over:
7713 * raid0 - if there is only one strip zone - make it a raid4 layout
7714 * raid1 - if there are two drives. We need to know the chunk size
7715 * raid4 - trivial - just use a raid4 layout.
7716 * raid6 - Providing it is a *_6 layout
7717 */
7718 if (mddev->level == 0)
7719 return raid45_takeover_raid0(mddev, 5);
7720 if (mddev->level == 1)
7721 return raid5_takeover_raid1(mddev);
7722 if (mddev->level == 4) {
7723 mddev->new_layout = ALGORITHM_PARITY_N;
7724 mddev->new_level = 5;
7725 return setup_conf(mddev);
7726 }
7727 if (mddev->level == 6)
7728 return raid5_takeover_raid6(mddev);
7729
7730 return ERR_PTR(-EINVAL);
7731 }
7732
7733 static void *raid4_takeover(struct mddev *mddev)
7734 {
7735 /* raid4 can take over:
7736 * raid0 - if there is only one strip zone
7737 * raid5 - if layout is right
7738 */
7739 if (mddev->level == 0)
7740 return raid45_takeover_raid0(mddev, 4);
7741 if (mddev->level == 5 &&
7742 mddev->layout == ALGORITHM_PARITY_N) {
7743 mddev->new_layout = 0;
7744 mddev->new_level = 4;
7745 return setup_conf(mddev);
7746 }
7747 return ERR_PTR(-EINVAL);
7748 }
7749
7750 static struct md_personality raid5_personality;
7751
7752 static void *raid6_takeover(struct mddev *mddev)
7753 {
7754 /* Currently can only take over a raid5. We map the
7755 * personality to an equivalent raid6 personality
7756 * with the Q block at the end.
7757 */
7758 int new_layout;
7759
7760 if (mddev->pers != &raid5_personality)
7761 return ERR_PTR(-EINVAL);
7762 if (mddev->degraded > 1)
7763 return ERR_PTR(-EINVAL);
7764 if (mddev->raid_disks > 253)
7765 return ERR_PTR(-EINVAL);
7766 if (mddev->raid_disks < 3)
7767 return ERR_PTR(-EINVAL);
7768
7769 switch (mddev->layout) {
7770 case ALGORITHM_LEFT_ASYMMETRIC:
7771 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7772 break;
7773 case ALGORITHM_RIGHT_ASYMMETRIC:
7774 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7775 break;
7776 case ALGORITHM_LEFT_SYMMETRIC:
7777 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7778 break;
7779 case ALGORITHM_RIGHT_SYMMETRIC:
7780 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7781 break;
7782 case ALGORITHM_PARITY_0:
7783 new_layout = ALGORITHM_PARITY_0_6;
7784 break;
7785 case ALGORITHM_PARITY_N:
7786 new_layout = ALGORITHM_PARITY_N;
7787 break;
7788 default:
7789 return ERR_PTR(-EINVAL);
7790 }
7791 mddev->new_level = 6;
7792 mddev->new_layout = new_layout;
7793 mddev->delta_disks = 1;
7794 mddev->raid_disks += 1;
7795 return setup_conf(mddev);
7796 }
7797
7798 static struct md_personality raid6_personality =
7799 {
7800 .name = "raid6",
7801 .level = 6,
7802 .owner = THIS_MODULE,
7803 .make_request = make_request,
7804 .run = run,
7805 .free = raid5_free,
7806 .status = status,
7807 .error_handler = error,
7808 .hot_add_disk = raid5_add_disk,
7809 .hot_remove_disk= raid5_remove_disk,
7810 .spare_active = raid5_spare_active,
7811 .sync_request = sync_request,
7812 .resize = raid5_resize,
7813 .size = raid5_size,
7814 .check_reshape = raid6_check_reshape,
7815 .start_reshape = raid5_start_reshape,
7816 .finish_reshape = raid5_finish_reshape,
7817 .quiesce = raid5_quiesce,
7818 .takeover = raid6_takeover,
7819 .congested = raid5_congested,
7820 };
7821 static struct md_personality raid5_personality =
7822 {
7823 .name = "raid5",
7824 .level = 5,
7825 .owner = THIS_MODULE,
7826 .make_request = make_request,
7827 .run = run,
7828 .free = raid5_free,
7829 .status = status,
7830 .error_handler = error,
7831 .hot_add_disk = raid5_add_disk,
7832 .hot_remove_disk= raid5_remove_disk,
7833 .spare_active = raid5_spare_active,
7834 .sync_request = sync_request,
7835 .resize = raid5_resize,
7836 .size = raid5_size,
7837 .check_reshape = raid5_check_reshape,
7838 .start_reshape = raid5_start_reshape,
7839 .finish_reshape = raid5_finish_reshape,
7840 .quiesce = raid5_quiesce,
7841 .takeover = raid5_takeover,
7842 .congested = raid5_congested,
7843 };
7844
7845 static struct md_personality raid4_personality =
7846 {
7847 .name = "raid4",
7848 .level = 4,
7849 .owner = THIS_MODULE,
7850 .make_request = make_request,
7851 .run = run,
7852 .free = raid5_free,
7853 .status = status,
7854 .error_handler = error,
7855 .hot_add_disk = raid5_add_disk,
7856 .hot_remove_disk= raid5_remove_disk,
7857 .spare_active = raid5_spare_active,
7858 .sync_request = sync_request,
7859 .resize = raid5_resize,
7860 .size = raid5_size,
7861 .check_reshape = raid5_check_reshape,
7862 .start_reshape = raid5_start_reshape,
7863 .finish_reshape = raid5_finish_reshape,
7864 .quiesce = raid5_quiesce,
7865 .takeover = raid4_takeover,
7866 .congested = raid5_congested,
7867 };
7868
7869 static int __init raid5_init(void)
7870 {
7871 raid5_wq = alloc_workqueue("raid5wq",
7872 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7873 if (!raid5_wq)
7874 return -ENOMEM;
7875 register_md_personality(&raid6_personality);
7876 register_md_personality(&raid5_personality);
7877 register_md_personality(&raid4_personality);
7878 return 0;
7879 }
7880
7881 static void raid5_exit(void)
7882 {
7883 unregister_md_personality(&raid6_personality);
7884 unregister_md_personality(&raid5_personality);
7885 unregister_md_personality(&raid4_personality);
7886 destroy_workqueue(raid5_wq);
7887 }
7888
7889 module_init(raid5_init);
7890 module_exit(raid5_exit);
7891 MODULE_LICENSE("GPL");
7892 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7893 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7894 MODULE_ALIAS("md-raid5");
7895 MODULE_ALIAS("md-raid4");
7896 MODULE_ALIAS("md-level-5");
7897 MODULE_ALIAS("md-level-4");
7898 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7899 MODULE_ALIAS("md-raid6");
7900 MODULE_ALIAS("md-level-6");
7901
7902 /* This used to be two separate modules, they were: */
7903 MODULE_ALIAS("raid5");
7904 MODULE_ALIAS("raid6");