source: G950FXXS5DSI1
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26
27 #include "clk.h"
28
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34
35 static int prepare_refcnt;
36 static int enable_refcnt;
37
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41
42 /*** private data structures ***/
43
44 struct clk_core {
45 const char *name;
46 const struct clk_ops *ops;
47 struct clk_hw *hw;
48 struct module *owner;
49 struct clk_core *parent;
50 const char **parent_names;
51 struct clk_core **parents;
52 u8 num_parents;
53 u8 new_parent_index;
54 unsigned long rate;
55 unsigned long req_rate;
56 unsigned long new_rate;
57 struct clk_core *new_parent;
58 struct clk_core *new_child;
59 unsigned long flags;
60 bool orphan;
61 unsigned int enable_count;
62 unsigned int prepare_count;
63 unsigned long min_rate;
64 unsigned long max_rate;
65 unsigned long accuracy;
66 int phase;
67 struct hlist_head children;
68 struct hlist_node child_node;
69 struct hlist_head clks;
70 unsigned int notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 struct dentry *dentry;
73 struct hlist_node debug_node;
74 #endif
75 struct kref ref;
76 };
77
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80
81 struct clk {
82 struct clk_core *core;
83 const char *dev_id;
84 const char *con_id;
85 unsigned long min_rate;
86 unsigned long max_rate;
87 struct hlist_node clks_node;
88 };
89
90 /*** locking ***/
91 static void clk_prepare_lock(void)
92 {
93 if (!mutex_trylock(&prepare_lock)) {
94 if (prepare_owner == current) {
95 prepare_refcnt++;
96 return;
97 }
98 mutex_lock(&prepare_lock);
99 }
100 WARN_ON_ONCE(prepare_owner != NULL);
101 WARN_ON_ONCE(prepare_refcnt != 0);
102 prepare_owner = current;
103 prepare_refcnt = 1;
104 }
105
106 static void clk_prepare_unlock(void)
107 {
108 WARN_ON_ONCE(prepare_owner != current);
109 WARN_ON_ONCE(prepare_refcnt == 0);
110
111 if (--prepare_refcnt)
112 return;
113 prepare_owner = NULL;
114 mutex_unlock(&prepare_lock);
115 }
116
117 static unsigned long clk_enable_lock(void)
118 __acquires(enable_lock)
119 {
120 unsigned long flags;
121
122 if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 if (enable_owner == current) {
124 enable_refcnt++;
125 __acquire(enable_lock);
126 return flags;
127 }
128 spin_lock_irqsave(&enable_lock, flags);
129 }
130 WARN_ON_ONCE(enable_owner != NULL);
131 WARN_ON_ONCE(enable_refcnt != 0);
132 enable_owner = current;
133 enable_refcnt = 1;
134 return flags;
135 }
136
137 static void clk_enable_unlock(unsigned long flags)
138 __releases(enable_lock)
139 {
140 WARN_ON_ONCE(enable_owner != current);
141 WARN_ON_ONCE(enable_refcnt == 0);
142
143 if (--enable_refcnt) {
144 __release(enable_lock);
145 return;
146 }
147 enable_owner = NULL;
148 spin_unlock_irqrestore(&enable_lock, flags);
149 }
150
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 /*
154 * .is_prepared is optional for clocks that can prepare
155 * fall back to software usage counter if it is missing
156 */
157 if (!core->ops->is_prepared)
158 return core->prepare_count;
159
160 return core->ops->is_prepared(core->hw);
161 }
162
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 /*
166 * .is_enabled is only mandatory for clocks that gate
167 * fall back to software usage counter if .is_enabled is missing
168 */
169 if (!core->ops->is_enabled)
170 return core->enable_count;
171
172 return core->ops->is_enabled(core->hw);
173 }
174
175 static void clk_unprepare_unused_subtree(struct clk_core *core)
176 {
177 struct clk_core *child;
178
179 lockdep_assert_held(&prepare_lock);
180
181 hlist_for_each_entry(child, &core->children, child_node)
182 clk_unprepare_unused_subtree(child);
183
184 if (core->prepare_count)
185 return;
186
187 if (core->flags & CLK_IGNORE_UNUSED)
188 return;
189
190 if (clk_core_is_prepared(core)) {
191 trace_clk_unprepare(core);
192 if (core->ops->unprepare_unused)
193 core->ops->unprepare_unused(core->hw);
194 else if (core->ops->unprepare)
195 core->ops->unprepare(core->hw);
196 trace_clk_unprepare_complete(core);
197 }
198 }
199
200 static void clk_disable_unused_subtree(struct clk_core *core)
201 {
202 struct clk_core *child;
203 unsigned long flags;
204
205 lockdep_assert_held(&prepare_lock);
206
207 hlist_for_each_entry(child, &core->children, child_node)
208 clk_disable_unused_subtree(child);
209
210 flags = clk_enable_lock();
211
212 if (core->enable_count)
213 goto unlock_out;
214
215 if (core->flags & CLK_IGNORE_UNUSED)
216 goto unlock_out;
217
218 /*
219 * some gate clocks have special needs during the disable-unused
220 * sequence. call .disable_unused if available, otherwise fall
221 * back to .disable
222 */
223 if (clk_core_is_enabled(core)) {
224 trace_clk_disable(core);
225 if (core->ops->disable_unused)
226 core->ops->disable_unused(core->hw);
227 else if (core->ops->disable)
228 core->ops->disable(core->hw);
229 trace_clk_disable_complete(core);
230 }
231
232 unlock_out:
233 clk_enable_unlock(flags);
234 }
235
236 static bool clk_ignore_unused;
237 static int __init clk_ignore_unused_setup(char *__unused)
238 {
239 clk_ignore_unused = true;
240 return 1;
241 }
242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
243
244 static int clk_disable_unused(void)
245 {
246 struct clk_core *core;
247
248 if (clk_ignore_unused) {
249 pr_warn("clk: Not disabling unused clocks\n");
250 return 0;
251 }
252
253 clk_prepare_lock();
254
255 hlist_for_each_entry(core, &clk_root_list, child_node)
256 clk_disable_unused_subtree(core);
257
258 hlist_for_each_entry(core, &clk_orphan_list, child_node)
259 clk_disable_unused_subtree(core);
260
261 hlist_for_each_entry(core, &clk_root_list, child_node)
262 clk_unprepare_unused_subtree(core);
263
264 hlist_for_each_entry(core, &clk_orphan_list, child_node)
265 clk_unprepare_unused_subtree(core);
266
267 clk_prepare_unlock();
268
269 return 0;
270 }
271 late_initcall_sync(clk_disable_unused);
272
273 /*** helper functions ***/
274
275 const char *__clk_get_name(const struct clk *clk)
276 {
277 return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280
281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286
287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292
293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298
299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304
305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 struct clk_core *core)
307 {
308 struct clk_core *child;
309 struct clk_core *ret;
310
311 if (!strcmp(core->name, name))
312 return core;
313
314 hlist_for_each_entry(child, &core->children, child_node) {
315 ret = __clk_lookup_subtree(name, child);
316 if (ret)
317 return ret;
318 }
319
320 return NULL;
321 }
322
323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 struct clk_core *root_clk;
326 struct clk_core *ret;
327
328 if (!name)
329 return NULL;
330
331 /* search the 'proper' clk tree first */
332 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 ret = __clk_lookup_subtree(name, root_clk);
334 if (ret)
335 return ret;
336 }
337
338 /* if not found, then search the orphan tree */
339 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 ret = __clk_lookup_subtree(name, root_clk);
341 if (ret)
342 return ret;
343 }
344
345 return NULL;
346 }
347
348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
349 u8 index)
350 {
351 if (!core || index >= core->num_parents)
352 return NULL;
353 else if (!core->parents)
354 return clk_core_lookup(core->parent_names[index]);
355 else if (!core->parents[index])
356 return core->parents[index] =
357 clk_core_lookup(core->parent_names[index]);
358 else
359 return core->parents[index];
360 }
361
362 struct clk_hw *
363 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
364 {
365 struct clk_core *parent;
366
367 parent = clk_core_get_parent_by_index(hw->core, index);
368
369 return !parent ? NULL : parent->hw;
370 }
371 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
372
373 unsigned int __clk_get_enable_count(struct clk *clk)
374 {
375 return !clk ? 0 : clk->core->enable_count;
376 }
377
378 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
379 {
380 unsigned long ret;
381
382 if (!core) {
383 ret = 0;
384 goto out;
385 }
386
387 ret = core->rate;
388
389 if (core->flags & CLK_IS_ROOT)
390 goto out;
391
392 if (!core->parent)
393 ret = 0;
394
395 out:
396 return ret;
397 }
398
399 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
400 {
401 return clk_core_get_rate_nolock(hw->core);
402 }
403 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
404
405 static unsigned long __clk_get_accuracy(struct clk_core *core)
406 {
407 if (!core)
408 return 0;
409
410 return core->accuracy;
411 }
412
413 unsigned long __clk_get_flags(struct clk *clk)
414 {
415 return !clk ? 0 : clk->core->flags;
416 }
417 EXPORT_SYMBOL_GPL(__clk_get_flags);
418
419 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
420 {
421 return hw->core->flags;
422 }
423 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
424
425 bool clk_hw_is_prepared(const struct clk_hw *hw)
426 {
427 return clk_core_is_prepared(hw->core);
428 }
429
430 bool clk_hw_is_enabled(const struct clk_hw *hw)
431 {
432 return clk_core_is_enabled(hw->core);
433 }
434
435 bool __clk_is_enabled(struct clk *clk)
436 {
437 if (!clk)
438 return false;
439
440 return clk_core_is_enabled(clk->core);
441 }
442 EXPORT_SYMBOL_GPL(__clk_is_enabled);
443
444 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
445 unsigned long best, unsigned long flags)
446 {
447 if (flags & CLK_MUX_ROUND_CLOSEST)
448 return abs(now - rate) < abs(best - rate);
449
450 return now <= rate && now > best;
451 }
452
453 static int
454 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
455 unsigned long flags)
456 {
457 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
458 int i, num_parents, ret;
459 unsigned long best = 0;
460 struct clk_rate_request parent_req = *req;
461
462 /* if NO_REPARENT flag set, pass through to current parent */
463 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
464 parent = core->parent;
465 if (core->flags & CLK_SET_RATE_PARENT) {
466 ret = __clk_determine_rate(parent ? parent->hw : NULL,
467 &parent_req);
468 if (ret)
469 return ret;
470
471 best = parent_req.rate;
472 } else if (parent) {
473 best = clk_core_get_rate_nolock(parent);
474 } else {
475 best = clk_core_get_rate_nolock(core);
476 }
477
478 goto out;
479 }
480
481 /* find the parent that can provide the fastest rate <= rate */
482 num_parents = core->num_parents;
483 for (i = 0; i < num_parents; i++) {
484 parent = clk_core_get_parent_by_index(core, i);
485 if (!parent)
486 continue;
487
488 if (core->flags & CLK_SET_RATE_PARENT) {
489 parent_req = *req;
490 ret = __clk_determine_rate(parent->hw, &parent_req);
491 if (ret)
492 continue;
493 } else {
494 parent_req.rate = clk_core_get_rate_nolock(parent);
495 }
496
497 if (mux_is_better_rate(req->rate, parent_req.rate,
498 best, flags)) {
499 best_parent = parent;
500 best = parent_req.rate;
501 }
502 }
503
504 if (!best_parent)
505 return -EINVAL;
506
507 out:
508 if (best_parent)
509 req->best_parent_hw = best_parent->hw;
510 req->best_parent_rate = best;
511 req->rate = best;
512
513 return 0;
514 }
515
516 struct clk *__clk_lookup(const char *name)
517 {
518 struct clk_core *core = clk_core_lookup(name);
519
520 return !core ? NULL : core->hw->clk;
521 }
522
523 static void clk_core_get_boundaries(struct clk_core *core,
524 unsigned long *min_rate,
525 unsigned long *max_rate)
526 {
527 struct clk *clk_user;
528
529 *min_rate = core->min_rate;
530 *max_rate = core->max_rate;
531
532 hlist_for_each_entry(clk_user, &core->clks, clks_node)
533 *min_rate = max(*min_rate, clk_user->min_rate);
534
535 hlist_for_each_entry(clk_user, &core->clks, clks_node)
536 *max_rate = min(*max_rate, clk_user->max_rate);
537 }
538
539 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
540 unsigned long max_rate)
541 {
542 hw->core->min_rate = min_rate;
543 hw->core->max_rate = max_rate;
544 }
545 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
546
547 /*
548 * Helper for finding best parent to provide a given frequency. This can be used
549 * directly as a determine_rate callback (e.g. for a mux), or from a more
550 * complex clock that may combine a mux with other operations.
551 */
552 int __clk_mux_determine_rate(struct clk_hw *hw,
553 struct clk_rate_request *req)
554 {
555 return clk_mux_determine_rate_flags(hw, req, 0);
556 }
557 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
558
559 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
560 struct clk_rate_request *req)
561 {
562 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
563 }
564 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
565
566 /*** clk api ***/
567
568 static void clk_core_unprepare(struct clk_core *core)
569 {
570 lockdep_assert_held(&prepare_lock);
571
572 if (!core)
573 return;
574
575 if (WARN_ON(core->prepare_count == 0))
576 return;
577
578 if (--core->prepare_count > 0)
579 return;
580
581 WARN_ON(core->enable_count > 0);
582
583 trace_clk_unprepare(core);
584
585 if (core->ops->unprepare)
586 core->ops->unprepare(core->hw);
587
588 trace_clk_unprepare_complete(core);
589 clk_core_unprepare(core->parent);
590 }
591
592 /**
593 * clk_unprepare - undo preparation of a clock source
594 * @clk: the clk being unprepared
595 *
596 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
597 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
598 * if the operation may sleep. One example is a clk which is accessed over
599 * I2c. In the complex case a clk gate operation may require a fast and a slow
600 * part. It is this reason that clk_unprepare and clk_disable are not mutually
601 * exclusive. In fact clk_disable must be called before clk_unprepare.
602 */
603 void clk_unprepare(struct clk *clk)
604 {
605 if (IS_ERR_OR_NULL(clk))
606 return;
607
608 clk_prepare_lock();
609 clk_core_unprepare(clk->core);
610 clk_prepare_unlock();
611 }
612 EXPORT_SYMBOL_GPL(clk_unprepare);
613
614 static int clk_core_prepare(struct clk_core *core)
615 {
616 int ret = 0;
617
618 lockdep_assert_held(&prepare_lock);
619
620 if (!core)
621 return 0;
622
623 if (core->prepare_count == 0) {
624 ret = clk_core_prepare(core->parent);
625 if (ret)
626 return ret;
627
628 trace_clk_prepare(core);
629
630 if (core->ops->prepare)
631 ret = core->ops->prepare(core->hw);
632
633 trace_clk_prepare_complete(core);
634
635 if (ret) {
636 clk_core_unprepare(core->parent);
637 return ret;
638 }
639 }
640
641 core->prepare_count++;
642
643 return 0;
644 }
645
646 /**
647 * clk_prepare - prepare a clock source
648 * @clk: the clk being prepared
649 *
650 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
651 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
652 * operation may sleep. One example is a clk which is accessed over I2c. In
653 * the complex case a clk ungate operation may require a fast and a slow part.
654 * It is this reason that clk_prepare and clk_enable are not mutually
655 * exclusive. In fact clk_prepare must be called before clk_enable.
656 * Returns 0 on success, -EERROR otherwise.
657 */
658 int clk_prepare(struct clk *clk)
659 {
660 int ret;
661
662 if (!clk)
663 return 0;
664
665 clk_prepare_lock();
666 ret = clk_core_prepare(clk->core);
667 clk_prepare_unlock();
668
669 return ret;
670 }
671 EXPORT_SYMBOL_GPL(clk_prepare);
672
673 static void clk_core_disable(struct clk_core *core)
674 {
675 lockdep_assert_held(&enable_lock);
676
677 if (!core)
678 return;
679
680 if (WARN_ON(core->enable_count == 0))
681 return;
682
683 if (--core->enable_count > 0)
684 return;
685
686 trace_clk_disable(core);
687
688 if (core->ops->disable)
689 core->ops->disable(core->hw);
690
691 trace_clk_disable_complete(core);
692
693 clk_core_disable(core->parent);
694 }
695
696 /**
697 * clk_disable - gate a clock
698 * @clk: the clk being gated
699 *
700 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
701 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
702 * clk if the operation is fast and will never sleep. One example is a
703 * SoC-internal clk which is controlled via simple register writes. In the
704 * complex case a clk gate operation may require a fast and a slow part. It is
705 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
706 * In fact clk_disable must be called before clk_unprepare.
707 */
708 void clk_disable(struct clk *clk)
709 {
710 unsigned long flags;
711
712 if (IS_ERR_OR_NULL(clk))
713 return;
714
715 flags = clk_enable_lock();
716 clk_core_disable(clk->core);
717 clk_enable_unlock(flags);
718 }
719 EXPORT_SYMBOL_GPL(clk_disable);
720
721 static int clk_core_enable(struct clk_core *core)
722 {
723 int ret = 0;
724
725 lockdep_assert_held(&enable_lock);
726
727 if (!core)
728 return 0;
729
730 if (WARN_ON(core->prepare_count == 0))
731 return -ESHUTDOWN;
732
733 if (core->enable_count == 0) {
734 ret = clk_core_enable(core->parent);
735
736 if (ret)
737 return ret;
738
739 trace_clk_enable(core);
740
741 if (core->ops->enable)
742 ret = core->ops->enable(core->hw);
743
744 trace_clk_enable_complete(core);
745
746 if (ret) {
747 clk_core_disable(core->parent);
748 return ret;
749 }
750 }
751
752 core->enable_count++;
753 return 0;
754 }
755
756 /**
757 * clk_enable - ungate a clock
758 * @clk: the clk being ungated
759 *
760 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
761 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
762 * if the operation will never sleep. One example is a SoC-internal clk which
763 * is controlled via simple register writes. In the complex case a clk ungate
764 * operation may require a fast and a slow part. It is this reason that
765 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
766 * must be called before clk_enable. Returns 0 on success, -EERROR
767 * otherwise.
768 */
769 int clk_enable(struct clk *clk)
770 {
771 unsigned long flags;
772 int ret;
773
774 if (!clk)
775 return 0;
776
777 flags = clk_enable_lock();
778 ret = clk_core_enable(clk->core);
779 clk_enable_unlock(flags);
780
781 return ret;
782 }
783 EXPORT_SYMBOL_GPL(clk_enable);
784
785 static int clk_core_round_rate_nolock(struct clk_core *core,
786 struct clk_rate_request *req)
787 {
788 struct clk_core *parent;
789 long rate;
790
791 lockdep_assert_held(&prepare_lock);
792
793 if (!core)
794 return 0;
795
796 parent = core->parent;
797 if (parent) {
798 req->best_parent_hw = parent->hw;
799 req->best_parent_rate = parent->rate;
800 } else {
801 req->best_parent_hw = NULL;
802 req->best_parent_rate = 0;
803 }
804
805 if (core->ops->determine_rate) {
806 return core->ops->determine_rate(core->hw, req);
807 } else if (core->ops->round_rate) {
808 rate = core->ops->round_rate(core->hw, req->rate,
809 &req->best_parent_rate);
810 if (rate < 0)
811 return rate;
812
813 req->rate = rate;
814 } else if (core->flags & CLK_SET_RATE_PARENT) {
815 return clk_core_round_rate_nolock(parent, req);
816 } else {
817 req->rate = core->rate;
818 }
819
820 return 0;
821 }
822
823 /**
824 * __clk_determine_rate - get the closest rate actually supported by a clock
825 * @hw: determine the rate of this clock
826 * @rate: target rate
827 * @min_rate: returned rate must be greater than this rate
828 * @max_rate: returned rate must be less than this rate
829 *
830 * Useful for clk_ops such as .set_rate and .determine_rate.
831 */
832 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
833 {
834 if (!hw) {
835 req->rate = 0;
836 return 0;
837 }
838
839 return clk_core_round_rate_nolock(hw->core, req);
840 }
841 EXPORT_SYMBOL_GPL(__clk_determine_rate);
842
843 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
844 {
845 int ret;
846 struct clk_rate_request req;
847
848 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
849 req.rate = rate;
850
851 ret = clk_core_round_rate_nolock(hw->core, &req);
852 if (ret)
853 return 0;
854
855 return req.rate;
856 }
857 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
858
859 /**
860 * clk_round_rate - round the given rate for a clk
861 * @clk: the clk for which we are rounding a rate
862 * @rate: the rate which is to be rounded
863 *
864 * Takes in a rate as input and rounds it to a rate that the clk can actually
865 * use which is then returned. If clk doesn't support round_rate operation
866 * then the parent rate is returned.
867 */
868 long clk_round_rate(struct clk *clk, unsigned long rate)
869 {
870 struct clk_rate_request req;
871 int ret;
872
873 if (!clk)
874 return 0;
875
876 clk_prepare_lock();
877
878 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
879 req.rate = rate;
880
881 ret = clk_core_round_rate_nolock(clk->core, &req);
882 clk_prepare_unlock();
883
884 if (ret)
885 return ret;
886
887 return req.rate;
888 }
889 EXPORT_SYMBOL_GPL(clk_round_rate);
890
891 /**
892 * __clk_notify - call clk notifier chain
893 * @core: clk that is changing rate
894 * @msg: clk notifier type (see include/linux/clk.h)
895 * @old_rate: old clk rate
896 * @new_rate: new clk rate
897 *
898 * Triggers a notifier call chain on the clk rate-change notification
899 * for 'clk'. Passes a pointer to the struct clk and the previous
900 * and current rates to the notifier callback. Intended to be called by
901 * internal clock code only. Returns NOTIFY_DONE from the last driver
902 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
903 * a driver returns that.
904 */
905 static int __clk_notify(struct clk_core *core, unsigned long msg,
906 unsigned long old_rate, unsigned long new_rate)
907 {
908 struct clk_notifier *cn;
909 struct clk_notifier_data cnd;
910 int ret = NOTIFY_DONE;
911
912 cnd.old_rate = old_rate;
913 cnd.new_rate = new_rate;
914
915 list_for_each_entry(cn, &clk_notifier_list, node) {
916 if (cn->clk->core == core) {
917 cnd.clk = cn->clk;
918 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
919 &cnd);
920 }
921 }
922
923 return ret;
924 }
925
926 /**
927 * __clk_recalc_accuracies
928 * @core: first clk in the subtree
929 *
930 * Walks the subtree of clks starting with clk and recalculates accuracies as
931 * it goes. Note that if a clk does not implement the .recalc_accuracy
932 * callback then it is assumed that the clock will take on the accuracy of its
933 * parent.
934 */
935 static void __clk_recalc_accuracies(struct clk_core *core)
936 {
937 unsigned long parent_accuracy = 0;
938 struct clk_core *child;
939
940 lockdep_assert_held(&prepare_lock);
941
942 if (core->parent)
943 parent_accuracy = core->parent->accuracy;
944
945 if (core->ops->recalc_accuracy)
946 core->accuracy = core->ops->recalc_accuracy(core->hw,
947 parent_accuracy);
948 else
949 core->accuracy = parent_accuracy;
950
951 hlist_for_each_entry(child, &core->children, child_node)
952 __clk_recalc_accuracies(child);
953 }
954
955 static long clk_core_get_accuracy(struct clk_core *core)
956 {
957 unsigned long accuracy;
958
959 clk_prepare_lock();
960 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
961 __clk_recalc_accuracies(core);
962
963 accuracy = __clk_get_accuracy(core);
964 clk_prepare_unlock();
965
966 return accuracy;
967 }
968
969 /**
970 * clk_get_accuracy - return the accuracy of clk
971 * @clk: the clk whose accuracy is being returned
972 *
973 * Simply returns the cached accuracy of the clk, unless
974 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
975 * issued.
976 * If clk is NULL then returns 0.
977 */
978 long clk_get_accuracy(struct clk *clk)
979 {
980 if (!clk)
981 return 0;
982
983 return clk_core_get_accuracy(clk->core);
984 }
985 EXPORT_SYMBOL_GPL(clk_get_accuracy);
986
987 static unsigned long clk_recalc(struct clk_core *core,
988 unsigned long parent_rate)
989 {
990 if (core->ops->recalc_rate)
991 return core->ops->recalc_rate(core->hw, parent_rate);
992 return parent_rate;
993 }
994
995 /**
996 * __clk_recalc_rates
997 * @core: first clk in the subtree
998 * @msg: notification type (see include/linux/clk.h)
999 *
1000 * Walks the subtree of clks starting with clk and recalculates rates as it
1001 * goes. Note that if a clk does not implement the .recalc_rate callback then
1002 * it is assumed that the clock will take on the rate of its parent.
1003 *
1004 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1005 * if necessary.
1006 */
1007 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1008 {
1009 unsigned long old_rate;
1010 unsigned long parent_rate = 0;
1011 struct clk_core *child;
1012
1013 lockdep_assert_held(&prepare_lock);
1014
1015 old_rate = core->rate;
1016
1017 if (core->parent)
1018 parent_rate = core->parent->rate;
1019
1020 core->rate = clk_recalc(core, parent_rate);
1021
1022 /*
1023 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1024 * & ABORT_RATE_CHANGE notifiers
1025 */
1026 if (core->notifier_count && msg)
1027 __clk_notify(core, msg, old_rate, core->rate);
1028
1029 hlist_for_each_entry(child, &core->children, child_node)
1030 __clk_recalc_rates(child, msg);
1031 }
1032
1033 static unsigned long clk_core_get_rate(struct clk_core *core)
1034 {
1035 unsigned long rate;
1036
1037 clk_prepare_lock();
1038
1039 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1040 __clk_recalc_rates(core, 0);
1041
1042 rate = clk_core_get_rate_nolock(core);
1043 clk_prepare_unlock();
1044
1045 return rate;
1046 }
1047
1048 /**
1049 * clk_get_rate - return the rate of clk
1050 * @clk: the clk whose rate is being returned
1051 *
1052 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1053 * is set, which means a recalc_rate will be issued.
1054 * If clk is NULL then returns 0.
1055 */
1056 unsigned long clk_get_rate(struct clk *clk)
1057 {
1058 if (!clk)
1059 return 0;
1060
1061 return clk_core_get_rate(clk->core);
1062 }
1063 EXPORT_SYMBOL_GPL(clk_get_rate);
1064
1065 static int clk_fetch_parent_index(struct clk_core *core,
1066 struct clk_core *parent)
1067 {
1068 int i;
1069
1070 if (!core->parents) {
1071 core->parents = kcalloc(core->num_parents,
1072 sizeof(struct clk *), GFP_KERNEL);
1073 if (!core->parents)
1074 return -ENOMEM;
1075 }
1076
1077 /*
1078 * find index of new parent clock using cached parent ptrs,
1079 * or if not yet cached, use string name comparison and cache
1080 * them now to avoid future calls to clk_core_lookup.
1081 */
1082 for (i = 0; i < core->num_parents; i++) {
1083 if (core->parents[i] == parent)
1084 return i;
1085
1086 if (core->parents[i])
1087 continue;
1088
1089 if (!strcmp(core->parent_names[i], parent->name)) {
1090 core->parents[i] = clk_core_lookup(parent->name);
1091 return i;
1092 }
1093 }
1094
1095 return -EINVAL;
1096 }
1097
1098 /*
1099 * Update the orphan status of @core and all its children.
1100 */
1101 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1102 {
1103 struct clk_core *child;
1104
1105 core->orphan = is_orphan;
1106
1107 hlist_for_each_entry(child, &core->children, child_node)
1108 clk_core_update_orphan_status(child, is_orphan);
1109 }
1110
1111 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1112 {
1113 bool was_orphan = core->orphan;
1114
1115 hlist_del(&core->child_node);
1116
1117 if (new_parent) {
1118 bool becomes_orphan = new_parent->orphan;
1119
1120 /* avoid duplicate POST_RATE_CHANGE notifications */
1121 if (new_parent->new_child == core)
1122 new_parent->new_child = NULL;
1123
1124 hlist_add_head(&core->child_node, &new_parent->children);
1125
1126 if (was_orphan != becomes_orphan)
1127 clk_core_update_orphan_status(core, becomes_orphan);
1128 } else {
1129 hlist_add_head(&core->child_node, &clk_orphan_list);
1130 if (!was_orphan)
1131 clk_core_update_orphan_status(core, true);
1132 }
1133
1134 core->parent = new_parent;
1135 }
1136
1137 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1138 struct clk_core *parent)
1139 {
1140 unsigned long flags;
1141 struct clk_core *old_parent = core->parent;
1142
1143 /*
1144 * Migrate prepare state between parents and prevent race with
1145 * clk_enable().
1146 *
1147 * If the clock is not prepared, then a race with
1148 * clk_enable/disable() is impossible since we already have the
1149 * prepare lock (future calls to clk_enable() need to be preceded by
1150 * a clk_prepare()).
1151 *
1152 * If the clock is prepared, migrate the prepared state to the new
1153 * parent and also protect against a race with clk_enable() by
1154 * forcing the clock and the new parent on. This ensures that all
1155 * future calls to clk_enable() are practically NOPs with respect to
1156 * hardware and software states.
1157 *
1158 * See also: Comment for clk_set_parent() below.
1159 */
1160 if (core->prepare_count) {
1161 clk_core_prepare(parent);
1162 flags = clk_enable_lock();
1163 clk_core_enable(parent);
1164 clk_core_enable(core);
1165 clk_enable_unlock(flags);
1166 }
1167
1168 /* update the clk tree topology */
1169 flags = clk_enable_lock();
1170 clk_reparent(core, parent);
1171 clk_enable_unlock(flags);
1172
1173 return old_parent;
1174 }
1175
1176 static void __clk_set_parent_after(struct clk_core *core,
1177 struct clk_core *parent,
1178 struct clk_core *old_parent)
1179 {
1180 unsigned long flags;
1181
1182 /*
1183 * Finish the migration of prepare state and undo the changes done
1184 * for preventing a race with clk_enable().
1185 */
1186 if (core->prepare_count) {
1187 flags = clk_enable_lock();
1188 clk_core_disable(core);
1189 clk_core_disable(old_parent);
1190 clk_enable_unlock(flags);
1191 clk_core_unprepare(old_parent);
1192 }
1193 }
1194
1195 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1196 u8 p_index)
1197 {
1198 unsigned long flags;
1199 int ret = 0;
1200 struct clk_core *old_parent;
1201
1202 old_parent = __clk_set_parent_before(core, parent);
1203
1204 trace_clk_set_parent(core, parent);
1205
1206 /* change clock input source */
1207 if (parent && core->ops->set_parent)
1208 ret = core->ops->set_parent(core->hw, p_index);
1209
1210 trace_clk_set_parent_complete(core, parent);
1211
1212 if (ret) {
1213 flags = clk_enable_lock();
1214 clk_reparent(core, old_parent);
1215 clk_enable_unlock(flags);
1216 __clk_set_parent_after(core, old_parent, parent);
1217
1218 return ret;
1219 }
1220
1221 __clk_set_parent_after(core, parent, old_parent);
1222
1223 return 0;
1224 }
1225
1226 /**
1227 * __clk_speculate_rates
1228 * @core: first clk in the subtree
1229 * @parent_rate: the "future" rate of clk's parent
1230 *
1231 * Walks the subtree of clks starting with clk, speculating rates as it
1232 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1233 *
1234 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1235 * pre-rate change notifications and returns early if no clks in the
1236 * subtree have subscribed to the notifications. Note that if a clk does not
1237 * implement the .recalc_rate callback then it is assumed that the clock will
1238 * take on the rate of its parent.
1239 */
1240 static int __clk_speculate_rates(struct clk_core *core,
1241 unsigned long parent_rate)
1242 {
1243 struct clk_core *child;
1244 unsigned long new_rate;
1245 int ret = NOTIFY_DONE;
1246
1247 lockdep_assert_held(&prepare_lock);
1248
1249 new_rate = clk_recalc(core, parent_rate);
1250
1251 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1252 if (core->notifier_count)
1253 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1254
1255 if (ret & NOTIFY_STOP_MASK) {
1256 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1257 __func__, core->name, ret);
1258 goto out;
1259 }
1260
1261 hlist_for_each_entry(child, &core->children, child_node) {
1262 ret = __clk_speculate_rates(child, new_rate);
1263 if (ret & NOTIFY_STOP_MASK)
1264 break;
1265 }
1266
1267 out:
1268 return ret;
1269 }
1270
1271 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1272 struct clk_core *new_parent, u8 p_index)
1273 {
1274 struct clk_core *child;
1275
1276 core->new_rate = new_rate;
1277 core->new_parent = new_parent;
1278 core->new_parent_index = p_index;
1279 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1280 core->new_child = NULL;
1281 if (new_parent && new_parent != core->parent)
1282 new_parent->new_child = core;
1283
1284 hlist_for_each_entry(child, &core->children, child_node) {
1285 child->new_rate = clk_recalc(child, new_rate);
1286 clk_calc_subtree(child, child->new_rate, NULL, 0);
1287 }
1288 }
1289
1290 /*
1291 * calculate the new rates returning the topmost clock that has to be
1292 * changed.
1293 */
1294 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1295 unsigned long rate)
1296 {
1297 struct clk_core *top = core;
1298 struct clk_core *old_parent, *parent;
1299 unsigned long best_parent_rate = 0;
1300 unsigned long new_rate;
1301 unsigned long min_rate;
1302 unsigned long max_rate;
1303 int p_index = 0;
1304 long ret;
1305
1306 /* sanity */
1307 if (IS_ERR_OR_NULL(core))
1308 return NULL;
1309
1310 /* save parent rate, if it exists */
1311 parent = old_parent = core->parent;
1312 if (parent)
1313 best_parent_rate = parent->rate;
1314
1315 clk_core_get_boundaries(core, &min_rate, &max_rate);
1316
1317 /* find the closest rate and parent clk/rate */
1318 if (core->ops->determine_rate) {
1319 struct clk_rate_request req;
1320
1321 req.rate = rate;
1322 req.min_rate = min_rate;
1323 req.max_rate = max_rate;
1324 if (parent) {
1325 req.best_parent_hw = parent->hw;
1326 req.best_parent_rate = parent->rate;
1327 } else {
1328 req.best_parent_hw = NULL;
1329 req.best_parent_rate = 0;
1330 }
1331
1332 ret = core->ops->determine_rate(core->hw, &req);
1333 if (ret < 0)
1334 return NULL;
1335
1336 best_parent_rate = req.best_parent_rate;
1337 new_rate = req.rate;
1338 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1339 } else if (core->ops->round_rate) {
1340 ret = core->ops->round_rate(core->hw, rate,
1341 &best_parent_rate);
1342 if (ret < 0)
1343 return NULL;
1344
1345 new_rate = ret;
1346 if (new_rate < min_rate || new_rate > max_rate)
1347 return NULL;
1348 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1349 /* pass-through clock without adjustable parent */
1350 core->new_rate = core->rate;
1351 return NULL;
1352 } else {
1353 /* pass-through clock with adjustable parent */
1354 top = clk_calc_new_rates(parent, rate);
1355 new_rate = parent->new_rate;
1356 goto out;
1357 }
1358
1359 /* some clocks must be gated to change parent */
1360 if (parent != old_parent &&
1361 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1362 pr_debug("%s: %s not gated but wants to reparent\n",
1363 __func__, core->name);
1364 return NULL;
1365 }
1366
1367 /* try finding the new parent index */
1368 if (parent && core->num_parents > 1) {
1369 p_index = clk_fetch_parent_index(core, parent);
1370 if (p_index < 0) {
1371 pr_debug("%s: clk %s can not be parent of clk %s\n",
1372 __func__, parent->name, core->name);
1373 return NULL;
1374 }
1375 }
1376
1377 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1378 best_parent_rate != parent->rate)
1379 top = clk_calc_new_rates(parent, best_parent_rate);
1380
1381 out:
1382 clk_calc_subtree(core, new_rate, parent, p_index);
1383
1384 return top;
1385 }
1386
1387 /*
1388 * Notify about rate changes in a subtree. Always walk down the whole tree
1389 * so that in case of an error we can walk down the whole tree again and
1390 * abort the change.
1391 */
1392 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1393 unsigned long event)
1394 {
1395 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1396 int ret = NOTIFY_DONE;
1397
1398 if (core->rate == core->new_rate)
1399 return NULL;
1400
1401 if (core->notifier_count) {
1402 ret = __clk_notify(core, event, core->rate, core->new_rate);
1403 if (ret & NOTIFY_STOP_MASK)
1404 fail_clk = core;
1405 }
1406
1407 hlist_for_each_entry(child, &core->children, child_node) {
1408 /* Skip children who will be reparented to another clock */
1409 if (child->new_parent && child->new_parent != core)
1410 continue;
1411 tmp_clk = clk_propagate_rate_change(child, event);
1412 if (tmp_clk)
1413 fail_clk = tmp_clk;
1414 }
1415
1416 /* handle the new child who might not be in core->children yet */
1417 if (core->new_child) {
1418 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1419 if (tmp_clk)
1420 fail_clk = tmp_clk;
1421 }
1422
1423 return fail_clk;
1424 }
1425
1426 /*
1427 * walk down a subtree and set the new rates notifying the rate
1428 * change on the way
1429 */
1430 static void clk_change_rate(struct clk_core *core)
1431 {
1432 struct clk_core *child;
1433 struct hlist_node *tmp;
1434 unsigned long old_rate;
1435 unsigned long best_parent_rate = 0;
1436 bool skip_set_rate = false;
1437 struct clk_core *old_parent;
1438
1439 old_rate = core->rate;
1440
1441 if (core->new_parent)
1442 best_parent_rate = core->new_parent->rate;
1443 else if (core->parent)
1444 best_parent_rate = core->parent->rate;
1445
1446 if (core->new_parent && core->new_parent != core->parent) {
1447 old_parent = __clk_set_parent_before(core, core->new_parent);
1448 trace_clk_set_parent(core, core->new_parent);
1449
1450 if (core->ops->set_rate_and_parent) {
1451 skip_set_rate = true;
1452 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1453 best_parent_rate,
1454 core->new_parent_index);
1455 } else if (core->ops->set_parent) {
1456 core->ops->set_parent(core->hw, core->new_parent_index);
1457 }
1458
1459 trace_clk_set_parent_complete(core, core->new_parent);
1460 __clk_set_parent_after(core, core->new_parent, old_parent);
1461 }
1462
1463 trace_clk_set_rate(core, core->new_rate);
1464
1465 if (!skip_set_rate && core->ops->set_rate)
1466 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1467
1468 trace_clk_set_rate_complete(core, core->new_rate);
1469
1470 core->rate = clk_recalc(core, best_parent_rate);
1471
1472 if (core->notifier_count && old_rate != core->rate)
1473 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1474
1475 if (core->flags & CLK_RECALC_NEW_RATES)
1476 (void)clk_calc_new_rates(core, core->new_rate);
1477
1478 /*
1479 * Use safe iteration, as change_rate can actually swap parents
1480 * for certain clock types.
1481 */
1482 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1483 /* Skip children who will be reparented to another clock */
1484 if (child->new_parent && child->new_parent != core)
1485 continue;
1486 clk_change_rate(child);
1487 }
1488
1489 /* handle the new child who might not be in core->children yet */
1490 if (core->new_child)
1491 clk_change_rate(core->new_child);
1492 }
1493
1494 static int clk_core_set_rate_nolock(struct clk_core *core,
1495 unsigned long req_rate)
1496 {
1497 struct clk_core *top, *fail_clk;
1498 unsigned long rate = req_rate;
1499 int ret = 0;
1500
1501 if (!core)
1502 return 0;
1503
1504 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1505 return -EBUSY;
1506
1507 /* calculate new rates and get the topmost changed clock */
1508 top = clk_calc_new_rates(core, rate);
1509 if (!top)
1510 return -EINVAL;
1511
1512 /* notify that we are about to change rates */
1513 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1514 if (fail_clk) {
1515 pr_debug("%s: failed to set %s rate\n", __func__,
1516 fail_clk->name);
1517 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1518 return -EBUSY;
1519 }
1520
1521 /* change the rates */
1522 clk_change_rate(top);
1523
1524 core->req_rate = req_rate;
1525
1526 return ret;
1527 }
1528
1529 /**
1530 * clk_set_rate - specify a new rate for clk
1531 * @clk: the clk whose rate is being changed
1532 * @rate: the new rate for clk
1533 *
1534 * In the simplest case clk_set_rate will only adjust the rate of clk.
1535 *
1536 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1537 * propagate up to clk's parent; whether or not this happens depends on the
1538 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1539 * after calling .round_rate then upstream parent propagation is ignored. If
1540 * *parent_rate comes back with a new rate for clk's parent then we propagate
1541 * up to clk's parent and set its rate. Upward propagation will continue
1542 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1543 * .round_rate stops requesting changes to clk's parent_rate.
1544 *
1545 * Rate changes are accomplished via tree traversal that also recalculates the
1546 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1547 *
1548 * Returns 0 on success, -EERROR otherwise.
1549 */
1550 int clk_set_rate(struct clk *clk, unsigned long rate)
1551 {
1552 int ret;
1553
1554 if (!clk)
1555 return 0;
1556
1557 /* prevent racing with updates to the clock topology */
1558 clk_prepare_lock();
1559
1560 ret = clk_core_set_rate_nolock(clk->core, rate);
1561
1562 clk_prepare_unlock();
1563
1564 return ret;
1565 }
1566 EXPORT_SYMBOL_GPL(clk_set_rate);
1567
1568 /**
1569 * clk_set_rate_range - set a rate range for a clock source
1570 * @clk: clock source
1571 * @min: desired minimum clock rate in Hz, inclusive
1572 * @max: desired maximum clock rate in Hz, inclusive
1573 *
1574 * Returns success (0) or negative errno.
1575 */
1576 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1577 {
1578 int ret = 0;
1579
1580 if (!clk)
1581 return 0;
1582
1583 if (min > max) {
1584 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1585 __func__, clk->core->name, clk->dev_id, clk->con_id,
1586 min, max);
1587 return -EINVAL;
1588 }
1589
1590 clk_prepare_lock();
1591
1592 if (min != clk->min_rate || max != clk->max_rate) {
1593 clk->min_rate = min;
1594 clk->max_rate = max;
1595 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1596 }
1597
1598 clk_prepare_unlock();
1599
1600 return ret;
1601 }
1602 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1603
1604 /**
1605 * clk_set_min_rate - set a minimum clock rate for a clock source
1606 * @clk: clock source
1607 * @rate: desired minimum clock rate in Hz, inclusive
1608 *
1609 * Returns success (0) or negative errno.
1610 */
1611 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1612 {
1613 if (!clk)
1614 return 0;
1615
1616 return clk_set_rate_range(clk, rate, clk->max_rate);
1617 }
1618 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1619
1620 /**
1621 * clk_set_max_rate - set a maximum clock rate for a clock source
1622 * @clk: clock source
1623 * @rate: desired maximum clock rate in Hz, inclusive
1624 *
1625 * Returns success (0) or negative errno.
1626 */
1627 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1628 {
1629 if (!clk)
1630 return 0;
1631
1632 return clk_set_rate_range(clk, clk->min_rate, rate);
1633 }
1634 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1635
1636 /**
1637 * clk_get_parent - return the parent of a clk
1638 * @clk: the clk whose parent gets returned
1639 *
1640 * Simply returns clk->parent. Returns NULL if clk is NULL.
1641 */
1642 struct clk *clk_get_parent(struct clk *clk)
1643 {
1644 struct clk *parent;
1645
1646 if (!clk)
1647 return NULL;
1648
1649 clk_prepare_lock();
1650 /* TODO: Create a per-user clk and change callers to call clk_put */
1651 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1652 clk_prepare_unlock();
1653
1654 return parent;
1655 }
1656 EXPORT_SYMBOL_GPL(clk_get_parent);
1657
1658 /*
1659 * .get_parent is mandatory for clocks with multiple possible parents. It is
1660 * optional for single-parent clocks. Always call .get_parent if it is
1661 * available and WARN if it is missing for multi-parent clocks.
1662 *
1663 * For single-parent clocks without .get_parent, first check to see if the
1664 * .parents array exists, and if so use it to avoid an expensive tree
1665 * traversal. If .parents does not exist then walk the tree.
1666 */
1667 static struct clk_core *__clk_init_parent(struct clk_core *core)
1668 {
1669 struct clk_core *ret = NULL;
1670 u8 index;
1671
1672 /* handle the trivial cases */
1673
1674 if (!core->num_parents)
1675 goto out;
1676
1677 if (core->num_parents == 1) {
1678 if (IS_ERR_OR_NULL(core->parent))
1679 core->parent = clk_core_lookup(core->parent_names[0]);
1680 ret = core->parent;
1681 goto out;
1682 }
1683
1684 if (!core->ops->get_parent) {
1685 WARN(!core->ops->get_parent,
1686 "%s: multi-parent clocks must implement .get_parent\n",
1687 __func__);
1688 goto out;
1689 }
1690
1691 /*
1692 * Do our best to cache parent clocks in core->parents. This prevents
1693 * unnecessary and expensive lookups. We don't set core->parent here;
1694 * that is done by the calling function.
1695 */
1696
1697 index = core->ops->get_parent(core->hw);
1698
1699 if (!core->parents)
1700 core->parents =
1701 kcalloc(core->num_parents, sizeof(struct clk *),
1702 GFP_KERNEL);
1703
1704 ret = clk_core_get_parent_by_index(core, index);
1705
1706 out:
1707 return ret;
1708 }
1709
1710 static void clk_core_reparent(struct clk_core *core,
1711 struct clk_core *new_parent)
1712 {
1713 clk_reparent(core, new_parent);
1714 __clk_recalc_accuracies(core);
1715 __clk_recalc_rates(core, POST_RATE_CHANGE);
1716 }
1717
1718 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1719 {
1720 if (!hw)
1721 return;
1722
1723 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1724 }
1725
1726 /**
1727 * clk_has_parent - check if a clock is a possible parent for another
1728 * @clk: clock source
1729 * @parent: parent clock source
1730 *
1731 * This function can be used in drivers that need to check that a clock can be
1732 * the parent of another without actually changing the parent.
1733 *
1734 * Returns true if @parent is a possible parent for @clk, false otherwise.
1735 */
1736 bool clk_has_parent(struct clk *clk, struct clk *parent)
1737 {
1738 struct clk_core *core, *parent_core;
1739 unsigned int i;
1740
1741 /* NULL clocks should be nops, so return success if either is NULL. */
1742 if (!clk || !parent)
1743 return true;
1744
1745 core = clk->core;
1746 parent_core = parent->core;
1747
1748 /* Optimize for the case where the parent is already the parent. */
1749 if (core->parent == parent_core)
1750 return true;
1751
1752 for (i = 0; i < core->num_parents; i++)
1753 if (strcmp(core->parent_names[i], parent_core->name) == 0)
1754 return true;
1755
1756 return false;
1757 }
1758 EXPORT_SYMBOL_GPL(clk_has_parent);
1759
1760 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1761 {
1762 int ret = 0;
1763 int p_index = 0;
1764 unsigned long p_rate = 0;
1765
1766 if (!core)
1767 return 0;
1768
1769 /* prevent racing with updates to the clock topology */
1770 clk_prepare_lock();
1771
1772 if (core->parent == parent)
1773 goto out;
1774
1775 /* verify ops for for multi-parent clks */
1776 if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1777 ret = -ENOSYS;
1778 goto out;
1779 }
1780
1781 /* check that we are allowed to re-parent if the clock is in use */
1782 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1783 ret = -EBUSY;
1784 goto out;
1785 }
1786
1787 /* try finding the new parent index */
1788 if (parent) {
1789 p_index = clk_fetch_parent_index(core, parent);
1790 p_rate = parent->rate;
1791 if (p_index < 0) {
1792 pr_debug("%s: clk %s can not be parent of clk %s\n",
1793 __func__, parent->name, core->name);
1794 ret = p_index;
1795 goto out;
1796 }
1797 }
1798
1799 /* propagate PRE_RATE_CHANGE notifications */
1800 ret = __clk_speculate_rates(core, p_rate);
1801
1802 /* abort if a driver objects */
1803 if (ret & NOTIFY_STOP_MASK)
1804 goto out;
1805
1806 /* do the re-parent */
1807 ret = __clk_set_parent(core, parent, p_index);
1808
1809 /* propagate rate an accuracy recalculation accordingly */
1810 if (ret) {
1811 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
1812 } else {
1813 __clk_recalc_rates(core, POST_RATE_CHANGE);
1814 __clk_recalc_accuracies(core);
1815 }
1816
1817 out:
1818 clk_prepare_unlock();
1819
1820 return ret;
1821 }
1822
1823 /**
1824 * clk_set_parent - switch the parent of a mux clk
1825 * @clk: the mux clk whose input we are switching
1826 * @parent: the new input to clk
1827 *
1828 * Re-parent clk to use parent as its new input source. If clk is in
1829 * prepared state, the clk will get enabled for the duration of this call. If
1830 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1831 * that, the reparenting is glitchy in hardware, etc), use the
1832 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1833 *
1834 * After successfully changing clk's parent clk_set_parent will update the
1835 * clk topology, sysfs topology and propagate rate recalculation via
1836 * __clk_recalc_rates.
1837 *
1838 * Returns 0 on success, -EERROR otherwise.
1839 */
1840 int clk_set_parent(struct clk *clk, struct clk *parent)
1841 {
1842 if (!clk)
1843 return 0;
1844
1845 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1846 }
1847 EXPORT_SYMBOL_GPL(clk_set_parent);
1848
1849 /**
1850 * clk_set_phase - adjust the phase shift of a clock signal
1851 * @clk: clock signal source
1852 * @degrees: number of degrees the signal is shifted
1853 *
1854 * Shifts the phase of a clock signal by the specified
1855 * degrees. Returns 0 on success, -EERROR otherwise.
1856 *
1857 * This function makes no distinction about the input or reference
1858 * signal that we adjust the clock signal phase against. For example
1859 * phase locked-loop clock signal generators we may shift phase with
1860 * respect to feedback clock signal input, but for other cases the
1861 * clock phase may be shifted with respect to some other, unspecified
1862 * signal.
1863 *
1864 * Additionally the concept of phase shift does not propagate through
1865 * the clock tree hierarchy, which sets it apart from clock rates and
1866 * clock accuracy. A parent clock phase attribute does not have an
1867 * impact on the phase attribute of a child clock.
1868 */
1869 int clk_set_phase(struct clk *clk, int degrees)
1870 {
1871 int ret = -EINVAL;
1872
1873 if (!clk)
1874 return 0;
1875
1876 /* sanity check degrees */
1877 degrees %= 360;
1878 if (degrees < 0)
1879 degrees += 360;
1880
1881 clk_prepare_lock();
1882
1883 trace_clk_set_phase(clk->core, degrees);
1884
1885 if (clk->core->ops->set_phase)
1886 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1887
1888 trace_clk_set_phase_complete(clk->core, degrees);
1889
1890 if (!ret)
1891 clk->core->phase = degrees;
1892
1893 clk_prepare_unlock();
1894
1895 return ret;
1896 }
1897 EXPORT_SYMBOL_GPL(clk_set_phase);
1898
1899 static int clk_core_get_phase(struct clk_core *core)
1900 {
1901 int ret;
1902
1903 clk_prepare_lock();
1904 ret = core->phase;
1905 clk_prepare_unlock();
1906
1907 return ret;
1908 }
1909
1910 /**
1911 * clk_get_phase - return the phase shift of a clock signal
1912 * @clk: clock signal source
1913 *
1914 * Returns the phase shift of a clock node in degrees, otherwise returns
1915 * -EERROR.
1916 */
1917 int clk_get_phase(struct clk *clk)
1918 {
1919 if (!clk)
1920 return 0;
1921
1922 return clk_core_get_phase(clk->core);
1923 }
1924 EXPORT_SYMBOL_GPL(clk_get_phase);
1925
1926 /**
1927 * clk_is_match - check if two clk's point to the same hardware clock
1928 * @p: clk compared against q
1929 * @q: clk compared against p
1930 *
1931 * Returns true if the two struct clk pointers both point to the same hardware
1932 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1933 * share the same struct clk_core object.
1934 *
1935 * Returns false otherwise. Note that two NULL clks are treated as matching.
1936 */
1937 bool clk_is_match(const struct clk *p, const struct clk *q)
1938 {
1939 /* trivial case: identical struct clk's or both NULL */
1940 if (p == q)
1941 return true;
1942
1943 /* true if clk->core pointers match. Avoid derefing garbage */
1944 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1945 if (p->core == q->core)
1946 return true;
1947
1948 return false;
1949 }
1950 EXPORT_SYMBOL_GPL(clk_is_match);
1951
1952 /*** debugfs support ***/
1953
1954 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_EXYNOS)
1955 #include <linux/debugfs.h>
1956
1957 static struct dentry *rootdir;
1958 static int inited = 0;
1959 static DEFINE_MUTEX(clk_debug_lock);
1960 static HLIST_HEAD(clk_debug_list);
1961
1962 static struct hlist_head *all_lists[] = {
1963 &clk_root_list,
1964 &clk_orphan_list,
1965 NULL,
1966 };
1967
1968 static struct hlist_head *orphan_list[] = {
1969 &clk_orphan_list,
1970 NULL,
1971 };
1972
1973 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1974 int level)
1975 {
1976 if (!c)
1977 return;
1978
1979 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1980 level * 3 + 1, "",
1981 30 - level * 3, c->name,
1982 c->enable_count, c->prepare_count, clk_core_get_rate(c),
1983 clk_core_get_accuracy(c), clk_core_get_phase(c));
1984 }
1985
1986 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1987 int level)
1988 {
1989 struct clk_core *child;
1990
1991 if (!c)
1992 return;
1993
1994 clk_summary_show_one(s, c, level);
1995
1996 hlist_for_each_entry(child, &c->children, child_node)
1997 clk_summary_show_subtree(s, child, level + 1);
1998 }
1999
2000 static int clk_summary_show(struct seq_file *s, void *data)
2001 {
2002 struct clk_core *c;
2003 struct hlist_head **lists = (struct hlist_head **)s->private;
2004
2005 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
2006 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2007
2008 clk_prepare_lock();
2009
2010 for (; *lists; lists++)
2011 hlist_for_each_entry(c, *lists, child_node)
2012 clk_summary_show_subtree(s, c, 0);
2013
2014 clk_prepare_unlock();
2015
2016 return 0;
2017 }
2018
2019
2020 static int clk_summary_open(struct inode *inode, struct file *file)
2021 {
2022 return single_open(file, clk_summary_show, inode->i_private);
2023 }
2024
2025 static const struct file_operations clk_summary_fops = {
2026 .open = clk_summary_open,
2027 .read = seq_read,
2028 .llseek = seq_lseek,
2029 .release = single_release,
2030 };
2031
2032 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2033 {
2034 if (!c)
2035 return;
2036
2037 /* This should be JSON format, i.e. elements separated with a comma */
2038 seq_printf(s, "\"%s\": { ", c->name);
2039 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2040 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2041 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2042 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2043 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2044 }
2045
2046 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2047 {
2048 struct clk_core *child;
2049
2050 if (!c)
2051 return;
2052
2053 clk_dump_one(s, c, level);
2054
2055 hlist_for_each_entry(child, &c->children, child_node) {
2056 seq_printf(s, ",");
2057 clk_dump_subtree(s, child, level + 1);
2058 }
2059
2060 seq_printf(s, "}");
2061 }
2062
2063 static int clk_dump(struct seq_file *s, void *data)
2064 {
2065 struct clk_core *c;
2066 bool first_node = true;
2067 struct hlist_head **lists = (struct hlist_head **)s->private;
2068
2069 seq_printf(s, "{");
2070
2071 clk_prepare_lock();
2072
2073 for (; *lists; lists++) {
2074 hlist_for_each_entry(c, *lists, child_node) {
2075 if (!first_node)
2076 seq_puts(s, ",");
2077 first_node = false;
2078 clk_dump_subtree(s, c, 0);
2079 }
2080 }
2081
2082 clk_prepare_unlock();
2083
2084 seq_puts(s, "}\n");
2085 return 0;
2086 }
2087
2088
2089 static int clk_dump_open(struct inode *inode, struct file *file)
2090 {
2091 return single_open(file, clk_dump, inode->i_private);
2092 }
2093
2094 static const struct file_operations clk_dump_fops = {
2095 .open = clk_dump_open,
2096 .read = seq_read,
2097 .llseek = seq_lseek,
2098 .release = single_release,
2099 };
2100
2101 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2102 {
2103 struct dentry *d;
2104 int ret = -ENOMEM;
2105
2106 if (!core || !pdentry) {
2107 ret = -EINVAL;
2108 goto out;
2109 }
2110
2111 d = debugfs_create_dir(core->name, pdentry);
2112 if (!d)
2113 goto out;
2114
2115 core->dentry = d;
2116
2117 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2118 (u32 *)&core->rate);
2119 if (!d)
2120 goto err_out;
2121
2122 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2123 (u32 *)&core->accuracy);
2124 if (!d)
2125 goto err_out;
2126
2127 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2128 (u32 *)&core->phase);
2129 if (!d)
2130 goto err_out;
2131
2132 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2133 (u32 *)&core->flags);
2134 if (!d)
2135 goto err_out;
2136
2137 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2138 (u32 *)&core->prepare_count);
2139 if (!d)
2140 goto err_out;
2141
2142 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2143 (u32 *)&core->enable_count);
2144 if (!d)
2145 goto err_out;
2146
2147 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2148 (u32 *)&core->notifier_count);
2149 if (!d)
2150 goto err_out;
2151
2152 if (core->ops->debug_init) {
2153 ret = core->ops->debug_init(core->hw, core->dentry);
2154 if (ret)
2155 goto err_out;
2156 }
2157
2158 ret = 0;
2159 goto out;
2160
2161 err_out:
2162 debugfs_remove_recursive(core->dentry);
2163 core->dentry = NULL;
2164 out:
2165 return ret;
2166 }
2167
2168 /**
2169 * clk_debug_register - add a clk node to the debugfs clk directory
2170 * @core: the clk being added to the debugfs clk directory
2171 *
2172 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2173 * initialized. Otherwise it bails out early since the debugfs clk directory
2174 * will be created lazily by clk_debug_init as part of a late_initcall.
2175 */
2176 static int clk_debug_register(struct clk_core *core)
2177 {
2178 int ret = 0;
2179
2180 mutex_lock(&clk_debug_lock);
2181 hlist_add_head(&core->debug_node, &clk_debug_list);
2182
2183 if (!inited)
2184 goto unlock;
2185
2186 ret = clk_debug_create_one(core, rootdir);
2187 unlock:
2188 mutex_unlock(&clk_debug_lock);
2189
2190 return ret;
2191 }
2192
2193 /**
2194 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2195 * @core: the clk being removed from the debugfs clk directory
2196 *
2197 * Dynamically removes a clk and all its child nodes from the
2198 * debugfs clk directory if clk->dentry points to debugfs created by
2199 * clk_debug_register in __clk_init.
2200 */
2201 static void clk_debug_unregister(struct clk_core *core)
2202 {
2203 mutex_lock(&clk_debug_lock);
2204 hlist_del_init(&core->debug_node);
2205 debugfs_remove_recursive(core->dentry);
2206 core->dentry = NULL;
2207 mutex_unlock(&clk_debug_lock);
2208 }
2209
2210 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2211 void *data, const struct file_operations *fops)
2212 {
2213 struct dentry *d = NULL;
2214
2215 if (hw->core->dentry)
2216 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2217 fops);
2218
2219 return d;
2220 }
2221 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2222
2223 /**
2224 * clk_debug_init - lazily populate the debugfs clk directory
2225 *
2226 * clks are often initialized very early during boot before memory can be
2227 * dynamically allocated and well before debugfs is setup. This function
2228 * populates the debugfs clk directory once at boot-time when we know that
2229 * debugfs is setup. It should only be called once at boot-time, all other clks
2230 * added dynamically will be done so with clk_debug_register.
2231 */
2232 static int __init clk_debug_init(void)
2233 {
2234 struct clk_core *core;
2235 struct dentry *d;
2236
2237 rootdir = debugfs_create_dir("clk", NULL);
2238
2239 if (!rootdir)
2240 return -ENOMEM;
2241
2242 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2243 &clk_summary_fops);
2244 if (!d)
2245 return -ENOMEM;
2246
2247 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2248 &clk_dump_fops);
2249 if (!d)
2250 return -ENOMEM;
2251
2252 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2253 &orphan_list, &clk_summary_fops);
2254 if (!d)
2255 return -ENOMEM;
2256
2257 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2258 &orphan_list, &clk_dump_fops);
2259 if (!d)
2260 return -ENOMEM;
2261
2262 mutex_lock(&clk_debug_lock);
2263 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2264 clk_debug_create_one(core, rootdir);
2265
2266 inited = 1;
2267 mutex_unlock(&clk_debug_lock);
2268
2269 return 0;
2270 }
2271 late_initcall(clk_debug_init);
2272 #else
2273 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2274 static inline void clk_debug_reparent(struct clk_core *core,
2275 struct clk_core *new_parent)
2276 {
2277 }
2278 static inline void clk_debug_unregister(struct clk_core *core)
2279 {
2280 }
2281 #endif
2282
2283 /**
2284 * __clk_init - initialize the data structures in a struct clk
2285 * @dev: device initializing this clk, placeholder for now
2286 * @clk: clk being initialized
2287 *
2288 * Initializes the lists in struct clk_core, queries the hardware for the
2289 * parent and rate and sets them both.
2290 */
2291 static int __clk_init(struct device *dev, struct clk *clk_user)
2292 {
2293 int i, ret = 0;
2294 struct clk_core *orphan;
2295 struct hlist_node *tmp2;
2296 struct clk_core *core;
2297 unsigned long rate;
2298
2299 if (!clk_user)
2300 return -EINVAL;
2301
2302 core = clk_user->core;
2303
2304 clk_prepare_lock();
2305
2306 /* check to see if a clock with this name is already registered */
2307 if (clk_core_lookup(core->name)) {
2308 pr_debug("%s: clk %s already initialized\n",
2309 __func__, core->name);
2310 ret = -EEXIST;
2311 goto out;
2312 }
2313
2314 /* check that clk_ops are sane. See Documentation/clk.txt */
2315 if (core->ops->set_rate &&
2316 !((core->ops->round_rate || core->ops->determine_rate) &&
2317 core->ops->recalc_rate)) {
2318 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2319 __func__, core->name);
2320 ret = -EINVAL;
2321 goto out;
2322 }
2323
2324 if (core->ops->set_parent && !core->ops->get_parent) {
2325 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2326 __func__, core->name);
2327 ret = -EINVAL;
2328 goto out;
2329 }
2330
2331 if (core->ops->set_rate_and_parent &&
2332 !(core->ops->set_parent && core->ops->set_rate)) {
2333 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2334 __func__, core->name);
2335 ret = -EINVAL;
2336 goto out;
2337 }
2338
2339 /* throw a WARN if any entries in parent_names are NULL */
2340 for (i = 0; i < core->num_parents; i++)
2341 WARN(!core->parent_names[i],
2342 "%s: invalid NULL in %s's .parent_names\n",
2343 __func__, core->name);
2344
2345 /*
2346 * Allocate an array of struct clk *'s to avoid unnecessary string
2347 * look-ups of clk's possible parents. This can fail for clocks passed
2348 * in to clk_init during early boot; thus any access to core->parents[]
2349 * must always check for a NULL pointer and try to populate it if
2350 * necessary.
2351 *
2352 * If core->parents is not NULL we skip this entire block. This allows
2353 * for clock drivers to statically initialize core->parents.
2354 */
2355 if (core->num_parents > 1 && !core->parents) {
2356 core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2357 GFP_KERNEL);
2358 /*
2359 * clk_core_lookup returns NULL for parents that have not been
2360 * clk_init'd; thus any access to clk->parents[] must check
2361 * for a NULL pointer. We can always perform lazy lookups for
2362 * missing parents later on.
2363 */
2364 if (core->parents)
2365 for (i = 0; i < core->num_parents; i++)
2366 core->parents[i] =
2367 clk_core_lookup(core->parent_names[i]);
2368 }
2369
2370 core->parent = __clk_init_parent(core);
2371
2372 /*
2373 * Populate core->parent if parent has already been __clk_init'd. If
2374 * parent has not yet been __clk_init'd then place clk in the orphan
2375 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
2376 * clk list.
2377 *
2378 * Every time a new clk is clk_init'd then we walk the list of orphan
2379 * clocks and re-parent any that are children of the clock currently
2380 * being clk_init'd.
2381 */
2382 if (core->parent) {
2383 hlist_add_head(&core->child_node,
2384 &core->parent->children);
2385 core->orphan = core->parent->orphan;
2386 } else if (core->flags & CLK_IS_ROOT) {
2387 hlist_add_head(&core->child_node, &clk_root_list);
2388 core->orphan = false;
2389 } else {
2390 hlist_add_head(&core->child_node, &clk_orphan_list);
2391 core->orphan = true;
2392 }
2393
2394 /*
2395 * Set clk's accuracy. The preferred method is to use
2396 * .recalc_accuracy. For simple clocks and lazy developers the default
2397 * fallback is to use the parent's accuracy. If a clock doesn't have a
2398 * parent (or is orphaned) then accuracy is set to zero (perfect
2399 * clock).
2400 */
2401 if (core->ops->recalc_accuracy)
2402 core->accuracy = core->ops->recalc_accuracy(core->hw,
2403 __clk_get_accuracy(core->parent));
2404 else if (core->parent)
2405 core->accuracy = core->parent->accuracy;
2406 else
2407 core->accuracy = 0;
2408
2409 /*
2410 * Set clk's phase.
2411 * Since a phase is by definition relative to its parent, just
2412 * query the current clock phase, or just assume it's in phase.
2413 */
2414 if (core->ops->get_phase)
2415 core->phase = core->ops->get_phase(core->hw);
2416 else
2417 core->phase = 0;
2418
2419 /*
2420 * Set clk's rate. The preferred method is to use .recalc_rate. For
2421 * simple clocks and lazy developers the default fallback is to use the
2422 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2423 * then rate is set to zero.
2424 */
2425 if (core->ops->recalc_rate)
2426 rate = core->ops->recalc_rate(core->hw,
2427 clk_core_get_rate_nolock(core->parent));
2428 else if (core->parent)
2429 rate = core->parent->rate;
2430 else
2431 rate = 0;
2432 core->rate = core->req_rate = rate;
2433
2434 /*
2435 * walk the list of orphan clocks and reparent any that are children of
2436 * this clock
2437 */
2438 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2439 if (orphan->num_parents && orphan->ops->get_parent) {
2440 i = orphan->ops->get_parent(orphan->hw);
2441 if (i >= 0 && i < orphan->num_parents &&
2442 !strcmp(core->name, orphan->parent_names[i]))
2443 clk_core_reparent(orphan, core);
2444 continue;
2445 }
2446
2447 for (i = 0; i < orphan->num_parents; i++)
2448 if (!strcmp(core->name, orphan->parent_names[i])) {
2449 clk_core_reparent(orphan, core);
2450 break;
2451 }
2452 }
2453
2454 /*
2455 * optional platform-specific magic
2456 *
2457 * The .init callback is not used by any of the basic clock types, but
2458 * exists for weird hardware that must perform initialization magic.
2459 * Please consider other ways of solving initialization problems before
2460 * using this callback, as its use is discouraged.
2461 */
2462 if (core->ops->init)
2463 core->ops->init(core->hw);
2464
2465 kref_init(&core->ref);
2466 out:
2467 clk_prepare_unlock();
2468
2469 if (!ret)
2470 clk_debug_register(core);
2471
2472 return ret;
2473 }
2474
2475 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2476 const char *con_id)
2477 {
2478 struct clk *clk;
2479
2480 /* This is to allow this function to be chained to others */
2481 if (!hw || IS_ERR(hw))
2482 return (struct clk *) hw;
2483
2484 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2485 if (!clk)
2486 return ERR_PTR(-ENOMEM);
2487
2488 clk->core = hw->core;
2489 clk->dev_id = dev_id;
2490 clk->con_id = con_id;
2491 clk->max_rate = ULONG_MAX;
2492
2493 clk_prepare_lock();
2494 hlist_add_head(&clk->clks_node, &hw->core->clks);
2495 clk_prepare_unlock();
2496
2497 return clk;
2498 }
2499
2500 void __clk_free_clk(struct clk *clk)
2501 {
2502 clk_prepare_lock();
2503 hlist_del(&clk->clks_node);
2504 clk_prepare_unlock();
2505
2506 kfree(clk);
2507 }
2508
2509 /**
2510 * clk_register - allocate a new clock, register it and return an opaque cookie
2511 * @dev: device that is registering this clock
2512 * @hw: link to hardware-specific clock data
2513 *
2514 * clk_register is the primary interface for populating the clock tree with new
2515 * clock nodes. It returns a pointer to the newly allocated struct clk which
2516 * cannot be dereferenced by driver code but may be used in conjunction with the
2517 * rest of the clock API. In the event of an error clk_register will return an
2518 * error code; drivers must test for an error code after calling clk_register.
2519 */
2520 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2521 {
2522 int i, ret;
2523 struct clk_core *core;
2524
2525 core = kzalloc(sizeof(*core), GFP_KERNEL);
2526 if (!core) {
2527 ret = -ENOMEM;
2528 goto fail_out;
2529 }
2530
2531 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2532 if (!core->name) {
2533 ret = -ENOMEM;
2534 goto fail_name;
2535 }
2536 core->ops = hw->init->ops;
2537 if (dev && dev->driver)
2538 core->owner = dev->driver->owner;
2539 core->hw = hw;
2540 core->flags = hw->init->flags;
2541 core->num_parents = hw->init->num_parents;
2542 core->min_rate = 0;
2543 core->max_rate = ULONG_MAX;
2544 hw->core = core;
2545
2546 /* allocate local copy in case parent_names is __initdata */
2547 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2548 GFP_KERNEL);
2549
2550 if (!core->parent_names) {
2551 ret = -ENOMEM;
2552 goto fail_parent_names;
2553 }
2554
2555
2556 /* copy each string name in case parent_names is __initdata */
2557 for (i = 0; i < core->num_parents; i++) {
2558 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2559 GFP_KERNEL);
2560 if (!core->parent_names[i]) {
2561 ret = -ENOMEM;
2562 goto fail_parent_names_copy;
2563 }
2564 }
2565
2566 INIT_HLIST_HEAD(&core->clks);
2567
2568 hw->clk = __clk_create_clk(hw, NULL, NULL);
2569 if (IS_ERR(hw->clk)) {
2570 ret = PTR_ERR(hw->clk);
2571 goto fail_parent_names_copy;
2572 }
2573
2574 ret = __clk_init(dev, hw->clk);
2575 if (!ret)
2576 return hw->clk;
2577
2578 __clk_free_clk(hw->clk);
2579 hw->clk = NULL;
2580
2581 fail_parent_names_copy:
2582 while (--i >= 0)
2583 kfree_const(core->parent_names[i]);
2584 kfree(core->parent_names);
2585 fail_parent_names:
2586 kfree_const(core->name);
2587 fail_name:
2588 kfree(core);
2589 fail_out:
2590 return ERR_PTR(ret);
2591 }
2592 EXPORT_SYMBOL_GPL(clk_register);
2593
2594 /* Free memory allocated for a clock. */
2595 static void __clk_release(struct kref *ref)
2596 {
2597 struct clk_core *core = container_of(ref, struct clk_core, ref);
2598 int i = core->num_parents;
2599
2600 lockdep_assert_held(&prepare_lock);
2601
2602 kfree(core->parents);
2603 while (--i >= 0)
2604 kfree_const(core->parent_names[i]);
2605
2606 kfree(core->parent_names);
2607 kfree_const(core->name);
2608 kfree(core);
2609 }
2610
2611 /*
2612 * Empty clk_ops for unregistered clocks. These are used temporarily
2613 * after clk_unregister() was called on a clock and until last clock
2614 * consumer calls clk_put() and the struct clk object is freed.
2615 */
2616 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2617 {
2618 return -ENXIO;
2619 }
2620
2621 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2622 {
2623 WARN_ON_ONCE(1);
2624 }
2625
2626 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2627 unsigned long parent_rate)
2628 {
2629 return -ENXIO;
2630 }
2631
2632 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2633 {
2634 return -ENXIO;
2635 }
2636
2637 static const struct clk_ops clk_nodrv_ops = {
2638 .enable = clk_nodrv_prepare_enable,
2639 .disable = clk_nodrv_disable_unprepare,
2640 .prepare = clk_nodrv_prepare_enable,
2641 .unprepare = clk_nodrv_disable_unprepare,
2642 .set_rate = clk_nodrv_set_rate,
2643 .set_parent = clk_nodrv_set_parent,
2644 };
2645
2646 /**
2647 * clk_unregister - unregister a currently registered clock
2648 * @clk: clock to unregister
2649 */
2650 void clk_unregister(struct clk *clk)
2651 {
2652 unsigned long flags;
2653
2654 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2655 return;
2656
2657 clk_debug_unregister(clk->core);
2658
2659 clk_prepare_lock();
2660
2661 if (clk->core->ops == &clk_nodrv_ops) {
2662 pr_err("%s: unregistered clock: %s\n", __func__,
2663 clk->core->name);
2664 return;
2665 }
2666 /*
2667 * Assign empty clock ops for consumers that might still hold
2668 * a reference to this clock.
2669 */
2670 flags = clk_enable_lock();
2671 clk->core->ops = &clk_nodrv_ops;
2672 clk_enable_unlock(flags);
2673
2674 if (!hlist_empty(&clk->core->children)) {
2675 struct clk_core *child;
2676 struct hlist_node *t;
2677
2678 /* Reparent all children to the orphan list. */
2679 hlist_for_each_entry_safe(child, t, &clk->core->children,
2680 child_node)
2681 clk_core_set_parent(child, NULL);
2682 }
2683
2684 hlist_del_init(&clk->core->child_node);
2685
2686 if (clk->core->prepare_count)
2687 pr_warn("%s: unregistering prepared clock: %s\n",
2688 __func__, clk->core->name);
2689 kref_put(&clk->core->ref, __clk_release);
2690
2691 clk_prepare_unlock();
2692 }
2693 EXPORT_SYMBOL_GPL(clk_unregister);
2694
2695 static void devm_clk_release(struct device *dev, void *res)
2696 {
2697 clk_unregister(*(struct clk **)res);
2698 }
2699
2700 /**
2701 * devm_clk_register - resource managed clk_register()
2702 * @dev: device that is registering this clock
2703 * @hw: link to hardware-specific clock data
2704 *
2705 * Managed clk_register(). Clocks returned from this function are
2706 * automatically clk_unregister()ed on driver detach. See clk_register() for
2707 * more information.
2708 */
2709 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2710 {
2711 struct clk *clk;
2712 struct clk **clkp;
2713
2714 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2715 if (!clkp)
2716 return ERR_PTR(-ENOMEM);
2717
2718 clk = clk_register(dev, hw);
2719 if (!IS_ERR(clk)) {
2720 *clkp = clk;
2721 devres_add(dev, clkp);
2722 } else {
2723 devres_free(clkp);
2724 }
2725
2726 return clk;
2727 }
2728 EXPORT_SYMBOL_GPL(devm_clk_register);
2729
2730 static int devm_clk_match(struct device *dev, void *res, void *data)
2731 {
2732 struct clk *c = res;
2733 if (WARN_ON(!c))
2734 return 0;
2735 return c == data;
2736 }
2737
2738 /**
2739 * devm_clk_unregister - resource managed clk_unregister()
2740 * @clk: clock to unregister
2741 *
2742 * Deallocate a clock allocated with devm_clk_register(). Normally
2743 * this function will not need to be called and the resource management
2744 * code will ensure that the resource is freed.
2745 */
2746 void devm_clk_unregister(struct device *dev, struct clk *clk)
2747 {
2748 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2749 }
2750 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2751
2752 /*
2753 * clkdev helpers
2754 */
2755 int __clk_get(struct clk *clk)
2756 {
2757 struct clk_core *core = !clk ? NULL : clk->core;
2758
2759 if (core) {
2760 if (!try_module_get(core->owner))
2761 return 0;
2762
2763 kref_get(&core->ref);
2764 }
2765 return 1;
2766 }
2767
2768 void __clk_put(struct clk *clk)
2769 {
2770 struct module *owner;
2771
2772 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2773 return;
2774
2775 clk_prepare_lock();
2776
2777 hlist_del(&clk->clks_node);
2778 if (clk->min_rate > clk->core->req_rate ||
2779 clk->max_rate < clk->core->req_rate)
2780 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2781
2782 owner = clk->core->owner;
2783 kref_put(&clk->core->ref, __clk_release);
2784
2785 clk_prepare_unlock();
2786
2787 module_put(owner);
2788
2789 kfree(clk);
2790 }
2791
2792 /*** clk rate change notifiers ***/
2793
2794 /**
2795 * clk_notifier_register - add a clk rate change notifier
2796 * @clk: struct clk * to watch
2797 * @nb: struct notifier_block * with callback info
2798 *
2799 * Request notification when clk's rate changes. This uses an SRCU
2800 * notifier because we want it to block and notifier unregistrations are
2801 * uncommon. The callbacks associated with the notifier must not
2802 * re-enter into the clk framework by calling any top-level clk APIs;
2803 * this will cause a nested prepare_lock mutex.
2804 *
2805 * In all notification cases cases (pre, post and abort rate change) the
2806 * original clock rate is passed to the callback via struct
2807 * clk_notifier_data.old_rate and the new frequency is passed via struct
2808 * clk_notifier_data.new_rate.
2809 *
2810 * clk_notifier_register() must be called from non-atomic context.
2811 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2812 * allocation failure; otherwise, passes along the return value of
2813 * srcu_notifier_chain_register().
2814 */
2815 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2816 {
2817 struct clk_notifier *cn;
2818 int ret = -ENOMEM;
2819
2820 if (!clk || !nb)
2821 return -EINVAL;
2822
2823 clk_prepare_lock();
2824
2825 /* search the list of notifiers for this clk */
2826 list_for_each_entry(cn, &clk_notifier_list, node)
2827 if (cn->clk == clk)
2828 break;
2829
2830 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2831 if (cn->clk != clk) {
2832 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2833 if (!cn)
2834 goto out;
2835
2836 cn->clk = clk;
2837 srcu_init_notifier_head(&cn->notifier_head);
2838
2839 list_add(&cn->node, &clk_notifier_list);
2840 }
2841
2842 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2843
2844 clk->core->notifier_count++;
2845
2846 out:
2847 clk_prepare_unlock();
2848
2849 return ret;
2850 }
2851 EXPORT_SYMBOL_GPL(clk_notifier_register);
2852
2853 /**
2854 * clk_notifier_unregister - remove a clk rate change notifier
2855 * @clk: struct clk *
2856 * @nb: struct notifier_block * with callback info
2857 *
2858 * Request no further notification for changes to 'clk' and frees memory
2859 * allocated in clk_notifier_register.
2860 *
2861 * Returns -EINVAL if called with null arguments; otherwise, passes
2862 * along the return value of srcu_notifier_chain_unregister().
2863 */
2864 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2865 {
2866 struct clk_notifier *cn = NULL;
2867 int ret = -EINVAL;
2868
2869 if (!clk || !nb)
2870 return -EINVAL;
2871
2872 clk_prepare_lock();
2873
2874 list_for_each_entry(cn, &clk_notifier_list, node)
2875 if (cn->clk == clk)
2876 break;
2877
2878 if (cn->clk == clk) {
2879 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2880
2881 clk->core->notifier_count--;
2882
2883 /* XXX the notifier code should handle this better */
2884 if (!cn->notifier_head.head) {
2885 srcu_cleanup_notifier_head(&cn->notifier_head);
2886 list_del(&cn->node);
2887 kfree(cn);
2888 }
2889
2890 } else {
2891 ret = -ENOENT;
2892 }
2893
2894 clk_prepare_unlock();
2895
2896 return ret;
2897 }
2898 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2899
2900 #ifdef CONFIG_OF
2901 /**
2902 * struct of_clk_provider - Clock provider registration structure
2903 * @link: Entry in global list of clock providers
2904 * @node: Pointer to device tree node of clock provider
2905 * @get: Get clock callback. Returns NULL or a struct clk for the
2906 * given clock specifier
2907 * @data: context pointer to be passed into @get callback
2908 */
2909 struct of_clk_provider {
2910 struct list_head link;
2911
2912 struct device_node *node;
2913 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2914 void *data;
2915 };
2916
2917 static const struct of_device_id __clk_of_table_sentinel
2918 __used __section(__clk_of_table_end);
2919
2920 static LIST_HEAD(of_clk_providers);
2921 static DEFINE_MUTEX(of_clk_mutex);
2922
2923 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2924 void *data)
2925 {
2926 return data;
2927 }
2928 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2929
2930 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2931 {
2932 struct clk_onecell_data *clk_data = data;
2933 unsigned int idx = clkspec->args[0];
2934
2935 if (idx >= clk_data->clk_num) {
2936 pr_err("%s: invalid clock index %u\n", __func__, idx);
2937 return ERR_PTR(-EINVAL);
2938 }
2939
2940 return clk_data->clks[idx];
2941 }
2942 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2943
2944 /**
2945 * of_clk_add_provider() - Register a clock provider for a node
2946 * @np: Device node pointer associated with clock provider
2947 * @clk_src_get: callback for decoding clock
2948 * @data: context pointer for @clk_src_get callback.
2949 */
2950 int of_clk_add_provider(struct device_node *np,
2951 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2952 void *data),
2953 void *data)
2954 {
2955 struct of_clk_provider *cp;
2956 int ret;
2957
2958 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2959 if (!cp)
2960 return -ENOMEM;
2961
2962 cp->node = of_node_get(np);
2963 cp->data = data;
2964 cp->get = clk_src_get;
2965
2966 mutex_lock(&of_clk_mutex);
2967 list_add(&cp->link, &of_clk_providers);
2968 mutex_unlock(&of_clk_mutex);
2969 pr_debug("Added clock from %s\n", np->full_name);
2970
2971 ret = of_clk_set_defaults(np, true);
2972 if (ret < 0)
2973 of_clk_del_provider(np);
2974
2975 return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2978
2979 /**
2980 * of_clk_del_provider() - Remove a previously registered clock provider
2981 * @np: Device node pointer associated with clock provider
2982 */
2983 void of_clk_del_provider(struct device_node *np)
2984 {
2985 struct of_clk_provider *cp;
2986
2987 mutex_lock(&of_clk_mutex);
2988 list_for_each_entry(cp, &of_clk_providers, link) {
2989 if (cp->node == np) {
2990 list_del(&cp->link);
2991 of_node_put(cp->node);
2992 kfree(cp);
2993 break;
2994 }
2995 }
2996 mutex_unlock(&of_clk_mutex);
2997 }
2998 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2999
3000 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3001 const char *dev_id, const char *con_id)
3002 {
3003 struct of_clk_provider *provider;
3004 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3005
3006 if (!clkspec)
3007 return ERR_PTR(-EINVAL);
3008
3009 /* Check if we have such a provider in our array */
3010 mutex_lock(&of_clk_mutex);
3011 list_for_each_entry(provider, &of_clk_providers, link) {
3012 if (provider->node == clkspec->np)
3013 clk = provider->get(clkspec, provider->data);
3014 if (!IS_ERR(clk)) {
3015 clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
3016 con_id);
3017
3018 if (!IS_ERR(clk) && !__clk_get(clk)) {
3019 __clk_free_clk(clk);
3020 clk = ERR_PTR(-ENOENT);
3021 }
3022
3023 break;
3024 }
3025 }
3026 mutex_unlock(&of_clk_mutex);
3027
3028 return clk;
3029 }
3030
3031 /**
3032 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3033 * @clkspec: pointer to a clock specifier data structure
3034 *
3035 * This function looks up a struct clk from the registered list of clock
3036 * providers, an input is a clock specifier data structure as returned
3037 * from the of_parse_phandle_with_args() function call.
3038 */
3039 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3040 {
3041 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3042 }
3043
3044 int of_clk_get_parent_count(struct device_node *np)
3045 {
3046 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3047 }
3048 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3049
3050 const char *of_clk_get_parent_name(struct device_node *np, int index)
3051 {
3052 struct of_phandle_args clkspec;
3053 struct property *prop;
3054 const char *clk_name;
3055 const __be32 *vp;
3056 u32 pv;
3057 int rc;
3058 int count;
3059 struct clk *clk;
3060
3061 if (index < 0)
3062 return NULL;
3063
3064 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3065 &clkspec);
3066 if (rc)
3067 return NULL;
3068
3069 index = clkspec.args_count ? clkspec.args[0] : 0;
3070 count = 0;
3071
3072 /* if there is an indices property, use it to transfer the index
3073 * specified into an array offset for the clock-output-names property.
3074 */
3075 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3076 if (index == pv) {
3077 index = count;
3078 break;
3079 }
3080 count++;
3081 }
3082
3083 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3084 index,
3085 &clk_name) < 0) {
3086 /*
3087 * Best effort to get the name if the clock has been
3088 * registered with the framework. If the clock isn't
3089 * registered, we return the node name as the name of
3090 * the clock as long as #clock-cells = 0.
3091 */
3092 clk = of_clk_get_from_provider(&clkspec);
3093 if (IS_ERR(clk)) {
3094 if (clkspec.args_count == 0)
3095 clk_name = clkspec.np->name;
3096 else
3097 clk_name = NULL;
3098 } else {
3099 clk_name = __clk_get_name(clk);
3100 clk_put(clk);
3101 }
3102 }
3103
3104
3105 of_node_put(clkspec.np);
3106 return clk_name;
3107 }
3108 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3109
3110 /**
3111 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3112 * number of parents
3113 * @np: Device node pointer associated with clock provider
3114 * @parents: pointer to char array that hold the parents' names
3115 * @size: size of the @parents array
3116 *
3117 * Return: number of parents for the clock node.
3118 */
3119 int of_clk_parent_fill(struct device_node *np, const char **parents,
3120 unsigned int size)
3121 {
3122 unsigned int i = 0;
3123
3124 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3125 i++;
3126
3127 return i;
3128 }
3129 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3130
3131 struct clock_provider {
3132 of_clk_init_cb_t clk_init_cb;
3133 struct device_node *np;
3134 struct list_head node;
3135 };
3136
3137 /*
3138 * This function looks for a parent clock. If there is one, then it
3139 * checks that the provider for this parent clock was initialized, in
3140 * this case the parent clock will be ready.
3141 */
3142 static int parent_ready(struct device_node *np)
3143 {
3144 int i = 0;
3145
3146 while (true) {
3147 struct clk *clk = of_clk_get(np, i);
3148
3149 /* this parent is ready we can check the next one */
3150 if (!IS_ERR(clk)) {
3151 clk_put(clk);
3152 i++;
3153 continue;
3154 }
3155
3156 /* at least one parent is not ready, we exit now */
3157 if (PTR_ERR(clk) == -EPROBE_DEFER)
3158 return 0;
3159
3160 /*
3161 * Here we make assumption that the device tree is
3162 * written correctly. So an error means that there is
3163 * no more parent. As we didn't exit yet, then the
3164 * previous parent are ready. If there is no clock
3165 * parent, no need to wait for them, then we can
3166 * consider their absence as being ready
3167 */
3168 return 1;
3169 }
3170 }
3171
3172 /**
3173 * of_clk_init() - Scan and init clock providers from the DT
3174 * @matches: array of compatible values and init functions for providers.
3175 *
3176 * This function scans the device tree for matching clock providers
3177 * and calls their initialization functions. It also does it by trying
3178 * to follow the dependencies.
3179 */
3180 void __init of_clk_init(const struct of_device_id *matches)
3181 {
3182 const struct of_device_id *match;
3183 struct device_node *np;
3184 struct clock_provider *clk_provider, *next;
3185 bool is_init_done;
3186 bool force = false;
3187 LIST_HEAD(clk_provider_list);
3188
3189 if (!matches)
3190 matches = &__clk_of_table;
3191
3192 /* First prepare the list of the clocks providers */
3193 for_each_matching_node_and_match(np, matches, &match) {
3194 struct clock_provider *parent;
3195
3196 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3197 if (!parent) {
3198 list_for_each_entry_safe(clk_provider, next,
3199 &clk_provider_list, node) {
3200 list_del(&clk_provider->node);
3201 of_node_put(clk_provider->np);
3202 kfree(clk_provider);
3203 }
3204 of_node_put(np);
3205 return;
3206 }
3207
3208 parent->clk_init_cb = match->data;
3209 parent->np = of_node_get(np);
3210 list_add_tail(&parent->node, &clk_provider_list);
3211 }
3212
3213 while (!list_empty(&clk_provider_list)) {
3214 is_init_done = false;
3215 list_for_each_entry_safe(clk_provider, next,
3216 &clk_provider_list, node) {
3217 if (force || parent_ready(clk_provider->np)) {
3218
3219 clk_provider->clk_init_cb(clk_provider->np);
3220 of_clk_set_defaults(clk_provider->np, true);
3221
3222 list_del(&clk_provider->node);
3223 of_node_put(clk_provider->np);
3224 kfree(clk_provider);
3225 is_init_done = true;
3226 }
3227 }
3228
3229 /*
3230 * We didn't manage to initialize any of the
3231 * remaining providers during the last loop, so now we
3232 * initialize all the remaining ones unconditionally
3233 * in case the clock parent was not mandatory
3234 */
3235 if (!is_init_done)
3236 force = true;
3237 }
3238 }
3239 #endif