UPSTREAM: loop: Add LOOP_SET_BLOCK_SIZE in compat ioctl
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
80
81 #include <asm/uaccess.h>
82
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85
86 static int max_part;
87 static int part_shift;
88
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93 {
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116 }
117
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119 {
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123 }
124
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127 };
128
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133 };
134
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139 };
140
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142 {
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160 }
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165 }
166
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
168 {
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane appplications should be PAGE_SIZE algined
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
221 }
222
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
225 {
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
229
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
241 }
242
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
248 {
249 int ret;
250
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
254
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
259 }
260
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
262 {
263 struct iov_iter i;
264 ssize_t bw;
265
266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
267
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos);
270 file_end_write(file);
271
272 if (likely(bw == bvec->bv_len))
273 return 0;
274
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
281 }
282
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
285 {
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
289
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
295 }
296
297 return ret;
298 }
299
300 /*
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
304 */
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
307 {
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
312
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
316
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
322
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
329 }
330
331 __free_page(page);
332 return ret;
333 }
334
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
337 {
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
342
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 if (len < 0)
347 return len;
348
349 flush_dcache_page(bvec.bv_page);
350
351 if (len != bvec.bv_len) {
352 struct bio *bio;
353
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
357 }
358 cond_resched();
359 }
360
361 return 0;
362 }
363
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
366 {
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
373
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
377
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
380
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
384
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
390 }
391
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 }
407
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
412 }
413
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
415 {
416 /*
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
421 */
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
425
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
429 }
430
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
436 }
437
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
439 {
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
444
445 return ret;
446 }
447
448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
449 {
450 if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE))
451 return;
452
453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
455
456 bio_advance(bio, bytes);
457 zero_fill_bio(bio);
458 }
459 }
460
461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
462 {
463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 struct request *rq = cmd->rq;
465
466 handle_partial_read(cmd, ret);
467
468 if (ret > 0)
469 ret = 0;
470 else if (ret < 0)
471 ret = -EIO;
472
473 blk_mq_complete_request(rq, ret);
474 }
475
476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 loff_t pos, bool rw)
478 {
479 struct iov_iter iter;
480 struct bio_vec *bvec;
481 struct bio *bio = cmd->rq->bio;
482 struct file *file = lo->lo_backing_file;
483 int ret;
484
485 /* nomerge for loop request queue */
486 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
487
488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 bio_segments(bio), blk_rq_bytes(cmd->rq));
491 /*
492 * This bio may be started from the middle of the 'bvec'
493 * because of bio splitting, so offset from the bvec must
494 * be passed to iov iterator
495 */
496 iter.iov_offset = bio->bi_iter.bi_bvec_done;
497
498 cmd->iocb.ki_pos = pos;
499 cmd->iocb.ki_filp = file;
500 cmd->iocb.ki_complete = lo_rw_aio_complete;
501 cmd->iocb.ki_flags = IOCB_DIRECT;
502
503 if (rw == WRITE)
504 ret = file->f_op->write_iter(&cmd->iocb, &iter);
505 else
506 ret = file->f_op->read_iter(&cmd->iocb, &iter);
507
508 if (ret != -EIOCBQUEUED)
509 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
510 return 0;
511 }
512
513
514 static inline int lo_rw_simple(struct loop_device *lo,
515 struct request *rq, loff_t pos, bool rw)
516 {
517 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
518
519 if (cmd->use_aio)
520 return lo_rw_aio(lo, cmd, pos, rw);
521
522 /*
523 * lo_write_simple and lo_read_simple should have been covered
524 * by io submit style function like lo_rw_aio(), one blocker
525 * is that lo_read_simple() need to call flush_dcache_page after
526 * the page is written from kernel, and it isn't easy to handle
527 * this in io submit style function which submits all segments
528 * of the req at one time. And direct read IO doesn't need to
529 * run flush_dcache_page().
530 */
531 if (rw == WRITE)
532 return lo_write_simple(lo, rq, pos);
533 else
534 return lo_read_simple(lo, rq, pos);
535 }
536
537 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
538 {
539 loff_t pos;
540 int ret;
541
542 pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
543
544 if (rq->cmd_flags & REQ_WRITE) {
545 if (rq->cmd_flags & REQ_FLUSH)
546 ret = lo_req_flush(lo, rq);
547 else if (rq->cmd_flags & REQ_DISCARD)
548 ret = lo_discard(lo, rq, pos);
549 else if (lo->transfer)
550 ret = lo_write_transfer(lo, rq, pos);
551 else
552 ret = lo_rw_simple(lo, rq, pos, WRITE);
553
554 } else {
555 if (lo->transfer)
556 ret = lo_read_transfer(lo, rq, pos);
557 else
558 ret = lo_rw_simple(lo, rq, pos, READ);
559 }
560
561 return ret;
562 }
563
564 struct switch_request {
565 struct file *file;
566 struct completion wait;
567 };
568
569 static inline void loop_update_dio(struct loop_device *lo)
570 {
571 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
572 lo->use_dio);
573 }
574
575 /*
576 * Do the actual switch; called from the BIO completion routine
577 */
578 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
579 {
580 struct file *file = p->file;
581 struct file *old_file = lo->lo_backing_file;
582 struct address_space *mapping;
583
584 /* if no new file, only flush of queued bios requested */
585 if (!file)
586 return;
587
588 mapping = file->f_mapping;
589 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
590 lo->lo_backing_file = file;
591 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
592 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
593 lo->old_gfp_mask = mapping_gfp_mask(mapping);
594 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
595 loop_update_dio(lo);
596 }
597
598 /*
599 * loop_switch performs the hard work of switching a backing store.
600 * First it needs to flush existing IO, it does this by sending a magic
601 * BIO down the pipe. The completion of this BIO does the actual switch.
602 */
603 static int loop_switch(struct loop_device *lo, struct file *file)
604 {
605 struct switch_request w;
606
607 w.file = file;
608
609 /* freeze queue and wait for completion of scheduled requests */
610 blk_mq_freeze_queue(lo->lo_queue);
611
612 /* do the switch action */
613 do_loop_switch(lo, &w);
614
615 /* unfreeze */
616 blk_mq_unfreeze_queue(lo->lo_queue);
617
618 return 0;
619 }
620
621 /*
622 * Helper to flush the IOs in loop, but keeping loop thread running
623 */
624 static int loop_flush(struct loop_device *lo)
625 {
626 /* loop not yet configured, no running thread, nothing to flush */
627 if (lo->lo_state != Lo_bound)
628 return 0;
629 return loop_switch(lo, NULL);
630 }
631
632 static void loop_reread_partitions(struct loop_device *lo,
633 struct block_device *bdev)
634 {
635 int rc;
636
637 /*
638 * bd_mutex has been held already in release path, so don't
639 * acquire it if this function is called in such case.
640 *
641 * If the reread partition isn't from release path, lo_refcnt
642 * must be at least one and it can only become zero when the
643 * current holder is released.
644 */
645 if (!atomic_read(&lo->lo_refcnt))
646 rc = __blkdev_reread_part(bdev);
647 else
648 rc = blkdev_reread_part(bdev);
649 if (rc)
650 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
651 __func__, lo->lo_number, lo->lo_file_name, rc);
652 }
653
654 /*
655 * loop_change_fd switched the backing store of a loopback device to
656 * a new file. This is useful for operating system installers to free up
657 * the original file and in High Availability environments to switch to
658 * an alternative location for the content in case of server meltdown.
659 * This can only work if the loop device is used read-only, and if the
660 * new backing store is the same size and type as the old backing store.
661 */
662 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
663 unsigned int arg)
664 {
665 struct file *file, *old_file;
666 struct inode *inode;
667 int error;
668
669 error = -ENXIO;
670 if (lo->lo_state != Lo_bound)
671 goto out;
672
673 /* the loop device has to be read-only */
674 error = -EINVAL;
675 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
676 goto out;
677
678 error = -EBADF;
679 file = fget(arg);
680 if (!file)
681 goto out;
682
683 inode = file->f_mapping->host;
684 old_file = lo->lo_backing_file;
685
686 error = -EINVAL;
687
688 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
689 goto out_putf;
690
691 /* size of the new backing store needs to be the same */
692 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
693 goto out_putf;
694
695 /* and ... switch */
696 error = loop_switch(lo, file);
697 if (error)
698 goto out_putf;
699
700 fput(old_file);
701 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
702 loop_reread_partitions(lo, bdev);
703 return 0;
704
705 out_putf:
706 fput(file);
707 out:
708 return error;
709 }
710
711 static inline int is_loop_device(struct file *file)
712 {
713 struct inode *i = file->f_mapping->host;
714
715 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
716 }
717
718 /* loop sysfs attributes */
719
720 static ssize_t loop_attr_show(struct device *dev, char *page,
721 ssize_t (*callback)(struct loop_device *, char *))
722 {
723 struct gendisk *disk = dev_to_disk(dev);
724 struct loop_device *lo = disk->private_data;
725
726 return callback(lo, page);
727 }
728
729 #define LOOP_ATTR_RO(_name) \
730 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
731 static ssize_t loop_attr_do_show_##_name(struct device *d, \
732 struct device_attribute *attr, char *b) \
733 { \
734 return loop_attr_show(d, b, loop_attr_##_name##_show); \
735 } \
736 static struct device_attribute loop_attr_##_name = \
737 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
738
739 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
740 {
741 ssize_t ret;
742 char *p = NULL;
743
744 spin_lock_irq(&lo->lo_lock);
745 if (lo->lo_backing_file)
746 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
747 spin_unlock_irq(&lo->lo_lock);
748
749 if (IS_ERR_OR_NULL(p))
750 ret = PTR_ERR(p);
751 else {
752 ret = strlen(p);
753 memmove(buf, p, ret);
754 buf[ret++] = '\n';
755 buf[ret] = 0;
756 }
757
758 return ret;
759 }
760
761 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
762 {
763 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
764 }
765
766 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
767 {
768 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
769 }
770
771 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
772 {
773 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
774
775 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
776 }
777
778 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
779 {
780 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
781
782 return sprintf(buf, "%s\n", partscan ? "1" : "0");
783 }
784
785 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
786 {
787 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
788
789 return sprintf(buf, "%s\n", dio ? "1" : "0");
790 }
791
792 LOOP_ATTR_RO(backing_file);
793 LOOP_ATTR_RO(offset);
794 LOOP_ATTR_RO(sizelimit);
795 LOOP_ATTR_RO(autoclear);
796 LOOP_ATTR_RO(partscan);
797 LOOP_ATTR_RO(dio);
798
799 static struct attribute *loop_attrs[] = {
800 &loop_attr_backing_file.attr,
801 &loop_attr_offset.attr,
802 &loop_attr_sizelimit.attr,
803 &loop_attr_autoclear.attr,
804 &loop_attr_partscan.attr,
805 &loop_attr_dio.attr,
806 NULL,
807 };
808
809 static struct attribute_group loop_attribute_group = {
810 .name = "loop",
811 .attrs= loop_attrs,
812 };
813
814 static int loop_sysfs_init(struct loop_device *lo)
815 {
816 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
817 &loop_attribute_group);
818 }
819
820 static void loop_sysfs_exit(struct loop_device *lo)
821 {
822 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
823 &loop_attribute_group);
824 }
825
826 static void loop_config_discard(struct loop_device *lo)
827 {
828 struct file *file = lo->lo_backing_file;
829 struct inode *inode = file->f_mapping->host;
830 struct request_queue *q = lo->lo_queue;
831
832 /*
833 * We use punch hole to reclaim the free space used by the
834 * image a.k.a. discard. However we do not support discard if
835 * encryption is enabled, because it may give an attacker
836 * useful information.
837 */
838 if ((!file->f_op->fallocate) ||
839 lo->lo_encrypt_key_size) {
840 q->limits.discard_granularity = 0;
841 q->limits.discard_alignment = 0;
842 blk_queue_max_discard_sectors(q, 0);
843 q->limits.discard_zeroes_data = 0;
844 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
845 return;
846 }
847
848 q->limits.discard_granularity = inode->i_sb->s_blocksize;
849 q->limits.discard_alignment = 0;
850 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
851 q->limits.discard_zeroes_data = 1;
852 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
853 }
854
855 static void loop_unprepare_queue(struct loop_device *lo)
856 {
857 flush_kthread_worker(&lo->worker);
858 kthread_stop(lo->worker_task);
859 }
860
861 static int loop_prepare_queue(struct loop_device *lo)
862 {
863 init_kthread_worker(&lo->worker);
864 lo->worker_task = kthread_run(kthread_worker_fn,
865 &lo->worker, "loop%d", lo->lo_number);
866 if (IS_ERR(lo->worker_task))
867 return -ENOMEM;
868 set_user_nice(lo->worker_task, MIN_NICE);
869 return 0;
870 }
871
872 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
873 struct block_device *bdev, unsigned int arg)
874 {
875 struct file *file, *f;
876 struct inode *inode;
877 struct address_space *mapping;
878 unsigned lo_blocksize;
879 int lo_flags = 0;
880 int error;
881 loff_t size;
882
883 /* This is safe, since we have a reference from open(). */
884 __module_get(THIS_MODULE);
885
886 error = -EBADF;
887 file = fget(arg);
888 if (!file)
889 goto out;
890
891 error = -EBUSY;
892 if (lo->lo_state != Lo_unbound)
893 goto out_putf;
894
895 /* Avoid recursion */
896 f = file;
897 while (is_loop_device(f)) {
898 struct loop_device *l;
899
900 if (f->f_mapping->host->i_bdev == bdev)
901 goto out_putf;
902
903 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
904 if (l->lo_state == Lo_unbound) {
905 error = -EINVAL;
906 goto out_putf;
907 }
908 f = l->lo_backing_file;
909 }
910
911 mapping = file->f_mapping;
912 inode = mapping->host;
913
914 error = -EINVAL;
915 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
916 goto out_putf;
917
918 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
919 !file->f_op->write_iter)
920 lo_flags |= LO_FLAGS_READ_ONLY;
921
922 lo_blocksize = S_ISBLK(inode->i_mode) ?
923 inode->i_bdev->bd_block_size : PAGE_SIZE;
924
925 error = -EFBIG;
926 size = get_loop_size(lo, file);
927 if ((loff_t)(sector_t)size != size)
928 goto out_putf;
929 error = loop_prepare_queue(lo);
930 if (error)
931 goto out_putf;
932
933 error = 0;
934
935 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
936
937 lo->use_dio = false;
938 lo->lo_blocksize = lo_blocksize;
939 lo->lo_device = bdev;
940 lo->lo_flags = lo_flags;
941 lo->lo_backing_file = file;
942 lo->transfer = NULL;
943 lo->ioctl = NULL;
944 lo->lo_sizelimit = 0;
945 lo->old_gfp_mask = mapping_gfp_mask(mapping);
946 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
947
948 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
949 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
950
951 loop_update_dio(lo);
952 set_capacity(lo->lo_disk, size);
953 bd_set_size(bdev, size << 9);
954 loop_sysfs_init(lo);
955 /* let user-space know about the new size */
956 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
957
958 set_blocksize(bdev, lo_blocksize);
959
960 lo->lo_state = Lo_bound;
961 if (part_shift)
962 lo->lo_flags |= LO_FLAGS_PARTSCAN;
963 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
964 loop_reread_partitions(lo, bdev);
965
966 /* Grab the block_device to prevent its destruction after we
967 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
968 */
969 bdgrab(bdev);
970 return 0;
971
972 out_putf:
973 fput(file);
974 out:
975 /* This is safe: open() is still holding a reference. */
976 module_put(THIS_MODULE);
977 return error;
978 }
979
980 static int
981 loop_release_xfer(struct loop_device *lo)
982 {
983 int err = 0;
984 struct loop_func_table *xfer = lo->lo_encryption;
985
986 if (xfer) {
987 if (xfer->release)
988 err = xfer->release(lo);
989 lo->transfer = NULL;
990 lo->lo_encryption = NULL;
991 module_put(xfer->owner);
992 }
993 return err;
994 }
995
996 static int
997 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
998 const struct loop_info64 *i)
999 {
1000 int err = 0;
1001
1002 if (xfer) {
1003 struct module *owner = xfer->owner;
1004
1005 if (!try_module_get(owner))
1006 return -EINVAL;
1007 if (xfer->init)
1008 err = xfer->init(lo, i);
1009 if (err)
1010 module_put(owner);
1011 else
1012 lo->lo_encryption = xfer;
1013 }
1014 return err;
1015 }
1016
1017 static int loop_clr_fd(struct loop_device *lo)
1018 {
1019 struct file *filp = lo->lo_backing_file;
1020 gfp_t gfp = lo->old_gfp_mask;
1021 struct block_device *bdev = lo->lo_device;
1022
1023 if (lo->lo_state != Lo_bound)
1024 return -ENXIO;
1025
1026 /*
1027 * If we've explicitly asked to tear down the loop device,
1028 * and it has an elevated reference count, set it for auto-teardown when
1029 * the last reference goes away. This stops $!~#$@ udev from
1030 * preventing teardown because it decided that it needs to run blkid on
1031 * the loopback device whenever they appear. xfstests is notorious for
1032 * failing tests because blkid via udev races with a losetup
1033 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1034 * command to fail with EBUSY.
1035 */
1036 if (atomic_read(&lo->lo_refcnt) > 1) {
1037 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1038 mutex_unlock(&lo->lo_ctl_mutex);
1039 return 0;
1040 }
1041
1042 if (filp == NULL)
1043 return -EINVAL;
1044
1045 /* freeze request queue during the transition */
1046 blk_mq_freeze_queue(lo->lo_queue);
1047
1048 spin_lock_irq(&lo->lo_lock);
1049 lo->lo_state = Lo_rundown;
1050 lo->lo_backing_file = NULL;
1051 spin_unlock_irq(&lo->lo_lock);
1052
1053 loop_release_xfer(lo);
1054 lo->transfer = NULL;
1055 lo->ioctl = NULL;
1056 lo->lo_device = NULL;
1057 lo->lo_encryption = NULL;
1058 lo->lo_offset = 0;
1059 lo->lo_sizelimit = 0;
1060 lo->lo_encrypt_key_size = 0;
1061 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1062 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1063 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1064 blk_queue_logical_block_size(lo->lo_queue, 512);
1065 if (bdev) {
1066 bdput(bdev);
1067 invalidate_bdev(bdev);
1068 }
1069 set_capacity(lo->lo_disk, 0);
1070 loop_sysfs_exit(lo);
1071 if (bdev) {
1072 bd_set_size(bdev, 0);
1073 /* let user-space know about this change */
1074 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1075 }
1076 mapping_set_gfp_mask(filp->f_mapping, gfp);
1077 lo->lo_state = Lo_unbound;
1078 /* This is safe: open() is still holding a reference. */
1079 module_put(THIS_MODULE);
1080 blk_mq_unfreeze_queue(lo->lo_queue);
1081
1082 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1083 loop_reread_partitions(lo, bdev);
1084 lo->lo_flags = 0;
1085 if (!part_shift)
1086 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1087 loop_unprepare_queue(lo);
1088 mutex_unlock(&lo->lo_ctl_mutex);
1089 /*
1090 * Need not hold lo_ctl_mutex to fput backing file.
1091 * Calling fput holding lo_ctl_mutex triggers a circular
1092 * lock dependency possibility warning as fput can take
1093 * bd_mutex which is usually taken before lo_ctl_mutex.
1094 */
1095 fput(filp);
1096 return 0;
1097 }
1098
1099 static int
1100 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1101 {
1102 int err;
1103 struct loop_func_table *xfer;
1104 kuid_t uid = current_uid();
1105
1106 if (lo->lo_encrypt_key_size &&
1107 !uid_eq(lo->lo_key_owner, uid) &&
1108 !capable(CAP_SYS_ADMIN))
1109 return -EPERM;
1110 if (lo->lo_state != Lo_bound)
1111 return -ENXIO;
1112 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1113 return -EINVAL;
1114
1115 /* I/O need to be drained during transfer transition */
1116 blk_mq_freeze_queue(lo->lo_queue);
1117
1118 err = loop_release_xfer(lo);
1119 if (err)
1120 goto exit;
1121
1122 if (info->lo_encrypt_type) {
1123 unsigned int type = info->lo_encrypt_type;
1124
1125 if (type >= MAX_LO_CRYPT)
1126 return -EINVAL;
1127 xfer = xfer_funcs[type];
1128 if (xfer == NULL)
1129 return -EINVAL;
1130 } else
1131 xfer = NULL;
1132
1133 err = loop_init_xfer(lo, xfer, info);
1134 if (err)
1135 goto exit;
1136
1137 if (lo->lo_offset != info->lo_offset ||
1138 lo->lo_sizelimit != info->lo_sizelimit)
1139 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1140 err = -EFBIG;
1141 goto exit;
1142 }
1143
1144 loop_config_discard(lo);
1145
1146 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1147 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1148 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1149 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1150
1151 if (!xfer)
1152 xfer = &none_funcs;
1153 lo->transfer = xfer->transfer;
1154 lo->ioctl = xfer->ioctl;
1155
1156 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1157 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1158 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1159
1160 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1161 lo->lo_init[0] = info->lo_init[0];
1162 lo->lo_init[1] = info->lo_init[1];
1163 if (info->lo_encrypt_key_size) {
1164 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1165 info->lo_encrypt_key_size);
1166 lo->lo_key_owner = uid;
1167 }
1168
1169 /* update dio if lo_offset or transfer is changed */
1170 __loop_update_dio(lo, lo->use_dio);
1171
1172 exit:
1173 blk_mq_unfreeze_queue(lo->lo_queue);
1174
1175 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1176 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1177 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1178 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1179 loop_reread_partitions(lo, lo->lo_device);
1180 }
1181
1182 return err;
1183 }
1184
1185 static int
1186 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1187 {
1188 struct file *file = lo->lo_backing_file;
1189 struct kstat stat;
1190 int error;
1191
1192 if (lo->lo_state != Lo_bound)
1193 return -ENXIO;
1194 error = vfs_getattr(&file->f_path, &stat);
1195 if (error)
1196 return error;
1197 memset(info, 0, sizeof(*info));
1198 info->lo_number = lo->lo_number;
1199 info->lo_device = huge_encode_dev(stat.dev);
1200 info->lo_inode = stat.ino;
1201 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1202 info->lo_offset = lo->lo_offset;
1203 info->lo_sizelimit = lo->lo_sizelimit;
1204 info->lo_flags = lo->lo_flags;
1205 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1206 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1207 info->lo_encrypt_type =
1208 lo->lo_encryption ? lo->lo_encryption->number : 0;
1209 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1210 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1211 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1212 lo->lo_encrypt_key_size);
1213 }
1214 return 0;
1215 }
1216
1217 static void
1218 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1219 {
1220 memset(info64, 0, sizeof(*info64));
1221 info64->lo_number = info->lo_number;
1222 info64->lo_device = info->lo_device;
1223 info64->lo_inode = info->lo_inode;
1224 info64->lo_rdevice = info->lo_rdevice;
1225 info64->lo_offset = info->lo_offset;
1226 info64->lo_sizelimit = 0;
1227 info64->lo_encrypt_type = info->lo_encrypt_type;
1228 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1229 info64->lo_flags = info->lo_flags;
1230 info64->lo_init[0] = info->lo_init[0];
1231 info64->lo_init[1] = info->lo_init[1];
1232 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1233 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1234 else
1235 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1236 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1237 }
1238
1239 static int
1240 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1241 {
1242 memset(info, 0, sizeof(*info));
1243 info->lo_number = info64->lo_number;
1244 info->lo_device = info64->lo_device;
1245 info->lo_inode = info64->lo_inode;
1246 info->lo_rdevice = info64->lo_rdevice;
1247 info->lo_offset = info64->lo_offset;
1248 info->lo_encrypt_type = info64->lo_encrypt_type;
1249 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1250 info->lo_flags = info64->lo_flags;
1251 info->lo_init[0] = info64->lo_init[0];
1252 info->lo_init[1] = info64->lo_init[1];
1253 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1254 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1255 else
1256 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1257 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1258
1259 /* error in case values were truncated */
1260 if (info->lo_device != info64->lo_device ||
1261 info->lo_rdevice != info64->lo_rdevice ||
1262 info->lo_inode != info64->lo_inode ||
1263 info->lo_offset != info64->lo_offset)
1264 return -EOVERFLOW;
1265
1266 return 0;
1267 }
1268
1269 static int
1270 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1271 {
1272 struct loop_info info;
1273 struct loop_info64 info64;
1274
1275 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1276 return -EFAULT;
1277 loop_info64_from_old(&info, &info64);
1278 return loop_set_status(lo, &info64);
1279 }
1280
1281 static int
1282 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1283 {
1284 struct loop_info64 info64;
1285
1286 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1287 return -EFAULT;
1288 return loop_set_status(lo, &info64);
1289 }
1290
1291 static int
1292 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1293 struct loop_info info;
1294 struct loop_info64 info64;
1295 int err = 0;
1296
1297 if (!arg)
1298 err = -EINVAL;
1299 if (!err)
1300 err = loop_get_status(lo, &info64);
1301 if (!err)
1302 err = loop_info64_to_old(&info64, &info);
1303 if (!err && copy_to_user(arg, &info, sizeof(info)))
1304 err = -EFAULT;
1305
1306 return err;
1307 }
1308
1309 static int
1310 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1311 struct loop_info64 info64;
1312 int err = 0;
1313
1314 if (!arg)
1315 err = -EINVAL;
1316 if (!err)
1317 err = loop_get_status(lo, &info64);
1318 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1319 err = -EFAULT;
1320
1321 return err;
1322 }
1323
1324 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1325 {
1326 if (unlikely(lo->lo_state != Lo_bound))
1327 return -ENXIO;
1328
1329 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1330 }
1331
1332 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1333 {
1334 int error = -ENXIO;
1335 if (lo->lo_state != Lo_bound)
1336 goto out;
1337
1338 __loop_update_dio(lo, !!arg);
1339 if (lo->use_dio == !!arg)
1340 return 0;
1341 error = -EINVAL;
1342 out:
1343 return error;
1344 }
1345
1346 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1347 {
1348 if (lo->lo_state != Lo_bound)
1349 return -ENXIO;
1350
1351 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1352 return -EINVAL;
1353
1354 blk_mq_freeze_queue(lo->lo_queue);
1355
1356 blk_queue_logical_block_size(lo->lo_queue, arg);
1357 loop_update_dio(lo);
1358
1359 blk_mq_unfreeze_queue(lo->lo_queue);
1360
1361 return 0;
1362 }
1363
1364 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1365 unsigned int cmd, unsigned long arg)
1366 {
1367 struct loop_device *lo = bdev->bd_disk->private_data;
1368 int err;
1369
1370 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1371 switch (cmd) {
1372 case LOOP_SET_FD:
1373 err = loop_set_fd(lo, mode, bdev, arg);
1374 break;
1375 case LOOP_CHANGE_FD:
1376 err = loop_change_fd(lo, bdev, arg);
1377 break;
1378 case LOOP_CLR_FD:
1379 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1380 err = loop_clr_fd(lo);
1381 if (!err)
1382 goto out_unlocked;
1383 break;
1384 case LOOP_SET_STATUS:
1385 err = -EPERM;
1386 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1387 err = loop_set_status_old(lo,
1388 (struct loop_info __user *)arg);
1389 break;
1390 case LOOP_GET_STATUS:
1391 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1392 break;
1393 case LOOP_SET_STATUS64:
1394 err = -EPERM;
1395 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1396 err = loop_set_status64(lo,
1397 (struct loop_info64 __user *) arg);
1398 break;
1399 case LOOP_GET_STATUS64:
1400 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1401 break;
1402 case LOOP_SET_CAPACITY:
1403 err = -EPERM;
1404 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1405 err = loop_set_capacity(lo, bdev);
1406 break;
1407 case LOOP_SET_DIRECT_IO:
1408 err = -EPERM;
1409 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1410 err = loop_set_dio(lo, arg);
1411 break;
1412 case LOOP_SET_BLOCK_SIZE:
1413 err = -EPERM;
1414 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1415 err = loop_set_block_size(lo, arg);
1416 break;
1417 default:
1418 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1419 }
1420 mutex_unlock(&lo->lo_ctl_mutex);
1421
1422 out_unlocked:
1423 return err;
1424 }
1425
1426 #ifdef CONFIG_COMPAT
1427 struct compat_loop_info {
1428 compat_int_t lo_number; /* ioctl r/o */
1429 compat_dev_t lo_device; /* ioctl r/o */
1430 compat_ulong_t lo_inode; /* ioctl r/o */
1431 compat_dev_t lo_rdevice; /* ioctl r/o */
1432 compat_int_t lo_offset;
1433 compat_int_t lo_encrypt_type;
1434 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1435 compat_int_t lo_flags; /* ioctl r/o */
1436 char lo_name[LO_NAME_SIZE];
1437 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1438 compat_ulong_t lo_init[2];
1439 char reserved[4];
1440 };
1441
1442 /*
1443 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1444 * - noinlined to reduce stack space usage in main part of driver
1445 */
1446 static noinline int
1447 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1448 struct loop_info64 *info64)
1449 {
1450 struct compat_loop_info info;
1451
1452 if (copy_from_user(&info, arg, sizeof(info)))
1453 return -EFAULT;
1454
1455 memset(info64, 0, sizeof(*info64));
1456 info64->lo_number = info.lo_number;
1457 info64->lo_device = info.lo_device;
1458 info64->lo_inode = info.lo_inode;
1459 info64->lo_rdevice = info.lo_rdevice;
1460 info64->lo_offset = info.lo_offset;
1461 info64->lo_sizelimit = 0;
1462 info64->lo_encrypt_type = info.lo_encrypt_type;
1463 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1464 info64->lo_flags = info.lo_flags;
1465 info64->lo_init[0] = info.lo_init[0];
1466 info64->lo_init[1] = info.lo_init[1];
1467 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1468 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1469 else
1470 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1471 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1472 return 0;
1473 }
1474
1475 /*
1476 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1477 * - noinlined to reduce stack space usage in main part of driver
1478 */
1479 static noinline int
1480 loop_info64_to_compat(const struct loop_info64 *info64,
1481 struct compat_loop_info __user *arg)
1482 {
1483 struct compat_loop_info info;
1484
1485 memset(&info, 0, sizeof(info));
1486 info.lo_number = info64->lo_number;
1487 info.lo_device = info64->lo_device;
1488 info.lo_inode = info64->lo_inode;
1489 info.lo_rdevice = info64->lo_rdevice;
1490 info.lo_offset = info64->lo_offset;
1491 info.lo_encrypt_type = info64->lo_encrypt_type;
1492 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1493 info.lo_flags = info64->lo_flags;
1494 info.lo_init[0] = info64->lo_init[0];
1495 info.lo_init[1] = info64->lo_init[1];
1496 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1497 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1498 else
1499 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1500 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1501
1502 /* error in case values were truncated */
1503 if (info.lo_device != info64->lo_device ||
1504 info.lo_rdevice != info64->lo_rdevice ||
1505 info.lo_inode != info64->lo_inode ||
1506 info.lo_offset != info64->lo_offset ||
1507 info.lo_init[0] != info64->lo_init[0] ||
1508 info.lo_init[1] != info64->lo_init[1])
1509 return -EOVERFLOW;
1510
1511 if (copy_to_user(arg, &info, sizeof(info)))
1512 return -EFAULT;
1513 return 0;
1514 }
1515
1516 static int
1517 loop_set_status_compat(struct loop_device *lo,
1518 const struct compat_loop_info __user *arg)
1519 {
1520 struct loop_info64 info64;
1521 int ret;
1522
1523 ret = loop_info64_from_compat(arg, &info64);
1524 if (ret < 0)
1525 return ret;
1526 return loop_set_status(lo, &info64);
1527 }
1528
1529 static int
1530 loop_get_status_compat(struct loop_device *lo,
1531 struct compat_loop_info __user *arg)
1532 {
1533 struct loop_info64 info64;
1534 int err = 0;
1535
1536 if (!arg)
1537 err = -EINVAL;
1538 if (!err)
1539 err = loop_get_status(lo, &info64);
1540 if (!err)
1541 err = loop_info64_to_compat(&info64, arg);
1542 return err;
1543 }
1544
1545 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1546 unsigned int cmd, unsigned long arg)
1547 {
1548 struct loop_device *lo = bdev->bd_disk->private_data;
1549 int err;
1550
1551 switch(cmd) {
1552 case LOOP_SET_STATUS:
1553 mutex_lock(&lo->lo_ctl_mutex);
1554 err = loop_set_status_compat(
1555 lo, (const struct compat_loop_info __user *) arg);
1556 mutex_unlock(&lo->lo_ctl_mutex);
1557 break;
1558 case LOOP_GET_STATUS:
1559 mutex_lock(&lo->lo_ctl_mutex);
1560 err = loop_get_status_compat(
1561 lo, (struct compat_loop_info __user *) arg);
1562 mutex_unlock(&lo->lo_ctl_mutex);
1563 break;
1564 case LOOP_SET_CAPACITY:
1565 case LOOP_CLR_FD:
1566 case LOOP_GET_STATUS64:
1567 case LOOP_SET_STATUS64:
1568 arg = (unsigned long) compat_ptr(arg);
1569 case LOOP_SET_FD:
1570 case LOOP_CHANGE_FD:
1571 case LOOP_SET_BLOCK_SIZE:
1572 err = lo_ioctl(bdev, mode, cmd, arg);
1573 break;
1574 default:
1575 err = -ENOIOCTLCMD;
1576 break;
1577 }
1578 return err;
1579 }
1580 #endif
1581
1582 static int lo_open(struct block_device *bdev, fmode_t mode)
1583 {
1584 struct loop_device *lo;
1585 int err = 0;
1586
1587 mutex_lock(&loop_index_mutex);
1588 lo = bdev->bd_disk->private_data;
1589 if (!lo) {
1590 err = -ENXIO;
1591 goto out;
1592 }
1593
1594 atomic_inc(&lo->lo_refcnt);
1595 out:
1596 mutex_unlock(&loop_index_mutex);
1597 return err;
1598 }
1599
1600 static void __lo_release(struct loop_device *lo)
1601 {
1602 int err;
1603
1604 if (atomic_dec_return(&lo->lo_refcnt))
1605 return;
1606
1607 mutex_lock(&lo->lo_ctl_mutex);
1608 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1609 /*
1610 * In autoclear mode, stop the loop thread
1611 * and remove configuration after last close.
1612 */
1613 err = loop_clr_fd(lo);
1614 if (!err)
1615 return;
1616 } else {
1617 /*
1618 * Otherwise keep thread (if running) and config,
1619 * but flush possible ongoing bios in thread.
1620 */
1621 loop_flush(lo);
1622 }
1623
1624 mutex_unlock(&lo->lo_ctl_mutex);
1625 }
1626
1627 static void lo_release(struct gendisk *disk, fmode_t mode)
1628 {
1629 mutex_lock(&loop_index_mutex);
1630 __lo_release(disk->private_data);
1631 mutex_unlock(&loop_index_mutex);
1632 }
1633
1634 static const struct block_device_operations lo_fops = {
1635 .owner = THIS_MODULE,
1636 .open = lo_open,
1637 .release = lo_release,
1638 .ioctl = lo_ioctl,
1639 #ifdef CONFIG_COMPAT
1640 .compat_ioctl = lo_compat_ioctl,
1641 #endif
1642 };
1643
1644 /*
1645 * And now the modules code and kernel interface.
1646 */
1647 static int max_loop;
1648 module_param(max_loop, int, S_IRUGO);
1649 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1650 module_param(max_part, int, S_IRUGO);
1651 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1652 MODULE_LICENSE("GPL");
1653 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1654
1655 int loop_register_transfer(struct loop_func_table *funcs)
1656 {
1657 unsigned int n = funcs->number;
1658
1659 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1660 return -EINVAL;
1661 xfer_funcs[n] = funcs;
1662 return 0;
1663 }
1664
1665 static int unregister_transfer_cb(int id, void *ptr, void *data)
1666 {
1667 struct loop_device *lo = ptr;
1668 struct loop_func_table *xfer = data;
1669
1670 mutex_lock(&lo->lo_ctl_mutex);
1671 if (lo->lo_encryption == xfer)
1672 loop_release_xfer(lo);
1673 mutex_unlock(&lo->lo_ctl_mutex);
1674 return 0;
1675 }
1676
1677 int loop_unregister_transfer(int number)
1678 {
1679 unsigned int n = number;
1680 struct loop_func_table *xfer;
1681
1682 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1683 return -EINVAL;
1684
1685 xfer_funcs[n] = NULL;
1686 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1687 return 0;
1688 }
1689
1690 EXPORT_SYMBOL(loop_register_transfer);
1691 EXPORT_SYMBOL(loop_unregister_transfer);
1692
1693 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1694 const struct blk_mq_queue_data *bd)
1695 {
1696 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1697 struct loop_device *lo = cmd->rq->q->queuedata;
1698
1699 blk_mq_start_request(bd->rq);
1700
1701 if (lo->lo_state != Lo_bound)
1702 return BLK_MQ_RQ_QUEUE_ERROR;
1703
1704 if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH |
1705 REQ_DISCARD)))
1706 cmd->use_aio = true;
1707 else
1708 cmd->use_aio = false;
1709
1710 queue_kthread_work(&lo->worker, &cmd->work);
1711
1712 return BLK_MQ_RQ_QUEUE_OK;
1713 }
1714
1715 static void loop_handle_cmd(struct loop_cmd *cmd)
1716 {
1717 const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1718 struct loop_device *lo = cmd->rq->q->queuedata;
1719 int ret = 0;
1720
1721 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1722 ret = -EIO;
1723 goto failed;
1724 }
1725
1726 ret = do_req_filebacked(lo, cmd->rq);
1727 failed:
1728 /* complete non-aio request */
1729 if (!cmd->use_aio || ret)
1730 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1731 }
1732
1733 static void loop_queue_work(struct kthread_work *work)
1734 {
1735 struct loop_cmd *cmd =
1736 container_of(work, struct loop_cmd, work);
1737
1738 loop_handle_cmd(cmd);
1739 }
1740
1741 static int loop_init_request(void *data, struct request *rq,
1742 unsigned int hctx_idx, unsigned int request_idx,
1743 unsigned int numa_node)
1744 {
1745 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1746
1747 cmd->rq = rq;
1748 init_kthread_work(&cmd->work, loop_queue_work);
1749
1750 return 0;
1751 }
1752
1753 static struct blk_mq_ops loop_mq_ops = {
1754 .queue_rq = loop_queue_rq,
1755 .map_queue = blk_mq_map_queue,
1756 .init_request = loop_init_request,
1757 };
1758
1759 static int loop_add(struct loop_device **l, int i)
1760 {
1761 struct loop_device *lo;
1762 struct gendisk *disk;
1763 int err;
1764
1765 err = -ENOMEM;
1766 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1767 if (!lo)
1768 goto out;
1769
1770 lo->lo_state = Lo_unbound;
1771
1772 /* allocate id, if @id >= 0, we're requesting that specific id */
1773 if (i >= 0) {
1774 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1775 if (err == -ENOSPC)
1776 err = -EEXIST;
1777 } else {
1778 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1779 }
1780 if (err < 0)
1781 goto out_free_dev;
1782 i = err;
1783
1784 err = -ENOMEM;
1785 lo->tag_set.ops = &loop_mq_ops;
1786 lo->tag_set.nr_hw_queues = 1;
1787 lo->tag_set.queue_depth = 128;
1788 lo->tag_set.numa_node = NUMA_NO_NODE;
1789 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1790 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1791 lo->tag_set.driver_data = lo;
1792
1793 err = blk_mq_alloc_tag_set(&lo->tag_set);
1794 if (err)
1795 goto out_free_idr;
1796
1797 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1798 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1799 err = PTR_ERR(lo->lo_queue);
1800 goto out_cleanup_tags;
1801 }
1802 lo->lo_queue->queuedata = lo;
1803
1804 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1805 /*
1806 * It doesn't make sense to enable merge because the I/O
1807 * submitted to backing file is handled page by page.
1808 */
1809 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1810
1811 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1812 if (!disk)
1813 goto out_free_queue;
1814
1815 /*
1816 * Disable partition scanning by default. The in-kernel partition
1817 * scanning can be requested individually per-device during its
1818 * setup. Userspace can always add and remove partitions from all
1819 * devices. The needed partition minors are allocated from the
1820 * extended minor space, the main loop device numbers will continue
1821 * to match the loop minors, regardless of the number of partitions
1822 * used.
1823 *
1824 * If max_part is given, partition scanning is globally enabled for
1825 * all loop devices. The minors for the main loop devices will be
1826 * multiples of max_part.
1827 *
1828 * Note: Global-for-all-devices, set-only-at-init, read-only module
1829 * parameteters like 'max_loop' and 'max_part' make things needlessly
1830 * complicated, are too static, inflexible and may surprise
1831 * userspace tools. Parameters like this in general should be avoided.
1832 */
1833 if (!part_shift)
1834 disk->flags |= GENHD_FL_NO_PART_SCAN;
1835 disk->flags |= GENHD_FL_EXT_DEVT;
1836 mutex_init(&lo->lo_ctl_mutex);
1837 atomic_set(&lo->lo_refcnt, 0);
1838 lo->lo_number = i;
1839 spin_lock_init(&lo->lo_lock);
1840 disk->major = LOOP_MAJOR;
1841 disk->first_minor = i << part_shift;
1842 disk->fops = &lo_fops;
1843 disk->private_data = lo;
1844 disk->queue = lo->lo_queue;
1845 sprintf(disk->disk_name, "loop%d", i);
1846 add_disk(disk);
1847 *l = lo;
1848 return lo->lo_number;
1849
1850 out_free_queue:
1851 blk_cleanup_queue(lo->lo_queue);
1852 out_cleanup_tags:
1853 blk_mq_free_tag_set(&lo->tag_set);
1854 out_free_idr:
1855 idr_remove(&loop_index_idr, i);
1856 out_free_dev:
1857 kfree(lo);
1858 out:
1859 return err;
1860 }
1861
1862 static void loop_remove(struct loop_device *lo)
1863 {
1864 blk_cleanup_queue(lo->lo_queue);
1865 del_gendisk(lo->lo_disk);
1866 blk_mq_free_tag_set(&lo->tag_set);
1867 put_disk(lo->lo_disk);
1868 kfree(lo);
1869 }
1870
1871 static int find_free_cb(int id, void *ptr, void *data)
1872 {
1873 struct loop_device *lo = ptr;
1874 struct loop_device **l = data;
1875
1876 if (lo->lo_state == Lo_unbound) {
1877 *l = lo;
1878 return 1;
1879 }
1880 return 0;
1881 }
1882
1883 static int loop_lookup(struct loop_device **l, int i)
1884 {
1885 struct loop_device *lo;
1886 int ret = -ENODEV;
1887
1888 if (i < 0) {
1889 int err;
1890
1891 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1892 if (err == 1) {
1893 *l = lo;
1894 ret = lo->lo_number;
1895 }
1896 goto out;
1897 }
1898
1899 /* lookup and return a specific i */
1900 lo = idr_find(&loop_index_idr, i);
1901 if (lo) {
1902 *l = lo;
1903 ret = lo->lo_number;
1904 }
1905 out:
1906 return ret;
1907 }
1908
1909 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1910 {
1911 struct loop_device *lo;
1912 struct kobject *kobj;
1913 int err;
1914
1915 mutex_lock(&loop_index_mutex);
1916 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1917 if (err < 0)
1918 err = loop_add(&lo, MINOR(dev) >> part_shift);
1919 if (err < 0)
1920 kobj = NULL;
1921 else
1922 kobj = get_disk(lo->lo_disk);
1923 mutex_unlock(&loop_index_mutex);
1924
1925 *part = 0;
1926 return kobj;
1927 }
1928
1929 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1930 unsigned long parm)
1931 {
1932 struct loop_device *lo;
1933 int ret = -ENOSYS;
1934
1935 mutex_lock(&loop_index_mutex);
1936 switch (cmd) {
1937 case LOOP_CTL_ADD:
1938 ret = loop_lookup(&lo, parm);
1939 if (ret >= 0) {
1940 ret = -EEXIST;
1941 break;
1942 }
1943 ret = loop_add(&lo, parm);
1944 break;
1945 case LOOP_CTL_REMOVE:
1946 ret = loop_lookup(&lo, parm);
1947 if (ret < 0)
1948 break;
1949 mutex_lock(&lo->lo_ctl_mutex);
1950 if (lo->lo_state != Lo_unbound) {
1951 ret = -EBUSY;
1952 mutex_unlock(&lo->lo_ctl_mutex);
1953 break;
1954 }
1955 if (atomic_read(&lo->lo_refcnt) > 0) {
1956 ret = -EBUSY;
1957 mutex_unlock(&lo->lo_ctl_mutex);
1958 break;
1959 }
1960 lo->lo_disk->private_data = NULL;
1961 mutex_unlock(&lo->lo_ctl_mutex);
1962 idr_remove(&loop_index_idr, lo->lo_number);
1963 loop_remove(lo);
1964 break;
1965 case LOOP_CTL_GET_FREE:
1966 ret = loop_lookup(&lo, -1);
1967 if (ret >= 0)
1968 break;
1969 ret = loop_add(&lo, -1);
1970 }
1971 mutex_unlock(&loop_index_mutex);
1972
1973 return ret;
1974 }
1975
1976 static const struct file_operations loop_ctl_fops = {
1977 .open = nonseekable_open,
1978 .unlocked_ioctl = loop_control_ioctl,
1979 .compat_ioctl = loop_control_ioctl,
1980 .owner = THIS_MODULE,
1981 .llseek = noop_llseek,
1982 };
1983
1984 static struct miscdevice loop_misc = {
1985 .minor = LOOP_CTRL_MINOR,
1986 .name = "loop-control",
1987 .fops = &loop_ctl_fops,
1988 };
1989
1990 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1991 MODULE_ALIAS("devname:loop-control");
1992
1993 static int __init loop_init(void)
1994 {
1995 int i, nr;
1996 unsigned long range;
1997 struct loop_device *lo;
1998 int err;
1999
2000 err = misc_register(&loop_misc);
2001 if (err < 0)
2002 return err;
2003
2004 part_shift = 0;
2005 if (max_part > 0) {
2006 part_shift = fls(max_part);
2007
2008 /*
2009 * Adjust max_part according to part_shift as it is exported
2010 * to user space so that user can decide correct minor number
2011 * if [s]he want to create more devices.
2012 *
2013 * Note that -1 is required because partition 0 is reserved
2014 * for the whole disk.
2015 */
2016 max_part = (1UL << part_shift) - 1;
2017 }
2018
2019 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2020 err = -EINVAL;
2021 goto misc_out;
2022 }
2023
2024 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2025 err = -EINVAL;
2026 goto misc_out;
2027 }
2028
2029 /*
2030 * If max_loop is specified, create that many devices upfront.
2031 * This also becomes a hard limit. If max_loop is not specified,
2032 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2033 * init time. Loop devices can be requested on-demand with the
2034 * /dev/loop-control interface, or be instantiated by accessing
2035 * a 'dead' device node.
2036 */
2037 if (max_loop) {
2038 nr = max_loop;
2039 range = max_loop << part_shift;
2040 } else {
2041 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2042 range = 1UL << MINORBITS;
2043 }
2044
2045 if (register_blkdev(LOOP_MAJOR, "loop")) {
2046 err = -EIO;
2047 goto misc_out;
2048 }
2049
2050 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2051 THIS_MODULE, loop_probe, NULL, NULL);
2052
2053 /* pre-create number of devices given by config or max_loop */
2054 mutex_lock(&loop_index_mutex);
2055 for (i = 0; i < nr; i++)
2056 loop_add(&lo, i);
2057 mutex_unlock(&loop_index_mutex);
2058
2059 printk(KERN_INFO "loop: module loaded\n");
2060 return 0;
2061
2062 misc_out:
2063 misc_deregister(&loop_misc);
2064 return err;
2065 }
2066
2067 static int loop_exit_cb(int id, void *ptr, void *data)
2068 {
2069 struct loop_device *lo = ptr;
2070
2071 loop_remove(lo);
2072 return 0;
2073 }
2074
2075 static void __exit loop_exit(void)
2076 {
2077 unsigned long range;
2078
2079 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2080
2081 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2082 idr_destroy(&loop_index_idr);
2083
2084 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2085 unregister_blkdev(LOOP_MAJOR, "loop");
2086
2087 misc_deregister(&loop_misc);
2088 }
2089
2090 module_init(loop_init);
2091 module_exit(loop_exit);
2092
2093 #ifndef MODULE
2094 static int __init max_loop_setup(char *str)
2095 {
2096 max_loop = simple_strtol(str, NULL, 0);
2097 return 1;
2098 }
2099
2100 __setup("max_loop=", max_loop_setup);
2101 #endif