Merge 4.4.86 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / arch / arm64 / mm / fault.c
1 /*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/module.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched.h>
30 #include <linux/highmem.h>
31 #include <linux/perf_event.h>
32 #include <linux/preempt.h>
33
34 #include <asm/bug.h>
35 #include <asm/cpufeature.h>
36 #include <asm/exception.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/esr.h>
39 #include <asm/sysreg.h>
40 #include <asm/system_misc.h>
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43
44 static const char *fault_name(unsigned int esr);
45
46 /*
47 * Dump out the page tables associated with 'addr' in mm 'mm'.
48 */
49 void show_pte(struct mm_struct *mm, unsigned long addr)
50 {
51 pgd_t *pgd;
52
53 if (!mm)
54 mm = &init_mm;
55
56 pr_alert("pgd = %p\n", mm->pgd);
57 pgd = pgd_offset(mm, addr);
58 pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
59
60 do {
61 pud_t *pud;
62 pmd_t *pmd;
63 pte_t *pte;
64
65 if (pgd_none(*pgd) || pgd_bad(*pgd))
66 break;
67
68 pud = pud_offset(pgd, addr);
69 pr_cont(", *pud=%016llx", pud_val(*pud));
70 if (pud_none(*pud) || pud_bad(*pud))
71 break;
72
73 pmd = pmd_offset(pud, addr);
74 pr_cont(", *pmd=%016llx", pmd_val(*pmd));
75 if (pmd_none(*pmd) || pmd_bad(*pmd))
76 break;
77
78 pte = pte_offset_map(pmd, addr);
79 pr_cont(", *pte=%016llx", pte_val(*pte));
80 pte_unmap(pte);
81 } while(0);
82
83 pr_cont("\n");
84 }
85
86 #ifdef CONFIG_ARM64_HW_AFDBM
87 /*
88 * This function sets the access flags (dirty, accessed), as well as write
89 * permission, and only to a more permissive setting.
90 *
91 * It needs to cope with hardware update of the accessed/dirty state by other
92 * agents in the system and can safely skip the __sync_icache_dcache() call as,
93 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
94 *
95 * Returns whether or not the PTE actually changed.
96 */
97 int ptep_set_access_flags(struct vm_area_struct *vma,
98 unsigned long address, pte_t *ptep,
99 pte_t entry, int dirty)
100 {
101 pteval_t old_pteval;
102 unsigned int tmp;
103
104 if (pte_same(*ptep, entry))
105 return 0;
106
107 /* only preserve the access flags and write permission */
108 pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
109
110 /*
111 * PTE_RDONLY is cleared by default in the asm below, so set it in
112 * back if necessary (read-only or clean PTE).
113 */
114 if (!pte_write(entry) || !pte_sw_dirty(entry))
115 pte_val(entry) |= PTE_RDONLY;
116
117 /*
118 * Setting the flags must be done atomically to avoid racing with the
119 * hardware update of the access/dirty state.
120 */
121 asm volatile("// ptep_set_access_flags\n"
122 " prfm pstl1strm, %2\n"
123 "1: ldxr %0, %2\n"
124 " and %0, %0, %3 // clear PTE_RDONLY\n"
125 " orr %0, %0, %4 // set flags\n"
126 " stxr %w1, %0, %2\n"
127 " cbnz %w1, 1b\n"
128 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
129 : "L" (~PTE_RDONLY), "r" (pte_val(entry)));
130
131 flush_tlb_fix_spurious_fault(vma, address);
132 return 1;
133 }
134 #endif
135
136 static bool is_el1_instruction_abort(unsigned int esr)
137 {
138 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
139 }
140
141 /*
142 * The kernel tried to access some page that wasn't present.
143 */
144 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
145 unsigned int esr, struct pt_regs *regs)
146 {
147 /*
148 * Are we prepared to handle this kernel fault?
149 * We are almost certainly not prepared to handle instruction faults.
150 */
151 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
152 return;
153
154 /*
155 * No handler, we'll have to terminate things with extreme prejudice.
156 */
157 bust_spinlocks(1);
158 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
159 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
160 "paging request", addr);
161
162 show_pte(mm, addr);
163 die("Oops", regs, esr);
164 bust_spinlocks(0);
165 do_exit(SIGKILL);
166 }
167
168 /*
169 * Something tried to access memory that isn't in our memory map. User mode
170 * accesses just cause a SIGSEGV
171 */
172 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
173 unsigned int esr, unsigned int sig, int code,
174 struct pt_regs *regs)
175 {
176 struct siginfo si;
177
178 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
179 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
180 tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
181 addr, esr);
182 show_pte(tsk->mm, addr);
183 show_regs(regs);
184 }
185
186 tsk->thread.fault_address = addr;
187 tsk->thread.fault_code = esr;
188 si.si_signo = sig;
189 si.si_errno = 0;
190 si.si_code = code;
191 si.si_addr = (void __user *)addr;
192 force_sig_info(sig, &si, tsk);
193 }
194
195 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
196 {
197 struct task_struct *tsk = current;
198 struct mm_struct *mm = tsk->active_mm;
199
200 /*
201 * If we are in kernel mode at this point, we have no context to
202 * handle this fault with.
203 */
204 if (user_mode(regs))
205 __do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
206 else
207 __do_kernel_fault(mm, addr, esr, regs);
208 }
209
210 #define VM_FAULT_BADMAP 0x010000
211 #define VM_FAULT_BADACCESS 0x020000
212
213 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
214 unsigned int mm_flags, unsigned long vm_flags,
215 struct task_struct *tsk)
216 {
217 struct vm_area_struct *vma;
218 int fault;
219
220 vma = find_vma(mm, addr);
221 fault = VM_FAULT_BADMAP;
222 if (unlikely(!vma))
223 goto out;
224 if (unlikely(vma->vm_start > addr))
225 goto check_stack;
226
227 /*
228 * Ok, we have a good vm_area for this memory access, so we can handle
229 * it.
230 */
231 good_area:
232 /*
233 * Check that the permissions on the VMA allow for the fault which
234 * occurred. If we encountered a write or exec fault, we must have
235 * appropriate permissions, otherwise we allow any permission.
236 */
237 if (!(vma->vm_flags & vm_flags)) {
238 fault = VM_FAULT_BADACCESS;
239 goto out;
240 }
241
242 return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
243
244 check_stack:
245 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
246 goto good_area;
247 out:
248 return fault;
249 }
250
251 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs)
252 {
253 unsigned int ec = ESR_ELx_EC(esr);
254 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
255
256 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
257 return false;
258
259 if (system_uses_ttbr0_pan())
260 return fsc_type == ESR_ELx_FSC_FAULT &&
261 (regs->pstate & PSR_PAN_BIT);
262 else
263 return fsc_type == ESR_ELx_FSC_PERM;
264 }
265
266 static bool is_el0_instruction_abort(unsigned int esr)
267 {
268 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
269 }
270
271 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
272 struct pt_regs *regs)
273 {
274 struct task_struct *tsk;
275 struct mm_struct *mm;
276 int fault, sig, code;
277 unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
278 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
279
280 tsk = current;
281 mm = tsk->mm;
282
283 /* Enable interrupts if they were enabled in the parent context. */
284 if (interrupts_enabled(regs))
285 local_irq_enable();
286
287 /*
288 * If we're in an interrupt or have no user context, we must not take
289 * the fault.
290 */
291 if (faulthandler_disabled() || !mm)
292 goto no_context;
293
294 if (user_mode(regs))
295 mm_flags |= FAULT_FLAG_USER;
296
297 if (is_el0_instruction_abort(esr)) {
298 vm_flags = VM_EXEC;
299 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
300 vm_flags = VM_WRITE;
301 mm_flags |= FAULT_FLAG_WRITE;
302 }
303
304 if (addr < USER_DS && is_permission_fault(esr, regs)) {
305 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
306 if (regs->orig_addr_limit == KERNEL_DS)
307 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
308
309 if (is_el1_instruction_abort(esr))
310 die("Attempting to execute userspace memory", regs, esr);
311
312 if (!search_exception_tables(regs->pc))
313 die("Accessing user space memory outside uaccess.h routines", regs, esr);
314 }
315
316 /*
317 * As per x86, we may deadlock here. However, since the kernel only
318 * validly references user space from well defined areas of the code,
319 * we can bug out early if this is from code which shouldn't.
320 */
321 if (!down_read_trylock(&mm->mmap_sem)) {
322 if (!user_mode(regs) && !search_exception_tables(regs->pc))
323 goto no_context;
324 retry:
325 down_read(&mm->mmap_sem);
326 } else {
327 /*
328 * The above down_read_trylock() might have succeeded in which
329 * case, we'll have missed the might_sleep() from down_read().
330 */
331 might_sleep();
332 #ifdef CONFIG_DEBUG_VM
333 if (!user_mode(regs) && !search_exception_tables(regs->pc))
334 goto no_context;
335 #endif
336 }
337
338 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
339
340 /*
341 * If we need to retry but a fatal signal is pending, handle the
342 * signal first. We do not need to release the mmap_sem because it
343 * would already be released in __lock_page_or_retry in mm/filemap.c.
344 */
345 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
346 if (!user_mode(regs))
347 goto no_context;
348 return 0;
349 }
350
351 /*
352 * Major/minor page fault accounting is only done on the initial
353 * attempt. If we go through a retry, it is extremely likely that the
354 * page will be found in page cache at that point.
355 */
356
357 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
358 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
359 if (fault & VM_FAULT_MAJOR) {
360 tsk->maj_flt++;
361 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
362 addr);
363 } else {
364 tsk->min_flt++;
365 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
366 addr);
367 }
368 if (fault & VM_FAULT_RETRY) {
369 /*
370 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
371 * starvation.
372 */
373 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
374 mm_flags |= FAULT_FLAG_TRIED;
375 goto retry;
376 }
377 }
378
379 up_read(&mm->mmap_sem);
380
381 /*
382 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
383 */
384 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
385 VM_FAULT_BADACCESS))))
386 return 0;
387
388 /*
389 * If we are in kernel mode at this point, we have no context to
390 * handle this fault with.
391 */
392 if (!user_mode(regs))
393 goto no_context;
394
395 if (fault & VM_FAULT_OOM) {
396 /*
397 * We ran out of memory, call the OOM killer, and return to
398 * userspace (which will retry the fault, or kill us if we got
399 * oom-killed).
400 */
401 pagefault_out_of_memory();
402 return 0;
403 }
404
405 if (fault & VM_FAULT_SIGBUS) {
406 /*
407 * We had some memory, but were unable to successfully fix up
408 * this page fault.
409 */
410 sig = SIGBUS;
411 code = BUS_ADRERR;
412 } else {
413 /*
414 * Something tried to access memory that isn't in our memory
415 * map.
416 */
417 sig = SIGSEGV;
418 code = fault == VM_FAULT_BADACCESS ?
419 SEGV_ACCERR : SEGV_MAPERR;
420 }
421
422 __do_user_fault(tsk, addr, esr, sig, code, regs);
423 return 0;
424
425 no_context:
426 __do_kernel_fault(mm, addr, esr, regs);
427 return 0;
428 }
429
430 /*
431 * First Level Translation Fault Handler
432 *
433 * We enter here because the first level page table doesn't contain a valid
434 * entry for the address.
435 *
436 * If the address is in kernel space (>= TASK_SIZE), then we are probably
437 * faulting in the vmalloc() area.
438 *
439 * If the init_task's first level page tables contains the relevant entry, we
440 * copy the it to this task. If not, we send the process a signal, fixup the
441 * exception, or oops the kernel.
442 *
443 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
444 * or a critical region, and should only copy the information from the master
445 * page table, nothing more.
446 */
447 static int __kprobes do_translation_fault(unsigned long addr,
448 unsigned int esr,
449 struct pt_regs *regs)
450 {
451 if (addr < TASK_SIZE)
452 return do_page_fault(addr, esr, regs);
453
454 do_bad_area(addr, esr, regs);
455 return 0;
456 }
457
458 /*
459 * This abort handler always returns "fault".
460 */
461 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
462 {
463 return 1;
464 }
465
466 static const struct fault_info {
467 int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
468 int sig;
469 int code;
470 const char *name;
471 } fault_info[] = {
472 { do_bad, SIGBUS, 0, "ttbr address size fault" },
473 { do_bad, SIGBUS, 0, "level 1 address size fault" },
474 { do_bad, SIGBUS, 0, "level 2 address size fault" },
475 { do_bad, SIGBUS, 0, "level 3 address size fault" },
476 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
477 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
478 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
479 { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
480 { do_bad, SIGBUS, 0, "unknown 8" },
481 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
482 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
483 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
484 { do_bad, SIGBUS, 0, "unknown 12" },
485 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
486 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
487 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
488 { do_bad, SIGBUS, 0, "synchronous external abort" },
489 { do_bad, SIGBUS, 0, "unknown 17" },
490 { do_bad, SIGBUS, 0, "unknown 18" },
491 { do_bad, SIGBUS, 0, "unknown 19" },
492 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
493 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
494 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
495 { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
496 { do_bad, SIGBUS, 0, "synchronous parity error" },
497 { do_bad, SIGBUS, 0, "unknown 25" },
498 { do_bad, SIGBUS, 0, "unknown 26" },
499 { do_bad, SIGBUS, 0, "unknown 27" },
500 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
501 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
502 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
503 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
504 { do_bad, SIGBUS, 0, "unknown 32" },
505 { do_bad, SIGBUS, BUS_ADRALN, "alignment fault" },
506 { do_bad, SIGBUS, 0, "unknown 34" },
507 { do_bad, SIGBUS, 0, "unknown 35" },
508 { do_bad, SIGBUS, 0, "unknown 36" },
509 { do_bad, SIGBUS, 0, "unknown 37" },
510 { do_bad, SIGBUS, 0, "unknown 38" },
511 { do_bad, SIGBUS, 0, "unknown 39" },
512 { do_bad, SIGBUS, 0, "unknown 40" },
513 { do_bad, SIGBUS, 0, "unknown 41" },
514 { do_bad, SIGBUS, 0, "unknown 42" },
515 { do_bad, SIGBUS, 0, "unknown 43" },
516 { do_bad, SIGBUS, 0, "unknown 44" },
517 { do_bad, SIGBUS, 0, "unknown 45" },
518 { do_bad, SIGBUS, 0, "unknown 46" },
519 { do_bad, SIGBUS, 0, "unknown 47" },
520 { do_bad, SIGBUS, 0, "TLB conflict abort" },
521 { do_bad, SIGBUS, 0, "unknown 49" },
522 { do_bad, SIGBUS, 0, "unknown 50" },
523 { do_bad, SIGBUS, 0, "unknown 51" },
524 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
525 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
526 { do_bad, SIGBUS, 0, "unknown 54" },
527 { do_bad, SIGBUS, 0, "unknown 55" },
528 { do_bad, SIGBUS, 0, "unknown 56" },
529 { do_bad, SIGBUS, 0, "unknown 57" },
530 { do_bad, SIGBUS, 0, "unknown 58" },
531 { do_bad, SIGBUS, 0, "unknown 59" },
532 { do_bad, SIGBUS, 0, "unknown 60" },
533 { do_bad, SIGBUS, 0, "section domain fault" },
534 { do_bad, SIGBUS, 0, "page domain fault" },
535 { do_bad, SIGBUS, 0, "unknown 63" },
536 };
537
538 static const char *fault_name(unsigned int esr)
539 {
540 const struct fault_info *inf = fault_info + (esr & 63);
541 return inf->name;
542 }
543
544 /*
545 * Dispatch a data abort to the relevant handler.
546 */
547 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
548 struct pt_regs *regs)
549 {
550 const struct fault_info *inf = fault_info + (esr & 63);
551 struct siginfo info;
552
553 if (!inf->fn(addr, esr, regs))
554 return;
555
556 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
557 inf->name, esr, addr);
558
559 info.si_signo = inf->sig;
560 info.si_errno = 0;
561 info.si_code = inf->code;
562 info.si_addr = (void __user *)addr;
563 arm64_notify_die("", regs, &info, esr);
564 }
565
566 /*
567 * Handle stack alignment exceptions.
568 */
569 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
570 unsigned int esr,
571 struct pt_regs *regs)
572 {
573 struct siginfo info;
574 struct task_struct *tsk = current;
575
576 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
577 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
578 tsk->comm, task_pid_nr(tsk),
579 esr_get_class_string(esr), (void *)regs->pc,
580 (void *)regs->sp);
581
582 info.si_signo = SIGBUS;
583 info.si_errno = 0;
584 info.si_code = BUS_ADRALN;
585 info.si_addr = (void __user *)addr;
586 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
587 }
588
589 int __init early_brk64(unsigned long addr, unsigned int esr,
590 struct pt_regs *regs);
591
592 /*
593 * __refdata because early_brk64 is __init, but the reference to it is
594 * clobbered at arch_initcall time.
595 * See traps.c and debug-monitors.c:debug_traps_init().
596 */
597 static struct fault_info __refdata debug_fault_info[] = {
598 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
599 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
600 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
601 { do_bad, SIGBUS, 0, "unknown 3" },
602 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
603 { do_bad, SIGTRAP, 0, "aarch32 vector catch" },
604 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
605 { do_bad, SIGBUS, 0, "unknown 7" },
606 };
607
608 void __init hook_debug_fault_code(int nr,
609 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
610 int sig, int code, const char *name)
611 {
612 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
613
614 debug_fault_info[nr].fn = fn;
615 debug_fault_info[nr].sig = sig;
616 debug_fault_info[nr].code = code;
617 debug_fault_info[nr].name = name;
618 }
619
620 asmlinkage int __exception do_debug_exception(unsigned long addr,
621 unsigned int esr,
622 struct pt_regs *regs)
623 {
624 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
625 struct siginfo info;
626
627 if (!inf->fn(addr, esr, regs))
628 return 1;
629
630 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
631 inf->name, esr, addr);
632
633 info.si_signo = inf->sig;
634 info.si_errno = 0;
635 info.si_code = inf->code;
636 info.si_addr = (void __user *)addr;
637 arm64_notify_die("", regs, &info, 0);
638
639 return 0;
640 }
641
642 #ifdef CONFIG_ARM64_PAN
643 int cpu_enable_pan(void *__unused)
644 {
645 /*
646 * We modify PSTATE. This won't work from irq context as the PSTATE
647 * is discarded once we return from the exception.
648 */
649 WARN_ON_ONCE(in_interrupt());
650
651 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
652 asm(SET_PSTATE_PAN(1));
653 return 0;
654 }
655 #endif /* CONFIG_ARM64_PAN */
656
657 #ifdef CONFIG_ARM64_UAO
658 /*
659 * Kernel threads have fs=KERNEL_DS by default, and don't need to call
660 * set_fs(), devtmpfs in particular relies on this behaviour.
661 * We need to enable the feature at runtime (instead of adding it to
662 * PSR_MODE_EL1h) as the feature may not be implemented by the cpu.
663 */
664 int cpu_enable_uao(void *__unused)
665 {
666 asm(SET_PSTATE_UAO(1));
667 return 0;
668 }
669 #endif /* CONFIG_ARM64_UAO */