Merge tag 'mmc-v4.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / net / sched / sch_sfb.c
1 /*
2 * net/sched/sch_sfb.c Stochastic Fair Blue
3 *
4 * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr>
5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 *
11 * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
12 * A New Class of Active Queue Management Algorithms.
13 * U. Michigan CSE-TR-387-99, April 1999.
14 *
15 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
16 *
17 */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/skbuff.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <net/ip.h>
27 #include <net/pkt_sched.h>
28 #include <net/pkt_cls.h>
29 #include <net/inet_ecn.h>
30
31 /*
32 * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
33 * This implementation uses L = 8 and N = 16
34 * This permits us to split one 32bit hash (provided per packet by rxhash or
35 * external classifier) into 8 subhashes of 4 bits.
36 */
37 #define SFB_BUCKET_SHIFT 4
38 #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
39 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
40 #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
41
42 /* SFB algo uses a virtual queue, named "bin" */
43 struct sfb_bucket {
44 u16 qlen; /* length of virtual queue */
45 u16 p_mark; /* marking probability */
46 };
47
48 /* We use a double buffering right before hash change
49 * (Section 4.4 of SFB reference : moving hash functions)
50 */
51 struct sfb_bins {
52 u32 perturbation; /* jhash perturbation */
53 struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
54 };
55
56 struct sfb_sched_data {
57 struct Qdisc *qdisc;
58 struct tcf_proto __rcu *filter_list;
59 struct tcf_block *block;
60 unsigned long rehash_interval;
61 unsigned long warmup_time; /* double buffering warmup time in jiffies */
62 u32 max;
63 u32 bin_size; /* maximum queue length per bin */
64 u32 increment; /* d1 */
65 u32 decrement; /* d2 */
66 u32 limit; /* HARD maximal queue length */
67 u32 penalty_rate;
68 u32 penalty_burst;
69 u32 tokens_avail;
70 unsigned long rehash_time;
71 unsigned long token_time;
72
73 u8 slot; /* current active bins (0 or 1) */
74 bool double_buffering;
75 struct sfb_bins bins[2];
76
77 struct {
78 u32 earlydrop;
79 u32 penaltydrop;
80 u32 bucketdrop;
81 u32 queuedrop;
82 u32 childdrop; /* drops in child qdisc */
83 u32 marked; /* ECN mark */
84 } stats;
85 };
86
87 /*
88 * Each queued skb might be hashed on one or two bins
89 * We store in skb_cb the two hash values.
90 * (A zero value means double buffering was not used)
91 */
92 struct sfb_skb_cb {
93 u32 hashes[2];
94 };
95
96 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
97 {
98 qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
99 return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
100 }
101
102 /*
103 * If using 'internal' SFB flow classifier, hash comes from skb rxhash
104 * If using external classifier, hash comes from the classid.
105 */
106 static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
107 {
108 return sfb_skb_cb(skb)->hashes[slot];
109 }
110
111 /* Probabilities are coded as Q0.16 fixed-point values,
112 * with 0xFFFF representing 65535/65536 (almost 1.0)
113 * Addition and subtraction are saturating in [0, 65535]
114 */
115 static u32 prob_plus(u32 p1, u32 p2)
116 {
117 u32 res = p1 + p2;
118
119 return min_t(u32, res, SFB_MAX_PROB);
120 }
121
122 static u32 prob_minus(u32 p1, u32 p2)
123 {
124 return p1 > p2 ? p1 - p2 : 0;
125 }
126
127 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
128 {
129 int i;
130 struct sfb_bucket *b = &q->bins[slot].bins[0][0];
131
132 for (i = 0; i < SFB_LEVELS; i++) {
133 u32 hash = sfbhash & SFB_BUCKET_MASK;
134
135 sfbhash >>= SFB_BUCKET_SHIFT;
136 if (b[hash].qlen < 0xFFFF)
137 b[hash].qlen++;
138 b += SFB_NUMBUCKETS; /* next level */
139 }
140 }
141
142 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
143 {
144 u32 sfbhash;
145
146 sfbhash = sfb_hash(skb, 0);
147 if (sfbhash)
148 increment_one_qlen(sfbhash, 0, q);
149
150 sfbhash = sfb_hash(skb, 1);
151 if (sfbhash)
152 increment_one_qlen(sfbhash, 1, q);
153 }
154
155 static void decrement_one_qlen(u32 sfbhash, u32 slot,
156 struct sfb_sched_data *q)
157 {
158 int i;
159 struct sfb_bucket *b = &q->bins[slot].bins[0][0];
160
161 for (i = 0; i < SFB_LEVELS; i++) {
162 u32 hash = sfbhash & SFB_BUCKET_MASK;
163
164 sfbhash >>= SFB_BUCKET_SHIFT;
165 if (b[hash].qlen > 0)
166 b[hash].qlen--;
167 b += SFB_NUMBUCKETS; /* next level */
168 }
169 }
170
171 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
172 {
173 u32 sfbhash;
174
175 sfbhash = sfb_hash(skb, 0);
176 if (sfbhash)
177 decrement_one_qlen(sfbhash, 0, q);
178
179 sfbhash = sfb_hash(skb, 1);
180 if (sfbhash)
181 decrement_one_qlen(sfbhash, 1, q);
182 }
183
184 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
185 {
186 b->p_mark = prob_minus(b->p_mark, q->decrement);
187 }
188
189 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
190 {
191 b->p_mark = prob_plus(b->p_mark, q->increment);
192 }
193
194 static void sfb_zero_all_buckets(struct sfb_sched_data *q)
195 {
196 memset(&q->bins, 0, sizeof(q->bins));
197 }
198
199 /*
200 * compute max qlen, max p_mark, and avg p_mark
201 */
202 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
203 {
204 int i;
205 u32 qlen = 0, prob = 0, totalpm = 0;
206 const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
207
208 for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
209 if (qlen < b->qlen)
210 qlen = b->qlen;
211 totalpm += b->p_mark;
212 if (prob < b->p_mark)
213 prob = b->p_mark;
214 b++;
215 }
216 *prob_r = prob;
217 *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
218 return qlen;
219 }
220
221
222 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
223 {
224 q->bins[slot].perturbation = prandom_u32();
225 }
226
227 static void sfb_swap_slot(struct sfb_sched_data *q)
228 {
229 sfb_init_perturbation(q->slot, q);
230 q->slot ^= 1;
231 q->double_buffering = false;
232 }
233
234 /* Non elastic flows are allowed to use part of the bandwidth, expressed
235 * in "penalty_rate" packets per second, with "penalty_burst" burst
236 */
237 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
238 {
239 if (q->penalty_rate == 0 || q->penalty_burst == 0)
240 return true;
241
242 if (q->tokens_avail < 1) {
243 unsigned long age = min(10UL * HZ, jiffies - q->token_time);
244
245 q->tokens_avail = (age * q->penalty_rate) / HZ;
246 if (q->tokens_avail > q->penalty_burst)
247 q->tokens_avail = q->penalty_burst;
248 q->token_time = jiffies;
249 if (q->tokens_avail < 1)
250 return true;
251 }
252
253 q->tokens_avail--;
254 return false;
255 }
256
257 static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl,
258 int *qerr, u32 *salt)
259 {
260 struct tcf_result res;
261 int result;
262
263 result = tcf_classify(skb, fl, &res, false);
264 if (result >= 0) {
265 #ifdef CONFIG_NET_CLS_ACT
266 switch (result) {
267 case TC_ACT_STOLEN:
268 case TC_ACT_QUEUED:
269 case TC_ACT_TRAP:
270 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
271 case TC_ACT_SHOT:
272 return false;
273 }
274 #endif
275 *salt = TC_H_MIN(res.classid);
276 return true;
277 }
278 return false;
279 }
280
281 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch,
282 struct sk_buff **to_free)
283 {
284
285 struct sfb_sched_data *q = qdisc_priv(sch);
286 struct Qdisc *child = q->qdisc;
287 struct tcf_proto *fl;
288 int i;
289 u32 p_min = ~0;
290 u32 minqlen = ~0;
291 u32 r, sfbhash;
292 u32 slot = q->slot;
293 int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
294
295 if (unlikely(sch->q.qlen >= q->limit)) {
296 qdisc_qstats_overlimit(sch);
297 q->stats.queuedrop++;
298 goto drop;
299 }
300
301 if (q->rehash_interval > 0) {
302 unsigned long limit = q->rehash_time + q->rehash_interval;
303
304 if (unlikely(time_after(jiffies, limit))) {
305 sfb_swap_slot(q);
306 q->rehash_time = jiffies;
307 } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
308 time_after(jiffies, limit - q->warmup_time))) {
309 q->double_buffering = true;
310 }
311 }
312
313 fl = rcu_dereference_bh(q->filter_list);
314 if (fl) {
315 u32 salt;
316
317 /* If using external classifiers, get result and record it. */
318 if (!sfb_classify(skb, fl, &ret, &salt))
319 goto other_drop;
320 sfbhash = jhash_1word(salt, q->bins[slot].perturbation);
321 } else {
322 sfbhash = skb_get_hash_perturb(skb, q->bins[slot].perturbation);
323 }
324
325
326 if (!sfbhash)
327 sfbhash = 1;
328 sfb_skb_cb(skb)->hashes[slot] = sfbhash;
329
330 for (i = 0; i < SFB_LEVELS; i++) {
331 u32 hash = sfbhash & SFB_BUCKET_MASK;
332 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
333
334 sfbhash >>= SFB_BUCKET_SHIFT;
335 if (b->qlen == 0)
336 decrement_prob(b, q);
337 else if (b->qlen >= q->bin_size)
338 increment_prob(b, q);
339 if (minqlen > b->qlen)
340 minqlen = b->qlen;
341 if (p_min > b->p_mark)
342 p_min = b->p_mark;
343 }
344
345 slot ^= 1;
346 sfb_skb_cb(skb)->hashes[slot] = 0;
347
348 if (unlikely(minqlen >= q->max)) {
349 qdisc_qstats_overlimit(sch);
350 q->stats.bucketdrop++;
351 goto drop;
352 }
353
354 if (unlikely(p_min >= SFB_MAX_PROB)) {
355 /* Inelastic flow */
356 if (q->double_buffering) {
357 sfbhash = skb_get_hash_perturb(skb,
358 q->bins[slot].perturbation);
359 if (!sfbhash)
360 sfbhash = 1;
361 sfb_skb_cb(skb)->hashes[slot] = sfbhash;
362
363 for (i = 0; i < SFB_LEVELS; i++) {
364 u32 hash = sfbhash & SFB_BUCKET_MASK;
365 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
366
367 sfbhash >>= SFB_BUCKET_SHIFT;
368 if (b->qlen == 0)
369 decrement_prob(b, q);
370 else if (b->qlen >= q->bin_size)
371 increment_prob(b, q);
372 }
373 }
374 if (sfb_rate_limit(skb, q)) {
375 qdisc_qstats_overlimit(sch);
376 q->stats.penaltydrop++;
377 goto drop;
378 }
379 goto enqueue;
380 }
381
382 r = prandom_u32() & SFB_MAX_PROB;
383
384 if (unlikely(r < p_min)) {
385 if (unlikely(p_min > SFB_MAX_PROB / 2)) {
386 /* If we're marking that many packets, then either
387 * this flow is unresponsive, or we're badly congested.
388 * In either case, we want to start dropping packets.
389 */
390 if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
391 q->stats.earlydrop++;
392 goto drop;
393 }
394 }
395 if (INET_ECN_set_ce(skb)) {
396 q->stats.marked++;
397 } else {
398 q->stats.earlydrop++;
399 goto drop;
400 }
401 }
402
403 enqueue:
404 ret = qdisc_enqueue(skb, child, to_free);
405 if (likely(ret == NET_XMIT_SUCCESS)) {
406 qdisc_qstats_backlog_inc(sch, skb);
407 sch->q.qlen++;
408 increment_qlen(skb, q);
409 } else if (net_xmit_drop_count(ret)) {
410 q->stats.childdrop++;
411 qdisc_qstats_drop(sch);
412 }
413 return ret;
414
415 drop:
416 qdisc_drop(skb, sch, to_free);
417 return NET_XMIT_CN;
418 other_drop:
419 if (ret & __NET_XMIT_BYPASS)
420 qdisc_qstats_drop(sch);
421 kfree_skb(skb);
422 return ret;
423 }
424
425 static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
426 {
427 struct sfb_sched_data *q = qdisc_priv(sch);
428 struct Qdisc *child = q->qdisc;
429 struct sk_buff *skb;
430
431 skb = child->dequeue(q->qdisc);
432
433 if (skb) {
434 qdisc_bstats_update(sch, skb);
435 qdisc_qstats_backlog_dec(sch, skb);
436 sch->q.qlen--;
437 decrement_qlen(skb, q);
438 }
439
440 return skb;
441 }
442
443 static struct sk_buff *sfb_peek(struct Qdisc *sch)
444 {
445 struct sfb_sched_data *q = qdisc_priv(sch);
446 struct Qdisc *child = q->qdisc;
447
448 return child->ops->peek(child);
449 }
450
451 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
452
453 static void sfb_reset(struct Qdisc *sch)
454 {
455 struct sfb_sched_data *q = qdisc_priv(sch);
456
457 qdisc_reset(q->qdisc);
458 sch->qstats.backlog = 0;
459 sch->q.qlen = 0;
460 q->slot = 0;
461 q->double_buffering = false;
462 sfb_zero_all_buckets(q);
463 sfb_init_perturbation(0, q);
464 }
465
466 static void sfb_destroy(struct Qdisc *sch)
467 {
468 struct sfb_sched_data *q = qdisc_priv(sch);
469
470 tcf_block_put(q->block);
471 qdisc_destroy(q->qdisc);
472 }
473
474 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
475 [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
476 };
477
478 static const struct tc_sfb_qopt sfb_default_ops = {
479 .rehash_interval = 600 * MSEC_PER_SEC,
480 .warmup_time = 60 * MSEC_PER_SEC,
481 .limit = 0,
482 .max = 25,
483 .bin_size = 20,
484 .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
485 .decrement = (SFB_MAX_PROB + 3000) / 6000,
486 .penalty_rate = 10,
487 .penalty_burst = 20,
488 };
489
490 static int sfb_change(struct Qdisc *sch, struct nlattr *opt)
491 {
492 struct sfb_sched_data *q = qdisc_priv(sch);
493 struct Qdisc *child;
494 struct nlattr *tb[TCA_SFB_MAX + 1];
495 const struct tc_sfb_qopt *ctl = &sfb_default_ops;
496 u32 limit;
497 int err;
498
499 if (opt) {
500 err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy, NULL);
501 if (err < 0)
502 return -EINVAL;
503
504 if (tb[TCA_SFB_PARMS] == NULL)
505 return -EINVAL;
506
507 ctl = nla_data(tb[TCA_SFB_PARMS]);
508 }
509
510 limit = ctl->limit;
511 if (limit == 0)
512 limit = qdisc_dev(sch)->tx_queue_len;
513
514 child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit);
515 if (IS_ERR(child))
516 return PTR_ERR(child);
517
518 if (child != &noop_qdisc)
519 qdisc_hash_add(child, true);
520 sch_tree_lock(sch);
521
522 qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
523 q->qdisc->qstats.backlog);
524 qdisc_destroy(q->qdisc);
525 q->qdisc = child;
526
527 q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
528 q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
529 q->rehash_time = jiffies;
530 q->limit = limit;
531 q->increment = ctl->increment;
532 q->decrement = ctl->decrement;
533 q->max = ctl->max;
534 q->bin_size = ctl->bin_size;
535 q->penalty_rate = ctl->penalty_rate;
536 q->penalty_burst = ctl->penalty_burst;
537 q->tokens_avail = ctl->penalty_burst;
538 q->token_time = jiffies;
539
540 q->slot = 0;
541 q->double_buffering = false;
542 sfb_zero_all_buckets(q);
543 sfb_init_perturbation(0, q);
544 sfb_init_perturbation(1, q);
545
546 sch_tree_unlock(sch);
547
548 return 0;
549 }
550
551 static int sfb_init(struct Qdisc *sch, struct nlattr *opt)
552 {
553 struct sfb_sched_data *q = qdisc_priv(sch);
554 int err;
555
556 err = tcf_block_get(&q->block, &q->filter_list);
557 if (err)
558 return err;
559
560 q->qdisc = &noop_qdisc;
561 return sfb_change(sch, opt);
562 }
563
564 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
565 {
566 struct sfb_sched_data *q = qdisc_priv(sch);
567 struct nlattr *opts;
568 struct tc_sfb_qopt opt = {
569 .rehash_interval = jiffies_to_msecs(q->rehash_interval),
570 .warmup_time = jiffies_to_msecs(q->warmup_time),
571 .limit = q->limit,
572 .max = q->max,
573 .bin_size = q->bin_size,
574 .increment = q->increment,
575 .decrement = q->decrement,
576 .penalty_rate = q->penalty_rate,
577 .penalty_burst = q->penalty_burst,
578 };
579
580 sch->qstats.backlog = q->qdisc->qstats.backlog;
581 opts = nla_nest_start(skb, TCA_OPTIONS);
582 if (opts == NULL)
583 goto nla_put_failure;
584 if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
585 goto nla_put_failure;
586 return nla_nest_end(skb, opts);
587
588 nla_put_failure:
589 nla_nest_cancel(skb, opts);
590 return -EMSGSIZE;
591 }
592
593 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
594 {
595 struct sfb_sched_data *q = qdisc_priv(sch);
596 struct tc_sfb_xstats st = {
597 .earlydrop = q->stats.earlydrop,
598 .penaltydrop = q->stats.penaltydrop,
599 .bucketdrop = q->stats.bucketdrop,
600 .queuedrop = q->stats.queuedrop,
601 .childdrop = q->stats.childdrop,
602 .marked = q->stats.marked,
603 };
604
605 st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
606
607 return gnet_stats_copy_app(d, &st, sizeof(st));
608 }
609
610 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
611 struct sk_buff *skb, struct tcmsg *tcm)
612 {
613 return -ENOSYS;
614 }
615
616 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
617 struct Qdisc **old)
618 {
619 struct sfb_sched_data *q = qdisc_priv(sch);
620
621 if (new == NULL)
622 new = &noop_qdisc;
623
624 *old = qdisc_replace(sch, new, &q->qdisc);
625 return 0;
626 }
627
628 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
629 {
630 struct sfb_sched_data *q = qdisc_priv(sch);
631
632 return q->qdisc;
633 }
634
635 static unsigned long sfb_find(struct Qdisc *sch, u32 classid)
636 {
637 return 1;
638 }
639
640 static void sfb_unbind(struct Qdisc *sch, unsigned long arg)
641 {
642 }
643
644 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
645 struct nlattr **tca, unsigned long *arg)
646 {
647 return -ENOSYS;
648 }
649
650 static int sfb_delete(struct Qdisc *sch, unsigned long cl)
651 {
652 return -ENOSYS;
653 }
654
655 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
656 {
657 if (!walker->stop) {
658 if (walker->count >= walker->skip)
659 if (walker->fn(sch, 1, walker) < 0) {
660 walker->stop = 1;
661 return;
662 }
663 walker->count++;
664 }
665 }
666
667 static struct tcf_block *sfb_tcf_block(struct Qdisc *sch, unsigned long cl)
668 {
669 struct sfb_sched_data *q = qdisc_priv(sch);
670
671 if (cl)
672 return NULL;
673 return q->block;
674 }
675
676 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
677 u32 classid)
678 {
679 return 0;
680 }
681
682
683 static const struct Qdisc_class_ops sfb_class_ops = {
684 .graft = sfb_graft,
685 .leaf = sfb_leaf,
686 .find = sfb_find,
687 .change = sfb_change_class,
688 .delete = sfb_delete,
689 .walk = sfb_walk,
690 .tcf_block = sfb_tcf_block,
691 .bind_tcf = sfb_bind,
692 .unbind_tcf = sfb_unbind,
693 .dump = sfb_dump_class,
694 };
695
696 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
697 .id = "sfb",
698 .priv_size = sizeof(struct sfb_sched_data),
699 .cl_ops = &sfb_class_ops,
700 .enqueue = sfb_enqueue,
701 .dequeue = sfb_dequeue,
702 .peek = sfb_peek,
703 .init = sfb_init,
704 .reset = sfb_reset,
705 .destroy = sfb_destroy,
706 .change = sfb_change,
707 .dump = sfb_dump,
708 .dump_stats = sfb_dump_stats,
709 .owner = THIS_MODULE,
710 };
711
712 static int __init sfb_module_init(void)
713 {
714 return register_qdisc(&sfb_qdisc_ops);
715 }
716
717 static void __exit sfb_module_exit(void)
718 {
719 unregister_qdisc(&sfb_qdisc_ops);
720 }
721
722 module_init(sfb_module_init)
723 module_exit(sfb_module_exit)
724
725 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
726 MODULE_AUTHOR("Juliusz Chroboczek");
727 MODULE_AUTHOR("Eric Dumazet");
728 MODULE_LICENSE("GPL");