[RAMEN9610-21565]vfs: fix do_last() regression
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38
39 #include "internal.h"
40
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47 static void __vunmap(const void *, int);
48
49 static void free_work(struct work_struct *w)
50 {
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *t, *llnode;
53
54 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 __vunmap((void *)llnode, 1);
56 }
57
58 /*** Page table manipulation functions ***/
59
60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61 {
62 pte_t *pte;
63
64 pte = pte_offset_kernel(pmd, addr);
65 do {
66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 } while (pte++, addr += PAGE_SIZE, addr != end);
69 }
70
71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
72 {
73 pmd_t *pmd;
74 unsigned long next;
75
76 pmd = pmd_offset(pud, addr);
77 do {
78 next = pmd_addr_end(addr, end);
79 if (pmd_clear_huge(pmd))
80 continue;
81 if (pmd_none_or_clear_bad(pmd))
82 continue;
83 vunmap_pte_range(pmd, addr, next);
84 } while (pmd++, addr = next, addr != end);
85 }
86
87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
88 {
89 pud_t *pud;
90 unsigned long next;
91
92 pud = pud_offset(p4d, addr);
93 do {
94 next = pud_addr_end(addr, end);
95 if (pud_clear_huge(pud))
96 continue;
97 if (pud_none_or_clear_bad(pud))
98 continue;
99 vunmap_pmd_range(pud, addr, next);
100 } while (pud++, addr = next, addr != end);
101 }
102
103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104 {
105 p4d_t *p4d;
106 unsigned long next;
107
108 p4d = p4d_offset(pgd, addr);
109 do {
110 next = p4d_addr_end(addr, end);
111 if (p4d_clear_huge(p4d))
112 continue;
113 if (p4d_none_or_clear_bad(p4d))
114 continue;
115 vunmap_pud_range(p4d, addr, next);
116 } while (p4d++, addr = next, addr != end);
117 }
118
119 static void vunmap_page_range(unsigned long addr, unsigned long end)
120 {
121 pgd_t *pgd;
122 unsigned long next;
123
124 BUG_ON(addr >= end);
125 pgd = pgd_offset_k(addr);
126 do {
127 next = pgd_addr_end(addr, end);
128 if (pgd_none_or_clear_bad(pgd))
129 continue;
130 vunmap_p4d_range(pgd, addr, next);
131 } while (pgd++, addr = next, addr != end);
132 }
133
134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 pte_t *pte;
138
139 /*
140 * nr is a running index into the array which helps higher level
141 * callers keep track of where we're up to.
142 */
143
144 pte = pte_alloc_kernel(pmd, addr);
145 if (!pte)
146 return -ENOMEM;
147 do {
148 struct page *page = pages[*nr];
149
150 if (WARN_ON(!pte_none(*pte)))
151 return -EBUSY;
152 if (WARN_ON(!page))
153 return -ENOMEM;
154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
155 (*nr)++;
156 } while (pte++, addr += PAGE_SIZE, addr != end);
157 return 0;
158 }
159
160 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
162 {
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc(&init_mm, pud, addr);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
172 return -ENOMEM;
173 } while (pmd++, addr = next, addr != end);
174 return 0;
175 }
176
177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
178 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
179 {
180 pud_t *pud;
181 unsigned long next;
182
183 pud = pud_alloc(&init_mm, p4d, addr);
184 if (!pud)
185 return -ENOMEM;
186 do {
187 next = pud_addr_end(addr, end);
188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
189 return -ENOMEM;
190 } while (pud++, addr = next, addr != end);
191 return 0;
192 }
193
194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196 {
197 p4d_t *p4d;
198 unsigned long next;
199
200 p4d = p4d_alloc(&init_mm, pgd, addr);
201 if (!p4d)
202 return -ENOMEM;
203 do {
204 next = p4d_addr_end(addr, end);
205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 return -ENOMEM;
207 } while (p4d++, addr = next, addr != end);
208 return 0;
209 }
210
211 /*
212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213 * will have pfns corresponding to the "pages" array.
214 *
215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216 */
217 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 pgprot_t prot, struct page **pages)
219 {
220 pgd_t *pgd;
221 unsigned long next;
222 unsigned long addr = start;
223 int err = 0;
224 int nr = 0;
225
226 BUG_ON(addr >= end);
227 pgd = pgd_offset_k(addr);
228 do {
229 next = pgd_addr_end(addr, end);
230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
231 if (err)
232 return err;
233 } while (pgd++, addr = next, addr != end);
234
235 return nr;
236 }
237
238 static int vmap_page_range(unsigned long start, unsigned long end,
239 pgprot_t prot, struct page **pages)
240 {
241 int ret;
242
243 ret = vmap_page_range_noflush(start, end, prot, pages);
244 flush_cache_vmap(start, end);
245 return ret;
246 }
247
248 int is_vmalloc_or_module_addr(const void *x)
249 {
250 /*
251 * ARM, x86-64 and sparc64 put modules in a special place,
252 * and fall back on vmalloc() if that fails. Others
253 * just put it in the vmalloc space.
254 */
255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 unsigned long addr = (unsigned long)x;
257 if (addr >= MODULES_VADDR && addr < MODULES_END)
258 return 1;
259 #endif
260 return is_vmalloc_addr(x);
261 }
262
263 /*
264 * Walk a vmap address to the struct page it maps.
265 */
266 struct page *vmalloc_to_page(const void *vmalloc_addr)
267 {
268 unsigned long addr = (unsigned long) vmalloc_addr;
269 struct page *page = NULL;
270 pgd_t *pgd = pgd_offset_k(addr);
271 p4d_t *p4d;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *ptep, pte;
275
276 /*
277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 * architectures that do not vmalloc module space
279 */
280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
281
282 if (pgd_none(*pgd))
283 return NULL;
284 p4d = p4d_offset(pgd, addr);
285 if (p4d_none(*p4d))
286 return NULL;
287 pud = pud_offset(p4d, addr);
288
289 /*
290 * Don't dereference bad PUD or PMD (below) entries. This will also
291 * identify huge mappings, which we may encounter on architectures
292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 * not [unambiguously] associated with a struct page, so there is
295 * no correct value to return for them.
296 */
297 WARN_ON_ONCE(pud_bad(*pud));
298 if (pud_none(*pud) || pud_bad(*pud))
299 return NULL;
300 pmd = pmd_offset(pud, addr);
301 WARN_ON_ONCE(pmd_bad(*pmd));
302 if (pmd_none(*pmd) || pmd_bad(*pmd))
303 return NULL;
304
305 ptep = pte_offset_map(pmd, addr);
306 pte = *ptep;
307 if (pte_present(pte))
308 page = pte_page(pte);
309 pte_unmap(ptep);
310 return page;
311 }
312 EXPORT_SYMBOL(vmalloc_to_page);
313
314 /*
315 * Map a vmalloc()-space virtual address to the physical page frame number.
316 */
317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
318 {
319 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
320 }
321 EXPORT_SYMBOL(vmalloc_to_pfn);
322
323
324 /*** Global kva allocator ***/
325
326 #define VM_LAZY_FREE 0x02
327 #define VM_VM_AREA 0x04
328
329 static DEFINE_SPINLOCK(vmap_area_lock);
330 /* Export for kexec only */
331 LIST_HEAD(vmap_area_list);
332 static LLIST_HEAD(vmap_purge_list);
333 static struct rb_root vmap_area_root = RB_ROOT;
334
335 /* The vmap cache globals are protected by vmap_area_lock */
336 static struct rb_node *free_vmap_cache;
337 static unsigned long cached_hole_size;
338 static unsigned long cached_vstart;
339 static unsigned long cached_align;
340
341 static unsigned long vmap_area_pcpu_hole;
342
343 static struct vmap_area *__find_vmap_area(unsigned long addr)
344 {
345 struct rb_node *n = vmap_area_root.rb_node;
346
347 while (n) {
348 struct vmap_area *va;
349
350 va = rb_entry(n, struct vmap_area, rb_node);
351 if (addr < va->va_start)
352 n = n->rb_left;
353 else if (addr >= va->va_end)
354 n = n->rb_right;
355 else
356 return va;
357 }
358
359 return NULL;
360 }
361
362 static void __insert_vmap_area(struct vmap_area *va)
363 {
364 struct rb_node **p = &vmap_area_root.rb_node;
365 struct rb_node *parent = NULL;
366 struct rb_node *tmp;
367
368 while (*p) {
369 struct vmap_area *tmp_va;
370
371 parent = *p;
372 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 if (va->va_start < tmp_va->va_end)
374 p = &(*p)->rb_left;
375 else if (va->va_end > tmp_va->va_start)
376 p = &(*p)->rb_right;
377 else
378 BUG();
379 }
380
381 rb_link_node(&va->rb_node, parent, p);
382 rb_insert_color(&va->rb_node, &vmap_area_root);
383
384 /* address-sort this list */
385 tmp = rb_prev(&va->rb_node);
386 if (tmp) {
387 struct vmap_area *prev;
388 prev = rb_entry(tmp, struct vmap_area, rb_node);
389 list_add_rcu(&va->list, &prev->list);
390 } else
391 list_add_rcu(&va->list, &vmap_area_list);
392 }
393
394 static void purge_vmap_area_lazy(void);
395
396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397
398 /*
399 * Allocate a region of KVA of the specified size and alignment, within the
400 * vstart and vend.
401 */
402 static struct vmap_area *alloc_vmap_area(unsigned long size,
403 unsigned long align,
404 unsigned long vstart, unsigned long vend,
405 int node, gfp_t gfp_mask)
406 {
407 struct vmap_area *va;
408 struct rb_node *n;
409 unsigned long addr;
410 int purged = 0;
411 struct vmap_area *first;
412
413 BUG_ON(!size);
414 BUG_ON(offset_in_page(size));
415 BUG_ON(!is_power_of_2(align));
416
417 might_sleep();
418
419 va = kmalloc_node(sizeof(struct vmap_area),
420 gfp_mask & GFP_RECLAIM_MASK, node);
421 if (unlikely(!va))
422 return ERR_PTR(-ENOMEM);
423
424 /*
425 * Only scan the relevant parts containing pointers to other objects
426 * to avoid false negatives.
427 */
428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429
430 retry:
431 spin_lock(&vmap_area_lock);
432 /*
433 * Invalidate cache if we have more permissive parameters.
434 * cached_hole_size notes the largest hole noticed _below_
435 * the vmap_area cached in free_vmap_cache: if size fits
436 * into that hole, we want to scan from vstart to reuse
437 * the hole instead of allocating above free_vmap_cache.
438 * Note that __free_vmap_area may update free_vmap_cache
439 * without updating cached_hole_size or cached_align.
440 */
441 if (!free_vmap_cache ||
442 size < cached_hole_size ||
443 vstart < cached_vstart ||
444 align < cached_align) {
445 nocache:
446 cached_hole_size = 0;
447 free_vmap_cache = NULL;
448 }
449 /* record if we encounter less permissive parameters */
450 cached_vstart = vstart;
451 cached_align = align;
452
453 /* find starting point for our search */
454 if (free_vmap_cache) {
455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
456 addr = ALIGN(first->va_end, align);
457 if (addr < vstart)
458 goto nocache;
459 if (addr + size < addr)
460 goto overflow;
461
462 } else {
463 addr = ALIGN(vstart, align);
464 if (addr + size < addr)
465 goto overflow;
466
467 n = vmap_area_root.rb_node;
468 first = NULL;
469
470 while (n) {
471 struct vmap_area *tmp;
472 tmp = rb_entry(n, struct vmap_area, rb_node);
473 if (tmp->va_end >= addr) {
474 first = tmp;
475 if (tmp->va_start <= addr)
476 break;
477 n = n->rb_left;
478 } else
479 n = n->rb_right;
480 }
481
482 if (!first)
483 goto found;
484 }
485
486 /* from the starting point, walk areas until a suitable hole is found */
487 while (addr + size > first->va_start && addr + size <= vend) {
488 if (addr + cached_hole_size < first->va_start)
489 cached_hole_size = first->va_start - addr;
490 addr = ALIGN(first->va_end, align);
491 if (addr + size < addr)
492 goto overflow;
493
494 if (list_is_last(&first->list, &vmap_area_list))
495 goto found;
496
497 first = list_next_entry(first, list);
498 }
499
500 found:
501 /*
502 * Check also calculated address against the vstart,
503 * because it can be 0 because of big align request.
504 */
505 if (addr + size > vend || addr < vstart)
506 goto overflow;
507
508 va->va_start = addr;
509 va->va_end = addr + size;
510 va->flags = 0;
511 __insert_vmap_area(va);
512 free_vmap_cache = &va->rb_node;
513 spin_unlock(&vmap_area_lock);
514
515 BUG_ON(!IS_ALIGNED(va->va_start, align));
516 BUG_ON(va->va_start < vstart);
517 BUG_ON(va->va_end > vend);
518
519 return va;
520
521 overflow:
522 spin_unlock(&vmap_area_lock);
523 if (!purged) {
524 purge_vmap_area_lazy();
525 purged = 1;
526 goto retry;
527 }
528
529 if (gfpflags_allow_blocking(gfp_mask)) {
530 unsigned long freed = 0;
531 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
532 if (freed > 0) {
533 purged = 0;
534 goto retry;
535 }
536 }
537
538 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
539 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
540 size);
541 kfree(va);
542 return ERR_PTR(-EBUSY);
543 }
544
545 int register_vmap_purge_notifier(struct notifier_block *nb)
546 {
547 return blocking_notifier_chain_register(&vmap_notify_list, nb);
548 }
549 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
550
551 int unregister_vmap_purge_notifier(struct notifier_block *nb)
552 {
553 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
554 }
555 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
556
557 static void __free_vmap_area(struct vmap_area *va)
558 {
559 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
560
561 if (free_vmap_cache) {
562 if (va->va_end < cached_vstart) {
563 free_vmap_cache = NULL;
564 } else {
565 struct vmap_area *cache;
566 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
567 if (va->va_start <= cache->va_start) {
568 free_vmap_cache = rb_prev(&va->rb_node);
569 /*
570 * We don't try to update cached_hole_size or
571 * cached_align, but it won't go very wrong.
572 */
573 }
574 }
575 }
576 rb_erase(&va->rb_node, &vmap_area_root);
577 RB_CLEAR_NODE(&va->rb_node);
578 list_del_rcu(&va->list);
579
580 /*
581 * Track the highest possible candidate for pcpu area
582 * allocation. Areas outside of vmalloc area can be returned
583 * here too, consider only end addresses which fall inside
584 * vmalloc area proper.
585 */
586 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
587 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
588
589 kfree_rcu(va, rcu_head);
590 }
591
592 /*
593 * Free a region of KVA allocated by alloc_vmap_area
594 */
595 static void free_vmap_area(struct vmap_area *va)
596 {
597 spin_lock(&vmap_area_lock);
598 __free_vmap_area(va);
599 spin_unlock(&vmap_area_lock);
600 }
601
602 /*
603 * Clear the pagetable entries of a given vmap_area
604 */
605 static void unmap_vmap_area(struct vmap_area *va)
606 {
607 vunmap_page_range(va->va_start, va->va_end);
608 }
609
610 static void vmap_debug_free_range(unsigned long start, unsigned long end)
611 {
612 /*
613 * Unmap page tables and force a TLB flush immediately if pagealloc
614 * debugging is enabled. This catches use after free bugs similarly to
615 * those in linear kernel virtual address space after a page has been
616 * freed.
617 *
618 * All the lazy freeing logic is still retained, in order to minimise
619 * intrusiveness of this debugging feature.
620 *
621 * This is going to be *slow* (linear kernel virtual address debugging
622 * doesn't do a broadcast TLB flush so it is a lot faster).
623 */
624 if (debug_pagealloc_enabled()) {
625 vunmap_page_range(start, end);
626 flush_tlb_kernel_range(start, end);
627 }
628 }
629
630 /*
631 * lazy_max_pages is the maximum amount of virtual address space we gather up
632 * before attempting to purge with a TLB flush.
633 *
634 * There is a tradeoff here: a larger number will cover more kernel page tables
635 * and take slightly longer to purge, but it will linearly reduce the number of
636 * global TLB flushes that must be performed. It would seem natural to scale
637 * this number up linearly with the number of CPUs (because vmapping activity
638 * could also scale linearly with the number of CPUs), however it is likely
639 * that in practice, workloads might be constrained in other ways that mean
640 * vmap activity will not scale linearly with CPUs. Also, I want to be
641 * conservative and not introduce a big latency on huge systems, so go with
642 * a less aggressive log scale. It will still be an improvement over the old
643 * code, and it will be simple to change the scale factor if we find that it
644 * becomes a problem on bigger systems.
645 */
646 static unsigned long lazy_max_pages(void)
647 {
648 unsigned int log;
649
650 log = fls(num_online_cpus());
651
652 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
653 }
654
655 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
656
657 /*
658 * Serialize vmap purging. There is no actual criticial section protected
659 * by this look, but we want to avoid concurrent calls for performance
660 * reasons and to make the pcpu_get_vm_areas more deterministic.
661 */
662 static DEFINE_MUTEX(vmap_purge_lock);
663
664 /* for per-CPU blocks */
665 static void purge_fragmented_blocks_allcpus(void);
666
667 /*
668 * called before a call to iounmap() if the caller wants vm_area_struct's
669 * immediately freed.
670 */
671 void set_iounmap_nonlazy(void)
672 {
673 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
674 }
675
676 /*
677 * Purges all lazily-freed vmap areas.
678 */
679 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
680 {
681 struct llist_node *valist;
682 struct vmap_area *va;
683 struct vmap_area *n_va;
684 bool do_free = false;
685
686 lockdep_assert_held(&vmap_purge_lock);
687
688 valist = llist_del_all(&vmap_purge_list);
689 llist_for_each_entry(va, valist, purge_list) {
690 if (va->va_start < start)
691 start = va->va_start;
692 if (va->va_end > end)
693 end = va->va_end;
694 do_free = true;
695 }
696
697 if (!do_free)
698 return false;
699
700 flush_tlb_kernel_range(start, end);
701
702 spin_lock(&vmap_area_lock);
703 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
704 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
705
706 __free_vmap_area(va);
707 atomic_sub(nr, &vmap_lazy_nr);
708 cond_resched_lock(&vmap_area_lock);
709 }
710 spin_unlock(&vmap_area_lock);
711 return true;
712 }
713
714 /*
715 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
716 * is already purging.
717 */
718 static void try_purge_vmap_area_lazy(void)
719 {
720 if (mutex_trylock(&vmap_purge_lock)) {
721 __purge_vmap_area_lazy(ULONG_MAX, 0);
722 mutex_unlock(&vmap_purge_lock);
723 }
724 }
725
726 /*
727 * Kick off a purge of the outstanding lazy areas.
728 */
729 static void purge_vmap_area_lazy(void)
730 {
731 mutex_lock(&vmap_purge_lock);
732 purge_fragmented_blocks_allcpus();
733 __purge_vmap_area_lazy(ULONG_MAX, 0);
734 mutex_unlock(&vmap_purge_lock);
735 }
736
737 /*
738 * Free a vmap area, caller ensuring that the area has been unmapped
739 * and flush_cache_vunmap had been called for the correct range
740 * previously.
741 */
742 static void free_vmap_area_noflush(struct vmap_area *va)
743 {
744 int nr_lazy;
745
746 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
747 &vmap_lazy_nr);
748
749 /* After this point, we may free va at any time */
750 llist_add(&va->purge_list, &vmap_purge_list);
751
752 if (unlikely(nr_lazy > lazy_max_pages()))
753 try_purge_vmap_area_lazy();
754 }
755
756 /*
757 * Free and unmap a vmap area
758 */
759 static void free_unmap_vmap_area(struct vmap_area *va)
760 {
761 flush_cache_vunmap(va->va_start, va->va_end);
762 unmap_vmap_area(va);
763 free_vmap_area_noflush(va);
764 }
765
766 static struct vmap_area *find_vmap_area(unsigned long addr)
767 {
768 struct vmap_area *va;
769
770 spin_lock(&vmap_area_lock);
771 va = __find_vmap_area(addr);
772 spin_unlock(&vmap_area_lock);
773
774 return va;
775 }
776
777 /*** Per cpu kva allocator ***/
778
779 /*
780 * vmap space is limited especially on 32 bit architectures. Ensure there is
781 * room for at least 16 percpu vmap blocks per CPU.
782 */
783 /*
784 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
785 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
786 * instead (we just need a rough idea)
787 */
788 #if BITS_PER_LONG == 32
789 #define VMALLOC_SPACE (128UL*1024*1024)
790 #else
791 #define VMALLOC_SPACE (128UL*1024*1024*1024)
792 #endif
793
794 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
795 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
796 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
797 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
798 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
799 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
800 #define VMAP_BBMAP_BITS \
801 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
802 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
803 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
804
805 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
806
807 static bool vmap_initialized __read_mostly = false;
808
809 struct vmap_block_queue {
810 spinlock_t lock;
811 struct list_head free;
812 };
813
814 struct vmap_block {
815 spinlock_t lock;
816 struct vmap_area *va;
817 unsigned long free, dirty;
818 unsigned long dirty_min, dirty_max; /*< dirty range */
819 struct list_head free_list;
820 struct rcu_head rcu_head;
821 struct list_head purge;
822 };
823
824 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
825 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
826
827 /*
828 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
829 * in the free path. Could get rid of this if we change the API to return a
830 * "cookie" from alloc, to be passed to free. But no big deal yet.
831 */
832 static DEFINE_SPINLOCK(vmap_block_tree_lock);
833 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
834
835 /*
836 * We should probably have a fallback mechanism to allocate virtual memory
837 * out of partially filled vmap blocks. However vmap block sizing should be
838 * fairly reasonable according to the vmalloc size, so it shouldn't be a
839 * big problem.
840 */
841
842 static unsigned long addr_to_vb_idx(unsigned long addr)
843 {
844 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
845 addr /= VMAP_BLOCK_SIZE;
846 return addr;
847 }
848
849 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
850 {
851 unsigned long addr;
852
853 addr = va_start + (pages_off << PAGE_SHIFT);
854 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
855 return (void *)addr;
856 }
857
858 /**
859 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
860 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
861 * @order: how many 2^order pages should be occupied in newly allocated block
862 * @gfp_mask: flags for the page level allocator
863 *
864 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
865 */
866 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
867 {
868 struct vmap_block_queue *vbq;
869 struct vmap_block *vb;
870 struct vmap_area *va;
871 unsigned long vb_idx;
872 int node, err;
873 void *vaddr;
874
875 node = numa_node_id();
876
877 vb = kmalloc_node(sizeof(struct vmap_block),
878 gfp_mask & GFP_RECLAIM_MASK, node);
879 if (unlikely(!vb))
880 return ERR_PTR(-ENOMEM);
881
882 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
883 VMALLOC_START, VMALLOC_END,
884 node, gfp_mask);
885 if (IS_ERR(va)) {
886 kfree(vb);
887 return ERR_CAST(va);
888 }
889
890 err = radix_tree_preload(gfp_mask);
891 if (unlikely(err)) {
892 kfree(vb);
893 free_vmap_area(va);
894 return ERR_PTR(err);
895 }
896
897 vaddr = vmap_block_vaddr(va->va_start, 0);
898 spin_lock_init(&vb->lock);
899 vb->va = va;
900 /* At least something should be left free */
901 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
902 vb->free = VMAP_BBMAP_BITS - (1UL << order);
903 vb->dirty = 0;
904 vb->dirty_min = VMAP_BBMAP_BITS;
905 vb->dirty_max = 0;
906 INIT_LIST_HEAD(&vb->free_list);
907
908 vb_idx = addr_to_vb_idx(va->va_start);
909 spin_lock(&vmap_block_tree_lock);
910 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
911 spin_unlock(&vmap_block_tree_lock);
912 BUG_ON(err);
913 radix_tree_preload_end();
914
915 vbq = &get_cpu_var(vmap_block_queue);
916 spin_lock(&vbq->lock);
917 list_add_tail_rcu(&vb->free_list, &vbq->free);
918 spin_unlock(&vbq->lock);
919 put_cpu_var(vmap_block_queue);
920
921 return vaddr;
922 }
923
924 static void free_vmap_block(struct vmap_block *vb)
925 {
926 struct vmap_block *tmp;
927 unsigned long vb_idx;
928
929 vb_idx = addr_to_vb_idx(vb->va->va_start);
930 spin_lock(&vmap_block_tree_lock);
931 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
932 spin_unlock(&vmap_block_tree_lock);
933 BUG_ON(tmp != vb);
934
935 free_vmap_area_noflush(vb->va);
936 kfree_rcu(vb, rcu_head);
937 }
938
939 static void purge_fragmented_blocks(int cpu)
940 {
941 LIST_HEAD(purge);
942 struct vmap_block *vb;
943 struct vmap_block *n_vb;
944 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
945
946 rcu_read_lock();
947 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
948
949 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
950 continue;
951
952 spin_lock(&vb->lock);
953 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
954 vb->free = 0; /* prevent further allocs after releasing lock */
955 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
956 vb->dirty_min = 0;
957 vb->dirty_max = VMAP_BBMAP_BITS;
958 spin_lock(&vbq->lock);
959 list_del_rcu(&vb->free_list);
960 spin_unlock(&vbq->lock);
961 spin_unlock(&vb->lock);
962 list_add_tail(&vb->purge, &purge);
963 } else
964 spin_unlock(&vb->lock);
965 }
966 rcu_read_unlock();
967
968 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
969 list_del(&vb->purge);
970 free_vmap_block(vb);
971 }
972 }
973
974 static void purge_fragmented_blocks_allcpus(void)
975 {
976 int cpu;
977
978 for_each_possible_cpu(cpu)
979 purge_fragmented_blocks(cpu);
980 }
981
982 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
983 {
984 struct vmap_block_queue *vbq;
985 struct vmap_block *vb;
986 void *vaddr = NULL;
987 unsigned int order;
988
989 BUG_ON(offset_in_page(size));
990 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
991 if (WARN_ON(size == 0)) {
992 /*
993 * Allocating 0 bytes isn't what caller wants since
994 * get_order(0) returns funny result. Just warn and terminate
995 * early.
996 */
997 return NULL;
998 }
999 order = get_order(size);
1000
1001 rcu_read_lock();
1002 vbq = &get_cpu_var(vmap_block_queue);
1003 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1004 unsigned long pages_off;
1005
1006 spin_lock(&vb->lock);
1007 if (vb->free < (1UL << order)) {
1008 spin_unlock(&vb->lock);
1009 continue;
1010 }
1011
1012 pages_off = VMAP_BBMAP_BITS - vb->free;
1013 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1014 vb->free -= 1UL << order;
1015 if (vb->free == 0) {
1016 spin_lock(&vbq->lock);
1017 list_del_rcu(&vb->free_list);
1018 spin_unlock(&vbq->lock);
1019 }
1020
1021 spin_unlock(&vb->lock);
1022 break;
1023 }
1024
1025 put_cpu_var(vmap_block_queue);
1026 rcu_read_unlock();
1027
1028 /* Allocate new block if nothing was found */
1029 if (!vaddr)
1030 vaddr = new_vmap_block(order, gfp_mask);
1031
1032 return vaddr;
1033 }
1034
1035 static void vb_free(const void *addr, unsigned long size)
1036 {
1037 unsigned long offset;
1038 unsigned long vb_idx;
1039 unsigned int order;
1040 struct vmap_block *vb;
1041
1042 BUG_ON(offset_in_page(size));
1043 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1044
1045 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1046
1047 order = get_order(size);
1048
1049 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1050 offset >>= PAGE_SHIFT;
1051
1052 vb_idx = addr_to_vb_idx((unsigned long)addr);
1053 rcu_read_lock();
1054 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1055 rcu_read_unlock();
1056 BUG_ON(!vb);
1057
1058 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1059
1060 spin_lock(&vb->lock);
1061
1062 /* Expand dirty range */
1063 vb->dirty_min = min(vb->dirty_min, offset);
1064 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1065
1066 vb->dirty += 1UL << order;
1067 if (vb->dirty == VMAP_BBMAP_BITS) {
1068 BUG_ON(vb->free);
1069 spin_unlock(&vb->lock);
1070 free_vmap_block(vb);
1071 } else
1072 spin_unlock(&vb->lock);
1073 }
1074
1075 /**
1076 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1077 *
1078 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1079 * to amortize TLB flushing overheads. What this means is that any page you
1080 * have now, may, in a former life, have been mapped into kernel virtual
1081 * address by the vmap layer and so there might be some CPUs with TLB entries
1082 * still referencing that page (additional to the regular 1:1 kernel mapping).
1083 *
1084 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1085 * be sure that none of the pages we have control over will have any aliases
1086 * from the vmap layer.
1087 */
1088 void vm_unmap_aliases(void)
1089 {
1090 unsigned long start = ULONG_MAX, end = 0;
1091 int cpu;
1092 int flush = 0;
1093
1094 if (unlikely(!vmap_initialized))
1095 return;
1096
1097 might_sleep();
1098
1099 for_each_possible_cpu(cpu) {
1100 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1101 struct vmap_block *vb;
1102
1103 rcu_read_lock();
1104 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1105 spin_lock(&vb->lock);
1106 if (vb->dirty) {
1107 unsigned long va_start = vb->va->va_start;
1108 unsigned long s, e;
1109
1110 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1111 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1112
1113 start = min(s, start);
1114 end = max(e, end);
1115
1116 flush = 1;
1117 }
1118 spin_unlock(&vb->lock);
1119 }
1120 rcu_read_unlock();
1121 }
1122
1123 mutex_lock(&vmap_purge_lock);
1124 purge_fragmented_blocks_allcpus();
1125 if (!__purge_vmap_area_lazy(start, end) && flush)
1126 flush_tlb_kernel_range(start, end);
1127 mutex_unlock(&vmap_purge_lock);
1128 }
1129 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1130
1131 /**
1132 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1133 * @mem: the pointer returned by vm_map_ram
1134 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1135 */
1136 void vm_unmap_ram(const void *mem, unsigned int count)
1137 {
1138 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1139 unsigned long addr = (unsigned long)mem;
1140 struct vmap_area *va;
1141
1142 might_sleep();
1143 BUG_ON(!addr);
1144 BUG_ON(addr < VMALLOC_START);
1145 BUG_ON(addr > VMALLOC_END);
1146 BUG_ON(!PAGE_ALIGNED(addr));
1147
1148 debug_check_no_locks_freed(mem, size);
1149 vmap_debug_free_range(addr, addr+size);
1150
1151 if (likely(count <= VMAP_MAX_ALLOC)) {
1152 vb_free(mem, size);
1153 return;
1154 }
1155
1156 va = find_vmap_area(addr);
1157 BUG_ON(!va);
1158 free_unmap_vmap_area(va);
1159 }
1160 EXPORT_SYMBOL(vm_unmap_ram);
1161
1162 /**
1163 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1164 * @pages: an array of pointers to the pages to be mapped
1165 * @count: number of pages
1166 * @node: prefer to allocate data structures on this node
1167 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1168 *
1169 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1170 * faster than vmap so it's good. But if you mix long-life and short-life
1171 * objects with vm_map_ram(), it could consume lots of address space through
1172 * fragmentation (especially on a 32bit machine). You could see failures in
1173 * the end. Please use this function for short-lived objects.
1174 *
1175 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1176 */
1177 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1178 {
1179 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1180 unsigned long addr;
1181 void *mem;
1182
1183 if (likely(count <= VMAP_MAX_ALLOC)) {
1184 mem = vb_alloc(size, GFP_KERNEL);
1185 if (IS_ERR(mem))
1186 return NULL;
1187 addr = (unsigned long)mem;
1188 } else {
1189 struct vmap_area *va;
1190 va = alloc_vmap_area(size, PAGE_SIZE,
1191 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1192 if (IS_ERR(va))
1193 return NULL;
1194
1195 addr = va->va_start;
1196 mem = (void *)addr;
1197 }
1198 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1199 vm_unmap_ram(mem, count);
1200 return NULL;
1201 }
1202 return mem;
1203 }
1204 EXPORT_SYMBOL(vm_map_ram);
1205
1206 static struct vm_struct *vmlist __initdata;
1207 /**
1208 * vm_area_add_early - add vmap area early during boot
1209 * @vm: vm_struct to add
1210 *
1211 * This function is used to add fixed kernel vm area to vmlist before
1212 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1213 * should contain proper values and the other fields should be zero.
1214 *
1215 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1216 */
1217 void __init vm_area_add_early(struct vm_struct *vm)
1218 {
1219 struct vm_struct *tmp, **p;
1220
1221 BUG_ON(vmap_initialized);
1222 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1223 if (tmp->addr >= vm->addr) {
1224 BUG_ON(tmp->addr < vm->addr + vm->size);
1225 break;
1226 } else
1227 BUG_ON(tmp->addr + tmp->size > vm->addr);
1228 }
1229 vm->next = *p;
1230 *p = vm;
1231 }
1232
1233 /**
1234 * vm_area_register_early - register vmap area early during boot
1235 * @vm: vm_struct to register
1236 * @align: requested alignment
1237 *
1238 * This function is used to register kernel vm area before
1239 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1240 * proper values on entry and other fields should be zero. On return,
1241 * vm->addr contains the allocated address.
1242 *
1243 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1244 */
1245 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1246 {
1247 static size_t vm_init_off __initdata;
1248 unsigned long addr;
1249
1250 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1251 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1252
1253 vm->addr = (void *)addr;
1254
1255 vm_area_add_early(vm);
1256 }
1257
1258 void __init vmalloc_init(void)
1259 {
1260 struct vmap_area *va;
1261 struct vm_struct *tmp;
1262 int i;
1263
1264 for_each_possible_cpu(i) {
1265 struct vmap_block_queue *vbq;
1266 struct vfree_deferred *p;
1267
1268 vbq = &per_cpu(vmap_block_queue, i);
1269 spin_lock_init(&vbq->lock);
1270 INIT_LIST_HEAD(&vbq->free);
1271 p = &per_cpu(vfree_deferred, i);
1272 init_llist_head(&p->list);
1273 INIT_WORK(&p->wq, free_work);
1274 }
1275
1276 /* Import existing vmlist entries. */
1277 for (tmp = vmlist; tmp; tmp = tmp->next) {
1278 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1279 va->flags = VM_VM_AREA;
1280 va->va_start = (unsigned long)tmp->addr;
1281 va->va_end = va->va_start + tmp->size;
1282 va->vm = tmp;
1283 __insert_vmap_area(va);
1284 }
1285
1286 vmap_area_pcpu_hole = VMALLOC_END;
1287
1288 vmap_initialized = true;
1289 }
1290
1291 /**
1292 * map_kernel_range_noflush - map kernel VM area with the specified pages
1293 * @addr: start of the VM area to map
1294 * @size: size of the VM area to map
1295 * @prot: page protection flags to use
1296 * @pages: pages to map
1297 *
1298 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1299 * specify should have been allocated using get_vm_area() and its
1300 * friends.
1301 *
1302 * NOTE:
1303 * This function does NOT do any cache flushing. The caller is
1304 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1305 * before calling this function.
1306 *
1307 * RETURNS:
1308 * The number of pages mapped on success, -errno on failure.
1309 */
1310 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1311 pgprot_t prot, struct page **pages)
1312 {
1313 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1314 }
1315
1316 /**
1317 * unmap_kernel_range_noflush - unmap kernel VM area
1318 * @addr: start of the VM area to unmap
1319 * @size: size of the VM area to unmap
1320 *
1321 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1322 * specify should have been allocated using get_vm_area() and its
1323 * friends.
1324 *
1325 * NOTE:
1326 * This function does NOT do any cache flushing. The caller is
1327 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1328 * before calling this function and flush_tlb_kernel_range() after.
1329 */
1330 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1331 {
1332 vunmap_page_range(addr, addr + size);
1333 }
1334 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1335
1336 /**
1337 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1338 * @addr: start of the VM area to unmap
1339 * @size: size of the VM area to unmap
1340 *
1341 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1342 * the unmapping and tlb after.
1343 */
1344 void unmap_kernel_range(unsigned long addr, unsigned long size)
1345 {
1346 unsigned long end = addr + size;
1347
1348 flush_cache_vunmap(addr, end);
1349 vunmap_page_range(addr, end);
1350 flush_tlb_kernel_range(addr, end);
1351 }
1352 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1353
1354 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1355 {
1356 unsigned long addr = (unsigned long)area->addr;
1357 unsigned long end = addr + get_vm_area_size(area);
1358 int err;
1359
1360 err = vmap_page_range(addr, end, prot, pages);
1361
1362 return err > 0 ? 0 : err;
1363 }
1364 EXPORT_SYMBOL_GPL(map_vm_area);
1365
1366 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1367 unsigned long flags, const void *caller)
1368 {
1369 spin_lock(&vmap_area_lock);
1370 vm->flags = flags;
1371 vm->addr = (void *)va->va_start;
1372 vm->size = va->va_end - va->va_start;
1373 vm->caller = caller;
1374 va->vm = vm;
1375 va->flags |= VM_VM_AREA;
1376 spin_unlock(&vmap_area_lock);
1377 }
1378
1379 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1380 {
1381 /*
1382 * Before removing VM_UNINITIALIZED,
1383 * we should make sure that vm has proper values.
1384 * Pair with smp_rmb() in show_numa_info().
1385 */
1386 smp_wmb();
1387 vm->flags &= ~VM_UNINITIALIZED;
1388 }
1389
1390 static struct vm_struct *__get_vm_area_node(unsigned long size,
1391 unsigned long align, unsigned long flags, unsigned long start,
1392 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1393 {
1394 struct vmap_area *va;
1395 struct vm_struct *area;
1396
1397 BUG_ON(in_interrupt());
1398 size = PAGE_ALIGN(size);
1399 if (unlikely(!size))
1400 return NULL;
1401
1402 if (flags & VM_IOREMAP)
1403 align = 1ul << clamp_t(int, get_count_order_long(size),
1404 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1405
1406 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1407 if (unlikely(!area))
1408 return NULL;
1409
1410 if (!(flags & VM_NO_GUARD))
1411 size += PAGE_SIZE;
1412
1413 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1414 if (IS_ERR(va)) {
1415 kfree(area);
1416 return NULL;
1417 }
1418
1419 setup_vmalloc_vm(area, va, flags, caller);
1420
1421 return area;
1422 }
1423
1424 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1425 unsigned long start, unsigned long end)
1426 {
1427 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1428 GFP_KERNEL, __builtin_return_address(0));
1429 }
1430 EXPORT_SYMBOL_GPL(__get_vm_area);
1431
1432 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1433 unsigned long start, unsigned long end,
1434 const void *caller)
1435 {
1436 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1437 GFP_KERNEL, caller);
1438 }
1439
1440 /**
1441 * get_vm_area - reserve a contiguous kernel virtual area
1442 * @size: size of the area
1443 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1444 *
1445 * Search an area of @size in the kernel virtual mapping area,
1446 * and reserved it for out purposes. Returns the area descriptor
1447 * on success or %NULL on failure.
1448 */
1449 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1450 {
1451 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1452 NUMA_NO_NODE, GFP_KERNEL,
1453 __builtin_return_address(0));
1454 }
1455
1456 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1457 const void *caller)
1458 {
1459 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1460 NUMA_NO_NODE, GFP_KERNEL, caller);
1461 }
1462
1463 /**
1464 * find_vm_area - find a continuous kernel virtual area
1465 * @addr: base address
1466 *
1467 * Search for the kernel VM area starting at @addr, and return it.
1468 * It is up to the caller to do all required locking to keep the returned
1469 * pointer valid.
1470 */
1471 struct vm_struct *find_vm_area(const void *addr)
1472 {
1473 struct vmap_area *va;
1474
1475 va = find_vmap_area((unsigned long)addr);
1476 if (va && va->flags & VM_VM_AREA)
1477 return va->vm;
1478
1479 return NULL;
1480 }
1481
1482 /**
1483 * remove_vm_area - find and remove a continuous kernel virtual area
1484 * @addr: base address
1485 *
1486 * Search for the kernel VM area starting at @addr, and remove it.
1487 * This function returns the found VM area, but using it is NOT safe
1488 * on SMP machines, except for its size or flags.
1489 */
1490 struct vm_struct *remove_vm_area(const void *addr)
1491 {
1492 struct vmap_area *va;
1493
1494 might_sleep();
1495
1496 va = find_vmap_area((unsigned long)addr);
1497 if (va && va->flags & VM_VM_AREA) {
1498 struct vm_struct *vm = va->vm;
1499
1500 spin_lock(&vmap_area_lock);
1501 va->vm = NULL;
1502 va->flags &= ~VM_VM_AREA;
1503 va->flags |= VM_LAZY_FREE;
1504 spin_unlock(&vmap_area_lock);
1505
1506 vmap_debug_free_range(va->va_start, va->va_end);
1507 kasan_free_shadow(vm);
1508 free_unmap_vmap_area(va);
1509
1510 return vm;
1511 }
1512 return NULL;
1513 }
1514
1515 static void __vunmap(const void *addr, int deallocate_pages)
1516 {
1517 struct vm_struct *area;
1518
1519 if (!addr)
1520 return;
1521
1522 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1523 addr))
1524 return;
1525
1526 area = find_vmap_area((unsigned long)addr)->vm;
1527 if (unlikely(!area)) {
1528 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1529 addr);
1530 return;
1531 }
1532
1533 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1534 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1535
1536 remove_vm_area(addr);
1537 if (deallocate_pages) {
1538 int i;
1539
1540 for (i = 0; i < area->nr_pages; i++) {
1541 struct page *page = area->pages[i];
1542
1543 BUG_ON(!page);
1544 __free_pages(page, 0);
1545 }
1546
1547 kvfree(area->pages);
1548 }
1549
1550 kfree(area);
1551 return;
1552 }
1553
1554 static inline void __vfree_deferred(const void *addr)
1555 {
1556 /*
1557 * Use raw_cpu_ptr() because this can be called from preemptible
1558 * context. Preemption is absolutely fine here, because the llist_add()
1559 * implementation is lockless, so it works even if we are adding to
1560 * nother cpu's list. schedule_work() should be fine with this too.
1561 */
1562 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1563
1564 if (llist_add((struct llist_node *)addr, &p->list))
1565 schedule_work(&p->wq);
1566 }
1567
1568 /**
1569 * vfree_atomic - release memory allocated by vmalloc()
1570 * @addr: memory base address
1571 *
1572 * This one is just like vfree() but can be called in any atomic context
1573 * except NMIs.
1574 */
1575 void vfree_atomic(const void *addr)
1576 {
1577 BUG_ON(in_nmi());
1578
1579 kmemleak_free(addr);
1580
1581 if (!addr)
1582 return;
1583 __vfree_deferred(addr);
1584 }
1585
1586 /**
1587 * vfree - release memory allocated by vmalloc()
1588 * @addr: memory base address
1589 *
1590 * Free the virtually continuous memory area starting at @addr, as
1591 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1592 * NULL, no operation is performed.
1593 *
1594 * Must not be called in NMI context (strictly speaking, only if we don't
1595 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1596 * conventions for vfree() arch-depenedent would be a really bad idea)
1597 *
1598 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1599 */
1600 void vfree(const void *addr)
1601 {
1602 BUG_ON(in_nmi());
1603
1604 kmemleak_free(addr);
1605
1606 if (!addr)
1607 return;
1608 if (unlikely(in_interrupt()))
1609 __vfree_deferred(addr);
1610 else
1611 __vunmap(addr, 1);
1612 }
1613 EXPORT_SYMBOL(vfree);
1614
1615 /**
1616 * vunmap - release virtual mapping obtained by vmap()
1617 * @addr: memory base address
1618 *
1619 * Free the virtually contiguous memory area starting at @addr,
1620 * which was created from the page array passed to vmap().
1621 *
1622 * Must not be called in interrupt context.
1623 */
1624 void vunmap(const void *addr)
1625 {
1626 BUG_ON(in_interrupt());
1627 might_sleep();
1628 if (addr)
1629 __vunmap(addr, 0);
1630 }
1631 EXPORT_SYMBOL(vunmap);
1632
1633 /**
1634 * vmap - map an array of pages into virtually contiguous space
1635 * @pages: array of page pointers
1636 * @count: number of pages to map
1637 * @flags: vm_area->flags
1638 * @prot: page protection for the mapping
1639 *
1640 * Maps @count pages from @pages into contiguous kernel virtual
1641 * space.
1642 */
1643 void *vmap(struct page **pages, unsigned int count,
1644 unsigned long flags, pgprot_t prot)
1645 {
1646 struct vm_struct *area;
1647 unsigned long size; /* In bytes */
1648
1649 might_sleep();
1650
1651 if (count > totalram_pages)
1652 return NULL;
1653
1654 size = (unsigned long)count << PAGE_SHIFT;
1655 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1656 if (!area)
1657 return NULL;
1658
1659 if (map_vm_area(area, prot, pages)) {
1660 vunmap(area->addr);
1661 return NULL;
1662 }
1663
1664 return area->addr;
1665 }
1666 EXPORT_SYMBOL(vmap);
1667
1668 static void *__vmalloc_node(unsigned long size, unsigned long align,
1669 gfp_t gfp_mask, pgprot_t prot,
1670 int node, const void *caller);
1671 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1672 pgprot_t prot, int node)
1673 {
1674 struct page **pages;
1675 unsigned int nr_pages, array_size, i;
1676 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1677 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1678 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1679 0 :
1680 __GFP_HIGHMEM;
1681
1682 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1683 array_size = (nr_pages * sizeof(struct page *));
1684
1685 area->nr_pages = nr_pages;
1686 /* Please note that the recursion is strictly bounded. */
1687 if (array_size > PAGE_SIZE) {
1688 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1689 PAGE_KERNEL, node, area->caller);
1690 } else {
1691 pages = kmalloc_node(array_size, nested_gfp, node);
1692 }
1693 area->pages = pages;
1694 if (!area->pages) {
1695 remove_vm_area(area->addr);
1696 kfree(area);
1697 return NULL;
1698 }
1699
1700 for (i = 0; i < area->nr_pages; i++) {
1701 struct page *page;
1702
1703 if (node == NUMA_NO_NODE)
1704 page = alloc_page(alloc_mask|highmem_mask);
1705 else
1706 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1707
1708 if (unlikely(!page)) {
1709 /* Successfully allocated i pages, free them in __vunmap() */
1710 area->nr_pages = i;
1711 goto fail;
1712 }
1713 area->pages[i] = page;
1714 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1715 cond_resched();
1716 }
1717
1718 if (map_vm_area(area, prot, pages))
1719 goto fail;
1720 return area->addr;
1721
1722 fail:
1723 warn_alloc(gfp_mask, NULL,
1724 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1725 (area->nr_pages*PAGE_SIZE), area->size);
1726 vfree(area->addr);
1727 return NULL;
1728 }
1729
1730 /**
1731 * __vmalloc_node_range - allocate virtually contiguous memory
1732 * @size: allocation size
1733 * @align: desired alignment
1734 * @start: vm area range start
1735 * @end: vm area range end
1736 * @gfp_mask: flags for the page level allocator
1737 * @prot: protection mask for the allocated pages
1738 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1739 * @node: node to use for allocation or NUMA_NO_NODE
1740 * @caller: caller's return address
1741 *
1742 * Allocate enough pages to cover @size from the page level
1743 * allocator with @gfp_mask flags. Map them into contiguous
1744 * kernel virtual space, using a pagetable protection of @prot.
1745 */
1746 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1747 unsigned long start, unsigned long end, gfp_t gfp_mask,
1748 pgprot_t prot, unsigned long vm_flags, int node,
1749 const void *caller)
1750 {
1751 struct vm_struct *area;
1752 void *addr;
1753 unsigned long real_size = size;
1754
1755 size = PAGE_ALIGN(size);
1756 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1757 goto fail;
1758
1759 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1760 vm_flags, start, end, node, gfp_mask, caller);
1761 if (!area)
1762 goto fail;
1763
1764 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1765 if (!addr)
1766 return NULL;
1767
1768 /*
1769 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1770 * flag. It means that vm_struct is not fully initialized.
1771 * Now, it is fully initialized, so remove this flag here.
1772 */
1773 clear_vm_uninitialized_flag(area);
1774
1775 kmemleak_vmalloc(area, size, gfp_mask);
1776
1777 return addr;
1778
1779 fail:
1780 warn_alloc(gfp_mask, NULL,
1781 "vmalloc: allocation failure: %lu bytes", real_size);
1782 return NULL;
1783 }
1784
1785 /**
1786 * __vmalloc_node - allocate virtually contiguous memory
1787 * @size: allocation size
1788 * @align: desired alignment
1789 * @gfp_mask: flags for the page level allocator
1790 * @prot: protection mask for the allocated pages
1791 * @node: node to use for allocation or NUMA_NO_NODE
1792 * @caller: caller's return address
1793 *
1794 * Allocate enough pages to cover @size from the page level
1795 * allocator with @gfp_mask flags. Map them into contiguous
1796 * kernel virtual space, using a pagetable protection of @prot.
1797 *
1798 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1799 * and __GFP_NOFAIL are not supported
1800 *
1801 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1802 * with mm people.
1803 *
1804 */
1805 static void *__vmalloc_node(unsigned long size, unsigned long align,
1806 gfp_t gfp_mask, pgprot_t prot,
1807 int node, const void *caller)
1808 {
1809 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1810 gfp_mask, prot, 0, node, caller);
1811 }
1812
1813 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1814 {
1815 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1816 __builtin_return_address(0));
1817 }
1818 EXPORT_SYMBOL(__vmalloc);
1819
1820 static inline void *__vmalloc_node_flags(unsigned long size,
1821 int node, gfp_t flags)
1822 {
1823 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1824 node, __builtin_return_address(0));
1825 }
1826
1827
1828 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1829 void *caller)
1830 {
1831 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1832 }
1833
1834 /**
1835 * vmalloc - allocate virtually contiguous memory
1836 * @size: allocation size
1837 * Allocate enough pages to cover @size from the page level
1838 * allocator and map them into contiguous kernel virtual space.
1839 *
1840 * For tight control over page level allocator and protection flags
1841 * use __vmalloc() instead.
1842 */
1843 void *vmalloc(unsigned long size)
1844 {
1845 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1846 GFP_KERNEL);
1847 }
1848 EXPORT_SYMBOL(vmalloc);
1849
1850 /**
1851 * vzalloc - allocate virtually contiguous memory with zero fill
1852 * @size: allocation size
1853 * Allocate enough pages to cover @size from the page level
1854 * allocator and map them into contiguous kernel virtual space.
1855 * The memory allocated is set to zero.
1856 *
1857 * For tight control over page level allocator and protection flags
1858 * use __vmalloc() instead.
1859 */
1860 void *vzalloc(unsigned long size)
1861 {
1862 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1863 GFP_KERNEL | __GFP_ZERO);
1864 }
1865 EXPORT_SYMBOL(vzalloc);
1866
1867 /**
1868 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1869 * @size: allocation size
1870 *
1871 * The resulting memory area is zeroed so it can be mapped to userspace
1872 * without leaking data.
1873 */
1874 void *vmalloc_user(unsigned long size)
1875 {
1876 struct vm_struct *area;
1877 void *ret;
1878
1879 ret = __vmalloc_node(size, SHMLBA,
1880 GFP_KERNEL | __GFP_ZERO,
1881 PAGE_KERNEL, NUMA_NO_NODE,
1882 __builtin_return_address(0));
1883 if (ret) {
1884 area = find_vm_area(ret);
1885 area->flags |= VM_USERMAP;
1886 }
1887 return ret;
1888 }
1889 EXPORT_SYMBOL(vmalloc_user);
1890
1891 /**
1892 * vmalloc_node - allocate memory on a specific node
1893 * @size: allocation size
1894 * @node: numa node
1895 *
1896 * Allocate enough pages to cover @size from the page level
1897 * allocator and map them into contiguous kernel virtual space.
1898 *
1899 * For tight control over page level allocator and protection flags
1900 * use __vmalloc() instead.
1901 */
1902 void *vmalloc_node(unsigned long size, int node)
1903 {
1904 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1905 node, __builtin_return_address(0));
1906 }
1907 EXPORT_SYMBOL(vmalloc_node);
1908
1909 /**
1910 * vzalloc_node - allocate memory on a specific node with zero fill
1911 * @size: allocation size
1912 * @node: numa node
1913 *
1914 * Allocate enough pages to cover @size from the page level
1915 * allocator and map them into contiguous kernel virtual space.
1916 * The memory allocated is set to zero.
1917 *
1918 * For tight control over page level allocator and protection flags
1919 * use __vmalloc_node() instead.
1920 */
1921 void *vzalloc_node(unsigned long size, int node)
1922 {
1923 return __vmalloc_node_flags(size, node,
1924 GFP_KERNEL | __GFP_ZERO);
1925 }
1926 EXPORT_SYMBOL(vzalloc_node);
1927
1928 #ifndef PAGE_KERNEL_EXEC
1929 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1930 #endif
1931
1932 /**
1933 * vmalloc_exec - allocate virtually contiguous, executable memory
1934 * @size: allocation size
1935 *
1936 * Kernel-internal function to allocate enough pages to cover @size
1937 * the page level allocator and map them into contiguous and
1938 * executable kernel virtual space.
1939 *
1940 * For tight control over page level allocator and protection flags
1941 * use __vmalloc() instead.
1942 */
1943
1944 void *vmalloc_exec(unsigned long size)
1945 {
1946 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1947 NUMA_NO_NODE, __builtin_return_address(0));
1948 }
1949
1950 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1951 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1952 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1953 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1954 #else
1955 /*
1956 * 64b systems should always have either DMA or DMA32 zones. For others
1957 * GFP_DMA32 should do the right thing and use the normal zone.
1958 */
1959 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1960 #endif
1961
1962 /**
1963 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1964 * @size: allocation size
1965 *
1966 * Allocate enough 32bit PA addressable pages to cover @size from the
1967 * page level allocator and map them into contiguous kernel virtual space.
1968 */
1969 void *vmalloc_32(unsigned long size)
1970 {
1971 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1972 NUMA_NO_NODE, __builtin_return_address(0));
1973 }
1974 EXPORT_SYMBOL(vmalloc_32);
1975
1976 /**
1977 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1978 * @size: allocation size
1979 *
1980 * The resulting memory area is 32bit addressable and zeroed so it can be
1981 * mapped to userspace without leaking data.
1982 */
1983 void *vmalloc_32_user(unsigned long size)
1984 {
1985 struct vm_struct *area;
1986 void *ret;
1987
1988 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1989 NUMA_NO_NODE, __builtin_return_address(0));
1990 if (ret) {
1991 area = find_vm_area(ret);
1992 area->flags |= VM_USERMAP;
1993 }
1994 return ret;
1995 }
1996 EXPORT_SYMBOL(vmalloc_32_user);
1997
1998 /*
1999 * small helper routine , copy contents to buf from addr.
2000 * If the page is not present, fill zero.
2001 */
2002
2003 static int aligned_vread(char *buf, char *addr, unsigned long count)
2004 {
2005 struct page *p;
2006 int copied = 0;
2007
2008 while (count) {
2009 unsigned long offset, length;
2010
2011 offset = offset_in_page(addr);
2012 length = PAGE_SIZE - offset;
2013 if (length > count)
2014 length = count;
2015 p = vmalloc_to_page(addr);
2016 /*
2017 * To do safe access to this _mapped_ area, we need
2018 * lock. But adding lock here means that we need to add
2019 * overhead of vmalloc()/vfree() calles for this _debug_
2020 * interface, rarely used. Instead of that, we'll use
2021 * kmap() and get small overhead in this access function.
2022 */
2023 if (p) {
2024 /*
2025 * we can expect USER0 is not used (see vread/vwrite's
2026 * function description)
2027 */
2028 void *map = kmap_atomic(p);
2029 memcpy(buf, map + offset, length);
2030 kunmap_atomic(map);
2031 } else
2032 memset(buf, 0, length);
2033
2034 addr += length;
2035 buf += length;
2036 copied += length;
2037 count -= length;
2038 }
2039 return copied;
2040 }
2041
2042 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2043 {
2044 struct page *p;
2045 int copied = 0;
2046
2047 while (count) {
2048 unsigned long offset, length;
2049
2050 offset = offset_in_page(addr);
2051 length = PAGE_SIZE - offset;
2052 if (length > count)
2053 length = count;
2054 p = vmalloc_to_page(addr);
2055 /*
2056 * To do safe access to this _mapped_ area, we need
2057 * lock. But adding lock here means that we need to add
2058 * overhead of vmalloc()/vfree() calles for this _debug_
2059 * interface, rarely used. Instead of that, we'll use
2060 * kmap() and get small overhead in this access function.
2061 */
2062 if (p) {
2063 /*
2064 * we can expect USER0 is not used (see vread/vwrite's
2065 * function description)
2066 */
2067 void *map = kmap_atomic(p);
2068 memcpy(map + offset, buf, length);
2069 kunmap_atomic(map);
2070 }
2071 addr += length;
2072 buf += length;
2073 copied += length;
2074 count -= length;
2075 }
2076 return copied;
2077 }
2078
2079 /**
2080 * vread() - read vmalloc area in a safe way.
2081 * @buf: buffer for reading data
2082 * @addr: vm address.
2083 * @count: number of bytes to be read.
2084 *
2085 * Returns # of bytes which addr and buf should be increased.
2086 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2087 * includes any intersect with alive vmalloc area.
2088 *
2089 * This function checks that addr is a valid vmalloc'ed area, and
2090 * copy data from that area to a given buffer. If the given memory range
2091 * of [addr...addr+count) includes some valid address, data is copied to
2092 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2093 * IOREMAP area is treated as memory hole and no copy is done.
2094 *
2095 * If [addr...addr+count) doesn't includes any intersects with alive
2096 * vm_struct area, returns 0. @buf should be kernel's buffer.
2097 *
2098 * Note: In usual ops, vread() is never necessary because the caller
2099 * should know vmalloc() area is valid and can use memcpy().
2100 * This is for routines which have to access vmalloc area without
2101 * any informaion, as /dev/kmem.
2102 *
2103 */
2104
2105 long vread(char *buf, char *addr, unsigned long count)
2106 {
2107 struct vmap_area *va;
2108 struct vm_struct *vm;
2109 char *vaddr, *buf_start = buf;
2110 unsigned long buflen = count;
2111 unsigned long n;
2112
2113 /* Don't allow overflow */
2114 if ((unsigned long) addr + count < count)
2115 count = -(unsigned long) addr;
2116
2117 spin_lock(&vmap_area_lock);
2118 list_for_each_entry(va, &vmap_area_list, list) {
2119 if (!count)
2120 break;
2121
2122 if (!(va->flags & VM_VM_AREA))
2123 continue;
2124
2125 vm = va->vm;
2126 vaddr = (char *) vm->addr;
2127 if (addr >= vaddr + get_vm_area_size(vm))
2128 continue;
2129 while (addr < vaddr) {
2130 if (count == 0)
2131 goto finished;
2132 *buf = '\0';
2133 buf++;
2134 addr++;
2135 count--;
2136 }
2137 n = vaddr + get_vm_area_size(vm) - addr;
2138 if (n > count)
2139 n = count;
2140 if (!(vm->flags & VM_IOREMAP))
2141 aligned_vread(buf, addr, n);
2142 else /* IOREMAP area is treated as memory hole */
2143 memset(buf, 0, n);
2144 buf += n;
2145 addr += n;
2146 count -= n;
2147 }
2148 finished:
2149 spin_unlock(&vmap_area_lock);
2150
2151 if (buf == buf_start)
2152 return 0;
2153 /* zero-fill memory holes */
2154 if (buf != buf_start + buflen)
2155 memset(buf, 0, buflen - (buf - buf_start));
2156
2157 return buflen;
2158 }
2159
2160 /**
2161 * vwrite() - write vmalloc area in a safe way.
2162 * @buf: buffer for source data
2163 * @addr: vm address.
2164 * @count: number of bytes to be read.
2165 *
2166 * Returns # of bytes which addr and buf should be incresed.
2167 * (same number to @count).
2168 * If [addr...addr+count) doesn't includes any intersect with valid
2169 * vmalloc area, returns 0.
2170 *
2171 * This function checks that addr is a valid vmalloc'ed area, and
2172 * copy data from a buffer to the given addr. If specified range of
2173 * [addr...addr+count) includes some valid address, data is copied from
2174 * proper area of @buf. If there are memory holes, no copy to hole.
2175 * IOREMAP area is treated as memory hole and no copy is done.
2176 *
2177 * If [addr...addr+count) doesn't includes any intersects with alive
2178 * vm_struct area, returns 0. @buf should be kernel's buffer.
2179 *
2180 * Note: In usual ops, vwrite() is never necessary because the caller
2181 * should know vmalloc() area is valid and can use memcpy().
2182 * This is for routines which have to access vmalloc area without
2183 * any informaion, as /dev/kmem.
2184 */
2185
2186 long vwrite(char *buf, char *addr, unsigned long count)
2187 {
2188 struct vmap_area *va;
2189 struct vm_struct *vm;
2190 char *vaddr;
2191 unsigned long n, buflen;
2192 int copied = 0;
2193
2194 /* Don't allow overflow */
2195 if ((unsigned long) addr + count < count)
2196 count = -(unsigned long) addr;
2197 buflen = count;
2198
2199 spin_lock(&vmap_area_lock);
2200 list_for_each_entry(va, &vmap_area_list, list) {
2201 if (!count)
2202 break;
2203
2204 if (!(va->flags & VM_VM_AREA))
2205 continue;
2206
2207 vm = va->vm;
2208 vaddr = (char *) vm->addr;
2209 if (addr >= vaddr + get_vm_area_size(vm))
2210 continue;
2211 while (addr < vaddr) {
2212 if (count == 0)
2213 goto finished;
2214 buf++;
2215 addr++;
2216 count--;
2217 }
2218 n = vaddr + get_vm_area_size(vm) - addr;
2219 if (n > count)
2220 n = count;
2221 if (!(vm->flags & VM_IOREMAP)) {
2222 aligned_vwrite(buf, addr, n);
2223 copied++;
2224 }
2225 buf += n;
2226 addr += n;
2227 count -= n;
2228 }
2229 finished:
2230 spin_unlock(&vmap_area_lock);
2231 if (!copied)
2232 return 0;
2233 return buflen;
2234 }
2235
2236 /**
2237 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2238 * @vma: vma to cover
2239 * @uaddr: target user address to start at
2240 * @kaddr: virtual address of vmalloc kernel memory
2241 * @size: size of map area
2242 *
2243 * Returns: 0 for success, -Exxx on failure
2244 *
2245 * This function checks that @kaddr is a valid vmalloc'ed area,
2246 * and that it is big enough to cover the range starting at
2247 * @uaddr in @vma. Will return failure if that criteria isn't
2248 * met.
2249 *
2250 * Similar to remap_pfn_range() (see mm/memory.c)
2251 */
2252 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2253 void *kaddr, unsigned long size)
2254 {
2255 struct vm_struct *area;
2256
2257 size = PAGE_ALIGN(size);
2258
2259 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2260 return -EINVAL;
2261
2262 area = find_vm_area(kaddr);
2263 if (!area)
2264 return -EINVAL;
2265
2266 if (!(area->flags & VM_USERMAP))
2267 return -EINVAL;
2268
2269 if (kaddr + size > area->addr + get_vm_area_size(area))
2270 return -EINVAL;
2271
2272 do {
2273 struct page *page = vmalloc_to_page(kaddr);
2274 int ret;
2275
2276 ret = vm_insert_page(vma, uaddr, page);
2277 if (ret)
2278 return ret;
2279
2280 uaddr += PAGE_SIZE;
2281 kaddr += PAGE_SIZE;
2282 size -= PAGE_SIZE;
2283 } while (size > 0);
2284
2285 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2286
2287 return 0;
2288 }
2289 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2290
2291 /**
2292 * remap_vmalloc_range - map vmalloc pages to userspace
2293 * @vma: vma to cover (map full range of vma)
2294 * @addr: vmalloc memory
2295 * @pgoff: number of pages into addr before first page to map
2296 *
2297 * Returns: 0 for success, -Exxx on failure
2298 *
2299 * This function checks that addr is a valid vmalloc'ed area, and
2300 * that it is big enough to cover the vma. Will return failure if
2301 * that criteria isn't met.
2302 *
2303 * Similar to remap_pfn_range() (see mm/memory.c)
2304 */
2305 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2306 unsigned long pgoff)
2307 {
2308 return remap_vmalloc_range_partial(vma, vma->vm_start,
2309 addr + (pgoff << PAGE_SHIFT),
2310 vma->vm_end - vma->vm_start);
2311 }
2312 EXPORT_SYMBOL(remap_vmalloc_range);
2313
2314 /*
2315 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2316 * have one.
2317 */
2318 void __weak vmalloc_sync_all(void)
2319 {
2320 }
2321
2322
2323 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2324 {
2325 pte_t ***p = data;
2326
2327 if (p) {
2328 *(*p) = pte;
2329 (*p)++;
2330 }
2331 return 0;
2332 }
2333
2334 /**
2335 * alloc_vm_area - allocate a range of kernel address space
2336 * @size: size of the area
2337 * @ptes: returns the PTEs for the address space
2338 *
2339 * Returns: NULL on failure, vm_struct on success
2340 *
2341 * This function reserves a range of kernel address space, and
2342 * allocates pagetables to map that range. No actual mappings
2343 * are created.
2344 *
2345 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2346 * allocated for the VM area are returned.
2347 */
2348 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2349 {
2350 struct vm_struct *area;
2351
2352 area = get_vm_area_caller(size, VM_IOREMAP,
2353 __builtin_return_address(0));
2354 if (area == NULL)
2355 return NULL;
2356
2357 /*
2358 * This ensures that page tables are constructed for this region
2359 * of kernel virtual address space and mapped into init_mm.
2360 */
2361 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2362 size, f, ptes ? &ptes : NULL)) {
2363 free_vm_area(area);
2364 return NULL;
2365 }
2366
2367 return area;
2368 }
2369 EXPORT_SYMBOL_GPL(alloc_vm_area);
2370
2371 void free_vm_area(struct vm_struct *area)
2372 {
2373 struct vm_struct *ret;
2374 ret = remove_vm_area(area->addr);
2375 BUG_ON(ret != area);
2376 kfree(area);
2377 }
2378 EXPORT_SYMBOL_GPL(free_vm_area);
2379
2380 #ifdef CONFIG_SMP
2381 static struct vmap_area *node_to_va(struct rb_node *n)
2382 {
2383 return rb_entry_safe(n, struct vmap_area, rb_node);
2384 }
2385
2386 /**
2387 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2388 * @end: target address
2389 * @pnext: out arg for the next vmap_area
2390 * @pprev: out arg for the previous vmap_area
2391 *
2392 * Returns: %true if either or both of next and prev are found,
2393 * %false if no vmap_area exists
2394 *
2395 * Find vmap_areas end addresses of which enclose @end. ie. if not
2396 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2397 */
2398 static bool pvm_find_next_prev(unsigned long end,
2399 struct vmap_area **pnext,
2400 struct vmap_area **pprev)
2401 {
2402 struct rb_node *n = vmap_area_root.rb_node;
2403 struct vmap_area *va = NULL;
2404
2405 while (n) {
2406 va = rb_entry(n, struct vmap_area, rb_node);
2407 if (end < va->va_end)
2408 n = n->rb_left;
2409 else if (end > va->va_end)
2410 n = n->rb_right;
2411 else
2412 break;
2413 }
2414
2415 if (!va)
2416 return false;
2417
2418 if (va->va_end > end) {
2419 *pnext = va;
2420 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2421 } else {
2422 *pprev = va;
2423 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2424 }
2425 return true;
2426 }
2427
2428 /**
2429 * pvm_determine_end - find the highest aligned address between two vmap_areas
2430 * @pnext: in/out arg for the next vmap_area
2431 * @pprev: in/out arg for the previous vmap_area
2432 * @align: alignment
2433 *
2434 * Returns: determined end address
2435 *
2436 * Find the highest aligned address between *@pnext and *@pprev below
2437 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2438 * down address is between the end addresses of the two vmap_areas.
2439 *
2440 * Please note that the address returned by this function may fall
2441 * inside *@pnext vmap_area. The caller is responsible for checking
2442 * that.
2443 */
2444 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2445 struct vmap_area **pprev,
2446 unsigned long align)
2447 {
2448 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2449 unsigned long addr;
2450
2451 if (*pnext)
2452 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2453 else
2454 addr = vmalloc_end;
2455
2456 while (*pprev && (*pprev)->va_end > addr) {
2457 *pnext = *pprev;
2458 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2459 }
2460
2461 return addr;
2462 }
2463
2464 /**
2465 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2466 * @offsets: array containing offset of each area
2467 * @sizes: array containing size of each area
2468 * @nr_vms: the number of areas to allocate
2469 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2470 *
2471 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2472 * vm_structs on success, %NULL on failure
2473 *
2474 * Percpu allocator wants to use congruent vm areas so that it can
2475 * maintain the offsets among percpu areas. This function allocates
2476 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2477 * be scattered pretty far, distance between two areas easily going up
2478 * to gigabytes. To avoid interacting with regular vmallocs, these
2479 * areas are allocated from top.
2480 *
2481 * Despite its complicated look, this allocator is rather simple. It
2482 * does everything top-down and scans areas from the end looking for
2483 * matching slot. While scanning, if any of the areas overlaps with
2484 * existing vmap_area, the base address is pulled down to fit the
2485 * area. Scanning is repeated till all the areas fit and then all
2486 * necessary data structures are inserted and the result is returned.
2487 */
2488 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2489 const size_t *sizes, int nr_vms,
2490 size_t align)
2491 {
2492 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2493 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2494 struct vmap_area **vas, *prev, *next;
2495 struct vm_struct **vms;
2496 int area, area2, last_area, term_area;
2497 unsigned long base, start, end, last_end;
2498 bool purged = false;
2499
2500 /* verify parameters and allocate data structures */
2501 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2502 for (last_area = 0, area = 0; area < nr_vms; area++) {
2503 start = offsets[area];
2504 end = start + sizes[area];
2505
2506 /* is everything aligned properly? */
2507 BUG_ON(!IS_ALIGNED(offsets[area], align));
2508 BUG_ON(!IS_ALIGNED(sizes[area], align));
2509
2510 /* detect the area with the highest address */
2511 if (start > offsets[last_area])
2512 last_area = area;
2513
2514 for (area2 = area + 1; area2 < nr_vms; area2++) {
2515 unsigned long start2 = offsets[area2];
2516 unsigned long end2 = start2 + sizes[area2];
2517
2518 BUG_ON(start2 < end && start < end2);
2519 }
2520 }
2521 last_end = offsets[last_area] + sizes[last_area];
2522
2523 if (vmalloc_end - vmalloc_start < last_end) {
2524 WARN_ON(true);
2525 return NULL;
2526 }
2527
2528 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2529 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2530 if (!vas || !vms)
2531 goto err_free2;
2532
2533 for (area = 0; area < nr_vms; area++) {
2534 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2535 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2536 if (!vas[area] || !vms[area])
2537 goto err_free;
2538 }
2539 retry:
2540 spin_lock(&vmap_area_lock);
2541
2542 /* start scanning - we scan from the top, begin with the last area */
2543 area = term_area = last_area;
2544 start = offsets[area];
2545 end = start + sizes[area];
2546
2547 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2548 base = vmalloc_end - last_end;
2549 goto found;
2550 }
2551 base = pvm_determine_end(&next, &prev, align) - end;
2552
2553 while (true) {
2554 BUG_ON(next && next->va_end <= base + end);
2555 BUG_ON(prev && prev->va_end > base + end);
2556
2557 /*
2558 * base might have underflowed, add last_end before
2559 * comparing.
2560 */
2561 if (base + last_end < vmalloc_start + last_end) {
2562 spin_unlock(&vmap_area_lock);
2563 if (!purged) {
2564 purge_vmap_area_lazy();
2565 purged = true;
2566 goto retry;
2567 }
2568 goto err_free;
2569 }
2570
2571 /*
2572 * If next overlaps, move base downwards so that it's
2573 * right below next and then recheck.
2574 */
2575 if (next && next->va_start < base + end) {
2576 base = pvm_determine_end(&next, &prev, align) - end;
2577 term_area = area;
2578 continue;
2579 }
2580
2581 /*
2582 * If prev overlaps, shift down next and prev and move
2583 * base so that it's right below new next and then
2584 * recheck.
2585 */
2586 if (prev && prev->va_end > base + start) {
2587 next = prev;
2588 prev = node_to_va(rb_prev(&next->rb_node));
2589 base = pvm_determine_end(&next, &prev, align) - end;
2590 term_area = area;
2591 continue;
2592 }
2593
2594 /*
2595 * This area fits, move on to the previous one. If
2596 * the previous one is the terminal one, we're done.
2597 */
2598 area = (area + nr_vms - 1) % nr_vms;
2599 if (area == term_area)
2600 break;
2601 start = offsets[area];
2602 end = start + sizes[area];
2603 pvm_find_next_prev(base + end, &next, &prev);
2604 }
2605 found:
2606 /* we've found a fitting base, insert all va's */
2607 for (area = 0; area < nr_vms; area++) {
2608 struct vmap_area *va = vas[area];
2609
2610 va->va_start = base + offsets[area];
2611 va->va_end = va->va_start + sizes[area];
2612 __insert_vmap_area(va);
2613 }
2614
2615 vmap_area_pcpu_hole = base + offsets[last_area];
2616
2617 spin_unlock(&vmap_area_lock);
2618
2619 /* insert all vm's */
2620 for (area = 0; area < nr_vms; area++)
2621 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2622 pcpu_get_vm_areas);
2623
2624 kfree(vas);
2625 return vms;
2626
2627 err_free:
2628 for (area = 0; area < nr_vms; area++) {
2629 kfree(vas[area]);
2630 kfree(vms[area]);
2631 }
2632 err_free2:
2633 kfree(vas);
2634 kfree(vms);
2635 return NULL;
2636 }
2637
2638 /**
2639 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2640 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2641 * @nr_vms: the number of allocated areas
2642 *
2643 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2644 */
2645 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2646 {
2647 int i;
2648
2649 for (i = 0; i < nr_vms; i++)
2650 free_vm_area(vms[i]);
2651 kfree(vms);
2652 }
2653 #endif /* CONFIG_SMP */
2654
2655 #ifdef CONFIG_PROC_FS
2656 static void *s_start(struct seq_file *m, loff_t *pos)
2657 __acquires(&vmap_area_lock)
2658 {
2659 spin_lock(&vmap_area_lock);
2660 return seq_list_start(&vmap_area_list, *pos);
2661 }
2662
2663 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2664 {
2665 return seq_list_next(p, &vmap_area_list, pos);
2666 }
2667
2668 static void s_stop(struct seq_file *m, void *p)
2669 __releases(&vmap_area_lock)
2670 {
2671 spin_unlock(&vmap_area_lock);
2672 }
2673
2674 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2675 {
2676 if (IS_ENABLED(CONFIG_NUMA)) {
2677 unsigned int nr, *counters = m->private;
2678
2679 if (!counters)
2680 return;
2681
2682 if (v->flags & VM_UNINITIALIZED)
2683 return;
2684 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2685 smp_rmb();
2686
2687 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2688
2689 for (nr = 0; nr < v->nr_pages; nr++)
2690 counters[page_to_nid(v->pages[nr])]++;
2691
2692 for_each_node_state(nr, N_HIGH_MEMORY)
2693 if (counters[nr])
2694 seq_printf(m, " N%u=%u", nr, counters[nr]);
2695 }
2696 }
2697
2698 static int s_show(struct seq_file *m, void *p)
2699 {
2700 struct vmap_area *va;
2701 struct vm_struct *v;
2702
2703 va = list_entry(p, struct vmap_area, list);
2704
2705 /*
2706 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2707 * behalf of vmap area is being tear down or vm_map_ram allocation.
2708 */
2709 if (!(va->flags & VM_VM_AREA)) {
2710 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2711 (void *)va->va_start, (void *)va->va_end,
2712 va->va_end - va->va_start,
2713 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2714
2715 return 0;
2716 }
2717
2718 v = va->vm;
2719
2720 seq_printf(m, "0x%pK-0x%pK %7ld",
2721 v->addr, v->addr + v->size, v->size);
2722
2723 if (v->caller)
2724 seq_printf(m, " %pS", v->caller);
2725
2726 if (v->nr_pages)
2727 seq_printf(m, " pages=%d", v->nr_pages);
2728
2729 if (v->phys_addr)
2730 seq_printf(m, " phys=%pa", &v->phys_addr);
2731
2732 if (v->flags & VM_IOREMAP)
2733 seq_puts(m, " ioremap");
2734
2735 if (v->flags & VM_ALLOC)
2736 seq_puts(m, " vmalloc");
2737
2738 if (v->flags & VM_MAP)
2739 seq_puts(m, " vmap");
2740
2741 if (v->flags & VM_USERMAP)
2742 seq_puts(m, " user");
2743
2744 if (is_vmalloc_addr(v->pages))
2745 seq_puts(m, " vpages");
2746
2747 show_numa_info(m, v);
2748 seq_putc(m, '\n');
2749 return 0;
2750 }
2751
2752 static const struct seq_operations vmalloc_op = {
2753 .start = s_start,
2754 .next = s_next,
2755 .stop = s_stop,
2756 .show = s_show,
2757 };
2758
2759 static int vmalloc_open(struct inode *inode, struct file *file)
2760 {
2761 if (IS_ENABLED(CONFIG_NUMA))
2762 return seq_open_private(file, &vmalloc_op,
2763 nr_node_ids * sizeof(unsigned int));
2764 else
2765 return seq_open(file, &vmalloc_op);
2766 }
2767
2768 static const struct file_operations proc_vmalloc_operations = {
2769 .open = vmalloc_open,
2770 .read = seq_read,
2771 .llseek = seq_lseek,
2772 .release = seq_release_private,
2773 };
2774
2775 static int __init proc_vmalloc_init(void)
2776 {
2777 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2778 return 0;
2779 }
2780 module_init(proc_vmalloc_init);
2781
2782 #endif
2783