[COMMON] scsi: ufs: Add reset for PA_ERROR interrupt storming control.
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110 swp_entry_t entry = swp_entry(si->type, offset);
111 struct page *page;
112 int ret = 0;
113
114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
128 put_page(page);
129 return ret;
130 }
131
132 /*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138 struct swap_extent *se;
139 sector_t start_block;
140 sector_t nr_blocks;
141 int err = 0;
142
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
149 nr_blocks, GFP_KERNEL, 0);
150 if (err)
151 return err;
152 cond_resched();
153 }
154
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159 err = blkdev_issue_discard(si->bdev, start_block,
160 nr_blocks, GFP_KERNEL, 0);
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175 {
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
184 sector_t nr_blocks = se->nr_pages - offset;
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
197 nr_blocks, GFP_NOIO, 0))
198 break;
199 }
200
201 se = list_next_entry(se, list);
202 }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER 256
209 #endif
210 #define LATENCY_LIMIT 256
211
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214 {
215 info->flags = flag;
216 }
217
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220 return info->data;
221 }
222
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225 {
226 info->data = c;
227 }
228
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231 {
232 info->flags = f;
233 info->data = c;
234 }
235
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238 return info->data;
239 }
240
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243 {
244 info->data = n;
245 }
246
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249 {
250 info->flags = f;
251 info->data = n;
252 }
253
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256 return info->flags & CLUSTER_FLAG_FREE;
257 }
258
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268 }
269
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272 return info->flags & CLUSTER_FLAG_HUGE;
273 }
274
275 static inline void cluster_clear_huge(struct swap_cluster_info *info)
276 {
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278 }
279
280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282 {
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291 }
292
293 static inline void unlock_cluster(struct swap_cluster_info *ci)
294 {
295 if (ci)
296 spin_unlock(&ci->lock);
297 }
298
299 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300 struct swap_info_struct *si,
301 unsigned long offset)
302 {
303 struct swap_cluster_info *ci;
304
305 ci = lock_cluster(si, offset);
306 if (!ci)
307 spin_lock(&si->lock);
308
309 return ci;
310 }
311
312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313 struct swap_cluster_info *ci)
314 {
315 if (ci)
316 unlock_cluster(ci);
317 else
318 spin_unlock(&si->lock);
319 }
320
321 static inline bool cluster_list_empty(struct swap_cluster_list *list)
322 {
323 return cluster_is_null(&list->head);
324 }
325
326 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327 {
328 return cluster_next(&list->head);
329 }
330
331 static void cluster_list_init(struct swap_cluster_list *list)
332 {
333 cluster_set_null(&list->head);
334 cluster_set_null(&list->tail);
335 }
336
337 static void cluster_list_add_tail(struct swap_cluster_list *list,
338 struct swap_cluster_info *ci,
339 unsigned int idx)
340 {
341 if (cluster_list_empty(list)) {
342 cluster_set_next_flag(&list->head, idx, 0);
343 cluster_set_next_flag(&list->tail, idx, 0);
344 } else {
345 struct swap_cluster_info *ci_tail;
346 unsigned int tail = cluster_next(&list->tail);
347
348 /*
349 * Nested cluster lock, but both cluster locks are
350 * only acquired when we held swap_info_struct->lock
351 */
352 ci_tail = ci + tail;
353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354 cluster_set_next(ci_tail, idx);
355 spin_unlock(&ci_tail->lock);
356 cluster_set_next_flag(&list->tail, idx, 0);
357 }
358 }
359
360 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361 struct swap_cluster_info *ci)
362 {
363 unsigned int idx;
364
365 idx = cluster_next(&list->head);
366 if (cluster_next(&list->tail) == idx) {
367 cluster_set_null(&list->head);
368 cluster_set_null(&list->tail);
369 } else
370 cluster_set_next_flag(&list->head,
371 cluster_next(&ci[idx]), 0);
372
373 return idx;
374 }
375
376 /* Add a cluster to discard list and schedule it to do discard */
377 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378 unsigned int idx)
379 {
380 /*
381 * If scan_swap_map() can't find a free cluster, it will check
382 * si->swap_map directly. To make sure the discarding cluster isn't
383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 * will be cleared after discard
385 */
386 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388
389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
390
391 schedule_work(&si->discard_work);
392 }
393
394 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395 {
396 struct swap_cluster_info *ci = si->cluster_info;
397
398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399 cluster_list_add_tail(&si->free_clusters, ci, idx);
400 }
401
402 /*
403 * Doing discard actually. After a cluster discard is finished, the cluster
404 * will be added to free cluster list. caller should hold si->lock.
405 */
406 static void swap_do_scheduled_discard(struct swap_info_struct *si)
407 {
408 struct swap_cluster_info *info, *ci;
409 unsigned int idx;
410
411 info = si->cluster_info;
412
413 while (!cluster_list_empty(&si->discard_clusters)) {
414 idx = cluster_list_del_first(&si->discard_clusters, info);
415 spin_unlock(&si->lock);
416
417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418 SWAPFILE_CLUSTER);
419
420 spin_lock(&si->lock);
421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
422 __free_cluster(si, idx);
423 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 0, SWAPFILE_CLUSTER);
425 unlock_cluster(ci);
426 }
427 }
428
429 static void swap_discard_work(struct work_struct *work)
430 {
431 struct swap_info_struct *si;
432
433 si = container_of(work, struct swap_info_struct, discard_work);
434
435 spin_lock(&si->lock);
436 swap_do_scheduled_discard(si);
437 spin_unlock(&si->lock);
438 }
439
440 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441 {
442 struct swap_cluster_info *ci = si->cluster_info;
443
444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445 cluster_list_del_first(&si->free_clusters, ci);
446 cluster_set_count_flag(ci + idx, 0, 0);
447 }
448
449 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450 {
451 struct swap_cluster_info *ci = si->cluster_info + idx;
452
453 VM_BUG_ON(cluster_count(ci) != 0);
454 /*
455 * If the swap is discardable, prepare discard the cluster
456 * instead of free it immediately. The cluster will be freed
457 * after discard.
458 */
459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461 swap_cluster_schedule_discard(si, idx);
462 return;
463 }
464
465 __free_cluster(si, idx);
466 }
467
468 /*
469 * The cluster corresponding to page_nr will be used. The cluster will be
470 * removed from free cluster list and its usage counter will be increased.
471 */
472 static void inc_cluster_info_page(struct swap_info_struct *p,
473 struct swap_cluster_info *cluster_info, unsigned long page_nr)
474 {
475 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476
477 if (!cluster_info)
478 return;
479 if (cluster_is_free(&cluster_info[idx]))
480 alloc_cluster(p, idx);
481
482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483 cluster_set_count(&cluster_info[idx],
484 cluster_count(&cluster_info[idx]) + 1);
485 }
486
487 /*
488 * The cluster corresponding to page_nr decreases one usage. If the usage
489 * counter becomes 0, which means no page in the cluster is in using, we can
490 * optionally discard the cluster and add it to free cluster list.
491 */
492 static void dec_cluster_info_page(struct swap_info_struct *p,
493 struct swap_cluster_info *cluster_info, unsigned long page_nr)
494 {
495 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496
497 if (!cluster_info)
498 return;
499
500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501 cluster_set_count(&cluster_info[idx],
502 cluster_count(&cluster_info[idx]) - 1);
503
504 if (cluster_count(&cluster_info[idx]) == 0)
505 free_cluster(p, idx);
506 }
507
508 /*
509 * It's possible scan_swap_map() uses a free cluster in the middle of free
510 * cluster list. Avoiding such abuse to avoid list corruption.
511 */
512 static bool
513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
514 unsigned long offset)
515 {
516 struct percpu_cluster *percpu_cluster;
517 bool conflict;
518
519 offset /= SWAPFILE_CLUSTER;
520 conflict = !cluster_list_empty(&si->free_clusters) &&
521 offset != cluster_list_first(&si->free_clusters) &&
522 cluster_is_free(&si->cluster_info[offset]);
523
524 if (!conflict)
525 return false;
526
527 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528 cluster_set_null(&percpu_cluster->index);
529 return true;
530 }
531
532 /*
533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534 * might involve allocating a new cluster for current CPU too.
535 */
536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
537 unsigned long *offset, unsigned long *scan_base)
538 {
539 struct percpu_cluster *cluster;
540 struct swap_cluster_info *ci;
541 bool found_free;
542 unsigned long tmp, max;
543
544 new_cluster:
545 cluster = this_cpu_ptr(si->percpu_cluster);
546 if (cluster_is_null(&cluster->index)) {
547 if (!cluster_list_empty(&si->free_clusters)) {
548 cluster->index = si->free_clusters.head;
549 cluster->next = cluster_next(&cluster->index) *
550 SWAPFILE_CLUSTER;
551 } else if (!cluster_list_empty(&si->discard_clusters)) {
552 /*
553 * we don't have free cluster but have some clusters in
554 * discarding, do discard now and reclaim them
555 */
556 swap_do_scheduled_discard(si);
557 *scan_base = *offset = si->cluster_next;
558 goto new_cluster;
559 } else
560 return false;
561 }
562
563 found_free = false;
564
565 /*
566 * Other CPUs can use our cluster if they can't find a free cluster,
567 * check if there is still free entry in the cluster
568 */
569 tmp = cluster->next;
570 max = min_t(unsigned long, si->max,
571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572 if (tmp >= max) {
573 cluster_set_null(&cluster->index);
574 goto new_cluster;
575 }
576 ci = lock_cluster(si, tmp);
577 while (tmp < max) {
578 if (!si->swap_map[tmp]) {
579 found_free = true;
580 break;
581 }
582 tmp++;
583 }
584 unlock_cluster(ci);
585 if (!found_free) {
586 cluster_set_null(&cluster->index);
587 goto new_cluster;
588 }
589 cluster->next = tmp + 1;
590 *offset = tmp;
591 *scan_base = tmp;
592 return found_free;
593 }
594
595 static void __del_from_avail_list(struct swap_info_struct *p)
596 {
597 int nid;
598
599 for_each_node(nid)
600 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
601 }
602
603 static void del_from_avail_list(struct swap_info_struct *p)
604 {
605 spin_lock(&swap_avail_lock);
606 __del_from_avail_list(p);
607 spin_unlock(&swap_avail_lock);
608 }
609
610 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
611 unsigned int nr_entries)
612 {
613 unsigned int end = offset + nr_entries - 1;
614
615 if (offset == si->lowest_bit)
616 si->lowest_bit += nr_entries;
617 if (end == si->highest_bit)
618 si->highest_bit -= nr_entries;
619 si->inuse_pages += nr_entries;
620 if (si->inuse_pages == si->pages) {
621 si->lowest_bit = si->max;
622 si->highest_bit = 0;
623 del_from_avail_list(si);
624 }
625 }
626
627 static void add_to_avail_list(struct swap_info_struct *p)
628 {
629 int nid;
630
631 spin_lock(&swap_avail_lock);
632 for_each_node(nid) {
633 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
634 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
635 }
636 spin_unlock(&swap_avail_lock);
637 }
638
639 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
640 unsigned int nr_entries)
641 {
642 unsigned long end = offset + nr_entries - 1;
643 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
644
645 if (offset < si->lowest_bit)
646 si->lowest_bit = offset;
647 if (end > si->highest_bit) {
648 bool was_full = !si->highest_bit;
649
650 si->highest_bit = end;
651 if (was_full && (si->flags & SWP_WRITEOK))
652 add_to_avail_list(si);
653 }
654 atomic_long_add(nr_entries, &nr_swap_pages);
655 si->inuse_pages -= nr_entries;
656 if (si->flags & SWP_BLKDEV)
657 swap_slot_free_notify =
658 si->bdev->bd_disk->fops->swap_slot_free_notify;
659 else
660 swap_slot_free_notify = NULL;
661 while (offset <= end) {
662 frontswap_invalidate_page(si->type, offset);
663 if (swap_slot_free_notify)
664 swap_slot_free_notify(si->bdev, offset);
665 offset++;
666 }
667 }
668
669 static int scan_swap_map_slots(struct swap_info_struct *si,
670 unsigned char usage, int nr,
671 swp_entry_t slots[])
672 {
673 struct swap_cluster_info *ci;
674 unsigned long offset;
675 unsigned long scan_base;
676 unsigned long last_in_cluster = 0;
677 int latency_ration = LATENCY_LIMIT;
678 int n_ret = 0;
679
680 if (nr > SWAP_BATCH)
681 nr = SWAP_BATCH;
682
683 /*
684 * We try to cluster swap pages by allocating them sequentially
685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
686 * way, however, we resort to first-free allocation, starting
687 * a new cluster. This prevents us from scattering swap pages
688 * all over the entire swap partition, so that we reduce
689 * overall disk seek times between swap pages. -- sct
690 * But we do now try to find an empty cluster. -Andrea
691 * And we let swap pages go all over an SSD partition. Hugh
692 */
693
694 si->flags += SWP_SCANNING;
695 scan_base = offset = si->cluster_next;
696
697 /* SSD algorithm */
698 if (si->cluster_info) {
699 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
700 goto checks;
701 else
702 goto scan;
703 }
704
705 if (unlikely(!si->cluster_nr--)) {
706 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
707 si->cluster_nr = SWAPFILE_CLUSTER - 1;
708 goto checks;
709 }
710
711 spin_unlock(&si->lock);
712
713 /*
714 * If seek is expensive, start searching for new cluster from
715 * start of partition, to minimize the span of allocated swap.
716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
717 * case, just handled by scan_swap_map_try_ssd_cluster() above.
718 */
719 scan_base = offset = si->lowest_bit;
720 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
721
722 /* Locate the first empty (unaligned) cluster */
723 for (; last_in_cluster <= si->highest_bit; offset++) {
724 if (si->swap_map[offset])
725 last_in_cluster = offset + SWAPFILE_CLUSTER;
726 else if (offset == last_in_cluster) {
727 spin_lock(&si->lock);
728 offset -= SWAPFILE_CLUSTER - 1;
729 si->cluster_next = offset;
730 si->cluster_nr = SWAPFILE_CLUSTER - 1;
731 goto checks;
732 }
733 if (unlikely(--latency_ration < 0)) {
734 cond_resched();
735 latency_ration = LATENCY_LIMIT;
736 }
737 }
738
739 offset = scan_base;
740 spin_lock(&si->lock);
741 si->cluster_nr = SWAPFILE_CLUSTER - 1;
742 }
743
744 checks:
745 if (si->cluster_info) {
746 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
747 /* take a break if we already got some slots */
748 if (n_ret)
749 goto done;
750 if (!scan_swap_map_try_ssd_cluster(si, &offset,
751 &scan_base))
752 goto scan;
753 }
754 }
755 if (!(si->flags & SWP_WRITEOK))
756 goto no_page;
757 if (!si->highest_bit)
758 goto no_page;
759 if (offset > si->highest_bit)
760 scan_base = offset = si->lowest_bit;
761
762 ci = lock_cluster(si, offset);
763 /* reuse swap entry of cache-only swap if not busy. */
764 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
765 int swap_was_freed;
766 unlock_cluster(ci);
767 spin_unlock(&si->lock);
768 swap_was_freed = __try_to_reclaim_swap(si, offset);
769 spin_lock(&si->lock);
770 /* entry was freed successfully, try to use this again */
771 if (swap_was_freed)
772 goto checks;
773 goto scan; /* check next one */
774 }
775
776 if (si->swap_map[offset]) {
777 unlock_cluster(ci);
778 if (!n_ret)
779 goto scan;
780 else
781 goto done;
782 }
783 si->swap_map[offset] = usage;
784 inc_cluster_info_page(si, si->cluster_info, offset);
785 unlock_cluster(ci);
786
787 swap_range_alloc(si, offset, 1);
788 si->cluster_next = offset + 1;
789 slots[n_ret++] = swp_entry(si->type, offset);
790
791 /* got enough slots or reach max slots? */
792 if ((n_ret == nr) || (offset >= si->highest_bit))
793 goto done;
794
795 /* search for next available slot */
796
797 /* time to take a break? */
798 if (unlikely(--latency_ration < 0)) {
799 if (n_ret)
800 goto done;
801 spin_unlock(&si->lock);
802 cond_resched();
803 spin_lock(&si->lock);
804 latency_ration = LATENCY_LIMIT;
805 }
806
807 /* try to get more slots in cluster */
808 if (si->cluster_info) {
809 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 goto checks;
811 else
812 goto done;
813 }
814 /* non-ssd case */
815 ++offset;
816
817 /* non-ssd case, still more slots in cluster? */
818 if (si->cluster_nr && !si->swap_map[offset]) {
819 --si->cluster_nr;
820 goto checks;
821 }
822
823 done:
824 si->flags -= SWP_SCANNING;
825 return n_ret;
826
827 scan:
828 spin_unlock(&si->lock);
829 while (++offset <= si->highest_bit) {
830 if (!si->swap_map[offset]) {
831 spin_lock(&si->lock);
832 goto checks;
833 }
834 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
835 spin_lock(&si->lock);
836 goto checks;
837 }
838 if (unlikely(--latency_ration < 0)) {
839 cond_resched();
840 latency_ration = LATENCY_LIMIT;
841 }
842 }
843 offset = si->lowest_bit;
844 while (offset < scan_base) {
845 if (!si->swap_map[offset]) {
846 spin_lock(&si->lock);
847 goto checks;
848 }
849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850 spin_lock(&si->lock);
851 goto checks;
852 }
853 if (unlikely(--latency_ration < 0)) {
854 cond_resched();
855 latency_ration = LATENCY_LIMIT;
856 }
857 offset++;
858 }
859 spin_lock(&si->lock);
860
861 no_page:
862 si->flags -= SWP_SCANNING;
863 return n_ret;
864 }
865
866 #ifdef CONFIG_THP_SWAP
867 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
868 {
869 unsigned long idx;
870 struct swap_cluster_info *ci;
871 unsigned long offset, i;
872 unsigned char *map;
873
874 if (cluster_list_empty(&si->free_clusters))
875 return 0;
876
877 idx = cluster_list_first(&si->free_clusters);
878 offset = idx * SWAPFILE_CLUSTER;
879 ci = lock_cluster(si, offset);
880 alloc_cluster(si, idx);
881 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
882
883 map = si->swap_map + offset;
884 for (i = 0; i < SWAPFILE_CLUSTER; i++)
885 map[i] = SWAP_HAS_CACHE;
886 unlock_cluster(ci);
887 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
888 *slot = swp_entry(si->type, offset);
889
890 return 1;
891 }
892
893 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
894 {
895 unsigned long offset = idx * SWAPFILE_CLUSTER;
896 struct swap_cluster_info *ci;
897
898 ci = lock_cluster(si, offset);
899 cluster_set_count_flag(ci, 0, 0);
900 free_cluster(si, idx);
901 unlock_cluster(ci);
902 swap_range_free(si, offset, SWAPFILE_CLUSTER);
903 }
904 #else
905 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
906 {
907 VM_WARN_ON_ONCE(1);
908 return 0;
909 }
910 #endif /* CONFIG_THP_SWAP */
911
912 static unsigned long scan_swap_map(struct swap_info_struct *si,
913 unsigned char usage)
914 {
915 swp_entry_t entry;
916 int n_ret;
917
918 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
919
920 if (n_ret)
921 return swp_offset(entry);
922 else
923 return 0;
924
925 }
926
927 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
928 {
929 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
930 struct swap_info_struct *si, *next;
931 long avail_pgs;
932 int n_ret = 0;
933 int node;
934
935 /* Only single cluster request supported */
936 WARN_ON_ONCE(n_goal > 1 && cluster);
937
938 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
939 if (avail_pgs <= 0)
940 goto noswap;
941
942 if (n_goal > SWAP_BATCH)
943 n_goal = SWAP_BATCH;
944
945 if (n_goal > avail_pgs)
946 n_goal = avail_pgs;
947
948 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
949
950 spin_lock(&swap_avail_lock);
951
952 start_over:
953 node = numa_node_id();
954 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
955 /* requeue si to after same-priority siblings */
956 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
957 spin_unlock(&swap_avail_lock);
958 spin_lock(&si->lock);
959 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
960 spin_lock(&swap_avail_lock);
961 if (plist_node_empty(&si->avail_lists[node])) {
962 spin_unlock(&si->lock);
963 goto nextsi;
964 }
965 WARN(!si->highest_bit,
966 "swap_info %d in list but !highest_bit\n",
967 si->type);
968 WARN(!(si->flags & SWP_WRITEOK),
969 "swap_info %d in list but !SWP_WRITEOK\n",
970 si->type);
971 __del_from_avail_list(si);
972 spin_unlock(&si->lock);
973 goto nextsi;
974 }
975 if (cluster) {
976 if (!(si->flags & SWP_FILE))
977 n_ret = swap_alloc_cluster(si, swp_entries);
978 } else
979 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
980 n_goal, swp_entries);
981 spin_unlock(&si->lock);
982 if (n_ret || cluster)
983 goto check_out;
984 pr_debug("scan_swap_map of si %d failed to find offset\n",
985 si->type);
986
987 spin_lock(&swap_avail_lock);
988 nextsi:
989 /*
990 * if we got here, it's likely that si was almost full before,
991 * and since scan_swap_map() can drop the si->lock, multiple
992 * callers probably all tried to get a page from the same si
993 * and it filled up before we could get one; or, the si filled
994 * up between us dropping swap_avail_lock and taking si->lock.
995 * Since we dropped the swap_avail_lock, the swap_avail_head
996 * list may have been modified; so if next is still in the
997 * swap_avail_head list then try it, otherwise start over
998 * if we have not gotten any slots.
999 */
1000 if (plist_node_empty(&next->avail_lists[node]))
1001 goto start_over;
1002 }
1003
1004 spin_unlock(&swap_avail_lock);
1005
1006 check_out:
1007 if (n_ret < n_goal)
1008 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009 &nr_swap_pages);
1010 noswap:
1011 return n_ret;
1012 }
1013
1014 /* The only caller of this function is now suspend routine */
1015 swp_entry_t get_swap_page_of_type(int type)
1016 {
1017 struct swap_info_struct *si;
1018 pgoff_t offset;
1019
1020 si = swap_info[type];
1021 spin_lock(&si->lock);
1022 if (si && (si->flags & SWP_WRITEOK)) {
1023 atomic_long_dec(&nr_swap_pages);
1024 /* This is called for allocating swap entry, not cache */
1025 offset = scan_swap_map(si, 1);
1026 if (offset) {
1027 spin_unlock(&si->lock);
1028 return swp_entry(type, offset);
1029 }
1030 atomic_long_inc(&nr_swap_pages);
1031 }
1032 spin_unlock(&si->lock);
1033 return (swp_entry_t) {0};
1034 }
1035
1036 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1037 {
1038 struct swap_info_struct *p;
1039 unsigned long offset, type;
1040
1041 if (!entry.val)
1042 goto out;
1043 type = swp_type(entry);
1044 if (type >= nr_swapfiles)
1045 goto bad_nofile;
1046 p = swap_info[type];
1047 if (!(p->flags & SWP_USED))
1048 goto bad_device;
1049 offset = swp_offset(entry);
1050 if (offset >= p->max)
1051 goto bad_offset;
1052 return p;
1053
1054 bad_offset:
1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1056 goto out;
1057 bad_device:
1058 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1059 goto out;
1060 bad_nofile:
1061 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1062 out:
1063 return NULL;
1064 }
1065
1066 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067 {
1068 struct swap_info_struct *p;
1069
1070 p = __swap_info_get(entry);
1071 if (!p)
1072 goto out;
1073 if (!p->swap_map[swp_offset(entry)])
1074 goto bad_free;
1075 return p;
1076
1077 bad_free:
1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079 goto out;
1080 out:
1081 return NULL;
1082 }
1083
1084 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085 {
1086 struct swap_info_struct *p;
1087
1088 p = _swap_info_get(entry);
1089 if (p)
1090 spin_lock(&p->lock);
1091 return p;
1092 }
1093
1094 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095 struct swap_info_struct *q)
1096 {
1097 struct swap_info_struct *p;
1098
1099 p = _swap_info_get(entry);
1100
1101 if (p != q) {
1102 if (q != NULL)
1103 spin_unlock(&q->lock);
1104 if (p != NULL)
1105 spin_lock(&p->lock);
1106 }
1107 return p;
1108 }
1109
1110 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111 swp_entry_t entry, unsigned char usage)
1112 {
1113 struct swap_cluster_info *ci;
1114 unsigned long offset = swp_offset(entry);
1115 unsigned char count;
1116 unsigned char has_cache;
1117
1118 ci = lock_cluster_or_swap_info(p, offset);
1119
1120 count = p->swap_map[offset];
1121
1122 has_cache = count & SWAP_HAS_CACHE;
1123 count &= ~SWAP_HAS_CACHE;
1124
1125 if (usage == SWAP_HAS_CACHE) {
1126 VM_BUG_ON(!has_cache);
1127 has_cache = 0;
1128 } else if (count == SWAP_MAP_SHMEM) {
1129 /*
1130 * Or we could insist on shmem.c using a special
1131 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132 */
1133 count = 0;
1134 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135 if (count == COUNT_CONTINUED) {
1136 if (swap_count_continued(p, offset, count))
1137 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138 else
1139 count = SWAP_MAP_MAX;
1140 } else
1141 count--;
1142 }
1143
1144 usage = count | has_cache;
1145 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147 unlock_cluster_or_swap_info(p, ci);
1148
1149 return usage;
1150 }
1151
1152 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153 {
1154 struct swap_cluster_info *ci;
1155 unsigned long offset = swp_offset(entry);
1156 unsigned char count;
1157
1158 ci = lock_cluster(p, offset);
1159 count = p->swap_map[offset];
1160 VM_BUG_ON(count != SWAP_HAS_CACHE);
1161 p->swap_map[offset] = 0;
1162 dec_cluster_info_page(p, p->cluster_info, offset);
1163 unlock_cluster(ci);
1164
1165 mem_cgroup_uncharge_swap(entry, 1);
1166 swap_range_free(p, offset, 1);
1167 }
1168
1169 /*
1170 * Caller has made sure that the swap device corresponding to entry
1171 * is still around or has not been recycled.
1172 */
1173 void swap_free(swp_entry_t entry)
1174 {
1175 struct swap_info_struct *p;
1176
1177 p = _swap_info_get(entry);
1178 if (p) {
1179 if (!__swap_entry_free(p, entry, 1))
1180 free_swap_slot(entry);
1181 }
1182 }
1183
1184 /*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1186 */
1187 static void swapcache_free(swp_entry_t entry)
1188 {
1189 struct swap_info_struct *p;
1190
1191 p = _swap_info_get(entry);
1192 if (p) {
1193 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1194 free_swap_slot(entry);
1195 }
1196 }
1197
1198 #ifdef CONFIG_THP_SWAP
1199 static void swapcache_free_cluster(swp_entry_t entry)
1200 {
1201 unsigned long offset = swp_offset(entry);
1202 unsigned long idx = offset / SWAPFILE_CLUSTER;
1203 struct swap_cluster_info *ci;
1204 struct swap_info_struct *si;
1205 unsigned char *map;
1206 unsigned int i, free_entries = 0;
1207 unsigned char val;
1208
1209 si = _swap_info_get(entry);
1210 if (!si)
1211 return;
1212
1213 ci = lock_cluster(si, offset);
1214 VM_BUG_ON(!cluster_is_huge(ci));
1215 map = si->swap_map + offset;
1216 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1217 val = map[i];
1218 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219 if (val == SWAP_HAS_CACHE)
1220 free_entries++;
1221 }
1222 if (!free_entries) {
1223 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224 map[i] &= ~SWAP_HAS_CACHE;
1225 }
1226 cluster_clear_huge(ci);
1227 unlock_cluster(ci);
1228 if (free_entries == SWAPFILE_CLUSTER) {
1229 spin_lock(&si->lock);
1230 ci = lock_cluster(si, offset);
1231 memset(map, 0, SWAPFILE_CLUSTER);
1232 unlock_cluster(ci);
1233 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234 swap_free_cluster(si, idx);
1235 spin_unlock(&si->lock);
1236 } else if (free_entries) {
1237 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239 free_swap_slot(entry);
1240 }
1241 }
1242 }
1243
1244 int split_swap_cluster(swp_entry_t entry)
1245 {
1246 struct swap_info_struct *si;
1247 struct swap_cluster_info *ci;
1248 unsigned long offset = swp_offset(entry);
1249
1250 si = _swap_info_get(entry);
1251 if (!si)
1252 return -EBUSY;
1253 ci = lock_cluster(si, offset);
1254 cluster_clear_huge(ci);
1255 unlock_cluster(ci);
1256 return 0;
1257 }
1258 #else
1259 static inline void swapcache_free_cluster(swp_entry_t entry)
1260 {
1261 }
1262 #endif /* CONFIG_THP_SWAP */
1263
1264 void put_swap_page(struct page *page, swp_entry_t entry)
1265 {
1266 if (!PageTransHuge(page))
1267 swapcache_free(entry);
1268 else
1269 swapcache_free_cluster(entry);
1270 }
1271
1272 static int swp_entry_cmp(const void *ent1, const void *ent2)
1273 {
1274 const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276 return (int)swp_type(*e1) - (int)swp_type(*e2);
1277 }
1278
1279 void swapcache_free_entries(swp_entry_t *entries, int n)
1280 {
1281 struct swap_info_struct *p, *prev;
1282 int i;
1283
1284 if (n <= 0)
1285 return;
1286
1287 prev = NULL;
1288 p = NULL;
1289
1290 /*
1291 * Sort swap entries by swap device, so each lock is only taken once.
1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293 * so low that it isn't necessary to optimize further.
1294 */
1295 if (nr_swapfiles > 1)
1296 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1297 for (i = 0; i < n; ++i) {
1298 p = swap_info_get_cont(entries[i], prev);
1299 if (p)
1300 swap_entry_free(p, entries[i]);
1301 prev = p;
1302 }
1303 if (p)
1304 spin_unlock(&p->lock);
1305 }
1306
1307 /*
1308 * How many references to page are currently swapped out?
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1311 */
1312 int page_swapcount(struct page *page)
1313 {
1314 int count = 0;
1315 struct swap_info_struct *p;
1316 struct swap_cluster_info *ci;
1317 swp_entry_t entry;
1318 unsigned long offset;
1319
1320 entry.val = page_private(page);
1321 p = _swap_info_get(entry);
1322 if (p) {
1323 offset = swp_offset(entry);
1324 ci = lock_cluster_or_swap_info(p, offset);
1325 count = swap_count(p->swap_map[offset]);
1326 unlock_cluster_or_swap_info(p, ci);
1327 }
1328 return count;
1329 }
1330
1331 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1332 {
1333 int count = 0;
1334 pgoff_t offset = swp_offset(entry);
1335 struct swap_cluster_info *ci;
1336
1337 ci = lock_cluster_or_swap_info(si, offset);
1338 count = swap_count(si->swap_map[offset]);
1339 unlock_cluster_or_swap_info(si, ci);
1340 return count;
1341 }
1342
1343 /*
1344 * How many references to @entry are currently swapped out?
1345 * This does not give an exact answer when swap count is continued,
1346 * but does include the high COUNT_CONTINUED flag to allow for that.
1347 */
1348 int __swp_swapcount(swp_entry_t entry)
1349 {
1350 int count = 0;
1351 struct swap_info_struct *si;
1352
1353 si = __swap_info_get(entry);
1354 if (si)
1355 count = swap_swapcount(si, entry);
1356 return count;
1357 }
1358
1359 /*
1360 * How many references to @entry are currently swapped out?
1361 * This considers COUNT_CONTINUED so it returns exact answer.
1362 */
1363 int swp_swapcount(swp_entry_t entry)
1364 {
1365 int count, tmp_count, n;
1366 struct swap_info_struct *p;
1367 struct swap_cluster_info *ci;
1368 struct page *page;
1369 pgoff_t offset;
1370 unsigned char *map;
1371
1372 p = _swap_info_get(entry);
1373 if (!p)
1374 return 0;
1375
1376 offset = swp_offset(entry);
1377
1378 ci = lock_cluster_or_swap_info(p, offset);
1379
1380 count = swap_count(p->swap_map[offset]);
1381 if (!(count & COUNT_CONTINUED))
1382 goto out;
1383
1384 count &= ~COUNT_CONTINUED;
1385 n = SWAP_MAP_MAX + 1;
1386
1387 page = vmalloc_to_page(p->swap_map + offset);
1388 offset &= ~PAGE_MASK;
1389 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1390
1391 do {
1392 page = list_next_entry(page, lru);
1393 map = kmap_atomic(page);
1394 tmp_count = map[offset];
1395 kunmap_atomic(map);
1396
1397 count += (tmp_count & ~COUNT_CONTINUED) * n;
1398 n *= (SWAP_CONT_MAX + 1);
1399 } while (tmp_count & COUNT_CONTINUED);
1400 out:
1401 unlock_cluster_or_swap_info(p, ci);
1402 return count;
1403 }
1404
1405 #ifdef CONFIG_THP_SWAP
1406 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1407 swp_entry_t entry)
1408 {
1409 struct swap_cluster_info *ci;
1410 unsigned char *map = si->swap_map;
1411 unsigned long roffset = swp_offset(entry);
1412 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1413 int i;
1414 bool ret = false;
1415
1416 ci = lock_cluster_or_swap_info(si, offset);
1417 if (!ci || !cluster_is_huge(ci)) {
1418 if (map[roffset] != SWAP_HAS_CACHE)
1419 ret = true;
1420 goto unlock_out;
1421 }
1422 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1423 if (map[offset + i] != SWAP_HAS_CACHE) {
1424 ret = true;
1425 break;
1426 }
1427 }
1428 unlock_out:
1429 unlock_cluster_or_swap_info(si, ci);
1430 return ret;
1431 }
1432
1433 static bool page_swapped(struct page *page)
1434 {
1435 swp_entry_t entry;
1436 struct swap_info_struct *si;
1437
1438 if (likely(!PageTransCompound(page)))
1439 return page_swapcount(page) != 0;
1440
1441 page = compound_head(page);
1442 entry.val = page_private(page);
1443 si = _swap_info_get(entry);
1444 if (si)
1445 return swap_page_trans_huge_swapped(si, entry);
1446 return false;
1447 }
1448
1449 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1450 int *total_swapcount)
1451 {
1452 int i, map_swapcount, _total_mapcount, _total_swapcount;
1453 unsigned long offset = 0;
1454 struct swap_info_struct *si;
1455 struct swap_cluster_info *ci = NULL;
1456 unsigned char *map = NULL;
1457 int mapcount, swapcount = 0;
1458
1459 /* hugetlbfs shouldn't call it */
1460 VM_BUG_ON_PAGE(PageHuge(page), page);
1461
1462 if (likely(!PageTransCompound(page))) {
1463 mapcount = atomic_read(&page->_mapcount) + 1;
1464 if (total_mapcount)
1465 *total_mapcount = mapcount;
1466 if (PageSwapCache(page))
1467 swapcount = page_swapcount(page);
1468 if (total_swapcount)
1469 *total_swapcount = swapcount;
1470 return mapcount + swapcount;
1471 }
1472
1473 page = compound_head(page);
1474
1475 _total_mapcount = _total_swapcount = map_swapcount = 0;
1476 if (PageSwapCache(page)) {
1477 swp_entry_t entry;
1478
1479 entry.val = page_private(page);
1480 si = _swap_info_get(entry);
1481 if (si) {
1482 map = si->swap_map;
1483 offset = swp_offset(entry);
1484 }
1485 }
1486 if (map)
1487 ci = lock_cluster(si, offset);
1488 for (i = 0; i < HPAGE_PMD_NR; i++) {
1489 mapcount = atomic_read(&page[i]._mapcount) + 1;
1490 _total_mapcount += mapcount;
1491 if (map) {
1492 swapcount = swap_count(map[offset + i]);
1493 _total_swapcount += swapcount;
1494 }
1495 map_swapcount = max(map_swapcount, mapcount + swapcount);
1496 }
1497 unlock_cluster(ci);
1498 if (PageDoubleMap(page)) {
1499 map_swapcount -= 1;
1500 _total_mapcount -= HPAGE_PMD_NR;
1501 }
1502 mapcount = compound_mapcount(page);
1503 map_swapcount += mapcount;
1504 _total_mapcount += mapcount;
1505 if (total_mapcount)
1506 *total_mapcount = _total_mapcount;
1507 if (total_swapcount)
1508 *total_swapcount = _total_swapcount;
1509
1510 return map_swapcount;
1511 }
1512 #else
1513 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1514 #define page_swapped(page) (page_swapcount(page) != 0)
1515
1516 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1517 int *total_swapcount)
1518 {
1519 int mapcount, swapcount = 0;
1520
1521 /* hugetlbfs shouldn't call it */
1522 VM_BUG_ON_PAGE(PageHuge(page), page);
1523
1524 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1525 if (PageSwapCache(page))
1526 swapcount = page_swapcount(page);
1527 if (total_swapcount)
1528 *total_swapcount = swapcount;
1529 return mapcount + swapcount;
1530 }
1531 #endif
1532
1533 /*
1534 * We can write to an anon page without COW if there are no other references
1535 * to it. And as a side-effect, free up its swap: because the old content
1536 * on disk will never be read, and seeking back there to write new content
1537 * later would only waste time away from clustering.
1538 *
1539 * NOTE: total_map_swapcount should not be relied upon by the caller if
1540 * reuse_swap_page() returns false, but it may be always overwritten
1541 * (see the other implementation for CONFIG_SWAP=n).
1542 */
1543 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1544 {
1545 int count, total_mapcount, total_swapcount;
1546
1547 VM_BUG_ON_PAGE(!PageLocked(page), page);
1548 if (unlikely(PageKsm(page)))
1549 return false;
1550 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1551 &total_swapcount);
1552 if (total_map_swapcount)
1553 *total_map_swapcount = total_mapcount + total_swapcount;
1554 if (count == 1 && PageSwapCache(page) &&
1555 (likely(!PageTransCompound(page)) ||
1556 /* The remaining swap count will be freed soon */
1557 total_swapcount == page_swapcount(page))) {
1558 if (!PageWriteback(page)) {
1559 page = compound_head(page);
1560 delete_from_swap_cache(page);
1561 SetPageDirty(page);
1562 } else {
1563 swp_entry_t entry;
1564 struct swap_info_struct *p;
1565
1566 entry.val = page_private(page);
1567 p = swap_info_get(entry);
1568 if (p->flags & SWP_STABLE_WRITES) {
1569 spin_unlock(&p->lock);
1570 return false;
1571 }
1572 spin_unlock(&p->lock);
1573 }
1574 }
1575
1576 return count <= 1;
1577 }
1578
1579 /*
1580 * If swap is getting full, or if there are no more mappings of this page,
1581 * then try_to_free_swap is called to free its swap space.
1582 */
1583 int try_to_free_swap(struct page *page)
1584 {
1585 VM_BUG_ON_PAGE(!PageLocked(page), page);
1586
1587 if (!PageSwapCache(page))
1588 return 0;
1589 if (PageWriteback(page))
1590 return 0;
1591 if (page_swapped(page))
1592 return 0;
1593
1594 /*
1595 * Once hibernation has begun to create its image of memory,
1596 * there's a danger that one of the calls to try_to_free_swap()
1597 * - most probably a call from __try_to_reclaim_swap() while
1598 * hibernation is allocating its own swap pages for the image,
1599 * but conceivably even a call from memory reclaim - will free
1600 * the swap from a page which has already been recorded in the
1601 * image as a clean swapcache page, and then reuse its swap for
1602 * another page of the image. On waking from hibernation, the
1603 * original page might be freed under memory pressure, then
1604 * later read back in from swap, now with the wrong data.
1605 *
1606 * Hibernation suspends storage while it is writing the image
1607 * to disk so check that here.
1608 */
1609 if (pm_suspended_storage())
1610 return 0;
1611
1612 page = compound_head(page);
1613 delete_from_swap_cache(page);
1614 SetPageDirty(page);
1615 return 1;
1616 }
1617
1618 /*
1619 * Free the swap entry like above, but also try to
1620 * free the page cache entry if it is the last user.
1621 */
1622 int free_swap_and_cache(swp_entry_t entry)
1623 {
1624 struct swap_info_struct *p;
1625 struct page *page = NULL;
1626 unsigned char count;
1627
1628 if (non_swap_entry(entry))
1629 return 1;
1630
1631 p = _swap_info_get(entry);
1632 if (p) {
1633 count = __swap_entry_free(p, entry, 1);
1634 if (count == SWAP_HAS_CACHE &&
1635 !swap_page_trans_huge_swapped(p, entry)) {
1636 page = find_get_page(swap_address_space(entry),
1637 swp_offset(entry));
1638 if (page && !trylock_page(page)) {
1639 put_page(page);
1640 page = NULL;
1641 }
1642 } else if (!count)
1643 free_swap_slot(entry);
1644 }
1645 if (page) {
1646 /*
1647 * Not mapped elsewhere, or swap space full? Free it!
1648 * Also recheck PageSwapCache now page is locked (above).
1649 */
1650 if (PageSwapCache(page) && !PageWriteback(page) &&
1651 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1652 !swap_page_trans_huge_swapped(p, entry)) {
1653 page = compound_head(page);
1654 delete_from_swap_cache(page);
1655 SetPageDirty(page);
1656 }
1657 unlock_page(page);
1658 put_page(page);
1659 }
1660 return p != NULL;
1661 }
1662
1663 #ifdef CONFIG_HIBERNATION
1664 /*
1665 * Find the swap type that corresponds to given device (if any).
1666 *
1667 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1668 * from 0, in which the swap header is expected to be located.
1669 *
1670 * This is needed for the suspend to disk (aka swsusp).
1671 */
1672 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1673 {
1674 struct block_device *bdev = NULL;
1675 int type;
1676
1677 if (device)
1678 bdev = bdget(device);
1679
1680 spin_lock(&swap_lock);
1681 for (type = 0; type < nr_swapfiles; type++) {
1682 struct swap_info_struct *sis = swap_info[type];
1683
1684 if (!(sis->flags & SWP_WRITEOK))
1685 continue;
1686
1687 if (!bdev) {
1688 if (bdev_p)
1689 *bdev_p = bdgrab(sis->bdev);
1690
1691 spin_unlock(&swap_lock);
1692 return type;
1693 }
1694 if (bdev == sis->bdev) {
1695 struct swap_extent *se = &sis->first_swap_extent;
1696
1697 if (se->start_block == offset) {
1698 if (bdev_p)
1699 *bdev_p = bdgrab(sis->bdev);
1700
1701 spin_unlock(&swap_lock);
1702 bdput(bdev);
1703 return type;
1704 }
1705 }
1706 }
1707 spin_unlock(&swap_lock);
1708 if (bdev)
1709 bdput(bdev);
1710
1711 return -ENODEV;
1712 }
1713
1714 /*
1715 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1716 * corresponding to given index in swap_info (swap type).
1717 */
1718 sector_t swapdev_block(int type, pgoff_t offset)
1719 {
1720 struct block_device *bdev;
1721
1722 if ((unsigned int)type >= nr_swapfiles)
1723 return 0;
1724 if (!(swap_info[type]->flags & SWP_WRITEOK))
1725 return 0;
1726 return map_swap_entry(swp_entry(type, offset), &bdev);
1727 }
1728
1729 /*
1730 * Return either the total number of swap pages of given type, or the number
1731 * of free pages of that type (depending on @free)
1732 *
1733 * This is needed for software suspend
1734 */
1735 unsigned int count_swap_pages(int type, int free)
1736 {
1737 unsigned int n = 0;
1738
1739 spin_lock(&swap_lock);
1740 if ((unsigned int)type < nr_swapfiles) {
1741 struct swap_info_struct *sis = swap_info[type];
1742
1743 spin_lock(&sis->lock);
1744 if (sis->flags & SWP_WRITEOK) {
1745 n = sis->pages;
1746 if (free)
1747 n -= sis->inuse_pages;
1748 }
1749 spin_unlock(&sis->lock);
1750 }
1751 spin_unlock(&swap_lock);
1752 return n;
1753 }
1754 #endif /* CONFIG_HIBERNATION */
1755
1756 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1757 {
1758 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1759 }
1760
1761 /*
1762 * No need to decide whether this PTE shares the swap entry with others,
1763 * just let do_wp_page work it out if a write is requested later - to
1764 * force COW, vm_page_prot omits write permission from any private vma.
1765 */
1766 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1767 unsigned long addr, swp_entry_t entry, struct page *page)
1768 {
1769 struct page *swapcache;
1770 struct mem_cgroup *memcg;
1771 spinlock_t *ptl;
1772 pte_t *pte;
1773 int ret = 1;
1774
1775 swapcache = page;
1776 page = ksm_might_need_to_copy(page, vma, addr);
1777 if (unlikely(!page))
1778 return -ENOMEM;
1779
1780 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1781 &memcg, false)) {
1782 ret = -ENOMEM;
1783 goto out_nolock;
1784 }
1785
1786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1787 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1788 mem_cgroup_cancel_charge(page, memcg, false);
1789 ret = 0;
1790 goto out;
1791 }
1792
1793 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1795 get_page(page);
1796 set_pte_at(vma->vm_mm, addr, pte,
1797 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1798 if (page == swapcache) {
1799 page_add_anon_rmap(page, vma, addr, false);
1800 mem_cgroup_commit_charge(page, memcg, true, false);
1801 } else { /* ksm created a completely new copy */
1802 page_add_new_anon_rmap(page, vma, addr, false);
1803 mem_cgroup_commit_charge(page, memcg, false, false);
1804 lru_cache_add_active_or_unevictable(page, vma);
1805 }
1806 swap_free(entry);
1807 /*
1808 * Move the page to the active list so it is not
1809 * immediately swapped out again after swapon.
1810 */
1811 activate_page(page);
1812 out:
1813 pte_unmap_unlock(pte, ptl);
1814 out_nolock:
1815 if (page != swapcache) {
1816 unlock_page(page);
1817 put_page(page);
1818 }
1819 return ret;
1820 }
1821
1822 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1823 unsigned long addr, unsigned long end,
1824 swp_entry_t entry, struct page *page)
1825 {
1826 pte_t swp_pte = swp_entry_to_pte(entry);
1827 pte_t *pte;
1828 int ret = 0;
1829
1830 /*
1831 * We don't actually need pte lock while scanning for swp_pte: since
1832 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1833 * page table while we're scanning; though it could get zapped, and on
1834 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1835 * of unmatched parts which look like swp_pte, so unuse_pte must
1836 * recheck under pte lock. Scanning without pte lock lets it be
1837 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1838 */
1839 pte = pte_offset_map(pmd, addr);
1840 do {
1841 /*
1842 * swapoff spends a _lot_ of time in this loop!
1843 * Test inline before going to call unuse_pte.
1844 */
1845 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1846 pte_unmap(pte);
1847 ret = unuse_pte(vma, pmd, addr, entry, page);
1848 if (ret)
1849 goto out;
1850 pte = pte_offset_map(pmd, addr);
1851 }
1852 } while (pte++, addr += PAGE_SIZE, addr != end);
1853 pte_unmap(pte - 1);
1854 out:
1855 return ret;
1856 }
1857
1858 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1859 unsigned long addr, unsigned long end,
1860 swp_entry_t entry, struct page *page)
1861 {
1862 pmd_t *pmd;
1863 unsigned long next;
1864 int ret;
1865
1866 pmd = pmd_offset(pud, addr);
1867 do {
1868 cond_resched();
1869 next = pmd_addr_end(addr, end);
1870 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1871 continue;
1872 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1873 if (ret)
1874 return ret;
1875 } while (pmd++, addr = next, addr != end);
1876 return 0;
1877 }
1878
1879 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1880 unsigned long addr, unsigned long end,
1881 swp_entry_t entry, struct page *page)
1882 {
1883 pud_t *pud;
1884 unsigned long next;
1885 int ret;
1886
1887 pud = pud_offset(p4d, addr);
1888 do {
1889 next = pud_addr_end(addr, end);
1890 if (pud_none_or_clear_bad(pud))
1891 continue;
1892 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1893 if (ret)
1894 return ret;
1895 } while (pud++, addr = next, addr != end);
1896 return 0;
1897 }
1898
1899 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1900 unsigned long addr, unsigned long end,
1901 swp_entry_t entry, struct page *page)
1902 {
1903 p4d_t *p4d;
1904 unsigned long next;
1905 int ret;
1906
1907 p4d = p4d_offset(pgd, addr);
1908 do {
1909 next = p4d_addr_end(addr, end);
1910 if (p4d_none_or_clear_bad(p4d))
1911 continue;
1912 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1913 if (ret)
1914 return ret;
1915 } while (p4d++, addr = next, addr != end);
1916 return 0;
1917 }
1918
1919 static int unuse_vma(struct vm_area_struct *vma,
1920 swp_entry_t entry, struct page *page)
1921 {
1922 pgd_t *pgd;
1923 unsigned long addr, end, next;
1924 int ret;
1925
1926 if (page_anon_vma(page)) {
1927 addr = page_address_in_vma(page, vma);
1928 if (addr == -EFAULT)
1929 return 0;
1930 else
1931 end = addr + PAGE_SIZE;
1932 } else {
1933 addr = vma->vm_start;
1934 end = vma->vm_end;
1935 }
1936
1937 pgd = pgd_offset(vma->vm_mm, addr);
1938 do {
1939 next = pgd_addr_end(addr, end);
1940 if (pgd_none_or_clear_bad(pgd))
1941 continue;
1942 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1943 if (ret)
1944 return ret;
1945 } while (pgd++, addr = next, addr != end);
1946 return 0;
1947 }
1948
1949 static int unuse_mm(struct mm_struct *mm,
1950 swp_entry_t entry, struct page *page)
1951 {
1952 struct vm_area_struct *vma;
1953 int ret = 0;
1954
1955 if (!down_read_trylock(&mm->mmap_sem)) {
1956 /*
1957 * Activate page so shrink_inactive_list is unlikely to unmap
1958 * its ptes while lock is dropped, so swapoff can make progress.
1959 */
1960 activate_page(page);
1961 unlock_page(page);
1962 down_read(&mm->mmap_sem);
1963 lock_page(page);
1964 }
1965 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1966 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1967 break;
1968 cond_resched();
1969 }
1970 up_read(&mm->mmap_sem);
1971 return (ret < 0)? ret: 0;
1972 }
1973
1974 /*
1975 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1976 * from current position to next entry still in use.
1977 * Recycle to start on reaching the end, returning 0 when empty.
1978 */
1979 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1980 unsigned int prev, bool frontswap)
1981 {
1982 unsigned int max = si->max;
1983 unsigned int i = prev;
1984 unsigned char count;
1985
1986 /*
1987 * No need for swap_lock here: we're just looking
1988 * for whether an entry is in use, not modifying it; false
1989 * hits are okay, and sys_swapoff() has already prevented new
1990 * allocations from this area (while holding swap_lock).
1991 */
1992 for (;;) {
1993 if (++i >= max) {
1994 if (!prev) {
1995 i = 0;
1996 break;
1997 }
1998 /*
1999 * No entries in use at top of swap_map,
2000 * loop back to start and recheck there.
2001 */
2002 max = prev + 1;
2003 prev = 0;
2004 i = 1;
2005 }
2006 count = READ_ONCE(si->swap_map[i]);
2007 if (count && swap_count(count) != SWAP_MAP_BAD)
2008 if (!frontswap || frontswap_test(si, i))
2009 break;
2010 if ((i % LATENCY_LIMIT) == 0)
2011 cond_resched();
2012 }
2013 return i;
2014 }
2015
2016 /*
2017 * We completely avoid races by reading each swap page in advance,
2018 * and then search for the process using it. All the necessary
2019 * page table adjustments can then be made atomically.
2020 *
2021 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2022 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2023 */
2024 int try_to_unuse(unsigned int type, bool frontswap,
2025 unsigned long pages_to_unuse)
2026 {
2027 struct swap_info_struct *si = swap_info[type];
2028 struct mm_struct *start_mm;
2029 volatile unsigned char *swap_map; /* swap_map is accessed without
2030 * locking. Mark it as volatile
2031 * to prevent compiler doing
2032 * something odd.
2033 */
2034 unsigned char swcount;
2035 struct page *page;
2036 swp_entry_t entry;
2037 unsigned int i = 0;
2038 int retval = 0;
2039
2040 /*
2041 * When searching mms for an entry, a good strategy is to
2042 * start at the first mm we freed the previous entry from
2043 * (though actually we don't notice whether we or coincidence
2044 * freed the entry). Initialize this start_mm with a hold.
2045 *
2046 * A simpler strategy would be to start at the last mm we
2047 * freed the previous entry from; but that would take less
2048 * advantage of mmlist ordering, which clusters forked mms
2049 * together, child after parent. If we race with dup_mmap(), we
2050 * prefer to resolve parent before child, lest we miss entries
2051 * duplicated after we scanned child: using last mm would invert
2052 * that.
2053 */
2054 start_mm = &init_mm;
2055 mmget(&init_mm);
2056
2057 /*
2058 * Keep on scanning until all entries have gone. Usually,
2059 * one pass through swap_map is enough, but not necessarily:
2060 * there are races when an instance of an entry might be missed.
2061 */
2062 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2063 if (signal_pending(current)) {
2064 retval = -EINTR;
2065 break;
2066 }
2067
2068 /*
2069 * Get a page for the entry, using the existing swap
2070 * cache page if there is one. Otherwise, get a clean
2071 * page and read the swap into it.
2072 */
2073 swap_map = &si->swap_map[i];
2074 entry = swp_entry(type, i);
2075 page = read_swap_cache_async(entry,
2076 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2077 if (!page) {
2078 /*
2079 * Either swap_duplicate() failed because entry
2080 * has been freed independently, and will not be
2081 * reused since sys_swapoff() already disabled
2082 * allocation from here, or alloc_page() failed.
2083 */
2084 swcount = *swap_map;
2085 /*
2086 * We don't hold lock here, so the swap entry could be
2087 * SWAP_MAP_BAD (when the cluster is discarding).
2088 * Instead of fail out, We can just skip the swap
2089 * entry because swapoff will wait for discarding
2090 * finish anyway.
2091 */
2092 if (!swcount || swcount == SWAP_MAP_BAD)
2093 continue;
2094 retval = -ENOMEM;
2095 break;
2096 }
2097
2098 /*
2099 * Don't hold on to start_mm if it looks like exiting.
2100 */
2101 if (atomic_read(&start_mm->mm_users) == 1) {
2102 mmput(start_mm);
2103 start_mm = &init_mm;
2104 mmget(&init_mm);
2105 }
2106
2107 /*
2108 * Wait for and lock page. When do_swap_page races with
2109 * try_to_unuse, do_swap_page can handle the fault much
2110 * faster than try_to_unuse can locate the entry. This
2111 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2112 * defer to do_swap_page in such a case - in some tests,
2113 * do_swap_page and try_to_unuse repeatedly compete.
2114 */
2115 wait_on_page_locked(page);
2116 wait_on_page_writeback(page);
2117 lock_page(page);
2118 wait_on_page_writeback(page);
2119
2120 /*
2121 * Remove all references to entry.
2122 */
2123 swcount = *swap_map;
2124 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2125 retval = shmem_unuse(entry, page);
2126 /* page has already been unlocked and released */
2127 if (retval < 0)
2128 break;
2129 continue;
2130 }
2131 if (swap_count(swcount) && start_mm != &init_mm)
2132 retval = unuse_mm(start_mm, entry, page);
2133
2134 if (swap_count(*swap_map)) {
2135 int set_start_mm = (*swap_map >= swcount);
2136 struct list_head *p = &start_mm->mmlist;
2137 struct mm_struct *new_start_mm = start_mm;
2138 struct mm_struct *prev_mm = start_mm;
2139 struct mm_struct *mm;
2140
2141 mmget(new_start_mm);
2142 mmget(prev_mm);
2143 spin_lock(&mmlist_lock);
2144 while (swap_count(*swap_map) && !retval &&
2145 (p = p->next) != &start_mm->mmlist) {
2146 mm = list_entry(p, struct mm_struct, mmlist);
2147 if (!mmget_not_zero(mm))
2148 continue;
2149 spin_unlock(&mmlist_lock);
2150 mmput(prev_mm);
2151 prev_mm = mm;
2152
2153 cond_resched();
2154
2155 swcount = *swap_map;
2156 if (!swap_count(swcount)) /* any usage ? */
2157 ;
2158 else if (mm == &init_mm)
2159 set_start_mm = 1;
2160 else
2161 retval = unuse_mm(mm, entry, page);
2162
2163 if (set_start_mm && *swap_map < swcount) {
2164 mmput(new_start_mm);
2165 mmget(mm);
2166 new_start_mm = mm;
2167 set_start_mm = 0;
2168 }
2169 spin_lock(&mmlist_lock);
2170 }
2171 spin_unlock(&mmlist_lock);
2172 mmput(prev_mm);
2173 mmput(start_mm);
2174 start_mm = new_start_mm;
2175 }
2176 if (retval) {
2177 unlock_page(page);
2178 put_page(page);
2179 break;
2180 }
2181
2182 /*
2183 * If a reference remains (rare), we would like to leave
2184 * the page in the swap cache; but try_to_unmap could
2185 * then re-duplicate the entry once we drop page lock,
2186 * so we might loop indefinitely; also, that page could
2187 * not be swapped out to other storage meanwhile. So:
2188 * delete from cache even if there's another reference,
2189 * after ensuring that the data has been saved to disk -
2190 * since if the reference remains (rarer), it will be
2191 * read from disk into another page. Splitting into two
2192 * pages would be incorrect if swap supported "shared
2193 * private" pages, but they are handled by tmpfs files.
2194 *
2195 * Given how unuse_vma() targets one particular offset
2196 * in an anon_vma, once the anon_vma has been determined,
2197 * this splitting happens to be just what is needed to
2198 * handle where KSM pages have been swapped out: re-reading
2199 * is unnecessarily slow, but we can fix that later on.
2200 */
2201 if (swap_count(*swap_map) &&
2202 PageDirty(page) && PageSwapCache(page)) {
2203 struct writeback_control wbc = {
2204 .sync_mode = WB_SYNC_NONE,
2205 };
2206
2207 swap_writepage(compound_head(page), &wbc);
2208 lock_page(page);
2209 wait_on_page_writeback(page);
2210 }
2211
2212 /*
2213 * It is conceivable that a racing task removed this page from
2214 * swap cache just before we acquired the page lock at the top,
2215 * or while we dropped it in unuse_mm(). The page might even
2216 * be back in swap cache on another swap area: that we must not
2217 * delete, since it may not have been written out to swap yet.
2218 */
2219 if (PageSwapCache(page) &&
2220 likely(page_private(page) == entry.val) &&
2221 (!PageTransCompound(page) ||
2222 !swap_page_trans_huge_swapped(si, entry)))
2223 delete_from_swap_cache(compound_head(page));
2224
2225 /*
2226 * So we could skip searching mms once swap count went
2227 * to 1, we did not mark any present ptes as dirty: must
2228 * mark page dirty so shrink_page_list will preserve it.
2229 */
2230 SetPageDirty(page);
2231 unlock_page(page);
2232 put_page(page);
2233
2234 /*
2235 * Make sure that we aren't completely killing
2236 * interactive performance.
2237 */
2238 cond_resched();
2239 if (frontswap && pages_to_unuse > 0) {
2240 if (!--pages_to_unuse)
2241 break;
2242 }
2243 }
2244
2245 mmput(start_mm);
2246 return retval;
2247 }
2248
2249 /*
2250 * After a successful try_to_unuse, if no swap is now in use, we know
2251 * we can empty the mmlist. swap_lock must be held on entry and exit.
2252 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2253 * added to the mmlist just after page_duplicate - before would be racy.
2254 */
2255 static void drain_mmlist(void)
2256 {
2257 struct list_head *p, *next;
2258 unsigned int type;
2259
2260 for (type = 0; type < nr_swapfiles; type++)
2261 if (swap_info[type]->inuse_pages)
2262 return;
2263 spin_lock(&mmlist_lock);
2264 list_for_each_safe(p, next, &init_mm.mmlist)
2265 list_del_init(p);
2266 spin_unlock(&mmlist_lock);
2267 }
2268
2269 /*
2270 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2271 * corresponds to page offset for the specified swap entry.
2272 * Note that the type of this function is sector_t, but it returns page offset
2273 * into the bdev, not sector offset.
2274 */
2275 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2276 {
2277 struct swap_info_struct *sis;
2278 struct swap_extent *start_se;
2279 struct swap_extent *se;
2280 pgoff_t offset;
2281
2282 sis = swap_info[swp_type(entry)];
2283 *bdev = sis->bdev;
2284
2285 offset = swp_offset(entry);
2286 start_se = sis->curr_swap_extent;
2287 se = start_se;
2288
2289 for ( ; ; ) {
2290 if (se->start_page <= offset &&
2291 offset < (se->start_page + se->nr_pages)) {
2292 return se->start_block + (offset - se->start_page);
2293 }
2294 se = list_next_entry(se, list);
2295 sis->curr_swap_extent = se;
2296 BUG_ON(se == start_se); /* It *must* be present */
2297 }
2298 }
2299
2300 /*
2301 * Returns the page offset into bdev for the specified page's swap entry.
2302 */
2303 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2304 {
2305 swp_entry_t entry;
2306 entry.val = page_private(page);
2307 return map_swap_entry(entry, bdev);
2308 }
2309
2310 /*
2311 * Free all of a swapdev's extent information
2312 */
2313 static void destroy_swap_extents(struct swap_info_struct *sis)
2314 {
2315 while (!list_empty(&sis->first_swap_extent.list)) {
2316 struct swap_extent *se;
2317
2318 se = list_first_entry(&sis->first_swap_extent.list,
2319 struct swap_extent, list);
2320 list_del(&se->list);
2321 kfree(se);
2322 }
2323
2324 if (sis->flags & SWP_FILE) {
2325 struct file *swap_file = sis->swap_file;
2326 struct address_space *mapping = swap_file->f_mapping;
2327
2328 sis->flags &= ~SWP_FILE;
2329 mapping->a_ops->swap_deactivate(swap_file);
2330 }
2331 }
2332
2333 /*
2334 * Add a block range (and the corresponding page range) into this swapdev's
2335 * extent list. The extent list is kept sorted in page order.
2336 *
2337 * This function rather assumes that it is called in ascending page order.
2338 */
2339 int
2340 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2341 unsigned long nr_pages, sector_t start_block)
2342 {
2343 struct swap_extent *se;
2344 struct swap_extent *new_se;
2345 struct list_head *lh;
2346
2347 if (start_page == 0) {
2348 se = &sis->first_swap_extent;
2349 sis->curr_swap_extent = se;
2350 se->start_page = 0;
2351 se->nr_pages = nr_pages;
2352 se->start_block = start_block;
2353 return 1;
2354 } else {
2355 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2356 se = list_entry(lh, struct swap_extent, list);
2357 BUG_ON(se->start_page + se->nr_pages != start_page);
2358 if (se->start_block + se->nr_pages == start_block) {
2359 /* Merge it */
2360 se->nr_pages += nr_pages;
2361 return 0;
2362 }
2363 }
2364
2365 /*
2366 * No merge. Insert a new extent, preserving ordering.
2367 */
2368 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2369 if (new_se == NULL)
2370 return -ENOMEM;
2371 new_se->start_page = start_page;
2372 new_se->nr_pages = nr_pages;
2373 new_se->start_block = start_block;
2374
2375 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2376 return 1;
2377 }
2378
2379 /*
2380 * A `swap extent' is a simple thing which maps a contiguous range of pages
2381 * onto a contiguous range of disk blocks. An ordered list of swap extents
2382 * is built at swapon time and is then used at swap_writepage/swap_readpage
2383 * time for locating where on disk a page belongs.
2384 *
2385 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2387 * swap files identically.
2388 *
2389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2391 * swapfiles are handled *identically* after swapon time.
2392 *
2393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2396 * requirements, they are simply tossed out - we will never use those blocks
2397 * for swapping.
2398 *
2399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2400 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2401 * which will scribble on the fs.
2402 *
2403 * The amount of disk space which a single swap extent represents varies.
2404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2405 * extents in the list. To avoid much list walking, we cache the previous
2406 * search location in `curr_swap_extent', and start new searches from there.
2407 * This is extremely effective. The average number of iterations in
2408 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2409 */
2410 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2411 {
2412 struct file *swap_file = sis->swap_file;
2413 struct address_space *mapping = swap_file->f_mapping;
2414 struct inode *inode = mapping->host;
2415 int ret;
2416
2417 if (S_ISBLK(inode->i_mode)) {
2418 ret = add_swap_extent(sis, 0, sis->max, 0);
2419 *span = sis->pages;
2420 return ret;
2421 }
2422
2423 if (mapping->a_ops->swap_activate) {
2424 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2425 if (!ret) {
2426 sis->flags |= SWP_FILE;
2427 ret = add_swap_extent(sis, 0, sis->max, 0);
2428 *span = sis->pages;
2429 }
2430 return ret;
2431 }
2432
2433 return generic_swapfile_activate(sis, swap_file, span);
2434 }
2435
2436 static int swap_node(struct swap_info_struct *p)
2437 {
2438 struct block_device *bdev;
2439
2440 if (p->bdev)
2441 bdev = p->bdev;
2442 else
2443 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2444
2445 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2446 }
2447
2448 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2449 unsigned char *swap_map,
2450 struct swap_cluster_info *cluster_info)
2451 {
2452 int i;
2453
2454 if (prio >= 0)
2455 p->prio = prio;
2456 else
2457 p->prio = --least_priority;
2458 /*
2459 * the plist prio is negated because plist ordering is
2460 * low-to-high, while swap ordering is high-to-low
2461 */
2462 p->list.prio = -p->prio;
2463 for_each_node(i) {
2464 if (p->prio >= 0)
2465 p->avail_lists[i].prio = -p->prio;
2466 else {
2467 if (swap_node(p) == i)
2468 p->avail_lists[i].prio = 1;
2469 else
2470 p->avail_lists[i].prio = -p->prio;
2471 }
2472 }
2473 p->swap_map = swap_map;
2474 p->cluster_info = cluster_info;
2475 p->flags |= SWP_WRITEOK;
2476 atomic_long_add(p->pages, &nr_swap_pages);
2477 total_swap_pages += p->pages;
2478
2479 assert_spin_locked(&swap_lock);
2480 /*
2481 * both lists are plists, and thus priority ordered.
2482 * swap_active_head needs to be priority ordered for swapoff(),
2483 * which on removal of any swap_info_struct with an auto-assigned
2484 * (i.e. negative) priority increments the auto-assigned priority
2485 * of any lower-priority swap_info_structs.
2486 * swap_avail_head needs to be priority ordered for get_swap_page(),
2487 * which allocates swap pages from the highest available priority
2488 * swap_info_struct.
2489 */
2490 plist_add(&p->list, &swap_active_head);
2491 add_to_avail_list(p);
2492 }
2493
2494 static void enable_swap_info(struct swap_info_struct *p, int prio,
2495 unsigned char *swap_map,
2496 struct swap_cluster_info *cluster_info,
2497 unsigned long *frontswap_map)
2498 {
2499 frontswap_init(p->type, frontswap_map);
2500 spin_lock(&swap_lock);
2501 spin_lock(&p->lock);
2502 _enable_swap_info(p, prio, swap_map, cluster_info);
2503 spin_unlock(&p->lock);
2504 spin_unlock(&swap_lock);
2505 }
2506
2507 static void reinsert_swap_info(struct swap_info_struct *p)
2508 {
2509 spin_lock(&swap_lock);
2510 spin_lock(&p->lock);
2511 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2512 spin_unlock(&p->lock);
2513 spin_unlock(&swap_lock);
2514 }
2515
2516 bool has_usable_swap(void)
2517 {
2518 bool ret = true;
2519
2520 spin_lock(&swap_lock);
2521 if (plist_head_empty(&swap_active_head))
2522 ret = false;
2523 spin_unlock(&swap_lock);
2524 return ret;
2525 }
2526
2527 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2528 {
2529 struct swap_info_struct *p = NULL;
2530 unsigned char *swap_map;
2531 struct swap_cluster_info *cluster_info;
2532 unsigned long *frontswap_map;
2533 struct file *swap_file, *victim;
2534 struct address_space *mapping;
2535 struct inode *inode;
2536 struct filename *pathname;
2537 int err, found = 0;
2538 unsigned int old_block_size;
2539
2540 if (!capable(CAP_SYS_ADMIN))
2541 return -EPERM;
2542
2543 BUG_ON(!current->mm);
2544
2545 pathname = getname(specialfile);
2546 if (IS_ERR(pathname))
2547 return PTR_ERR(pathname);
2548
2549 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2550 err = PTR_ERR(victim);
2551 if (IS_ERR(victim))
2552 goto out;
2553
2554 mapping = victim->f_mapping;
2555 spin_lock(&swap_lock);
2556 plist_for_each_entry(p, &swap_active_head, list) {
2557 if (p->flags & SWP_WRITEOK) {
2558 if (p->swap_file->f_mapping == mapping) {
2559 found = 1;
2560 break;
2561 }
2562 }
2563 }
2564 if (!found) {
2565 err = -EINVAL;
2566 spin_unlock(&swap_lock);
2567 goto out_dput;
2568 }
2569 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2570 vm_unacct_memory(p->pages);
2571 else {
2572 err = -ENOMEM;
2573 spin_unlock(&swap_lock);
2574 goto out_dput;
2575 }
2576 del_from_avail_list(p);
2577 spin_lock(&p->lock);
2578 if (p->prio < 0) {
2579 struct swap_info_struct *si = p;
2580 int nid;
2581
2582 plist_for_each_entry_continue(si, &swap_active_head, list) {
2583 si->prio++;
2584 si->list.prio--;
2585 for_each_node(nid) {
2586 if (si->avail_lists[nid].prio != 1)
2587 si->avail_lists[nid].prio--;
2588 }
2589 }
2590 least_priority++;
2591 }
2592 plist_del(&p->list, &swap_active_head);
2593 atomic_long_sub(p->pages, &nr_swap_pages);
2594 total_swap_pages -= p->pages;
2595 p->flags &= ~SWP_WRITEOK;
2596 spin_unlock(&p->lock);
2597 spin_unlock(&swap_lock);
2598
2599 disable_swap_slots_cache_lock();
2600
2601 set_current_oom_origin();
2602 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2603 clear_current_oom_origin();
2604
2605 if (err) {
2606 /* re-insert swap space back into swap_list */
2607 reinsert_swap_info(p);
2608 reenable_swap_slots_cache_unlock();
2609 goto out_dput;
2610 }
2611
2612 reenable_swap_slots_cache_unlock();
2613
2614 flush_work(&p->discard_work);
2615
2616 destroy_swap_extents(p);
2617 if (p->flags & SWP_CONTINUED)
2618 free_swap_count_continuations(p);
2619
2620 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2621 atomic_dec(&nr_rotate_swap);
2622
2623 mutex_lock(&swapon_mutex);
2624 spin_lock(&swap_lock);
2625 spin_lock(&p->lock);
2626 drain_mmlist();
2627
2628 /* wait for anyone still in scan_swap_map */
2629 p->highest_bit = 0; /* cuts scans short */
2630 while (p->flags >= SWP_SCANNING) {
2631 spin_unlock(&p->lock);
2632 spin_unlock(&swap_lock);
2633 schedule_timeout_uninterruptible(1);
2634 spin_lock(&swap_lock);
2635 spin_lock(&p->lock);
2636 }
2637
2638 swap_file = p->swap_file;
2639 old_block_size = p->old_block_size;
2640 p->swap_file = NULL;
2641 p->max = 0;
2642 swap_map = p->swap_map;
2643 p->swap_map = NULL;
2644 cluster_info = p->cluster_info;
2645 p->cluster_info = NULL;
2646 frontswap_map = frontswap_map_get(p);
2647 spin_unlock(&p->lock);
2648 spin_unlock(&swap_lock);
2649 frontswap_invalidate_area(p->type);
2650 frontswap_map_set(p, NULL);
2651 mutex_unlock(&swapon_mutex);
2652 free_percpu(p->percpu_cluster);
2653 p->percpu_cluster = NULL;
2654 vfree(swap_map);
2655 kvfree(cluster_info);
2656 kvfree(frontswap_map);
2657 /* Destroy swap account information */
2658 swap_cgroup_swapoff(p->type);
2659 exit_swap_address_space(p->type);
2660
2661 inode = mapping->host;
2662 if (S_ISBLK(inode->i_mode)) {
2663 struct block_device *bdev = I_BDEV(inode);
2664 set_blocksize(bdev, old_block_size);
2665 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2666 } else {
2667 inode_lock(inode);
2668 inode->i_flags &= ~S_SWAPFILE;
2669 inode_unlock(inode);
2670 }
2671 filp_close(swap_file, NULL);
2672
2673 /*
2674 * Clear the SWP_USED flag after all resources are freed so that swapon
2675 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2676 * not hold p->lock after we cleared its SWP_WRITEOK.
2677 */
2678 spin_lock(&swap_lock);
2679 p->flags = 0;
2680 spin_unlock(&swap_lock);
2681
2682 err = 0;
2683 atomic_inc(&proc_poll_event);
2684 wake_up_interruptible(&proc_poll_wait);
2685
2686 out_dput:
2687 filp_close(victim, NULL);
2688 out:
2689 putname(pathname);
2690 return err;
2691 }
2692
2693 #ifdef CONFIG_PROC_FS
2694 static unsigned swaps_poll(struct file *file, poll_table *wait)
2695 {
2696 struct seq_file *seq = file->private_data;
2697
2698 poll_wait(file, &proc_poll_wait, wait);
2699
2700 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2701 seq->poll_event = atomic_read(&proc_poll_event);
2702 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2703 }
2704
2705 return POLLIN | POLLRDNORM;
2706 }
2707
2708 /* iterator */
2709 static void *swap_start(struct seq_file *swap, loff_t *pos)
2710 {
2711 struct swap_info_struct *si;
2712 int type;
2713 loff_t l = *pos;
2714
2715 mutex_lock(&swapon_mutex);
2716
2717 if (!l)
2718 return SEQ_START_TOKEN;
2719
2720 for (type = 0; type < nr_swapfiles; type++) {
2721 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2722 si = swap_info[type];
2723 if (!(si->flags & SWP_USED) || !si->swap_map)
2724 continue;
2725 if (!--l)
2726 return si;
2727 }
2728
2729 return NULL;
2730 }
2731
2732 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2733 {
2734 struct swap_info_struct *si = v;
2735 int type;
2736
2737 if (v == SEQ_START_TOKEN)
2738 type = 0;
2739 else
2740 type = si->type + 1;
2741
2742 for (; type < nr_swapfiles; type++) {
2743 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2744 si = swap_info[type];
2745 if (!(si->flags & SWP_USED) || !si->swap_map)
2746 continue;
2747 ++*pos;
2748 return si;
2749 }
2750
2751 return NULL;
2752 }
2753
2754 static void swap_stop(struct seq_file *swap, void *v)
2755 {
2756 mutex_unlock(&swapon_mutex);
2757 }
2758
2759 static int swap_show(struct seq_file *swap, void *v)
2760 {
2761 struct swap_info_struct *si = v;
2762 struct file *file;
2763 int len;
2764
2765 if (si == SEQ_START_TOKEN) {
2766 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2767 return 0;
2768 }
2769
2770 file = si->swap_file;
2771 len = seq_file_path(swap, file, " \t\n\\");
2772 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2773 len < 40 ? 40 - len : 1, " ",
2774 S_ISBLK(file_inode(file)->i_mode) ?
2775 "partition" : "file\t",
2776 si->pages << (PAGE_SHIFT - 10),
2777 si->inuse_pages << (PAGE_SHIFT - 10),
2778 si->prio);
2779 return 0;
2780 }
2781
2782 static const struct seq_operations swaps_op = {
2783 .start = swap_start,
2784 .next = swap_next,
2785 .stop = swap_stop,
2786 .show = swap_show
2787 };
2788
2789 static int swaps_open(struct inode *inode, struct file *file)
2790 {
2791 struct seq_file *seq;
2792 int ret;
2793
2794 ret = seq_open(file, &swaps_op);
2795 if (ret)
2796 return ret;
2797
2798 seq = file->private_data;
2799 seq->poll_event = atomic_read(&proc_poll_event);
2800 return 0;
2801 }
2802
2803 static const struct file_operations proc_swaps_operations = {
2804 .open = swaps_open,
2805 .read = seq_read,
2806 .llseek = seq_lseek,
2807 .release = seq_release,
2808 .poll = swaps_poll,
2809 };
2810
2811 static int __init procswaps_init(void)
2812 {
2813 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2814 return 0;
2815 }
2816 __initcall(procswaps_init);
2817 #endif /* CONFIG_PROC_FS */
2818
2819 #ifdef MAX_SWAPFILES_CHECK
2820 static int __init max_swapfiles_check(void)
2821 {
2822 MAX_SWAPFILES_CHECK();
2823 return 0;
2824 }
2825 late_initcall(max_swapfiles_check);
2826 #endif
2827
2828 static struct swap_info_struct *alloc_swap_info(void)
2829 {
2830 struct swap_info_struct *p;
2831 unsigned int type;
2832 int i;
2833 int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2834
2835 p = kvzalloc(size, GFP_KERNEL);
2836 if (!p)
2837 return ERR_PTR(-ENOMEM);
2838
2839 spin_lock(&swap_lock);
2840 for (type = 0; type < nr_swapfiles; type++) {
2841 if (!(swap_info[type]->flags & SWP_USED))
2842 break;
2843 }
2844 if (type >= MAX_SWAPFILES) {
2845 spin_unlock(&swap_lock);
2846 kvfree(p);
2847 return ERR_PTR(-EPERM);
2848 }
2849 if (type >= nr_swapfiles) {
2850 p->type = type;
2851 swap_info[type] = p;
2852 /*
2853 * Write swap_info[type] before nr_swapfiles, in case a
2854 * racing procfs swap_start() or swap_next() is reading them.
2855 * (We never shrink nr_swapfiles, we never free this entry.)
2856 */
2857 smp_wmb();
2858 nr_swapfiles++;
2859 } else {
2860 kvfree(p);
2861 p = swap_info[type];
2862 /*
2863 * Do not memset this entry: a racing procfs swap_next()
2864 * would be relying on p->type to remain valid.
2865 */
2866 }
2867 INIT_LIST_HEAD(&p->first_swap_extent.list);
2868 plist_node_init(&p->list, 0);
2869 for_each_node(i)
2870 plist_node_init(&p->avail_lists[i], 0);
2871 p->flags = SWP_USED;
2872 spin_unlock(&swap_lock);
2873 spin_lock_init(&p->lock);
2874 spin_lock_init(&p->cont_lock);
2875
2876 return p;
2877 }
2878
2879 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2880 {
2881 int error;
2882
2883 if (S_ISBLK(inode->i_mode)) {
2884 p->bdev = bdgrab(I_BDEV(inode));
2885 error = blkdev_get(p->bdev,
2886 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2887 if (error < 0) {
2888 p->bdev = NULL;
2889 return error;
2890 }
2891 p->old_block_size = block_size(p->bdev);
2892 error = set_blocksize(p->bdev, PAGE_SIZE);
2893 if (error < 0)
2894 return error;
2895 p->flags |= SWP_BLKDEV;
2896 } else if (S_ISREG(inode->i_mode)) {
2897 p->bdev = inode->i_sb->s_bdev;
2898 inode_lock(inode);
2899 if (IS_SWAPFILE(inode))
2900 return -EBUSY;
2901 } else
2902 return -EINVAL;
2903
2904 return 0;
2905 }
2906
2907
2908 /*
2909 * Find out how many pages are allowed for a single swap device. There
2910 * are two limiting factors:
2911 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2912 * 2) the number of bits in the swap pte, as defined by the different
2913 * architectures.
2914 *
2915 * In order to find the largest possible bit mask, a swap entry with
2916 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2917 * decoded to a swp_entry_t again, and finally the swap offset is
2918 * extracted.
2919 *
2920 * This will mask all the bits from the initial ~0UL mask that can't
2921 * be encoded in either the swp_entry_t or the architecture definition
2922 * of a swap pte.
2923 */
2924 unsigned long generic_max_swapfile_size(void)
2925 {
2926 return swp_offset(pte_to_swp_entry(
2927 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2928 }
2929
2930 /* Can be overridden by an architecture for additional checks. */
2931 __weak unsigned long max_swapfile_size(void)
2932 {
2933 return generic_max_swapfile_size();
2934 }
2935
2936 static unsigned long read_swap_header(struct swap_info_struct *p,
2937 union swap_header *swap_header,
2938 struct inode *inode)
2939 {
2940 int i;
2941 unsigned long maxpages;
2942 unsigned long swapfilepages;
2943 unsigned long last_page;
2944
2945 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2946 pr_err("Unable to find swap-space signature\n");
2947 return 0;
2948 }
2949
2950 /* swap partition endianess hack... */
2951 if (swab32(swap_header->info.version) == 1) {
2952 swab32s(&swap_header->info.version);
2953 swab32s(&swap_header->info.last_page);
2954 swab32s(&swap_header->info.nr_badpages);
2955 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2956 return 0;
2957 for (i = 0; i < swap_header->info.nr_badpages; i++)
2958 swab32s(&swap_header->info.badpages[i]);
2959 }
2960 /* Check the swap header's sub-version */
2961 if (swap_header->info.version != 1) {
2962 pr_warn("Unable to handle swap header version %d\n",
2963 swap_header->info.version);
2964 return 0;
2965 }
2966
2967 p->lowest_bit = 1;
2968 p->cluster_next = 1;
2969 p->cluster_nr = 0;
2970
2971 maxpages = max_swapfile_size();
2972 last_page = swap_header->info.last_page;
2973 if (!last_page) {
2974 pr_warn("Empty swap-file\n");
2975 return 0;
2976 }
2977 if (last_page > maxpages) {
2978 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2979 maxpages << (PAGE_SHIFT - 10),
2980 last_page << (PAGE_SHIFT - 10));
2981 }
2982 if (maxpages > last_page) {
2983 maxpages = last_page + 1;
2984 /* p->max is an unsigned int: don't overflow it */
2985 if ((unsigned int)maxpages == 0)
2986 maxpages = UINT_MAX;
2987 }
2988 p->highest_bit = maxpages - 1;
2989
2990 if (!maxpages)
2991 return 0;
2992 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2993 if (swapfilepages && maxpages > swapfilepages) {
2994 pr_warn("Swap area shorter than signature indicates\n");
2995 return 0;
2996 }
2997 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2998 return 0;
2999 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3000 return 0;
3001
3002 return maxpages;
3003 }
3004
3005 #define SWAP_CLUSTER_INFO_COLS \
3006 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3007 #define SWAP_CLUSTER_SPACE_COLS \
3008 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3009 #define SWAP_CLUSTER_COLS \
3010 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3011
3012 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3013 union swap_header *swap_header,
3014 unsigned char *swap_map,
3015 struct swap_cluster_info *cluster_info,
3016 unsigned long maxpages,
3017 sector_t *span)
3018 {
3019 unsigned int j, k;
3020 unsigned int nr_good_pages;
3021 int nr_extents;
3022 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3023 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3024 unsigned long i, idx;
3025
3026 nr_good_pages = maxpages - 1; /* omit header page */
3027
3028 cluster_list_init(&p->free_clusters);
3029 cluster_list_init(&p->discard_clusters);
3030
3031 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3032 unsigned int page_nr = swap_header->info.badpages[i];
3033 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3034 return -EINVAL;
3035 if (page_nr < maxpages) {
3036 swap_map[page_nr] = SWAP_MAP_BAD;
3037 nr_good_pages--;
3038 /*
3039 * Haven't marked the cluster free yet, no list
3040 * operation involved
3041 */
3042 inc_cluster_info_page(p, cluster_info, page_nr);
3043 }
3044 }
3045
3046 /* Haven't marked the cluster free yet, no list operation involved */
3047 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3048 inc_cluster_info_page(p, cluster_info, i);
3049
3050 if (nr_good_pages) {
3051 swap_map[0] = SWAP_MAP_BAD;
3052 /*
3053 * Not mark the cluster free yet, no list
3054 * operation involved
3055 */
3056 inc_cluster_info_page(p, cluster_info, 0);
3057 p->max = maxpages;
3058 p->pages = nr_good_pages;
3059 nr_extents = setup_swap_extents(p, span);
3060 if (nr_extents < 0)
3061 return nr_extents;
3062 nr_good_pages = p->pages;
3063 }
3064 if (!nr_good_pages) {
3065 pr_warn("Empty swap-file\n");
3066 return -EINVAL;
3067 }
3068
3069 if (!cluster_info)
3070 return nr_extents;
3071
3072
3073 /*
3074 * Reduce false cache line sharing between cluster_info and
3075 * sharing same address space.
3076 */
3077 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3078 j = (k + col) % SWAP_CLUSTER_COLS;
3079 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3080 idx = i * SWAP_CLUSTER_COLS + j;
3081 if (idx >= nr_clusters)
3082 continue;
3083 if (cluster_count(&cluster_info[idx]))
3084 continue;
3085 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3086 cluster_list_add_tail(&p->free_clusters, cluster_info,
3087 idx);
3088 }
3089 }
3090 return nr_extents;
3091 }
3092
3093 /*
3094 * Helper to sys_swapon determining if a given swap
3095 * backing device queue supports DISCARD operations.
3096 */
3097 static bool swap_discardable(struct swap_info_struct *si)
3098 {
3099 struct request_queue *q = bdev_get_queue(si->bdev);
3100
3101 if (!q || !blk_queue_discard(q))
3102 return false;
3103
3104 return true;
3105 }
3106
3107 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3108 {
3109 struct swap_info_struct *p;
3110 struct filename *name;
3111 struct file *swap_file = NULL;
3112 struct address_space *mapping;
3113 int prio;
3114 int error;
3115 union swap_header *swap_header;
3116 int nr_extents;
3117 sector_t span;
3118 unsigned long maxpages;
3119 unsigned char *swap_map = NULL;
3120 struct swap_cluster_info *cluster_info = NULL;
3121 unsigned long *frontswap_map = NULL;
3122 struct page *page = NULL;
3123 struct inode *inode = NULL;
3124
3125 if (swap_flags & ~SWAP_FLAGS_VALID)
3126 return -EINVAL;
3127
3128 if (!capable(CAP_SYS_ADMIN))
3129 return -EPERM;
3130
3131 if (!swap_avail_heads)
3132 return -ENOMEM;
3133
3134 p = alloc_swap_info();
3135 if (IS_ERR(p))
3136 return PTR_ERR(p);
3137
3138 INIT_WORK(&p->discard_work, swap_discard_work);
3139
3140 name = getname(specialfile);
3141 if (IS_ERR(name)) {
3142 error = PTR_ERR(name);
3143 name = NULL;
3144 goto bad_swap;
3145 }
3146 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3147 if (IS_ERR(swap_file)) {
3148 error = PTR_ERR(swap_file);
3149 swap_file = NULL;
3150 goto bad_swap;
3151 }
3152
3153 p->swap_file = swap_file;
3154 mapping = swap_file->f_mapping;
3155 inode = mapping->host;
3156
3157 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3158 error = claim_swapfile(p, inode);
3159 if (unlikely(error))
3160 goto bad_swap;
3161
3162 /*
3163 * Read the swap header.
3164 */
3165 if (!mapping->a_ops->readpage) {
3166 error = -EINVAL;
3167 goto bad_swap;
3168 }
3169 page = read_mapping_page(mapping, 0, swap_file);
3170 if (IS_ERR(page)) {
3171 error = PTR_ERR(page);
3172 goto bad_swap;
3173 }
3174 swap_header = kmap(page);
3175
3176 maxpages = read_swap_header(p, swap_header, inode);
3177 if (unlikely(!maxpages)) {
3178 error = -EINVAL;
3179 goto bad_swap;
3180 }
3181
3182 /* OK, set up the swap map and apply the bad block list */
3183 swap_map = vzalloc(maxpages);
3184 if (!swap_map) {
3185 error = -ENOMEM;
3186 goto bad_swap;
3187 }
3188
3189 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3190 p->flags |= SWP_STABLE_WRITES;
3191
3192 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3193 int cpu;
3194 unsigned long ci, nr_cluster;
3195
3196 p->flags |= SWP_SOLIDSTATE;
3197 /*
3198 * select a random position to start with to help wear leveling
3199 * SSD
3200 */
3201 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3202 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3203
3204 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3205 GFP_KERNEL);
3206 if (!cluster_info) {
3207 error = -ENOMEM;
3208 goto bad_swap;
3209 }
3210
3211 for (ci = 0; ci < nr_cluster; ci++)
3212 spin_lock_init(&((cluster_info + ci)->lock));
3213
3214 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3215 if (!p->percpu_cluster) {
3216 error = -ENOMEM;
3217 goto bad_swap;
3218 }
3219 for_each_possible_cpu(cpu) {
3220 struct percpu_cluster *cluster;
3221 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3222 cluster_set_null(&cluster->index);
3223 }
3224 } else
3225 atomic_inc(&nr_rotate_swap);
3226
3227 error = swap_cgroup_swapon(p->type, maxpages);
3228 if (error)
3229 goto bad_swap;
3230
3231 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3232 cluster_info, maxpages, &span);
3233 if (unlikely(nr_extents < 0)) {
3234 error = nr_extents;
3235 goto bad_swap;
3236 }
3237 /* frontswap enabled? set up bit-per-page map for frontswap */
3238 if (IS_ENABLED(CONFIG_FRONTSWAP))
3239 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3240 GFP_KERNEL);
3241
3242 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3243 /*
3244 * When discard is enabled for swap with no particular
3245 * policy flagged, we set all swap discard flags here in
3246 * order to sustain backward compatibility with older
3247 * swapon(8) releases.
3248 */
3249 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3250 SWP_PAGE_DISCARD);
3251
3252 /*
3253 * By flagging sys_swapon, a sysadmin can tell us to
3254 * either do single-time area discards only, or to just
3255 * perform discards for released swap page-clusters.
3256 * Now it's time to adjust the p->flags accordingly.
3257 */
3258 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3259 p->flags &= ~SWP_PAGE_DISCARD;
3260 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3261 p->flags &= ~SWP_AREA_DISCARD;
3262
3263 /* issue a swapon-time discard if it's still required */
3264 if (p->flags & SWP_AREA_DISCARD) {
3265 int err = discard_swap(p);
3266 if (unlikely(err))
3267 pr_err("swapon: discard_swap(%p): %d\n",
3268 p, err);
3269 }
3270 }
3271
3272 error = init_swap_address_space(p->type, maxpages);
3273 if (error)
3274 goto bad_swap;
3275
3276 mutex_lock(&swapon_mutex);
3277 prio = -1;
3278 if (swap_flags & SWAP_FLAG_PREFER)
3279 prio =
3280 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3281 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3282
3283 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3284 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3285 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3286 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3287 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3288 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3289 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3290 (frontswap_map) ? "FS" : "");
3291
3292 mutex_unlock(&swapon_mutex);
3293 atomic_inc(&proc_poll_event);
3294 wake_up_interruptible(&proc_poll_wait);
3295
3296 if (S_ISREG(inode->i_mode))
3297 inode->i_flags |= S_SWAPFILE;
3298 error = 0;
3299 goto out;
3300 bad_swap:
3301 free_percpu(p->percpu_cluster);
3302 p->percpu_cluster = NULL;
3303 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3304 set_blocksize(p->bdev, p->old_block_size);
3305 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3306 }
3307 destroy_swap_extents(p);
3308 swap_cgroup_swapoff(p->type);
3309 spin_lock(&swap_lock);
3310 p->swap_file = NULL;
3311 p->flags = 0;
3312 spin_unlock(&swap_lock);
3313 vfree(swap_map);
3314 kvfree(cluster_info);
3315 kvfree(frontswap_map);
3316 if (swap_file) {
3317 if (inode && S_ISREG(inode->i_mode)) {
3318 inode_unlock(inode);
3319 inode = NULL;
3320 }
3321 filp_close(swap_file, NULL);
3322 }
3323 out:
3324 if (page && !IS_ERR(page)) {
3325 kunmap(page);
3326 put_page(page);
3327 }
3328 if (name)
3329 putname(name);
3330 if (inode && S_ISREG(inode->i_mode))
3331 inode_unlock(inode);
3332 if (!error)
3333 enable_swap_slots_cache();
3334 return error;
3335 }
3336
3337 void si_swapinfo(struct sysinfo *val)
3338 {
3339 unsigned int type;
3340 unsigned long nr_to_be_unused = 0;
3341
3342 spin_lock(&swap_lock);
3343 for (type = 0; type < nr_swapfiles; type++) {
3344 struct swap_info_struct *si = swap_info[type];
3345
3346 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3347 nr_to_be_unused += si->inuse_pages;
3348 }
3349 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3350 val->totalswap = total_swap_pages + nr_to_be_unused;
3351 spin_unlock(&swap_lock);
3352 }
3353
3354 /*
3355 * Verify that a swap entry is valid and increment its swap map count.
3356 *
3357 * Returns error code in following case.
3358 * - success -> 0
3359 * - swp_entry is invalid -> EINVAL
3360 * - swp_entry is migration entry -> EINVAL
3361 * - swap-cache reference is requested but there is already one. -> EEXIST
3362 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3363 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3364 */
3365 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3366 {
3367 struct swap_info_struct *p;
3368 struct swap_cluster_info *ci;
3369 unsigned long offset, type;
3370 unsigned char count;
3371 unsigned char has_cache;
3372 int err = -EINVAL;
3373
3374 if (non_swap_entry(entry))
3375 goto out;
3376
3377 type = swp_type(entry);
3378 if (type >= nr_swapfiles)
3379 goto bad_file;
3380 p = swap_info[type];
3381 offset = swp_offset(entry);
3382 if (unlikely(offset >= p->max))
3383 goto out;
3384
3385 ci = lock_cluster_or_swap_info(p, offset);
3386
3387 count = p->swap_map[offset];
3388
3389 /*
3390 * swapin_readahead() doesn't check if a swap entry is valid, so the
3391 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3392 */
3393 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3394 err = -ENOENT;
3395 goto unlock_out;
3396 }
3397
3398 has_cache = count & SWAP_HAS_CACHE;
3399 count &= ~SWAP_HAS_CACHE;
3400 err = 0;
3401
3402 if (usage == SWAP_HAS_CACHE) {
3403
3404 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3405 if (!has_cache && count)
3406 has_cache = SWAP_HAS_CACHE;
3407 else if (has_cache) /* someone else added cache */
3408 err = -EEXIST;
3409 else /* no users remaining */
3410 err = -ENOENT;
3411
3412 } else if (count || has_cache) {
3413
3414 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3415 count += usage;
3416 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3417 err = -EINVAL;
3418 else if (swap_count_continued(p, offset, count))
3419 count = COUNT_CONTINUED;
3420 else
3421 err = -ENOMEM;
3422 } else
3423 err = -ENOENT; /* unused swap entry */
3424
3425 p->swap_map[offset] = count | has_cache;
3426
3427 unlock_out:
3428 unlock_cluster_or_swap_info(p, ci);
3429 out:
3430 return err;
3431
3432 bad_file:
3433 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3434 goto out;
3435 }
3436
3437 /*
3438 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3439 * (in which case its reference count is never incremented).
3440 */
3441 void swap_shmem_alloc(swp_entry_t entry)
3442 {
3443 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3444 }
3445
3446 /*
3447 * Increase reference count of swap entry by 1.
3448 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3449 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3450 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3451 * might occur if a page table entry has got corrupted.
3452 */
3453 int swap_duplicate(swp_entry_t entry)
3454 {
3455 int err = 0;
3456
3457 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3458 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3459 return err;
3460 }
3461
3462 /*
3463 * @entry: swap entry for which we allocate swap cache.
3464 *
3465 * Called when allocating swap cache for existing swap entry,
3466 * This can return error codes. Returns 0 at success.
3467 * -EBUSY means there is a swap cache.
3468 * Note: return code is different from swap_duplicate().
3469 */
3470 int swapcache_prepare(swp_entry_t entry)
3471 {
3472 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3473 }
3474
3475 struct swap_info_struct *page_swap_info(struct page *page)
3476 {
3477 swp_entry_t swap = { .val = page_private(page) };
3478 return swap_info[swp_type(swap)];
3479 }
3480
3481 /*
3482 * out-of-line __page_file_ methods to avoid include hell.
3483 */
3484 struct address_space *__page_file_mapping(struct page *page)
3485 {
3486 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3487 return page_swap_info(page)->swap_file->f_mapping;
3488 }
3489 EXPORT_SYMBOL_GPL(__page_file_mapping);
3490
3491 pgoff_t __page_file_index(struct page *page)
3492 {
3493 swp_entry_t swap = { .val = page_private(page) };
3494 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3495 return swp_offset(swap);
3496 }
3497 EXPORT_SYMBOL_GPL(__page_file_index);
3498
3499 /*
3500 * add_swap_count_continuation - called when a swap count is duplicated
3501 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3502 * page of the original vmalloc'ed swap_map, to hold the continuation count
3503 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3504 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3505 *
3506 * These continuation pages are seldom referenced: the common paths all work
3507 * on the original swap_map, only referring to a continuation page when the
3508 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3509 *
3510 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3511 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3512 * can be called after dropping locks.
3513 */
3514 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3515 {
3516 struct swap_info_struct *si;
3517 struct swap_cluster_info *ci;
3518 struct page *head;
3519 struct page *page;
3520 struct page *list_page;
3521 pgoff_t offset;
3522 unsigned char count;
3523
3524 /*
3525 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3526 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3527 */
3528 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3529
3530 si = swap_info_get(entry);
3531 if (!si) {
3532 /*
3533 * An acceptable race has occurred since the failing
3534 * __swap_duplicate(): the swap entry has been freed,
3535 * perhaps even the whole swap_map cleared for swapoff.
3536 */
3537 goto outer;
3538 }
3539
3540 offset = swp_offset(entry);
3541
3542 ci = lock_cluster(si, offset);
3543
3544 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3545
3546 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3547 /*
3548 * The higher the swap count, the more likely it is that tasks
3549 * will race to add swap count continuation: we need to avoid
3550 * over-provisioning.
3551 */
3552 goto out;
3553 }
3554
3555 if (!page) {
3556 unlock_cluster(ci);
3557 spin_unlock(&si->lock);
3558 return -ENOMEM;
3559 }
3560
3561 /*
3562 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3563 * no architecture is using highmem pages for kernel page tables: so it
3564 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3565 */
3566 head = vmalloc_to_page(si->swap_map + offset);
3567 offset &= ~PAGE_MASK;
3568
3569 spin_lock(&si->cont_lock);
3570 /*
3571 * Page allocation does not initialize the page's lru field,
3572 * but it does always reset its private field.
3573 */
3574 if (!page_private(head)) {
3575 BUG_ON(count & COUNT_CONTINUED);
3576 INIT_LIST_HEAD(&head->lru);
3577 set_page_private(head, SWP_CONTINUED);
3578 si->flags |= SWP_CONTINUED;
3579 }
3580
3581 list_for_each_entry(list_page, &head->lru, lru) {
3582 unsigned char *map;
3583
3584 /*
3585 * If the previous map said no continuation, but we've found
3586 * a continuation page, free our allocation and use this one.
3587 */
3588 if (!(count & COUNT_CONTINUED))
3589 goto out_unlock_cont;
3590
3591 map = kmap_atomic(list_page) + offset;
3592 count = *map;
3593 kunmap_atomic(map);
3594
3595 /*
3596 * If this continuation count now has some space in it,
3597 * free our allocation and use this one.
3598 */
3599 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3600 goto out_unlock_cont;
3601 }
3602
3603 list_add_tail(&page->lru, &head->lru);
3604 page = NULL; /* now it's attached, don't free it */
3605 out_unlock_cont:
3606 spin_unlock(&si->cont_lock);
3607 out:
3608 unlock_cluster(ci);
3609 spin_unlock(&si->lock);
3610 outer:
3611 if (page)
3612 __free_page(page);
3613 return 0;
3614 }
3615
3616 /*
3617 * swap_count_continued - when the original swap_map count is incremented
3618 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3619 * into, carry if so, or else fail until a new continuation page is allocated;
3620 * when the original swap_map count is decremented from 0 with continuation,
3621 * borrow from the continuation and report whether it still holds more.
3622 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3623 * lock.
3624 */
3625 static bool swap_count_continued(struct swap_info_struct *si,
3626 pgoff_t offset, unsigned char count)
3627 {
3628 struct page *head;
3629 struct page *page;
3630 unsigned char *map;
3631 bool ret;
3632
3633 head = vmalloc_to_page(si->swap_map + offset);
3634 if (page_private(head) != SWP_CONTINUED) {
3635 BUG_ON(count & COUNT_CONTINUED);
3636 return false; /* need to add count continuation */
3637 }
3638
3639 spin_lock(&si->cont_lock);
3640 offset &= ~PAGE_MASK;
3641 page = list_entry(head->lru.next, struct page, lru);
3642 map = kmap_atomic(page) + offset;
3643
3644 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3645 goto init_map; /* jump over SWAP_CONT_MAX checks */
3646
3647 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3648 /*
3649 * Think of how you add 1 to 999
3650 */
3651 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3652 kunmap_atomic(map);
3653 page = list_entry(page->lru.next, struct page, lru);
3654 BUG_ON(page == head);
3655 map = kmap_atomic(page) + offset;
3656 }
3657 if (*map == SWAP_CONT_MAX) {
3658 kunmap_atomic(map);
3659 page = list_entry(page->lru.next, struct page, lru);
3660 if (page == head) {
3661 ret = false; /* add count continuation */
3662 goto out;
3663 }
3664 map = kmap_atomic(page) + offset;
3665 init_map: *map = 0; /* we didn't zero the page */
3666 }
3667 *map += 1;
3668 kunmap_atomic(map);
3669 page = list_entry(page->lru.prev, struct page, lru);
3670 while (page != head) {
3671 map = kmap_atomic(page) + offset;
3672 *map = COUNT_CONTINUED;
3673 kunmap_atomic(map);
3674 page = list_entry(page->lru.prev, struct page, lru);
3675 }
3676 ret = true; /* incremented */
3677
3678 } else { /* decrementing */
3679 /*
3680 * Think of how you subtract 1 from 1000
3681 */
3682 BUG_ON(count != COUNT_CONTINUED);
3683 while (*map == COUNT_CONTINUED) {
3684 kunmap_atomic(map);
3685 page = list_entry(page->lru.next, struct page, lru);
3686 BUG_ON(page == head);
3687 map = kmap_atomic(page) + offset;
3688 }
3689 BUG_ON(*map == 0);
3690 *map -= 1;
3691 if (*map == 0)
3692 count = 0;
3693 kunmap_atomic(map);
3694 page = list_entry(page->lru.prev, struct page, lru);
3695 while (page != head) {
3696 map = kmap_atomic(page) + offset;
3697 *map = SWAP_CONT_MAX | count;
3698 count = COUNT_CONTINUED;
3699 kunmap_atomic(map);
3700 page = list_entry(page->lru.prev, struct page, lru);
3701 }
3702 ret = count == COUNT_CONTINUED;
3703 }
3704 out:
3705 spin_unlock(&si->cont_lock);
3706 return ret;
3707 }
3708
3709 /*
3710 * free_swap_count_continuations - swapoff free all the continuation pages
3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3712 */
3713 static void free_swap_count_continuations(struct swap_info_struct *si)
3714 {
3715 pgoff_t offset;
3716
3717 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718 struct page *head;
3719 head = vmalloc_to_page(si->swap_map + offset);
3720 if (page_private(head)) {
3721 struct page *page, *next;
3722
3723 list_for_each_entry_safe(page, next, &head->lru, lru) {
3724 list_del(&page->lru);
3725 __free_page(page);
3726 }
3727 }
3728 }
3729 }
3730
3731 static int __init swapfile_init(void)
3732 {
3733 int nid;
3734
3735 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3736 GFP_KERNEL);
3737 if (!swap_avail_heads) {
3738 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3739 return -ENOMEM;
3740 }
3741
3742 for_each_node(nid)
3743 plist_head_init(&swap_avail_heads[nid]);
3744
3745 return 0;
3746 }
3747 subsys_initcall(swapfile_init);