mm: mm_event: fix compact_scan
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 #define __OBJECT_POISON 0x80000000UL /* Poison object */
196 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
197
198 /*
199 * Tracking user of a slab.
200 */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 unsigned long addr; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206 #endif
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210 };
211
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242 /*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
252 #else
253 return ptr;
254 #endif
255 }
256
257 /* Returns the freelist pointer recorded at location ptr_addr. */
258 static inline void *freelist_dereference(const struct kmem_cache *s,
259 void *ptr_addr)
260 {
261 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
262 (unsigned long)ptr_addr);
263 }
264
265 static inline void *get_freepointer(struct kmem_cache *s, void *object)
266 {
267 return freelist_dereference(s, object + s->offset);
268 }
269
270 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
271 {
272 if (object)
273 prefetch(freelist_dereference(s, object + s->offset));
274 }
275
276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277 {
278 unsigned long freepointer_addr;
279 void *p;
280
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s, object);
283
284 freepointer_addr = (unsigned long)object + s->offset;
285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 return freelist_ptr(s, p, freepointer_addr);
287 }
288
289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290 {
291 unsigned long freeptr_addr = (unsigned long)object + s->offset;
292
293 #ifdef CONFIG_SLAB_FREELIST_HARDENED
294 BUG_ON(object == fp); /* naive detection of double free or corruption */
295 #endif
296
297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
298 }
299
300 /* Loop over all objects in a slab */
301 #define for_each_object(__p, __s, __addr, __objects) \
302 for (__p = fixup_red_left(__s, __addr); \
303 __p < (__addr) + (__objects) * (__s)->size; \
304 __p += (__s)->size)
305
306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 __idx <= __objects; \
309 __p += (__s)->size, __idx++)
310
311 /* Determine object index from a given position */
312 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
313 {
314 return (p - addr) / s->size;
315 }
316
317 static inline int order_objects(int order, unsigned long size, int reserved)
318 {
319 return ((PAGE_SIZE << order) - reserved) / size;
320 }
321
322 static inline struct kmem_cache_order_objects oo_make(int order,
323 unsigned long size, int reserved)
324 {
325 struct kmem_cache_order_objects x = {
326 (order << OO_SHIFT) + order_objects(order, size, reserved)
327 };
328
329 return x;
330 }
331
332 static inline int oo_order(struct kmem_cache_order_objects x)
333 {
334 return x.x >> OO_SHIFT;
335 }
336
337 static inline int oo_objects(struct kmem_cache_order_objects x)
338 {
339 return x.x & OO_MASK;
340 }
341
342 /*
343 * Per slab locking using the pagelock
344 */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 VM_BUG_ON_PAGE(PageTail(page), page);
348 bit_spin_lock(PG_locked, &page->flags);
349 }
350
351 static __always_inline void slab_unlock(struct page *page)
352 {
353 VM_BUG_ON_PAGE(PageTail(page), page);
354 __bit_spin_unlock(PG_locked, &page->flags);
355 }
356
357 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
358 {
359 struct page tmp;
360 tmp.counters = counters_new;
361 /*
362 * page->counters can cover frozen/inuse/objects as well
363 * as page->_refcount. If we assign to ->counters directly
364 * we run the risk of losing updates to page->_refcount, so
365 * be careful and only assign to the fields we need.
366 */
367 page->frozen = tmp.frozen;
368 page->inuse = tmp.inuse;
369 page->objects = tmp.objects;
370 }
371
372 /* Interrupts must be disabled (for the fallback code to work right) */
373 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
374 void *freelist_old, unsigned long counters_old,
375 void *freelist_new, unsigned long counters_new,
376 const char *n)
377 {
378 VM_BUG_ON(!irqs_disabled());
379 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
380 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
381 if (s->flags & __CMPXCHG_DOUBLE) {
382 if (cmpxchg_double(&page->freelist, &page->counters,
383 freelist_old, counters_old,
384 freelist_new, counters_new))
385 return true;
386 } else
387 #endif
388 {
389 slab_lock(page);
390 if (page->freelist == freelist_old &&
391 page->counters == counters_old) {
392 page->freelist = freelist_new;
393 set_page_slub_counters(page, counters_new);
394 slab_unlock(page);
395 return true;
396 }
397 slab_unlock(page);
398 }
399
400 cpu_relax();
401 stat(s, CMPXCHG_DOUBLE_FAIL);
402
403 #ifdef SLUB_DEBUG_CMPXCHG
404 pr_info("%s %s: cmpxchg double redo ", n, s->name);
405 #endif
406
407 return false;
408 }
409
410 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
411 void *freelist_old, unsigned long counters_old,
412 void *freelist_new, unsigned long counters_new,
413 const char *n)
414 {
415 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
416 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
417 if (s->flags & __CMPXCHG_DOUBLE) {
418 if (cmpxchg_double(&page->freelist, &page->counters,
419 freelist_old, counters_old,
420 freelist_new, counters_new))
421 return true;
422 } else
423 #endif
424 {
425 unsigned long flags;
426
427 local_irq_save(flags);
428 slab_lock(page);
429 if (page->freelist == freelist_old &&
430 page->counters == counters_old) {
431 page->freelist = freelist_new;
432 set_page_slub_counters(page, counters_new);
433 slab_unlock(page);
434 local_irq_restore(flags);
435 return true;
436 }
437 slab_unlock(page);
438 local_irq_restore(flags);
439 }
440
441 cpu_relax();
442 stat(s, CMPXCHG_DOUBLE_FAIL);
443
444 #ifdef SLUB_DEBUG_CMPXCHG
445 pr_info("%s %s: cmpxchg double redo ", n, s->name);
446 #endif
447
448 return false;
449 }
450
451 #ifdef CONFIG_SLUB_DEBUG
452 /*
453 * Determine a map of object in use on a page.
454 *
455 * Node listlock must be held to guarantee that the page does
456 * not vanish from under us.
457 */
458 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
459 {
460 void *p;
461 void *addr = page_address(page);
462
463 for (p = page->freelist; p; p = get_freepointer(s, p))
464 set_bit(slab_index(p, s, addr), map);
465 }
466
467 static inline int size_from_object(struct kmem_cache *s)
468 {
469 if (s->flags & SLAB_RED_ZONE)
470 return s->size - s->red_left_pad;
471
472 return s->size;
473 }
474
475 static inline void *restore_red_left(struct kmem_cache *s, void *p)
476 {
477 if (s->flags & SLAB_RED_ZONE)
478 p -= s->red_left_pad;
479
480 return p;
481 }
482
483 /*
484 * Debug settings:
485 */
486 #if defined(CONFIG_SLUB_DEBUG_ON)
487 static int slub_debug = DEBUG_DEFAULT_FLAGS;
488 #else
489 static int slub_debug;
490 #endif
491
492 static char *slub_debug_slabs;
493 static int disable_higher_order_debug;
494
495 /*
496 * slub is about to manipulate internal object metadata. This memory lies
497 * outside the range of the allocated object, so accessing it would normally
498 * be reported by kasan as a bounds error. metadata_access_enable() is used
499 * to tell kasan that these accesses are OK.
500 */
501 static inline void metadata_access_enable(void)
502 {
503 kasan_disable_current();
504 }
505
506 static inline void metadata_access_disable(void)
507 {
508 kasan_enable_current();
509 }
510
511 /*
512 * Object debugging
513 */
514
515 /* Verify that a pointer has an address that is valid within a slab page */
516 static inline int check_valid_pointer(struct kmem_cache *s,
517 struct page *page, void *object)
518 {
519 void *base;
520
521 if (!object)
522 return 1;
523
524 base = page_address(page);
525 object = restore_red_left(s, object);
526 if (object < base || object >= base + page->objects * s->size ||
527 (object - base) % s->size) {
528 return 0;
529 }
530
531 return 1;
532 }
533
534 static void print_section(char *level, char *text, u8 *addr,
535 unsigned int length)
536 {
537 metadata_access_enable();
538 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
539 length, 1);
540 metadata_access_disable();
541 }
542
543 static struct track *get_track(struct kmem_cache *s, void *object,
544 enum track_item alloc)
545 {
546 struct track *p;
547
548 if (s->offset)
549 p = object + s->offset + sizeof(void *);
550 else
551 p = object + s->inuse;
552
553 return p + alloc;
554 }
555
556 static void set_track(struct kmem_cache *s, void *object,
557 enum track_item alloc, unsigned long addr)
558 {
559 struct track *p = get_track(s, object, alloc);
560
561 if (addr) {
562 #ifdef CONFIG_STACKTRACE
563 struct stack_trace trace;
564 int i;
565
566 trace.nr_entries = 0;
567 trace.max_entries = TRACK_ADDRS_COUNT;
568 trace.entries = p->addrs;
569 trace.skip = 3;
570 metadata_access_enable();
571 save_stack_trace(&trace);
572 metadata_access_disable();
573
574 /* See rant in lockdep.c */
575 if (trace.nr_entries != 0 &&
576 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
577 trace.nr_entries--;
578
579 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
580 p->addrs[i] = 0;
581 #endif
582 p->addr = addr;
583 p->cpu = smp_processor_id();
584 p->pid = current->pid;
585 p->when = jiffies;
586 } else
587 memset(p, 0, sizeof(struct track));
588 }
589
590 static void init_tracking(struct kmem_cache *s, void *object)
591 {
592 if (!(s->flags & SLAB_STORE_USER))
593 return;
594
595 set_track(s, object, TRACK_FREE, 0UL);
596 set_track(s, object, TRACK_ALLOC, 0UL);
597 }
598
599 static void print_track(const char *s, struct track *t)
600 {
601 if (!t->addr)
602 return;
603
604 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
605 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
606 #ifdef CONFIG_STACKTRACE
607 {
608 int i;
609 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
610 if (t->addrs[i])
611 pr_err("\t%pS\n", (void *)t->addrs[i]);
612 else
613 break;
614 }
615 #endif
616 }
617
618 static void print_tracking(struct kmem_cache *s, void *object)
619 {
620 if (!(s->flags & SLAB_STORE_USER))
621 return;
622
623 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
624 print_track("Freed", get_track(s, object, TRACK_FREE));
625 }
626
627 static void print_page_info(struct page *page)
628 {
629 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
630 page, page->objects, page->inuse, page->freelist, page->flags);
631
632 }
633
634 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
635 {
636 struct va_format vaf;
637 va_list args;
638
639 va_start(args, fmt);
640 vaf.fmt = fmt;
641 vaf.va = &args;
642 pr_err("=============================================================================\n");
643 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
644 pr_err("-----------------------------------------------------------------------------\n\n");
645
646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
647 va_end(args);
648 }
649
650 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
651 {
652 struct va_format vaf;
653 va_list args;
654
655 va_start(args, fmt);
656 vaf.fmt = fmt;
657 vaf.va = &args;
658 pr_err("FIX %s: %pV\n", s->name, &vaf);
659 va_end(args);
660 }
661
662 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
663 {
664 unsigned int off; /* Offset of last byte */
665 u8 *addr = page_address(page);
666
667 print_tracking(s, p);
668
669 print_page_info(page);
670
671 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
672 p, p - addr, get_freepointer(s, p));
673
674 if (s->flags & SLAB_RED_ZONE)
675 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
676 s->red_left_pad);
677 else if (p > addr + 16)
678 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
679
680 print_section(KERN_ERR, "Object ", p,
681 min_t(unsigned long, s->object_size, PAGE_SIZE));
682 if (s->flags & SLAB_RED_ZONE)
683 print_section(KERN_ERR, "Redzone ", p + s->object_size,
684 s->inuse - s->object_size);
685
686 if (s->offset)
687 off = s->offset + sizeof(void *);
688 else
689 off = s->inuse;
690
691 if (s->flags & SLAB_STORE_USER)
692 off += 2 * sizeof(struct track);
693
694 off += kasan_metadata_size(s);
695
696 if (off != size_from_object(s))
697 /* Beginning of the filler is the free pointer */
698 print_section(KERN_ERR, "Padding ", p + off,
699 size_from_object(s) - off);
700
701 dump_stack();
702 }
703
704 void object_err(struct kmem_cache *s, struct page *page,
705 u8 *object, char *reason)
706 {
707 slab_bug(s, "%s", reason);
708 print_trailer(s, page, object);
709 }
710
711 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
712 const char *fmt, ...)
713 {
714 va_list args;
715 char buf[100];
716
717 va_start(args, fmt);
718 vsnprintf(buf, sizeof(buf), fmt, args);
719 va_end(args);
720 slab_bug(s, "%s", buf);
721 print_page_info(page);
722 dump_stack();
723 }
724
725 static void init_object(struct kmem_cache *s, void *object, u8 val)
726 {
727 u8 *p = object;
728
729 if (s->flags & SLAB_RED_ZONE)
730 memset(p - s->red_left_pad, val, s->red_left_pad);
731
732 if (s->flags & __OBJECT_POISON) {
733 memset(p, POISON_FREE, s->object_size - 1);
734 p[s->object_size - 1] = POISON_END;
735 }
736
737 if (s->flags & SLAB_RED_ZONE)
738 memset(p + s->object_size, val, s->inuse - s->object_size);
739 }
740
741 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
742 void *from, void *to)
743 {
744 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
745 memset(from, data, to - from);
746 }
747
748 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
749 u8 *object, char *what,
750 u8 *start, unsigned int value, unsigned int bytes)
751 {
752 u8 *fault;
753 u8 *end;
754
755 metadata_access_enable();
756 fault = memchr_inv(start, value, bytes);
757 metadata_access_disable();
758 if (!fault)
759 return 1;
760
761 end = start + bytes;
762 while (end > fault && end[-1] == value)
763 end--;
764
765 slab_bug(s, "%s overwritten", what);
766 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
767 fault, end - 1, fault[0], value);
768 print_trailer(s, page, object);
769
770 restore_bytes(s, what, value, fault, end);
771 return 0;
772 }
773
774 /*
775 * Object layout:
776 *
777 * object address
778 * Bytes of the object to be managed.
779 * If the freepointer may overlay the object then the free
780 * pointer is the first word of the object.
781 *
782 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
783 * 0xa5 (POISON_END)
784 *
785 * object + s->object_size
786 * Padding to reach word boundary. This is also used for Redzoning.
787 * Padding is extended by another word if Redzoning is enabled and
788 * object_size == inuse.
789 *
790 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
791 * 0xcc (RED_ACTIVE) for objects in use.
792 *
793 * object + s->inuse
794 * Meta data starts here.
795 *
796 * A. Free pointer (if we cannot overwrite object on free)
797 * B. Tracking data for SLAB_STORE_USER
798 * C. Padding to reach required alignment boundary or at mininum
799 * one word if debugging is on to be able to detect writes
800 * before the word boundary.
801 *
802 * Padding is done using 0x5a (POISON_INUSE)
803 *
804 * object + s->size
805 * Nothing is used beyond s->size.
806 *
807 * If slabcaches are merged then the object_size and inuse boundaries are mostly
808 * ignored. And therefore no slab options that rely on these boundaries
809 * may be used with merged slabcaches.
810 */
811
812 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
813 {
814 unsigned long off = s->inuse; /* The end of info */
815
816 if (s->offset)
817 /* Freepointer is placed after the object. */
818 off += sizeof(void *);
819
820 if (s->flags & SLAB_STORE_USER)
821 /* We also have user information there */
822 off += 2 * sizeof(struct track);
823
824 off += kasan_metadata_size(s);
825
826 if (size_from_object(s) == off)
827 return 1;
828
829 return check_bytes_and_report(s, page, p, "Object padding",
830 p + off, POISON_INUSE, size_from_object(s) - off);
831 }
832
833 /* Check the pad bytes at the end of a slab page */
834 static int slab_pad_check(struct kmem_cache *s, struct page *page)
835 {
836 u8 *start;
837 u8 *fault;
838 u8 *end;
839 int length;
840 int remainder;
841
842 if (!(s->flags & SLAB_POISON))
843 return 1;
844
845 start = page_address(page);
846 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
847 end = start + length;
848 remainder = length % s->size;
849 if (!remainder)
850 return 1;
851
852 metadata_access_enable();
853 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
854 metadata_access_disable();
855 if (!fault)
856 return 1;
857 while (end > fault && end[-1] == POISON_INUSE)
858 end--;
859
860 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
861 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
862
863 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
864 return 0;
865 }
866
867 static int check_object(struct kmem_cache *s, struct page *page,
868 void *object, u8 val)
869 {
870 u8 *p = object;
871 u8 *endobject = object + s->object_size;
872
873 if (s->flags & SLAB_RED_ZONE) {
874 if (!check_bytes_and_report(s, page, object, "Redzone",
875 object - s->red_left_pad, val, s->red_left_pad))
876 return 0;
877
878 if (!check_bytes_and_report(s, page, object, "Redzone",
879 endobject, val, s->inuse - s->object_size))
880 return 0;
881 } else {
882 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
883 check_bytes_and_report(s, page, p, "Alignment padding",
884 endobject, POISON_INUSE,
885 s->inuse - s->object_size);
886 }
887 }
888
889 if (s->flags & SLAB_POISON) {
890 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
891 (!check_bytes_and_report(s, page, p, "Poison", p,
892 POISON_FREE, s->object_size - 1) ||
893 !check_bytes_and_report(s, page, p, "Poison",
894 p + s->object_size - 1, POISON_END, 1)))
895 return 0;
896 /*
897 * check_pad_bytes cleans up on its own.
898 */
899 check_pad_bytes(s, page, p);
900 }
901
902 if (!s->offset && val == SLUB_RED_ACTIVE)
903 /*
904 * Object and freepointer overlap. Cannot check
905 * freepointer while object is allocated.
906 */
907 return 1;
908
909 /* Check free pointer validity */
910 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
911 object_err(s, page, p, "Freepointer corrupt");
912 /*
913 * No choice but to zap it and thus lose the remainder
914 * of the free objects in this slab. May cause
915 * another error because the object count is now wrong.
916 */
917 set_freepointer(s, p, NULL);
918 return 0;
919 }
920 return 1;
921 }
922
923 static int check_slab(struct kmem_cache *s, struct page *page)
924 {
925 int maxobj;
926
927 VM_BUG_ON(!irqs_disabled());
928
929 if (!PageSlab(page)) {
930 slab_err(s, page, "Not a valid slab page");
931 return 0;
932 }
933
934 maxobj = order_objects(compound_order(page), s->size, s->reserved);
935 if (page->objects > maxobj) {
936 slab_err(s, page, "objects %u > max %u",
937 page->objects, maxobj);
938 return 0;
939 }
940 if (page->inuse > page->objects) {
941 slab_err(s, page, "inuse %u > max %u",
942 page->inuse, page->objects);
943 return 0;
944 }
945 /* Slab_pad_check fixes things up after itself */
946 slab_pad_check(s, page);
947 return 1;
948 }
949
950 /*
951 * Determine if a certain object on a page is on the freelist. Must hold the
952 * slab lock to guarantee that the chains are in a consistent state.
953 */
954 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
955 {
956 int nr = 0;
957 void *fp;
958 void *object = NULL;
959 int max_objects;
960
961 fp = page->freelist;
962 while (fp && nr <= page->objects) {
963 if (fp == search)
964 return 1;
965 if (!check_valid_pointer(s, page, fp)) {
966 if (object) {
967 object_err(s, page, object,
968 "Freechain corrupt");
969 set_freepointer(s, object, NULL);
970 } else {
971 slab_err(s, page, "Freepointer corrupt");
972 page->freelist = NULL;
973 page->inuse = page->objects;
974 slab_fix(s, "Freelist cleared");
975 return 0;
976 }
977 break;
978 }
979 object = fp;
980 fp = get_freepointer(s, object);
981 nr++;
982 }
983
984 max_objects = order_objects(compound_order(page), s->size, s->reserved);
985 if (max_objects > MAX_OBJS_PER_PAGE)
986 max_objects = MAX_OBJS_PER_PAGE;
987
988 if (page->objects != max_objects) {
989 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
990 page->objects, max_objects);
991 page->objects = max_objects;
992 slab_fix(s, "Number of objects adjusted.");
993 }
994 if (page->inuse != page->objects - nr) {
995 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
996 page->inuse, page->objects - nr);
997 page->inuse = page->objects - nr;
998 slab_fix(s, "Object count adjusted.");
999 }
1000 return search == NULL;
1001 }
1002
1003 static void trace(struct kmem_cache *s, struct page *page, void *object,
1004 int alloc)
1005 {
1006 if (s->flags & SLAB_TRACE) {
1007 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1008 s->name,
1009 alloc ? "alloc" : "free",
1010 object, page->inuse,
1011 page->freelist);
1012
1013 if (!alloc)
1014 print_section(KERN_INFO, "Object ", (void *)object,
1015 s->object_size);
1016
1017 dump_stack();
1018 }
1019 }
1020
1021 /*
1022 * Tracking of fully allocated slabs for debugging purposes.
1023 */
1024 static void add_full(struct kmem_cache *s,
1025 struct kmem_cache_node *n, struct page *page)
1026 {
1027 if (!(s->flags & SLAB_STORE_USER))
1028 return;
1029
1030 lockdep_assert_held(&n->list_lock);
1031 list_add(&page->lru, &n->full);
1032 }
1033
1034 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1035 {
1036 if (!(s->flags & SLAB_STORE_USER))
1037 return;
1038
1039 lockdep_assert_held(&n->list_lock);
1040 list_del(&page->lru);
1041 }
1042
1043 /* Tracking of the number of slabs for debugging purposes */
1044 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1045 {
1046 struct kmem_cache_node *n = get_node(s, node);
1047
1048 return atomic_long_read(&n->nr_slabs);
1049 }
1050
1051 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1052 {
1053 return atomic_long_read(&n->nr_slabs);
1054 }
1055
1056 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1057 {
1058 struct kmem_cache_node *n = get_node(s, node);
1059
1060 /*
1061 * May be called early in order to allocate a slab for the
1062 * kmem_cache_node structure. Solve the chicken-egg
1063 * dilemma by deferring the increment of the count during
1064 * bootstrap (see early_kmem_cache_node_alloc).
1065 */
1066 if (likely(n)) {
1067 atomic_long_inc(&n->nr_slabs);
1068 atomic_long_add(objects, &n->total_objects);
1069 }
1070 }
1071 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1072 {
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 atomic_long_dec(&n->nr_slabs);
1076 atomic_long_sub(objects, &n->total_objects);
1077 }
1078
1079 /* Object debug checks for alloc/free paths */
1080 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1081 void *object)
1082 {
1083 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1084 return;
1085
1086 init_object(s, object, SLUB_RED_INACTIVE);
1087 init_tracking(s, object);
1088 }
1089
1090 static inline int alloc_consistency_checks(struct kmem_cache *s,
1091 struct page *page,
1092 void *object, unsigned long addr)
1093 {
1094 if (!check_slab(s, page))
1095 return 0;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 object_err(s, page, object, "Freelist Pointer check fails");
1099 return 0;
1100 }
1101
1102 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1103 return 0;
1104
1105 return 1;
1106 }
1107
1108 static noinline int alloc_debug_processing(struct kmem_cache *s,
1109 struct page *page,
1110 void *object, unsigned long addr)
1111 {
1112 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1113 if (!alloc_consistency_checks(s, page, object, addr))
1114 goto bad;
1115 }
1116
1117 /* Success perform special debug activities for allocs */
1118 if (s->flags & SLAB_STORE_USER)
1119 set_track(s, object, TRACK_ALLOC, addr);
1120 trace(s, page, object, 1);
1121 init_object(s, object, SLUB_RED_ACTIVE);
1122 return 1;
1123
1124 bad:
1125 if (PageSlab(page)) {
1126 /*
1127 * If this is a slab page then lets do the best we can
1128 * to avoid issues in the future. Marking all objects
1129 * as used avoids touching the remaining objects.
1130 */
1131 slab_fix(s, "Marking all objects used");
1132 page->inuse = page->objects;
1133 page->freelist = NULL;
1134 }
1135 return 0;
1136 }
1137
1138 static inline int free_consistency_checks(struct kmem_cache *s,
1139 struct page *page, void *object, unsigned long addr)
1140 {
1141 if (!check_valid_pointer(s, page, object)) {
1142 slab_err(s, page, "Invalid object pointer 0x%p", object);
1143 return 0;
1144 }
1145
1146 if (on_freelist(s, page, object)) {
1147 object_err(s, page, object, "Object already free");
1148 return 0;
1149 }
1150
1151 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1152 return 0;
1153
1154 if (unlikely(s != page->slab_cache)) {
1155 if (!PageSlab(page)) {
1156 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1157 object);
1158 } else if (!page->slab_cache) {
1159 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1160 object);
1161 dump_stack();
1162 } else
1163 object_err(s, page, object,
1164 "page slab pointer corrupt.");
1165 return 0;
1166 }
1167 return 1;
1168 }
1169
1170 /* Supports checking bulk free of a constructed freelist */
1171 static noinline int free_debug_processing(
1172 struct kmem_cache *s, struct page *page,
1173 void *head, void *tail, int bulk_cnt,
1174 unsigned long addr)
1175 {
1176 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1177 void *object = head;
1178 int cnt = 0;
1179 unsigned long uninitialized_var(flags);
1180 int ret = 0;
1181
1182 spin_lock_irqsave(&n->list_lock, flags);
1183 slab_lock(page);
1184
1185 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1186 if (!check_slab(s, page))
1187 goto out;
1188 }
1189
1190 next_object:
1191 cnt++;
1192
1193 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1194 if (!free_consistency_checks(s, page, object, addr))
1195 goto out;
1196 }
1197
1198 if (s->flags & SLAB_STORE_USER)
1199 set_track(s, object, TRACK_FREE, addr);
1200 trace(s, page, object, 0);
1201 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1202 init_object(s, object, SLUB_RED_INACTIVE);
1203
1204 /* Reached end of constructed freelist yet? */
1205 if (object != tail) {
1206 object = get_freepointer(s, object);
1207 goto next_object;
1208 }
1209 ret = 1;
1210
1211 out:
1212 if (cnt != bulk_cnt)
1213 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1214 bulk_cnt, cnt);
1215
1216 slab_unlock(page);
1217 spin_unlock_irqrestore(&n->list_lock, flags);
1218 if (!ret)
1219 slab_fix(s, "Object at 0x%p not freed", object);
1220 return ret;
1221 }
1222
1223 static int __init setup_slub_debug(char *str)
1224 {
1225 slub_debug = DEBUG_DEFAULT_FLAGS;
1226 if (*str++ != '=' || !*str)
1227 /*
1228 * No options specified. Switch on full debugging.
1229 */
1230 goto out;
1231
1232 if (*str == ',')
1233 /*
1234 * No options but restriction on slabs. This means full
1235 * debugging for slabs matching a pattern.
1236 */
1237 goto check_slabs;
1238
1239 slub_debug = 0;
1240 if (*str == '-')
1241 /*
1242 * Switch off all debugging measures.
1243 */
1244 goto out;
1245
1246 /*
1247 * Determine which debug features should be switched on
1248 */
1249 for (; *str && *str != ','; str++) {
1250 switch (tolower(*str)) {
1251 case 'f':
1252 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1253 break;
1254 case 'z':
1255 slub_debug |= SLAB_RED_ZONE;
1256 break;
1257 case 'p':
1258 slub_debug |= SLAB_POISON;
1259 break;
1260 case 'u':
1261 slub_debug |= SLAB_STORE_USER;
1262 break;
1263 case 't':
1264 slub_debug |= SLAB_TRACE;
1265 break;
1266 case 'a':
1267 slub_debug |= SLAB_FAILSLAB;
1268 break;
1269 case 'o':
1270 /*
1271 * Avoid enabling debugging on caches if its minimum
1272 * order would increase as a result.
1273 */
1274 disable_higher_order_debug = 1;
1275 break;
1276 default:
1277 pr_err("slub_debug option '%c' unknown. skipped\n",
1278 *str);
1279 }
1280 }
1281
1282 check_slabs:
1283 if (*str == ',')
1284 slub_debug_slabs = str + 1;
1285 out:
1286 return 1;
1287 }
1288
1289 __setup("slub_debug", setup_slub_debug);
1290
1291 unsigned long kmem_cache_flags(unsigned long object_size,
1292 unsigned long flags, const char *name,
1293 void (*ctor)(void *))
1294 {
1295 /*
1296 * Enable debugging if selected on the kernel commandline.
1297 */
1298 if (slub_debug && (!slub_debug_slabs || (name &&
1299 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1300 flags |= slub_debug;
1301
1302 return flags;
1303 }
1304 #else /* !CONFIG_SLUB_DEBUG */
1305 static inline void setup_object_debug(struct kmem_cache *s,
1306 struct page *page, void *object) {}
1307
1308 static inline int alloc_debug_processing(struct kmem_cache *s,
1309 struct page *page, void *object, unsigned long addr) { return 0; }
1310
1311 static inline int free_debug_processing(
1312 struct kmem_cache *s, struct page *page,
1313 void *head, void *tail, int bulk_cnt,
1314 unsigned long addr) { return 0; }
1315
1316 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1317 { return 1; }
1318 static inline int check_object(struct kmem_cache *s, struct page *page,
1319 void *object, u8 val) { return 1; }
1320 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1321 struct page *page) {}
1322 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
1324 unsigned long kmem_cache_flags(unsigned long object_size,
1325 unsigned long flags, const char *name,
1326 void (*ctor)(void *))
1327 {
1328 return flags;
1329 }
1330 #define slub_debug 0
1331
1332 #define disable_higher_order_debug 0
1333
1334 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1335 { return 0; }
1336 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1337 { return 0; }
1338 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1339 int objects) {}
1340 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
1342
1343 #endif /* CONFIG_SLUB_DEBUG */
1344
1345 /*
1346 * Hooks for other subsystems that check memory allocations. In a typical
1347 * production configuration these hooks all should produce no code at all.
1348 */
1349 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1350 {
1351 kmemleak_alloc(ptr, size, 1, flags);
1352 kasan_kmalloc_large(ptr, size, flags);
1353 }
1354
1355 static inline void kfree_hook(const void *x)
1356 {
1357 kmemleak_free(x);
1358 kasan_kfree_large(x);
1359 }
1360
1361 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1362 {
1363 void *freeptr;
1364
1365 kmemleak_free_recursive(x, s->flags);
1366
1367 /*
1368 * Trouble is that we may no longer disable interrupts in the fast path
1369 * So in order to make the debug calls that expect irqs to be
1370 * disabled we need to disable interrupts temporarily.
1371 */
1372 #ifdef CONFIG_LOCKDEP
1373 {
1374 unsigned long flags;
1375
1376 local_irq_save(flags);
1377 debug_check_no_locks_freed(x, s->object_size);
1378 local_irq_restore(flags);
1379 }
1380 #endif
1381 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1382 debug_check_no_obj_freed(x, s->object_size);
1383
1384 freeptr = get_freepointer(s, x);
1385 /*
1386 * kasan_slab_free() may put x into memory quarantine, delaying its
1387 * reuse. In this case the object's freelist pointer is changed.
1388 */
1389 kasan_slab_free(s, x);
1390 return freeptr;
1391 }
1392
1393 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1394 void *head, void *tail)
1395 {
1396 /*
1397 * Compiler cannot detect this function can be removed if slab_free_hook()
1398 * evaluates to nothing. Thus, catch all relevant config debug options here.
1399 */
1400 #if defined(CONFIG_LOCKDEP) || \
1401 defined(CONFIG_DEBUG_KMEMLEAK) || \
1402 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1403 defined(CONFIG_KASAN)
1404
1405 void *object = head;
1406 void *tail_obj = tail ? : head;
1407 void *freeptr;
1408
1409 do {
1410 freeptr = slab_free_hook(s, object);
1411 } while ((object != tail_obj) && (object = freeptr));
1412 #endif
1413 }
1414
1415 static void setup_object(struct kmem_cache *s, struct page *page,
1416 void *object)
1417 {
1418 setup_object_debug(s, page, object);
1419 kasan_init_slab_obj(s, object);
1420 if (unlikely(s->ctor)) {
1421 kasan_unpoison_object_data(s, object);
1422 s->ctor(object);
1423 kasan_poison_object_data(s, object);
1424 }
1425 }
1426
1427 /*
1428 * Slab allocation and freeing
1429 */
1430 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1431 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1432 {
1433 struct page *page;
1434 int order = oo_order(oo);
1435
1436 if (node == NUMA_NO_NODE)
1437 page = alloc_pages(flags, order);
1438 else
1439 page = __alloc_pages_node(node, flags, order);
1440
1441 if (page && memcg_charge_slab(page, flags, order, s)) {
1442 __free_pages(page, order);
1443 page = NULL;
1444 }
1445
1446 return page;
1447 }
1448
1449 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1450 /* Pre-initialize the random sequence cache */
1451 static int init_cache_random_seq(struct kmem_cache *s)
1452 {
1453 int err;
1454 unsigned long i, count = oo_objects(s->oo);
1455
1456 /* Bailout if already initialised */
1457 if (s->random_seq)
1458 return 0;
1459
1460 err = cache_random_seq_create(s, count, GFP_KERNEL);
1461 if (err) {
1462 pr_err("SLUB: Unable to initialize free list for %s\n",
1463 s->name);
1464 return err;
1465 }
1466
1467 /* Transform to an offset on the set of pages */
1468 if (s->random_seq) {
1469 for (i = 0; i < count; i++)
1470 s->random_seq[i] *= s->size;
1471 }
1472 return 0;
1473 }
1474
1475 /* Initialize each random sequence freelist per cache */
1476 static void __init init_freelist_randomization(void)
1477 {
1478 struct kmem_cache *s;
1479
1480 mutex_lock(&slab_mutex);
1481
1482 list_for_each_entry(s, &slab_caches, list)
1483 init_cache_random_seq(s);
1484
1485 mutex_unlock(&slab_mutex);
1486 }
1487
1488 /* Get the next entry on the pre-computed freelist randomized */
1489 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1490 unsigned long *pos, void *start,
1491 unsigned long page_limit,
1492 unsigned long freelist_count)
1493 {
1494 unsigned int idx;
1495
1496 /*
1497 * If the target page allocation failed, the number of objects on the
1498 * page might be smaller than the usual size defined by the cache.
1499 */
1500 do {
1501 idx = s->random_seq[*pos];
1502 *pos += 1;
1503 if (*pos >= freelist_count)
1504 *pos = 0;
1505 } while (unlikely(idx >= page_limit));
1506
1507 return (char *)start + idx;
1508 }
1509
1510 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1511 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1512 {
1513 void *start;
1514 void *cur;
1515 void *next;
1516 unsigned long idx, pos, page_limit, freelist_count;
1517
1518 if (page->objects < 2 || !s->random_seq)
1519 return false;
1520
1521 freelist_count = oo_objects(s->oo);
1522 pos = get_random_int() % freelist_count;
1523
1524 page_limit = page->objects * s->size;
1525 start = fixup_red_left(s, page_address(page));
1526
1527 /* First entry is used as the base of the freelist */
1528 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1529 freelist_count);
1530 page->freelist = cur;
1531
1532 for (idx = 1; idx < page->objects; idx++) {
1533 setup_object(s, page, cur);
1534 next = next_freelist_entry(s, page, &pos, start, page_limit,
1535 freelist_count);
1536 set_freepointer(s, cur, next);
1537 cur = next;
1538 }
1539 setup_object(s, page, cur);
1540 set_freepointer(s, cur, NULL);
1541
1542 return true;
1543 }
1544 #else
1545 static inline int init_cache_random_seq(struct kmem_cache *s)
1546 {
1547 return 0;
1548 }
1549 static inline void init_freelist_randomization(void) { }
1550 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1551 {
1552 return false;
1553 }
1554 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1555
1556 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1557 {
1558 struct page *page;
1559 struct kmem_cache_order_objects oo = s->oo;
1560 gfp_t alloc_gfp;
1561 void *start, *p;
1562 int idx, order;
1563 bool shuffle;
1564
1565 flags &= gfp_allowed_mask;
1566
1567 if (gfpflags_allow_blocking(flags))
1568 local_irq_enable();
1569
1570 flags |= s->allocflags;
1571
1572 /*
1573 * Let the initial higher-order allocation fail under memory pressure
1574 * so we fall-back to the minimum order allocation.
1575 */
1576 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1577 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1578 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1579
1580 page = alloc_slab_page(s, alloc_gfp, node, oo);
1581 if (unlikely(!page)) {
1582 oo = s->min;
1583 alloc_gfp = flags;
1584 /*
1585 * Allocation may have failed due to fragmentation.
1586 * Try a lower order alloc if possible
1587 */
1588 page = alloc_slab_page(s, alloc_gfp, node, oo);
1589 if (unlikely(!page))
1590 goto out;
1591 stat(s, ORDER_FALLBACK);
1592 }
1593
1594 page->objects = oo_objects(oo);
1595
1596 order = compound_order(page);
1597 page->slab_cache = s;
1598 __SetPageSlab(page);
1599 if (page_is_pfmemalloc(page))
1600 SetPageSlabPfmemalloc(page);
1601
1602 start = page_address(page);
1603
1604 if (unlikely(s->flags & SLAB_POISON))
1605 memset(start, POISON_INUSE, PAGE_SIZE << order);
1606
1607 kasan_poison_slab(page);
1608
1609 shuffle = shuffle_freelist(s, page);
1610
1611 if (!shuffle) {
1612 for_each_object_idx(p, idx, s, start, page->objects) {
1613 setup_object(s, page, p);
1614 if (likely(idx < page->objects))
1615 set_freepointer(s, p, p + s->size);
1616 else
1617 set_freepointer(s, p, NULL);
1618 }
1619 page->freelist = fixup_red_left(s, start);
1620 }
1621
1622 page->inuse = page->objects;
1623 page->frozen = 1;
1624
1625 out:
1626 if (gfpflags_allow_blocking(flags))
1627 local_irq_disable();
1628 if (!page)
1629 return NULL;
1630
1631 mod_lruvec_page_state(page,
1632 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1633 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1634 1 << oo_order(oo));
1635
1636 inc_slabs_node(s, page_to_nid(page), page->objects);
1637
1638 return page;
1639 }
1640
1641 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1642 {
1643 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1644 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1645 flags &= ~GFP_SLAB_BUG_MASK;
1646 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1647 invalid_mask, &invalid_mask, flags, &flags);
1648 dump_stack();
1649 }
1650
1651 return allocate_slab(s,
1652 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1653 }
1654
1655 static void __free_slab(struct kmem_cache *s, struct page *page)
1656 {
1657 int order = compound_order(page);
1658 int pages = 1 << order;
1659
1660 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1661 void *p;
1662
1663 slab_pad_check(s, page);
1664 for_each_object(p, s, page_address(page),
1665 page->objects)
1666 check_object(s, page, p, SLUB_RED_INACTIVE);
1667 }
1668
1669 mod_lruvec_page_state(page,
1670 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1671 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1672 -pages);
1673
1674 __ClearPageSlabPfmemalloc(page);
1675 __ClearPageSlab(page);
1676
1677 page_mapcount_reset(page);
1678 if (current->reclaim_state)
1679 current->reclaim_state->reclaimed_slab += pages;
1680 memcg_uncharge_slab(page, order, s);
1681 __free_pages(page, order);
1682 }
1683
1684 #define need_reserve_slab_rcu \
1685 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1686
1687 static void rcu_free_slab(struct rcu_head *h)
1688 {
1689 struct page *page;
1690
1691 if (need_reserve_slab_rcu)
1692 page = virt_to_head_page(h);
1693 else
1694 page = container_of((struct list_head *)h, struct page, lru);
1695
1696 __free_slab(page->slab_cache, page);
1697 }
1698
1699 static void free_slab(struct kmem_cache *s, struct page *page)
1700 {
1701 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1702 struct rcu_head *head;
1703
1704 if (need_reserve_slab_rcu) {
1705 int order = compound_order(page);
1706 int offset = (PAGE_SIZE << order) - s->reserved;
1707
1708 VM_BUG_ON(s->reserved != sizeof(*head));
1709 head = page_address(page) + offset;
1710 } else {
1711 head = &page->rcu_head;
1712 }
1713
1714 call_rcu(head, rcu_free_slab);
1715 } else
1716 __free_slab(s, page);
1717 }
1718
1719 static void discard_slab(struct kmem_cache *s, struct page *page)
1720 {
1721 dec_slabs_node(s, page_to_nid(page), page->objects);
1722 free_slab(s, page);
1723 }
1724
1725 /*
1726 * Management of partially allocated slabs.
1727 */
1728 static inline void
1729 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1730 {
1731 n->nr_partial++;
1732 if (tail == DEACTIVATE_TO_TAIL)
1733 list_add_tail(&page->lru, &n->partial);
1734 else
1735 list_add(&page->lru, &n->partial);
1736 }
1737
1738 static inline void add_partial(struct kmem_cache_node *n,
1739 struct page *page, int tail)
1740 {
1741 lockdep_assert_held(&n->list_lock);
1742 __add_partial(n, page, tail);
1743 }
1744
1745 static inline void remove_partial(struct kmem_cache_node *n,
1746 struct page *page)
1747 {
1748 lockdep_assert_held(&n->list_lock);
1749 list_del(&page->lru);
1750 n->nr_partial--;
1751 }
1752
1753 /*
1754 * Remove slab from the partial list, freeze it and
1755 * return the pointer to the freelist.
1756 *
1757 * Returns a list of objects or NULL if it fails.
1758 */
1759 static inline void *acquire_slab(struct kmem_cache *s,
1760 struct kmem_cache_node *n, struct page *page,
1761 int mode, int *objects)
1762 {
1763 void *freelist;
1764 unsigned long counters;
1765 struct page new;
1766
1767 lockdep_assert_held(&n->list_lock);
1768
1769 /*
1770 * Zap the freelist and set the frozen bit.
1771 * The old freelist is the list of objects for the
1772 * per cpu allocation list.
1773 */
1774 freelist = page->freelist;
1775 counters = page->counters;
1776 new.counters = counters;
1777 *objects = new.objects - new.inuse;
1778 if (mode) {
1779 new.inuse = page->objects;
1780 new.freelist = NULL;
1781 } else {
1782 new.freelist = freelist;
1783 }
1784
1785 VM_BUG_ON(new.frozen);
1786 new.frozen = 1;
1787
1788 if (!__cmpxchg_double_slab(s, page,
1789 freelist, counters,
1790 new.freelist, new.counters,
1791 "acquire_slab"))
1792 return NULL;
1793
1794 remove_partial(n, page);
1795 WARN_ON(!freelist);
1796 return freelist;
1797 }
1798
1799 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1800 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1801
1802 /*
1803 * Try to allocate a partial slab from a specific node.
1804 */
1805 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1806 struct kmem_cache_cpu *c, gfp_t flags)
1807 {
1808 struct page *page, *page2;
1809 void *object = NULL;
1810 unsigned int available = 0;
1811 int objects;
1812
1813 /*
1814 * Racy check. If we mistakenly see no partial slabs then we
1815 * just allocate an empty slab. If we mistakenly try to get a
1816 * partial slab and there is none available then get_partials()
1817 * will return NULL.
1818 */
1819 if (!n || !n->nr_partial)
1820 return NULL;
1821
1822 spin_lock(&n->list_lock);
1823 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1824 void *t;
1825
1826 if (!pfmemalloc_match(page, flags))
1827 continue;
1828
1829 t = acquire_slab(s, n, page, object == NULL, &objects);
1830 if (!t)
1831 break;
1832
1833 available += objects;
1834 if (!object) {
1835 c->page = page;
1836 stat(s, ALLOC_FROM_PARTIAL);
1837 object = t;
1838 } else {
1839 put_cpu_partial(s, page, 0);
1840 stat(s, CPU_PARTIAL_NODE);
1841 }
1842 if (!kmem_cache_has_cpu_partial(s)
1843 || available > slub_cpu_partial(s) / 2)
1844 break;
1845
1846 }
1847 spin_unlock(&n->list_lock);
1848 return object;
1849 }
1850
1851 /*
1852 * Get a page from somewhere. Search in increasing NUMA distances.
1853 */
1854 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1855 struct kmem_cache_cpu *c)
1856 {
1857 #ifdef CONFIG_NUMA
1858 struct zonelist *zonelist;
1859 struct zoneref *z;
1860 struct zone *zone;
1861 enum zone_type high_zoneidx = gfp_zone(flags);
1862 void *object;
1863 unsigned int cpuset_mems_cookie;
1864
1865 /*
1866 * The defrag ratio allows a configuration of the tradeoffs between
1867 * inter node defragmentation and node local allocations. A lower
1868 * defrag_ratio increases the tendency to do local allocations
1869 * instead of attempting to obtain partial slabs from other nodes.
1870 *
1871 * If the defrag_ratio is set to 0 then kmalloc() always
1872 * returns node local objects. If the ratio is higher then kmalloc()
1873 * may return off node objects because partial slabs are obtained
1874 * from other nodes and filled up.
1875 *
1876 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1877 * (which makes defrag_ratio = 1000) then every (well almost)
1878 * allocation will first attempt to defrag slab caches on other nodes.
1879 * This means scanning over all nodes to look for partial slabs which
1880 * may be expensive if we do it every time we are trying to find a slab
1881 * with available objects.
1882 */
1883 if (!s->remote_node_defrag_ratio ||
1884 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1885 return NULL;
1886
1887 do {
1888 cpuset_mems_cookie = read_mems_allowed_begin();
1889 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1890 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1891 struct kmem_cache_node *n;
1892
1893 n = get_node(s, zone_to_nid(zone));
1894
1895 if (n && cpuset_zone_allowed(zone, flags) &&
1896 n->nr_partial > s->min_partial) {
1897 object = get_partial_node(s, n, c, flags);
1898 if (object) {
1899 /*
1900 * Don't check read_mems_allowed_retry()
1901 * here - if mems_allowed was updated in
1902 * parallel, that was a harmless race
1903 * between allocation and the cpuset
1904 * update
1905 */
1906 return object;
1907 }
1908 }
1909 }
1910 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1911 #endif
1912 return NULL;
1913 }
1914
1915 /*
1916 * Get a partial page, lock it and return it.
1917 */
1918 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1919 struct kmem_cache_cpu *c)
1920 {
1921 void *object;
1922 int searchnode = node;
1923
1924 if (node == NUMA_NO_NODE)
1925 searchnode = numa_mem_id();
1926 else if (!node_present_pages(node))
1927 searchnode = node_to_mem_node(node);
1928
1929 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1930 if (object || node != NUMA_NO_NODE)
1931 return object;
1932
1933 return get_any_partial(s, flags, c);
1934 }
1935
1936 #ifdef CONFIG_PREEMPT
1937 /*
1938 * Calculate the next globally unique transaction for disambiguiation
1939 * during cmpxchg. The transactions start with the cpu number and are then
1940 * incremented by CONFIG_NR_CPUS.
1941 */
1942 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1943 #else
1944 /*
1945 * No preemption supported therefore also no need to check for
1946 * different cpus.
1947 */
1948 #define TID_STEP 1
1949 #endif
1950
1951 static inline unsigned long next_tid(unsigned long tid)
1952 {
1953 return tid + TID_STEP;
1954 }
1955
1956 static inline unsigned int tid_to_cpu(unsigned long tid)
1957 {
1958 return tid % TID_STEP;
1959 }
1960
1961 static inline unsigned long tid_to_event(unsigned long tid)
1962 {
1963 return tid / TID_STEP;
1964 }
1965
1966 static inline unsigned int init_tid(int cpu)
1967 {
1968 return cpu;
1969 }
1970
1971 static inline void note_cmpxchg_failure(const char *n,
1972 const struct kmem_cache *s, unsigned long tid)
1973 {
1974 #ifdef SLUB_DEBUG_CMPXCHG
1975 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1976
1977 pr_info("%s %s: cmpxchg redo ", n, s->name);
1978
1979 #ifdef CONFIG_PREEMPT
1980 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1981 pr_warn("due to cpu change %d -> %d\n",
1982 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1983 else
1984 #endif
1985 if (tid_to_event(tid) != tid_to_event(actual_tid))
1986 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1987 tid_to_event(tid), tid_to_event(actual_tid));
1988 else
1989 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1990 actual_tid, tid, next_tid(tid));
1991 #endif
1992 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1993 }
1994
1995 static void init_kmem_cache_cpus(struct kmem_cache *s)
1996 {
1997 int cpu;
1998
1999 for_each_possible_cpu(cpu)
2000 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2001 }
2002
2003 /*
2004 * Remove the cpu slab
2005 */
2006 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2007 void *freelist, struct kmem_cache_cpu *c)
2008 {
2009 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2010 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2011 int lock = 0;
2012 enum slab_modes l = M_NONE, m = M_NONE;
2013 void *nextfree;
2014 int tail = DEACTIVATE_TO_HEAD;
2015 struct page new;
2016 struct page old;
2017
2018 if (page->freelist) {
2019 stat(s, DEACTIVATE_REMOTE_FREES);
2020 tail = DEACTIVATE_TO_TAIL;
2021 }
2022
2023 /*
2024 * Stage one: Free all available per cpu objects back
2025 * to the page freelist while it is still frozen. Leave the
2026 * last one.
2027 *
2028 * There is no need to take the list->lock because the page
2029 * is still frozen.
2030 */
2031 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2032 void *prior;
2033 unsigned long counters;
2034
2035 do {
2036 prior = page->freelist;
2037 counters = page->counters;
2038 set_freepointer(s, freelist, prior);
2039 new.counters = counters;
2040 new.inuse--;
2041 VM_BUG_ON(!new.frozen);
2042
2043 } while (!__cmpxchg_double_slab(s, page,
2044 prior, counters,
2045 freelist, new.counters,
2046 "drain percpu freelist"));
2047
2048 freelist = nextfree;
2049 }
2050
2051 /*
2052 * Stage two: Ensure that the page is unfrozen while the
2053 * list presence reflects the actual number of objects
2054 * during unfreeze.
2055 *
2056 * We setup the list membership and then perform a cmpxchg
2057 * with the count. If there is a mismatch then the page
2058 * is not unfrozen but the page is on the wrong list.
2059 *
2060 * Then we restart the process which may have to remove
2061 * the page from the list that we just put it on again
2062 * because the number of objects in the slab may have
2063 * changed.
2064 */
2065 redo:
2066
2067 old.freelist = page->freelist;
2068 old.counters = page->counters;
2069 VM_BUG_ON(!old.frozen);
2070
2071 /* Determine target state of the slab */
2072 new.counters = old.counters;
2073 if (freelist) {
2074 new.inuse--;
2075 set_freepointer(s, freelist, old.freelist);
2076 new.freelist = freelist;
2077 } else
2078 new.freelist = old.freelist;
2079
2080 new.frozen = 0;
2081
2082 if (!new.inuse && n->nr_partial >= s->min_partial)
2083 m = M_FREE;
2084 else if (new.freelist) {
2085 m = M_PARTIAL;
2086 if (!lock) {
2087 lock = 1;
2088 /*
2089 * Taking the spinlock removes the possiblity
2090 * that acquire_slab() will see a slab page that
2091 * is frozen
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 } else {
2096 m = M_FULL;
2097 if (kmem_cache_debug(s) && !lock) {
2098 lock = 1;
2099 /*
2100 * This also ensures that the scanning of full
2101 * slabs from diagnostic functions will not see
2102 * any frozen slabs.
2103 */
2104 spin_lock(&n->list_lock);
2105 }
2106 }
2107
2108 if (l != m) {
2109
2110 if (l == M_PARTIAL)
2111
2112 remove_partial(n, page);
2113
2114 else if (l == M_FULL)
2115
2116 remove_full(s, n, page);
2117
2118 if (m == M_PARTIAL) {
2119
2120 add_partial(n, page, tail);
2121 stat(s, tail);
2122
2123 } else if (m == M_FULL) {
2124
2125 stat(s, DEACTIVATE_FULL);
2126 add_full(s, n, page);
2127
2128 }
2129 }
2130
2131 l = m;
2132 if (!__cmpxchg_double_slab(s, page,
2133 old.freelist, old.counters,
2134 new.freelist, new.counters,
2135 "unfreezing slab"))
2136 goto redo;
2137
2138 if (lock)
2139 spin_unlock(&n->list_lock);
2140
2141 if (m == M_FREE) {
2142 stat(s, DEACTIVATE_EMPTY);
2143 discard_slab(s, page);
2144 stat(s, FREE_SLAB);
2145 }
2146
2147 c->page = NULL;
2148 c->freelist = NULL;
2149 }
2150
2151 /*
2152 * Unfreeze all the cpu partial slabs.
2153 *
2154 * This function must be called with interrupts disabled
2155 * for the cpu using c (or some other guarantee must be there
2156 * to guarantee no concurrent accesses).
2157 */
2158 static void unfreeze_partials(struct kmem_cache *s,
2159 struct kmem_cache_cpu *c)
2160 {
2161 #ifdef CONFIG_SLUB_CPU_PARTIAL
2162 struct kmem_cache_node *n = NULL, *n2 = NULL;
2163 struct page *page, *discard_page = NULL;
2164
2165 while ((page = c->partial)) {
2166 struct page new;
2167 struct page old;
2168
2169 c->partial = page->next;
2170
2171 n2 = get_node(s, page_to_nid(page));
2172 if (n != n2) {
2173 if (n)
2174 spin_unlock(&n->list_lock);
2175
2176 n = n2;
2177 spin_lock(&n->list_lock);
2178 }
2179
2180 do {
2181
2182 old.freelist = page->freelist;
2183 old.counters = page->counters;
2184 VM_BUG_ON(!old.frozen);
2185
2186 new.counters = old.counters;
2187 new.freelist = old.freelist;
2188
2189 new.frozen = 0;
2190
2191 } while (!__cmpxchg_double_slab(s, page,
2192 old.freelist, old.counters,
2193 new.freelist, new.counters,
2194 "unfreezing slab"));
2195
2196 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2197 page->next = discard_page;
2198 discard_page = page;
2199 } else {
2200 add_partial(n, page, DEACTIVATE_TO_TAIL);
2201 stat(s, FREE_ADD_PARTIAL);
2202 }
2203 }
2204
2205 if (n)
2206 spin_unlock(&n->list_lock);
2207
2208 while (discard_page) {
2209 page = discard_page;
2210 discard_page = discard_page->next;
2211
2212 stat(s, DEACTIVATE_EMPTY);
2213 discard_slab(s, page);
2214 stat(s, FREE_SLAB);
2215 }
2216 #endif
2217 }
2218
2219 /*
2220 * Put a page that was just frozen (in __slab_free) into a partial page
2221 * slot if available. This is done without interrupts disabled and without
2222 * preemption disabled. The cmpxchg is racy and may put the partial page
2223 * onto a random cpus partial slot.
2224 *
2225 * If we did not find a slot then simply move all the partials to the
2226 * per node partial list.
2227 */
2228 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2229 {
2230 #ifdef CONFIG_SLUB_CPU_PARTIAL
2231 struct page *oldpage;
2232 int pages;
2233 int pobjects;
2234
2235 preempt_disable();
2236 do {
2237 pages = 0;
2238 pobjects = 0;
2239 oldpage = this_cpu_read(s->cpu_slab->partial);
2240
2241 if (oldpage) {
2242 pobjects = oldpage->pobjects;
2243 pages = oldpage->pages;
2244 if (drain && pobjects > s->cpu_partial) {
2245 unsigned long flags;
2246 /*
2247 * partial array is full. Move the existing
2248 * set to the per node partial list.
2249 */
2250 local_irq_save(flags);
2251 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2252 local_irq_restore(flags);
2253 oldpage = NULL;
2254 pobjects = 0;
2255 pages = 0;
2256 stat(s, CPU_PARTIAL_DRAIN);
2257 }
2258 }
2259
2260 pages++;
2261 pobjects += page->objects - page->inuse;
2262
2263 page->pages = pages;
2264 page->pobjects = pobjects;
2265 page->next = oldpage;
2266
2267 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2268 != oldpage);
2269 if (unlikely(!s->cpu_partial)) {
2270 unsigned long flags;
2271
2272 local_irq_save(flags);
2273 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2274 local_irq_restore(flags);
2275 }
2276 preempt_enable();
2277 #endif
2278 }
2279
2280 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2281 {
2282 stat(s, CPUSLAB_FLUSH);
2283 deactivate_slab(s, c->page, c->freelist, c);
2284
2285 c->tid = next_tid(c->tid);
2286 }
2287
2288 /*
2289 * Flush cpu slab.
2290 *
2291 * Called from IPI handler with interrupts disabled.
2292 */
2293 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2294 {
2295 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2296
2297 if (likely(c)) {
2298 if (c->page)
2299 flush_slab(s, c);
2300
2301 unfreeze_partials(s, c);
2302 }
2303 }
2304
2305 static void flush_cpu_slab(void *d)
2306 {
2307 struct kmem_cache *s = d;
2308
2309 __flush_cpu_slab(s, smp_processor_id());
2310 }
2311
2312 static bool has_cpu_slab(int cpu, void *info)
2313 {
2314 struct kmem_cache *s = info;
2315 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2316
2317 return c->page || slub_percpu_partial(c);
2318 }
2319
2320 static void flush_all(struct kmem_cache *s)
2321 {
2322 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2323 }
2324
2325 /*
2326 * Use the cpu notifier to insure that the cpu slabs are flushed when
2327 * necessary.
2328 */
2329 static int slub_cpu_dead(unsigned int cpu)
2330 {
2331 struct kmem_cache *s;
2332 unsigned long flags;
2333
2334 mutex_lock(&slab_mutex);
2335 list_for_each_entry(s, &slab_caches, list) {
2336 local_irq_save(flags);
2337 __flush_cpu_slab(s, cpu);
2338 local_irq_restore(flags);
2339 }
2340 mutex_unlock(&slab_mutex);
2341 return 0;
2342 }
2343
2344 /*
2345 * Check if the objects in a per cpu structure fit numa
2346 * locality expectations.
2347 */
2348 static inline int node_match(struct page *page, int node)
2349 {
2350 #ifdef CONFIG_NUMA
2351 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2352 return 0;
2353 #endif
2354 return 1;
2355 }
2356
2357 #ifdef CONFIG_SLUB_DEBUG
2358 static int count_free(struct page *page)
2359 {
2360 return page->objects - page->inuse;
2361 }
2362
2363 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2364 {
2365 return atomic_long_read(&n->total_objects);
2366 }
2367 #endif /* CONFIG_SLUB_DEBUG */
2368
2369 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2370 static unsigned long count_partial(struct kmem_cache_node *n,
2371 int (*get_count)(struct page *))
2372 {
2373 unsigned long flags;
2374 unsigned long x = 0;
2375 struct page *page;
2376
2377 spin_lock_irqsave(&n->list_lock, flags);
2378 list_for_each_entry(page, &n->partial, lru)
2379 x += get_count(page);
2380 spin_unlock_irqrestore(&n->list_lock, flags);
2381 return x;
2382 }
2383 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2384
2385 static noinline void
2386 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2387 {
2388 #ifdef CONFIG_SLUB_DEBUG
2389 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2390 DEFAULT_RATELIMIT_BURST);
2391 int node;
2392 struct kmem_cache_node *n;
2393
2394 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2395 return;
2396
2397 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2398 nid, gfpflags, &gfpflags);
2399 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2400 s->name, s->object_size, s->size, oo_order(s->oo),
2401 oo_order(s->min));
2402
2403 if (oo_order(s->min) > get_order(s->object_size))
2404 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2405 s->name);
2406
2407 for_each_kmem_cache_node(s, node, n) {
2408 unsigned long nr_slabs;
2409 unsigned long nr_objs;
2410 unsigned long nr_free;
2411
2412 nr_free = count_partial(n, count_free);
2413 nr_slabs = node_nr_slabs(n);
2414 nr_objs = node_nr_objs(n);
2415
2416 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2417 node, nr_slabs, nr_objs, nr_free);
2418 }
2419 #endif
2420 }
2421
2422 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2423 int node, struct kmem_cache_cpu **pc)
2424 {
2425 void *freelist;
2426 struct kmem_cache_cpu *c = *pc;
2427 struct page *page;
2428
2429 freelist = get_partial(s, flags, node, c);
2430
2431 if (freelist)
2432 return freelist;
2433
2434 page = new_slab(s, flags, node);
2435 if (page) {
2436 c = raw_cpu_ptr(s->cpu_slab);
2437 if (c->page)
2438 flush_slab(s, c);
2439
2440 /*
2441 * No other reference to the page yet so we can
2442 * muck around with it freely without cmpxchg
2443 */
2444 freelist = page->freelist;
2445 page->freelist = NULL;
2446
2447 stat(s, ALLOC_SLAB);
2448 c->page = page;
2449 *pc = c;
2450 } else
2451 freelist = NULL;
2452
2453 return freelist;
2454 }
2455
2456 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2457 {
2458 if (unlikely(PageSlabPfmemalloc(page)))
2459 return gfp_pfmemalloc_allowed(gfpflags);
2460
2461 return true;
2462 }
2463
2464 /*
2465 * Check the page->freelist of a page and either transfer the freelist to the
2466 * per cpu freelist or deactivate the page.
2467 *
2468 * The page is still frozen if the return value is not NULL.
2469 *
2470 * If this function returns NULL then the page has been unfrozen.
2471 *
2472 * This function must be called with interrupt disabled.
2473 */
2474 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2475 {
2476 struct page new;
2477 unsigned long counters;
2478 void *freelist;
2479
2480 do {
2481 freelist = page->freelist;
2482 counters = page->counters;
2483
2484 new.counters = counters;
2485 VM_BUG_ON(!new.frozen);
2486
2487 new.inuse = page->objects;
2488 new.frozen = freelist != NULL;
2489
2490 } while (!__cmpxchg_double_slab(s, page,
2491 freelist, counters,
2492 NULL, new.counters,
2493 "get_freelist"));
2494
2495 return freelist;
2496 }
2497
2498 /*
2499 * Slow path. The lockless freelist is empty or we need to perform
2500 * debugging duties.
2501 *
2502 * Processing is still very fast if new objects have been freed to the
2503 * regular freelist. In that case we simply take over the regular freelist
2504 * as the lockless freelist and zap the regular freelist.
2505 *
2506 * If that is not working then we fall back to the partial lists. We take the
2507 * first element of the freelist as the object to allocate now and move the
2508 * rest of the freelist to the lockless freelist.
2509 *
2510 * And if we were unable to get a new slab from the partial slab lists then
2511 * we need to allocate a new slab. This is the slowest path since it involves
2512 * a call to the page allocator and the setup of a new slab.
2513 *
2514 * Version of __slab_alloc to use when we know that interrupts are
2515 * already disabled (which is the case for bulk allocation).
2516 */
2517 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2518 unsigned long addr, struct kmem_cache_cpu *c)
2519 {
2520 void *freelist;
2521 struct page *page;
2522
2523 page = c->page;
2524 if (!page)
2525 goto new_slab;
2526 redo:
2527
2528 if (unlikely(!node_match(page, node))) {
2529 int searchnode = node;
2530
2531 if (node != NUMA_NO_NODE && !node_present_pages(node))
2532 searchnode = node_to_mem_node(node);
2533
2534 if (unlikely(!node_match(page, searchnode))) {
2535 stat(s, ALLOC_NODE_MISMATCH);
2536 deactivate_slab(s, page, c->freelist, c);
2537 goto new_slab;
2538 }
2539 }
2540
2541 /*
2542 * By rights, we should be searching for a slab page that was
2543 * PFMEMALLOC but right now, we are losing the pfmemalloc
2544 * information when the page leaves the per-cpu allocator
2545 */
2546 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2547 deactivate_slab(s, page, c->freelist, c);
2548 goto new_slab;
2549 }
2550
2551 /* must check again c->freelist in case of cpu migration or IRQ */
2552 freelist = c->freelist;
2553 if (freelist)
2554 goto load_freelist;
2555
2556 freelist = get_freelist(s, page);
2557
2558 if (!freelist) {
2559 c->page = NULL;
2560 stat(s, DEACTIVATE_BYPASS);
2561 goto new_slab;
2562 }
2563
2564 stat(s, ALLOC_REFILL);
2565
2566 load_freelist:
2567 /*
2568 * freelist is pointing to the list of objects to be used.
2569 * page is pointing to the page from which the objects are obtained.
2570 * That page must be frozen for per cpu allocations to work.
2571 */
2572 VM_BUG_ON(!c->page->frozen);
2573 c->freelist = get_freepointer(s, freelist);
2574 c->tid = next_tid(c->tid);
2575 return freelist;
2576
2577 new_slab:
2578
2579 if (slub_percpu_partial(c)) {
2580 page = c->page = slub_percpu_partial(c);
2581 slub_set_percpu_partial(c, page);
2582 stat(s, CPU_PARTIAL_ALLOC);
2583 goto redo;
2584 }
2585
2586 freelist = new_slab_objects(s, gfpflags, node, &c);
2587
2588 if (unlikely(!freelist)) {
2589 slab_out_of_memory(s, gfpflags, node);
2590 return NULL;
2591 }
2592
2593 page = c->page;
2594 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2595 goto load_freelist;
2596
2597 /* Only entered in the debug case */
2598 if (kmem_cache_debug(s) &&
2599 !alloc_debug_processing(s, page, freelist, addr))
2600 goto new_slab; /* Slab failed checks. Next slab needed */
2601
2602 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2603 return freelist;
2604 }
2605
2606 /*
2607 * Another one that disabled interrupt and compensates for possible
2608 * cpu changes by refetching the per cpu area pointer.
2609 */
2610 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2611 unsigned long addr, struct kmem_cache_cpu *c)
2612 {
2613 void *p;
2614 unsigned long flags;
2615
2616 local_irq_save(flags);
2617 #ifdef CONFIG_PREEMPT
2618 /*
2619 * We may have been preempted and rescheduled on a different
2620 * cpu before disabling interrupts. Need to reload cpu area
2621 * pointer.
2622 */
2623 c = this_cpu_ptr(s->cpu_slab);
2624 #endif
2625
2626 p = ___slab_alloc(s, gfpflags, node, addr, c);
2627 local_irq_restore(flags);
2628 return p;
2629 }
2630
2631 /*
2632 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2633 * have the fastpath folded into their functions. So no function call
2634 * overhead for requests that can be satisfied on the fastpath.
2635 *
2636 * The fastpath works by first checking if the lockless freelist can be used.
2637 * If not then __slab_alloc is called for slow processing.
2638 *
2639 * Otherwise we can simply pick the next object from the lockless free list.
2640 */
2641 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2642 gfp_t gfpflags, int node, unsigned long addr)
2643 {
2644 void *object;
2645 struct kmem_cache_cpu *c;
2646 struct page *page;
2647 unsigned long tid;
2648
2649 s = slab_pre_alloc_hook(s, gfpflags);
2650 if (!s)
2651 return NULL;
2652 redo:
2653 /*
2654 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2655 * enabled. We may switch back and forth between cpus while
2656 * reading from one cpu area. That does not matter as long
2657 * as we end up on the original cpu again when doing the cmpxchg.
2658 *
2659 * We should guarantee that tid and kmem_cache are retrieved on
2660 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2661 * to check if it is matched or not.
2662 */
2663 do {
2664 tid = this_cpu_read(s->cpu_slab->tid);
2665 c = raw_cpu_ptr(s->cpu_slab);
2666 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2667 unlikely(tid != READ_ONCE(c->tid)));
2668
2669 /*
2670 * Irqless object alloc/free algorithm used here depends on sequence
2671 * of fetching cpu_slab's data. tid should be fetched before anything
2672 * on c to guarantee that object and page associated with previous tid
2673 * won't be used with current tid. If we fetch tid first, object and
2674 * page could be one associated with next tid and our alloc/free
2675 * request will be failed. In this case, we will retry. So, no problem.
2676 */
2677 barrier();
2678
2679 /*
2680 * The transaction ids are globally unique per cpu and per operation on
2681 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2682 * occurs on the right processor and that there was no operation on the
2683 * linked list in between.
2684 */
2685
2686 object = c->freelist;
2687 page = c->page;
2688 if (unlikely(!object || !node_match(page, node))) {
2689 object = __slab_alloc(s, gfpflags, node, addr, c);
2690 stat(s, ALLOC_SLOWPATH);
2691 } else {
2692 void *next_object = get_freepointer_safe(s, object);
2693
2694 /*
2695 * The cmpxchg will only match if there was no additional
2696 * operation and if we are on the right processor.
2697 *
2698 * The cmpxchg does the following atomically (without lock
2699 * semantics!)
2700 * 1. Relocate first pointer to the current per cpu area.
2701 * 2. Verify that tid and freelist have not been changed
2702 * 3. If they were not changed replace tid and freelist
2703 *
2704 * Since this is without lock semantics the protection is only
2705 * against code executing on this cpu *not* from access by
2706 * other cpus.
2707 */
2708 if (unlikely(!this_cpu_cmpxchg_double(
2709 s->cpu_slab->freelist, s->cpu_slab->tid,
2710 object, tid,
2711 next_object, next_tid(tid)))) {
2712
2713 note_cmpxchg_failure("slab_alloc", s, tid);
2714 goto redo;
2715 }
2716 prefetch_freepointer(s, next_object);
2717 stat(s, ALLOC_FASTPATH);
2718 }
2719
2720 if (unlikely(gfpflags & __GFP_ZERO) && object)
2721 memset(object, 0, s->object_size);
2722
2723 slab_post_alloc_hook(s, gfpflags, 1, &object);
2724
2725 return object;
2726 }
2727
2728 static __always_inline void *slab_alloc(struct kmem_cache *s,
2729 gfp_t gfpflags, unsigned long addr)
2730 {
2731 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2732 }
2733
2734 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2735 {
2736 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2737
2738 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2739 s->size, gfpflags);
2740
2741 return ret;
2742 }
2743 EXPORT_SYMBOL(kmem_cache_alloc);
2744
2745 #ifdef CONFIG_TRACING
2746 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2747 {
2748 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2749 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2750 kasan_kmalloc(s, ret, size, gfpflags);
2751 return ret;
2752 }
2753 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2754 #endif
2755
2756 #ifdef CONFIG_NUMA
2757 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2758 {
2759 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2760
2761 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2762 s->object_size, s->size, gfpflags, node);
2763
2764 return ret;
2765 }
2766 EXPORT_SYMBOL(kmem_cache_alloc_node);
2767
2768 #ifdef CONFIG_TRACING
2769 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2770 gfp_t gfpflags,
2771 int node, size_t size)
2772 {
2773 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2774
2775 trace_kmalloc_node(_RET_IP_, ret,
2776 size, s->size, gfpflags, node);
2777
2778 kasan_kmalloc(s, ret, size, gfpflags);
2779 return ret;
2780 }
2781 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2782 #endif
2783 #endif
2784
2785 /*
2786 * Slow path handling. This may still be called frequently since objects
2787 * have a longer lifetime than the cpu slabs in most processing loads.
2788 *
2789 * So we still attempt to reduce cache line usage. Just take the slab
2790 * lock and free the item. If there is no additional partial page
2791 * handling required then we can return immediately.
2792 */
2793 static void __slab_free(struct kmem_cache *s, struct page *page,
2794 void *head, void *tail, int cnt,
2795 unsigned long addr)
2796
2797 {
2798 void *prior;
2799 int was_frozen;
2800 struct page new;
2801 unsigned long counters;
2802 struct kmem_cache_node *n = NULL;
2803 unsigned long uninitialized_var(flags);
2804
2805 stat(s, FREE_SLOWPATH);
2806
2807 if (kmem_cache_debug(s) &&
2808 !free_debug_processing(s, page, head, tail, cnt, addr))
2809 return;
2810
2811 do {
2812 if (unlikely(n)) {
2813 spin_unlock_irqrestore(&n->list_lock, flags);
2814 n = NULL;
2815 }
2816 prior = page->freelist;
2817 counters = page->counters;
2818 set_freepointer(s, tail, prior);
2819 new.counters = counters;
2820 was_frozen = new.frozen;
2821 new.inuse -= cnt;
2822 if ((!new.inuse || !prior) && !was_frozen) {
2823
2824 if (kmem_cache_has_cpu_partial(s) && !prior) {
2825
2826 /*
2827 * Slab was on no list before and will be
2828 * partially empty
2829 * We can defer the list move and instead
2830 * freeze it.
2831 */
2832 new.frozen = 1;
2833
2834 } else { /* Needs to be taken off a list */
2835
2836 n = get_node(s, page_to_nid(page));
2837 /*
2838 * Speculatively acquire the list_lock.
2839 * If the cmpxchg does not succeed then we may
2840 * drop the list_lock without any processing.
2841 *
2842 * Otherwise the list_lock will synchronize with
2843 * other processors updating the list of slabs.
2844 */
2845 spin_lock_irqsave(&n->list_lock, flags);
2846
2847 }
2848 }
2849
2850 } while (!cmpxchg_double_slab(s, page,
2851 prior, counters,
2852 head, new.counters,
2853 "__slab_free"));
2854
2855 if (likely(!n)) {
2856
2857 /*
2858 * If we just froze the page then put it onto the
2859 * per cpu partial list.
2860 */
2861 if (new.frozen && !was_frozen) {
2862 put_cpu_partial(s, page, 1);
2863 stat(s, CPU_PARTIAL_FREE);
2864 }
2865 /*
2866 * The list lock was not taken therefore no list
2867 * activity can be necessary.
2868 */
2869 if (was_frozen)
2870 stat(s, FREE_FROZEN);
2871 return;
2872 }
2873
2874 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2875 goto slab_empty;
2876
2877 /*
2878 * Objects left in the slab. If it was not on the partial list before
2879 * then add it.
2880 */
2881 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2882 if (kmem_cache_debug(s))
2883 remove_full(s, n, page);
2884 add_partial(n, page, DEACTIVATE_TO_TAIL);
2885 stat(s, FREE_ADD_PARTIAL);
2886 }
2887 spin_unlock_irqrestore(&n->list_lock, flags);
2888 return;
2889
2890 slab_empty:
2891 if (prior) {
2892 /*
2893 * Slab on the partial list.
2894 */
2895 remove_partial(n, page);
2896 stat(s, FREE_REMOVE_PARTIAL);
2897 } else {
2898 /* Slab must be on the full list */
2899 remove_full(s, n, page);
2900 }
2901
2902 spin_unlock_irqrestore(&n->list_lock, flags);
2903 stat(s, FREE_SLAB);
2904 discard_slab(s, page);
2905 }
2906
2907 /*
2908 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2909 * can perform fastpath freeing without additional function calls.
2910 *
2911 * The fastpath is only possible if we are freeing to the current cpu slab
2912 * of this processor. This typically the case if we have just allocated
2913 * the item before.
2914 *
2915 * If fastpath is not possible then fall back to __slab_free where we deal
2916 * with all sorts of special processing.
2917 *
2918 * Bulk free of a freelist with several objects (all pointing to the
2919 * same page) possible by specifying head and tail ptr, plus objects
2920 * count (cnt). Bulk free indicated by tail pointer being set.
2921 */
2922 static __always_inline void do_slab_free(struct kmem_cache *s,
2923 struct page *page, void *head, void *tail,
2924 int cnt, unsigned long addr)
2925 {
2926 void *tail_obj = tail ? : head;
2927 struct kmem_cache_cpu *c;
2928 unsigned long tid;
2929 redo:
2930 /*
2931 * Determine the currently cpus per cpu slab.
2932 * The cpu may change afterward. However that does not matter since
2933 * data is retrieved via this pointer. If we are on the same cpu
2934 * during the cmpxchg then the free will succeed.
2935 */
2936 do {
2937 tid = this_cpu_read(s->cpu_slab->tid);
2938 c = raw_cpu_ptr(s->cpu_slab);
2939 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2940 unlikely(tid != READ_ONCE(c->tid)));
2941
2942 /* Same with comment on barrier() in slab_alloc_node() */
2943 barrier();
2944
2945 if (likely(page == c->page)) {
2946 set_freepointer(s, tail_obj, c->freelist);
2947
2948 if (unlikely(!this_cpu_cmpxchg_double(
2949 s->cpu_slab->freelist, s->cpu_slab->tid,
2950 c->freelist, tid,
2951 head, next_tid(tid)))) {
2952
2953 note_cmpxchg_failure("slab_free", s, tid);
2954 goto redo;
2955 }
2956 stat(s, FREE_FASTPATH);
2957 } else
2958 __slab_free(s, page, head, tail_obj, cnt, addr);
2959
2960 }
2961
2962 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2963 void *head, void *tail, int cnt,
2964 unsigned long addr)
2965 {
2966 slab_free_freelist_hook(s, head, tail);
2967 /*
2968 * slab_free_freelist_hook() could have put the items into quarantine.
2969 * If so, no need to free them.
2970 */
2971 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2972 return;
2973 do_slab_free(s, page, head, tail, cnt, addr);
2974 }
2975
2976 #ifdef CONFIG_KASAN
2977 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2978 {
2979 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2980 }
2981 #endif
2982
2983 void kmem_cache_free(struct kmem_cache *s, void *x)
2984 {
2985 s = cache_from_obj(s, x);
2986 if (!s)
2987 return;
2988 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2989 trace_kmem_cache_free(_RET_IP_, x);
2990 }
2991 EXPORT_SYMBOL(kmem_cache_free);
2992
2993 struct detached_freelist {
2994 struct page *page;
2995 void *tail;
2996 void *freelist;
2997 int cnt;
2998 struct kmem_cache *s;
2999 };
3000
3001 /*
3002 * This function progressively scans the array with free objects (with
3003 * a limited look ahead) and extract objects belonging to the same
3004 * page. It builds a detached freelist directly within the given
3005 * page/objects. This can happen without any need for
3006 * synchronization, because the objects are owned by running process.
3007 * The freelist is build up as a single linked list in the objects.
3008 * The idea is, that this detached freelist can then be bulk
3009 * transferred to the real freelist(s), but only requiring a single
3010 * synchronization primitive. Look ahead in the array is limited due
3011 * to performance reasons.
3012 */
3013 static inline
3014 int build_detached_freelist(struct kmem_cache *s, size_t size,
3015 void **p, struct detached_freelist *df)
3016 {
3017 size_t first_skipped_index = 0;
3018 int lookahead = 3;
3019 void *object;
3020 struct page *page;
3021
3022 /* Always re-init detached_freelist */
3023 df->page = NULL;
3024
3025 do {
3026 object = p[--size];
3027 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3028 } while (!object && size);
3029
3030 if (!object)
3031 return 0;
3032
3033 page = virt_to_head_page(object);
3034 if (!s) {
3035 /* Handle kalloc'ed objects */
3036 if (unlikely(!PageSlab(page))) {
3037 BUG_ON(!PageCompound(page));
3038 kfree_hook(object);
3039 __free_pages(page, compound_order(page));
3040 p[size] = NULL; /* mark object processed */
3041 return size;
3042 }
3043 /* Derive kmem_cache from object */
3044 df->s = page->slab_cache;
3045 } else {
3046 df->s = cache_from_obj(s, object); /* Support for memcg */
3047 }
3048
3049 /* Start new detached freelist */
3050 df->page = page;
3051 set_freepointer(df->s, object, NULL);
3052 df->tail = object;
3053 df->freelist = object;
3054 p[size] = NULL; /* mark object processed */
3055 df->cnt = 1;
3056
3057 while (size) {
3058 object = p[--size];
3059 if (!object)
3060 continue; /* Skip processed objects */
3061
3062 /* df->page is always set at this point */
3063 if (df->page == virt_to_head_page(object)) {
3064 /* Opportunity build freelist */
3065 set_freepointer(df->s, object, df->freelist);
3066 df->freelist = object;
3067 df->cnt++;
3068 p[size] = NULL; /* mark object processed */
3069
3070 continue;
3071 }
3072
3073 /* Limit look ahead search */
3074 if (!--lookahead)
3075 break;
3076
3077 if (!first_skipped_index)
3078 first_skipped_index = size + 1;
3079 }
3080
3081 return first_skipped_index;
3082 }
3083
3084 /* Note that interrupts must be enabled when calling this function. */
3085 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3086 {
3087 if (WARN_ON(!size))
3088 return;
3089
3090 do {
3091 struct detached_freelist df;
3092
3093 size = build_detached_freelist(s, size, p, &df);
3094 if (!df.page)
3095 continue;
3096
3097 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3098 } while (likely(size));
3099 }
3100 EXPORT_SYMBOL(kmem_cache_free_bulk);
3101
3102 /* Note that interrupts must be enabled when calling this function. */
3103 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3104 void **p)
3105 {
3106 struct kmem_cache_cpu *c;
3107 int i;
3108
3109 /* memcg and kmem_cache debug support */
3110 s = slab_pre_alloc_hook(s, flags);
3111 if (unlikely(!s))
3112 return false;
3113 /*
3114 * Drain objects in the per cpu slab, while disabling local
3115 * IRQs, which protects against PREEMPT and interrupts
3116 * handlers invoking normal fastpath.
3117 */
3118 local_irq_disable();
3119 c = this_cpu_ptr(s->cpu_slab);
3120
3121 for (i = 0; i < size; i++) {
3122 void *object = c->freelist;
3123
3124 if (unlikely(!object)) {
3125 /*
3126 * Invoking slow path likely have side-effect
3127 * of re-populating per CPU c->freelist
3128 */
3129 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3130 _RET_IP_, c);
3131 if (unlikely(!p[i]))
3132 goto error;
3133
3134 c = this_cpu_ptr(s->cpu_slab);
3135 continue; /* goto for-loop */
3136 }
3137 c->freelist = get_freepointer(s, object);
3138 p[i] = object;
3139 }
3140 c->tid = next_tid(c->tid);
3141 local_irq_enable();
3142
3143 /* Clear memory outside IRQ disabled fastpath loop */
3144 if (unlikely(flags & __GFP_ZERO)) {
3145 int j;
3146
3147 for (j = 0; j < i; j++)
3148 memset(p[j], 0, s->object_size);
3149 }
3150
3151 /* memcg and kmem_cache debug support */
3152 slab_post_alloc_hook(s, flags, size, p);
3153 return i;
3154 error:
3155 local_irq_enable();
3156 slab_post_alloc_hook(s, flags, i, p);
3157 __kmem_cache_free_bulk(s, i, p);
3158 return 0;
3159 }
3160 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3161
3162
3163 /*
3164 * Object placement in a slab is made very easy because we always start at
3165 * offset 0. If we tune the size of the object to the alignment then we can
3166 * get the required alignment by putting one properly sized object after
3167 * another.
3168 *
3169 * Notice that the allocation order determines the sizes of the per cpu
3170 * caches. Each processor has always one slab available for allocations.
3171 * Increasing the allocation order reduces the number of times that slabs
3172 * must be moved on and off the partial lists and is therefore a factor in
3173 * locking overhead.
3174 */
3175
3176 /*
3177 * Mininum / Maximum order of slab pages. This influences locking overhead
3178 * and slab fragmentation. A higher order reduces the number of partial slabs
3179 * and increases the number of allocations possible without having to
3180 * take the list_lock.
3181 */
3182 static int slub_min_order;
3183 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3184 static int slub_min_objects;
3185
3186 /*
3187 * Calculate the order of allocation given an slab object size.
3188 *
3189 * The order of allocation has significant impact on performance and other
3190 * system components. Generally order 0 allocations should be preferred since
3191 * order 0 does not cause fragmentation in the page allocator. Larger objects
3192 * be problematic to put into order 0 slabs because there may be too much
3193 * unused space left. We go to a higher order if more than 1/16th of the slab
3194 * would be wasted.
3195 *
3196 * In order to reach satisfactory performance we must ensure that a minimum
3197 * number of objects is in one slab. Otherwise we may generate too much
3198 * activity on the partial lists which requires taking the list_lock. This is
3199 * less a concern for large slabs though which are rarely used.
3200 *
3201 * slub_max_order specifies the order where we begin to stop considering the
3202 * number of objects in a slab as critical. If we reach slub_max_order then
3203 * we try to keep the page order as low as possible. So we accept more waste
3204 * of space in favor of a small page order.
3205 *
3206 * Higher order allocations also allow the placement of more objects in a
3207 * slab and thereby reduce object handling overhead. If the user has
3208 * requested a higher mininum order then we start with that one instead of
3209 * the smallest order which will fit the object.
3210 */
3211 static inline int slab_order(int size, int min_objects,
3212 int max_order, int fract_leftover, int reserved)
3213 {
3214 int order;
3215 int rem;
3216 int min_order = slub_min_order;
3217
3218 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3219 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3220
3221 for (order = max(min_order, get_order(min_objects * size + reserved));
3222 order <= max_order; order++) {
3223
3224 unsigned long slab_size = PAGE_SIZE << order;
3225
3226 rem = (slab_size - reserved) % size;
3227
3228 if (rem <= slab_size / fract_leftover)
3229 break;
3230 }
3231
3232 return order;
3233 }
3234
3235 static inline int calculate_order(int size, int reserved)
3236 {
3237 int order;
3238 int min_objects;
3239 int fraction;
3240 int max_objects;
3241
3242 /*
3243 * Attempt to find best configuration for a slab. This
3244 * works by first attempting to generate a layout with
3245 * the best configuration and backing off gradually.
3246 *
3247 * First we increase the acceptable waste in a slab. Then
3248 * we reduce the minimum objects required in a slab.
3249 */
3250 min_objects = slub_min_objects;
3251 if (!min_objects)
3252 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3253 max_objects = order_objects(slub_max_order, size, reserved);
3254 min_objects = min(min_objects, max_objects);
3255
3256 while (min_objects > 1) {
3257 fraction = 16;
3258 while (fraction >= 4) {
3259 order = slab_order(size, min_objects,
3260 slub_max_order, fraction, reserved);
3261 if (order <= slub_max_order)
3262 return order;
3263 fraction /= 2;
3264 }
3265 min_objects--;
3266 }
3267
3268 /*
3269 * We were unable to place multiple objects in a slab. Now
3270 * lets see if we can place a single object there.
3271 */
3272 order = slab_order(size, 1, slub_max_order, 1, reserved);
3273 if (order <= slub_max_order)
3274 return order;
3275
3276 /*
3277 * Doh this slab cannot be placed using slub_max_order.
3278 */
3279 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3280 if (order < MAX_ORDER)
3281 return order;
3282 return -ENOSYS;
3283 }
3284
3285 static void
3286 init_kmem_cache_node(struct kmem_cache_node *n)
3287 {
3288 n->nr_partial = 0;
3289 spin_lock_init(&n->list_lock);
3290 INIT_LIST_HEAD(&n->partial);
3291 #ifdef CONFIG_SLUB_DEBUG
3292 atomic_long_set(&n->nr_slabs, 0);
3293 atomic_long_set(&n->total_objects, 0);
3294 INIT_LIST_HEAD(&n->full);
3295 #endif
3296 }
3297
3298 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3299 {
3300 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3301 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3302
3303 /*
3304 * Must align to double word boundary for the double cmpxchg
3305 * instructions to work; see __pcpu_double_call_return_bool().
3306 */
3307 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3308 2 * sizeof(void *));
3309
3310 if (!s->cpu_slab)
3311 return 0;
3312
3313 init_kmem_cache_cpus(s);
3314
3315 return 1;
3316 }
3317
3318 static struct kmem_cache *kmem_cache_node;
3319
3320 /*
3321 * No kmalloc_node yet so do it by hand. We know that this is the first
3322 * slab on the node for this slabcache. There are no concurrent accesses
3323 * possible.
3324 *
3325 * Note that this function only works on the kmem_cache_node
3326 * when allocating for the kmem_cache_node. This is used for bootstrapping
3327 * memory on a fresh node that has no slab structures yet.
3328 */
3329 static void early_kmem_cache_node_alloc(int node)
3330 {
3331 struct page *page;
3332 struct kmem_cache_node *n;
3333
3334 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3335
3336 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3337
3338 BUG_ON(!page);
3339 if (page_to_nid(page) != node) {
3340 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3341 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3342 }
3343
3344 n = page->freelist;
3345 BUG_ON(!n);
3346 page->freelist = get_freepointer(kmem_cache_node, n);
3347 page->inuse = 1;
3348 page->frozen = 0;
3349 kmem_cache_node->node[node] = n;
3350 #ifdef CONFIG_SLUB_DEBUG
3351 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3352 init_tracking(kmem_cache_node, n);
3353 #endif
3354 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3355 GFP_KERNEL);
3356 init_kmem_cache_node(n);
3357 inc_slabs_node(kmem_cache_node, node, page->objects);
3358
3359 /*
3360 * No locks need to be taken here as it has just been
3361 * initialized and there is no concurrent access.
3362 */
3363 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3364 }
3365
3366 static void free_kmem_cache_nodes(struct kmem_cache *s)
3367 {
3368 int node;
3369 struct kmem_cache_node *n;
3370
3371 for_each_kmem_cache_node(s, node, n) {
3372 s->node[node] = NULL;
3373 kmem_cache_free(kmem_cache_node, n);
3374 }
3375 }
3376
3377 void __kmem_cache_release(struct kmem_cache *s)
3378 {
3379 cache_random_seq_destroy(s);
3380 free_percpu(s->cpu_slab);
3381 free_kmem_cache_nodes(s);
3382 }
3383
3384 static int init_kmem_cache_nodes(struct kmem_cache *s)
3385 {
3386 int node;
3387
3388 for_each_node_state(node, N_NORMAL_MEMORY) {
3389 struct kmem_cache_node *n;
3390
3391 if (slab_state == DOWN) {
3392 early_kmem_cache_node_alloc(node);
3393 continue;
3394 }
3395 n = kmem_cache_alloc_node(kmem_cache_node,
3396 GFP_KERNEL, node);
3397
3398 if (!n) {
3399 free_kmem_cache_nodes(s);
3400 return 0;
3401 }
3402
3403 init_kmem_cache_node(n);
3404 s->node[node] = n;
3405 }
3406 return 1;
3407 }
3408
3409 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3410 {
3411 if (min < MIN_PARTIAL)
3412 min = MIN_PARTIAL;
3413 else if (min > MAX_PARTIAL)
3414 min = MAX_PARTIAL;
3415 s->min_partial = min;
3416 }
3417
3418 static void set_cpu_partial(struct kmem_cache *s)
3419 {
3420 #ifdef CONFIG_SLUB_CPU_PARTIAL
3421 /*
3422 * cpu_partial determined the maximum number of objects kept in the
3423 * per cpu partial lists of a processor.
3424 *
3425 * Per cpu partial lists mainly contain slabs that just have one
3426 * object freed. If they are used for allocation then they can be
3427 * filled up again with minimal effort. The slab will never hit the
3428 * per node partial lists and therefore no locking will be required.
3429 *
3430 * This setting also determines
3431 *
3432 * A) The number of objects from per cpu partial slabs dumped to the
3433 * per node list when we reach the limit.
3434 * B) The number of objects in cpu partial slabs to extract from the
3435 * per node list when we run out of per cpu objects. We only fetch
3436 * 50% to keep some capacity around for frees.
3437 */
3438 if (!kmem_cache_has_cpu_partial(s))
3439 s->cpu_partial = 0;
3440 else if (s->size >= PAGE_SIZE)
3441 s->cpu_partial = 2;
3442 else if (s->size >= 1024)
3443 s->cpu_partial = 6;
3444 else if (s->size >= 256)
3445 s->cpu_partial = 13;
3446 else
3447 s->cpu_partial = 30;
3448 #endif
3449 }
3450
3451 /*
3452 * calculate_sizes() determines the order and the distribution of data within
3453 * a slab object.
3454 */
3455 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3456 {
3457 unsigned long flags = s->flags;
3458 size_t size = s->object_size;
3459 int order;
3460
3461 /*
3462 * Round up object size to the next word boundary. We can only
3463 * place the free pointer at word boundaries and this determines
3464 * the possible location of the free pointer.
3465 */
3466 size = ALIGN(size, sizeof(void *));
3467
3468 #ifdef CONFIG_SLUB_DEBUG
3469 /*
3470 * Determine if we can poison the object itself. If the user of
3471 * the slab may touch the object after free or before allocation
3472 * then we should never poison the object itself.
3473 */
3474 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3475 !s->ctor)
3476 s->flags |= __OBJECT_POISON;
3477 else
3478 s->flags &= ~__OBJECT_POISON;
3479
3480
3481 /*
3482 * If we are Redzoning then check if there is some space between the
3483 * end of the object and the free pointer. If not then add an
3484 * additional word to have some bytes to store Redzone information.
3485 */
3486 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3487 size += sizeof(void *);
3488 #endif
3489
3490 /*
3491 * With that we have determined the number of bytes in actual use
3492 * by the object. This is the potential offset to the free pointer.
3493 */
3494 s->inuse = size;
3495
3496 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3497 s->ctor)) {
3498 /*
3499 * Relocate free pointer after the object if it is not
3500 * permitted to overwrite the first word of the object on
3501 * kmem_cache_free.
3502 *
3503 * This is the case if we do RCU, have a constructor or
3504 * destructor or are poisoning the objects.
3505 */
3506 s->offset = size;
3507 size += sizeof(void *);
3508 }
3509
3510 #ifdef CONFIG_SLUB_DEBUG
3511 if (flags & SLAB_STORE_USER)
3512 /*
3513 * Need to store information about allocs and frees after
3514 * the object.
3515 */
3516 size += 2 * sizeof(struct track);
3517 #endif
3518
3519 kasan_cache_create(s, &size, &s->flags);
3520 #ifdef CONFIG_SLUB_DEBUG
3521 if (flags & SLAB_RED_ZONE) {
3522 /*
3523 * Add some empty padding so that we can catch
3524 * overwrites from earlier objects rather than let
3525 * tracking information or the free pointer be
3526 * corrupted if a user writes before the start
3527 * of the object.
3528 */
3529 size += sizeof(void *);
3530
3531 s->red_left_pad = sizeof(void *);
3532 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3533 size += s->red_left_pad;
3534 }
3535 #endif
3536
3537 /*
3538 * SLUB stores one object immediately after another beginning from
3539 * offset 0. In order to align the objects we have to simply size
3540 * each object to conform to the alignment.
3541 */
3542 size = ALIGN(size, s->align);
3543 s->size = size;
3544 if (forced_order >= 0)
3545 order = forced_order;
3546 else
3547 order = calculate_order(size, s->reserved);
3548
3549 if (order < 0)
3550 return 0;
3551
3552 s->allocflags = 0;
3553 if (order)
3554 s->allocflags |= __GFP_COMP;
3555
3556 if (s->flags & SLAB_CACHE_DMA)
3557 s->allocflags |= GFP_DMA;
3558
3559 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3560 s->allocflags |= __GFP_RECLAIMABLE;
3561
3562 /*
3563 * Determine the number of objects per slab
3564 */
3565 s->oo = oo_make(order, size, s->reserved);
3566 s->min = oo_make(get_order(size), size, s->reserved);
3567 if (oo_objects(s->oo) > oo_objects(s->max))
3568 s->max = s->oo;
3569
3570 return !!oo_objects(s->oo);
3571 }
3572
3573 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3574 {
3575 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3576 s->reserved = 0;
3577 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3578 s->random = get_random_long();
3579 #endif
3580
3581 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3582 s->reserved = sizeof(struct rcu_head);
3583
3584 if (!calculate_sizes(s, -1))
3585 goto error;
3586 if (disable_higher_order_debug) {
3587 /*
3588 * Disable debugging flags that store metadata if the min slab
3589 * order increased.
3590 */
3591 if (get_order(s->size) > get_order(s->object_size)) {
3592 s->flags &= ~DEBUG_METADATA_FLAGS;
3593 s->offset = 0;
3594 if (!calculate_sizes(s, -1))
3595 goto error;
3596 }
3597 }
3598
3599 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3600 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3601 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3602 /* Enable fast mode */
3603 s->flags |= __CMPXCHG_DOUBLE;
3604 #endif
3605
3606 /*
3607 * The larger the object size is, the more pages we want on the partial
3608 * list to avoid pounding the page allocator excessively.
3609 */
3610 set_min_partial(s, ilog2(s->size) / 2);
3611
3612 set_cpu_partial(s);
3613
3614 #ifdef CONFIG_NUMA
3615 s->remote_node_defrag_ratio = 1000;
3616 #endif
3617
3618 /* Initialize the pre-computed randomized freelist if slab is up */
3619 if (slab_state >= UP) {
3620 if (init_cache_random_seq(s))
3621 goto error;
3622 }
3623
3624 if (!init_kmem_cache_nodes(s))
3625 goto error;
3626
3627 if (alloc_kmem_cache_cpus(s))
3628 return 0;
3629
3630 free_kmem_cache_nodes(s);
3631 error:
3632 if (flags & SLAB_PANIC)
3633 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3634 s->name, (unsigned long)s->size, s->size,
3635 oo_order(s->oo), s->offset, flags);
3636 return -EINVAL;
3637 }
3638
3639 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3640 const char *text)
3641 {
3642 #ifdef CONFIG_SLUB_DEBUG
3643 void *addr = page_address(page);
3644 void *p;
3645 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3646 sizeof(long), GFP_ATOMIC);
3647 if (!map)
3648 return;
3649 slab_err(s, page, text, s->name);
3650 slab_lock(page);
3651
3652 get_map(s, page, map);
3653 for_each_object(p, s, addr, page->objects) {
3654
3655 if (!test_bit(slab_index(p, s, addr), map)) {
3656 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3657 print_tracking(s, p);
3658 }
3659 }
3660 slab_unlock(page);
3661 kfree(map);
3662 #endif
3663 }
3664
3665 /*
3666 * Attempt to free all partial slabs on a node.
3667 * This is called from __kmem_cache_shutdown(). We must take list_lock
3668 * because sysfs file might still access partial list after the shutdowning.
3669 */
3670 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3671 {
3672 LIST_HEAD(discard);
3673 struct page *page, *h;
3674
3675 BUG_ON(irqs_disabled());
3676 spin_lock_irq(&n->list_lock);
3677 list_for_each_entry_safe(page, h, &n->partial, lru) {
3678 if (!page->inuse) {
3679 remove_partial(n, page);
3680 list_add(&page->lru, &discard);
3681 } else {
3682 list_slab_objects(s, page,
3683 "Objects remaining in %s on __kmem_cache_shutdown()");
3684 }
3685 }
3686 spin_unlock_irq(&n->list_lock);
3687
3688 list_for_each_entry_safe(page, h, &discard, lru)
3689 discard_slab(s, page);
3690 }
3691
3692 /*
3693 * Release all resources used by a slab cache.
3694 */
3695 int __kmem_cache_shutdown(struct kmem_cache *s)
3696 {
3697 int node;
3698 struct kmem_cache_node *n;
3699
3700 flush_all(s);
3701 /* Attempt to free all objects */
3702 for_each_kmem_cache_node(s, node, n) {
3703 free_partial(s, n);
3704 if (n->nr_partial || slabs_node(s, node))
3705 return 1;
3706 }
3707 sysfs_slab_remove(s);
3708 return 0;
3709 }
3710
3711 /********************************************************************
3712 * Kmalloc subsystem
3713 *******************************************************************/
3714
3715 static int __init setup_slub_min_order(char *str)
3716 {
3717 get_option(&str, &slub_min_order);
3718
3719 return 1;
3720 }
3721
3722 __setup("slub_min_order=", setup_slub_min_order);
3723
3724 static int __init setup_slub_max_order(char *str)
3725 {
3726 get_option(&str, &slub_max_order);
3727 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3728
3729 return 1;
3730 }
3731
3732 __setup("slub_max_order=", setup_slub_max_order);
3733
3734 static int __init setup_slub_min_objects(char *str)
3735 {
3736 get_option(&str, &slub_min_objects);
3737
3738 return 1;
3739 }
3740
3741 __setup("slub_min_objects=", setup_slub_min_objects);
3742
3743 void *__kmalloc(size_t size, gfp_t flags)
3744 {
3745 struct kmem_cache *s;
3746 void *ret;
3747
3748 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3749 return kmalloc_large(size, flags);
3750
3751 s = kmalloc_slab(size, flags);
3752
3753 if (unlikely(ZERO_OR_NULL_PTR(s)))
3754 return s;
3755
3756 ret = slab_alloc(s, flags, _RET_IP_);
3757
3758 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3759
3760 kasan_kmalloc(s, ret, size, flags);
3761
3762 return ret;
3763 }
3764 EXPORT_SYMBOL(__kmalloc);
3765
3766 #ifdef CONFIG_NUMA
3767 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3768 {
3769 struct page *page;
3770 void *ptr = NULL;
3771
3772 flags |= __GFP_COMP;
3773 page = alloc_pages_node(node, flags, get_order(size));
3774 if (page)
3775 ptr = page_address(page);
3776
3777 kmalloc_large_node_hook(ptr, size, flags);
3778 return ptr;
3779 }
3780
3781 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3782 {
3783 struct kmem_cache *s;
3784 void *ret;
3785
3786 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3787 ret = kmalloc_large_node(size, flags, node);
3788
3789 trace_kmalloc_node(_RET_IP_, ret,
3790 size, PAGE_SIZE << get_order(size),
3791 flags, node);
3792
3793 return ret;
3794 }
3795
3796 s = kmalloc_slab(size, flags);
3797
3798 if (unlikely(ZERO_OR_NULL_PTR(s)))
3799 return s;
3800
3801 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3802
3803 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3804
3805 kasan_kmalloc(s, ret, size, flags);
3806
3807 return ret;
3808 }
3809 EXPORT_SYMBOL(__kmalloc_node);
3810 #endif
3811
3812 #ifdef CONFIG_HARDENED_USERCOPY
3813 /*
3814 * Rejects objects that are incorrectly sized.
3815 *
3816 * Returns NULL if check passes, otherwise const char * to name of cache
3817 * to indicate an error.
3818 */
3819 const char *__check_heap_object(const void *ptr, unsigned long n,
3820 struct page *page)
3821 {
3822 struct kmem_cache *s;
3823 unsigned long offset;
3824 size_t object_size;
3825
3826 /* Find object and usable object size. */
3827 s = page->slab_cache;
3828 object_size = slab_ksize(s);
3829
3830 /* Reject impossible pointers. */
3831 if (ptr < page_address(page))
3832 return s->name;
3833
3834 /* Find offset within object. */
3835 offset = (ptr - page_address(page)) % s->size;
3836
3837 /* Adjust for redzone and reject if within the redzone. */
3838 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3839 if (offset < s->red_left_pad)
3840 return s->name;
3841 offset -= s->red_left_pad;
3842 }
3843
3844 /* Allow address range falling entirely within object size. */
3845 if (offset <= object_size && n <= object_size - offset)
3846 return NULL;
3847
3848 return s->name;
3849 }
3850 #endif /* CONFIG_HARDENED_USERCOPY */
3851
3852 static size_t __ksize(const void *object)
3853 {
3854 struct page *page;
3855
3856 if (unlikely(object == ZERO_SIZE_PTR))
3857 return 0;
3858
3859 page = virt_to_head_page(object);
3860
3861 if (unlikely(!PageSlab(page))) {
3862 WARN_ON(!PageCompound(page));
3863 return PAGE_SIZE << compound_order(page);
3864 }
3865
3866 return slab_ksize(page->slab_cache);
3867 }
3868
3869 size_t ksize(const void *object)
3870 {
3871 size_t size = __ksize(object);
3872 /* We assume that ksize callers could use whole allocated area,
3873 * so we need to unpoison this area.
3874 */
3875 kasan_unpoison_shadow(object, size);
3876 return size;
3877 }
3878 EXPORT_SYMBOL(ksize);
3879
3880 void kfree(const void *x)
3881 {
3882 struct page *page;
3883 void *object = (void *)x;
3884
3885 trace_kfree(_RET_IP_, x);
3886
3887 if (unlikely(ZERO_OR_NULL_PTR(x)))
3888 return;
3889
3890 page = virt_to_head_page(x);
3891 if (unlikely(!PageSlab(page))) {
3892 BUG_ON(!PageCompound(page));
3893 kfree_hook(x);
3894 __free_pages(page, compound_order(page));
3895 return;
3896 }
3897 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3898 }
3899 EXPORT_SYMBOL(kfree);
3900
3901 #define SHRINK_PROMOTE_MAX 32
3902
3903 /*
3904 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3905 * up most to the head of the partial lists. New allocations will then
3906 * fill those up and thus they can be removed from the partial lists.
3907 *
3908 * The slabs with the least items are placed last. This results in them
3909 * being allocated from last increasing the chance that the last objects
3910 * are freed in them.
3911 */
3912 int __kmem_cache_shrink(struct kmem_cache *s)
3913 {
3914 int node;
3915 int i;
3916 struct kmem_cache_node *n;
3917 struct page *page;
3918 struct page *t;
3919 struct list_head discard;
3920 struct list_head promote[SHRINK_PROMOTE_MAX];
3921 unsigned long flags;
3922 int ret = 0;
3923
3924 flush_all(s);
3925 for_each_kmem_cache_node(s, node, n) {
3926 INIT_LIST_HEAD(&discard);
3927 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3928 INIT_LIST_HEAD(promote + i);
3929
3930 spin_lock_irqsave(&n->list_lock, flags);
3931
3932 /*
3933 * Build lists of slabs to discard or promote.
3934 *
3935 * Note that concurrent frees may occur while we hold the
3936 * list_lock. page->inuse here is the upper limit.
3937 */
3938 list_for_each_entry_safe(page, t, &n->partial, lru) {
3939 int free = page->objects - page->inuse;
3940
3941 /* Do not reread page->inuse */
3942 barrier();
3943
3944 /* We do not keep full slabs on the list */
3945 BUG_ON(free <= 0);
3946
3947 if (free == page->objects) {
3948 list_move(&page->lru, &discard);
3949 n->nr_partial--;
3950 } else if (free <= SHRINK_PROMOTE_MAX)
3951 list_move(&page->lru, promote + free - 1);
3952 }
3953
3954 /*
3955 * Promote the slabs filled up most to the head of the
3956 * partial list.
3957 */
3958 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3959 list_splice(promote + i, &n->partial);
3960
3961 spin_unlock_irqrestore(&n->list_lock, flags);
3962
3963 /* Release empty slabs */
3964 list_for_each_entry_safe(page, t, &discard, lru)
3965 discard_slab(s, page);
3966
3967 if (slabs_node(s, node))
3968 ret = 1;
3969 }
3970
3971 return ret;
3972 }
3973
3974 #ifdef CONFIG_MEMCG
3975 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3976 {
3977 /*
3978 * Called with all the locks held after a sched RCU grace period.
3979 * Even if @s becomes empty after shrinking, we can't know that @s
3980 * doesn't have allocations already in-flight and thus can't
3981 * destroy @s until the associated memcg is released.
3982 *
3983 * However, let's remove the sysfs files for empty caches here.
3984 * Each cache has a lot of interface files which aren't
3985 * particularly useful for empty draining caches; otherwise, we can
3986 * easily end up with millions of unnecessary sysfs files on
3987 * systems which have a lot of memory and transient cgroups.
3988 */
3989 if (!__kmem_cache_shrink(s))
3990 sysfs_slab_remove(s);
3991 }
3992
3993 void __kmemcg_cache_deactivate(struct kmem_cache *s)
3994 {
3995 /*
3996 * Disable empty slabs caching. Used to avoid pinning offline
3997 * memory cgroups by kmem pages that can be freed.
3998 */
3999 slub_set_cpu_partial(s, 0);
4000 s->min_partial = 0;
4001
4002 /*
4003 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4004 * we have to make sure the change is visible before shrinking.
4005 */
4006 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4007 }
4008 #endif
4009
4010 static int slab_mem_going_offline_callback(void *arg)
4011 {
4012 struct kmem_cache *s;
4013
4014 mutex_lock(&slab_mutex);
4015 list_for_each_entry(s, &slab_caches, list)
4016 __kmem_cache_shrink(s);
4017 mutex_unlock(&slab_mutex);
4018
4019 return 0;
4020 }
4021
4022 static void slab_mem_offline_callback(void *arg)
4023 {
4024 struct kmem_cache_node *n;
4025 struct kmem_cache *s;
4026 struct memory_notify *marg = arg;
4027 int offline_node;
4028
4029 offline_node = marg->status_change_nid_normal;
4030
4031 /*
4032 * If the node still has available memory. we need kmem_cache_node
4033 * for it yet.
4034 */
4035 if (offline_node < 0)
4036 return;
4037
4038 mutex_lock(&slab_mutex);
4039 list_for_each_entry(s, &slab_caches, list) {
4040 n = get_node(s, offline_node);
4041 if (n) {
4042 /*
4043 * if n->nr_slabs > 0, slabs still exist on the node
4044 * that is going down. We were unable to free them,
4045 * and offline_pages() function shouldn't call this
4046 * callback. So, we must fail.
4047 */
4048 BUG_ON(slabs_node(s, offline_node));
4049
4050 s->node[offline_node] = NULL;
4051 kmem_cache_free(kmem_cache_node, n);
4052 }
4053 }
4054 mutex_unlock(&slab_mutex);
4055 }
4056
4057 static int slab_mem_going_online_callback(void *arg)
4058 {
4059 struct kmem_cache_node *n;
4060 struct kmem_cache *s;
4061 struct memory_notify *marg = arg;
4062 int nid = marg->status_change_nid_normal;
4063 int ret = 0;
4064
4065 /*
4066 * If the node's memory is already available, then kmem_cache_node is
4067 * already created. Nothing to do.
4068 */
4069 if (nid < 0)
4070 return 0;
4071
4072 /*
4073 * We are bringing a node online. No memory is available yet. We must
4074 * allocate a kmem_cache_node structure in order to bring the node
4075 * online.
4076 */
4077 mutex_lock(&slab_mutex);
4078 list_for_each_entry(s, &slab_caches, list) {
4079 /*
4080 * XXX: kmem_cache_alloc_node will fallback to other nodes
4081 * since memory is not yet available from the node that
4082 * is brought up.
4083 */
4084 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4085 if (!n) {
4086 ret = -ENOMEM;
4087 goto out;
4088 }
4089 init_kmem_cache_node(n);
4090 s->node[nid] = n;
4091 }
4092 out:
4093 mutex_unlock(&slab_mutex);
4094 return ret;
4095 }
4096
4097 static int slab_memory_callback(struct notifier_block *self,
4098 unsigned long action, void *arg)
4099 {
4100 int ret = 0;
4101
4102 switch (action) {
4103 case MEM_GOING_ONLINE:
4104 ret = slab_mem_going_online_callback(arg);
4105 break;
4106 case MEM_GOING_OFFLINE:
4107 ret = slab_mem_going_offline_callback(arg);
4108 break;
4109 case MEM_OFFLINE:
4110 case MEM_CANCEL_ONLINE:
4111 slab_mem_offline_callback(arg);
4112 break;
4113 case MEM_ONLINE:
4114 case MEM_CANCEL_OFFLINE:
4115 break;
4116 }
4117 if (ret)
4118 ret = notifier_from_errno(ret);
4119 else
4120 ret = NOTIFY_OK;
4121 return ret;
4122 }
4123
4124 static struct notifier_block slab_memory_callback_nb = {
4125 .notifier_call = slab_memory_callback,
4126 .priority = SLAB_CALLBACK_PRI,
4127 };
4128
4129 /********************************************************************
4130 * Basic setup of slabs
4131 *******************************************************************/
4132
4133 /*
4134 * Used for early kmem_cache structures that were allocated using
4135 * the page allocator. Allocate them properly then fix up the pointers
4136 * that may be pointing to the wrong kmem_cache structure.
4137 */
4138
4139 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4140 {
4141 int node;
4142 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4143 struct kmem_cache_node *n;
4144
4145 memcpy(s, static_cache, kmem_cache->object_size);
4146
4147 /*
4148 * This runs very early, and only the boot processor is supposed to be
4149 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4150 * IPIs around.
4151 */
4152 __flush_cpu_slab(s, smp_processor_id());
4153 for_each_kmem_cache_node(s, node, n) {
4154 struct page *p;
4155
4156 list_for_each_entry(p, &n->partial, lru)
4157 p->slab_cache = s;
4158
4159 #ifdef CONFIG_SLUB_DEBUG
4160 list_for_each_entry(p, &n->full, lru)
4161 p->slab_cache = s;
4162 #endif
4163 }
4164 slab_init_memcg_params(s);
4165 list_add(&s->list, &slab_caches);
4166 memcg_link_cache(s);
4167 return s;
4168 }
4169
4170 void __init kmem_cache_init(void)
4171 {
4172 static __initdata struct kmem_cache boot_kmem_cache,
4173 boot_kmem_cache_node;
4174
4175 if (debug_guardpage_minorder())
4176 slub_max_order = 0;
4177
4178 kmem_cache_node = &boot_kmem_cache_node;
4179 kmem_cache = &boot_kmem_cache;
4180
4181 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4182 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4183
4184 register_hotmemory_notifier(&slab_memory_callback_nb);
4185
4186 /* Able to allocate the per node structures */
4187 slab_state = PARTIAL;
4188
4189 create_boot_cache(kmem_cache, "kmem_cache",
4190 offsetof(struct kmem_cache, node) +
4191 nr_node_ids * sizeof(struct kmem_cache_node *),
4192 SLAB_HWCACHE_ALIGN);
4193
4194 kmem_cache = bootstrap(&boot_kmem_cache);
4195
4196 /*
4197 * Allocate kmem_cache_node properly from the kmem_cache slab.
4198 * kmem_cache_node is separately allocated so no need to
4199 * update any list pointers.
4200 */
4201 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4202
4203 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4204 setup_kmalloc_cache_index_table();
4205 create_kmalloc_caches(0);
4206
4207 /* Setup random freelists for each cache */
4208 init_freelist_randomization();
4209
4210 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4211 slub_cpu_dead);
4212
4213 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4214 cache_line_size(),
4215 slub_min_order, slub_max_order, slub_min_objects,
4216 nr_cpu_ids, nr_node_ids);
4217 }
4218
4219 void __init kmem_cache_init_late(void)
4220 {
4221 }
4222
4223 struct kmem_cache *
4224 __kmem_cache_alias(const char *name, size_t size, size_t align,
4225 unsigned long flags, void (*ctor)(void *))
4226 {
4227 struct kmem_cache *s, *c;
4228
4229 s = find_mergeable(size, align, flags, name, ctor);
4230 if (s) {
4231 s->refcount++;
4232
4233 /*
4234 * Adjust the object sizes so that we clear
4235 * the complete object on kzalloc.
4236 */
4237 s->object_size = max(s->object_size, (int)size);
4238 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4239
4240 for_each_memcg_cache(c, s) {
4241 c->object_size = s->object_size;
4242 c->inuse = max_t(int, c->inuse,
4243 ALIGN(size, sizeof(void *)));
4244 }
4245
4246 if (sysfs_slab_alias(s, name)) {
4247 s->refcount--;
4248 s = NULL;
4249 }
4250 }
4251
4252 return s;
4253 }
4254
4255 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4256 {
4257 int err;
4258
4259 err = kmem_cache_open(s, flags);
4260 if (err)
4261 return err;
4262
4263 /* Mutex is not taken during early boot */
4264 if (slab_state <= UP)
4265 return 0;
4266
4267 memcg_propagate_slab_attrs(s);
4268 err = sysfs_slab_add(s);
4269 if (err)
4270 __kmem_cache_release(s);
4271
4272 return err;
4273 }
4274
4275 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4276 {
4277 struct kmem_cache *s;
4278 void *ret;
4279
4280 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4281 return kmalloc_large(size, gfpflags);
4282
4283 s = kmalloc_slab(size, gfpflags);
4284
4285 if (unlikely(ZERO_OR_NULL_PTR(s)))
4286 return s;
4287
4288 ret = slab_alloc(s, gfpflags, caller);
4289
4290 /* Honor the call site pointer we received. */
4291 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4292
4293 return ret;
4294 }
4295
4296 #ifdef CONFIG_NUMA
4297 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4298 int node, unsigned long caller)
4299 {
4300 struct kmem_cache *s;
4301 void *ret;
4302
4303 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4304 ret = kmalloc_large_node(size, gfpflags, node);
4305
4306 trace_kmalloc_node(caller, ret,
4307 size, PAGE_SIZE << get_order(size),
4308 gfpflags, node);
4309
4310 return ret;
4311 }
4312
4313 s = kmalloc_slab(size, gfpflags);
4314
4315 if (unlikely(ZERO_OR_NULL_PTR(s)))
4316 return s;
4317
4318 ret = slab_alloc_node(s, gfpflags, node, caller);
4319
4320 /* Honor the call site pointer we received. */
4321 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4322
4323 return ret;
4324 }
4325 #endif
4326
4327 #ifdef CONFIG_SYSFS
4328 static int count_inuse(struct page *page)
4329 {
4330 return page->inuse;
4331 }
4332
4333 static int count_total(struct page *page)
4334 {
4335 return page->objects;
4336 }
4337 #endif
4338
4339 #ifdef CONFIG_SLUB_DEBUG
4340 static int validate_slab(struct kmem_cache *s, struct page *page,
4341 unsigned long *map)
4342 {
4343 void *p;
4344 void *addr = page_address(page);
4345
4346 if (!check_slab(s, page) ||
4347 !on_freelist(s, page, NULL))
4348 return 0;
4349
4350 /* Now we know that a valid freelist exists */
4351 bitmap_zero(map, page->objects);
4352
4353 get_map(s, page, map);
4354 for_each_object(p, s, addr, page->objects) {
4355 if (test_bit(slab_index(p, s, addr), map))
4356 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4357 return 0;
4358 }
4359
4360 for_each_object(p, s, addr, page->objects)
4361 if (!test_bit(slab_index(p, s, addr), map))
4362 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4363 return 0;
4364 return 1;
4365 }
4366
4367 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4368 unsigned long *map)
4369 {
4370 slab_lock(page);
4371 validate_slab(s, page, map);
4372 slab_unlock(page);
4373 }
4374
4375 static int validate_slab_node(struct kmem_cache *s,
4376 struct kmem_cache_node *n, unsigned long *map)
4377 {
4378 unsigned long count = 0;
4379 struct page *page;
4380 unsigned long flags;
4381
4382 spin_lock_irqsave(&n->list_lock, flags);
4383
4384 list_for_each_entry(page, &n->partial, lru) {
4385 validate_slab_slab(s, page, map);
4386 count++;
4387 }
4388 if (count != n->nr_partial)
4389 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4390 s->name, count, n->nr_partial);
4391
4392 if (!(s->flags & SLAB_STORE_USER))
4393 goto out;
4394
4395 list_for_each_entry(page, &n->full, lru) {
4396 validate_slab_slab(s, page, map);
4397 count++;
4398 }
4399 if (count != atomic_long_read(&n->nr_slabs))
4400 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4401 s->name, count, atomic_long_read(&n->nr_slabs));
4402
4403 out:
4404 spin_unlock_irqrestore(&n->list_lock, flags);
4405 return count;
4406 }
4407
4408 static long validate_slab_cache(struct kmem_cache *s)
4409 {
4410 int node;
4411 unsigned long count = 0;
4412 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4413 sizeof(unsigned long), GFP_KERNEL);
4414 struct kmem_cache_node *n;
4415
4416 if (!map)
4417 return -ENOMEM;
4418
4419 flush_all(s);
4420 for_each_kmem_cache_node(s, node, n)
4421 count += validate_slab_node(s, n, map);
4422 kfree(map);
4423 return count;
4424 }
4425 /*
4426 * Generate lists of code addresses where slabcache objects are allocated
4427 * and freed.
4428 */
4429
4430 struct location {
4431 unsigned long count;
4432 unsigned long addr;
4433 long long sum_time;
4434 long min_time;
4435 long max_time;
4436 long min_pid;
4437 long max_pid;
4438 DECLARE_BITMAP(cpus, NR_CPUS);
4439 nodemask_t nodes;
4440 };
4441
4442 struct loc_track {
4443 unsigned long max;
4444 unsigned long count;
4445 struct location *loc;
4446 };
4447
4448 static void free_loc_track(struct loc_track *t)
4449 {
4450 if (t->max)
4451 free_pages((unsigned long)t->loc,
4452 get_order(sizeof(struct location) * t->max));
4453 }
4454
4455 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4456 {
4457 struct location *l;
4458 int order;
4459
4460 order = get_order(sizeof(struct location) * max);
4461
4462 l = (void *)__get_free_pages(flags, order);
4463 if (!l)
4464 return 0;
4465
4466 if (t->count) {
4467 memcpy(l, t->loc, sizeof(struct location) * t->count);
4468 free_loc_track(t);
4469 }
4470 t->max = max;
4471 t->loc = l;
4472 return 1;
4473 }
4474
4475 static int add_location(struct loc_track *t, struct kmem_cache *s,
4476 const struct track *track)
4477 {
4478 long start, end, pos;
4479 struct location *l;
4480 unsigned long caddr;
4481 unsigned long age = jiffies - track->when;
4482
4483 start = -1;
4484 end = t->count;
4485
4486 for ( ; ; ) {
4487 pos = start + (end - start + 1) / 2;
4488
4489 /*
4490 * There is nothing at "end". If we end up there
4491 * we need to add something to before end.
4492 */
4493 if (pos == end)
4494 break;
4495
4496 caddr = t->loc[pos].addr;
4497 if (track->addr == caddr) {
4498
4499 l = &t->loc[pos];
4500 l->count++;
4501 if (track->when) {
4502 l->sum_time += age;
4503 if (age < l->min_time)
4504 l->min_time = age;
4505 if (age > l->max_time)
4506 l->max_time = age;
4507
4508 if (track->pid < l->min_pid)
4509 l->min_pid = track->pid;
4510 if (track->pid > l->max_pid)
4511 l->max_pid = track->pid;
4512
4513 cpumask_set_cpu(track->cpu,
4514 to_cpumask(l->cpus));
4515 }
4516 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4517 return 1;
4518 }
4519
4520 if (track->addr < caddr)
4521 end = pos;
4522 else
4523 start = pos;
4524 }
4525
4526 /*
4527 * Not found. Insert new tracking element.
4528 */
4529 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4530 return 0;
4531
4532 l = t->loc + pos;
4533 if (pos < t->count)
4534 memmove(l + 1, l,
4535 (t->count - pos) * sizeof(struct location));
4536 t->count++;
4537 l->count = 1;
4538 l->addr = track->addr;
4539 l->sum_time = age;
4540 l->min_time = age;
4541 l->max_time = age;
4542 l->min_pid = track->pid;
4543 l->max_pid = track->pid;
4544 cpumask_clear(to_cpumask(l->cpus));
4545 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4546 nodes_clear(l->nodes);
4547 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4548 return 1;
4549 }
4550
4551 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4552 struct page *page, enum track_item alloc,
4553 unsigned long *map)
4554 {
4555 void *addr = page_address(page);
4556 void *p;
4557
4558 bitmap_zero(map, page->objects);
4559 get_map(s, page, map);
4560
4561 for_each_object(p, s, addr, page->objects)
4562 if (!test_bit(slab_index(p, s, addr), map))
4563 add_location(t, s, get_track(s, p, alloc));
4564 }
4565
4566 static int list_locations(struct kmem_cache *s, char *buf,
4567 enum track_item alloc)
4568 {
4569 int len = 0;
4570 unsigned long i;
4571 struct loc_track t = { 0, 0, NULL };
4572 int node;
4573 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4574 sizeof(unsigned long), GFP_KERNEL);
4575 struct kmem_cache_node *n;
4576
4577 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4578 GFP_KERNEL)) {
4579 kfree(map);
4580 return sprintf(buf, "Out of memory\n");
4581 }
4582 /* Push back cpu slabs */
4583 flush_all(s);
4584
4585 for_each_kmem_cache_node(s, node, n) {
4586 unsigned long flags;
4587 struct page *page;
4588
4589 if (!atomic_long_read(&n->nr_slabs))
4590 continue;
4591
4592 spin_lock_irqsave(&n->list_lock, flags);
4593 list_for_each_entry(page, &n->partial, lru)
4594 process_slab(&t, s, page, alloc, map);
4595 list_for_each_entry(page, &n->full, lru)
4596 process_slab(&t, s, page, alloc, map);
4597 spin_unlock_irqrestore(&n->list_lock, flags);
4598 }
4599
4600 for (i = 0; i < t.count; i++) {
4601 struct location *l = &t.loc[i];
4602
4603 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4604 break;
4605 len += sprintf(buf + len, "%7ld ", l->count);
4606
4607 if (l->addr)
4608 len += sprintf(buf + len, "%pS", (void *)l->addr);
4609 else
4610 len += sprintf(buf + len, "<not-available>");
4611
4612 if (l->sum_time != l->min_time) {
4613 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4614 l->min_time,
4615 (long)div_u64(l->sum_time, l->count),
4616 l->max_time);
4617 } else
4618 len += sprintf(buf + len, " age=%ld",
4619 l->min_time);
4620
4621 if (l->min_pid != l->max_pid)
4622 len += sprintf(buf + len, " pid=%ld-%ld",
4623 l->min_pid, l->max_pid);
4624 else
4625 len += sprintf(buf + len, " pid=%ld",
4626 l->min_pid);
4627
4628 if (num_online_cpus() > 1 &&
4629 !cpumask_empty(to_cpumask(l->cpus)) &&
4630 len < PAGE_SIZE - 60)
4631 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4632 " cpus=%*pbl",
4633 cpumask_pr_args(to_cpumask(l->cpus)));
4634
4635 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4636 len < PAGE_SIZE - 60)
4637 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4638 " nodes=%*pbl",
4639 nodemask_pr_args(&l->nodes));
4640
4641 len += sprintf(buf + len, "\n");
4642 }
4643
4644 free_loc_track(&t);
4645 kfree(map);
4646 if (!t.count)
4647 len += sprintf(buf, "No data\n");
4648 return len;
4649 }
4650 #endif
4651
4652 #ifdef SLUB_RESILIENCY_TEST
4653 static void __init resiliency_test(void)
4654 {
4655 u8 *p;
4656
4657 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4658
4659 pr_err("SLUB resiliency testing\n");
4660 pr_err("-----------------------\n");
4661 pr_err("A. Corruption after allocation\n");
4662
4663 p = kzalloc(16, GFP_KERNEL);
4664 p[16] = 0x12;
4665 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4666 p + 16);
4667
4668 validate_slab_cache(kmalloc_caches[4]);
4669
4670 /* Hmmm... The next two are dangerous */
4671 p = kzalloc(32, GFP_KERNEL);
4672 p[32 + sizeof(void *)] = 0x34;
4673 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4674 p);
4675 pr_err("If allocated object is overwritten then not detectable\n\n");
4676
4677 validate_slab_cache(kmalloc_caches[5]);
4678 p = kzalloc(64, GFP_KERNEL);
4679 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4680 *p = 0x56;
4681 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4682 p);
4683 pr_err("If allocated object is overwritten then not detectable\n\n");
4684 validate_slab_cache(kmalloc_caches[6]);
4685
4686 pr_err("\nB. Corruption after free\n");
4687 p = kzalloc(128, GFP_KERNEL);
4688 kfree(p);
4689 *p = 0x78;
4690 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4691 validate_slab_cache(kmalloc_caches[7]);
4692
4693 p = kzalloc(256, GFP_KERNEL);
4694 kfree(p);
4695 p[50] = 0x9a;
4696 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4697 validate_slab_cache(kmalloc_caches[8]);
4698
4699 p = kzalloc(512, GFP_KERNEL);
4700 kfree(p);
4701 p[512] = 0xab;
4702 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4703 validate_slab_cache(kmalloc_caches[9]);
4704 }
4705 #else
4706 #ifdef CONFIG_SYSFS
4707 static void resiliency_test(void) {};
4708 #endif
4709 #endif
4710
4711 #ifdef CONFIG_SYSFS
4712 enum slab_stat_type {
4713 SL_ALL, /* All slabs */
4714 SL_PARTIAL, /* Only partially allocated slabs */
4715 SL_CPU, /* Only slabs used for cpu caches */
4716 SL_OBJECTS, /* Determine allocated objects not slabs */
4717 SL_TOTAL /* Determine object capacity not slabs */
4718 };
4719
4720 #define SO_ALL (1 << SL_ALL)
4721 #define SO_PARTIAL (1 << SL_PARTIAL)
4722 #define SO_CPU (1 << SL_CPU)
4723 #define SO_OBJECTS (1 << SL_OBJECTS)
4724 #define SO_TOTAL (1 << SL_TOTAL)
4725
4726 #ifdef CONFIG_MEMCG
4727 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4728
4729 static int __init setup_slub_memcg_sysfs(char *str)
4730 {
4731 int v;
4732
4733 if (get_option(&str, &v) > 0)
4734 memcg_sysfs_enabled = v;
4735
4736 return 1;
4737 }
4738
4739 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4740 #endif
4741
4742 static ssize_t show_slab_objects(struct kmem_cache *s,
4743 char *buf, unsigned long flags)
4744 {
4745 unsigned long total = 0;
4746 int node;
4747 int x;
4748 unsigned long *nodes;
4749
4750 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4751 if (!nodes)
4752 return -ENOMEM;
4753
4754 if (flags & SO_CPU) {
4755 int cpu;
4756
4757 for_each_possible_cpu(cpu) {
4758 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4759 cpu);
4760 int node;
4761 struct page *page;
4762
4763 page = READ_ONCE(c->page);
4764 if (!page)
4765 continue;
4766
4767 node = page_to_nid(page);
4768 if (flags & SO_TOTAL)
4769 x = page->objects;
4770 else if (flags & SO_OBJECTS)
4771 x = page->inuse;
4772 else
4773 x = 1;
4774
4775 total += x;
4776 nodes[node] += x;
4777
4778 page = slub_percpu_partial_read_once(c);
4779 if (page) {
4780 node = page_to_nid(page);
4781 if (flags & SO_TOTAL)
4782 WARN_ON_ONCE(1);
4783 else if (flags & SO_OBJECTS)
4784 WARN_ON_ONCE(1);
4785 else
4786 x = page->pages;
4787 total += x;
4788 nodes[node] += x;
4789 }
4790 }
4791 }
4792
4793 get_online_mems();
4794 #ifdef CONFIG_SLUB_DEBUG
4795 if (flags & SO_ALL) {
4796 struct kmem_cache_node *n;
4797
4798 for_each_kmem_cache_node(s, node, n) {
4799
4800 if (flags & SO_TOTAL)
4801 x = atomic_long_read(&n->total_objects);
4802 else if (flags & SO_OBJECTS)
4803 x = atomic_long_read(&n->total_objects) -
4804 count_partial(n, count_free);
4805 else
4806 x = atomic_long_read(&n->nr_slabs);
4807 total += x;
4808 nodes[node] += x;
4809 }
4810
4811 } else
4812 #endif
4813 if (flags & SO_PARTIAL) {
4814 struct kmem_cache_node *n;
4815
4816 for_each_kmem_cache_node(s, node, n) {
4817 if (flags & SO_TOTAL)
4818 x = count_partial(n, count_total);
4819 else if (flags & SO_OBJECTS)
4820 x = count_partial(n, count_inuse);
4821 else
4822 x = n->nr_partial;
4823 total += x;
4824 nodes[node] += x;
4825 }
4826 }
4827 x = sprintf(buf, "%lu", total);
4828 #ifdef CONFIG_NUMA
4829 for (node = 0; node < nr_node_ids; node++)
4830 if (nodes[node])
4831 x += sprintf(buf + x, " N%d=%lu",
4832 node, nodes[node]);
4833 #endif
4834 put_online_mems();
4835 kfree(nodes);
4836 return x + sprintf(buf + x, "\n");
4837 }
4838
4839 #ifdef CONFIG_SLUB_DEBUG
4840 static int any_slab_objects(struct kmem_cache *s)
4841 {
4842 int node;
4843 struct kmem_cache_node *n;
4844
4845 for_each_kmem_cache_node(s, node, n)
4846 if (atomic_long_read(&n->total_objects))
4847 return 1;
4848
4849 return 0;
4850 }
4851 #endif
4852
4853 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4854 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4855
4856 struct slab_attribute {
4857 struct attribute attr;
4858 ssize_t (*show)(struct kmem_cache *s, char *buf);
4859 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4860 };
4861
4862 #define SLAB_ATTR_RO(_name) \
4863 static struct slab_attribute _name##_attr = \
4864 __ATTR(_name, 0400, _name##_show, NULL)
4865
4866 #define SLAB_ATTR(_name) \
4867 static struct slab_attribute _name##_attr = \
4868 __ATTR(_name, 0600, _name##_show, _name##_store)
4869
4870 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4871 {
4872 return sprintf(buf, "%d\n", s->size);
4873 }
4874 SLAB_ATTR_RO(slab_size);
4875
4876 static ssize_t align_show(struct kmem_cache *s, char *buf)
4877 {
4878 return sprintf(buf, "%d\n", s->align);
4879 }
4880 SLAB_ATTR_RO(align);
4881
4882 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4883 {
4884 return sprintf(buf, "%d\n", s->object_size);
4885 }
4886 SLAB_ATTR_RO(object_size);
4887
4888 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4889 {
4890 return sprintf(buf, "%d\n", oo_objects(s->oo));
4891 }
4892 SLAB_ATTR_RO(objs_per_slab);
4893
4894 static ssize_t order_store(struct kmem_cache *s,
4895 const char *buf, size_t length)
4896 {
4897 unsigned long order;
4898 int err;
4899
4900 err = kstrtoul(buf, 10, &order);
4901 if (err)
4902 return err;
4903
4904 if (order > slub_max_order || order < slub_min_order)
4905 return -EINVAL;
4906
4907 calculate_sizes(s, order);
4908 return length;
4909 }
4910
4911 static ssize_t order_show(struct kmem_cache *s, char *buf)
4912 {
4913 return sprintf(buf, "%d\n", oo_order(s->oo));
4914 }
4915 SLAB_ATTR(order);
4916
4917 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4918 {
4919 return sprintf(buf, "%lu\n", s->min_partial);
4920 }
4921
4922 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4923 size_t length)
4924 {
4925 unsigned long min;
4926 int err;
4927
4928 err = kstrtoul(buf, 10, &min);
4929 if (err)
4930 return err;
4931
4932 set_min_partial(s, min);
4933 return length;
4934 }
4935 SLAB_ATTR(min_partial);
4936
4937 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4938 {
4939 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4940 }
4941
4942 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4943 size_t length)
4944 {
4945 unsigned int objects;
4946 int err;
4947
4948 err = kstrtouint(buf, 10, &objects);
4949 if (err)
4950 return err;
4951 if (objects && !kmem_cache_has_cpu_partial(s))
4952 return -EINVAL;
4953
4954 slub_set_cpu_partial(s, objects);
4955 flush_all(s);
4956 return length;
4957 }
4958 SLAB_ATTR(cpu_partial);
4959
4960 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4961 {
4962 if (!s->ctor)
4963 return 0;
4964 return sprintf(buf, "%pS\n", s->ctor);
4965 }
4966 SLAB_ATTR_RO(ctor);
4967
4968 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4969 {
4970 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4971 }
4972 SLAB_ATTR_RO(aliases);
4973
4974 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4975 {
4976 return show_slab_objects(s, buf, SO_PARTIAL);
4977 }
4978 SLAB_ATTR_RO(partial);
4979
4980 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4981 {
4982 return show_slab_objects(s, buf, SO_CPU);
4983 }
4984 SLAB_ATTR_RO(cpu_slabs);
4985
4986 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4987 {
4988 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4989 }
4990 SLAB_ATTR_RO(objects);
4991
4992 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4993 {
4994 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4995 }
4996 SLAB_ATTR_RO(objects_partial);
4997
4998 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4999 {
5000 int objects = 0;
5001 int pages = 0;
5002 int cpu;
5003 int len;
5004
5005 for_each_online_cpu(cpu) {
5006 struct page *page;
5007
5008 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5009
5010 if (page) {
5011 pages += page->pages;
5012 objects += page->pobjects;
5013 }
5014 }
5015
5016 len = sprintf(buf, "%d(%d)", objects, pages);
5017
5018 #ifdef CONFIG_SMP
5019 for_each_online_cpu(cpu) {
5020 struct page *page;
5021
5022 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5023
5024 if (page && len < PAGE_SIZE - 20)
5025 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5026 page->pobjects, page->pages);
5027 }
5028 #endif
5029 return len + sprintf(buf + len, "\n");
5030 }
5031 SLAB_ATTR_RO(slabs_cpu_partial);
5032
5033 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5034 {
5035 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5036 }
5037
5038 static ssize_t reclaim_account_store(struct kmem_cache *s,
5039 const char *buf, size_t length)
5040 {
5041 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5042 if (buf[0] == '1')
5043 s->flags |= SLAB_RECLAIM_ACCOUNT;
5044 return length;
5045 }
5046 SLAB_ATTR(reclaim_account);
5047
5048 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5049 {
5050 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5051 }
5052 SLAB_ATTR_RO(hwcache_align);
5053
5054 #ifdef CONFIG_ZONE_DMA
5055 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5056 {
5057 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5058 }
5059 SLAB_ATTR_RO(cache_dma);
5060 #endif
5061
5062 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5063 {
5064 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5065 }
5066 SLAB_ATTR_RO(destroy_by_rcu);
5067
5068 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5069 {
5070 return sprintf(buf, "%d\n", s->reserved);
5071 }
5072 SLAB_ATTR_RO(reserved);
5073
5074 #ifdef CONFIG_SLUB_DEBUG
5075 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5076 {
5077 return show_slab_objects(s, buf, SO_ALL);
5078 }
5079 SLAB_ATTR_RO(slabs);
5080
5081 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5082 {
5083 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5084 }
5085 SLAB_ATTR_RO(total_objects);
5086
5087 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5088 {
5089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5090 }
5091
5092 static ssize_t sanity_checks_store(struct kmem_cache *s,
5093 const char *buf, size_t length)
5094 {
5095 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5096 if (buf[0] == '1') {
5097 s->flags &= ~__CMPXCHG_DOUBLE;
5098 s->flags |= SLAB_CONSISTENCY_CHECKS;
5099 }
5100 return length;
5101 }
5102 SLAB_ATTR(sanity_checks);
5103
5104 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5105 {
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5107 }
5108
5109 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5110 size_t length)
5111 {
5112 /*
5113 * Tracing a merged cache is going to give confusing results
5114 * as well as cause other issues like converting a mergeable
5115 * cache into an umergeable one.
5116 */
5117 if (s->refcount > 1)
5118 return -EINVAL;
5119
5120 s->flags &= ~SLAB_TRACE;
5121 if (buf[0] == '1') {
5122 s->flags &= ~__CMPXCHG_DOUBLE;
5123 s->flags |= SLAB_TRACE;
5124 }
5125 return length;
5126 }
5127 SLAB_ATTR(trace);
5128
5129 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5130 {
5131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5132 }
5133
5134 static ssize_t red_zone_store(struct kmem_cache *s,
5135 const char *buf, size_t length)
5136 {
5137 if (any_slab_objects(s))
5138 return -EBUSY;
5139
5140 s->flags &= ~SLAB_RED_ZONE;
5141 if (buf[0] == '1') {
5142 s->flags |= SLAB_RED_ZONE;
5143 }
5144 calculate_sizes(s, -1);
5145 return length;
5146 }
5147 SLAB_ATTR(red_zone);
5148
5149 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5150 {
5151 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5152 }
5153
5154 static ssize_t poison_store(struct kmem_cache *s,
5155 const char *buf, size_t length)
5156 {
5157 if (any_slab_objects(s))
5158 return -EBUSY;
5159
5160 s->flags &= ~SLAB_POISON;
5161 if (buf[0] == '1') {
5162 s->flags |= SLAB_POISON;
5163 }
5164 calculate_sizes(s, -1);
5165 return length;
5166 }
5167 SLAB_ATTR(poison);
5168
5169 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5170 {
5171 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5172 }
5173
5174 static ssize_t store_user_store(struct kmem_cache *s,
5175 const char *buf, size_t length)
5176 {
5177 if (any_slab_objects(s))
5178 return -EBUSY;
5179
5180 s->flags &= ~SLAB_STORE_USER;
5181 if (buf[0] == '1') {
5182 s->flags &= ~__CMPXCHG_DOUBLE;
5183 s->flags |= SLAB_STORE_USER;
5184 }
5185 calculate_sizes(s, -1);
5186 return length;
5187 }
5188 SLAB_ATTR(store_user);
5189
5190 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5191 {
5192 return 0;
5193 }
5194
5195 static ssize_t validate_store(struct kmem_cache *s,
5196 const char *buf, size_t length)
5197 {
5198 int ret = -EINVAL;
5199
5200 if (buf[0] == '1') {
5201 ret = validate_slab_cache(s);
5202 if (ret >= 0)
5203 ret = length;
5204 }
5205 return ret;
5206 }
5207 SLAB_ATTR(validate);
5208
5209 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5210 {
5211 if (!(s->flags & SLAB_STORE_USER))
5212 return -ENOSYS;
5213 return list_locations(s, buf, TRACK_ALLOC);
5214 }
5215 SLAB_ATTR_RO(alloc_calls);
5216
5217 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5218 {
5219 if (!(s->flags & SLAB_STORE_USER))
5220 return -ENOSYS;
5221 return list_locations(s, buf, TRACK_FREE);
5222 }
5223 SLAB_ATTR_RO(free_calls);
5224 #endif /* CONFIG_SLUB_DEBUG */
5225
5226 #ifdef CONFIG_FAILSLAB
5227 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5228 {
5229 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5230 }
5231
5232 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5233 size_t length)
5234 {
5235 if (s->refcount > 1)
5236 return -EINVAL;
5237
5238 s->flags &= ~SLAB_FAILSLAB;
5239 if (buf[0] == '1')
5240 s->flags |= SLAB_FAILSLAB;
5241 return length;
5242 }
5243 SLAB_ATTR(failslab);
5244 #endif
5245
5246 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5247 {
5248 return 0;
5249 }
5250
5251 static ssize_t shrink_store(struct kmem_cache *s,
5252 const char *buf, size_t length)
5253 {
5254 if (buf[0] == '1')
5255 kmem_cache_shrink(s);
5256 else
5257 return -EINVAL;
5258 return length;
5259 }
5260 SLAB_ATTR(shrink);
5261
5262 #ifdef CONFIG_NUMA
5263 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5264 {
5265 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5266 }
5267
5268 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5269 const char *buf, size_t length)
5270 {
5271 unsigned long ratio;
5272 int err;
5273
5274 err = kstrtoul(buf, 10, &ratio);
5275 if (err)
5276 return err;
5277
5278 if (ratio <= 100)
5279 s->remote_node_defrag_ratio = ratio * 10;
5280
5281 return length;
5282 }
5283 SLAB_ATTR(remote_node_defrag_ratio);
5284 #endif
5285
5286 #ifdef CONFIG_SLUB_STATS
5287 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5288 {
5289 unsigned long sum = 0;
5290 int cpu;
5291 int len;
5292 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5293
5294 if (!data)
5295 return -ENOMEM;
5296
5297 for_each_online_cpu(cpu) {
5298 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5299
5300 data[cpu] = x;
5301 sum += x;
5302 }
5303
5304 len = sprintf(buf, "%lu", sum);
5305
5306 #ifdef CONFIG_SMP
5307 for_each_online_cpu(cpu) {
5308 if (data[cpu] && len < PAGE_SIZE - 20)
5309 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5310 }
5311 #endif
5312 kfree(data);
5313 return len + sprintf(buf + len, "\n");
5314 }
5315
5316 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5317 {
5318 int cpu;
5319
5320 for_each_online_cpu(cpu)
5321 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5322 }
5323
5324 #define STAT_ATTR(si, text) \
5325 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5326 { \
5327 return show_stat(s, buf, si); \
5328 } \
5329 static ssize_t text##_store(struct kmem_cache *s, \
5330 const char *buf, size_t length) \
5331 { \
5332 if (buf[0] != '0') \
5333 return -EINVAL; \
5334 clear_stat(s, si); \
5335 return length; \
5336 } \
5337 SLAB_ATTR(text); \
5338
5339 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5340 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5341 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5342 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5343 STAT_ATTR(FREE_FROZEN, free_frozen);
5344 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5345 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5346 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5347 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5348 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5349 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5350 STAT_ATTR(FREE_SLAB, free_slab);
5351 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5352 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5353 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5354 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5355 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5356 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5357 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5358 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5359 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5360 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5361 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5362 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5363 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5364 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5365 #endif
5366
5367 static struct attribute *slab_attrs[] = {
5368 &slab_size_attr.attr,
5369 &object_size_attr.attr,
5370 &objs_per_slab_attr.attr,
5371 &order_attr.attr,
5372 &min_partial_attr.attr,
5373 &cpu_partial_attr.attr,
5374 &objects_attr.attr,
5375 &objects_partial_attr.attr,
5376 &partial_attr.attr,
5377 &cpu_slabs_attr.attr,
5378 &ctor_attr.attr,
5379 &aliases_attr.attr,
5380 &align_attr.attr,
5381 &hwcache_align_attr.attr,
5382 &reclaim_account_attr.attr,
5383 &destroy_by_rcu_attr.attr,
5384 &shrink_attr.attr,
5385 &reserved_attr.attr,
5386 &slabs_cpu_partial_attr.attr,
5387 #ifdef CONFIG_SLUB_DEBUG
5388 &total_objects_attr.attr,
5389 &slabs_attr.attr,
5390 &sanity_checks_attr.attr,
5391 &trace_attr.attr,
5392 &red_zone_attr.attr,
5393 &poison_attr.attr,
5394 &store_user_attr.attr,
5395 &validate_attr.attr,
5396 &alloc_calls_attr.attr,
5397 &free_calls_attr.attr,
5398 #endif
5399 #ifdef CONFIG_ZONE_DMA
5400 &cache_dma_attr.attr,
5401 #endif
5402 #ifdef CONFIG_NUMA
5403 &remote_node_defrag_ratio_attr.attr,
5404 #endif
5405 #ifdef CONFIG_SLUB_STATS
5406 &alloc_fastpath_attr.attr,
5407 &alloc_slowpath_attr.attr,
5408 &free_fastpath_attr.attr,
5409 &free_slowpath_attr.attr,
5410 &free_frozen_attr.attr,
5411 &free_add_partial_attr.attr,
5412 &free_remove_partial_attr.attr,
5413 &alloc_from_partial_attr.attr,
5414 &alloc_slab_attr.attr,
5415 &alloc_refill_attr.attr,
5416 &alloc_node_mismatch_attr.attr,
5417 &free_slab_attr.attr,
5418 &cpuslab_flush_attr.attr,
5419 &deactivate_full_attr.attr,
5420 &deactivate_empty_attr.attr,
5421 &deactivate_to_head_attr.attr,
5422 &deactivate_to_tail_attr.attr,
5423 &deactivate_remote_frees_attr.attr,
5424 &deactivate_bypass_attr.attr,
5425 &order_fallback_attr.attr,
5426 &cmpxchg_double_fail_attr.attr,
5427 &cmpxchg_double_cpu_fail_attr.attr,
5428 &cpu_partial_alloc_attr.attr,
5429 &cpu_partial_free_attr.attr,
5430 &cpu_partial_node_attr.attr,
5431 &cpu_partial_drain_attr.attr,
5432 #endif
5433 #ifdef CONFIG_FAILSLAB
5434 &failslab_attr.attr,
5435 #endif
5436
5437 NULL
5438 };
5439
5440 static const struct attribute_group slab_attr_group = {
5441 .attrs = slab_attrs,
5442 };
5443
5444 static ssize_t slab_attr_show(struct kobject *kobj,
5445 struct attribute *attr,
5446 char *buf)
5447 {
5448 struct slab_attribute *attribute;
5449 struct kmem_cache *s;
5450 int err;
5451
5452 attribute = to_slab_attr(attr);
5453 s = to_slab(kobj);
5454
5455 if (!attribute->show)
5456 return -EIO;
5457
5458 err = attribute->show(s, buf);
5459
5460 return err;
5461 }
5462
5463 static ssize_t slab_attr_store(struct kobject *kobj,
5464 struct attribute *attr,
5465 const char *buf, size_t len)
5466 {
5467 struct slab_attribute *attribute;
5468 struct kmem_cache *s;
5469 int err;
5470
5471 attribute = to_slab_attr(attr);
5472 s = to_slab(kobj);
5473
5474 if (!attribute->store)
5475 return -EIO;
5476
5477 err = attribute->store(s, buf, len);
5478 #ifdef CONFIG_MEMCG
5479 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5480 struct kmem_cache *c;
5481
5482 mutex_lock(&slab_mutex);
5483 if (s->max_attr_size < len)
5484 s->max_attr_size = len;
5485
5486 /*
5487 * This is a best effort propagation, so this function's return
5488 * value will be determined by the parent cache only. This is
5489 * basically because not all attributes will have a well
5490 * defined semantics for rollbacks - most of the actions will
5491 * have permanent effects.
5492 *
5493 * Returning the error value of any of the children that fail
5494 * is not 100 % defined, in the sense that users seeing the
5495 * error code won't be able to know anything about the state of
5496 * the cache.
5497 *
5498 * Only returning the error code for the parent cache at least
5499 * has well defined semantics. The cache being written to
5500 * directly either failed or succeeded, in which case we loop
5501 * through the descendants with best-effort propagation.
5502 */
5503 for_each_memcg_cache(c, s)
5504 attribute->store(c, buf, len);
5505 mutex_unlock(&slab_mutex);
5506 }
5507 #endif
5508 return err;
5509 }
5510
5511 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5512 {
5513 #ifdef CONFIG_MEMCG
5514 int i;
5515 char *buffer = NULL;
5516 struct kmem_cache *root_cache;
5517
5518 if (is_root_cache(s))
5519 return;
5520
5521 root_cache = s->memcg_params.root_cache;
5522
5523 /*
5524 * This mean this cache had no attribute written. Therefore, no point
5525 * in copying default values around
5526 */
5527 if (!root_cache->max_attr_size)
5528 return;
5529
5530 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5531 char mbuf[64];
5532 char *buf;
5533 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5534 ssize_t len;
5535
5536 if (!attr || !attr->store || !attr->show)
5537 continue;
5538
5539 /*
5540 * It is really bad that we have to allocate here, so we will
5541 * do it only as a fallback. If we actually allocate, though,
5542 * we can just use the allocated buffer until the end.
5543 *
5544 * Most of the slub attributes will tend to be very small in
5545 * size, but sysfs allows buffers up to a page, so they can
5546 * theoretically happen.
5547 */
5548 if (buffer)
5549 buf = buffer;
5550 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5551 buf = mbuf;
5552 else {
5553 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5554 if (WARN_ON(!buffer))
5555 continue;
5556 buf = buffer;
5557 }
5558
5559 len = attr->show(root_cache, buf);
5560 if (len > 0)
5561 attr->store(s, buf, len);
5562 }
5563
5564 if (buffer)
5565 free_page((unsigned long)buffer);
5566 #endif
5567 }
5568
5569 static void kmem_cache_release(struct kobject *k)
5570 {
5571 slab_kmem_cache_release(to_slab(k));
5572 }
5573
5574 static const struct sysfs_ops slab_sysfs_ops = {
5575 .show = slab_attr_show,
5576 .store = slab_attr_store,
5577 };
5578
5579 static struct kobj_type slab_ktype = {
5580 .sysfs_ops = &slab_sysfs_ops,
5581 .release = kmem_cache_release,
5582 };
5583
5584 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5585 {
5586 struct kobj_type *ktype = get_ktype(kobj);
5587
5588 if (ktype == &slab_ktype)
5589 return 1;
5590 return 0;
5591 }
5592
5593 static const struct kset_uevent_ops slab_uevent_ops = {
5594 .filter = uevent_filter,
5595 };
5596
5597 static struct kset *slab_kset;
5598
5599 static inline struct kset *cache_kset(struct kmem_cache *s)
5600 {
5601 #ifdef CONFIG_MEMCG
5602 if (!is_root_cache(s))
5603 return s->memcg_params.root_cache->memcg_kset;
5604 #endif
5605 return slab_kset;
5606 }
5607
5608 #define ID_STR_LENGTH 64
5609
5610 /* Create a unique string id for a slab cache:
5611 *
5612 * Format :[flags-]size
5613 */
5614 static char *create_unique_id(struct kmem_cache *s)
5615 {
5616 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5617 char *p = name;
5618
5619 BUG_ON(!name);
5620
5621 *p++ = ':';
5622 /*
5623 * First flags affecting slabcache operations. We will only
5624 * get here for aliasable slabs so we do not need to support
5625 * too many flags. The flags here must cover all flags that
5626 * are matched during merging to guarantee that the id is
5627 * unique.
5628 */
5629 if (s->flags & SLAB_CACHE_DMA)
5630 *p++ = 'd';
5631 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5632 *p++ = 'a';
5633 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5634 *p++ = 'F';
5635 if (s->flags & SLAB_ACCOUNT)
5636 *p++ = 'A';
5637 if (p != name + 1)
5638 *p++ = '-';
5639 p += sprintf(p, "%07d", s->size);
5640
5641 BUG_ON(p > name + ID_STR_LENGTH - 1);
5642 return name;
5643 }
5644
5645 static void sysfs_slab_remove_workfn(struct work_struct *work)
5646 {
5647 struct kmem_cache *s =
5648 container_of(work, struct kmem_cache, kobj_remove_work);
5649
5650 if (!s->kobj.state_in_sysfs)
5651 /*
5652 * For a memcg cache, this may be called during
5653 * deactivation and again on shutdown. Remove only once.
5654 * A cache is never shut down before deactivation is
5655 * complete, so no need to worry about synchronization.
5656 */
5657 goto out;
5658
5659 #ifdef CONFIG_MEMCG
5660 kset_unregister(s->memcg_kset);
5661 #endif
5662 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5663 out:
5664 kobject_put(&s->kobj);
5665 }
5666
5667 static int sysfs_slab_add(struct kmem_cache *s)
5668 {
5669 int err;
5670 const char *name;
5671 struct kset *kset = cache_kset(s);
5672 int unmergeable = slab_unmergeable(s);
5673
5674 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5675
5676 if (!kset) {
5677 kobject_init(&s->kobj, &slab_ktype);
5678 return 0;
5679 }
5680
5681 if (!unmergeable && disable_higher_order_debug &&
5682 (slub_debug & DEBUG_METADATA_FLAGS))
5683 unmergeable = 1;
5684
5685 if (unmergeable) {
5686 /*
5687 * Slabcache can never be merged so we can use the name proper.
5688 * This is typically the case for debug situations. In that
5689 * case we can catch duplicate names easily.
5690 */
5691 sysfs_remove_link(&slab_kset->kobj, s->name);
5692 name = s->name;
5693 } else {
5694 /*
5695 * Create a unique name for the slab as a target
5696 * for the symlinks.
5697 */
5698 name = create_unique_id(s);
5699 }
5700
5701 s->kobj.kset = kset;
5702 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5703 if (err)
5704 goto out;
5705
5706 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5707 if (err)
5708 goto out_del_kobj;
5709
5710 #ifdef CONFIG_MEMCG
5711 if (is_root_cache(s) && memcg_sysfs_enabled) {
5712 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5713 if (!s->memcg_kset) {
5714 err = -ENOMEM;
5715 goto out_del_kobj;
5716 }
5717 }
5718 #endif
5719
5720 kobject_uevent(&s->kobj, KOBJ_ADD);
5721 if (!unmergeable) {
5722 /* Setup first alias */
5723 sysfs_slab_alias(s, s->name);
5724 }
5725 out:
5726 if (!unmergeable)
5727 kfree(name);
5728 return err;
5729 out_del_kobj:
5730 kobject_del(&s->kobj);
5731 goto out;
5732 }
5733
5734 static void sysfs_slab_remove(struct kmem_cache *s)
5735 {
5736 if (slab_state < FULL)
5737 /*
5738 * Sysfs has not been setup yet so no need to remove the
5739 * cache from sysfs.
5740 */
5741 return;
5742
5743 kobject_get(&s->kobj);
5744 schedule_work(&s->kobj_remove_work);
5745 }
5746
5747 void sysfs_slab_unlink(struct kmem_cache *s)
5748 {
5749 if (slab_state >= FULL)
5750 kobject_del(&s->kobj);
5751 }
5752
5753 void sysfs_slab_release(struct kmem_cache *s)
5754 {
5755 if (slab_state >= FULL)
5756 kobject_put(&s->kobj);
5757 }
5758
5759 /*
5760 * Need to buffer aliases during bootup until sysfs becomes
5761 * available lest we lose that information.
5762 */
5763 struct saved_alias {
5764 struct kmem_cache *s;
5765 const char *name;
5766 struct saved_alias *next;
5767 };
5768
5769 static struct saved_alias *alias_list;
5770
5771 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5772 {
5773 struct saved_alias *al;
5774
5775 if (slab_state == FULL) {
5776 /*
5777 * If we have a leftover link then remove it.
5778 */
5779 sysfs_remove_link(&slab_kset->kobj, name);
5780 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5781 }
5782
5783 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5784 if (!al)
5785 return -ENOMEM;
5786
5787 al->s = s;
5788 al->name = name;
5789 al->next = alias_list;
5790 alias_list = al;
5791 return 0;
5792 }
5793
5794 static int __init slab_sysfs_init(void)
5795 {
5796 struct kmem_cache *s;
5797 int err;
5798
5799 mutex_lock(&slab_mutex);
5800
5801 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5802 if (!slab_kset) {
5803 mutex_unlock(&slab_mutex);
5804 pr_err("Cannot register slab subsystem.\n");
5805 return -ENOSYS;
5806 }
5807
5808 slab_state = FULL;
5809
5810 list_for_each_entry(s, &slab_caches, list) {
5811 err = sysfs_slab_add(s);
5812 if (err)
5813 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5814 s->name);
5815 }
5816
5817 while (alias_list) {
5818 struct saved_alias *al = alias_list;
5819
5820 alias_list = alias_list->next;
5821 err = sysfs_slab_alias(al->s, al->name);
5822 if (err)
5823 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5824 al->name);
5825 kfree(al);
5826 }
5827
5828 mutex_unlock(&slab_mutex);
5829 resiliency_test();
5830 return 0;
5831 }
5832
5833 __initcall(slab_sysfs_init);
5834 #endif /* CONFIG_SYSFS */
5835
5836 /*
5837 * The /proc/slabinfo ABI
5838 */
5839 #ifdef CONFIG_SLABINFO
5840 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5841 {
5842 unsigned long nr_slabs = 0;
5843 unsigned long nr_objs = 0;
5844 unsigned long nr_free = 0;
5845 int node;
5846 struct kmem_cache_node *n;
5847
5848 for_each_kmem_cache_node(s, node, n) {
5849 nr_slabs += node_nr_slabs(n);
5850 nr_objs += node_nr_objs(n);
5851 nr_free += count_partial(n, count_free);
5852 }
5853
5854 sinfo->active_objs = nr_objs - nr_free;
5855 sinfo->num_objs = nr_objs;
5856 sinfo->active_slabs = nr_slabs;
5857 sinfo->num_slabs = nr_slabs;
5858 sinfo->objects_per_slab = oo_objects(s->oo);
5859 sinfo->cache_order = oo_order(s->oo);
5860 }
5861
5862 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5863 {
5864 }
5865
5866 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5867 size_t count, loff_t *ppos)
5868 {
5869 return -EIO;
5870 }
5871 #endif /* CONFIG_SLABINFO */