mm: mm_event: remove get/put_online_cpus call
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110 }
111
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122 }
123
124 /*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 return 0;
171 }
172 #endif
173
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176 /*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
183 {
184 struct siginfo si;
185 int ret;
186
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194 #endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
210 if (ret < 0)
211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
214 }
215
216 /*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
220 void shake_page(struct page *p, int access)
221 {
222 if (PageHuge(p))
223 return;
224
225 if (!PageSlab(p)) {
226 lru_add_drain_all();
227 if (PageLRU(p))
228 return;
229 drain_all_pages(page_zone(p));
230 if (PageLRU(p) || is_free_buddy_page(p))
231 return;
232 }
233
234 /*
235 * Only call shrink_node_slabs here (which would also shrink
236 * other caches) if access is not potentially fatal.
237 */
238 if (access)
239 drop_slab_node(page_to_nid(p));
240 }
241 EXPORT_SYMBOL_GPL(shake_page);
242
243 /*
244 * Kill all processes that have a poisoned page mapped and then isolate
245 * the page.
246 *
247 * General strategy:
248 * Find all processes having the page mapped and kill them.
249 * But we keep a page reference around so that the page is not
250 * actually freed yet.
251 * Then stash the page away
252 *
253 * There's no convenient way to get back to mapped processes
254 * from the VMAs. So do a brute-force search over all
255 * running processes.
256 *
257 * Remember that machine checks are not common (or rather
258 * if they are common you have other problems), so this shouldn't
259 * be a performance issue.
260 *
261 * Also there are some races possible while we get from the
262 * error detection to actually handle it.
263 */
264
265 struct to_kill {
266 struct list_head nd;
267 struct task_struct *tsk;
268 unsigned long addr;
269 char addr_valid;
270 };
271
272 /*
273 * Failure handling: if we can't find or can't kill a process there's
274 * not much we can do. We just print a message and ignore otherwise.
275 */
276
277 /*
278 * Schedule a process for later kill.
279 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
280 * TBD would GFP_NOIO be enough?
281 */
282 static void add_to_kill(struct task_struct *tsk, struct page *p,
283 struct vm_area_struct *vma,
284 struct list_head *to_kill,
285 struct to_kill **tkc)
286 {
287 struct to_kill *tk;
288
289 if (*tkc) {
290 tk = *tkc;
291 *tkc = NULL;
292 } else {
293 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
294 if (!tk) {
295 pr_err("Memory failure: Out of memory while machine check handling\n");
296 return;
297 }
298 }
299 tk->addr = page_address_in_vma(p, vma);
300 tk->addr_valid = 1;
301
302 /*
303 * In theory we don't have to kill when the page was
304 * munmaped. But it could be also a mremap. Since that's
305 * likely very rare kill anyways just out of paranoia, but use
306 * a SIGKILL because the error is not contained anymore.
307 */
308 if (tk->addr == -EFAULT) {
309 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
310 page_to_pfn(p), tsk->comm);
311 tk->addr_valid = 0;
312 }
313 get_task_struct(tsk);
314 tk->tsk = tsk;
315 list_add_tail(&tk->nd, to_kill);
316 }
317
318 /*
319 * Kill the processes that have been collected earlier.
320 *
321 * Only do anything when DOIT is set, otherwise just free the list
322 * (this is used for clean pages which do not need killing)
323 * Also when FAIL is set do a force kill because something went
324 * wrong earlier.
325 */
326 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
327 bool fail, struct page *page, unsigned long pfn,
328 int flags)
329 {
330 struct to_kill *tk, *next;
331
332 list_for_each_entry_safe (tk, next, to_kill, nd) {
333 if (forcekill) {
334 /*
335 * In case something went wrong with munmapping
336 * make sure the process doesn't catch the
337 * signal and then access the memory. Just kill it.
338 */
339 if (fail || tk->addr_valid == 0) {
340 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 pfn, tk->tsk->comm, tk->tsk->pid);
342 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
343 tk->tsk, PIDTYPE_PID);
344 }
345
346 /*
347 * In theory the process could have mapped
348 * something else on the address in-between. We could
349 * check for that, but we need to tell the
350 * process anyways.
351 */
352 else if (kill_proc(tk->tsk, tk->addr, trapno,
353 pfn, page, flags) < 0)
354 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 }
357 put_task_struct(tk->tsk);
358 kfree(tk);
359 }
360 }
361
362 /*
363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364 * on behalf of the thread group. Return task_struct of the (first found)
365 * dedicated thread if found, and return NULL otherwise.
366 *
367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368 * have to call rcu_read_lock/unlock() in this function.
369 */
370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371 {
372 struct task_struct *t;
373
374 for_each_thread(tsk, t)
375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 return t;
377 return NULL;
378 }
379
380 /*
381 * Determine whether a given process is "early kill" process which expects
382 * to be signaled when some page under the process is hwpoisoned.
383 * Return task_struct of the dedicated thread (main thread unless explicitly
384 * specified) if the process is "early kill," and otherwise returns NULL.
385 */
386 static struct task_struct *task_early_kill(struct task_struct *tsk,
387 int force_early)
388 {
389 struct task_struct *t;
390 if (!tsk->mm)
391 return NULL;
392 if (force_early)
393 return tsk;
394 t = find_early_kill_thread(tsk);
395 if (t)
396 return t;
397 if (sysctl_memory_failure_early_kill)
398 return tsk;
399 return NULL;
400 }
401
402 /*
403 * Collect processes when the error hit an anonymous page.
404 */
405 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406 struct to_kill **tkc, int force_early)
407 {
408 struct vm_area_struct *vma;
409 struct task_struct *tsk;
410 struct anon_vma *av;
411 pgoff_t pgoff;
412
413 av = page_lock_anon_vma_read(page);
414 if (av == NULL) /* Not actually mapped anymore */
415 return;
416
417 pgoff = page_to_pgoff(page);
418 read_lock(&tasklist_lock);
419 for_each_process (tsk) {
420 struct anon_vma_chain *vmac;
421 struct task_struct *t = task_early_kill(tsk, force_early);
422
423 if (!t)
424 continue;
425 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 pgoff, pgoff) {
427 vma = vmac->vma;
428 if (!page_mapped_in_vma(page, vma))
429 continue;
430 if (vma->vm_mm == t->mm)
431 add_to_kill(t, page, vma, to_kill, tkc);
432 }
433 }
434 read_unlock(&tasklist_lock);
435 page_unlock_anon_vma_read(av);
436 }
437
438 /*
439 * Collect processes when the error hit a file mapped page.
440 */
441 static void collect_procs_file(struct page *page, struct list_head *to_kill,
442 struct to_kill **tkc, int force_early)
443 {
444 struct vm_area_struct *vma;
445 struct task_struct *tsk;
446 struct address_space *mapping = page->mapping;
447
448 i_mmap_lock_read(mapping);
449 read_lock(&tasklist_lock);
450 for_each_process(tsk) {
451 pgoff_t pgoff = page_to_pgoff(page);
452 struct task_struct *t = task_early_kill(tsk, force_early);
453
454 if (!t)
455 continue;
456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 pgoff) {
458 /*
459 * Send early kill signal to tasks where a vma covers
460 * the page but the corrupted page is not necessarily
461 * mapped it in its pte.
462 * Assume applications who requested early kill want
463 * to be informed of all such data corruptions.
464 */
465 if (vma->vm_mm == t->mm)
466 add_to_kill(t, page, vma, to_kill, tkc);
467 }
468 }
469 read_unlock(&tasklist_lock);
470 i_mmap_unlock_read(mapping);
471 }
472
473 /*
474 * Collect the processes who have the corrupted page mapped to kill.
475 * This is done in two steps for locking reasons.
476 * First preallocate one tokill structure outside the spin locks,
477 * so that we can kill at least one process reasonably reliable.
478 */
479 static void collect_procs(struct page *page, struct list_head *tokill,
480 int force_early)
481 {
482 struct to_kill *tk;
483
484 if (!page->mapping)
485 return;
486
487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 if (!tk)
489 return;
490 if (PageAnon(page))
491 collect_procs_anon(page, tokill, &tk, force_early);
492 else
493 collect_procs_file(page, tokill, &tk, force_early);
494 kfree(tk);
495 }
496
497 static const char *action_name[] = {
498 [MF_IGNORED] = "Ignored",
499 [MF_FAILED] = "Failed",
500 [MF_DELAYED] = "Delayed",
501 [MF_RECOVERED] = "Recovered",
502 };
503
504 static const char * const action_page_types[] = {
505 [MF_MSG_KERNEL] = "reserved kernel page",
506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
507 [MF_MSG_SLAB] = "kernel slab page",
508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
510 [MF_MSG_HUGE] = "huge page",
511 [MF_MSG_FREE_HUGE] = "free huge page",
512 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
513 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
514 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
515 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
516 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
517 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
518 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
519 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
520 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
521 [MF_MSG_CLEAN_LRU] = "clean LRU page",
522 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
523 [MF_MSG_BUDDY] = "free buddy page",
524 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
525 [MF_MSG_UNKNOWN] = "unknown page",
526 };
527
528 /*
529 * XXX: It is possible that a page is isolated from LRU cache,
530 * and then kept in swap cache or failed to remove from page cache.
531 * The page count will stop it from being freed by unpoison.
532 * Stress tests should be aware of this memory leak problem.
533 */
534 static int delete_from_lru_cache(struct page *p)
535 {
536 if (!isolate_lru_page(p)) {
537 /*
538 * Clear sensible page flags, so that the buddy system won't
539 * complain when the page is unpoison-and-freed.
540 */
541 ClearPageActive(p);
542 ClearPageUnevictable(p);
543
544 /*
545 * Poisoned page might never drop its ref count to 0 so we have
546 * to uncharge it manually from its memcg.
547 */
548 mem_cgroup_uncharge(p);
549
550 /*
551 * drop the page count elevated by isolate_lru_page()
552 */
553 put_page(p);
554 return 0;
555 }
556 return -EIO;
557 }
558
559 static int truncate_error_page(struct page *p, unsigned long pfn,
560 struct address_space *mapping)
561 {
562 int ret = MF_FAILED;
563
564 if (mapping->a_ops->error_remove_page) {
565 int err = mapping->a_ops->error_remove_page(mapping, p);
566
567 if (err != 0) {
568 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
569 pfn, err);
570 } else if (page_has_private(p) &&
571 !try_to_release_page(p, GFP_NOIO)) {
572 pr_info("Memory failure: %#lx: failed to release buffers\n",
573 pfn);
574 } else {
575 ret = MF_RECOVERED;
576 }
577 } else {
578 /*
579 * If the file system doesn't support it just invalidate
580 * This fails on dirty or anything with private pages
581 */
582 if (invalidate_inode_page(p))
583 ret = MF_RECOVERED;
584 else
585 pr_info("Memory failure: %#lx: Failed to invalidate\n",
586 pfn);
587 }
588
589 return ret;
590 }
591
592 /*
593 * Error hit kernel page.
594 * Do nothing, try to be lucky and not touch this instead. For a few cases we
595 * could be more sophisticated.
596 */
597 static int me_kernel(struct page *p, unsigned long pfn)
598 {
599 return MF_IGNORED;
600 }
601
602 /*
603 * Page in unknown state. Do nothing.
604 */
605 static int me_unknown(struct page *p, unsigned long pfn)
606 {
607 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
608 return MF_FAILED;
609 }
610
611 /*
612 * Clean (or cleaned) page cache page.
613 */
614 static int me_pagecache_clean(struct page *p, unsigned long pfn)
615 {
616 struct address_space *mapping;
617
618 delete_from_lru_cache(p);
619
620 /*
621 * For anonymous pages we're done the only reference left
622 * should be the one m_f() holds.
623 */
624 if (PageAnon(p))
625 return MF_RECOVERED;
626
627 /*
628 * Now truncate the page in the page cache. This is really
629 * more like a "temporary hole punch"
630 * Don't do this for block devices when someone else
631 * has a reference, because it could be file system metadata
632 * and that's not safe to truncate.
633 */
634 mapping = page_mapping(p);
635 if (!mapping) {
636 /*
637 * Page has been teared down in the meanwhile
638 */
639 return MF_FAILED;
640 }
641
642 /*
643 * Truncation is a bit tricky. Enable it per file system for now.
644 *
645 * Open: to take i_mutex or not for this? Right now we don't.
646 */
647 return truncate_error_page(p, pfn, mapping);
648 }
649
650 /*
651 * Dirty pagecache page
652 * Issues: when the error hit a hole page the error is not properly
653 * propagated.
654 */
655 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
656 {
657 struct address_space *mapping = page_mapping(p);
658
659 SetPageError(p);
660 /* TBD: print more information about the file. */
661 if (mapping) {
662 /*
663 * IO error will be reported by write(), fsync(), etc.
664 * who check the mapping.
665 * This way the application knows that something went
666 * wrong with its dirty file data.
667 *
668 * There's one open issue:
669 *
670 * The EIO will be only reported on the next IO
671 * operation and then cleared through the IO map.
672 * Normally Linux has two mechanisms to pass IO error
673 * first through the AS_EIO flag in the address space
674 * and then through the PageError flag in the page.
675 * Since we drop pages on memory failure handling the
676 * only mechanism open to use is through AS_AIO.
677 *
678 * This has the disadvantage that it gets cleared on
679 * the first operation that returns an error, while
680 * the PageError bit is more sticky and only cleared
681 * when the page is reread or dropped. If an
682 * application assumes it will always get error on
683 * fsync, but does other operations on the fd before
684 * and the page is dropped between then the error
685 * will not be properly reported.
686 *
687 * This can already happen even without hwpoisoned
688 * pages: first on metadata IO errors (which only
689 * report through AS_EIO) or when the page is dropped
690 * at the wrong time.
691 *
692 * So right now we assume that the application DTRT on
693 * the first EIO, but we're not worse than other parts
694 * of the kernel.
695 */
696 mapping_set_error(mapping, -EIO);
697 }
698
699 return me_pagecache_clean(p, pfn);
700 }
701
702 /*
703 * Clean and dirty swap cache.
704 *
705 * Dirty swap cache page is tricky to handle. The page could live both in page
706 * cache and swap cache(ie. page is freshly swapped in). So it could be
707 * referenced concurrently by 2 types of PTEs:
708 * normal PTEs and swap PTEs. We try to handle them consistently by calling
709 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
710 * and then
711 * - clear dirty bit to prevent IO
712 * - remove from LRU
713 * - but keep in the swap cache, so that when we return to it on
714 * a later page fault, we know the application is accessing
715 * corrupted data and shall be killed (we installed simple
716 * interception code in do_swap_page to catch it).
717 *
718 * Clean swap cache pages can be directly isolated. A later page fault will
719 * bring in the known good data from disk.
720 */
721 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
722 {
723 ClearPageDirty(p);
724 /* Trigger EIO in shmem: */
725 ClearPageUptodate(p);
726
727 if (!delete_from_lru_cache(p))
728 return MF_DELAYED;
729 else
730 return MF_FAILED;
731 }
732
733 static int me_swapcache_clean(struct page *p, unsigned long pfn)
734 {
735 delete_from_swap_cache(p);
736
737 if (!delete_from_lru_cache(p))
738 return MF_RECOVERED;
739 else
740 return MF_FAILED;
741 }
742
743 /*
744 * Huge pages. Needs work.
745 * Issues:
746 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
747 * To narrow down kill region to one page, we need to break up pmd.
748 */
749 static int me_huge_page(struct page *p, unsigned long pfn)
750 {
751 int res = 0;
752 struct page *hpage = compound_head(p);
753 struct address_space *mapping;
754
755 if (!PageHuge(hpage))
756 return MF_DELAYED;
757
758 mapping = page_mapping(hpage);
759 if (mapping) {
760 res = truncate_error_page(hpage, pfn, mapping);
761 } else {
762 unlock_page(hpage);
763 /*
764 * migration entry prevents later access on error anonymous
765 * hugepage, so we can free and dissolve it into buddy to
766 * save healthy subpages.
767 */
768 if (PageAnon(hpage))
769 put_page(hpage);
770 dissolve_free_huge_page(p);
771 res = MF_RECOVERED;
772 lock_page(hpage);
773 }
774
775 return res;
776 }
777
778 /*
779 * Various page states we can handle.
780 *
781 * A page state is defined by its current page->flags bits.
782 * The table matches them in order and calls the right handler.
783 *
784 * This is quite tricky because we can access page at any time
785 * in its live cycle, so all accesses have to be extremely careful.
786 *
787 * This is not complete. More states could be added.
788 * For any missing state don't attempt recovery.
789 */
790
791 #define dirty (1UL << PG_dirty)
792 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
793 #define unevict (1UL << PG_unevictable)
794 #define mlock (1UL << PG_mlocked)
795 #define writeback (1UL << PG_writeback)
796 #define lru (1UL << PG_lru)
797 #define head (1UL << PG_head)
798 #define slab (1UL << PG_slab)
799 #define reserved (1UL << PG_reserved)
800
801 static struct page_state {
802 unsigned long mask;
803 unsigned long res;
804 enum mf_action_page_type type;
805 int (*action)(struct page *p, unsigned long pfn);
806 } error_states[] = {
807 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
808 /*
809 * free pages are specially detected outside this table:
810 * PG_buddy pages only make a small fraction of all free pages.
811 */
812
813 /*
814 * Could in theory check if slab page is free or if we can drop
815 * currently unused objects without touching them. But just
816 * treat it as standard kernel for now.
817 */
818 { slab, slab, MF_MSG_SLAB, me_kernel },
819
820 { head, head, MF_MSG_HUGE, me_huge_page },
821
822 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
823 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
824
825 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
826 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
827
828 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
829 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
830
831 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
832 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
833
834 /*
835 * Catchall entry: must be at end.
836 */
837 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
838 };
839
840 #undef dirty
841 #undef sc
842 #undef unevict
843 #undef mlock
844 #undef writeback
845 #undef lru
846 #undef head
847 #undef slab
848 #undef reserved
849
850 /*
851 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
852 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
853 */
854 static void action_result(unsigned long pfn, enum mf_action_page_type type,
855 enum mf_result result)
856 {
857 trace_memory_failure_event(pfn, type, result);
858
859 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
860 pfn, action_page_types[type], action_name[result]);
861 }
862
863 static int page_action(struct page_state *ps, struct page *p,
864 unsigned long pfn)
865 {
866 int result;
867 int count;
868
869 result = ps->action(p, pfn);
870
871 count = page_count(p) - 1;
872 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
873 count--;
874 if (count > 0) {
875 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
876 pfn, action_page_types[ps->type], count);
877 result = MF_FAILED;
878 }
879 action_result(pfn, ps->type, result);
880
881 /* Could do more checks here if page looks ok */
882 /*
883 * Could adjust zone counters here to correct for the missing page.
884 */
885
886 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
887 }
888
889 /**
890 * get_hwpoison_page() - Get refcount for memory error handling:
891 * @page: raw error page (hit by memory error)
892 *
893 * Return: return 0 if failed to grab the refcount, otherwise true (some
894 * non-zero value.)
895 */
896 int get_hwpoison_page(struct page *page)
897 {
898 struct page *head = compound_head(page);
899
900 if (!PageHuge(head) && PageTransHuge(head)) {
901 /*
902 * Non anonymous thp exists only in allocation/free time. We
903 * can't handle such a case correctly, so let's give it up.
904 * This should be better than triggering BUG_ON when kernel
905 * tries to touch the "partially handled" page.
906 */
907 if (!PageAnon(head)) {
908 pr_err("Memory failure: %#lx: non anonymous thp\n",
909 page_to_pfn(page));
910 return 0;
911 }
912 }
913
914 if (get_page_unless_zero(head)) {
915 if (head == compound_head(page))
916 return 1;
917
918 pr_info("Memory failure: %#lx cannot catch tail\n",
919 page_to_pfn(page));
920 put_page(head);
921 }
922
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(get_hwpoison_page);
926
927 /*
928 * Do all that is necessary to remove user space mappings. Unmap
929 * the pages and send SIGBUS to the processes if the data was dirty.
930 */
931 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
932 int trapno, int flags, struct page **hpagep)
933 {
934 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
935 struct address_space *mapping;
936 LIST_HEAD(tokill);
937 bool unmap_success;
938 int kill = 1, forcekill;
939 struct page *hpage = *hpagep;
940 bool mlocked = PageMlocked(hpage);
941
942 /*
943 * Here we are interested only in user-mapped pages, so skip any
944 * other types of pages.
945 */
946 if (PageReserved(p) || PageSlab(p))
947 return true;
948 if (!(PageLRU(hpage) || PageHuge(p)))
949 return true;
950
951 /*
952 * This check implies we don't kill processes if their pages
953 * are in the swap cache early. Those are always late kills.
954 */
955 if (!page_mapped(hpage))
956 return true;
957
958 if (PageKsm(p)) {
959 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
960 return false;
961 }
962
963 if (PageSwapCache(p)) {
964 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
965 pfn);
966 ttu |= TTU_IGNORE_HWPOISON;
967 }
968
969 /*
970 * Propagate the dirty bit from PTEs to struct page first, because we
971 * need this to decide if we should kill or just drop the page.
972 * XXX: the dirty test could be racy: set_page_dirty() may not always
973 * be called inside page lock (it's recommended but not enforced).
974 */
975 mapping = page_mapping(hpage);
976 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
977 mapping_cap_writeback_dirty(mapping)) {
978 if (page_mkclean(hpage)) {
979 SetPageDirty(hpage);
980 } else {
981 kill = 0;
982 ttu |= TTU_IGNORE_HWPOISON;
983 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
984 pfn);
985 }
986 }
987
988 /*
989 * First collect all the processes that have the page
990 * mapped in dirty form. This has to be done before try_to_unmap,
991 * because ttu takes the rmap data structures down.
992 *
993 * Error handling: We ignore errors here because
994 * there's nothing that can be done.
995 */
996 if (kill)
997 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
998
999 unmap_success = try_to_unmap(hpage, ttu);
1000 if (!unmap_success)
1001 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1002 pfn, page_mapcount(hpage));
1003
1004 /*
1005 * try_to_unmap() might put mlocked page in lru cache, so call
1006 * shake_page() again to ensure that it's flushed.
1007 */
1008 if (mlocked)
1009 shake_page(hpage, 0);
1010
1011 /*
1012 * Now that the dirty bit has been propagated to the
1013 * struct page and all unmaps done we can decide if
1014 * killing is needed or not. Only kill when the page
1015 * was dirty or the process is not restartable,
1016 * otherwise the tokill list is merely
1017 * freed. When there was a problem unmapping earlier
1018 * use a more force-full uncatchable kill to prevent
1019 * any accesses to the poisoned memory.
1020 */
1021 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1022 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1023
1024 return unmap_success;
1025 }
1026
1027 static int identify_page_state(unsigned long pfn, struct page *p,
1028 unsigned long page_flags)
1029 {
1030 struct page_state *ps;
1031
1032 /*
1033 * The first check uses the current page flags which may not have any
1034 * relevant information. The second check with the saved page flags is
1035 * carried out only if the first check can't determine the page status.
1036 */
1037 for (ps = error_states;; ps++)
1038 if ((p->flags & ps->mask) == ps->res)
1039 break;
1040
1041 page_flags |= (p->flags & (1UL << PG_dirty));
1042
1043 if (!ps->mask)
1044 for (ps = error_states;; ps++)
1045 if ((page_flags & ps->mask) == ps->res)
1046 break;
1047 return page_action(ps, p, pfn);
1048 }
1049
1050 static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
1051 {
1052 struct page *p = pfn_to_page(pfn);
1053 struct page *head = compound_head(p);
1054 int res;
1055 unsigned long page_flags;
1056
1057 if (TestSetPageHWPoison(head)) {
1058 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1059 pfn);
1060 return 0;
1061 }
1062
1063 num_poisoned_pages_inc();
1064
1065 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1066 /*
1067 * Check "filter hit" and "race with other subpage."
1068 */
1069 lock_page(head);
1070 if (PageHWPoison(head)) {
1071 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1072 || (p != head && TestSetPageHWPoison(head))) {
1073 num_poisoned_pages_dec();
1074 unlock_page(head);
1075 return 0;
1076 }
1077 }
1078 unlock_page(head);
1079 dissolve_free_huge_page(p);
1080 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1081 return 0;
1082 }
1083
1084 lock_page(head);
1085 page_flags = head->flags;
1086
1087 if (!PageHWPoison(head)) {
1088 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1089 num_poisoned_pages_dec();
1090 unlock_page(head);
1091 put_hwpoison_page(head);
1092 return 0;
1093 }
1094
1095 /*
1096 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1097 * simply disable it. In order to make it work properly, we need
1098 * make sure that:
1099 * - conversion of a pud that maps an error hugetlb into hwpoison
1100 * entry properly works, and
1101 * - other mm code walking over page table is aware of pud-aligned
1102 * hwpoison entries.
1103 */
1104 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1105 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1106 res = -EBUSY;
1107 goto out;
1108 }
1109
1110 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
1111 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1112 res = -EBUSY;
1113 goto out;
1114 }
1115
1116 res = identify_page_state(pfn, p, page_flags);
1117 out:
1118 unlock_page(head);
1119 return res;
1120 }
1121
1122 /**
1123 * memory_failure - Handle memory failure of a page.
1124 * @pfn: Page Number of the corrupted page
1125 * @trapno: Trap number reported in the signal to user space.
1126 * @flags: fine tune action taken
1127 *
1128 * This function is called by the low level machine check code
1129 * of an architecture when it detects hardware memory corruption
1130 * of a page. It tries its best to recover, which includes
1131 * dropping pages, killing processes etc.
1132 *
1133 * The function is primarily of use for corruptions that
1134 * happen outside the current execution context (e.g. when
1135 * detected by a background scrubber)
1136 *
1137 * Must run in process context (e.g. a work queue) with interrupts
1138 * enabled and no spinlocks hold.
1139 */
1140 int memory_failure(unsigned long pfn, int trapno, int flags)
1141 {
1142 struct page *p;
1143 struct page *hpage;
1144 struct page *orig_head;
1145 int res;
1146 unsigned long page_flags;
1147
1148 if (!sysctl_memory_failure_recovery)
1149 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1150
1151 if (!pfn_valid(pfn)) {
1152 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1153 pfn);
1154 return -ENXIO;
1155 }
1156
1157 p = pfn_to_page(pfn);
1158 if (PageHuge(p))
1159 return memory_failure_hugetlb(pfn, trapno, flags);
1160 if (TestSetPageHWPoison(p)) {
1161 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1162 pfn);
1163 return 0;
1164 }
1165
1166 orig_head = hpage = compound_head(p);
1167 num_poisoned_pages_inc();
1168
1169 /*
1170 * We need/can do nothing about count=0 pages.
1171 * 1) it's a free page, and therefore in safe hand:
1172 * prep_new_page() will be the gate keeper.
1173 * 2) it's part of a non-compound high order page.
1174 * Implies some kernel user: cannot stop them from
1175 * R/W the page; let's pray that the page has been
1176 * used and will be freed some time later.
1177 * In fact it's dangerous to directly bump up page count from 0,
1178 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1179 */
1180 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1181 if (is_free_buddy_page(p)) {
1182 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1183 return 0;
1184 } else {
1185 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1186 return -EBUSY;
1187 }
1188 }
1189
1190 if (PageTransHuge(hpage)) {
1191 lock_page(p);
1192 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1193 unlock_page(p);
1194 if (!PageAnon(p))
1195 pr_err("Memory failure: %#lx: non anonymous thp\n",
1196 pfn);
1197 else
1198 pr_err("Memory failure: %#lx: thp split failed\n",
1199 pfn);
1200 if (TestClearPageHWPoison(p))
1201 num_poisoned_pages_dec();
1202 put_hwpoison_page(p);
1203 return -EBUSY;
1204 }
1205 unlock_page(p);
1206 VM_BUG_ON_PAGE(!page_count(p), p);
1207 hpage = compound_head(p);
1208 }
1209
1210 /*
1211 * We ignore non-LRU pages for good reasons.
1212 * - PG_locked is only well defined for LRU pages and a few others
1213 * - to avoid races with __SetPageLocked()
1214 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1215 * The check (unnecessarily) ignores LRU pages being isolated and
1216 * walked by the page reclaim code, however that's not a big loss.
1217 */
1218 shake_page(p, 0);
1219 /* shake_page could have turned it free. */
1220 if (!PageLRU(p) && is_free_buddy_page(p)) {
1221 if (flags & MF_COUNT_INCREASED)
1222 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1223 else
1224 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1225 return 0;
1226 }
1227
1228 lock_page(p);
1229
1230 /*
1231 * The page could have changed compound pages during the locking.
1232 * If this happens just bail out.
1233 */
1234 if (PageCompound(p) && compound_head(p) != orig_head) {
1235 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1236 res = -EBUSY;
1237 goto out;
1238 }
1239
1240 /*
1241 * We use page flags to determine what action should be taken, but
1242 * the flags can be modified by the error containment action. One
1243 * example is an mlocked page, where PG_mlocked is cleared by
1244 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1245 * correctly, we save a copy of the page flags at this time.
1246 */
1247 if (PageHuge(p))
1248 page_flags = hpage->flags;
1249 else
1250 page_flags = p->flags;
1251
1252 /*
1253 * unpoison always clear PG_hwpoison inside page lock
1254 */
1255 if (!PageHWPoison(p)) {
1256 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1257 num_poisoned_pages_dec();
1258 unlock_page(p);
1259 put_hwpoison_page(p);
1260 return 0;
1261 }
1262 if (hwpoison_filter(p)) {
1263 if (TestClearPageHWPoison(p))
1264 num_poisoned_pages_dec();
1265 unlock_page(p);
1266 put_hwpoison_page(p);
1267 return 0;
1268 }
1269
1270 if (!PageTransTail(p) && !PageLRU(p))
1271 goto identify_page_state;
1272
1273 /*
1274 * It's very difficult to mess with pages currently under IO
1275 * and in many cases impossible, so we just avoid it here.
1276 */
1277 wait_on_page_writeback(p);
1278
1279 /*
1280 * Now take care of user space mappings.
1281 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1282 *
1283 * When the raw error page is thp tail page, hpage points to the raw
1284 * page after thp split.
1285 */
1286 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1287 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1288 res = -EBUSY;
1289 goto out;
1290 }
1291
1292 /*
1293 * Torn down by someone else?
1294 */
1295 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1296 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1297 res = -EBUSY;
1298 goto out;
1299 }
1300
1301 identify_page_state:
1302 res = identify_page_state(pfn, p, page_flags);
1303 out:
1304 unlock_page(p);
1305 return res;
1306 }
1307 EXPORT_SYMBOL_GPL(memory_failure);
1308
1309 #define MEMORY_FAILURE_FIFO_ORDER 4
1310 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1311
1312 struct memory_failure_entry {
1313 unsigned long pfn;
1314 int trapno;
1315 int flags;
1316 };
1317
1318 struct memory_failure_cpu {
1319 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1320 MEMORY_FAILURE_FIFO_SIZE);
1321 spinlock_t lock;
1322 struct work_struct work;
1323 };
1324
1325 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1326
1327 /**
1328 * memory_failure_queue - Schedule handling memory failure of a page.
1329 * @pfn: Page Number of the corrupted page
1330 * @trapno: Trap number reported in the signal to user space.
1331 * @flags: Flags for memory failure handling
1332 *
1333 * This function is called by the low level hardware error handler
1334 * when it detects hardware memory corruption of a page. It schedules
1335 * the recovering of error page, including dropping pages, killing
1336 * processes etc.
1337 *
1338 * The function is primarily of use for corruptions that
1339 * happen outside the current execution context (e.g. when
1340 * detected by a background scrubber)
1341 *
1342 * Can run in IRQ context.
1343 */
1344 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1345 {
1346 struct memory_failure_cpu *mf_cpu;
1347 unsigned long proc_flags;
1348 struct memory_failure_entry entry = {
1349 .pfn = pfn,
1350 .trapno = trapno,
1351 .flags = flags,
1352 };
1353
1354 mf_cpu = &get_cpu_var(memory_failure_cpu);
1355 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1356 if (kfifo_put(&mf_cpu->fifo, entry))
1357 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1358 else
1359 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1360 pfn);
1361 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1362 put_cpu_var(memory_failure_cpu);
1363 }
1364 EXPORT_SYMBOL_GPL(memory_failure_queue);
1365
1366 static void memory_failure_work_func(struct work_struct *work)
1367 {
1368 struct memory_failure_cpu *mf_cpu;
1369 struct memory_failure_entry entry = { 0, };
1370 unsigned long proc_flags;
1371 int gotten;
1372
1373 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1374 for (;;) {
1375 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1376 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1377 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1378 if (!gotten)
1379 break;
1380 if (entry.flags & MF_SOFT_OFFLINE)
1381 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1382 else
1383 memory_failure(entry.pfn, entry.trapno, entry.flags);
1384 }
1385 }
1386
1387 static int __init memory_failure_init(void)
1388 {
1389 struct memory_failure_cpu *mf_cpu;
1390 int cpu;
1391
1392 for_each_possible_cpu(cpu) {
1393 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1394 spin_lock_init(&mf_cpu->lock);
1395 INIT_KFIFO(mf_cpu->fifo);
1396 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1397 }
1398
1399 return 0;
1400 }
1401 core_initcall(memory_failure_init);
1402
1403 #define unpoison_pr_info(fmt, pfn, rs) \
1404 ({ \
1405 if (__ratelimit(rs)) \
1406 pr_info(fmt, pfn); \
1407 })
1408
1409 /**
1410 * unpoison_memory - Unpoison a previously poisoned page
1411 * @pfn: Page number of the to be unpoisoned page
1412 *
1413 * Software-unpoison a page that has been poisoned by
1414 * memory_failure() earlier.
1415 *
1416 * This is only done on the software-level, so it only works
1417 * for linux injected failures, not real hardware failures
1418 *
1419 * Returns 0 for success, otherwise -errno.
1420 */
1421 int unpoison_memory(unsigned long pfn)
1422 {
1423 struct page *page;
1424 struct page *p;
1425 int freeit = 0;
1426 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1427 DEFAULT_RATELIMIT_BURST);
1428
1429 if (!pfn_valid(pfn))
1430 return -ENXIO;
1431
1432 p = pfn_to_page(pfn);
1433 page = compound_head(p);
1434
1435 if (!PageHWPoison(p)) {
1436 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1437 pfn, &unpoison_rs);
1438 return 0;
1439 }
1440
1441 if (page_count(page) > 1) {
1442 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1443 pfn, &unpoison_rs);
1444 return 0;
1445 }
1446
1447 if (page_mapped(page)) {
1448 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1449 pfn, &unpoison_rs);
1450 return 0;
1451 }
1452
1453 if (page_mapping(page)) {
1454 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1455 pfn, &unpoison_rs);
1456 return 0;
1457 }
1458
1459 /*
1460 * unpoison_memory() can encounter thp only when the thp is being
1461 * worked by memory_failure() and the page lock is not held yet.
1462 * In such case, we yield to memory_failure() and make unpoison fail.
1463 */
1464 if (!PageHuge(page) && PageTransHuge(page)) {
1465 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1466 pfn, &unpoison_rs);
1467 return 0;
1468 }
1469
1470 if (!get_hwpoison_page(p)) {
1471 if (TestClearPageHWPoison(p))
1472 num_poisoned_pages_dec();
1473 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1474 pfn, &unpoison_rs);
1475 return 0;
1476 }
1477
1478 lock_page(page);
1479 /*
1480 * This test is racy because PG_hwpoison is set outside of page lock.
1481 * That's acceptable because that won't trigger kernel panic. Instead,
1482 * the PG_hwpoison page will be caught and isolated on the entrance to
1483 * the free buddy page pool.
1484 */
1485 if (TestClearPageHWPoison(page)) {
1486 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1487 pfn, &unpoison_rs);
1488 num_poisoned_pages_dec();
1489 freeit = 1;
1490 }
1491 unlock_page(page);
1492
1493 put_hwpoison_page(page);
1494 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1495 put_hwpoison_page(page);
1496
1497 return 0;
1498 }
1499 EXPORT_SYMBOL(unpoison_memory);
1500
1501 static struct page *new_page(struct page *p, unsigned long private, int **x)
1502 {
1503 int nid = page_to_nid(p);
1504
1505 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1506 }
1507
1508 /*
1509 * Safely get reference count of an arbitrary page.
1510 * Returns 0 for a free page, -EIO for a zero refcount page
1511 * that is not free, and 1 for any other page type.
1512 * For 1 the page is returned with increased page count, otherwise not.
1513 */
1514 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1515 {
1516 int ret;
1517
1518 if (flags & MF_COUNT_INCREASED)
1519 return 1;
1520
1521 /*
1522 * When the target page is a free hugepage, just remove it
1523 * from free hugepage list.
1524 */
1525 if (!get_hwpoison_page(p)) {
1526 if (PageHuge(p)) {
1527 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1528 ret = 0;
1529 } else if (is_free_buddy_page(p)) {
1530 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1531 ret = 0;
1532 } else {
1533 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1534 __func__, pfn, p->flags);
1535 ret = -EIO;
1536 }
1537 } else {
1538 /* Not a free page */
1539 ret = 1;
1540 }
1541 return ret;
1542 }
1543
1544 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1545 {
1546 int ret = __get_any_page(page, pfn, flags);
1547
1548 if (ret == 1 && !PageHuge(page) &&
1549 !PageLRU(page) && !__PageMovable(page)) {
1550 /*
1551 * Try to free it.
1552 */
1553 put_hwpoison_page(page);
1554 shake_page(page, 1);
1555
1556 /*
1557 * Did it turn free?
1558 */
1559 ret = __get_any_page(page, pfn, 0);
1560 if (ret == 1 && !PageLRU(page)) {
1561 /* Drop page reference which is from __get_any_page() */
1562 put_hwpoison_page(page);
1563 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1564 pfn, page->flags, &page->flags);
1565 return -EIO;
1566 }
1567 }
1568 return ret;
1569 }
1570
1571 static int soft_offline_huge_page(struct page *page, int flags)
1572 {
1573 int ret;
1574 unsigned long pfn = page_to_pfn(page);
1575 struct page *hpage = compound_head(page);
1576 LIST_HEAD(pagelist);
1577
1578 /*
1579 * This double-check of PageHWPoison is to avoid the race with
1580 * memory_failure(). See also comment in __soft_offline_page().
1581 */
1582 lock_page(hpage);
1583 if (PageHWPoison(hpage)) {
1584 unlock_page(hpage);
1585 put_hwpoison_page(hpage);
1586 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1587 return -EBUSY;
1588 }
1589 unlock_page(hpage);
1590
1591 ret = isolate_huge_page(hpage, &pagelist);
1592 /*
1593 * get_any_page() and isolate_huge_page() takes a refcount each,
1594 * so need to drop one here.
1595 */
1596 put_hwpoison_page(hpage);
1597 if (!ret) {
1598 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1599 return -EBUSY;
1600 }
1601
1602 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1603 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1604 if (ret) {
1605 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1606 pfn, ret, page->flags, &page->flags);
1607 if (!list_empty(&pagelist))
1608 putback_movable_pages(&pagelist);
1609 if (ret > 0)
1610 ret = -EIO;
1611 } else {
1612 if (PageHuge(page))
1613 dissolve_free_huge_page(page);
1614 }
1615 return ret;
1616 }
1617
1618 static int __soft_offline_page(struct page *page, int flags)
1619 {
1620 int ret;
1621 unsigned long pfn = page_to_pfn(page);
1622
1623 /*
1624 * Check PageHWPoison again inside page lock because PageHWPoison
1625 * is set by memory_failure() outside page lock. Note that
1626 * memory_failure() also double-checks PageHWPoison inside page lock,
1627 * so there's no race between soft_offline_page() and memory_failure().
1628 */
1629 lock_page(page);
1630 wait_on_page_writeback(page);
1631 if (PageHWPoison(page)) {
1632 unlock_page(page);
1633 put_hwpoison_page(page);
1634 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1635 return -EBUSY;
1636 }
1637 /*
1638 * Try to invalidate first. This should work for
1639 * non dirty unmapped page cache pages.
1640 */
1641 ret = invalidate_inode_page(page);
1642 unlock_page(page);
1643 /*
1644 * RED-PEN would be better to keep it isolated here, but we
1645 * would need to fix isolation locking first.
1646 */
1647 if (ret == 1) {
1648 put_hwpoison_page(page);
1649 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1650 SetPageHWPoison(page);
1651 num_poisoned_pages_inc();
1652 return 0;
1653 }
1654
1655 /*
1656 * Simple invalidation didn't work.
1657 * Try to migrate to a new page instead. migrate.c
1658 * handles a large number of cases for us.
1659 */
1660 if (PageLRU(page))
1661 ret = isolate_lru_page(page);
1662 else
1663 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1664 /*
1665 * Drop page reference which is came from get_any_page()
1666 * successful isolate_lru_page() already took another one.
1667 */
1668 put_hwpoison_page(page);
1669 if (!ret) {
1670 LIST_HEAD(pagelist);
1671 /*
1672 * After isolated lru page, the PageLRU will be cleared,
1673 * so use !__PageMovable instead for LRU page's mapping
1674 * cannot have PAGE_MAPPING_MOVABLE.
1675 */
1676 if (!__PageMovable(page))
1677 inc_node_page_state(page, NR_ISOLATED_ANON +
1678 page_is_file_cache(page));
1679 list_add(&page->lru, &pagelist);
1680 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1681 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1682 if (ret) {
1683 if (!list_empty(&pagelist))
1684 putback_movable_pages(&pagelist);
1685
1686 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1687 pfn, ret, page->flags, &page->flags);
1688 if (ret > 0)
1689 ret = -EIO;
1690 }
1691 } else {
1692 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1693 pfn, ret, page_count(page), page->flags, &page->flags);
1694 }
1695 return ret;
1696 }
1697
1698 static int soft_offline_in_use_page(struct page *page, int flags)
1699 {
1700 int ret;
1701 struct page *hpage = compound_head(page);
1702
1703 if (!PageHuge(page) && PageTransHuge(hpage)) {
1704 lock_page(page);
1705 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1706 unlock_page(page);
1707 if (!PageAnon(page))
1708 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1709 else
1710 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1711 put_hwpoison_page(page);
1712 return -EBUSY;
1713 }
1714 unlock_page(page);
1715 }
1716
1717 if (PageHuge(page))
1718 ret = soft_offline_huge_page(page, flags);
1719 else
1720 ret = __soft_offline_page(page, flags);
1721
1722 return ret;
1723 }
1724
1725 static void soft_offline_free_page(struct page *page)
1726 {
1727 struct page *head = compound_head(page);
1728
1729 if (!TestSetPageHWPoison(head)) {
1730 num_poisoned_pages_inc();
1731 if (PageHuge(head))
1732 dissolve_free_huge_page(page);
1733 }
1734 }
1735
1736 /**
1737 * soft_offline_page - Soft offline a page.
1738 * @page: page to offline
1739 * @flags: flags. Same as memory_failure().
1740 *
1741 * Returns 0 on success, otherwise negated errno.
1742 *
1743 * Soft offline a page, by migration or invalidation,
1744 * without killing anything. This is for the case when
1745 * a page is not corrupted yet (so it's still valid to access),
1746 * but has had a number of corrected errors and is better taken
1747 * out.
1748 *
1749 * The actual policy on when to do that is maintained by
1750 * user space.
1751 *
1752 * This should never impact any application or cause data loss,
1753 * however it might take some time.
1754 *
1755 * This is not a 100% solution for all memory, but tries to be
1756 * ``good enough'' for the majority of memory.
1757 */
1758 int soft_offline_page(struct page *page, int flags)
1759 {
1760 int ret;
1761 unsigned long pfn = page_to_pfn(page);
1762
1763 if (PageHWPoison(page)) {
1764 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1765 if (flags & MF_COUNT_INCREASED)
1766 put_hwpoison_page(page);
1767 return -EBUSY;
1768 }
1769
1770 get_online_mems();
1771 ret = get_any_page(page, pfn, flags);
1772 put_online_mems();
1773
1774 if (ret > 0)
1775 ret = soft_offline_in_use_page(page, flags);
1776 else if (ret == 0)
1777 soft_offline_free_page(page);
1778
1779 return ret;
1780 }