arm64: dts: Keep VCCQ power when S2R mode for Sandisk UFS
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / lib / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #define pr_fmt(fmt) "software IO TLB: " fmt
21
22 #include <linux/cache.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mm.h>
25 #include <linux/export.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/swiotlb.h>
29 #include <linux/pfn.h>
30 #include <linux/types.h>
31 #include <linux/ctype.h>
32 #include <linux/highmem.h>
33 #include <linux/gfp.h>
34 #include <linux/scatterlist.h>
35 #include <linux/mem_encrypt.h>
36
37 #include <asm/io.h>
38 #include <asm/dma.h>
39
40 #include <linux/init.h>
41 #include <linux/bootmem.h>
42 #include <linux/iommu-helper.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/swiotlb.h>
46
47 #define OFFSET(val,align) ((unsigned long) \
48 ( (val) & ( (align) - 1)))
49
50 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
51
52 /*
53 * Minimum IO TLB size to bother booting with. Systems with mainly
54 * 64bit capable cards will only lightly use the swiotlb. If we can't
55 * allocate a contiguous 1MB, we're probably in trouble anyway.
56 */
57 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
58
59 enum swiotlb_force swiotlb_force;
60
61 /*
62 * Used to do a quick range check in swiotlb_tbl_unmap_single and
63 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
64 * API.
65 */
66 static phys_addr_t io_tlb_start, io_tlb_end;
67
68 /*
69 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
70 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
71 */
72 static unsigned long io_tlb_nslabs;
73
74 /*
75 * When the IOMMU overflows we return a fallback buffer. This sets the size.
76 */
77 static unsigned long io_tlb_overflow = 32*1024;
78
79 static phys_addr_t io_tlb_overflow_buffer;
80
81 /*
82 * This is a free list describing the number of free entries available from
83 * each index
84 */
85 static unsigned int *io_tlb_list;
86 static unsigned int io_tlb_index;
87
88 /*
89 * Max segment that we can provide which (if pages are contingous) will
90 * not be bounced (unless SWIOTLB_FORCE is set).
91 */
92 unsigned int max_segment;
93
94 /*
95 * We need to save away the original address corresponding to a mapped entry
96 * for the sync operations.
97 */
98 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
99 static phys_addr_t *io_tlb_orig_addr;
100
101 /*
102 * Protect the above data structures in the map and unmap calls
103 */
104 static DEFINE_SPINLOCK(io_tlb_lock);
105
106 static int late_alloc;
107
108 static int __init
109 setup_io_tlb_npages(char *str)
110 {
111 if (isdigit(*str)) {
112 io_tlb_nslabs = simple_strtoul(str, &str, 0);
113 /* avoid tail segment of size < IO_TLB_SEGSIZE */
114 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
115 }
116 if (*str == ',')
117 ++str;
118 if (!strcmp(str, "force")) {
119 swiotlb_force = SWIOTLB_FORCE;
120 } else if (!strcmp(str, "noforce")) {
121 swiotlb_force = SWIOTLB_NO_FORCE;
122 io_tlb_nslabs = 1;
123 }
124
125 return 0;
126 }
127 early_param("swiotlb", setup_io_tlb_npages);
128 /* make io_tlb_overflow tunable too? */
129
130 unsigned long swiotlb_nr_tbl(void)
131 {
132 return io_tlb_nslabs;
133 }
134 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
135
136 unsigned int swiotlb_max_segment(void)
137 {
138 return max_segment;
139 }
140 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
141
142 void swiotlb_set_max_segment(unsigned int val)
143 {
144 if (swiotlb_force == SWIOTLB_FORCE)
145 max_segment = 1;
146 else
147 max_segment = rounddown(val, PAGE_SIZE);
148 }
149
150 /* default to 64MB */
151 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
152 unsigned long swiotlb_size_or_default(void)
153 {
154 unsigned long size;
155
156 size = io_tlb_nslabs << IO_TLB_SHIFT;
157
158 return size ? size : (IO_TLB_DEFAULT_SIZE);
159 }
160
161 void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
162
163 /* For swiotlb, clear memory encryption mask from dma addresses */
164 static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
165 phys_addr_t address)
166 {
167 return __sme_clr(phys_to_dma(hwdev, address));
168 }
169
170 /* Note that this doesn't work with highmem page */
171 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
172 volatile void *address)
173 {
174 return phys_to_dma(hwdev, virt_to_phys(address));
175 }
176
177 static bool no_iotlb_memory;
178
179 void swiotlb_print_info(void)
180 {
181 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
182
183 if (no_iotlb_memory) {
184 pr_warn("No low mem\n");
185 return;
186 }
187
188 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
189 (unsigned long long)io_tlb_start,
190 (unsigned long long)io_tlb_end,
191 bytes >> 20);
192 }
193
194 /*
195 * Early SWIOTLB allocation may be too early to allow an architecture to
196 * perform the desired operations. This function allows the architecture to
197 * call SWIOTLB when the operations are possible. It needs to be called
198 * before the SWIOTLB memory is used.
199 */
200 void __init swiotlb_update_mem_attributes(void)
201 {
202 void *vaddr;
203 unsigned long bytes;
204
205 if (no_iotlb_memory || late_alloc)
206 return;
207
208 vaddr = phys_to_virt(io_tlb_start);
209 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
210 swiotlb_set_mem_attributes(vaddr, bytes);
211 memset(vaddr, 0, bytes);
212
213 vaddr = phys_to_virt(io_tlb_overflow_buffer);
214 bytes = PAGE_ALIGN(io_tlb_overflow);
215 swiotlb_set_mem_attributes(vaddr, bytes);
216 memset(vaddr, 0, bytes);
217 }
218
219 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
220 {
221 void *v_overflow_buffer;
222 unsigned long i, bytes;
223
224 bytes = nslabs << IO_TLB_SHIFT;
225
226 io_tlb_nslabs = nslabs;
227 io_tlb_start = __pa(tlb);
228 io_tlb_end = io_tlb_start + bytes;
229
230 /*
231 * Get the overflow emergency buffer
232 */
233 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
234 PAGE_ALIGN(io_tlb_overflow),
235 PAGE_SIZE);
236 if (!v_overflow_buffer)
237 return -ENOMEM;
238
239 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
240
241 /*
242 * Allocate and initialize the free list array. This array is used
243 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244 * between io_tlb_start and io_tlb_end.
245 */
246 io_tlb_list = memblock_virt_alloc(
247 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
248 PAGE_SIZE);
249 io_tlb_orig_addr = memblock_virt_alloc(
250 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
251 PAGE_SIZE);
252 for (i = 0; i < io_tlb_nslabs; i++) {
253 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
254 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
255 }
256 io_tlb_index = 0;
257
258 if (verbose)
259 swiotlb_print_info();
260
261 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
262 return 0;
263 }
264
265 /*
266 * Statically reserve bounce buffer space and initialize bounce buffer data
267 * structures for the software IO TLB used to implement the DMA API.
268 */
269 void __init
270 swiotlb_init(int verbose)
271 {
272 size_t default_size = IO_TLB_DEFAULT_SIZE;
273 unsigned char *vstart;
274 unsigned long bytes;
275
276 if (!io_tlb_nslabs) {
277 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
278 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
279 }
280
281 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
282
283 /* Get IO TLB memory from the low pages */
284 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
285 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
286 return;
287
288 if (io_tlb_start)
289 memblock_free_early(io_tlb_start,
290 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
291 pr_warn("Cannot allocate buffer");
292 no_iotlb_memory = true;
293 }
294
295 /*
296 * Systems with larger DMA zones (those that don't support ISA) can
297 * initialize the swiotlb later using the slab allocator if needed.
298 * This should be just like above, but with some error catching.
299 */
300 int
301 swiotlb_late_init_with_default_size(size_t default_size)
302 {
303 unsigned long bytes, req_nslabs = io_tlb_nslabs;
304 unsigned char *vstart = NULL;
305 unsigned int order;
306 int rc = 0;
307
308 if (!io_tlb_nslabs) {
309 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
310 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
311 }
312
313 /*
314 * Get IO TLB memory from the low pages
315 */
316 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
317 io_tlb_nslabs = SLABS_PER_PAGE << order;
318 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
319
320 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
321 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
322 order);
323 if (vstart)
324 break;
325 order--;
326 }
327
328 if (!vstart) {
329 io_tlb_nslabs = req_nslabs;
330 return -ENOMEM;
331 }
332 if (order != get_order(bytes)) {
333 pr_warn("only able to allocate %ld MB\n",
334 (PAGE_SIZE << order) >> 20);
335 io_tlb_nslabs = SLABS_PER_PAGE << order;
336 }
337 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
338 if (rc)
339 free_pages((unsigned long)vstart, order);
340
341 return rc;
342 }
343
344 int
345 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
346 {
347 unsigned long i, bytes;
348 unsigned char *v_overflow_buffer;
349
350 bytes = nslabs << IO_TLB_SHIFT;
351
352 io_tlb_nslabs = nslabs;
353 io_tlb_start = virt_to_phys(tlb);
354 io_tlb_end = io_tlb_start + bytes;
355
356 swiotlb_set_mem_attributes(tlb, bytes);
357 memset(tlb, 0, bytes);
358
359 /*
360 * Get the overflow emergency buffer
361 */
362 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
363 get_order(io_tlb_overflow));
364 if (!v_overflow_buffer)
365 goto cleanup2;
366
367 swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
368 memset(v_overflow_buffer, 0, io_tlb_overflow);
369 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
370
371 /*
372 * Allocate and initialize the free list array. This array is used
373 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
374 * between io_tlb_start and io_tlb_end.
375 */
376 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
377 get_order(io_tlb_nslabs * sizeof(int)));
378 if (!io_tlb_list)
379 goto cleanup3;
380
381 io_tlb_orig_addr = (phys_addr_t *)
382 __get_free_pages(GFP_KERNEL,
383 get_order(io_tlb_nslabs *
384 sizeof(phys_addr_t)));
385 if (!io_tlb_orig_addr)
386 goto cleanup4;
387
388 for (i = 0; i < io_tlb_nslabs; i++) {
389 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
390 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
391 }
392 io_tlb_index = 0;
393
394 swiotlb_print_info();
395
396 late_alloc = 1;
397
398 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
399
400 return 0;
401
402 cleanup4:
403 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
404 sizeof(int)));
405 io_tlb_list = NULL;
406 cleanup3:
407 free_pages((unsigned long)v_overflow_buffer,
408 get_order(io_tlb_overflow));
409 io_tlb_overflow_buffer = 0;
410 cleanup2:
411 io_tlb_end = 0;
412 io_tlb_start = 0;
413 io_tlb_nslabs = 0;
414 max_segment = 0;
415 return -ENOMEM;
416 }
417
418 void __init swiotlb_free(void)
419 {
420 if (!io_tlb_orig_addr)
421 return;
422
423 if (late_alloc) {
424 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
425 get_order(io_tlb_overflow));
426 free_pages((unsigned long)io_tlb_orig_addr,
427 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
428 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
429 sizeof(int)));
430 free_pages((unsigned long)phys_to_virt(io_tlb_start),
431 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
432 } else {
433 memblock_free_late(io_tlb_overflow_buffer,
434 PAGE_ALIGN(io_tlb_overflow));
435 memblock_free_late(__pa(io_tlb_orig_addr),
436 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
437 memblock_free_late(__pa(io_tlb_list),
438 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
439 memblock_free_late(io_tlb_start,
440 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
441 }
442 io_tlb_nslabs = 0;
443 max_segment = 0;
444 }
445
446 int is_swiotlb_buffer(phys_addr_t paddr)
447 {
448 return paddr >= io_tlb_start && paddr < io_tlb_end;
449 }
450
451 /*
452 * Bounce: copy the swiotlb buffer back to the original dma location
453 */
454 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
455 size_t size, enum dma_data_direction dir)
456 {
457 unsigned long pfn = PFN_DOWN(orig_addr);
458 unsigned char *vaddr = phys_to_virt(tlb_addr);
459
460 if (PageHighMem(pfn_to_page(pfn))) {
461 /* The buffer does not have a mapping. Map it in and copy */
462 unsigned int offset = orig_addr & ~PAGE_MASK;
463 char *buffer;
464 unsigned int sz = 0;
465 unsigned long flags;
466
467 while (size) {
468 sz = min_t(size_t, PAGE_SIZE - offset, size);
469
470 local_irq_save(flags);
471 buffer = kmap_atomic(pfn_to_page(pfn));
472 if (dir == DMA_TO_DEVICE)
473 memcpy(vaddr, buffer + offset, sz);
474 else
475 memcpy(buffer + offset, vaddr, sz);
476 kunmap_atomic(buffer);
477 local_irq_restore(flags);
478
479 size -= sz;
480 pfn++;
481 vaddr += sz;
482 offset = 0;
483 }
484 } else if (dir == DMA_TO_DEVICE) {
485 memcpy(vaddr, phys_to_virt(orig_addr), size);
486 } else {
487 memcpy(phys_to_virt(orig_addr), vaddr, size);
488 }
489 }
490
491 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
492 dma_addr_t tbl_dma_addr,
493 phys_addr_t orig_addr, size_t size,
494 enum dma_data_direction dir,
495 unsigned long attrs)
496 {
497 unsigned long flags;
498 phys_addr_t tlb_addr;
499 unsigned int nslots, stride, index, wrap;
500 int i;
501 unsigned long mask;
502 unsigned long offset_slots;
503 unsigned long max_slots;
504
505 if (no_iotlb_memory)
506 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
507
508 if (sme_active())
509 pr_warn_once("SME is active and system is using DMA bounce buffers\n");
510
511 mask = dma_get_seg_boundary(hwdev);
512
513 tbl_dma_addr &= mask;
514
515 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
516
517 /*
518 * Carefully handle integer overflow which can occur when mask == ~0UL.
519 */
520 max_slots = mask + 1
521 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
522 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
523
524 /*
525 * For mappings greater than or equal to a page, we limit the stride
526 * (and hence alignment) to a page size.
527 */
528 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
529 if (size >= PAGE_SIZE)
530 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
531 else
532 stride = 1;
533
534 BUG_ON(!nslots);
535
536 /*
537 * Find suitable number of IO TLB entries size that will fit this
538 * request and allocate a buffer from that IO TLB pool.
539 */
540 spin_lock_irqsave(&io_tlb_lock, flags);
541 index = ALIGN(io_tlb_index, stride);
542 if (index >= io_tlb_nslabs)
543 index = 0;
544 wrap = index;
545
546 do {
547 while (iommu_is_span_boundary(index, nslots, offset_slots,
548 max_slots)) {
549 index += stride;
550 if (index >= io_tlb_nslabs)
551 index = 0;
552 if (index == wrap)
553 goto not_found;
554 }
555
556 /*
557 * If we find a slot that indicates we have 'nslots' number of
558 * contiguous buffers, we allocate the buffers from that slot
559 * and mark the entries as '0' indicating unavailable.
560 */
561 if (io_tlb_list[index] >= nslots) {
562 int count = 0;
563
564 for (i = index; i < (int) (index + nslots); i++)
565 io_tlb_list[i] = 0;
566 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
567 io_tlb_list[i] = ++count;
568 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
569
570 /*
571 * Update the indices to avoid searching in the next
572 * round.
573 */
574 io_tlb_index = ((index + nslots) < io_tlb_nslabs
575 ? (index + nslots) : 0);
576
577 goto found;
578 }
579 index += stride;
580 if (index >= io_tlb_nslabs)
581 index = 0;
582 } while (index != wrap);
583
584 not_found:
585 spin_unlock_irqrestore(&io_tlb_lock, flags);
586 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
587 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
588 return SWIOTLB_MAP_ERROR;
589 found:
590 spin_unlock_irqrestore(&io_tlb_lock, flags);
591
592 /*
593 * Save away the mapping from the original address to the DMA address.
594 * This is needed when we sync the memory. Then we sync the buffer if
595 * needed.
596 */
597 for (i = 0; i < nslots; i++)
598 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
599 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
600 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
601 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
602
603 return tlb_addr;
604 }
605 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
606
607 /*
608 * Allocates bounce buffer and returns its kernel virtual address.
609 */
610
611 static phys_addr_t
612 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
613 enum dma_data_direction dir, unsigned long attrs)
614 {
615 dma_addr_t start_dma_addr;
616
617 if (swiotlb_force == SWIOTLB_NO_FORCE) {
618 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
619 &phys);
620 return SWIOTLB_MAP_ERROR;
621 }
622
623 start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
624 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
625 dir, attrs);
626 }
627
628 /*
629 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
630 */
631 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
632 size_t size, enum dma_data_direction dir,
633 unsigned long attrs)
634 {
635 unsigned long flags;
636 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
637 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
638 phys_addr_t orig_addr = io_tlb_orig_addr[index];
639
640 /*
641 * First, sync the memory before unmapping the entry
642 */
643 if (orig_addr != INVALID_PHYS_ADDR &&
644 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
645 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
646 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
647
648 /*
649 * Return the buffer to the free list by setting the corresponding
650 * entries to indicate the number of contiguous entries available.
651 * While returning the entries to the free list, we merge the entries
652 * with slots below and above the pool being returned.
653 */
654 spin_lock_irqsave(&io_tlb_lock, flags);
655 {
656 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
657 io_tlb_list[index + nslots] : 0);
658 /*
659 * Step 1: return the slots to the free list, merging the
660 * slots with superceeding slots
661 */
662 for (i = index + nslots - 1; i >= index; i--) {
663 io_tlb_list[i] = ++count;
664 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
665 }
666 /*
667 * Step 2: merge the returned slots with the preceding slots,
668 * if available (non zero)
669 */
670 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
671 io_tlb_list[i] = ++count;
672 }
673 spin_unlock_irqrestore(&io_tlb_lock, flags);
674 }
675 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
676
677 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
678 size_t size, enum dma_data_direction dir,
679 enum dma_sync_target target)
680 {
681 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
682 phys_addr_t orig_addr = io_tlb_orig_addr[index];
683
684 if (orig_addr == INVALID_PHYS_ADDR)
685 return;
686 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
687
688 switch (target) {
689 case SYNC_FOR_CPU:
690 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
691 swiotlb_bounce(orig_addr, tlb_addr,
692 size, DMA_FROM_DEVICE);
693 else
694 BUG_ON(dir != DMA_TO_DEVICE);
695 break;
696 case SYNC_FOR_DEVICE:
697 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
698 swiotlb_bounce(orig_addr, tlb_addr,
699 size, DMA_TO_DEVICE);
700 else
701 BUG_ON(dir != DMA_FROM_DEVICE);
702 break;
703 default:
704 BUG();
705 }
706 }
707 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
708
709 void *
710 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
711 dma_addr_t *dma_handle, gfp_t flags)
712 {
713 bool warn = !(flags & __GFP_NOWARN);
714 dma_addr_t dev_addr;
715 void *ret;
716 int order = get_order(size);
717 u64 dma_mask = DMA_BIT_MASK(32);
718
719 if (hwdev && hwdev->coherent_dma_mask)
720 dma_mask = hwdev->coherent_dma_mask;
721
722 ret = (void *)__get_free_pages(flags, order);
723 if (ret) {
724 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
725 if (dev_addr + size - 1 > dma_mask) {
726 /*
727 * The allocated memory isn't reachable by the device.
728 */
729 free_pages((unsigned long) ret, order);
730 ret = NULL;
731 }
732 }
733 if (!ret) {
734 /*
735 * We are either out of memory or the device can't DMA to
736 * GFP_DMA memory; fall back on map_single(), which
737 * will grab memory from the lowest available address range.
738 */
739 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE,
740 warn ? 0 : DMA_ATTR_NO_WARN);
741 if (paddr == SWIOTLB_MAP_ERROR)
742 goto err_warn;
743
744 ret = phys_to_virt(paddr);
745 dev_addr = swiotlb_phys_to_dma(hwdev, paddr);
746
747 /* Confirm address can be DMA'd by device */
748 if (dev_addr + size - 1 > dma_mask) {
749 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
750 (unsigned long long)dma_mask,
751 (unsigned long long)dev_addr);
752
753 /*
754 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
755 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
756 */
757 swiotlb_tbl_unmap_single(hwdev, paddr,
758 size, DMA_TO_DEVICE,
759 DMA_ATTR_SKIP_CPU_SYNC);
760 goto err_warn;
761 }
762 }
763
764 *dma_handle = dev_addr;
765 memset(ret, 0, size);
766
767 return ret;
768
769 err_warn:
770 if (warn && printk_ratelimit()) {
771 pr_warn("coherent allocation failed for device %s size=%zu\n",
772 dev_name(hwdev), size);
773 dump_stack();
774 }
775
776 return NULL;
777 }
778 EXPORT_SYMBOL(swiotlb_alloc_coherent);
779
780 void
781 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
782 dma_addr_t dev_addr)
783 {
784 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
785
786 WARN_ON(irqs_disabled());
787 if (!is_swiotlb_buffer(paddr))
788 free_pages((unsigned long)vaddr, get_order(size));
789 else
790 /*
791 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
792 * DMA_ATTR_SKIP_CPU_SYNC is optional.
793 */
794 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
795 DMA_ATTR_SKIP_CPU_SYNC);
796 }
797 EXPORT_SYMBOL(swiotlb_free_coherent);
798
799 static void
800 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
801 int do_panic)
802 {
803 if (swiotlb_force == SWIOTLB_NO_FORCE)
804 return;
805
806 /*
807 * Ran out of IOMMU space for this operation. This is very bad.
808 * Unfortunately the drivers cannot handle this operation properly.
809 * unless they check for dma_mapping_error (most don't)
810 * When the mapping is small enough return a static buffer to limit
811 * the damage, or panic when the transfer is too big.
812 */
813 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
814 size);
815
816 if (size <= io_tlb_overflow || !do_panic)
817 return;
818
819 if (dir == DMA_BIDIRECTIONAL)
820 panic("DMA: Random memory could be DMA accessed\n");
821 if (dir == DMA_FROM_DEVICE)
822 panic("DMA: Random memory could be DMA written\n");
823 if (dir == DMA_TO_DEVICE)
824 panic("DMA: Random memory could be DMA read\n");
825 }
826
827 /*
828 * Map a single buffer of the indicated size for DMA in streaming mode. The
829 * physical address to use is returned.
830 *
831 * Once the device is given the dma address, the device owns this memory until
832 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
833 */
834 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
835 unsigned long offset, size_t size,
836 enum dma_data_direction dir,
837 unsigned long attrs)
838 {
839 phys_addr_t map, phys = page_to_phys(page) + offset;
840 dma_addr_t dev_addr = phys_to_dma(dev, phys);
841
842 BUG_ON(dir == DMA_NONE);
843 /*
844 * If the address happens to be in the device's DMA window,
845 * we can safely return the device addr and not worry about bounce
846 * buffering it.
847 */
848 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
849 return dev_addr;
850
851 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
852
853 /* Oh well, have to allocate and map a bounce buffer. */
854 map = map_single(dev, phys, size, dir, attrs);
855 if (map == SWIOTLB_MAP_ERROR) {
856 swiotlb_full(dev, size, dir, 1);
857 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
858 }
859
860 dev_addr = swiotlb_phys_to_dma(dev, map);
861
862 /* Ensure that the address returned is DMA'ble */
863 if (dma_capable(dev, dev_addr, size))
864 return dev_addr;
865
866 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
867 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
868
869 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
870 }
871 EXPORT_SYMBOL_GPL(swiotlb_map_page);
872
873 /*
874 * Unmap a single streaming mode DMA translation. The dma_addr and size must
875 * match what was provided for in a previous swiotlb_map_page call. All
876 * other usages are undefined.
877 *
878 * After this call, reads by the cpu to the buffer are guaranteed to see
879 * whatever the device wrote there.
880 */
881 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
882 size_t size, enum dma_data_direction dir,
883 unsigned long attrs)
884 {
885 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
886
887 BUG_ON(dir == DMA_NONE);
888
889 if (is_swiotlb_buffer(paddr)) {
890 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
891 return;
892 }
893
894 if (dir != DMA_FROM_DEVICE)
895 return;
896
897 /*
898 * phys_to_virt doesn't work with hihgmem page but we could
899 * call dma_mark_clean() with hihgmem page here. However, we
900 * are fine since dma_mark_clean() is null on POWERPC. We can
901 * make dma_mark_clean() take a physical address if necessary.
902 */
903 dma_mark_clean(phys_to_virt(paddr), size);
904 }
905
906 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
907 size_t size, enum dma_data_direction dir,
908 unsigned long attrs)
909 {
910 unmap_single(hwdev, dev_addr, size, dir, attrs);
911 }
912 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
913
914 /*
915 * Make physical memory consistent for a single streaming mode DMA translation
916 * after a transfer.
917 *
918 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
919 * using the cpu, yet do not wish to teardown the dma mapping, you must
920 * call this function before doing so. At the next point you give the dma
921 * address back to the card, you must first perform a
922 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
923 */
924 static void
925 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
926 size_t size, enum dma_data_direction dir,
927 enum dma_sync_target target)
928 {
929 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
930
931 BUG_ON(dir == DMA_NONE);
932
933 if (is_swiotlb_buffer(paddr)) {
934 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
935 return;
936 }
937
938 if (dir != DMA_FROM_DEVICE)
939 return;
940
941 dma_mark_clean(phys_to_virt(paddr), size);
942 }
943
944 void
945 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
946 size_t size, enum dma_data_direction dir)
947 {
948 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
949 }
950 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
951
952 void
953 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
954 size_t size, enum dma_data_direction dir)
955 {
956 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
957 }
958 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
959
960 /*
961 * Map a set of buffers described by scatterlist in streaming mode for DMA.
962 * This is the scatter-gather version of the above swiotlb_map_page
963 * interface. Here the scatter gather list elements are each tagged with the
964 * appropriate dma address and length. They are obtained via
965 * sg_dma_{address,length}(SG).
966 *
967 * NOTE: An implementation may be able to use a smaller number of
968 * DMA address/length pairs than there are SG table elements.
969 * (for example via virtual mapping capabilities)
970 * The routine returns the number of addr/length pairs actually
971 * used, at most nents.
972 *
973 * Device ownership issues as mentioned above for swiotlb_map_page are the
974 * same here.
975 */
976 int
977 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
978 enum dma_data_direction dir, unsigned long attrs)
979 {
980 struct scatterlist *sg;
981 int i;
982
983 BUG_ON(dir == DMA_NONE);
984
985 for_each_sg(sgl, sg, nelems, i) {
986 phys_addr_t paddr = sg_phys(sg);
987 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
988
989 if (swiotlb_force == SWIOTLB_FORCE ||
990 !dma_capable(hwdev, dev_addr, sg->length)) {
991 phys_addr_t map = map_single(hwdev, sg_phys(sg),
992 sg->length, dir, attrs);
993 if (map == SWIOTLB_MAP_ERROR) {
994 /* Don't panic here, we expect map_sg users
995 to do proper error handling. */
996 swiotlb_full(hwdev, sg->length, dir, 0);
997 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
998 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
999 attrs);
1000 sg_dma_len(sgl) = 0;
1001 return 0;
1002 }
1003 sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1004 } else
1005 sg->dma_address = dev_addr;
1006 sg_dma_len(sg) = sg->length;
1007 }
1008 return nelems;
1009 }
1010 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
1011
1012 /*
1013 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
1014 * concerning calls here are the same as for swiotlb_unmap_page() above.
1015 */
1016 void
1017 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
1018 int nelems, enum dma_data_direction dir,
1019 unsigned long attrs)
1020 {
1021 struct scatterlist *sg;
1022 int i;
1023
1024 BUG_ON(dir == DMA_NONE);
1025
1026 for_each_sg(sgl, sg, nelems, i)
1027 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1028 attrs);
1029 }
1030 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
1031
1032 /*
1033 * Make physical memory consistent for a set of streaming mode DMA translations
1034 * after a transfer.
1035 *
1036 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1037 * and usage.
1038 */
1039 static void
1040 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1041 int nelems, enum dma_data_direction dir,
1042 enum dma_sync_target target)
1043 {
1044 struct scatterlist *sg;
1045 int i;
1046
1047 for_each_sg(sgl, sg, nelems, i)
1048 swiotlb_sync_single(hwdev, sg->dma_address,
1049 sg_dma_len(sg), dir, target);
1050 }
1051
1052 void
1053 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1054 int nelems, enum dma_data_direction dir)
1055 {
1056 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1057 }
1058 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
1059
1060 void
1061 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1062 int nelems, enum dma_data_direction dir)
1063 {
1064 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1065 }
1066 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1067
1068 int
1069 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1070 {
1071 return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1072 }
1073 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1074
1075 /*
1076 * Return whether the given device DMA address mask can be supported
1077 * properly. For example, if your device can only drive the low 24-bits
1078 * during bus mastering, then you would pass 0x00ffffff as the mask to
1079 * this function.
1080 */
1081 int
1082 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1083 {
1084 return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1085 }
1086 EXPORT_SYMBOL(swiotlb_dma_supported);