arm64: dts: Keep VCCQ power when S2R mode for Sandisk UFS
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / lib / idr.c
1 #include <linux/bitmap.h>
2 #include <linux/export.h>
3 #include <linux/idr.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6
7 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
8 static DEFINE_SPINLOCK(simple_ida_lock);
9
10 int idr_alloc_cmn(struct idr *idr, void *ptr, unsigned long *index,
11 unsigned long start, unsigned long end, gfp_t gfp,
12 bool ext)
13 {
14 struct radix_tree_iter iter;
15 void __rcu **slot;
16
17 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
18 return -EINVAL;
19
20 radix_tree_iter_init(&iter, start);
21 if (ext)
22 slot = idr_get_free_ext(&idr->idr_rt, &iter, gfp, end);
23 else
24 slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
25 if (IS_ERR(slot))
26 return PTR_ERR(slot);
27
28 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
29 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
30
31 if (index)
32 *index = iter.index;
33 return 0;
34 }
35 EXPORT_SYMBOL_GPL(idr_alloc_cmn);
36
37 /**
38 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
39 * @idr: idr handle
40 * @ptr: pointer to be associated with the new id
41 * @start: the minimum id (inclusive)
42 * @end: the maximum id (exclusive)
43 * @gfp: memory allocation flags
44 *
45 * Allocates an ID larger than the last ID allocated if one is available.
46 * If not, it will attempt to allocate the smallest ID that is larger or
47 * equal to @start.
48 */
49 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
50 {
51 int id, curr = idr->idr_next;
52
53 if (curr < start)
54 curr = start;
55
56 id = idr_alloc(idr, ptr, curr, end, gfp);
57 if ((id == -ENOSPC) && (curr > start))
58 id = idr_alloc(idr, ptr, start, curr, gfp);
59
60 if (id >= 0)
61 idr->idr_next = id + 1U;
62
63 return id;
64 }
65 EXPORT_SYMBOL(idr_alloc_cyclic);
66
67 /**
68 * idr_for_each - iterate through all stored pointers
69 * @idr: idr handle
70 * @fn: function to be called for each pointer
71 * @data: data passed to callback function
72 *
73 * The callback function will be called for each entry in @idr, passing
74 * the id, the pointer and the data pointer passed to this function.
75 *
76 * If @fn returns anything other than %0, the iteration stops and that
77 * value is returned from this function.
78 *
79 * idr_for_each() can be called concurrently with idr_alloc() and
80 * idr_remove() if protected by RCU. Newly added entries may not be
81 * seen and deleted entries may be seen, but adding and removing entries
82 * will not cause other entries to be skipped, nor spurious ones to be seen.
83 */
84 int idr_for_each(const struct idr *idr,
85 int (*fn)(int id, void *p, void *data), void *data)
86 {
87 struct radix_tree_iter iter;
88 void __rcu **slot;
89
90 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
91 int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
92 if (ret)
93 return ret;
94 }
95
96 return 0;
97 }
98 EXPORT_SYMBOL(idr_for_each);
99
100 /**
101 * idr_get_next - Find next populated entry
102 * @idr: idr handle
103 * @nextid: Pointer to lowest possible ID to return
104 *
105 * Returns the next populated entry in the tree with an ID greater than
106 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
107 * to the ID of the found value. To use in a loop, the value pointed to by
108 * nextid must be incremented by the user.
109 */
110 void *idr_get_next(struct idr *idr, int *nextid)
111 {
112 struct radix_tree_iter iter;
113 void __rcu **slot;
114
115 slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
116 if (!slot)
117 return NULL;
118
119 *nextid = iter.index;
120 return rcu_dereference_raw(*slot);
121 }
122 EXPORT_SYMBOL(idr_get_next);
123
124 void *idr_get_next_ext(struct idr *idr, unsigned long *nextid)
125 {
126 struct radix_tree_iter iter;
127 void __rcu **slot;
128
129 slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
130 if (!slot)
131 return NULL;
132
133 *nextid = iter.index;
134 return rcu_dereference_raw(*slot);
135 }
136 EXPORT_SYMBOL(idr_get_next_ext);
137
138 /**
139 * idr_replace - replace pointer for given id
140 * @idr: idr handle
141 * @ptr: New pointer to associate with the ID
142 * @id: Lookup key
143 *
144 * Replace the pointer registered with an ID and return the old value.
145 * This function can be called under the RCU read lock concurrently with
146 * idr_alloc() and idr_remove() (as long as the ID being removed is not
147 * the one being replaced!).
148 *
149 * Returns: the old value on success. %-ENOENT indicates that @id was not
150 * found. %-EINVAL indicates that @id or @ptr were not valid.
151 */
152 void *idr_replace(struct idr *idr, void *ptr, int id)
153 {
154 if (id < 0)
155 return ERR_PTR(-EINVAL);
156
157 return idr_replace_ext(idr, ptr, id);
158 }
159 EXPORT_SYMBOL(idr_replace);
160
161 void *idr_replace_ext(struct idr *idr, void *ptr, unsigned long id)
162 {
163 struct radix_tree_node *node;
164 void __rcu **slot = NULL;
165 void *entry;
166
167 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
168 return ERR_PTR(-EINVAL);
169
170 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
171 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
172 return ERR_PTR(-ENOENT);
173
174 __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL);
175
176 return entry;
177 }
178 EXPORT_SYMBOL(idr_replace_ext);
179
180 /**
181 * DOC: IDA description
182 *
183 * The IDA is an ID allocator which does not provide the ability to
184 * associate an ID with a pointer. As such, it only needs to store one
185 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
186 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
187 * then initialise it using ida_init()). To allocate a new ID, call
188 * ida_simple_get(). To free an ID, call ida_simple_remove().
189 *
190 * If you have more complex locking requirements, use a loop around
191 * ida_pre_get() and ida_get_new() to allocate a new ID. Then use
192 * ida_remove() to free an ID. You must make sure that ida_get_new() and
193 * ida_remove() cannot be called at the same time as each other for the
194 * same IDA.
195 *
196 * You can also use ida_get_new_above() if you need an ID to be allocated
197 * above a particular number. ida_destroy() can be used to dispose of an
198 * IDA without needing to free the individual IDs in it. You can use
199 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
200 *
201 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
202 * limitation, it should be quite straightforward to raise the maximum.
203 */
204
205 /*
206 * Developer's notes:
207 *
208 * The IDA uses the functionality provided by the IDR & radix tree to store
209 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit
210 * free, unlike the IDR where it means at least one entry is free.
211 *
212 * I considered telling the radix tree that each slot is an order-10 node
213 * and storing the bit numbers in the radix tree, but the radix tree can't
214 * allow a single multiorder entry at index 0, which would significantly
215 * increase memory consumption for the IDA. So instead we divide the index
216 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
217 *
218 * As an optimisation, if there are only a few low bits set in any given
219 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
220 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
221 * directly in the entry. By being really tricksy, we could store
222 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
223 * for 0-3 allocated IDs.
224 *
225 * We allow the radix tree 'exceptional' count to get out of date. Nothing
226 * in the IDA nor the radix tree code checks it. If it becomes important
227 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
228 * calls to radix_tree_iter_replace() which will correct the exceptional
229 * count.
230 *
231 * The IDA always requires a lock to alloc/free. If we add a 'test_bit'
232 * equivalent, it will still need locking. Going to RCU lookup would require
233 * using RCU to free bitmaps, and that's not trivial without embedding an
234 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
235 * bitmap, which is excessive.
236 */
237
238 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)
239
240 /**
241 * ida_get_new_above - allocate new ID above or equal to a start id
242 * @ida: ida handle
243 * @start: id to start search at
244 * @id: pointer to the allocated handle
245 *
246 * Allocate new ID above or equal to @start. It should be called
247 * with any required locks to ensure that concurrent calls to
248 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
249 * Consider using ida_simple_get() if you do not have complex locking
250 * requirements.
251 *
252 * If memory is required, it will return %-EAGAIN, you should unlock
253 * and go back to the ida_pre_get() call. If the ida is full, it will
254 * return %-ENOSPC. On success, it will return 0.
255 *
256 * @id returns a value in the range @start ... %0x7fffffff.
257 */
258 int ida_get_new_above(struct ida *ida, int start, int *id)
259 {
260 struct radix_tree_root *root = &ida->ida_rt;
261 void __rcu **slot;
262 struct radix_tree_iter iter;
263 struct ida_bitmap *bitmap;
264 unsigned long index;
265 unsigned bit, ebit;
266 int new;
267
268 index = start / IDA_BITMAP_BITS;
269 bit = start % IDA_BITMAP_BITS;
270 ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
271
272 slot = radix_tree_iter_init(&iter, index);
273 for (;;) {
274 if (slot)
275 slot = radix_tree_next_slot(slot, &iter,
276 RADIX_TREE_ITER_TAGGED);
277 if (!slot) {
278 slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
279 if (IS_ERR(slot)) {
280 if (slot == ERR_PTR(-ENOMEM))
281 return -EAGAIN;
282 return PTR_ERR(slot);
283 }
284 }
285 if (iter.index > index) {
286 bit = 0;
287 ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
288 }
289 new = iter.index * IDA_BITMAP_BITS;
290 bitmap = rcu_dereference_raw(*slot);
291 if (radix_tree_exception(bitmap)) {
292 unsigned long tmp = (unsigned long)bitmap;
293 ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
294 if (ebit < BITS_PER_LONG) {
295 tmp |= 1UL << ebit;
296 rcu_assign_pointer(*slot, (void *)tmp);
297 *id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
298 return 0;
299 }
300 bitmap = this_cpu_xchg(ida_bitmap, NULL);
301 if (!bitmap)
302 return -EAGAIN;
303 memset(bitmap, 0, sizeof(*bitmap));
304 bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
305 rcu_assign_pointer(*slot, bitmap);
306 }
307
308 if (bitmap) {
309 bit = find_next_zero_bit(bitmap->bitmap,
310 IDA_BITMAP_BITS, bit);
311 new += bit;
312 if (new < 0)
313 return -ENOSPC;
314 if (bit == IDA_BITMAP_BITS)
315 continue;
316
317 __set_bit(bit, bitmap->bitmap);
318 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
319 radix_tree_iter_tag_clear(root, &iter,
320 IDR_FREE);
321 } else {
322 new += bit;
323 if (new < 0)
324 return -ENOSPC;
325 if (ebit < BITS_PER_LONG) {
326 bitmap = (void *)((1UL << ebit) |
327 RADIX_TREE_EXCEPTIONAL_ENTRY);
328 radix_tree_iter_replace(root, &iter, slot,
329 bitmap);
330 *id = new;
331 return 0;
332 }
333 bitmap = this_cpu_xchg(ida_bitmap, NULL);
334 if (!bitmap)
335 return -EAGAIN;
336 memset(bitmap, 0, sizeof(*bitmap));
337 __set_bit(bit, bitmap->bitmap);
338 radix_tree_iter_replace(root, &iter, slot, bitmap);
339 }
340
341 *id = new;
342 return 0;
343 }
344 }
345 EXPORT_SYMBOL(ida_get_new_above);
346
347 /**
348 * ida_remove - Free the given ID
349 * @ida: ida handle
350 * @id: ID to free
351 *
352 * This function should not be called at the same time as ida_get_new_above().
353 */
354 void ida_remove(struct ida *ida, int id)
355 {
356 unsigned long index = id / IDA_BITMAP_BITS;
357 unsigned offset = id % IDA_BITMAP_BITS;
358 struct ida_bitmap *bitmap;
359 unsigned long *btmp;
360 struct radix_tree_iter iter;
361 void __rcu **slot;
362
363 slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
364 if (!slot)
365 goto err;
366
367 bitmap = rcu_dereference_raw(*slot);
368 if (radix_tree_exception(bitmap)) {
369 btmp = (unsigned long *)slot;
370 offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
371 if (offset >= BITS_PER_LONG)
372 goto err;
373 } else {
374 btmp = bitmap->bitmap;
375 }
376 if (!test_bit(offset, btmp))
377 goto err;
378
379 __clear_bit(offset, btmp);
380 radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
381 if (radix_tree_exception(bitmap)) {
382 if (rcu_dereference_raw(*slot) ==
383 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
384 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
385 } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
386 kfree(bitmap);
387 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
388 }
389 return;
390 err:
391 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
392 }
393 EXPORT_SYMBOL(ida_remove);
394
395 /**
396 * ida_destroy - Free the contents of an ida
397 * @ida: ida handle
398 *
399 * Calling this function releases all resources associated with an IDA. When
400 * this call returns, the IDA is empty and can be reused or freed. The caller
401 * should not allow ida_remove() or ida_get_new_above() to be called at the
402 * same time.
403 */
404 void ida_destroy(struct ida *ida)
405 {
406 struct radix_tree_iter iter;
407 void __rcu **slot;
408
409 radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
410 struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
411 if (!radix_tree_exception(bitmap))
412 kfree(bitmap);
413 radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
414 }
415 }
416 EXPORT_SYMBOL(ida_destroy);
417
418 /**
419 * ida_simple_get - get a new id.
420 * @ida: the (initialized) ida.
421 * @start: the minimum id (inclusive, < 0x8000000)
422 * @end: the maximum id (exclusive, < 0x8000000 or 0)
423 * @gfp_mask: memory allocation flags
424 *
425 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
426 * On memory allocation failure, returns -ENOMEM.
427 *
428 * Compared to ida_get_new_above() this function does its own locking, and
429 * should be used unless there are special requirements.
430 *
431 * Use ida_simple_remove() to get rid of an id.
432 */
433 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
434 gfp_t gfp_mask)
435 {
436 int ret, id;
437 unsigned int max;
438 unsigned long flags;
439
440 BUG_ON((int)start < 0);
441 BUG_ON((int)end < 0);
442
443 if (end == 0)
444 max = 0x80000000;
445 else {
446 BUG_ON(end < start);
447 max = end - 1;
448 }
449
450 again:
451 if (!ida_pre_get(ida, gfp_mask))
452 return -ENOMEM;
453
454 spin_lock_irqsave(&simple_ida_lock, flags);
455 ret = ida_get_new_above(ida, start, &id);
456 if (!ret) {
457 if (id > max) {
458 ida_remove(ida, id);
459 ret = -ENOSPC;
460 } else {
461 ret = id;
462 }
463 }
464 spin_unlock_irqrestore(&simple_ida_lock, flags);
465
466 if (unlikely(ret == -EAGAIN))
467 goto again;
468
469 return ret;
470 }
471 EXPORT_SYMBOL(ida_simple_get);
472
473 /**
474 * ida_simple_remove - remove an allocated id.
475 * @ida: the (initialized) ida.
476 * @id: the id returned by ida_simple_get.
477 *
478 * Use to release an id allocated with ida_simple_get().
479 *
480 * Compared to ida_remove() this function does its own locking, and should be
481 * used unless there are special requirements.
482 */
483 void ida_simple_remove(struct ida *ida, unsigned int id)
484 {
485 unsigned long flags;
486
487 BUG_ON((int)id < 0);
488 spin_lock_irqsave(&simple_ida_lock, flags);
489 ida_remove(ida, id);
490 spin_unlock_irqrestore(&simple_ida_lock, flags);
491 }
492 EXPORT_SYMBOL(ida_simple_remove);