[RAMEN9610-21029]rtlwifi: Fix potential overflow on P2P code
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/nmi.h>
52 #include <linux/debug-snapshot.h>
53
54 #include "workqueue_internal.h"
55
56 enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: pool->attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * sched-RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145 /* struct worker is defined in workqueue_internal.h */
146
147 struct worker_pool {
148 spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157 int nr_workers; /* L: total number of workers */
158
159 /* nr_idle includes the ones off idle_list for rebinding */
160 int nr_idle; /* L: currently idle ones */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 /* see manage_workers() for details on the two manager mutexes */
171 struct worker *manager; /* L: purely informational */
172 struct mutex attach_mutex; /* attach/detach exclusion */
173 struct list_head workers; /* A: attached workers */
174 struct completion *detach_completion; /* all workers detached */
175
176 struct ida worker_ida; /* worker IDs for task name */
177
178 struct workqueue_attrs *attrs; /* I: worker attributes */
179 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
180 int refcnt; /* PL: refcnt for unbound pools */
181
182 /*
183 * The current concurrency level. As it's likely to be accessed
184 * from other CPUs during try_to_wake_up(), put it in a separate
185 * cacheline.
186 */
187 atomic_t nr_running ____cacheline_aligned_in_smp;
188
189 /*
190 * Destruction of pool is sched-RCU protected to allow dereferences
191 * from get_work_pool().
192 */
193 struct rcu_head rcu;
194 } ____cacheline_aligned_in_smp;
195
196 /*
197 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
198 * of work_struct->data are used for flags and the remaining high bits
199 * point to the pwq; thus, pwqs need to be aligned at two's power of the
200 * number of flag bits.
201 */
202 struct pool_workqueue {
203 struct worker_pool *pool; /* I: the associated pool */
204 struct workqueue_struct *wq; /* I: the owning workqueue */
205 int work_color; /* L: current color */
206 int flush_color; /* L: flushing color */
207 int refcnt; /* L: reference count */
208 int nr_in_flight[WORK_NR_COLORS];
209 /* L: nr of in_flight works */
210 int nr_active; /* L: nr of active works */
211 int max_active; /* L: max active works */
212 struct list_head delayed_works; /* L: delayed works */
213 struct list_head pwqs_node; /* WR: node on wq->pwqs */
214 struct list_head mayday_node; /* MD: node on wq->maydays */
215
216 /*
217 * Release of unbound pwq is punted to system_wq. See put_pwq()
218 * and pwq_unbound_release_workfn() for details. pool_workqueue
219 * itself is also sched-RCU protected so that the first pwq can be
220 * determined without grabbing wq->mutex.
221 */
222 struct work_struct unbound_release_work;
223 struct rcu_head rcu;
224 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
225
226 /*
227 * Structure used to wait for workqueue flush.
228 */
229 struct wq_flusher {
230 struct list_head list; /* WQ: list of flushers */
231 int flush_color; /* WQ: flush color waiting for */
232 struct completion done; /* flush completion */
233 };
234
235 struct wq_device;
236
237 /*
238 * The externally visible workqueue. It relays the issued work items to
239 * the appropriate worker_pool through its pool_workqueues.
240 */
241 struct workqueue_struct {
242 struct list_head pwqs; /* WR: all pwqs of this wq */
243 struct list_head list; /* PR: list of all workqueues */
244
245 struct mutex mutex; /* protects this wq */
246 int work_color; /* WQ: current work color */
247 int flush_color; /* WQ: current flush color */
248 atomic_t nr_pwqs_to_flush; /* flush in progress */
249 struct wq_flusher *first_flusher; /* WQ: first flusher */
250 struct list_head flusher_queue; /* WQ: flush waiters */
251 struct list_head flusher_overflow; /* WQ: flush overflow list */
252
253 struct list_head maydays; /* MD: pwqs requesting rescue */
254 struct worker *rescuer; /* I: rescue worker */
255
256 int nr_drainers; /* WQ: drain in progress */
257 int saved_max_active; /* WQ: saved pwq max_active */
258
259 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
260 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
261
262 #ifdef CONFIG_SYSFS
263 struct wq_device *wq_dev; /* I: for sysfs interface */
264 #endif
265 #ifdef CONFIG_LOCKDEP
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[WQ_NAME_LEN]; /* I: workqueue name */
269
270 /*
271 * Destruction of workqueue_struct is sched-RCU protected to allow
272 * walking the workqueues list without grabbing wq_pool_mutex.
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282
283 static struct kmem_cache *pwq_cache;
284
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
295 static bool wq_online; /* can kworkers be created yet? */
296
297 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
302 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305
306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
307 static bool workqueue_freezing; /* PL: have wqs started freezing? */
308
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314
315 /*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329
330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
331
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358
359 #define CREATE_TRACE_POINTS
360 #include <trace/events/workqueue.h>
361
362 #define assert_rcu_or_pool_mutex() \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq_pool_mutex), \
365 "sched RCU or wq_pool_mutex should be held")
366
367 #define assert_rcu_or_wq_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex), \
370 "sched RCU or wq->mutex should be held")
371
372 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
373 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
374 !lockdep_is_held(&wq->mutex) && \
375 !lockdep_is_held(&wq_pool_mutex), \
376 "sched RCU, wq->mutex or wq_pool_mutex should be held")
377
378 #define for_each_cpu_worker_pool(pool, cpu) \
379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
381 (pool)++)
382
383 /**
384 * for_each_pool - iterate through all worker_pools in the system
385 * @pool: iteration cursor
386 * @pi: integer used for iteration
387 *
388 * This must be called either with wq_pool_mutex held or sched RCU read
389 * locked. If the pool needs to be used beyond the locking in effect, the
390 * caller is responsible for guaranteeing that the pool stays online.
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
394 */
395 #define for_each_pool(pool, pi) \
396 idr_for_each_entry(&worker_pool_idr, pool, pi) \
397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
398 else
399
400 /**
401 * for_each_pool_worker - iterate through all workers of a worker_pool
402 * @worker: iteration cursor
403 * @pool: worker_pool to iterate workers of
404 *
405 * This must be called with @pool->attach_mutex.
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
410 #define for_each_pool_worker(worker, pool) \
411 list_for_each_entry((worker), &(pool)->workers, node) \
412 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
413 else
414
415 /**
416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417 * @pwq: iteration cursor
418 * @wq: the target workqueue
419 *
420 * This must be called either with wq->mutex held or sched RCU read locked.
421 * If the pwq needs to be used beyond the locking in effect, the caller is
422 * responsible for guaranteeing that the pwq stays online.
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
426 */
427 #define for_each_pwq(pwq, wq) \
428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
430 else
431
432 #ifdef CONFIG_DEBUG_OBJECTS_WORK
433
434 static struct debug_obj_descr work_debug_descr;
435
436 static void *work_debug_hint(void *addr)
437 {
438 return ((struct work_struct *) addr)->func;
439 }
440
441 static bool work_is_static_object(void *addr)
442 {
443 struct work_struct *work = addr;
444
445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446 }
447
448 /*
449 * fixup_init is called when:
450 * - an active object is initialized
451 */
452 static bool work_fixup_init(void *addr, enum debug_obj_state state)
453 {
454 struct work_struct *work = addr;
455
456 switch (state) {
457 case ODEBUG_STATE_ACTIVE:
458 cancel_work_sync(work);
459 debug_object_init(work, &work_debug_descr);
460 return true;
461 default:
462 return false;
463 }
464 }
465
466 /*
467 * fixup_free is called when:
468 * - an active object is freed
469 */
470 static bool work_fixup_free(void *addr, enum debug_obj_state state)
471 {
472 struct work_struct *work = addr;
473
474 switch (state) {
475 case ODEBUG_STATE_ACTIVE:
476 cancel_work_sync(work);
477 debug_object_free(work, &work_debug_descr);
478 return true;
479 default:
480 return false;
481 }
482 }
483
484 static struct debug_obj_descr work_debug_descr = {
485 .name = "work_struct",
486 .debug_hint = work_debug_hint,
487 .is_static_object = work_is_static_object,
488 .fixup_init = work_fixup_init,
489 .fixup_free = work_fixup_free,
490 };
491
492 static inline void debug_work_activate(struct work_struct *work)
493 {
494 debug_object_activate(work, &work_debug_descr);
495 }
496
497 static inline void debug_work_deactivate(struct work_struct *work)
498 {
499 debug_object_deactivate(work, &work_debug_descr);
500 }
501
502 void __init_work(struct work_struct *work, int onstack)
503 {
504 if (onstack)
505 debug_object_init_on_stack(work, &work_debug_descr);
506 else
507 debug_object_init(work, &work_debug_descr);
508 }
509 EXPORT_SYMBOL_GPL(__init_work);
510
511 void destroy_work_on_stack(struct work_struct *work)
512 {
513 debug_object_free(work, &work_debug_descr);
514 }
515 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516
517 void destroy_delayed_work_on_stack(struct delayed_work *work)
518 {
519 destroy_timer_on_stack(&work->timer);
520 debug_object_free(&work->work, &work_debug_descr);
521 }
522 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523
524 #else
525 static inline void debug_work_activate(struct work_struct *work) { }
526 static inline void debug_work_deactivate(struct work_struct *work) { }
527 #endif
528
529 /**
530 * worker_pool_assign_id - allocate ID and assing it to @pool
531 * @pool: the pool pointer of interest
532 *
533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534 * successfully, -errno on failure.
535 */
536 static int worker_pool_assign_id(struct worker_pool *pool)
537 {
538 int ret;
539
540 lockdep_assert_held(&wq_pool_mutex);
541
542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 GFP_KERNEL);
544 if (ret >= 0) {
545 pool->id = ret;
546 return 0;
547 }
548 return ret;
549 }
550
551 /**
552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553 * @wq: the target workqueue
554 * @node: the node ID
555 *
556 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
557 * read locked.
558 * If the pwq needs to be used beyond the locking in effect, the caller is
559 * responsible for guaranteeing that the pwq stays online.
560 *
561 * Return: The unbound pool_workqueue for @node.
562 */
563 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
564 int node)
565 {
566 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
567
568 /*
569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
570 * delayed item is pending. The plan is to keep CPU -> NODE
571 * mapping valid and stable across CPU on/offlines. Once that
572 * happens, this workaround can be removed.
573 */
574 if (unlikely(node == NUMA_NO_NODE))
575 return wq->dfl_pwq;
576
577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578 }
579
580 static unsigned int work_color_to_flags(int color)
581 {
582 return color << WORK_STRUCT_COLOR_SHIFT;
583 }
584
585 static int get_work_color(struct work_struct *work)
586 {
587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
589 }
590
591 static int work_next_color(int color)
592 {
593 return (color + 1) % WORK_NR_COLORS;
594 }
595
596 /*
597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598 * contain the pointer to the queued pwq. Once execution starts, the flag
599 * is cleared and the high bits contain OFFQ flags and pool ID.
600 *
601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602 * and clear_work_data() can be used to set the pwq, pool or clear
603 * work->data. These functions should only be called while the work is
604 * owned - ie. while the PENDING bit is set.
605 *
606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
607 * corresponding to a work. Pool is available once the work has been
608 * queued anywhere after initialization until it is sync canceled. pwq is
609 * available only while the work item is queued.
610 *
611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612 * canceled. While being canceled, a work item may have its PENDING set
613 * but stay off timer and worklist for arbitrarily long and nobody should
614 * try to steal the PENDING bit.
615 */
616 static inline void set_work_data(struct work_struct *work, unsigned long data,
617 unsigned long flags)
618 {
619 WARN_ON_ONCE(!work_pending(work));
620 atomic_long_set(&work->data, data | flags | work_static(work));
621 }
622
623 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
624 unsigned long extra_flags)
625 {
626 set_work_data(work, (unsigned long)pwq,
627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
628 }
629
630 static void set_work_pool_and_keep_pending(struct work_struct *work,
631 int pool_id)
632 {
633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 WORK_STRUCT_PENDING);
635 }
636
637 static void set_work_pool_and_clear_pending(struct work_struct *work,
638 int pool_id)
639 {
640 /*
641 * The following wmb is paired with the implied mb in
642 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 * here are visible to and precede any updates by the next PENDING
644 * owner.
645 */
646 smp_wmb();
647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
648 /*
649 * The following mb guarantees that previous clear of a PENDING bit
650 * will not be reordered with any speculative LOADS or STORES from
651 * work->current_func, which is executed afterwards. This possible
652 * reordering can lead to a missed execution on attempt to qeueue
653 * the same @work. E.g. consider this case:
654 *
655 * CPU#0 CPU#1
656 * ---------------------------- --------------------------------
657 *
658 * 1 STORE event_indicated
659 * 2 queue_work_on() {
660 * 3 test_and_set_bit(PENDING)
661 * 4 } set_..._and_clear_pending() {
662 * 5 set_work_data() # clear bit
663 * 6 smp_mb()
664 * 7 work->current_func() {
665 * 8 LOAD event_indicated
666 * }
667 *
668 * Without an explicit full barrier speculative LOAD on line 8 can
669 * be executed before CPU#0 does STORE on line 1. If that happens,
670 * CPU#0 observes the PENDING bit is still set and new execution of
671 * a @work is not queued in a hope, that CPU#1 will eventually
672 * finish the queued @work. Meanwhile CPU#1 does not see
673 * event_indicated is set, because speculative LOAD was executed
674 * before actual STORE.
675 */
676 smp_mb();
677 }
678
679 static void clear_work_data(struct work_struct *work)
680 {
681 smp_wmb(); /* see set_work_pool_and_clear_pending() */
682 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
683 }
684
685 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
686 {
687 unsigned long data = atomic_long_read(&work->data);
688
689 if (data & WORK_STRUCT_PWQ)
690 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
691 else
692 return NULL;
693 }
694
695 /**
696 * get_work_pool - return the worker_pool a given work was associated with
697 * @work: the work item of interest
698 *
699 * Pools are created and destroyed under wq_pool_mutex, and allows read
700 * access under sched-RCU read lock. As such, this function should be
701 * called under wq_pool_mutex or with preemption disabled.
702 *
703 * All fields of the returned pool are accessible as long as the above
704 * mentioned locking is in effect. If the returned pool needs to be used
705 * beyond the critical section, the caller is responsible for ensuring the
706 * returned pool is and stays online.
707 *
708 * Return: The worker_pool @work was last associated with. %NULL if none.
709 */
710 static struct worker_pool *get_work_pool(struct work_struct *work)
711 {
712 unsigned long data = atomic_long_read(&work->data);
713 int pool_id;
714
715 assert_rcu_or_pool_mutex();
716
717 if (data & WORK_STRUCT_PWQ)
718 return ((struct pool_workqueue *)
719 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
720
721 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
722 if (pool_id == WORK_OFFQ_POOL_NONE)
723 return NULL;
724
725 return idr_find(&worker_pool_idr, pool_id);
726 }
727
728 /**
729 * get_work_pool_id - return the worker pool ID a given work is associated with
730 * @work: the work item of interest
731 *
732 * Return: The worker_pool ID @work was last associated with.
733 * %WORK_OFFQ_POOL_NONE if none.
734 */
735 static int get_work_pool_id(struct work_struct *work)
736 {
737 unsigned long data = atomic_long_read(&work->data);
738
739 if (data & WORK_STRUCT_PWQ)
740 return ((struct pool_workqueue *)
741 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
742
743 return data >> WORK_OFFQ_POOL_SHIFT;
744 }
745
746 static void mark_work_canceling(struct work_struct *work)
747 {
748 unsigned long pool_id = get_work_pool_id(work);
749
750 pool_id <<= WORK_OFFQ_POOL_SHIFT;
751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
752 }
753
754 static bool work_is_canceling(struct work_struct *work)
755 {
756 unsigned long data = atomic_long_read(&work->data);
757
758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
759 }
760
761 /*
762 * Policy functions. These define the policies on how the global worker
763 * pools are managed. Unless noted otherwise, these functions assume that
764 * they're being called with pool->lock held.
765 */
766
767 static bool __need_more_worker(struct worker_pool *pool)
768 {
769 return !atomic_read(&pool->nr_running);
770 }
771
772 /*
773 * Need to wake up a worker? Called from anything but currently
774 * running workers.
775 *
776 * Note that, because unbound workers never contribute to nr_running, this
777 * function will always return %true for unbound pools as long as the
778 * worklist isn't empty.
779 */
780 static bool need_more_worker(struct worker_pool *pool)
781 {
782 return !list_empty(&pool->worklist) && __need_more_worker(pool);
783 }
784
785 /* Can I start working? Called from busy but !running workers. */
786 static bool may_start_working(struct worker_pool *pool)
787 {
788 return pool->nr_idle;
789 }
790
791 /* Do I need to keep working? Called from currently running workers. */
792 static bool keep_working(struct worker_pool *pool)
793 {
794 return !list_empty(&pool->worklist) &&
795 atomic_read(&pool->nr_running) <= 1;
796 }
797
798 /* Do we need a new worker? Called from manager. */
799 static bool need_to_create_worker(struct worker_pool *pool)
800 {
801 return need_more_worker(pool) && !may_start_working(pool);
802 }
803
804 /* Do we have too many workers and should some go away? */
805 static bool too_many_workers(struct worker_pool *pool)
806 {
807 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
809 int nr_busy = pool->nr_workers - nr_idle;
810
811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
812 }
813
814 /*
815 * Wake up functions.
816 */
817
818 /* Return the first idle worker. Safe with preemption disabled */
819 static struct worker *first_idle_worker(struct worker_pool *pool)
820 {
821 if (unlikely(list_empty(&pool->idle_list)))
822 return NULL;
823
824 return list_first_entry(&pool->idle_list, struct worker, entry);
825 }
826
827 /**
828 * wake_up_worker - wake up an idle worker
829 * @pool: worker pool to wake worker from
830 *
831 * Wake up the first idle worker of @pool.
832 *
833 * CONTEXT:
834 * spin_lock_irq(pool->lock).
835 */
836 static void wake_up_worker(struct worker_pool *pool)
837 {
838 struct worker *worker = first_idle_worker(pool);
839
840 if (likely(worker))
841 wake_up_process(worker->task);
842 }
843
844 /**
845 * wq_worker_waking_up - a worker is waking up
846 * @task: task waking up
847 * @cpu: CPU @task is waking up to
848 *
849 * This function is called during try_to_wake_up() when a worker is
850 * being awoken.
851 *
852 * CONTEXT:
853 * spin_lock_irq(rq->lock)
854 */
855 void wq_worker_waking_up(struct task_struct *task, int cpu)
856 {
857 struct worker *worker = kthread_data(task);
858
859 if (!(worker->flags & WORKER_NOT_RUNNING)) {
860 WARN_ON_ONCE(worker->pool->cpu != cpu);
861 atomic_inc(&worker->pool->nr_running);
862 }
863 }
864
865 /**
866 * wq_worker_sleeping - a worker is going to sleep
867 * @task: task going to sleep
868 *
869 * This function is called during schedule() when a busy worker is
870 * going to sleep. Worker on the same cpu can be woken up by
871 * returning pointer to its task.
872 *
873 * CONTEXT:
874 * spin_lock_irq(rq->lock)
875 *
876 * Return:
877 * Worker task on @cpu to wake up, %NULL if none.
878 */
879 struct task_struct *wq_worker_sleeping(struct task_struct *task)
880 {
881 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
882 struct worker_pool *pool;
883
884 /*
885 * Rescuers, which may not have all the fields set up like normal
886 * workers, also reach here, let's not access anything before
887 * checking NOT_RUNNING.
888 */
889 if (worker->flags & WORKER_NOT_RUNNING)
890 return NULL;
891
892 pool = worker->pool;
893
894 /* this can only happen on the local cpu */
895 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
896 return NULL;
897
898 /*
899 * The counterpart of the following dec_and_test, implied mb,
900 * worklist not empty test sequence is in insert_work().
901 * Please read comment there.
902 *
903 * NOT_RUNNING is clear. This means that we're bound to and
904 * running on the local cpu w/ rq lock held and preemption
905 * disabled, which in turn means that none else could be
906 * manipulating idle_list, so dereferencing idle_list without pool
907 * lock is safe.
908 */
909 if (atomic_dec_and_test(&pool->nr_running) &&
910 !list_empty(&pool->worklist))
911 to_wakeup = first_idle_worker(pool);
912 return to_wakeup ? to_wakeup->task : NULL;
913 }
914
915 /**
916 * wq_worker_last_func - retrieve worker's last work function
917 *
918 * Determine the last function a worker executed. This is called from
919 * the scheduler to get a worker's last known identity.
920 *
921 * CONTEXT:
922 * spin_lock_irq(rq->lock)
923 *
924 * Return:
925 * The last work function %current executed as a worker, NULL if it
926 * hasn't executed any work yet.
927 */
928 work_func_t wq_worker_last_func(struct task_struct *task)
929 {
930 struct worker *worker = kthread_data(task);
931
932 return worker->last_func;
933 }
934
935 /**
936 * worker_set_flags - set worker flags and adjust nr_running accordingly
937 * @worker: self
938 * @flags: flags to set
939 *
940 * Set @flags in @worker->flags and adjust nr_running accordingly.
941 *
942 * CONTEXT:
943 * spin_lock_irq(pool->lock)
944 */
945 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
946 {
947 struct worker_pool *pool = worker->pool;
948
949 WARN_ON_ONCE(worker->task != current);
950
951 /* If transitioning into NOT_RUNNING, adjust nr_running. */
952 if ((flags & WORKER_NOT_RUNNING) &&
953 !(worker->flags & WORKER_NOT_RUNNING)) {
954 atomic_dec(&pool->nr_running);
955 }
956
957 worker->flags |= flags;
958 }
959
960 /**
961 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
962 * @worker: self
963 * @flags: flags to clear
964 *
965 * Clear @flags in @worker->flags and adjust nr_running accordingly.
966 *
967 * CONTEXT:
968 * spin_lock_irq(pool->lock)
969 */
970 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
971 {
972 struct worker_pool *pool = worker->pool;
973 unsigned int oflags = worker->flags;
974
975 WARN_ON_ONCE(worker->task != current);
976
977 worker->flags &= ~flags;
978
979 /*
980 * If transitioning out of NOT_RUNNING, increment nr_running. Note
981 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
982 * of multiple flags, not a single flag.
983 */
984 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
985 if (!(worker->flags & WORKER_NOT_RUNNING))
986 atomic_inc(&pool->nr_running);
987 }
988
989 /**
990 * find_worker_executing_work - find worker which is executing a work
991 * @pool: pool of interest
992 * @work: work to find worker for
993 *
994 * Find a worker which is executing @work on @pool by searching
995 * @pool->busy_hash which is keyed by the address of @work. For a worker
996 * to match, its current execution should match the address of @work and
997 * its work function. This is to avoid unwanted dependency between
998 * unrelated work executions through a work item being recycled while still
999 * being executed.
1000 *
1001 * This is a bit tricky. A work item may be freed once its execution
1002 * starts and nothing prevents the freed area from being recycled for
1003 * another work item. If the same work item address ends up being reused
1004 * before the original execution finishes, workqueue will identify the
1005 * recycled work item as currently executing and make it wait until the
1006 * current execution finishes, introducing an unwanted dependency.
1007 *
1008 * This function checks the work item address and work function to avoid
1009 * false positives. Note that this isn't complete as one may construct a
1010 * work function which can introduce dependency onto itself through a
1011 * recycled work item. Well, if somebody wants to shoot oneself in the
1012 * foot that badly, there's only so much we can do, and if such deadlock
1013 * actually occurs, it should be easy to locate the culprit work function.
1014 *
1015 * CONTEXT:
1016 * spin_lock_irq(pool->lock).
1017 *
1018 * Return:
1019 * Pointer to worker which is executing @work if found, %NULL
1020 * otherwise.
1021 */
1022 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1023 struct work_struct *work)
1024 {
1025 struct worker *worker;
1026
1027 hash_for_each_possible(pool->busy_hash, worker, hentry,
1028 (unsigned long)work)
1029 if (worker->current_work == work &&
1030 worker->current_func == work->func)
1031 return worker;
1032
1033 return NULL;
1034 }
1035
1036 /**
1037 * move_linked_works - move linked works to a list
1038 * @work: start of series of works to be scheduled
1039 * @head: target list to append @work to
1040 * @nextp: out parameter for nested worklist walking
1041 *
1042 * Schedule linked works starting from @work to @head. Work series to
1043 * be scheduled starts at @work and includes any consecutive work with
1044 * WORK_STRUCT_LINKED set in its predecessor.
1045 *
1046 * If @nextp is not NULL, it's updated to point to the next work of
1047 * the last scheduled work. This allows move_linked_works() to be
1048 * nested inside outer list_for_each_entry_safe().
1049 *
1050 * CONTEXT:
1051 * spin_lock_irq(pool->lock).
1052 */
1053 static void move_linked_works(struct work_struct *work, struct list_head *head,
1054 struct work_struct **nextp)
1055 {
1056 struct work_struct *n;
1057
1058 /*
1059 * Linked worklist will always end before the end of the list,
1060 * use NULL for list head.
1061 */
1062 list_for_each_entry_safe_from(work, n, NULL, entry) {
1063 list_move_tail(&work->entry, head);
1064 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1065 break;
1066 }
1067
1068 /*
1069 * If we're already inside safe list traversal and have moved
1070 * multiple works to the scheduled queue, the next position
1071 * needs to be updated.
1072 */
1073 if (nextp)
1074 *nextp = n;
1075 }
1076
1077 /**
1078 * get_pwq - get an extra reference on the specified pool_workqueue
1079 * @pwq: pool_workqueue to get
1080 *
1081 * Obtain an extra reference on @pwq. The caller should guarantee that
1082 * @pwq has positive refcnt and be holding the matching pool->lock.
1083 */
1084 static void get_pwq(struct pool_workqueue *pwq)
1085 {
1086 lockdep_assert_held(&pwq->pool->lock);
1087 WARN_ON_ONCE(pwq->refcnt <= 0);
1088 pwq->refcnt++;
1089 }
1090
1091 /**
1092 * put_pwq - put a pool_workqueue reference
1093 * @pwq: pool_workqueue to put
1094 *
1095 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1096 * destruction. The caller should be holding the matching pool->lock.
1097 */
1098 static void put_pwq(struct pool_workqueue *pwq)
1099 {
1100 lockdep_assert_held(&pwq->pool->lock);
1101 if (likely(--pwq->refcnt))
1102 return;
1103 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1104 return;
1105 /*
1106 * @pwq can't be released under pool->lock, bounce to
1107 * pwq_unbound_release_workfn(). This never recurses on the same
1108 * pool->lock as this path is taken only for unbound workqueues and
1109 * the release work item is scheduled on a per-cpu workqueue. To
1110 * avoid lockdep warning, unbound pool->locks are given lockdep
1111 * subclass of 1 in get_unbound_pool().
1112 */
1113 schedule_work(&pwq->unbound_release_work);
1114 }
1115
1116 /**
1117 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1118 * @pwq: pool_workqueue to put (can be %NULL)
1119 *
1120 * put_pwq() with locking. This function also allows %NULL @pwq.
1121 */
1122 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1123 {
1124 if (pwq) {
1125 /*
1126 * As both pwqs and pools are sched-RCU protected, the
1127 * following lock operations are safe.
1128 */
1129 spin_lock_irq(&pwq->pool->lock);
1130 put_pwq(pwq);
1131 spin_unlock_irq(&pwq->pool->lock);
1132 }
1133 }
1134
1135 static void pwq_activate_delayed_work(struct work_struct *work)
1136 {
1137 struct pool_workqueue *pwq = get_work_pwq(work);
1138
1139 trace_workqueue_activate_work(work);
1140 if (list_empty(&pwq->pool->worklist))
1141 pwq->pool->watchdog_ts = jiffies;
1142 move_linked_works(work, &pwq->pool->worklist, NULL);
1143 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1144 pwq->nr_active++;
1145 }
1146
1147 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1148 {
1149 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1150 struct work_struct, entry);
1151
1152 pwq_activate_delayed_work(work);
1153 }
1154
1155 /**
1156 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1157 * @pwq: pwq of interest
1158 * @color: color of work which left the queue
1159 *
1160 * A work either has completed or is removed from pending queue,
1161 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1162 *
1163 * CONTEXT:
1164 * spin_lock_irq(pool->lock).
1165 */
1166 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1167 {
1168 /* uncolored work items don't participate in flushing or nr_active */
1169 if (color == WORK_NO_COLOR)
1170 goto out_put;
1171
1172 pwq->nr_in_flight[color]--;
1173
1174 pwq->nr_active--;
1175 if (!list_empty(&pwq->delayed_works)) {
1176 /* one down, submit a delayed one */
1177 if (pwq->nr_active < pwq->max_active)
1178 pwq_activate_first_delayed(pwq);
1179 }
1180
1181 /* is flush in progress and are we at the flushing tip? */
1182 if (likely(pwq->flush_color != color))
1183 goto out_put;
1184
1185 /* are there still in-flight works? */
1186 if (pwq->nr_in_flight[color])
1187 goto out_put;
1188
1189 /* this pwq is done, clear flush_color */
1190 pwq->flush_color = -1;
1191
1192 /*
1193 * If this was the last pwq, wake up the first flusher. It
1194 * will handle the rest.
1195 */
1196 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1197 complete(&pwq->wq->first_flusher->done);
1198 out_put:
1199 put_pwq(pwq);
1200 }
1201
1202 /**
1203 * try_to_grab_pending - steal work item from worklist and disable irq
1204 * @work: work item to steal
1205 * @is_dwork: @work is a delayed_work
1206 * @flags: place to store irq state
1207 *
1208 * Try to grab PENDING bit of @work. This function can handle @work in any
1209 * stable state - idle, on timer or on worklist.
1210 *
1211 * Return:
1212 * 1 if @work was pending and we successfully stole PENDING
1213 * 0 if @work was idle and we claimed PENDING
1214 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1215 * -ENOENT if someone else is canceling @work, this state may persist
1216 * for arbitrarily long
1217 *
1218 * Note:
1219 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1220 * interrupted while holding PENDING and @work off queue, irq must be
1221 * disabled on entry. This, combined with delayed_work->timer being
1222 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1223 *
1224 * On successful return, >= 0, irq is disabled and the caller is
1225 * responsible for releasing it using local_irq_restore(*@flags).
1226 *
1227 * This function is safe to call from any context including IRQ handler.
1228 */
1229 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1230 unsigned long *flags)
1231 {
1232 struct worker_pool *pool;
1233 struct pool_workqueue *pwq;
1234
1235 local_irq_save(*flags);
1236
1237 /* try to steal the timer if it exists */
1238 if (is_dwork) {
1239 struct delayed_work *dwork = to_delayed_work(work);
1240
1241 /*
1242 * dwork->timer is irqsafe. If del_timer() fails, it's
1243 * guaranteed that the timer is not queued anywhere and not
1244 * running on the local CPU.
1245 */
1246 if (likely(del_timer(&dwork->timer)))
1247 return 1;
1248 }
1249
1250 /* try to claim PENDING the normal way */
1251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1252 return 0;
1253
1254 /*
1255 * The queueing is in progress, or it is already queued. Try to
1256 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1257 */
1258 pool = get_work_pool(work);
1259 if (!pool)
1260 goto fail;
1261
1262 spin_lock(&pool->lock);
1263 /*
1264 * work->data is guaranteed to point to pwq only while the work
1265 * item is queued on pwq->wq, and both updating work->data to point
1266 * to pwq on queueing and to pool on dequeueing are done under
1267 * pwq->pool->lock. This in turn guarantees that, if work->data
1268 * points to pwq which is associated with a locked pool, the work
1269 * item is currently queued on that pool.
1270 */
1271 pwq = get_work_pwq(work);
1272 if (pwq && pwq->pool == pool) {
1273 debug_work_deactivate(work);
1274
1275 /*
1276 * A delayed work item cannot be grabbed directly because
1277 * it might have linked NO_COLOR work items which, if left
1278 * on the delayed_list, will confuse pwq->nr_active
1279 * management later on and cause stall. Make sure the work
1280 * item is activated before grabbing.
1281 */
1282 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1283 pwq_activate_delayed_work(work);
1284
1285 list_del_init(&work->entry);
1286 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1287
1288 /* work->data points to pwq iff queued, point to pool */
1289 set_work_pool_and_keep_pending(work, pool->id);
1290
1291 spin_unlock(&pool->lock);
1292 return 1;
1293 }
1294 spin_unlock(&pool->lock);
1295 fail:
1296 local_irq_restore(*flags);
1297 if (work_is_canceling(work))
1298 return -ENOENT;
1299 cpu_relax();
1300 return -EAGAIN;
1301 }
1302
1303 /**
1304 * insert_work - insert a work into a pool
1305 * @pwq: pwq @work belongs to
1306 * @work: work to insert
1307 * @head: insertion point
1308 * @extra_flags: extra WORK_STRUCT_* flags to set
1309 *
1310 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1311 * work_struct flags.
1312 *
1313 * CONTEXT:
1314 * spin_lock_irq(pool->lock).
1315 */
1316 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1317 struct list_head *head, unsigned int extra_flags)
1318 {
1319 struct worker_pool *pool = pwq->pool;
1320
1321 /* we own @work, set data and link */
1322 set_work_pwq(work, pwq, extra_flags);
1323 list_add_tail(&work->entry, head);
1324 get_pwq(pwq);
1325
1326 /*
1327 * Ensure either wq_worker_sleeping() sees the above
1328 * list_add_tail() or we see zero nr_running to avoid workers lying
1329 * around lazily while there are works to be processed.
1330 */
1331 smp_mb();
1332
1333 if (__need_more_worker(pool))
1334 wake_up_worker(pool);
1335 }
1336
1337 /*
1338 * Test whether @work is being queued from another work executing on the
1339 * same workqueue.
1340 */
1341 static bool is_chained_work(struct workqueue_struct *wq)
1342 {
1343 struct worker *worker;
1344
1345 worker = current_wq_worker();
1346 /*
1347 * Return %true iff I'm a worker execuing a work item on @wq. If
1348 * I'm @worker, it's safe to dereference it without locking.
1349 */
1350 return worker && worker->current_pwq->wq == wq;
1351 }
1352
1353 /*
1354 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1355 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1356 * avoid perturbing sensitive tasks.
1357 */
1358 static int wq_select_unbound_cpu(int cpu)
1359 {
1360 static bool printed_dbg_warning;
1361 int new_cpu;
1362
1363 if (likely(!wq_debug_force_rr_cpu)) {
1364 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1365 return cpu;
1366 } else if (!printed_dbg_warning) {
1367 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1368 printed_dbg_warning = true;
1369 }
1370
1371 if (cpumask_empty(wq_unbound_cpumask))
1372 return cpu;
1373
1374 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1375 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1376 if (unlikely(new_cpu >= nr_cpu_ids)) {
1377 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1378 if (unlikely(new_cpu >= nr_cpu_ids))
1379 return cpu;
1380 }
1381 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1382
1383 return new_cpu;
1384 }
1385
1386 static void __queue_work(int cpu, struct workqueue_struct *wq,
1387 struct work_struct *work)
1388 {
1389 struct pool_workqueue *pwq;
1390 struct worker_pool *last_pool;
1391 struct list_head *worklist;
1392 unsigned int work_flags;
1393 unsigned int req_cpu = cpu;
1394
1395 /*
1396 * While a work item is PENDING && off queue, a task trying to
1397 * steal the PENDING will busy-loop waiting for it to either get
1398 * queued or lose PENDING. Grabbing PENDING and queueing should
1399 * happen with IRQ disabled.
1400 */
1401 WARN_ON_ONCE(!irqs_disabled());
1402
1403 debug_work_activate(work);
1404
1405 /* if draining, only works from the same workqueue are allowed */
1406 if (unlikely(wq->flags & __WQ_DRAINING) &&
1407 WARN_ON_ONCE(!is_chained_work(wq)))
1408 return;
1409 retry:
1410 if (req_cpu == WORK_CPU_UNBOUND)
1411 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1412
1413 /* pwq which will be used unless @work is executing elsewhere */
1414 if (!(wq->flags & WQ_UNBOUND))
1415 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1416 else
1417 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1418
1419 /*
1420 * If @work was previously on a different pool, it might still be
1421 * running there, in which case the work needs to be queued on that
1422 * pool to guarantee non-reentrancy.
1423 */
1424 last_pool = get_work_pool(work);
1425 if (last_pool && last_pool != pwq->pool) {
1426 struct worker *worker;
1427
1428 spin_lock(&last_pool->lock);
1429
1430 worker = find_worker_executing_work(last_pool, work);
1431
1432 if (worker && worker->current_pwq->wq == wq) {
1433 pwq = worker->current_pwq;
1434 } else {
1435 /* meh... not running there, queue here */
1436 spin_unlock(&last_pool->lock);
1437 spin_lock(&pwq->pool->lock);
1438 }
1439 } else {
1440 spin_lock(&pwq->pool->lock);
1441 }
1442
1443 /*
1444 * pwq is determined and locked. For unbound pools, we could have
1445 * raced with pwq release and it could already be dead. If its
1446 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1447 * without another pwq replacing it in the numa_pwq_tbl or while
1448 * work items are executing on it, so the retrying is guaranteed to
1449 * make forward-progress.
1450 */
1451 if (unlikely(!pwq->refcnt)) {
1452 if (wq->flags & WQ_UNBOUND) {
1453 spin_unlock(&pwq->pool->lock);
1454 cpu_relax();
1455 goto retry;
1456 }
1457 /* oops */
1458 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1459 wq->name, cpu);
1460 }
1461
1462 /* pwq determined, queue */
1463 trace_workqueue_queue_work(req_cpu, pwq, work);
1464
1465 if (WARN_ON(!list_empty(&work->entry))) {
1466 spin_unlock(&pwq->pool->lock);
1467 return;
1468 }
1469
1470 pwq->nr_in_flight[pwq->work_color]++;
1471 work_flags = work_color_to_flags(pwq->work_color);
1472
1473 if (likely(pwq->nr_active < pwq->max_active)) {
1474 trace_workqueue_activate_work(work);
1475 pwq->nr_active++;
1476 worklist = &pwq->pool->worklist;
1477 if (list_empty(worklist))
1478 pwq->pool->watchdog_ts = jiffies;
1479 } else {
1480 work_flags |= WORK_STRUCT_DELAYED;
1481 worklist = &pwq->delayed_works;
1482 }
1483
1484 insert_work(pwq, work, worklist, work_flags);
1485
1486 spin_unlock(&pwq->pool->lock);
1487 }
1488
1489 /**
1490 * queue_work_on - queue work on specific cpu
1491 * @cpu: CPU number to execute work on
1492 * @wq: workqueue to use
1493 * @work: work to queue
1494 *
1495 * We queue the work to a specific CPU, the caller must ensure it
1496 * can't go away.
1497 *
1498 * Return: %false if @work was already on a queue, %true otherwise.
1499 */
1500 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1501 struct work_struct *work)
1502 {
1503 bool ret = false;
1504 unsigned long flags;
1505
1506 local_irq_save(flags);
1507
1508 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1509 __queue_work(cpu, wq, work);
1510 ret = true;
1511 }
1512
1513 local_irq_restore(flags);
1514 return ret;
1515 }
1516 EXPORT_SYMBOL(queue_work_on);
1517
1518 void delayed_work_timer_fn(unsigned long __data)
1519 {
1520 struct delayed_work *dwork = (struct delayed_work *)__data;
1521
1522 /* should have been called from irqsafe timer with irq already off */
1523 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1524 }
1525 EXPORT_SYMBOL(delayed_work_timer_fn);
1526
1527 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1528 struct delayed_work *dwork, unsigned long delay)
1529 {
1530 struct timer_list *timer = &dwork->timer;
1531 struct work_struct *work = &dwork->work;
1532
1533 WARN_ON_ONCE(!wq);
1534 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535 timer->data != (unsigned long)dwork);
1536 WARN_ON_ONCE(timer_pending(timer));
1537 WARN_ON_ONCE(!list_empty(&work->entry));
1538
1539 /*
1540 * If @delay is 0, queue @dwork->work immediately. This is for
1541 * both optimization and correctness. The earliest @timer can
1542 * expire is on the closest next tick and delayed_work users depend
1543 * on that there's no such delay when @delay is 0.
1544 */
1545 if (!delay) {
1546 __queue_work(cpu, wq, &dwork->work);
1547 return;
1548 }
1549
1550 dwork->wq = wq;
1551 dwork->cpu = cpu;
1552 timer->expires = jiffies + delay;
1553
1554 if (unlikely(cpu != WORK_CPU_UNBOUND))
1555 add_timer_on(timer, cpu);
1556 else
1557 add_timer(timer);
1558 }
1559
1560 /**
1561 * queue_delayed_work_on - queue work on specific CPU after delay
1562 * @cpu: CPU number to execute work on
1563 * @wq: workqueue to use
1564 * @dwork: work to queue
1565 * @delay: number of jiffies to wait before queueing
1566 *
1567 * Return: %false if @work was already on a queue, %true otherwise. If
1568 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1569 * execution.
1570 */
1571 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1572 struct delayed_work *dwork, unsigned long delay)
1573 {
1574 struct work_struct *work = &dwork->work;
1575 bool ret = false;
1576 unsigned long flags;
1577
1578 /* read the comment in __queue_work() */
1579 local_irq_save(flags);
1580
1581 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1582 __queue_delayed_work(cpu, wq, dwork, delay);
1583 ret = true;
1584 }
1585
1586 local_irq_restore(flags);
1587 return ret;
1588 }
1589 EXPORT_SYMBOL(queue_delayed_work_on);
1590
1591 /**
1592 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1593 * @cpu: CPU number to execute work on
1594 * @wq: workqueue to use
1595 * @dwork: work to queue
1596 * @delay: number of jiffies to wait before queueing
1597 *
1598 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1599 * modify @dwork's timer so that it expires after @delay. If @delay is
1600 * zero, @work is guaranteed to be scheduled immediately regardless of its
1601 * current state.
1602 *
1603 * Return: %false if @dwork was idle and queued, %true if @dwork was
1604 * pending and its timer was modified.
1605 *
1606 * This function is safe to call from any context including IRQ handler.
1607 * See try_to_grab_pending() for details.
1608 */
1609 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1610 struct delayed_work *dwork, unsigned long delay)
1611 {
1612 unsigned long flags;
1613 int ret;
1614
1615 do {
1616 ret = try_to_grab_pending(&dwork->work, true, &flags);
1617 } while (unlikely(ret == -EAGAIN));
1618
1619 if (likely(ret >= 0)) {
1620 __queue_delayed_work(cpu, wq, dwork, delay);
1621 local_irq_restore(flags);
1622 }
1623
1624 /* -ENOENT from try_to_grab_pending() becomes %true */
1625 return ret;
1626 }
1627 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1628
1629 /**
1630 * worker_enter_idle - enter idle state
1631 * @worker: worker which is entering idle state
1632 *
1633 * @worker is entering idle state. Update stats and idle timer if
1634 * necessary.
1635 *
1636 * LOCKING:
1637 * spin_lock_irq(pool->lock).
1638 */
1639 static void worker_enter_idle(struct worker *worker)
1640 {
1641 struct worker_pool *pool = worker->pool;
1642
1643 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1644 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1645 (worker->hentry.next || worker->hentry.pprev)))
1646 return;
1647
1648 /* can't use worker_set_flags(), also called from create_worker() */
1649 worker->flags |= WORKER_IDLE;
1650 pool->nr_idle++;
1651 worker->last_active = jiffies;
1652
1653 /* idle_list is LIFO */
1654 list_add(&worker->entry, &pool->idle_list);
1655
1656 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1657 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1658
1659 /*
1660 * Sanity check nr_running. Because wq_unbind_fn() releases
1661 * pool->lock between setting %WORKER_UNBOUND and zapping
1662 * nr_running, the warning may trigger spuriously. Check iff
1663 * unbind is not in progress.
1664 */
1665 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1666 pool->nr_workers == pool->nr_idle &&
1667 atomic_read(&pool->nr_running));
1668 }
1669
1670 /**
1671 * worker_leave_idle - leave idle state
1672 * @worker: worker which is leaving idle state
1673 *
1674 * @worker is leaving idle state. Update stats.
1675 *
1676 * LOCKING:
1677 * spin_lock_irq(pool->lock).
1678 */
1679 static void worker_leave_idle(struct worker *worker)
1680 {
1681 struct worker_pool *pool = worker->pool;
1682
1683 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1684 return;
1685 worker_clr_flags(worker, WORKER_IDLE);
1686 pool->nr_idle--;
1687 list_del_init(&worker->entry);
1688 }
1689
1690 static struct worker *alloc_worker(int node)
1691 {
1692 struct worker *worker;
1693
1694 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1695 if (worker) {
1696 INIT_LIST_HEAD(&worker->entry);
1697 INIT_LIST_HEAD(&worker->scheduled);
1698 INIT_LIST_HEAD(&worker->node);
1699 /* on creation a worker is in !idle && prep state */
1700 worker->flags = WORKER_PREP;
1701 }
1702 return worker;
1703 }
1704
1705 /**
1706 * worker_attach_to_pool() - attach a worker to a pool
1707 * @worker: worker to be attached
1708 * @pool: the target pool
1709 *
1710 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1711 * cpu-binding of @worker are kept coordinated with the pool across
1712 * cpu-[un]hotplugs.
1713 */
1714 static void worker_attach_to_pool(struct worker *worker,
1715 struct worker_pool *pool)
1716 {
1717 mutex_lock(&pool->attach_mutex);
1718
1719 /*
1720 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1721 * online CPUs. It'll be re-applied when any of the CPUs come up.
1722 */
1723 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1724
1725 /*
1726 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1727 * stable across this function. See the comments above the
1728 * flag definition for details.
1729 */
1730 if (pool->flags & POOL_DISASSOCIATED)
1731 worker->flags |= WORKER_UNBOUND;
1732
1733 list_add_tail(&worker->node, &pool->workers);
1734
1735 mutex_unlock(&pool->attach_mutex);
1736 }
1737
1738 /**
1739 * worker_detach_from_pool() - detach a worker from its pool
1740 * @worker: worker which is attached to its pool
1741 * @pool: the pool @worker is attached to
1742 *
1743 * Undo the attaching which had been done in worker_attach_to_pool(). The
1744 * caller worker shouldn't access to the pool after detached except it has
1745 * other reference to the pool.
1746 */
1747 static void worker_detach_from_pool(struct worker *worker,
1748 struct worker_pool *pool)
1749 {
1750 struct completion *detach_completion = NULL;
1751
1752 mutex_lock(&pool->attach_mutex);
1753 list_del(&worker->node);
1754 if (list_empty(&pool->workers))
1755 detach_completion = pool->detach_completion;
1756 mutex_unlock(&pool->attach_mutex);
1757
1758 /* clear leftover flags without pool->lock after it is detached */
1759 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1760
1761 if (detach_completion)
1762 complete(detach_completion);
1763 }
1764
1765 /**
1766 * create_worker - create a new workqueue worker
1767 * @pool: pool the new worker will belong to
1768 *
1769 * Create and start a new worker which is attached to @pool.
1770 *
1771 * CONTEXT:
1772 * Might sleep. Does GFP_KERNEL allocations.
1773 *
1774 * Return:
1775 * Pointer to the newly created worker.
1776 */
1777 static struct worker *create_worker(struct worker_pool *pool)
1778 {
1779 struct worker *worker = NULL;
1780 int id = -1;
1781 char id_buf[16];
1782
1783 /* ID is needed to determine kthread name */
1784 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1785 if (id < 0)
1786 goto fail;
1787
1788 worker = alloc_worker(pool->node);
1789 if (!worker)
1790 goto fail;
1791
1792 worker->pool = pool;
1793 worker->id = id;
1794
1795 if (pool->cpu >= 0)
1796 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1797 pool->attrs->nice < 0 ? "H" : "");
1798 else
1799 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1800
1801 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1802 "kworker/%s", id_buf);
1803 if (IS_ERR(worker->task))
1804 goto fail;
1805
1806 set_user_nice(worker->task, pool->attrs->nice);
1807 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1808
1809 /* successful, attach the worker to the pool */
1810 worker_attach_to_pool(worker, pool);
1811
1812 /* start the newly created worker */
1813 spin_lock_irq(&pool->lock);
1814 worker->pool->nr_workers++;
1815 worker_enter_idle(worker);
1816 wake_up_process(worker->task);
1817 spin_unlock_irq(&pool->lock);
1818
1819 return worker;
1820
1821 fail:
1822 if (id >= 0)
1823 ida_simple_remove(&pool->worker_ida, id);
1824 kfree(worker);
1825 return NULL;
1826 }
1827
1828 /**
1829 * destroy_worker - destroy a workqueue worker
1830 * @worker: worker to be destroyed
1831 *
1832 * Destroy @worker and adjust @pool stats accordingly. The worker should
1833 * be idle.
1834 *
1835 * CONTEXT:
1836 * spin_lock_irq(pool->lock).
1837 */
1838 static void destroy_worker(struct worker *worker)
1839 {
1840 struct worker_pool *pool = worker->pool;
1841
1842 lockdep_assert_held(&pool->lock);
1843
1844 /* sanity check frenzy */
1845 if (WARN_ON(worker->current_work) ||
1846 WARN_ON(!list_empty(&worker->scheduled)) ||
1847 WARN_ON(!(worker->flags & WORKER_IDLE)))
1848 return;
1849
1850 pool->nr_workers--;
1851 pool->nr_idle--;
1852
1853 list_del_init(&worker->entry);
1854 worker->flags |= WORKER_DIE;
1855 wake_up_process(worker->task);
1856 }
1857
1858 static void idle_worker_timeout(unsigned long __pool)
1859 {
1860 struct worker_pool *pool = (void *)__pool;
1861
1862 spin_lock_irq(&pool->lock);
1863
1864 while (too_many_workers(pool)) {
1865 struct worker *worker;
1866 unsigned long expires;
1867
1868 /* idle_list is kept in LIFO order, check the last one */
1869 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1870 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1871
1872 if (time_before(jiffies, expires)) {
1873 mod_timer(&pool->idle_timer, expires);
1874 break;
1875 }
1876
1877 destroy_worker(worker);
1878 }
1879
1880 spin_unlock_irq(&pool->lock);
1881 }
1882
1883 static void send_mayday(struct work_struct *work)
1884 {
1885 struct pool_workqueue *pwq = get_work_pwq(work);
1886 struct workqueue_struct *wq = pwq->wq;
1887
1888 lockdep_assert_held(&wq_mayday_lock);
1889
1890 if (!wq->rescuer)
1891 return;
1892
1893 /* mayday mayday mayday */
1894 if (list_empty(&pwq->mayday_node)) {
1895 /*
1896 * If @pwq is for an unbound wq, its base ref may be put at
1897 * any time due to an attribute change. Pin @pwq until the
1898 * rescuer is done with it.
1899 */
1900 get_pwq(pwq);
1901 list_add_tail(&pwq->mayday_node, &wq->maydays);
1902 wake_up_process(wq->rescuer->task);
1903 }
1904 }
1905
1906 static void pool_mayday_timeout(unsigned long __pool)
1907 {
1908 struct worker_pool *pool = (void *)__pool;
1909 struct work_struct *work;
1910
1911 spin_lock_irq(&pool->lock);
1912 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1913
1914 if (need_to_create_worker(pool)) {
1915 /*
1916 * We've been trying to create a new worker but
1917 * haven't been successful. We might be hitting an
1918 * allocation deadlock. Send distress signals to
1919 * rescuers.
1920 */
1921 list_for_each_entry(work, &pool->worklist, entry)
1922 send_mayday(work);
1923 }
1924
1925 spin_unlock(&wq_mayday_lock);
1926 spin_unlock_irq(&pool->lock);
1927
1928 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1929 }
1930
1931 /**
1932 * maybe_create_worker - create a new worker if necessary
1933 * @pool: pool to create a new worker for
1934 *
1935 * Create a new worker for @pool if necessary. @pool is guaranteed to
1936 * have at least one idle worker on return from this function. If
1937 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1938 * sent to all rescuers with works scheduled on @pool to resolve
1939 * possible allocation deadlock.
1940 *
1941 * On return, need_to_create_worker() is guaranteed to be %false and
1942 * may_start_working() %true.
1943 *
1944 * LOCKING:
1945 * spin_lock_irq(pool->lock) which may be released and regrabbed
1946 * multiple times. Does GFP_KERNEL allocations. Called only from
1947 * manager.
1948 */
1949 static void maybe_create_worker(struct worker_pool *pool)
1950 __releases(&pool->lock)
1951 __acquires(&pool->lock)
1952 {
1953 restart:
1954 spin_unlock_irq(&pool->lock);
1955
1956 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1957 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1958
1959 while (true) {
1960 if (create_worker(pool) || !need_to_create_worker(pool))
1961 break;
1962
1963 schedule_timeout_interruptible(CREATE_COOLDOWN);
1964
1965 if (!need_to_create_worker(pool))
1966 break;
1967 }
1968
1969 del_timer_sync(&pool->mayday_timer);
1970 spin_lock_irq(&pool->lock);
1971 /*
1972 * This is necessary even after a new worker was just successfully
1973 * created as @pool->lock was dropped and the new worker might have
1974 * already become busy.
1975 */
1976 if (need_to_create_worker(pool))
1977 goto restart;
1978 }
1979
1980 /**
1981 * manage_workers - manage worker pool
1982 * @worker: self
1983 *
1984 * Assume the manager role and manage the worker pool @worker belongs
1985 * to. At any given time, there can be only zero or one manager per
1986 * pool. The exclusion is handled automatically by this function.
1987 *
1988 * The caller can safely start processing works on false return. On
1989 * true return, it's guaranteed that need_to_create_worker() is false
1990 * and may_start_working() is true.
1991 *
1992 * CONTEXT:
1993 * spin_lock_irq(pool->lock) which may be released and regrabbed
1994 * multiple times. Does GFP_KERNEL allocations.
1995 *
1996 * Return:
1997 * %false if the pool doesn't need management and the caller can safely
1998 * start processing works, %true if management function was performed and
1999 * the conditions that the caller verified before calling the function may
2000 * no longer be true.
2001 */
2002 static bool manage_workers(struct worker *worker)
2003 {
2004 struct worker_pool *pool = worker->pool;
2005
2006 if (pool->flags & POOL_MANAGER_ACTIVE)
2007 return false;
2008
2009 pool->flags |= POOL_MANAGER_ACTIVE;
2010 pool->manager = worker;
2011
2012 maybe_create_worker(pool);
2013
2014 pool->manager = NULL;
2015 pool->flags &= ~POOL_MANAGER_ACTIVE;
2016 wake_up(&wq_manager_wait);
2017 return true;
2018 }
2019
2020 /**
2021 * process_one_work - process single work
2022 * @worker: self
2023 * @work: work to process
2024 *
2025 * Process @work. This function contains all the logics necessary to
2026 * process a single work including synchronization against and
2027 * interaction with other workers on the same cpu, queueing and
2028 * flushing. As long as context requirement is met, any worker can
2029 * call this function to process a work.
2030 *
2031 * CONTEXT:
2032 * spin_lock_irq(pool->lock) which is released and regrabbed.
2033 */
2034 static void process_one_work(struct worker *worker, struct work_struct *work)
2035 __releases(&pool->lock)
2036 __acquires(&pool->lock)
2037 {
2038 struct pool_workqueue *pwq = get_work_pwq(work);
2039 struct worker_pool *pool = worker->pool;
2040 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2041 int work_color;
2042 struct worker *collision;
2043 #ifdef CONFIG_LOCKDEP
2044 /*
2045 * It is permissible to free the struct work_struct from
2046 * inside the function that is called from it, this we need to
2047 * take into account for lockdep too. To avoid bogus "held
2048 * lock freed" warnings as well as problems when looking into
2049 * work->lockdep_map, make a copy and use that here.
2050 */
2051 struct lockdep_map lockdep_map;
2052
2053 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2054 #endif
2055 /* ensure we're on the correct CPU */
2056 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2057 raw_smp_processor_id() != pool->cpu);
2058
2059 /*
2060 * A single work shouldn't be executed concurrently by
2061 * multiple workers on a single cpu. Check whether anyone is
2062 * already processing the work. If so, defer the work to the
2063 * currently executing one.
2064 */
2065 collision = find_worker_executing_work(pool, work);
2066 if (unlikely(collision)) {
2067 move_linked_works(work, &collision->scheduled, NULL);
2068 return;
2069 }
2070
2071 /* claim and dequeue */
2072 debug_work_deactivate(work);
2073 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2074 worker->current_work = work;
2075 worker->current_func = work->func;
2076 worker->current_pwq = pwq;
2077 work_color = get_work_color(work);
2078
2079 list_del_init(&work->entry);
2080
2081 /*
2082 * CPU intensive works don't participate in concurrency management.
2083 * They're the scheduler's responsibility. This takes @worker out
2084 * of concurrency management and the next code block will chain
2085 * execution of the pending work items.
2086 */
2087 if (unlikely(cpu_intensive))
2088 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2089
2090 /*
2091 * Wake up another worker if necessary. The condition is always
2092 * false for normal per-cpu workers since nr_running would always
2093 * be >= 1 at this point. This is used to chain execution of the
2094 * pending work items for WORKER_NOT_RUNNING workers such as the
2095 * UNBOUND and CPU_INTENSIVE ones.
2096 */
2097 if (need_more_worker(pool))
2098 wake_up_worker(pool);
2099
2100 /*
2101 * Record the last pool and clear PENDING which should be the last
2102 * update to @work. Also, do this inside @pool->lock so that
2103 * PENDING and queued state changes happen together while IRQ is
2104 * disabled.
2105 */
2106 set_work_pool_and_clear_pending(work, pool->id);
2107
2108 spin_unlock_irq(&pool->lock);
2109
2110 lock_map_acquire(&pwq->wq->lockdep_map);
2111 lock_map_acquire(&lockdep_map);
2112 /*
2113 * Strictly speaking we should mark the invariant state without holding
2114 * any locks, that is, before these two lock_map_acquire()'s.
2115 *
2116 * However, that would result in:
2117 *
2118 * A(W1)
2119 * WFC(C)
2120 * A(W1)
2121 * C(C)
2122 *
2123 * Which would create W1->C->W1 dependencies, even though there is no
2124 * actual deadlock possible. There are two solutions, using a
2125 * read-recursive acquire on the work(queue) 'locks', but this will then
2126 * hit the lockdep limitation on recursive locks, or simply discard
2127 * these locks.
2128 *
2129 * AFAICT there is no possible deadlock scenario between the
2130 * flush_work() and complete() primitives (except for single-threaded
2131 * workqueues), so hiding them isn't a problem.
2132 */
2133 lockdep_invariant_state(true);
2134 trace_workqueue_execute_start(work);
2135 dbg_snapshot_work(worker, worker->task, worker->current_func, DSS_FLAG_IN);
2136 worker->current_func(work);
2137 dbg_snapshot_work(worker, worker->task, worker->current_func, DSS_FLAG_OUT);
2138 /*
2139 * While we must be careful to not use "work" after this, the trace
2140 * point will only record its address.
2141 */
2142 trace_workqueue_execute_end(work);
2143 lock_map_release(&lockdep_map);
2144 lock_map_release(&pwq->wq->lockdep_map);
2145
2146 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2147 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2148 " last function: %pf\n",
2149 current->comm, preempt_count(), task_pid_nr(current),
2150 worker->current_func);
2151 debug_show_held_locks(current);
2152 dump_stack();
2153 }
2154
2155 /*
2156 * The following prevents a kworker from hogging CPU on !PREEMPT
2157 * kernels, where a requeueing work item waiting for something to
2158 * happen could deadlock with stop_machine as such work item could
2159 * indefinitely requeue itself while all other CPUs are trapped in
2160 * stop_machine. At the same time, report a quiescent RCU state so
2161 * the same condition doesn't freeze RCU.
2162 */
2163 cond_resched_rcu_qs();
2164
2165 spin_lock_irq(&pool->lock);
2166
2167 /* clear cpu intensive status */
2168 if (unlikely(cpu_intensive))
2169 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2170
2171 /* tag the worker for identification in schedule() */
2172 worker->last_func = worker->current_func;
2173
2174 /* we're done with it, release */
2175 hash_del(&worker->hentry);
2176 worker->current_work = NULL;
2177 worker->current_func = NULL;
2178 worker->current_pwq = NULL;
2179 worker->desc_valid = false;
2180 pwq_dec_nr_in_flight(pwq, work_color);
2181 }
2182
2183 /**
2184 * process_scheduled_works - process scheduled works
2185 * @worker: self
2186 *
2187 * Process all scheduled works. Please note that the scheduled list
2188 * may change while processing a work, so this function repeatedly
2189 * fetches a work from the top and executes it.
2190 *
2191 * CONTEXT:
2192 * spin_lock_irq(pool->lock) which may be released and regrabbed
2193 * multiple times.
2194 */
2195 static void process_scheduled_works(struct worker *worker)
2196 {
2197 while (!list_empty(&worker->scheduled)) {
2198 struct work_struct *work = list_first_entry(&worker->scheduled,
2199 struct work_struct, entry);
2200 process_one_work(worker, work);
2201 }
2202 }
2203
2204 /**
2205 * worker_thread - the worker thread function
2206 * @__worker: self
2207 *
2208 * The worker thread function. All workers belong to a worker_pool -
2209 * either a per-cpu one or dynamic unbound one. These workers process all
2210 * work items regardless of their specific target workqueue. The only
2211 * exception is work items which belong to workqueues with a rescuer which
2212 * will be explained in rescuer_thread().
2213 *
2214 * Return: 0
2215 */
2216 static int worker_thread(void *__worker)
2217 {
2218 struct worker *worker = __worker;
2219 struct worker_pool *pool = worker->pool;
2220
2221 /* tell the scheduler that this is a workqueue worker */
2222 worker->task->flags |= PF_WQ_WORKER;
2223 woke_up:
2224 spin_lock_irq(&pool->lock);
2225
2226 /* am I supposed to die? */
2227 if (unlikely(worker->flags & WORKER_DIE)) {
2228 spin_unlock_irq(&pool->lock);
2229 WARN_ON_ONCE(!list_empty(&worker->entry));
2230 worker->task->flags &= ~PF_WQ_WORKER;
2231
2232 set_task_comm(worker->task, "kworker/dying");
2233 ida_simple_remove(&pool->worker_ida, worker->id);
2234 worker_detach_from_pool(worker, pool);
2235 kfree(worker);
2236 return 0;
2237 }
2238
2239 worker_leave_idle(worker);
2240 recheck:
2241 /* no more worker necessary? */
2242 if (!need_more_worker(pool))
2243 goto sleep;
2244
2245 /* do we need to manage? */
2246 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2247 goto recheck;
2248
2249 /*
2250 * ->scheduled list can only be filled while a worker is
2251 * preparing to process a work or actually processing it.
2252 * Make sure nobody diddled with it while I was sleeping.
2253 */
2254 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2255
2256 /*
2257 * Finish PREP stage. We're guaranteed to have at least one idle
2258 * worker or that someone else has already assumed the manager
2259 * role. This is where @worker starts participating in concurrency
2260 * management if applicable and concurrency management is restored
2261 * after being rebound. See rebind_workers() for details.
2262 */
2263 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2264
2265 do {
2266 struct work_struct *work =
2267 list_first_entry(&pool->worklist,
2268 struct work_struct, entry);
2269
2270 pool->watchdog_ts = jiffies;
2271
2272 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2273 /* optimization path, not strictly necessary */
2274 process_one_work(worker, work);
2275 if (unlikely(!list_empty(&worker->scheduled)))
2276 process_scheduled_works(worker);
2277 } else {
2278 move_linked_works(work, &worker->scheduled, NULL);
2279 process_scheduled_works(worker);
2280 }
2281 } while (keep_working(pool));
2282
2283 worker_set_flags(worker, WORKER_PREP);
2284 sleep:
2285 /*
2286 * pool->lock is held and there's no work to process and no need to
2287 * manage, sleep. Workers are woken up only while holding
2288 * pool->lock or from local cpu, so setting the current state
2289 * before releasing pool->lock is enough to prevent losing any
2290 * event.
2291 */
2292 worker_enter_idle(worker);
2293 __set_current_state(TASK_IDLE);
2294 spin_unlock_irq(&pool->lock);
2295 schedule();
2296 goto woke_up;
2297 }
2298
2299 /**
2300 * rescuer_thread - the rescuer thread function
2301 * @__rescuer: self
2302 *
2303 * Workqueue rescuer thread function. There's one rescuer for each
2304 * workqueue which has WQ_MEM_RECLAIM set.
2305 *
2306 * Regular work processing on a pool may block trying to create a new
2307 * worker which uses GFP_KERNEL allocation which has slight chance of
2308 * developing into deadlock if some works currently on the same queue
2309 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2310 * the problem rescuer solves.
2311 *
2312 * When such condition is possible, the pool summons rescuers of all
2313 * workqueues which have works queued on the pool and let them process
2314 * those works so that forward progress can be guaranteed.
2315 *
2316 * This should happen rarely.
2317 *
2318 * Return: 0
2319 */
2320 static int rescuer_thread(void *__rescuer)
2321 {
2322 struct worker *rescuer = __rescuer;
2323 struct workqueue_struct *wq = rescuer->rescue_wq;
2324 struct list_head *scheduled = &rescuer->scheduled;
2325 bool should_stop;
2326
2327 set_user_nice(current, RESCUER_NICE_LEVEL);
2328
2329 /*
2330 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2331 * doesn't participate in concurrency management.
2332 */
2333 rescuer->task->flags |= PF_WQ_WORKER;
2334 repeat:
2335 set_current_state(TASK_IDLE);
2336
2337 /*
2338 * By the time the rescuer is requested to stop, the workqueue
2339 * shouldn't have any work pending, but @wq->maydays may still have
2340 * pwq(s) queued. This can happen by non-rescuer workers consuming
2341 * all the work items before the rescuer got to them. Go through
2342 * @wq->maydays processing before acting on should_stop so that the
2343 * list is always empty on exit.
2344 */
2345 should_stop = kthread_should_stop();
2346
2347 /* see whether any pwq is asking for help */
2348 spin_lock_irq(&wq_mayday_lock);
2349
2350 while (!list_empty(&wq->maydays)) {
2351 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2352 struct pool_workqueue, mayday_node);
2353 struct worker_pool *pool = pwq->pool;
2354 struct work_struct *work, *n;
2355 bool first = true;
2356
2357 __set_current_state(TASK_RUNNING);
2358 list_del_init(&pwq->mayday_node);
2359
2360 spin_unlock_irq(&wq_mayday_lock);
2361
2362 worker_attach_to_pool(rescuer, pool);
2363
2364 spin_lock_irq(&pool->lock);
2365 rescuer->pool = pool;
2366
2367 /*
2368 * Slurp in all works issued via this workqueue and
2369 * process'em.
2370 */
2371 WARN_ON_ONCE(!list_empty(scheduled));
2372 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2373 if (get_work_pwq(work) == pwq) {
2374 if (first)
2375 pool->watchdog_ts = jiffies;
2376 move_linked_works(work, scheduled, &n);
2377 }
2378 first = false;
2379 }
2380
2381 if (!list_empty(scheduled)) {
2382 process_scheduled_works(rescuer);
2383
2384 /*
2385 * The above execution of rescued work items could
2386 * have created more to rescue through
2387 * pwq_activate_first_delayed() or chained
2388 * queueing. Let's put @pwq back on mayday list so
2389 * that such back-to-back work items, which may be
2390 * being used to relieve memory pressure, don't
2391 * incur MAYDAY_INTERVAL delay inbetween.
2392 */
2393 if (need_to_create_worker(pool)) {
2394 spin_lock(&wq_mayday_lock);
2395 get_pwq(pwq);
2396 list_move_tail(&pwq->mayday_node, &wq->maydays);
2397 spin_unlock(&wq_mayday_lock);
2398 }
2399 }
2400
2401 /*
2402 * Put the reference grabbed by send_mayday(). @pool won't
2403 * go away while we're still attached to it.
2404 */
2405 put_pwq(pwq);
2406
2407 /*
2408 * Leave this pool. If need_more_worker() is %true, notify a
2409 * regular worker; otherwise, we end up with 0 concurrency
2410 * and stalling the execution.
2411 */
2412 if (need_more_worker(pool))
2413 wake_up_worker(pool);
2414
2415 rescuer->pool = NULL;
2416 spin_unlock_irq(&pool->lock);
2417
2418 worker_detach_from_pool(rescuer, pool);
2419
2420 spin_lock_irq(&wq_mayday_lock);
2421 }
2422
2423 spin_unlock_irq(&wq_mayday_lock);
2424
2425 if (should_stop) {
2426 __set_current_state(TASK_RUNNING);
2427 rescuer->task->flags &= ~PF_WQ_WORKER;
2428 return 0;
2429 }
2430
2431 /* rescuers should never participate in concurrency management */
2432 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2433 schedule();
2434 goto repeat;
2435 }
2436
2437 /**
2438 * check_flush_dependency - check for flush dependency sanity
2439 * @target_wq: workqueue being flushed
2440 * @target_work: work item being flushed (NULL for workqueue flushes)
2441 *
2442 * %current is trying to flush the whole @target_wq or @target_work on it.
2443 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2444 * reclaiming memory or running on a workqueue which doesn't have
2445 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2446 * a deadlock.
2447 */
2448 static void check_flush_dependency(struct workqueue_struct *target_wq,
2449 struct work_struct *target_work)
2450 {
2451 work_func_t target_func = target_work ? target_work->func : NULL;
2452 struct worker *worker;
2453
2454 if (target_wq->flags & WQ_MEM_RECLAIM)
2455 return;
2456
2457 worker = current_wq_worker();
2458
2459 WARN_ONCE(current->flags & PF_MEMALLOC,
2460 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2461 current->pid, current->comm, target_wq->name, target_func);
2462 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2463 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2464 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2465 worker->current_pwq->wq->name, worker->current_func,
2466 target_wq->name, target_func);
2467 }
2468
2469 struct wq_barrier {
2470 struct work_struct work;
2471 struct completion done;
2472 struct task_struct *task; /* purely informational */
2473 };
2474
2475 static void wq_barrier_func(struct work_struct *work)
2476 {
2477 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2478 complete(&barr->done);
2479 }
2480
2481 /**
2482 * insert_wq_barrier - insert a barrier work
2483 * @pwq: pwq to insert barrier into
2484 * @barr: wq_barrier to insert
2485 * @target: target work to attach @barr to
2486 * @worker: worker currently executing @target, NULL if @target is not executing
2487 *
2488 * @barr is linked to @target such that @barr is completed only after
2489 * @target finishes execution. Please note that the ordering
2490 * guarantee is observed only with respect to @target and on the local
2491 * cpu.
2492 *
2493 * Currently, a queued barrier can't be canceled. This is because
2494 * try_to_grab_pending() can't determine whether the work to be
2495 * grabbed is at the head of the queue and thus can't clear LINKED
2496 * flag of the previous work while there must be a valid next work
2497 * after a work with LINKED flag set.
2498 *
2499 * Note that when @worker is non-NULL, @target may be modified
2500 * underneath us, so we can't reliably determine pwq from @target.
2501 *
2502 * CONTEXT:
2503 * spin_lock_irq(pool->lock).
2504 */
2505 static void insert_wq_barrier(struct pool_workqueue *pwq,
2506 struct wq_barrier *barr,
2507 struct work_struct *target, struct worker *worker)
2508 {
2509 struct list_head *head;
2510 unsigned int linked = 0;
2511
2512 /*
2513 * debugobject calls are safe here even with pool->lock locked
2514 * as we know for sure that this will not trigger any of the
2515 * checks and call back into the fixup functions where we
2516 * might deadlock.
2517 */
2518 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2519 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2520
2521 /*
2522 * Explicitly init the crosslock for wq_barrier::done, make its lock
2523 * key a subkey of the corresponding work. As a result we won't
2524 * build a dependency between wq_barrier::done and unrelated work.
2525 */
2526 lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2527 "(complete)wq_barr::done",
2528 target->lockdep_map.key, 1);
2529 __init_completion(&barr->done);
2530 barr->task = current;
2531
2532 /*
2533 * If @target is currently being executed, schedule the
2534 * barrier to the worker; otherwise, put it after @target.
2535 */
2536 if (worker)
2537 head = worker->scheduled.next;
2538 else {
2539 unsigned long *bits = work_data_bits(target);
2540
2541 head = target->entry.next;
2542 /* there can already be other linked works, inherit and set */
2543 linked = *bits & WORK_STRUCT_LINKED;
2544 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2545 }
2546
2547 debug_work_activate(&barr->work);
2548 insert_work(pwq, &barr->work, head,
2549 work_color_to_flags(WORK_NO_COLOR) | linked);
2550 }
2551
2552 /**
2553 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2554 * @wq: workqueue being flushed
2555 * @flush_color: new flush color, < 0 for no-op
2556 * @work_color: new work color, < 0 for no-op
2557 *
2558 * Prepare pwqs for workqueue flushing.
2559 *
2560 * If @flush_color is non-negative, flush_color on all pwqs should be
2561 * -1. If no pwq has in-flight commands at the specified color, all
2562 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2563 * has in flight commands, its pwq->flush_color is set to
2564 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2565 * wakeup logic is armed and %true is returned.
2566 *
2567 * The caller should have initialized @wq->first_flusher prior to
2568 * calling this function with non-negative @flush_color. If
2569 * @flush_color is negative, no flush color update is done and %false
2570 * is returned.
2571 *
2572 * If @work_color is non-negative, all pwqs should have the same
2573 * work_color which is previous to @work_color and all will be
2574 * advanced to @work_color.
2575 *
2576 * CONTEXT:
2577 * mutex_lock(wq->mutex).
2578 *
2579 * Return:
2580 * %true if @flush_color >= 0 and there's something to flush. %false
2581 * otherwise.
2582 */
2583 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2584 int flush_color, int work_color)
2585 {
2586 bool wait = false;
2587 struct pool_workqueue *pwq;
2588
2589 if (flush_color >= 0) {
2590 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2591 atomic_set(&wq->nr_pwqs_to_flush, 1);
2592 }
2593
2594 for_each_pwq(pwq, wq) {
2595 struct worker_pool *pool = pwq->pool;
2596
2597 spin_lock_irq(&pool->lock);
2598
2599 if (flush_color >= 0) {
2600 WARN_ON_ONCE(pwq->flush_color != -1);
2601
2602 if (pwq->nr_in_flight[flush_color]) {
2603 pwq->flush_color = flush_color;
2604 atomic_inc(&wq->nr_pwqs_to_flush);
2605 wait = true;
2606 }
2607 }
2608
2609 if (work_color >= 0) {
2610 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2611 pwq->work_color = work_color;
2612 }
2613
2614 spin_unlock_irq(&pool->lock);
2615 }
2616
2617 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2618 complete(&wq->first_flusher->done);
2619
2620 return wait;
2621 }
2622
2623 /**
2624 * flush_workqueue - ensure that any scheduled work has run to completion.
2625 * @wq: workqueue to flush
2626 *
2627 * This function sleeps until all work items which were queued on entry
2628 * have finished execution, but it is not livelocked by new incoming ones.
2629 */
2630 void flush_workqueue(struct workqueue_struct *wq)
2631 {
2632 struct wq_flusher this_flusher = {
2633 .list = LIST_HEAD_INIT(this_flusher.list),
2634 .flush_color = -1,
2635 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2636 };
2637 int next_color;
2638
2639 if (WARN_ON(!wq_online))
2640 return;
2641
2642 lock_map_acquire(&wq->lockdep_map);
2643 lock_map_release(&wq->lockdep_map);
2644
2645 mutex_lock(&wq->mutex);
2646
2647 /*
2648 * Start-to-wait phase
2649 */
2650 next_color = work_next_color(wq->work_color);
2651
2652 if (next_color != wq->flush_color) {
2653 /*
2654 * Color space is not full. The current work_color
2655 * becomes our flush_color and work_color is advanced
2656 * by one.
2657 */
2658 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2659 this_flusher.flush_color = wq->work_color;
2660 wq->work_color = next_color;
2661
2662 if (!wq->first_flusher) {
2663 /* no flush in progress, become the first flusher */
2664 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2665
2666 wq->first_flusher = &this_flusher;
2667
2668 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2669 wq->work_color)) {
2670 /* nothing to flush, done */
2671 wq->flush_color = next_color;
2672 wq->first_flusher = NULL;
2673 goto out_unlock;
2674 }
2675 } else {
2676 /* wait in queue */
2677 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2678 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2679 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2680 }
2681 } else {
2682 /*
2683 * Oops, color space is full, wait on overflow queue.
2684 * The next flush completion will assign us
2685 * flush_color and transfer to flusher_queue.
2686 */
2687 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2688 }
2689
2690 check_flush_dependency(wq, NULL);
2691
2692 mutex_unlock(&wq->mutex);
2693
2694 wait_for_completion(&this_flusher.done);
2695
2696 /*
2697 * Wake-up-and-cascade phase
2698 *
2699 * First flushers are responsible for cascading flushes and
2700 * handling overflow. Non-first flushers can simply return.
2701 */
2702 if (wq->first_flusher != &this_flusher)
2703 return;
2704
2705 mutex_lock(&wq->mutex);
2706
2707 /* we might have raced, check again with mutex held */
2708 if (wq->first_flusher != &this_flusher)
2709 goto out_unlock;
2710
2711 wq->first_flusher = NULL;
2712
2713 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2714 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2715
2716 while (true) {
2717 struct wq_flusher *next, *tmp;
2718
2719 /* complete all the flushers sharing the current flush color */
2720 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2721 if (next->flush_color != wq->flush_color)
2722 break;
2723 list_del_init(&next->list);
2724 complete(&next->done);
2725 }
2726
2727 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2728 wq->flush_color != work_next_color(wq->work_color));
2729
2730 /* this flush_color is finished, advance by one */
2731 wq->flush_color = work_next_color(wq->flush_color);
2732
2733 /* one color has been freed, handle overflow queue */
2734 if (!list_empty(&wq->flusher_overflow)) {
2735 /*
2736 * Assign the same color to all overflowed
2737 * flushers, advance work_color and append to
2738 * flusher_queue. This is the start-to-wait
2739 * phase for these overflowed flushers.
2740 */
2741 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2742 tmp->flush_color = wq->work_color;
2743
2744 wq->work_color = work_next_color(wq->work_color);
2745
2746 list_splice_tail_init(&wq->flusher_overflow,
2747 &wq->flusher_queue);
2748 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2749 }
2750
2751 if (list_empty(&wq->flusher_queue)) {
2752 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2753 break;
2754 }
2755
2756 /*
2757 * Need to flush more colors. Make the next flusher
2758 * the new first flusher and arm pwqs.
2759 */
2760 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2761 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2762
2763 list_del_init(&next->list);
2764 wq->first_flusher = next;
2765
2766 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2767 break;
2768
2769 /*
2770 * Meh... this color is already done, clear first
2771 * flusher and repeat cascading.
2772 */
2773 wq->first_flusher = NULL;
2774 }
2775
2776 out_unlock:
2777 mutex_unlock(&wq->mutex);
2778 }
2779 EXPORT_SYMBOL(flush_workqueue);
2780
2781 /**
2782 * drain_workqueue - drain a workqueue
2783 * @wq: workqueue to drain
2784 *
2785 * Wait until the workqueue becomes empty. While draining is in progress,
2786 * only chain queueing is allowed. IOW, only currently pending or running
2787 * work items on @wq can queue further work items on it. @wq is flushed
2788 * repeatedly until it becomes empty. The number of flushing is determined
2789 * by the depth of chaining and should be relatively short. Whine if it
2790 * takes too long.
2791 */
2792 void drain_workqueue(struct workqueue_struct *wq)
2793 {
2794 unsigned int flush_cnt = 0;
2795 struct pool_workqueue *pwq;
2796
2797 /*
2798 * __queue_work() needs to test whether there are drainers, is much
2799 * hotter than drain_workqueue() and already looks at @wq->flags.
2800 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2801 */
2802 mutex_lock(&wq->mutex);
2803 if (!wq->nr_drainers++)
2804 wq->flags |= __WQ_DRAINING;
2805 mutex_unlock(&wq->mutex);
2806 reflush:
2807 flush_workqueue(wq);
2808
2809 mutex_lock(&wq->mutex);
2810
2811 for_each_pwq(pwq, wq) {
2812 bool drained;
2813
2814 spin_lock_irq(&pwq->pool->lock);
2815 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2816 spin_unlock_irq(&pwq->pool->lock);
2817
2818 if (drained)
2819 continue;
2820
2821 if (++flush_cnt == 10 ||
2822 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2823 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2824 wq->name, flush_cnt);
2825
2826 mutex_unlock(&wq->mutex);
2827 goto reflush;
2828 }
2829
2830 if (!--wq->nr_drainers)
2831 wq->flags &= ~__WQ_DRAINING;
2832 mutex_unlock(&wq->mutex);
2833 }
2834 EXPORT_SYMBOL_GPL(drain_workqueue);
2835
2836 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2837 {
2838 struct worker *worker = NULL;
2839 struct worker_pool *pool;
2840 struct pool_workqueue *pwq;
2841
2842 might_sleep();
2843
2844 local_irq_disable();
2845 pool = get_work_pool(work);
2846 if (!pool) {
2847 local_irq_enable();
2848 return false;
2849 }
2850
2851 spin_lock(&pool->lock);
2852 /* see the comment in try_to_grab_pending() with the same code */
2853 pwq = get_work_pwq(work);
2854 if (pwq) {
2855 if (unlikely(pwq->pool != pool))
2856 goto already_gone;
2857 } else {
2858 worker = find_worker_executing_work(pool, work);
2859 if (!worker)
2860 goto already_gone;
2861 pwq = worker->current_pwq;
2862 }
2863
2864 check_flush_dependency(pwq->wq, work);
2865
2866 insert_wq_barrier(pwq, barr, work, worker);
2867 spin_unlock_irq(&pool->lock);
2868
2869 /*
2870 * Force a lock recursion deadlock when using flush_work() inside a
2871 * single-threaded or rescuer equipped workqueue.
2872 *
2873 * For single threaded workqueues the deadlock happens when the work
2874 * is after the work issuing the flush_work(). For rescuer equipped
2875 * workqueues the deadlock happens when the rescuer stalls, blocking
2876 * forward progress.
2877 */
2878 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2879 lock_map_acquire(&pwq->wq->lockdep_map);
2880 lock_map_release(&pwq->wq->lockdep_map);
2881 }
2882
2883 return true;
2884 already_gone:
2885 spin_unlock_irq(&pool->lock);
2886 return false;
2887 }
2888
2889 /**
2890 * flush_work - wait for a work to finish executing the last queueing instance
2891 * @work: the work to flush
2892 *
2893 * Wait until @work has finished execution. @work is guaranteed to be idle
2894 * on return if it hasn't been requeued since flush started.
2895 *
2896 * Return:
2897 * %true if flush_work() waited for the work to finish execution,
2898 * %false if it was already idle.
2899 */
2900 bool flush_work(struct work_struct *work)
2901 {
2902 struct wq_barrier barr;
2903
2904 if (WARN_ON(!wq_online))
2905 return false;
2906
2907 lock_map_acquire(&work->lockdep_map);
2908 lock_map_release(&work->lockdep_map);
2909
2910 if (start_flush_work(work, &barr)) {
2911 wait_for_completion(&barr.done);
2912 destroy_work_on_stack(&barr.work);
2913 return true;
2914 } else {
2915 return false;
2916 }
2917 }
2918 EXPORT_SYMBOL_GPL(flush_work);
2919
2920 struct cwt_wait {
2921 wait_queue_entry_t wait;
2922 struct work_struct *work;
2923 };
2924
2925 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2926 {
2927 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2928
2929 if (cwait->work != key)
2930 return 0;
2931 return autoremove_wake_function(wait, mode, sync, key);
2932 }
2933
2934 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2935 {
2936 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2937 unsigned long flags;
2938 int ret;
2939
2940 do {
2941 ret = try_to_grab_pending(work, is_dwork, &flags);
2942 /*
2943 * If someone else is already canceling, wait for it to
2944 * finish. flush_work() doesn't work for PREEMPT_NONE
2945 * because we may get scheduled between @work's completion
2946 * and the other canceling task resuming and clearing
2947 * CANCELING - flush_work() will return false immediately
2948 * as @work is no longer busy, try_to_grab_pending() will
2949 * return -ENOENT as @work is still being canceled and the
2950 * other canceling task won't be able to clear CANCELING as
2951 * we're hogging the CPU.
2952 *
2953 * Let's wait for completion using a waitqueue. As this
2954 * may lead to the thundering herd problem, use a custom
2955 * wake function which matches @work along with exclusive
2956 * wait and wakeup.
2957 */
2958 if (unlikely(ret == -ENOENT)) {
2959 struct cwt_wait cwait;
2960
2961 init_wait(&cwait.wait);
2962 cwait.wait.func = cwt_wakefn;
2963 cwait.work = work;
2964
2965 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2966 TASK_UNINTERRUPTIBLE);
2967 if (work_is_canceling(work))
2968 schedule();
2969 finish_wait(&cancel_waitq, &cwait.wait);
2970 }
2971 } while (unlikely(ret < 0));
2972
2973 /* tell other tasks trying to grab @work to back off */
2974 mark_work_canceling(work);
2975 local_irq_restore(flags);
2976
2977 /*
2978 * This allows canceling during early boot. We know that @work
2979 * isn't executing.
2980 */
2981 if (wq_online)
2982 flush_work(work);
2983
2984 clear_work_data(work);
2985
2986 /*
2987 * Paired with prepare_to_wait() above so that either
2988 * waitqueue_active() is visible here or !work_is_canceling() is
2989 * visible there.
2990 */
2991 smp_mb();
2992 if (waitqueue_active(&cancel_waitq))
2993 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2994
2995 return ret;
2996 }
2997
2998 /**
2999 * cancel_work_sync - cancel a work and wait for it to finish
3000 * @work: the work to cancel
3001 *
3002 * Cancel @work and wait for its execution to finish. This function
3003 * can be used even if the work re-queues itself or migrates to
3004 * another workqueue. On return from this function, @work is
3005 * guaranteed to be not pending or executing on any CPU.
3006 *
3007 * cancel_work_sync(&delayed_work->work) must not be used for
3008 * delayed_work's. Use cancel_delayed_work_sync() instead.
3009 *
3010 * The caller must ensure that the workqueue on which @work was last
3011 * queued can't be destroyed before this function returns.
3012 *
3013 * Return:
3014 * %true if @work was pending, %false otherwise.
3015 */
3016 bool cancel_work_sync(struct work_struct *work)
3017 {
3018 return __cancel_work_timer(work, false);
3019 }
3020 EXPORT_SYMBOL_GPL(cancel_work_sync);
3021
3022 /**
3023 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3024 * @dwork: the delayed work to flush
3025 *
3026 * Delayed timer is cancelled and the pending work is queued for
3027 * immediate execution. Like flush_work(), this function only
3028 * considers the last queueing instance of @dwork.
3029 *
3030 * Return:
3031 * %true if flush_work() waited for the work to finish execution,
3032 * %false if it was already idle.
3033 */
3034 bool flush_delayed_work(struct delayed_work *dwork)
3035 {
3036 local_irq_disable();
3037 if (del_timer_sync(&dwork->timer))
3038 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3039 local_irq_enable();
3040 return flush_work(&dwork->work);
3041 }
3042 EXPORT_SYMBOL(flush_delayed_work);
3043
3044 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3045 {
3046 unsigned long flags;
3047 int ret;
3048
3049 do {
3050 ret = try_to_grab_pending(work, is_dwork, &flags);
3051 } while (unlikely(ret == -EAGAIN));
3052
3053 if (unlikely(ret < 0))
3054 return false;
3055
3056 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3057 local_irq_restore(flags);
3058 return ret;
3059 }
3060
3061 /*
3062 * See cancel_delayed_work()
3063 */
3064 bool cancel_work(struct work_struct *work)
3065 {
3066 return __cancel_work(work, false);
3067 }
3068
3069 /**
3070 * cancel_delayed_work - cancel a delayed work
3071 * @dwork: delayed_work to cancel
3072 *
3073 * Kill off a pending delayed_work.
3074 *
3075 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3076 * pending.
3077 *
3078 * Note:
3079 * The work callback function may still be running on return, unless
3080 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3081 * use cancel_delayed_work_sync() to wait on it.
3082 *
3083 * This function is safe to call from any context including IRQ handler.
3084 */
3085 bool cancel_delayed_work(struct delayed_work *dwork)
3086 {
3087 return __cancel_work(&dwork->work, true);
3088 }
3089 EXPORT_SYMBOL(cancel_delayed_work);
3090
3091 /**
3092 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3093 * @dwork: the delayed work cancel
3094 *
3095 * This is cancel_work_sync() for delayed works.
3096 *
3097 * Return:
3098 * %true if @dwork was pending, %false otherwise.
3099 */
3100 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3101 {
3102 return __cancel_work_timer(&dwork->work, true);
3103 }
3104 EXPORT_SYMBOL(cancel_delayed_work_sync);
3105
3106 /**
3107 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3108 * @func: the function to call
3109 *
3110 * schedule_on_each_cpu() executes @func on each online CPU using the
3111 * system workqueue and blocks until all CPUs have completed.
3112 * schedule_on_each_cpu() is very slow.
3113 *
3114 * Return:
3115 * 0 on success, -errno on failure.
3116 */
3117 int schedule_on_each_cpu(work_func_t func)
3118 {
3119 int cpu;
3120 struct work_struct __percpu *works;
3121
3122 works = alloc_percpu(struct work_struct);
3123 if (!works)
3124 return -ENOMEM;
3125
3126 get_online_cpus();
3127
3128 for_each_online_cpu(cpu) {
3129 struct work_struct *work = per_cpu_ptr(works, cpu);
3130
3131 INIT_WORK(work, func);
3132 schedule_work_on(cpu, work);
3133 }
3134
3135 for_each_online_cpu(cpu)
3136 flush_work(per_cpu_ptr(works, cpu));
3137
3138 put_online_cpus();
3139 free_percpu(works);
3140 return 0;
3141 }
3142
3143 /**
3144 * execute_in_process_context - reliably execute the routine with user context
3145 * @fn: the function to execute
3146 * @ew: guaranteed storage for the execute work structure (must
3147 * be available when the work executes)
3148 *
3149 * Executes the function immediately if process context is available,
3150 * otherwise schedules the function for delayed execution.
3151 *
3152 * Return: 0 - function was executed
3153 * 1 - function was scheduled for execution
3154 */
3155 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3156 {
3157 if (!in_interrupt()) {
3158 fn(&ew->work);
3159 return 0;
3160 }
3161
3162 INIT_WORK(&ew->work, fn);
3163 schedule_work(&ew->work);
3164
3165 return 1;
3166 }
3167 EXPORT_SYMBOL_GPL(execute_in_process_context);
3168
3169 /**
3170 * free_workqueue_attrs - free a workqueue_attrs
3171 * @attrs: workqueue_attrs to free
3172 *
3173 * Undo alloc_workqueue_attrs().
3174 */
3175 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3176 {
3177 if (attrs) {
3178 free_cpumask_var(attrs->cpumask);
3179 kfree(attrs);
3180 }
3181 }
3182
3183 /**
3184 * alloc_workqueue_attrs - allocate a workqueue_attrs
3185 * @gfp_mask: allocation mask to use
3186 *
3187 * Allocate a new workqueue_attrs, initialize with default settings and
3188 * return it.
3189 *
3190 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3191 */
3192 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3193 {
3194 struct workqueue_attrs *attrs;
3195
3196 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3197 if (!attrs)
3198 goto fail;
3199 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3200 goto fail;
3201
3202 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3203 return attrs;
3204 fail:
3205 free_workqueue_attrs(attrs);
3206 return NULL;
3207 }
3208
3209 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3210 const struct workqueue_attrs *from)
3211 {
3212 to->nice = from->nice;
3213 cpumask_copy(to->cpumask, from->cpumask);
3214 /*
3215 * Unlike hash and equality test, this function doesn't ignore
3216 * ->no_numa as it is used for both pool and wq attrs. Instead,
3217 * get_unbound_pool() explicitly clears ->no_numa after copying.
3218 */
3219 to->no_numa = from->no_numa;
3220 }
3221
3222 /* hash value of the content of @attr */
3223 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3224 {
3225 u32 hash = 0;
3226
3227 hash = jhash_1word(attrs->nice, hash);
3228 hash = jhash(cpumask_bits(attrs->cpumask),
3229 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3230 return hash;
3231 }
3232
3233 /* content equality test */
3234 static bool wqattrs_equal(const struct workqueue_attrs *a,
3235 const struct workqueue_attrs *b)
3236 {
3237 if (a->nice != b->nice)
3238 return false;
3239 if (!cpumask_equal(a->cpumask, b->cpumask))
3240 return false;
3241 return true;
3242 }
3243
3244 /**
3245 * init_worker_pool - initialize a newly zalloc'd worker_pool
3246 * @pool: worker_pool to initialize
3247 *
3248 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3249 *
3250 * Return: 0 on success, -errno on failure. Even on failure, all fields
3251 * inside @pool proper are initialized and put_unbound_pool() can be called
3252 * on @pool safely to release it.
3253 */
3254 static int init_worker_pool(struct worker_pool *pool)
3255 {
3256 spin_lock_init(&pool->lock);
3257 pool->id = -1;
3258 pool->cpu = -1;
3259 pool->node = NUMA_NO_NODE;
3260 pool->flags |= POOL_DISASSOCIATED;
3261 pool->watchdog_ts = jiffies;
3262 INIT_LIST_HEAD(&pool->worklist);
3263 INIT_LIST_HEAD(&pool->idle_list);
3264 hash_init(pool->busy_hash);
3265
3266 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3267 (unsigned long)pool);
3268
3269 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3270 (unsigned long)pool);
3271
3272 mutex_init(&pool->attach_mutex);
3273 INIT_LIST_HEAD(&pool->workers);
3274
3275 ida_init(&pool->worker_ida);
3276 INIT_HLIST_NODE(&pool->hash_node);
3277 pool->refcnt = 1;
3278
3279 /* shouldn't fail above this point */
3280 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3281 if (!pool->attrs)
3282 return -ENOMEM;
3283 return 0;
3284 }
3285
3286 static void rcu_free_wq(struct rcu_head *rcu)
3287 {
3288 struct workqueue_struct *wq =
3289 container_of(rcu, struct workqueue_struct, rcu);
3290
3291 if (!(wq->flags & WQ_UNBOUND))
3292 free_percpu(wq->cpu_pwqs);
3293 else
3294 free_workqueue_attrs(wq->unbound_attrs);
3295
3296 kfree(wq->rescuer);
3297 kfree(wq);
3298 }
3299
3300 static void rcu_free_pool(struct rcu_head *rcu)
3301 {
3302 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3303
3304 ida_destroy(&pool->worker_ida);
3305 free_workqueue_attrs(pool->attrs);
3306 kfree(pool);
3307 }
3308
3309 /**
3310 * put_unbound_pool - put a worker_pool
3311 * @pool: worker_pool to put
3312 *
3313 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3314 * safe manner. get_unbound_pool() calls this function on its failure path
3315 * and this function should be able to release pools which went through,
3316 * successfully or not, init_worker_pool().
3317 *
3318 * Should be called with wq_pool_mutex held.
3319 */
3320 static void put_unbound_pool(struct worker_pool *pool)
3321 {
3322 DECLARE_COMPLETION_ONSTACK(detach_completion);
3323 struct worker *worker;
3324
3325 lockdep_assert_held(&wq_pool_mutex);
3326
3327 if (--pool->refcnt)
3328 return;
3329
3330 /* sanity checks */
3331 if (WARN_ON(!(pool->cpu < 0)) ||
3332 WARN_ON(!list_empty(&pool->worklist)))
3333 return;
3334
3335 /* release id and unhash */
3336 if (pool->id >= 0)
3337 idr_remove(&worker_pool_idr, pool->id);
3338 hash_del(&pool->hash_node);
3339
3340 /*
3341 * Become the manager and destroy all workers. This prevents
3342 * @pool's workers from blocking on attach_mutex. We're the last
3343 * manager and @pool gets freed with the flag set.
3344 */
3345 spin_lock_irq(&pool->lock);
3346 wait_event_lock_irq(wq_manager_wait,
3347 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3348 pool->flags |= POOL_MANAGER_ACTIVE;
3349
3350 while ((worker = first_idle_worker(pool)))
3351 destroy_worker(worker);
3352 WARN_ON(pool->nr_workers || pool->nr_idle);
3353 spin_unlock_irq(&pool->lock);
3354
3355 mutex_lock(&pool->attach_mutex);
3356 if (!list_empty(&pool->workers))
3357 pool->detach_completion = &detach_completion;
3358 mutex_unlock(&pool->attach_mutex);
3359
3360 if (pool->detach_completion)
3361 wait_for_completion(pool->detach_completion);
3362
3363 /* shut down the timers */
3364 del_timer_sync(&pool->idle_timer);
3365 del_timer_sync(&pool->mayday_timer);
3366
3367 /* sched-RCU protected to allow dereferences from get_work_pool() */
3368 call_rcu_sched(&pool->rcu, rcu_free_pool);
3369 }
3370
3371 /**
3372 * get_unbound_pool - get a worker_pool with the specified attributes
3373 * @attrs: the attributes of the worker_pool to get
3374 *
3375 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3376 * reference count and return it. If there already is a matching
3377 * worker_pool, it will be used; otherwise, this function attempts to
3378 * create a new one.
3379 *
3380 * Should be called with wq_pool_mutex held.
3381 *
3382 * Return: On success, a worker_pool with the same attributes as @attrs.
3383 * On failure, %NULL.
3384 */
3385 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3386 {
3387 u32 hash = wqattrs_hash(attrs);
3388 struct worker_pool *pool;
3389 int node;
3390 int target_node = NUMA_NO_NODE;
3391
3392 lockdep_assert_held(&wq_pool_mutex);
3393
3394 /* do we already have a matching pool? */
3395 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3396 if (wqattrs_equal(pool->attrs, attrs)) {
3397 pool->refcnt++;
3398 return pool;
3399 }
3400 }
3401
3402 /* if cpumask is contained inside a NUMA node, we belong to that node */
3403 if (wq_numa_enabled) {
3404 for_each_node(node) {
3405 if (cpumask_subset(attrs->cpumask,
3406 wq_numa_possible_cpumask[node])) {
3407 target_node = node;
3408 break;
3409 }
3410 }
3411 }
3412
3413 /* nope, create a new one */
3414 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3415 if (!pool || init_worker_pool(pool) < 0)
3416 goto fail;
3417
3418 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3419 copy_workqueue_attrs(pool->attrs, attrs);
3420 pool->node = target_node;
3421
3422 /*
3423 * no_numa isn't a worker_pool attribute, always clear it. See
3424 * 'struct workqueue_attrs' comments for detail.
3425 */
3426 pool->attrs->no_numa = false;
3427
3428 if (worker_pool_assign_id(pool) < 0)
3429 goto fail;
3430
3431 /* create and start the initial worker */
3432 if (wq_online && !create_worker(pool))
3433 goto fail;
3434
3435 /* install */
3436 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3437
3438 return pool;
3439 fail:
3440 if (pool)
3441 put_unbound_pool(pool);
3442 return NULL;
3443 }
3444
3445 static void rcu_free_pwq(struct rcu_head *rcu)
3446 {
3447 kmem_cache_free(pwq_cache,
3448 container_of(rcu, struct pool_workqueue, rcu));
3449 }
3450
3451 /*
3452 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3453 * and needs to be destroyed.
3454 */
3455 static void pwq_unbound_release_workfn(struct work_struct *work)
3456 {
3457 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3458 unbound_release_work);
3459 struct workqueue_struct *wq = pwq->wq;
3460 struct worker_pool *pool = pwq->pool;
3461 bool is_last;
3462
3463 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3464 return;
3465
3466 mutex_lock(&wq->mutex);
3467 list_del_rcu(&pwq->pwqs_node);
3468 is_last = list_empty(&wq->pwqs);
3469 mutex_unlock(&wq->mutex);
3470
3471 mutex_lock(&wq_pool_mutex);
3472 put_unbound_pool(pool);
3473 mutex_unlock(&wq_pool_mutex);
3474
3475 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3476
3477 /*
3478 * If we're the last pwq going away, @wq is already dead and no one
3479 * is gonna access it anymore. Schedule RCU free.
3480 */
3481 if (is_last)
3482 call_rcu_sched(&wq->rcu, rcu_free_wq);
3483 }
3484
3485 /**
3486 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3487 * @pwq: target pool_workqueue
3488 *
3489 * If @pwq isn't freezing, set @pwq->max_active to the associated
3490 * workqueue's saved_max_active and activate delayed work items
3491 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3492 */
3493 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3494 {
3495 struct workqueue_struct *wq = pwq->wq;
3496 bool freezable = wq->flags & WQ_FREEZABLE;
3497 unsigned long flags;
3498
3499 /* for @wq->saved_max_active */
3500 lockdep_assert_held(&wq->mutex);
3501
3502 /* fast exit for non-freezable wqs */
3503 if (!freezable && pwq->max_active == wq->saved_max_active)
3504 return;
3505
3506 /* this function can be called during early boot w/ irq disabled */
3507 spin_lock_irqsave(&pwq->pool->lock, flags);
3508
3509 /*
3510 * During [un]freezing, the caller is responsible for ensuring that
3511 * this function is called at least once after @workqueue_freezing
3512 * is updated and visible.
3513 */
3514 if (!freezable || !workqueue_freezing) {
3515 pwq->max_active = wq->saved_max_active;
3516
3517 while (!list_empty(&pwq->delayed_works) &&
3518 pwq->nr_active < pwq->max_active)
3519 pwq_activate_first_delayed(pwq);
3520
3521 /*
3522 * Need to kick a worker after thawed or an unbound wq's
3523 * max_active is bumped. It's a slow path. Do it always.
3524 */
3525 wake_up_worker(pwq->pool);
3526 } else {
3527 pwq->max_active = 0;
3528 }
3529
3530 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3531 }
3532
3533 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3534 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3535 struct worker_pool *pool)
3536 {
3537 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3538
3539 memset(pwq, 0, sizeof(*pwq));
3540
3541 pwq->pool = pool;
3542 pwq->wq = wq;
3543 pwq->flush_color = -1;
3544 pwq->refcnt = 1;
3545 INIT_LIST_HEAD(&pwq->delayed_works);
3546 INIT_LIST_HEAD(&pwq->pwqs_node);
3547 INIT_LIST_HEAD(&pwq->mayday_node);
3548 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3549 }
3550
3551 /* sync @pwq with the current state of its associated wq and link it */
3552 static void link_pwq(struct pool_workqueue *pwq)
3553 {
3554 struct workqueue_struct *wq = pwq->wq;
3555
3556 lockdep_assert_held(&wq->mutex);
3557
3558 /* may be called multiple times, ignore if already linked */
3559 if (!list_empty(&pwq->pwqs_node))
3560 return;
3561
3562 /* set the matching work_color */
3563 pwq->work_color = wq->work_color;
3564
3565 /* sync max_active to the current setting */
3566 pwq_adjust_max_active(pwq);
3567
3568 /* link in @pwq */
3569 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3570 }
3571
3572 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3573 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3574 const struct workqueue_attrs *attrs)
3575 {
3576 struct worker_pool *pool;
3577 struct pool_workqueue *pwq;
3578
3579 lockdep_assert_held(&wq_pool_mutex);
3580
3581 pool = get_unbound_pool(attrs);
3582 if (!pool)
3583 return NULL;
3584
3585 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3586 if (!pwq) {
3587 put_unbound_pool(pool);
3588 return NULL;
3589 }
3590
3591 init_pwq(pwq, wq, pool);
3592 return pwq;
3593 }
3594
3595 /**
3596 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3597 * @attrs: the wq_attrs of the default pwq of the target workqueue
3598 * @node: the target NUMA node
3599 * @cpu_going_down: if >= 0, the CPU to consider as offline
3600 * @cpumask: outarg, the resulting cpumask
3601 *
3602 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3603 * @cpu_going_down is >= 0, that cpu is considered offline during
3604 * calculation. The result is stored in @cpumask.
3605 *
3606 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3607 * enabled and @node has online CPUs requested by @attrs, the returned
3608 * cpumask is the intersection of the possible CPUs of @node and
3609 * @attrs->cpumask.
3610 *
3611 * The caller is responsible for ensuring that the cpumask of @node stays
3612 * stable.
3613 *
3614 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3615 * %false if equal.
3616 */
3617 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3618 int cpu_going_down, cpumask_t *cpumask)
3619 {
3620 if (!wq_numa_enabled || attrs->no_numa)
3621 goto use_dfl;
3622
3623 /* does @node have any online CPUs @attrs wants? */
3624 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3625 if (cpu_going_down >= 0)
3626 cpumask_clear_cpu(cpu_going_down, cpumask);
3627
3628 if (cpumask_empty(cpumask))
3629 goto use_dfl;
3630
3631 /* yeap, return possible CPUs in @node that @attrs wants */
3632 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3633
3634 if (cpumask_empty(cpumask)) {
3635 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3636 "possible intersect\n");
3637 return false;
3638 }
3639
3640 return !cpumask_equal(cpumask, attrs->cpumask);
3641
3642 use_dfl:
3643 cpumask_copy(cpumask, attrs->cpumask);
3644 return false;
3645 }
3646
3647 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3648 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3649 int node,
3650 struct pool_workqueue *pwq)
3651 {
3652 struct pool_workqueue *old_pwq;
3653
3654 lockdep_assert_held(&wq_pool_mutex);
3655 lockdep_assert_held(&wq->mutex);
3656
3657 /* link_pwq() can handle duplicate calls */
3658 link_pwq(pwq);
3659
3660 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3661 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3662 return old_pwq;
3663 }
3664
3665 /* context to store the prepared attrs & pwqs before applying */
3666 struct apply_wqattrs_ctx {
3667 struct workqueue_struct *wq; /* target workqueue */
3668 struct workqueue_attrs *attrs; /* attrs to apply */
3669 struct list_head list; /* queued for batching commit */
3670 struct pool_workqueue *dfl_pwq;
3671 struct pool_workqueue *pwq_tbl[];
3672 };
3673
3674 /* free the resources after success or abort */
3675 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3676 {
3677 if (ctx) {
3678 int node;
3679
3680 for_each_node(node)
3681 put_pwq_unlocked(ctx->pwq_tbl[node]);
3682 put_pwq_unlocked(ctx->dfl_pwq);
3683
3684 free_workqueue_attrs(ctx->attrs);
3685
3686 kfree(ctx);
3687 }
3688 }
3689
3690 /* allocate the attrs and pwqs for later installation */
3691 static struct apply_wqattrs_ctx *
3692 apply_wqattrs_prepare(struct workqueue_struct *wq,
3693 const struct workqueue_attrs *attrs)
3694 {
3695 struct apply_wqattrs_ctx *ctx;
3696 struct workqueue_attrs *new_attrs, *tmp_attrs;
3697 int node;
3698
3699 lockdep_assert_held(&wq_pool_mutex);
3700
3701 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3702 GFP_KERNEL);
3703
3704 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3705 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3706 if (!ctx || !new_attrs || !tmp_attrs)
3707 goto out_free;
3708
3709 /*
3710 * Calculate the attrs of the default pwq.
3711 * If the user configured cpumask doesn't overlap with the
3712 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3713 */
3714 copy_workqueue_attrs(new_attrs, attrs);
3715 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3716 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3717 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3718
3719 /*
3720 * We may create multiple pwqs with differing cpumasks. Make a
3721 * copy of @new_attrs which will be modified and used to obtain
3722 * pools.
3723 */
3724 copy_workqueue_attrs(tmp_attrs, new_attrs);
3725
3726 /*
3727 * If something goes wrong during CPU up/down, we'll fall back to
3728 * the default pwq covering whole @attrs->cpumask. Always create
3729 * it even if we don't use it immediately.
3730 */
3731 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3732 if (!ctx->dfl_pwq)
3733 goto out_free;
3734
3735 for_each_node(node) {
3736 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3737 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3738 if (!ctx->pwq_tbl[node])
3739 goto out_free;
3740 } else {
3741 ctx->dfl_pwq->refcnt++;
3742 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3743 }
3744 }
3745
3746 /* save the user configured attrs and sanitize it. */
3747 copy_workqueue_attrs(new_attrs, attrs);
3748 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3749 ctx->attrs = new_attrs;
3750
3751 ctx->wq = wq;
3752 free_workqueue_attrs(tmp_attrs);
3753 return ctx;
3754
3755 out_free:
3756 free_workqueue_attrs(tmp_attrs);
3757 free_workqueue_attrs(new_attrs);
3758 apply_wqattrs_cleanup(ctx);
3759 return NULL;
3760 }
3761
3762 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3763 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3764 {
3765 int node;
3766
3767 /* all pwqs have been created successfully, let's install'em */
3768 mutex_lock(&ctx->wq->mutex);
3769
3770 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3771
3772 /* save the previous pwq and install the new one */
3773 for_each_node(node)
3774 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3775 ctx->pwq_tbl[node]);
3776
3777 /* @dfl_pwq might not have been used, ensure it's linked */
3778 link_pwq(ctx->dfl_pwq);
3779 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3780
3781 mutex_unlock(&ctx->wq->mutex);
3782 }
3783
3784 static void apply_wqattrs_lock(void)
3785 {
3786 /* CPUs should stay stable across pwq creations and installations */
3787 get_online_cpus();
3788 mutex_lock(&wq_pool_mutex);
3789 }
3790
3791 static void apply_wqattrs_unlock(void)
3792 {
3793 mutex_unlock(&wq_pool_mutex);
3794 put_online_cpus();
3795 }
3796
3797 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3798 const struct workqueue_attrs *attrs)
3799 {
3800 struct apply_wqattrs_ctx *ctx;
3801
3802 /* only unbound workqueues can change attributes */
3803 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3804 return -EINVAL;
3805
3806 /* creating multiple pwqs breaks ordering guarantee */
3807 if (!list_empty(&wq->pwqs)) {
3808 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3809 return -EINVAL;
3810
3811 wq->flags &= ~__WQ_ORDERED;
3812 }
3813
3814 ctx = apply_wqattrs_prepare(wq, attrs);
3815 if (!ctx)
3816 return -ENOMEM;
3817
3818 /* the ctx has been prepared successfully, let's commit it */
3819 apply_wqattrs_commit(ctx);
3820 apply_wqattrs_cleanup(ctx);
3821
3822 return 0;
3823 }
3824
3825 /**
3826 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3827 * @wq: the target workqueue
3828 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3829 *
3830 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3831 * machines, this function maps a separate pwq to each NUMA node with
3832 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3833 * NUMA node it was issued on. Older pwqs are released as in-flight work
3834 * items finish. Note that a work item which repeatedly requeues itself
3835 * back-to-back will stay on its current pwq.
3836 *
3837 * Performs GFP_KERNEL allocations.
3838 *
3839 * Return: 0 on success and -errno on failure.
3840 */
3841 int apply_workqueue_attrs(struct workqueue_struct *wq,
3842 const struct workqueue_attrs *attrs)
3843 {
3844 int ret;
3845
3846 apply_wqattrs_lock();
3847 ret = apply_workqueue_attrs_locked(wq, attrs);
3848 apply_wqattrs_unlock();
3849
3850 return ret;
3851 }
3852
3853 /**
3854 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3855 * @wq: the target workqueue
3856 * @cpu: the CPU coming up or going down
3857 * @online: whether @cpu is coming up or going down
3858 *
3859 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3860 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3861 * @wq accordingly.
3862 *
3863 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3864 * falls back to @wq->dfl_pwq which may not be optimal but is always
3865 * correct.
3866 *
3867 * Note that when the last allowed CPU of a NUMA node goes offline for a
3868 * workqueue with a cpumask spanning multiple nodes, the workers which were
3869 * already executing the work items for the workqueue will lose their CPU
3870 * affinity and may execute on any CPU. This is similar to how per-cpu
3871 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3872 * affinity, it's the user's responsibility to flush the work item from
3873 * CPU_DOWN_PREPARE.
3874 */
3875 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3876 bool online)
3877 {
3878 int node = cpu_to_node(cpu);
3879 int cpu_off = online ? -1 : cpu;
3880 struct pool_workqueue *old_pwq = NULL, *pwq;
3881 struct workqueue_attrs *target_attrs;
3882 cpumask_t *cpumask;
3883
3884 lockdep_assert_held(&wq_pool_mutex);
3885
3886 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3887 wq->unbound_attrs->no_numa)
3888 return;
3889
3890 /*
3891 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3892 * Let's use a preallocated one. The following buf is protected by
3893 * CPU hotplug exclusion.
3894 */
3895 target_attrs = wq_update_unbound_numa_attrs_buf;
3896 cpumask = target_attrs->cpumask;
3897
3898 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3899 pwq = unbound_pwq_by_node(wq, node);
3900
3901 /*
3902 * Let's determine what needs to be done. If the target cpumask is
3903 * different from the default pwq's, we need to compare it to @pwq's
3904 * and create a new one if they don't match. If the target cpumask
3905 * equals the default pwq's, the default pwq should be used.
3906 */
3907 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3908 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3909 return;
3910 } else {
3911 goto use_dfl_pwq;
3912 }
3913
3914 /* create a new pwq */
3915 pwq = alloc_unbound_pwq(wq, target_attrs);
3916 if (!pwq) {
3917 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3918 wq->name);
3919 goto use_dfl_pwq;
3920 }
3921
3922 /* Install the new pwq. */
3923 mutex_lock(&wq->mutex);
3924 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3925 goto out_unlock;
3926
3927 use_dfl_pwq:
3928 mutex_lock(&wq->mutex);
3929 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3930 get_pwq(wq->dfl_pwq);
3931 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3932 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3933 out_unlock:
3934 mutex_unlock(&wq->mutex);
3935 put_pwq_unlocked(old_pwq);
3936 }
3937
3938 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3939 {
3940 bool highpri = wq->flags & WQ_HIGHPRI;
3941 int cpu, ret;
3942
3943 if (!(wq->flags & WQ_UNBOUND)) {
3944 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3945 if (!wq->cpu_pwqs)
3946 return -ENOMEM;
3947
3948 for_each_possible_cpu(cpu) {
3949 struct pool_workqueue *pwq =
3950 per_cpu_ptr(wq->cpu_pwqs, cpu);
3951 struct worker_pool *cpu_pools =
3952 per_cpu(cpu_worker_pools, cpu);
3953
3954 init_pwq(pwq, wq, &cpu_pools[highpri]);
3955
3956 mutex_lock(&wq->mutex);
3957 link_pwq(pwq);
3958 mutex_unlock(&wq->mutex);
3959 }
3960 return 0;
3961 } else if (wq->flags & __WQ_ORDERED) {
3962 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3963 /* there should only be single pwq for ordering guarantee */
3964 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3965 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3966 "ordering guarantee broken for workqueue %s\n", wq->name);
3967 return ret;
3968 } else {
3969 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3970 }
3971 }
3972
3973 static int wq_clamp_max_active(int max_active, unsigned int flags,
3974 const char *name)
3975 {
3976 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3977
3978 if (max_active < 1 || max_active > lim)
3979 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3980 max_active, name, 1, lim);
3981
3982 return clamp_val(max_active, 1, lim);
3983 }
3984
3985 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3986 unsigned int flags,
3987 int max_active,
3988 struct lock_class_key *key,
3989 const char *lock_name, ...)
3990 {
3991 size_t tbl_size = 0;
3992 va_list args;
3993 struct workqueue_struct *wq;
3994 struct pool_workqueue *pwq;
3995
3996 /*
3997 * Unbound && max_active == 1 used to imply ordered, which is no
3998 * longer the case on NUMA machines due to per-node pools. While
3999 * alloc_ordered_workqueue() is the right way to create an ordered
4000 * workqueue, keep the previous behavior to avoid subtle breakages
4001 * on NUMA.
4002 */
4003 if ((flags & WQ_UNBOUND) && max_active == 1)
4004 flags |= __WQ_ORDERED;
4005
4006 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4007 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4008 flags |= WQ_UNBOUND;
4009
4010 /* allocate wq and format name */
4011 if (flags & WQ_UNBOUND)
4012 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4013
4014 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4015 if (!wq)
4016 return NULL;
4017
4018 if (flags & WQ_UNBOUND) {
4019 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4020 if (!wq->unbound_attrs)
4021 goto err_free_wq;
4022 }
4023
4024 va_start(args, lock_name);
4025 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4026 va_end(args);
4027
4028 max_active = max_active ?: WQ_DFL_ACTIVE;
4029 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4030
4031 /* init wq */
4032 wq->flags = flags;
4033 wq->saved_max_active = max_active;
4034 mutex_init(&wq->mutex);
4035 atomic_set(&wq->nr_pwqs_to_flush, 0);
4036 INIT_LIST_HEAD(&wq->pwqs);
4037 INIT_LIST_HEAD(&wq->flusher_queue);
4038 INIT_LIST_HEAD(&wq->flusher_overflow);
4039 INIT_LIST_HEAD(&wq->maydays);
4040
4041 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4042 INIT_LIST_HEAD(&wq->list);
4043
4044 if (alloc_and_link_pwqs(wq) < 0)
4045 goto err_free_wq;
4046
4047 /*
4048 * Workqueues which may be used during memory reclaim should
4049 * have a rescuer to guarantee forward progress.
4050 */
4051 if (flags & WQ_MEM_RECLAIM) {
4052 struct worker *rescuer;
4053
4054 rescuer = alloc_worker(NUMA_NO_NODE);
4055 if (!rescuer)
4056 goto err_destroy;
4057
4058 rescuer->rescue_wq = wq;
4059 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4060 wq->name);
4061 if (IS_ERR(rescuer->task)) {
4062 kfree(rescuer);
4063 goto err_destroy;
4064 }
4065
4066 wq->rescuer = rescuer;
4067 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4068 wake_up_process(rescuer->task);
4069 }
4070
4071 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4072 goto err_destroy;
4073
4074 /*
4075 * wq_pool_mutex protects global freeze state and workqueues list.
4076 * Grab it, adjust max_active and add the new @wq to workqueues
4077 * list.
4078 */
4079 mutex_lock(&wq_pool_mutex);
4080
4081 mutex_lock(&wq->mutex);
4082 for_each_pwq(pwq, wq)
4083 pwq_adjust_max_active(pwq);
4084 mutex_unlock(&wq->mutex);
4085
4086 list_add_tail_rcu(&wq->list, &workqueues);
4087
4088 mutex_unlock(&wq_pool_mutex);
4089
4090 return wq;
4091
4092 err_free_wq:
4093 free_workqueue_attrs(wq->unbound_attrs);
4094 kfree(wq);
4095 return NULL;
4096 err_destroy:
4097 destroy_workqueue(wq);
4098 return NULL;
4099 }
4100 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4101
4102 /**
4103 * destroy_workqueue - safely terminate a workqueue
4104 * @wq: target workqueue
4105 *
4106 * Safely destroy a workqueue. All work currently pending will be done first.
4107 */
4108 void destroy_workqueue(struct workqueue_struct *wq)
4109 {
4110 struct pool_workqueue *pwq;
4111 int node;
4112
4113 /* drain it before proceeding with destruction */
4114 drain_workqueue(wq);
4115
4116 /* sanity checks */
4117 mutex_lock(&wq->mutex);
4118 for_each_pwq(pwq, wq) {
4119 int i;
4120
4121 for (i = 0; i < WORK_NR_COLORS; i++) {
4122 if (WARN_ON(pwq->nr_in_flight[i])) {
4123 mutex_unlock(&wq->mutex);
4124 show_workqueue_state();
4125 return;
4126 }
4127 }
4128
4129 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4130 WARN_ON(pwq->nr_active) ||
4131 WARN_ON(!list_empty(&pwq->delayed_works))) {
4132 mutex_unlock(&wq->mutex);
4133 show_workqueue_state();
4134 return;
4135 }
4136 }
4137 mutex_unlock(&wq->mutex);
4138
4139 /*
4140 * wq list is used to freeze wq, remove from list after
4141 * flushing is complete in case freeze races us.
4142 */
4143 mutex_lock(&wq_pool_mutex);
4144 list_del_rcu(&wq->list);
4145 mutex_unlock(&wq_pool_mutex);
4146
4147 workqueue_sysfs_unregister(wq);
4148
4149 if (wq->rescuer)
4150 kthread_stop(wq->rescuer->task);
4151
4152 if (!(wq->flags & WQ_UNBOUND)) {
4153 /*
4154 * The base ref is never dropped on per-cpu pwqs. Directly
4155 * schedule RCU free.
4156 */
4157 call_rcu_sched(&wq->rcu, rcu_free_wq);
4158 } else {
4159 /*
4160 * We're the sole accessor of @wq at this point. Directly
4161 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4162 * @wq will be freed when the last pwq is released.
4163 */
4164 for_each_node(node) {
4165 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4166 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4167 put_pwq_unlocked(pwq);
4168 }
4169
4170 /*
4171 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4172 * put. Don't access it afterwards.
4173 */
4174 pwq = wq->dfl_pwq;
4175 wq->dfl_pwq = NULL;
4176 put_pwq_unlocked(pwq);
4177 }
4178 }
4179 EXPORT_SYMBOL_GPL(destroy_workqueue);
4180
4181 /**
4182 * workqueue_set_max_active - adjust max_active of a workqueue
4183 * @wq: target workqueue
4184 * @max_active: new max_active value.
4185 *
4186 * Set max_active of @wq to @max_active.
4187 *
4188 * CONTEXT:
4189 * Don't call from IRQ context.
4190 */
4191 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4192 {
4193 struct pool_workqueue *pwq;
4194
4195 /* disallow meddling with max_active for ordered workqueues */
4196 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4197 return;
4198
4199 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4200
4201 mutex_lock(&wq->mutex);
4202
4203 wq->flags &= ~__WQ_ORDERED;
4204 wq->saved_max_active = max_active;
4205
4206 for_each_pwq(pwq, wq)
4207 pwq_adjust_max_active(pwq);
4208
4209 mutex_unlock(&wq->mutex);
4210 }
4211 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4212
4213 /**
4214 * current_work - retrieve %current task's work struct
4215 *
4216 * Determine if %current task is a workqueue worker and what it's working on.
4217 * Useful to find out the context that the %current task is running in.
4218 *
4219 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4220 */
4221 struct work_struct *current_work(void)
4222 {
4223 struct worker *worker = current_wq_worker();
4224
4225 return worker ? worker->current_work : NULL;
4226 }
4227 EXPORT_SYMBOL(current_work);
4228
4229 /**
4230 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4231 *
4232 * Determine whether %current is a workqueue rescuer. Can be used from
4233 * work functions to determine whether it's being run off the rescuer task.
4234 *
4235 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4236 */
4237 bool current_is_workqueue_rescuer(void)
4238 {
4239 struct worker *worker = current_wq_worker();
4240
4241 return worker && worker->rescue_wq;
4242 }
4243
4244 /**
4245 * workqueue_congested - test whether a workqueue is congested
4246 * @cpu: CPU in question
4247 * @wq: target workqueue
4248 *
4249 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4250 * no synchronization around this function and the test result is
4251 * unreliable and only useful as advisory hints or for debugging.
4252 *
4253 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4254 * Note that both per-cpu and unbound workqueues may be associated with
4255 * multiple pool_workqueues which have separate congested states. A
4256 * workqueue being congested on one CPU doesn't mean the workqueue is also
4257 * contested on other CPUs / NUMA nodes.
4258 *
4259 * Return:
4260 * %true if congested, %false otherwise.
4261 */
4262 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4263 {
4264 struct pool_workqueue *pwq;
4265 bool ret;
4266
4267 rcu_read_lock_sched();
4268
4269 if (cpu == WORK_CPU_UNBOUND)
4270 cpu = smp_processor_id();
4271
4272 if (!(wq->flags & WQ_UNBOUND))
4273 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4274 else
4275 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4276
4277 ret = !list_empty(&pwq->delayed_works);
4278 rcu_read_unlock_sched();
4279
4280 return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(workqueue_congested);
4283
4284 /**
4285 * work_busy - test whether a work is currently pending or running
4286 * @work: the work to be tested
4287 *
4288 * Test whether @work is currently pending or running. There is no
4289 * synchronization around this function and the test result is
4290 * unreliable and only useful as advisory hints or for debugging.
4291 *
4292 * Return:
4293 * OR'd bitmask of WORK_BUSY_* bits.
4294 */
4295 unsigned int work_busy(struct work_struct *work)
4296 {
4297 struct worker_pool *pool;
4298 unsigned long flags;
4299 unsigned int ret = 0;
4300
4301 if (work_pending(work))
4302 ret |= WORK_BUSY_PENDING;
4303
4304 local_irq_save(flags);
4305 pool = get_work_pool(work);
4306 if (pool) {
4307 spin_lock(&pool->lock);
4308 if (find_worker_executing_work(pool, work))
4309 ret |= WORK_BUSY_RUNNING;
4310 spin_unlock(&pool->lock);
4311 }
4312 local_irq_restore(flags);
4313
4314 return ret;
4315 }
4316 EXPORT_SYMBOL_GPL(work_busy);
4317
4318 /**
4319 * set_worker_desc - set description for the current work item
4320 * @fmt: printf-style format string
4321 * @...: arguments for the format string
4322 *
4323 * This function can be called by a running work function to describe what
4324 * the work item is about. If the worker task gets dumped, this
4325 * information will be printed out together to help debugging. The
4326 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4327 */
4328 void set_worker_desc(const char *fmt, ...)
4329 {
4330 struct worker *worker = current_wq_worker();
4331 va_list args;
4332
4333 if (worker) {
4334 va_start(args, fmt);
4335 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4336 va_end(args);
4337 worker->desc_valid = true;
4338 }
4339 }
4340
4341 /**
4342 * print_worker_info - print out worker information and description
4343 * @log_lvl: the log level to use when printing
4344 * @task: target task
4345 *
4346 * If @task is a worker and currently executing a work item, print out the
4347 * name of the workqueue being serviced and worker description set with
4348 * set_worker_desc() by the currently executing work item.
4349 *
4350 * This function can be safely called on any task as long as the
4351 * task_struct itself is accessible. While safe, this function isn't
4352 * synchronized and may print out mixups or garbages of limited length.
4353 */
4354 void print_worker_info(const char *log_lvl, struct task_struct *task)
4355 {
4356 work_func_t *fn = NULL;
4357 char name[WQ_NAME_LEN] = { };
4358 char desc[WORKER_DESC_LEN] = { };
4359 struct pool_workqueue *pwq = NULL;
4360 struct workqueue_struct *wq = NULL;
4361 bool desc_valid = false;
4362 struct worker *worker;
4363
4364 if (!(task->flags & PF_WQ_WORKER))
4365 return;
4366
4367 /*
4368 * This function is called without any synchronization and @task
4369 * could be in any state. Be careful with dereferences.
4370 */
4371 worker = kthread_probe_data(task);
4372
4373 /*
4374 * Carefully copy the associated workqueue's workfn and name. Keep
4375 * the original last '\0' in case the original contains garbage.
4376 */
4377 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4378 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4379 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4380 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4381
4382 /* copy worker description */
4383 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4384 if (desc_valid)
4385 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4386
4387 if (fn || name[0] || desc[0]) {
4388 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4389 if (desc[0])
4390 pr_cont(" (%s)", desc);
4391 pr_cont("\n");
4392 }
4393 }
4394
4395 static void pr_cont_pool_info(struct worker_pool *pool)
4396 {
4397 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4398 if (pool->node != NUMA_NO_NODE)
4399 pr_cont(" node=%d", pool->node);
4400 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4401 }
4402
4403 static void pr_cont_work(bool comma, struct work_struct *work)
4404 {
4405 if (work->func == wq_barrier_func) {
4406 struct wq_barrier *barr;
4407
4408 barr = container_of(work, struct wq_barrier, work);
4409
4410 pr_cont("%s BAR(%d)", comma ? "," : "",
4411 task_pid_nr(barr->task));
4412 } else {
4413 pr_cont("%s %pf", comma ? "," : "", work->func);
4414 }
4415 }
4416
4417 static void show_pwq(struct pool_workqueue *pwq)
4418 {
4419 struct worker_pool *pool = pwq->pool;
4420 struct work_struct *work;
4421 struct worker *worker;
4422 bool has_in_flight = false, has_pending = false;
4423 int bkt;
4424
4425 pr_info(" pwq %d:", pool->id);
4426 pr_cont_pool_info(pool);
4427
4428 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4429 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4430
4431 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4432 if (worker->current_pwq == pwq) {
4433 has_in_flight = true;
4434 break;
4435 }
4436 }
4437 if (has_in_flight) {
4438 bool comma = false;
4439
4440 pr_info(" in-flight:");
4441 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4442 if (worker->current_pwq != pwq)
4443 continue;
4444
4445 pr_cont("%s %d%s:%pf", comma ? "," : "",
4446 task_pid_nr(worker->task),
4447 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4448 worker->current_func);
4449 list_for_each_entry(work, &worker->scheduled, entry)
4450 pr_cont_work(false, work);
4451 comma = true;
4452 }
4453 pr_cont("\n");
4454 }
4455
4456 list_for_each_entry(work, &pool->worklist, entry) {
4457 if (get_work_pwq(work) == pwq) {
4458 has_pending = true;
4459 break;
4460 }
4461 }
4462 if (has_pending) {
4463 bool comma = false;
4464
4465 pr_info(" pending:");
4466 list_for_each_entry(work, &pool->worklist, entry) {
4467 if (get_work_pwq(work) != pwq)
4468 continue;
4469
4470 pr_cont_work(comma, work);
4471 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4472 }
4473 pr_cont("\n");
4474 }
4475
4476 if (!list_empty(&pwq->delayed_works)) {
4477 bool comma = false;
4478
4479 pr_info(" delayed:");
4480 list_for_each_entry(work, &pwq->delayed_works, entry) {
4481 pr_cont_work(comma, work);
4482 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4483 }
4484 pr_cont("\n");
4485 }
4486 }
4487
4488 /**
4489 * show_workqueue_state - dump workqueue state
4490 *
4491 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4492 * all busy workqueues and pools.
4493 */
4494 void show_workqueue_state(void)
4495 {
4496 struct workqueue_struct *wq;
4497 struct worker_pool *pool;
4498 unsigned long flags;
4499 int pi;
4500
4501 rcu_read_lock_sched();
4502
4503 pr_info("Showing busy workqueues and worker pools:\n");
4504
4505 list_for_each_entry_rcu(wq, &workqueues, list) {
4506 struct pool_workqueue *pwq;
4507 bool idle = true;
4508
4509 for_each_pwq(pwq, wq) {
4510 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4511 idle = false;
4512 break;
4513 }
4514 }
4515 if (idle)
4516 continue;
4517
4518 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4519
4520 for_each_pwq(pwq, wq) {
4521 spin_lock_irqsave(&pwq->pool->lock, flags);
4522 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4523 show_pwq(pwq);
4524 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4525 /*
4526 * We could be printing a lot from atomic context, e.g.
4527 * sysrq-t -> show_workqueue_state(). Avoid triggering
4528 * hard lockup.
4529 */
4530 touch_nmi_watchdog();
4531 }
4532 }
4533
4534 for_each_pool(pool, pi) {
4535 struct worker *worker;
4536 bool first = true;
4537
4538 spin_lock_irqsave(&pool->lock, flags);
4539 if (pool->nr_workers == pool->nr_idle)
4540 goto next_pool;
4541
4542 pr_info("pool %d:", pool->id);
4543 pr_cont_pool_info(pool);
4544 pr_cont(" hung=%us workers=%d",
4545 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4546 pool->nr_workers);
4547 if (pool->manager)
4548 pr_cont(" manager: %d",
4549 task_pid_nr(pool->manager->task));
4550 list_for_each_entry(worker, &pool->idle_list, entry) {
4551 pr_cont(" %s%d", first ? "idle: " : "",
4552 task_pid_nr(worker->task));
4553 first = false;
4554 }
4555 pr_cont("\n");
4556 next_pool:
4557 spin_unlock_irqrestore(&pool->lock, flags);
4558 /*
4559 * We could be printing a lot from atomic context, e.g.
4560 * sysrq-t -> show_workqueue_state(). Avoid triggering
4561 * hard lockup.
4562 */
4563 touch_nmi_watchdog();
4564 }
4565
4566 rcu_read_unlock_sched();
4567 }
4568
4569 /*
4570 * CPU hotplug.
4571 *
4572 * There are two challenges in supporting CPU hotplug. Firstly, there
4573 * are a lot of assumptions on strong associations among work, pwq and
4574 * pool which make migrating pending and scheduled works very
4575 * difficult to implement without impacting hot paths. Secondly,
4576 * worker pools serve mix of short, long and very long running works making
4577 * blocked draining impractical.
4578 *
4579 * This is solved by allowing the pools to be disassociated from the CPU
4580 * running as an unbound one and allowing it to be reattached later if the
4581 * cpu comes back online.
4582 */
4583
4584 static void wq_unbind_fn(struct work_struct *work)
4585 {
4586 int cpu = smp_processor_id();
4587 struct worker_pool *pool;
4588 struct worker *worker;
4589
4590 for_each_cpu_worker_pool(pool, cpu) {
4591 mutex_lock(&pool->attach_mutex);
4592 spin_lock_irq(&pool->lock);
4593
4594 /*
4595 * We've blocked all attach/detach operations. Make all workers
4596 * unbound and set DISASSOCIATED. Before this, all workers
4597 * except for the ones which are still executing works from
4598 * before the last CPU down must be on the cpu. After
4599 * this, they may become diasporas.
4600 */
4601 for_each_pool_worker(worker, pool)
4602 worker->flags |= WORKER_UNBOUND;
4603
4604 pool->flags |= POOL_DISASSOCIATED;
4605
4606 spin_unlock_irq(&pool->lock);
4607 mutex_unlock(&pool->attach_mutex);
4608
4609 /*
4610 * Call schedule() so that we cross rq->lock and thus can
4611 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4612 * This is necessary as scheduler callbacks may be invoked
4613 * from other cpus.
4614 */
4615 schedule();
4616
4617 /*
4618 * Sched callbacks are disabled now. Zap nr_running.
4619 * After this, nr_running stays zero and need_more_worker()
4620 * and keep_working() are always true as long as the
4621 * worklist is not empty. This pool now behaves as an
4622 * unbound (in terms of concurrency management) pool which
4623 * are served by workers tied to the pool.
4624 */
4625 atomic_set(&pool->nr_running, 0);
4626
4627 /*
4628 * With concurrency management just turned off, a busy
4629 * worker blocking could lead to lengthy stalls. Kick off
4630 * unbound chain execution of currently pending work items.
4631 */
4632 spin_lock_irq(&pool->lock);
4633 wake_up_worker(pool);
4634 spin_unlock_irq(&pool->lock);
4635 }
4636 }
4637
4638 /**
4639 * rebind_workers - rebind all workers of a pool to the associated CPU
4640 * @pool: pool of interest
4641 *
4642 * @pool->cpu is coming online. Rebind all workers to the CPU.
4643 */
4644 static void rebind_workers(struct worker_pool *pool)
4645 {
4646 struct worker *worker;
4647
4648 lockdep_assert_held(&pool->attach_mutex);
4649
4650 /*
4651 * Restore CPU affinity of all workers. As all idle workers should
4652 * be on the run-queue of the associated CPU before any local
4653 * wake-ups for concurrency management happen, restore CPU affinity
4654 * of all workers first and then clear UNBOUND. As we're called
4655 * from CPU_ONLINE, the following shouldn't fail.
4656 */
4657 for_each_pool_worker(worker, pool)
4658 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4659 pool->attrs->cpumask) < 0);
4660
4661 spin_lock_irq(&pool->lock);
4662
4663 /*
4664 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4665 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4666 * being reworked and this can go away in time.
4667 */
4668 if (!(pool->flags & POOL_DISASSOCIATED)) {
4669 spin_unlock_irq(&pool->lock);
4670 return;
4671 }
4672
4673 pool->flags &= ~POOL_DISASSOCIATED;
4674
4675 for_each_pool_worker(worker, pool) {
4676 unsigned int worker_flags = worker->flags;
4677
4678 /*
4679 * A bound idle worker should actually be on the runqueue
4680 * of the associated CPU for local wake-ups targeting it to
4681 * work. Kick all idle workers so that they migrate to the
4682 * associated CPU. Doing this in the same loop as
4683 * replacing UNBOUND with REBOUND is safe as no worker will
4684 * be bound before @pool->lock is released.
4685 */
4686 if (worker_flags & WORKER_IDLE)
4687 wake_up_process(worker->task);
4688
4689 /*
4690 * We want to clear UNBOUND but can't directly call
4691 * worker_clr_flags() or adjust nr_running. Atomically
4692 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4693 * @worker will clear REBOUND using worker_clr_flags() when
4694 * it initiates the next execution cycle thus restoring
4695 * concurrency management. Note that when or whether
4696 * @worker clears REBOUND doesn't affect correctness.
4697 *
4698 * ACCESS_ONCE() is necessary because @worker->flags may be
4699 * tested without holding any lock in
4700 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4701 * fail incorrectly leading to premature concurrency
4702 * management operations.
4703 */
4704 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4705 worker_flags |= WORKER_REBOUND;
4706 worker_flags &= ~WORKER_UNBOUND;
4707 ACCESS_ONCE(worker->flags) = worker_flags;
4708 }
4709
4710 spin_unlock_irq(&pool->lock);
4711 }
4712
4713 /**
4714 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4715 * @pool: unbound pool of interest
4716 * @cpu: the CPU which is coming up
4717 *
4718 * An unbound pool may end up with a cpumask which doesn't have any online
4719 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4720 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4721 * online CPU before, cpus_allowed of all its workers should be restored.
4722 */
4723 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4724 {
4725 static cpumask_t cpumask;
4726 struct worker *worker;
4727
4728 lockdep_assert_held(&pool->attach_mutex);
4729
4730 /* is @cpu allowed for @pool? */
4731 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4732 return;
4733
4734 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4735
4736 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4737 for_each_pool_worker(worker, pool)
4738 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4739 }
4740
4741 int workqueue_prepare_cpu(unsigned int cpu)
4742 {
4743 struct worker_pool *pool;
4744
4745 for_each_cpu_worker_pool(pool, cpu) {
4746 if (pool->nr_workers)
4747 continue;
4748 if (!create_worker(pool))
4749 return -ENOMEM;
4750 }
4751 return 0;
4752 }
4753
4754 int workqueue_online_cpu(unsigned int cpu)
4755 {
4756 struct worker_pool *pool;
4757 struct workqueue_struct *wq;
4758 int pi;
4759
4760 mutex_lock(&wq_pool_mutex);
4761
4762 for_each_pool(pool, pi) {
4763 mutex_lock(&pool->attach_mutex);
4764
4765 if (pool->cpu == cpu)
4766 rebind_workers(pool);
4767 else if (pool->cpu < 0)
4768 restore_unbound_workers_cpumask(pool, cpu);
4769
4770 mutex_unlock(&pool->attach_mutex);
4771 }
4772
4773 /* update NUMA affinity of unbound workqueues */
4774 list_for_each_entry(wq, &workqueues, list)
4775 wq_update_unbound_numa(wq, cpu, true);
4776
4777 mutex_unlock(&wq_pool_mutex);
4778 return 0;
4779 }
4780
4781 int workqueue_offline_cpu(unsigned int cpu)
4782 {
4783 struct work_struct unbind_work;
4784 struct workqueue_struct *wq;
4785
4786 /* unbinding per-cpu workers should happen on the local CPU */
4787 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4788 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4789
4790 /* update NUMA affinity of unbound workqueues */
4791 mutex_lock(&wq_pool_mutex);
4792 list_for_each_entry(wq, &workqueues, list)
4793 wq_update_unbound_numa(wq, cpu, false);
4794 mutex_unlock(&wq_pool_mutex);
4795
4796 /* wait for per-cpu unbinding to finish */
4797 flush_work(&unbind_work);
4798 destroy_work_on_stack(&unbind_work);
4799 return 0;
4800 }
4801
4802 #ifdef CONFIG_SMP
4803
4804 struct work_for_cpu {
4805 struct work_struct work;
4806 long (*fn)(void *);
4807 void *arg;
4808 long ret;
4809 };
4810
4811 static void work_for_cpu_fn(struct work_struct *work)
4812 {
4813 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4814
4815 wfc->ret = wfc->fn(wfc->arg);
4816 }
4817
4818 /**
4819 * work_on_cpu - run a function in thread context on a particular cpu
4820 * @cpu: the cpu to run on
4821 * @fn: the function to run
4822 * @arg: the function arg
4823 *
4824 * It is up to the caller to ensure that the cpu doesn't go offline.
4825 * The caller must not hold any locks which would prevent @fn from completing.
4826 *
4827 * Return: The value @fn returns.
4828 */
4829 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4830 {
4831 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4832
4833 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4834 schedule_work_on(cpu, &wfc.work);
4835 flush_work(&wfc.work);
4836 destroy_work_on_stack(&wfc.work);
4837 return wfc.ret;
4838 }
4839 EXPORT_SYMBOL_GPL(work_on_cpu);
4840
4841 /**
4842 * work_on_cpu_safe - run a function in thread context on a particular cpu
4843 * @cpu: the cpu to run on
4844 * @fn: the function to run
4845 * @arg: the function argument
4846 *
4847 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4848 * any locks which would prevent @fn from completing.
4849 *
4850 * Return: The value @fn returns.
4851 */
4852 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4853 {
4854 long ret = -ENODEV;
4855
4856 get_online_cpus();
4857 if (cpu_online(cpu))
4858 ret = work_on_cpu(cpu, fn, arg);
4859 put_online_cpus();
4860 return ret;
4861 }
4862 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4863 #endif /* CONFIG_SMP */
4864
4865 #ifdef CONFIG_FREEZER
4866
4867 /**
4868 * freeze_workqueues_begin - begin freezing workqueues
4869 *
4870 * Start freezing workqueues. After this function returns, all freezable
4871 * workqueues will queue new works to their delayed_works list instead of
4872 * pool->worklist.
4873 *
4874 * CONTEXT:
4875 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4876 */
4877 void freeze_workqueues_begin(void)
4878 {
4879 struct workqueue_struct *wq;
4880 struct pool_workqueue *pwq;
4881
4882 mutex_lock(&wq_pool_mutex);
4883
4884 WARN_ON_ONCE(workqueue_freezing);
4885 workqueue_freezing = true;
4886
4887 list_for_each_entry(wq, &workqueues, list) {
4888 mutex_lock(&wq->mutex);
4889 for_each_pwq(pwq, wq)
4890 pwq_adjust_max_active(pwq);
4891 mutex_unlock(&wq->mutex);
4892 }
4893
4894 mutex_unlock(&wq_pool_mutex);
4895 }
4896
4897 /**
4898 * freeze_workqueues_busy - are freezable workqueues still busy?
4899 *
4900 * Check whether freezing is complete. This function must be called
4901 * between freeze_workqueues_begin() and thaw_workqueues().
4902 *
4903 * CONTEXT:
4904 * Grabs and releases wq_pool_mutex.
4905 *
4906 * Return:
4907 * %true if some freezable workqueues are still busy. %false if freezing
4908 * is complete.
4909 */
4910 bool freeze_workqueues_busy(void)
4911 {
4912 bool busy = false;
4913 struct workqueue_struct *wq;
4914 struct pool_workqueue *pwq;
4915
4916 mutex_lock(&wq_pool_mutex);
4917
4918 WARN_ON_ONCE(!workqueue_freezing);
4919
4920 list_for_each_entry(wq, &workqueues, list) {
4921 if (!(wq->flags & WQ_FREEZABLE))
4922 continue;
4923 /*
4924 * nr_active is monotonically decreasing. It's safe
4925 * to peek without lock.
4926 */
4927 rcu_read_lock_sched();
4928 for_each_pwq(pwq, wq) {
4929 WARN_ON_ONCE(pwq->nr_active < 0);
4930 if (pwq->nr_active) {
4931 busy = true;
4932 rcu_read_unlock_sched();
4933 goto out_unlock;
4934 }
4935 }
4936 rcu_read_unlock_sched();
4937 }
4938 out_unlock:
4939 mutex_unlock(&wq_pool_mutex);
4940 return busy;
4941 }
4942
4943 /**
4944 * thaw_workqueues - thaw workqueues
4945 *
4946 * Thaw workqueues. Normal queueing is restored and all collected
4947 * frozen works are transferred to their respective pool worklists.
4948 *
4949 * CONTEXT:
4950 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4951 */
4952 void thaw_workqueues(void)
4953 {
4954 struct workqueue_struct *wq;
4955 struct pool_workqueue *pwq;
4956
4957 mutex_lock(&wq_pool_mutex);
4958
4959 if (!workqueue_freezing)
4960 goto out_unlock;
4961
4962 workqueue_freezing = false;
4963
4964 /* restore max_active and repopulate worklist */
4965 list_for_each_entry(wq, &workqueues, list) {
4966 mutex_lock(&wq->mutex);
4967 for_each_pwq(pwq, wq)
4968 pwq_adjust_max_active(pwq);
4969 mutex_unlock(&wq->mutex);
4970 }
4971
4972 out_unlock:
4973 mutex_unlock(&wq_pool_mutex);
4974 }
4975 #endif /* CONFIG_FREEZER */
4976
4977 static int workqueue_apply_unbound_cpumask(void)
4978 {
4979 LIST_HEAD(ctxs);
4980 int ret = 0;
4981 struct workqueue_struct *wq;
4982 struct apply_wqattrs_ctx *ctx, *n;
4983
4984 lockdep_assert_held(&wq_pool_mutex);
4985
4986 list_for_each_entry(wq, &workqueues, list) {
4987 if (!(wq->flags & WQ_UNBOUND))
4988 continue;
4989 /* creating multiple pwqs breaks ordering guarantee */
4990 if (wq->flags & __WQ_ORDERED)
4991 continue;
4992
4993 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4994 if (!ctx) {
4995 ret = -ENOMEM;
4996 break;
4997 }
4998
4999 list_add_tail(&ctx->list, &ctxs);
5000 }
5001
5002 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5003 if (!ret)
5004 apply_wqattrs_commit(ctx);
5005 apply_wqattrs_cleanup(ctx);
5006 }
5007
5008 return ret;
5009 }
5010
5011 /**
5012 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5013 * @cpumask: the cpumask to set
5014 *
5015 * The low-level workqueues cpumask is a global cpumask that limits
5016 * the affinity of all unbound workqueues. This function check the @cpumask
5017 * and apply it to all unbound workqueues and updates all pwqs of them.
5018 *
5019 * Retun: 0 - Success
5020 * -EINVAL - Invalid @cpumask
5021 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5022 */
5023 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5024 {
5025 int ret = -EINVAL;
5026 cpumask_var_t saved_cpumask;
5027
5028 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5029 return -ENOMEM;
5030
5031 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5032 if (!cpumask_empty(cpumask)) {
5033 apply_wqattrs_lock();
5034
5035 /* save the old wq_unbound_cpumask. */
5036 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5037
5038 /* update wq_unbound_cpumask at first and apply it to wqs. */
5039 cpumask_copy(wq_unbound_cpumask, cpumask);
5040 ret = workqueue_apply_unbound_cpumask();
5041
5042 /* restore the wq_unbound_cpumask when failed. */
5043 if (ret < 0)
5044 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5045
5046 apply_wqattrs_unlock();
5047 }
5048
5049 free_cpumask_var(saved_cpumask);
5050 return ret;
5051 }
5052
5053 #ifdef CONFIG_SYSFS
5054 /*
5055 * Workqueues with WQ_SYSFS flag set is visible to userland via
5056 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5057 * following attributes.
5058 *
5059 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5060 * max_active RW int : maximum number of in-flight work items
5061 *
5062 * Unbound workqueues have the following extra attributes.
5063 *
5064 * id RO int : the associated pool ID
5065 * nice RW int : nice value of the workers
5066 * cpumask RW mask : bitmask of allowed CPUs for the workers
5067 */
5068 struct wq_device {
5069 struct workqueue_struct *wq;
5070 struct device dev;
5071 };
5072
5073 static struct workqueue_struct *dev_to_wq(struct device *dev)
5074 {
5075 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5076
5077 return wq_dev->wq;
5078 }
5079
5080 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5081 char *buf)
5082 {
5083 struct workqueue_struct *wq = dev_to_wq(dev);
5084
5085 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5086 }
5087 static DEVICE_ATTR_RO(per_cpu);
5088
5089 static ssize_t max_active_show(struct device *dev,
5090 struct device_attribute *attr, char *buf)
5091 {
5092 struct workqueue_struct *wq = dev_to_wq(dev);
5093
5094 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5095 }
5096
5097 static ssize_t max_active_store(struct device *dev,
5098 struct device_attribute *attr, const char *buf,
5099 size_t count)
5100 {
5101 struct workqueue_struct *wq = dev_to_wq(dev);
5102 int val;
5103
5104 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5105 return -EINVAL;
5106
5107 workqueue_set_max_active(wq, val);
5108 return count;
5109 }
5110 static DEVICE_ATTR_RW(max_active);
5111
5112 static struct attribute *wq_sysfs_attrs[] = {
5113 &dev_attr_per_cpu.attr,
5114 &dev_attr_max_active.attr,
5115 NULL,
5116 };
5117 ATTRIBUTE_GROUPS(wq_sysfs);
5118
5119 static ssize_t wq_pool_ids_show(struct device *dev,
5120 struct device_attribute *attr, char *buf)
5121 {
5122 struct workqueue_struct *wq = dev_to_wq(dev);
5123 const char *delim = "";
5124 int node, written = 0;
5125
5126 rcu_read_lock_sched();
5127 for_each_node(node) {
5128 written += scnprintf(buf + written, PAGE_SIZE - written,
5129 "%s%d:%d", delim, node,
5130 unbound_pwq_by_node(wq, node)->pool->id);
5131 delim = " ";
5132 }
5133 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5134 rcu_read_unlock_sched();
5135
5136 return written;
5137 }
5138
5139 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5140 char *buf)
5141 {
5142 struct workqueue_struct *wq = dev_to_wq(dev);
5143 int written;
5144
5145 mutex_lock(&wq->mutex);
5146 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5147 mutex_unlock(&wq->mutex);
5148
5149 return written;
5150 }
5151
5152 /* prepare workqueue_attrs for sysfs store operations */
5153 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5154 {
5155 struct workqueue_attrs *attrs;
5156
5157 lockdep_assert_held(&wq_pool_mutex);
5158
5159 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5160 if (!attrs)
5161 return NULL;
5162
5163 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5164 return attrs;
5165 }
5166
5167 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5168 const char *buf, size_t count)
5169 {
5170 struct workqueue_struct *wq = dev_to_wq(dev);
5171 struct workqueue_attrs *attrs;
5172 int ret = -ENOMEM;
5173
5174 apply_wqattrs_lock();
5175
5176 attrs = wq_sysfs_prep_attrs(wq);
5177 if (!attrs)
5178 goto out_unlock;
5179
5180 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5181 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5182 ret = apply_workqueue_attrs_locked(wq, attrs);
5183 else
5184 ret = -EINVAL;
5185
5186 out_unlock:
5187 apply_wqattrs_unlock();
5188 free_workqueue_attrs(attrs);
5189 return ret ?: count;
5190 }
5191
5192 static ssize_t wq_cpumask_show(struct device *dev,
5193 struct device_attribute *attr, char *buf)
5194 {
5195 struct workqueue_struct *wq = dev_to_wq(dev);
5196 int written;
5197
5198 mutex_lock(&wq->mutex);
5199 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5200 cpumask_pr_args(wq->unbound_attrs->cpumask));
5201 mutex_unlock(&wq->mutex);
5202 return written;
5203 }
5204
5205 static ssize_t wq_cpumask_store(struct device *dev,
5206 struct device_attribute *attr,
5207 const char *buf, size_t count)
5208 {
5209 struct workqueue_struct *wq = dev_to_wq(dev);
5210 struct workqueue_attrs *attrs;
5211 int ret = -ENOMEM;
5212
5213 apply_wqattrs_lock();
5214
5215 attrs = wq_sysfs_prep_attrs(wq);
5216 if (!attrs)
5217 goto out_unlock;
5218
5219 ret = cpumask_parse(buf, attrs->cpumask);
5220 if (!ret)
5221 ret = apply_workqueue_attrs_locked(wq, attrs);
5222
5223 out_unlock:
5224 apply_wqattrs_unlock();
5225 free_workqueue_attrs(attrs);
5226 return ret ?: count;
5227 }
5228
5229 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5230 char *buf)
5231 {
5232 struct workqueue_struct *wq = dev_to_wq(dev);
5233 int written;
5234
5235 mutex_lock(&wq->mutex);
5236 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5237 !wq->unbound_attrs->no_numa);
5238 mutex_unlock(&wq->mutex);
5239
5240 return written;
5241 }
5242
5243 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5244 const char *buf, size_t count)
5245 {
5246 struct workqueue_struct *wq = dev_to_wq(dev);
5247 struct workqueue_attrs *attrs;
5248 int v, ret = -ENOMEM;
5249
5250 apply_wqattrs_lock();
5251
5252 attrs = wq_sysfs_prep_attrs(wq);
5253 if (!attrs)
5254 goto out_unlock;
5255
5256 ret = -EINVAL;
5257 if (sscanf(buf, "%d", &v) == 1) {
5258 attrs->no_numa = !v;
5259 ret = apply_workqueue_attrs_locked(wq, attrs);
5260 }
5261
5262 out_unlock:
5263 apply_wqattrs_unlock();
5264 free_workqueue_attrs(attrs);
5265 return ret ?: count;
5266 }
5267
5268 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5269 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5270 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5271 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5272 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5273 __ATTR_NULL,
5274 };
5275
5276 static struct bus_type wq_subsys = {
5277 .name = "workqueue",
5278 .dev_groups = wq_sysfs_groups,
5279 };
5280
5281 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5282 struct device_attribute *attr, char *buf)
5283 {
5284 int written;
5285
5286 mutex_lock(&wq_pool_mutex);
5287 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5288 cpumask_pr_args(wq_unbound_cpumask));
5289 mutex_unlock(&wq_pool_mutex);
5290
5291 return written;
5292 }
5293
5294 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5295 struct device_attribute *attr, const char *buf, size_t count)
5296 {
5297 cpumask_var_t cpumask;
5298 int ret;
5299
5300 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5301 return -ENOMEM;
5302
5303 ret = cpumask_parse(buf, cpumask);
5304 if (!ret)
5305 ret = workqueue_set_unbound_cpumask(cpumask);
5306
5307 free_cpumask_var(cpumask);
5308 return ret ? ret : count;
5309 }
5310
5311 static struct device_attribute wq_sysfs_cpumask_attr =
5312 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5313 wq_unbound_cpumask_store);
5314
5315 static int __init wq_sysfs_init(void)
5316 {
5317 int err;
5318
5319 err = subsys_virtual_register(&wq_subsys, NULL);
5320 if (err)
5321 return err;
5322
5323 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5324 }
5325 core_initcall(wq_sysfs_init);
5326
5327 static void wq_device_release(struct device *dev)
5328 {
5329 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5330
5331 kfree(wq_dev);
5332 }
5333
5334 /**
5335 * workqueue_sysfs_register - make a workqueue visible in sysfs
5336 * @wq: the workqueue to register
5337 *
5338 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5339 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5340 * which is the preferred method.
5341 *
5342 * Workqueue user should use this function directly iff it wants to apply
5343 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5344 * apply_workqueue_attrs() may race against userland updating the
5345 * attributes.
5346 *
5347 * Return: 0 on success, -errno on failure.
5348 */
5349 int workqueue_sysfs_register(struct workqueue_struct *wq)
5350 {
5351 struct wq_device *wq_dev;
5352 int ret;
5353
5354 /*
5355 * Adjusting max_active or creating new pwqs by applying
5356 * attributes breaks ordering guarantee. Disallow exposing ordered
5357 * workqueues.
5358 */
5359 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5360 return -EINVAL;
5361
5362 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5363 if (!wq_dev)
5364 return -ENOMEM;
5365
5366 wq_dev->wq = wq;
5367 wq_dev->dev.bus = &wq_subsys;
5368 wq_dev->dev.release = wq_device_release;
5369 dev_set_name(&wq_dev->dev, "%s", wq->name);
5370
5371 /*
5372 * unbound_attrs are created separately. Suppress uevent until
5373 * everything is ready.
5374 */
5375 dev_set_uevent_suppress(&wq_dev->dev, true);
5376
5377 ret = device_register(&wq_dev->dev);
5378 if (ret) {
5379 put_device(&wq_dev->dev);
5380 wq->wq_dev = NULL;
5381 return ret;
5382 }
5383
5384 if (wq->flags & WQ_UNBOUND) {
5385 struct device_attribute *attr;
5386
5387 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5388 ret = device_create_file(&wq_dev->dev, attr);
5389 if (ret) {
5390 device_unregister(&wq_dev->dev);
5391 wq->wq_dev = NULL;
5392 return ret;
5393 }
5394 }
5395 }
5396
5397 dev_set_uevent_suppress(&wq_dev->dev, false);
5398 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5399 return 0;
5400 }
5401
5402 /**
5403 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5404 * @wq: the workqueue to unregister
5405 *
5406 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5407 */
5408 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5409 {
5410 struct wq_device *wq_dev = wq->wq_dev;
5411
5412 if (!wq->wq_dev)
5413 return;
5414
5415 wq->wq_dev = NULL;
5416 device_unregister(&wq_dev->dev);
5417 }
5418 #else /* CONFIG_SYSFS */
5419 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5420 #endif /* CONFIG_SYSFS */
5421
5422 /*
5423 * Workqueue watchdog.
5424 *
5425 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5426 * flush dependency, a concurrency managed work item which stays RUNNING
5427 * indefinitely. Workqueue stalls can be very difficult to debug as the
5428 * usual warning mechanisms don't trigger and internal workqueue state is
5429 * largely opaque.
5430 *
5431 * Workqueue watchdog monitors all worker pools periodically and dumps
5432 * state if some pools failed to make forward progress for a while where
5433 * forward progress is defined as the first item on ->worklist changing.
5434 *
5435 * This mechanism is controlled through the kernel parameter
5436 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5437 * corresponding sysfs parameter file.
5438 */
5439 #ifdef CONFIG_WQ_WATCHDOG
5440
5441 static void wq_watchdog_timer_fn(unsigned long data);
5442
5443 static unsigned long wq_watchdog_thresh = 30;
5444 static struct timer_list wq_watchdog_timer =
5445 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5446
5447 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5448 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5449
5450 static void wq_watchdog_reset_touched(void)
5451 {
5452 int cpu;
5453
5454 wq_watchdog_touched = jiffies;
5455 for_each_possible_cpu(cpu)
5456 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5457 }
5458
5459 static void wq_watchdog_timer_fn(unsigned long data)
5460 {
5461 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5462 bool lockup_detected = false;
5463 struct worker_pool *pool;
5464 int pi;
5465
5466 if (!thresh)
5467 return;
5468
5469 rcu_read_lock();
5470
5471 for_each_pool(pool, pi) {
5472 unsigned long pool_ts, touched, ts;
5473
5474 if (list_empty(&pool->worklist))
5475 continue;
5476
5477 /* get the latest of pool and touched timestamps */
5478 pool_ts = READ_ONCE(pool->watchdog_ts);
5479 touched = READ_ONCE(wq_watchdog_touched);
5480
5481 if (time_after(pool_ts, touched))
5482 ts = pool_ts;
5483 else
5484 ts = touched;
5485
5486 if (pool->cpu >= 0) {
5487 unsigned long cpu_touched =
5488 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5489 pool->cpu));
5490 if (time_after(cpu_touched, ts))
5491 ts = cpu_touched;
5492 }
5493
5494 /* did we stall? */
5495 if (time_after(jiffies, ts + thresh)) {
5496 lockup_detected = true;
5497 pr_emerg("BUG: workqueue lockup - pool");
5498 pr_cont_pool_info(pool);
5499 pr_cont(" stuck for %us!\n",
5500 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5501 }
5502 }
5503
5504 rcu_read_unlock();
5505
5506 if (lockup_detected)
5507 show_workqueue_state();
5508
5509 wq_watchdog_reset_touched();
5510 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5511 }
5512
5513 notrace void wq_watchdog_touch(int cpu)
5514 {
5515 if (cpu >= 0)
5516 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5517 else
5518 wq_watchdog_touched = jiffies;
5519 }
5520
5521 static void wq_watchdog_set_thresh(unsigned long thresh)
5522 {
5523 wq_watchdog_thresh = 0;
5524 del_timer_sync(&wq_watchdog_timer);
5525
5526 if (thresh) {
5527 wq_watchdog_thresh = thresh;
5528 wq_watchdog_reset_touched();
5529 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5530 }
5531 }
5532
5533 static int wq_watchdog_param_set_thresh(const char *val,
5534 const struct kernel_param *kp)
5535 {
5536 unsigned long thresh;
5537 int ret;
5538
5539 ret = kstrtoul(val, 0, &thresh);
5540 if (ret)
5541 return ret;
5542
5543 if (system_wq)
5544 wq_watchdog_set_thresh(thresh);
5545 else
5546 wq_watchdog_thresh = thresh;
5547
5548 return 0;
5549 }
5550
5551 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5552 .set = wq_watchdog_param_set_thresh,
5553 .get = param_get_ulong,
5554 };
5555
5556 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5557 0644);
5558
5559 static void wq_watchdog_init(void)
5560 {
5561 wq_watchdog_set_thresh(wq_watchdog_thresh);
5562 }
5563
5564 #else /* CONFIG_WQ_WATCHDOG */
5565
5566 static inline void wq_watchdog_init(void) { }
5567
5568 #endif /* CONFIG_WQ_WATCHDOG */
5569
5570 static void __init wq_numa_init(void)
5571 {
5572 cpumask_var_t *tbl;
5573 int node, cpu;
5574
5575 if (num_possible_nodes() <= 1)
5576 return;
5577
5578 if (wq_disable_numa) {
5579 pr_info("workqueue: NUMA affinity support disabled\n");
5580 return;
5581 }
5582
5583 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5584 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5585
5586 /*
5587 * We want masks of possible CPUs of each node which isn't readily
5588 * available. Build one from cpu_to_node() which should have been
5589 * fully initialized by now.
5590 */
5591 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5592 BUG_ON(!tbl);
5593
5594 for_each_node(node)
5595 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5596 node_online(node) ? node : NUMA_NO_NODE));
5597
5598 for_each_possible_cpu(cpu) {
5599 node = cpu_to_node(cpu);
5600 if (WARN_ON(node == NUMA_NO_NODE)) {
5601 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5602 /* happens iff arch is bonkers, let's just proceed */
5603 return;
5604 }
5605 cpumask_set_cpu(cpu, tbl[node]);
5606 }
5607
5608 wq_numa_possible_cpumask = tbl;
5609 wq_numa_enabled = true;
5610 }
5611
5612 /**
5613 * workqueue_init_early - early init for workqueue subsystem
5614 *
5615 * This is the first half of two-staged workqueue subsystem initialization
5616 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5617 * idr are up. It sets up all the data structures and system workqueues
5618 * and allows early boot code to create workqueues and queue/cancel work
5619 * items. Actual work item execution starts only after kthreads can be
5620 * created and scheduled right before early initcalls.
5621 */
5622 int __init workqueue_init_early(void)
5623 {
5624 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5625 int i, cpu;
5626
5627 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5628
5629 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5630 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5631
5632 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5633
5634 /* initialize CPU pools */
5635 for_each_possible_cpu(cpu) {
5636 struct worker_pool *pool;
5637
5638 i = 0;
5639 for_each_cpu_worker_pool(pool, cpu) {
5640 BUG_ON(init_worker_pool(pool));
5641 pool->cpu = cpu;
5642 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5643 pool->attrs->nice = std_nice[i++];
5644 pool->node = cpu_to_node(cpu);
5645
5646 /* alloc pool ID */
5647 mutex_lock(&wq_pool_mutex);
5648 BUG_ON(worker_pool_assign_id(pool));
5649 mutex_unlock(&wq_pool_mutex);
5650 }
5651 }
5652
5653 /* create default unbound and ordered wq attrs */
5654 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5655 struct workqueue_attrs *attrs;
5656
5657 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5658 attrs->nice = std_nice[i];
5659 unbound_std_wq_attrs[i] = attrs;
5660
5661 /*
5662 * An ordered wq should have only one pwq as ordering is
5663 * guaranteed by max_active which is enforced by pwqs.
5664 * Turn off NUMA so that dfl_pwq is used for all nodes.
5665 */
5666 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5667 attrs->nice = std_nice[i];
5668 attrs->no_numa = true;
5669 ordered_wq_attrs[i] = attrs;
5670 }
5671
5672 system_wq = alloc_workqueue("events", 0, 0);
5673 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5674 system_long_wq = alloc_workqueue("events_long", 0, 0);
5675 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5676 WQ_UNBOUND_MAX_ACTIVE);
5677 system_freezable_wq = alloc_workqueue("events_freezable",
5678 WQ_FREEZABLE, 0);
5679 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5680 WQ_POWER_EFFICIENT, 0);
5681 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5682 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5683 0);
5684 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5685 !system_unbound_wq || !system_freezable_wq ||
5686 !system_power_efficient_wq ||
5687 !system_freezable_power_efficient_wq);
5688
5689 return 0;
5690 }
5691
5692 /**
5693 * workqueue_init - bring workqueue subsystem fully online
5694 *
5695 * This is the latter half of two-staged workqueue subsystem initialization
5696 * and invoked as soon as kthreads can be created and scheduled.
5697 * Workqueues have been created and work items queued on them, but there
5698 * are no kworkers executing the work items yet. Populate the worker pools
5699 * with the initial workers and enable future kworker creations.
5700 */
5701 int __init workqueue_init(void)
5702 {
5703 struct workqueue_struct *wq;
5704 struct worker_pool *pool;
5705 int cpu, bkt;
5706
5707 /*
5708 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5709 * CPU to node mapping may not be available that early on some
5710 * archs such as power and arm64. As per-cpu pools created
5711 * previously could be missing node hint and unbound pools NUMA
5712 * affinity, fix them up.
5713 */
5714 wq_numa_init();
5715
5716 mutex_lock(&wq_pool_mutex);
5717
5718 for_each_possible_cpu(cpu) {
5719 for_each_cpu_worker_pool(pool, cpu) {
5720 pool->node = cpu_to_node(cpu);
5721 }
5722 }
5723
5724 list_for_each_entry(wq, &workqueues, list)
5725 wq_update_unbound_numa(wq, smp_processor_id(), true);
5726
5727 mutex_unlock(&wq_pool_mutex);
5728
5729 /* create the initial workers */
5730 for_each_online_cpu(cpu) {
5731 for_each_cpu_worker_pool(pool, cpu) {
5732 pool->flags &= ~POOL_DISASSOCIATED;
5733 BUG_ON(!create_worker(pool));
5734 }
5735 }
5736
5737 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5738 BUG_ON(!create_worker(pool));
5739
5740 wq_online = true;
5741 wq_watchdog_init();
5742
5743 return 0;
5744 }