futex: Provide and use pi_state_update_owner()
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 smp_mb(); /* explicit smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 break;
474 case FUT_OFF_MMSHARED:
475 mmdrop(key->private.mm);
476 break;
477 }
478 }
479
480 /*
481 * Generate a machine wide unique identifier for this inode.
482 *
483 * This relies on u64 not wrapping in the life-time of the machine; which with
484 * 1ns resolution means almost 585 years.
485 *
486 * This further relies on the fact that a well formed program will not unmap
487 * the file while it has a (shared) futex waiting on it. This mapping will have
488 * a file reference which pins the mount and inode.
489 *
490 * If for some reason an inode gets evicted and read back in again, it will get
491 * a new sequence number and will _NOT_ match, even though it is the exact same
492 * file.
493 *
494 * It is important that match_futex() will never have a false-positive, esp.
495 * for PI futexes that can mess up the state. The above argues that false-negatives
496 * are only possible for malformed programs.
497 */
498 static u64 get_inode_sequence_number(struct inode *inode)
499 {
500 static atomic64_t i_seq;
501 u64 old;
502
503 /* Does the inode already have a sequence number? */
504 old = atomic64_read(&inode->i_sequence);
505 if (likely(old))
506 return old;
507
508 for (;;) {
509 u64 new = atomic64_add_return(1, &i_seq);
510 if (WARN_ON_ONCE(!new))
511 continue;
512
513 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
514 if (old)
515 return old;
516 return new;
517 }
518 }
519
520 /**
521 * get_futex_key() - Get parameters which are the keys for a futex
522 * @uaddr: virtual address of the futex
523 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
524 * @key: address where result is stored.
525 * @rw: mapping needs to be read/write (values: VERIFY_READ,
526 * VERIFY_WRITE)
527 *
528 * Return: a negative error code or 0
529 *
530 * The key words are stored in @key on success.
531 *
532 * For shared mappings (when @fshared), the key is:
533 * ( inode->i_sequence, page->index, offset_within_page )
534 * [ also see get_inode_sequence_number() ]
535 *
536 * For private mappings (or when !@fshared), the key is:
537 * ( current->mm, address, 0 )
538 *
539 * This allows (cross process, where applicable) identification of the futex
540 * without keeping the page pinned for the duration of the FUTEX_WAIT.
541 *
542 * lock_page() might sleep, the caller should not hold a spinlock.
543 */
544 static int
545 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
546 {
547 unsigned long address = (unsigned long)uaddr;
548 struct mm_struct *mm = current->mm;
549 struct page *page, *tail;
550 struct address_space *mapping;
551 int err, ro = 0;
552
553 /*
554 * The futex address must be "naturally" aligned.
555 */
556 key->both.offset = address % PAGE_SIZE;
557 if (unlikely((address % sizeof(u32)) != 0))
558 return -EINVAL;
559 address -= key->both.offset;
560
561 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
562 return -EFAULT;
563
564 if (unlikely(should_fail_futex(fshared)))
565 return -EFAULT;
566
567 /*
568 * PROCESS_PRIVATE futexes are fast.
569 * As the mm cannot disappear under us and the 'key' only needs
570 * virtual address, we dont even have to find the underlying vma.
571 * Note : We do have to check 'uaddr' is a valid user address,
572 * but access_ok() should be faster than find_vma()
573 */
574 if (!fshared) {
575 key->private.mm = mm;
576 key->private.address = address;
577 get_futex_key_refs(key); /* implies smp_mb(); (B) */
578 return 0;
579 }
580
581 again:
582 /* Ignore any VERIFY_READ mapping (futex common case) */
583 if (unlikely(should_fail_futex(fshared)))
584 return -EFAULT;
585
586 err = get_user_pages_fast(address, 1, 1, &page);
587 /*
588 * If write access is not required (eg. FUTEX_WAIT), try
589 * and get read-only access.
590 */
591 if (err == -EFAULT && rw == VERIFY_READ) {
592 err = get_user_pages_fast(address, 1, 0, &page);
593 ro = 1;
594 }
595 if (err < 0)
596 return err;
597 else
598 err = 0;
599
600 /*
601 * The treatment of mapping from this point on is critical. The page
602 * lock protects many things but in this context the page lock
603 * stabilizes mapping, prevents inode freeing in the shared
604 * file-backed region case and guards against movement to swap cache.
605 *
606 * Strictly speaking the page lock is not needed in all cases being
607 * considered here and page lock forces unnecessarily serialization
608 * From this point on, mapping will be re-verified if necessary and
609 * page lock will be acquired only if it is unavoidable
610 *
611 * Mapping checks require the head page for any compound page so the
612 * head page and mapping is looked up now. For anonymous pages, it
613 * does not matter if the page splits in the future as the key is
614 * based on the address. For filesystem-backed pages, the tail is
615 * required as the index of the page determines the key. For
616 * base pages, there is no tail page and tail == page.
617 */
618 tail = page;
619 page = compound_head(page);
620 mapping = READ_ONCE(page->mapping);
621
622 /*
623 * If page->mapping is NULL, then it cannot be a PageAnon
624 * page; but it might be the ZERO_PAGE or in the gate area or
625 * in a special mapping (all cases which we are happy to fail);
626 * or it may have been a good file page when get_user_pages_fast
627 * found it, but truncated or holepunched or subjected to
628 * invalidate_complete_page2 before we got the page lock (also
629 * cases which we are happy to fail). And we hold a reference,
630 * so refcount care in invalidate_complete_page's remove_mapping
631 * prevents drop_caches from setting mapping to NULL beneath us.
632 *
633 * The case we do have to guard against is when memory pressure made
634 * shmem_writepage move it from filecache to swapcache beneath us:
635 * an unlikely race, but we do need to retry for page->mapping.
636 */
637 if (unlikely(!mapping)) {
638 int shmem_swizzled;
639
640 /*
641 * Page lock is required to identify which special case above
642 * applies. If this is really a shmem page then the page lock
643 * will prevent unexpected transitions.
644 */
645 lock_page(page);
646 shmem_swizzled = PageSwapCache(page) || page->mapping;
647 unlock_page(page);
648 put_page(page);
649
650 if (shmem_swizzled)
651 goto again;
652
653 return -EFAULT;
654 }
655
656 /*
657 * Private mappings are handled in a simple way.
658 *
659 * If the futex key is stored on an anonymous page, then the associated
660 * object is the mm which is implicitly pinned by the calling process.
661 *
662 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
663 * it's a read-only handle, it's expected that futexes attach to
664 * the object not the particular process.
665 */
666 if (PageAnon(page)) {
667 /*
668 * A RO anonymous page will never change and thus doesn't make
669 * sense for futex operations.
670 */
671 if (unlikely(should_fail_futex(fshared)) || ro) {
672 err = -EFAULT;
673 goto out;
674 }
675
676 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
677 key->private.mm = mm;
678 key->private.address = address;
679
680 } else {
681 struct inode *inode;
682
683 /*
684 * The associated futex object in this case is the inode and
685 * the page->mapping must be traversed. Ordinarily this should
686 * be stabilised under page lock but it's not strictly
687 * necessary in this case as we just want to pin the inode, not
688 * update the radix tree or anything like that.
689 *
690 * The RCU read lock is taken as the inode is finally freed
691 * under RCU. If the mapping still matches expectations then the
692 * mapping->host can be safely accessed as being a valid inode.
693 */
694 rcu_read_lock();
695
696 if (READ_ONCE(page->mapping) != mapping) {
697 rcu_read_unlock();
698 put_page(page);
699
700 goto again;
701 }
702
703 inode = READ_ONCE(mapping->host);
704 if (!inode) {
705 rcu_read_unlock();
706 put_page(page);
707
708 goto again;
709 }
710
711 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
712 key->shared.i_seq = get_inode_sequence_number(inode);
713 key->shared.pgoff = basepage_index(tail);
714 rcu_read_unlock();
715 }
716
717 get_futex_key_refs(key); /* implies smp_mb(); (B) */
718
719 out:
720 put_page(page);
721 return err;
722 }
723
724 static inline void put_futex_key(union futex_key *key)
725 {
726 drop_futex_key_refs(key);
727 }
728
729 /**
730 * fault_in_user_writeable() - Fault in user address and verify RW access
731 * @uaddr: pointer to faulting user space address
732 *
733 * Slow path to fixup the fault we just took in the atomic write
734 * access to @uaddr.
735 *
736 * We have no generic implementation of a non-destructive write to the
737 * user address. We know that we faulted in the atomic pagefault
738 * disabled section so we can as well avoid the #PF overhead by
739 * calling get_user_pages() right away.
740 */
741 static int fault_in_user_writeable(u32 __user *uaddr)
742 {
743 struct mm_struct *mm = current->mm;
744 int ret;
745
746 down_read(&mm->mmap_sem);
747 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
748 FAULT_FLAG_WRITE, NULL);
749 up_read(&mm->mmap_sem);
750
751 return ret < 0 ? ret : 0;
752 }
753
754 /**
755 * futex_top_waiter() - Return the highest priority waiter on a futex
756 * @hb: the hash bucket the futex_q's reside in
757 * @key: the futex key (to distinguish it from other futex futex_q's)
758 *
759 * Must be called with the hb lock held.
760 */
761 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
762 union futex_key *key)
763 {
764 struct futex_q *this;
765
766 plist_for_each_entry(this, &hb->chain, list) {
767 if (match_futex(&this->key, key))
768 return this;
769 }
770 return NULL;
771 }
772
773 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
774 u32 uval, u32 newval)
775 {
776 int ret;
777
778 pagefault_disable();
779 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
780 pagefault_enable();
781
782 return ret;
783 }
784
785 static int get_futex_value_locked(u32 *dest, u32 __user *from)
786 {
787 int ret;
788
789 pagefault_disable();
790 ret = __get_user(*dest, from);
791 pagefault_enable();
792
793 return ret ? -EFAULT : 0;
794 }
795
796
797 /*
798 * PI code:
799 */
800 static int refill_pi_state_cache(void)
801 {
802 struct futex_pi_state *pi_state;
803
804 if (likely(current->pi_state_cache))
805 return 0;
806
807 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
808
809 if (!pi_state)
810 return -ENOMEM;
811
812 INIT_LIST_HEAD(&pi_state->list);
813 /* pi_mutex gets initialized later */
814 pi_state->owner = NULL;
815 atomic_set(&pi_state->refcount, 1);
816 pi_state->key = FUTEX_KEY_INIT;
817
818 current->pi_state_cache = pi_state;
819
820 return 0;
821 }
822
823 static struct futex_pi_state *alloc_pi_state(void)
824 {
825 struct futex_pi_state *pi_state = current->pi_state_cache;
826
827 WARN_ON(!pi_state);
828 current->pi_state_cache = NULL;
829
830 return pi_state;
831 }
832
833 static void pi_state_update_owner(struct futex_pi_state *pi_state,
834 struct task_struct *new_owner)
835 {
836 struct task_struct *old_owner = pi_state->owner;
837
838 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
839
840 if (old_owner) {
841 raw_spin_lock(&old_owner->pi_lock);
842 WARN_ON(list_empty(&pi_state->list));
843 list_del_init(&pi_state->list);
844 raw_spin_unlock(&old_owner->pi_lock);
845 }
846
847 if (new_owner) {
848 raw_spin_lock(&new_owner->pi_lock);
849 WARN_ON(!list_empty(&pi_state->list));
850 list_add(&pi_state->list, &new_owner->pi_state_list);
851 pi_state->owner = new_owner;
852 raw_spin_unlock(&new_owner->pi_lock);
853 }
854 }
855
856 static void get_pi_state(struct futex_pi_state *pi_state)
857 {
858 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
859 }
860
861 /*
862 * Drops a reference to the pi_state object and frees or caches it
863 * when the last reference is gone.
864 */
865 static void put_pi_state(struct futex_pi_state *pi_state)
866 {
867 if (!pi_state)
868 return;
869
870 if (!atomic_dec_and_test(&pi_state->refcount))
871 return;
872
873 /*
874 * If pi_state->owner is NULL, the owner is most probably dying
875 * and has cleaned up the pi_state already
876 */
877 if (pi_state->owner) {
878 struct task_struct *owner;
879
880 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
881 owner = pi_state->owner;
882 if (owner) {
883 raw_spin_lock(&owner->pi_lock);
884 list_del_init(&pi_state->list);
885 raw_spin_unlock(&owner->pi_lock);
886 }
887 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
888 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
889 }
890
891 if (current->pi_state_cache) {
892 kfree(pi_state);
893 } else {
894 /*
895 * pi_state->list is already empty.
896 * clear pi_state->owner.
897 * refcount is at 0 - put it back to 1.
898 */
899 pi_state->owner = NULL;
900 atomic_set(&pi_state->refcount, 1);
901 current->pi_state_cache = pi_state;
902 }
903 }
904
905 /*
906 * Look up the task based on what TID userspace gave us.
907 * We dont trust it.
908 */
909 static struct task_struct *futex_find_get_task(pid_t pid)
910 {
911 struct task_struct *p;
912
913 rcu_read_lock();
914 p = find_task_by_vpid(pid);
915 if (p)
916 get_task_struct(p);
917
918 rcu_read_unlock();
919
920 return p;
921 }
922
923 #ifdef CONFIG_FUTEX_PI
924
925 /*
926 * This task is holding PI mutexes at exit time => bad.
927 * Kernel cleans up PI-state, but userspace is likely hosed.
928 * (Robust-futex cleanup is separate and might save the day for userspace.)
929 */
930 void exit_pi_state_list(struct task_struct *curr)
931 {
932 struct list_head *next, *head = &curr->pi_state_list;
933 struct futex_pi_state *pi_state;
934 struct futex_hash_bucket *hb;
935 union futex_key key = FUTEX_KEY_INIT;
936
937 if (!futex_cmpxchg_enabled)
938 return;
939 /*
940 * We are a ZOMBIE and nobody can enqueue itself on
941 * pi_state_list anymore, but we have to be careful
942 * versus waiters unqueueing themselves:
943 */
944 raw_spin_lock_irq(&curr->pi_lock);
945 while (!list_empty(head)) {
946 next = head->next;
947 pi_state = list_entry(next, struct futex_pi_state, list);
948 key = pi_state->key;
949 hb = hash_futex(&key);
950
951 /*
952 * We can race against put_pi_state() removing itself from the
953 * list (a waiter going away). put_pi_state() will first
954 * decrement the reference count and then modify the list, so
955 * its possible to see the list entry but fail this reference
956 * acquire.
957 *
958 * In that case; drop the locks to let put_pi_state() make
959 * progress and retry the loop.
960 */
961 if (!atomic_inc_not_zero(&pi_state->refcount)) {
962 raw_spin_unlock_irq(&curr->pi_lock);
963 cpu_relax();
964 raw_spin_lock_irq(&curr->pi_lock);
965 continue;
966 }
967 raw_spin_unlock_irq(&curr->pi_lock);
968
969 spin_lock(&hb->lock);
970 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
971 raw_spin_lock(&curr->pi_lock);
972 /*
973 * We dropped the pi-lock, so re-check whether this
974 * task still owns the PI-state:
975 */
976 if (head->next != next) {
977 /* retain curr->pi_lock for the loop invariant */
978 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
979 spin_unlock(&hb->lock);
980 put_pi_state(pi_state);
981 continue;
982 }
983
984 WARN_ON(pi_state->owner != curr);
985 WARN_ON(list_empty(&pi_state->list));
986 list_del_init(&pi_state->list);
987 pi_state->owner = NULL;
988
989 raw_spin_unlock(&curr->pi_lock);
990 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
991 spin_unlock(&hb->lock);
992
993 rt_mutex_futex_unlock(&pi_state->pi_mutex);
994 put_pi_state(pi_state);
995
996 raw_spin_lock_irq(&curr->pi_lock);
997 }
998 raw_spin_unlock_irq(&curr->pi_lock);
999 }
1000
1001 #endif
1002
1003 /*
1004 * We need to check the following states:
1005 *
1006 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
1007 *
1008 * [1] NULL | --- | --- | 0 | 0/1 | Valid
1009 * [2] NULL | --- | --- | >0 | 0/1 | Valid
1010 *
1011 * [3] Found | NULL | -- | Any | 0/1 | Invalid
1012 *
1013 * [4] Found | Found | NULL | 0 | 1 | Valid
1014 * [5] Found | Found | NULL | >0 | 1 | Invalid
1015 *
1016 * [6] Found | Found | task | 0 | 1 | Valid
1017 *
1018 * [7] Found | Found | NULL | Any | 0 | Invalid
1019 *
1020 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
1021 * [9] Found | Found | task | 0 | 0 | Invalid
1022 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
1023 *
1024 * [1] Indicates that the kernel can acquire the futex atomically. We
1025 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1026 *
1027 * [2] Valid, if TID does not belong to a kernel thread. If no matching
1028 * thread is found then it indicates that the owner TID has died.
1029 *
1030 * [3] Invalid. The waiter is queued on a non PI futex
1031 *
1032 * [4] Valid state after exit_robust_list(), which sets the user space
1033 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1034 *
1035 * [5] The user space value got manipulated between exit_robust_list()
1036 * and exit_pi_state_list()
1037 *
1038 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1039 * the pi_state but cannot access the user space value.
1040 *
1041 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1042 *
1043 * [8] Owner and user space value match
1044 *
1045 * [9] There is no transient state which sets the user space TID to 0
1046 * except exit_robust_list(), but this is indicated by the
1047 * FUTEX_OWNER_DIED bit. See [4]
1048 *
1049 * [10] There is no transient state which leaves owner and user space
1050 * TID out of sync.
1051 *
1052 *
1053 * Serialization and lifetime rules:
1054 *
1055 * hb->lock:
1056 *
1057 * hb -> futex_q, relation
1058 * futex_q -> pi_state, relation
1059 *
1060 * (cannot be raw because hb can contain arbitrary amount
1061 * of futex_q's)
1062 *
1063 * pi_mutex->wait_lock:
1064 *
1065 * {uval, pi_state}
1066 *
1067 * (and pi_mutex 'obviously')
1068 *
1069 * p->pi_lock:
1070 *
1071 * p->pi_state_list -> pi_state->list, relation
1072 *
1073 * pi_state->refcount:
1074 *
1075 * pi_state lifetime
1076 *
1077 *
1078 * Lock order:
1079 *
1080 * hb->lock
1081 * pi_mutex->wait_lock
1082 * p->pi_lock
1083 *
1084 */
1085
1086 /*
1087 * Validate that the existing waiter has a pi_state and sanity check
1088 * the pi_state against the user space value. If correct, attach to
1089 * it.
1090 */
1091 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1092 struct futex_pi_state *pi_state,
1093 struct futex_pi_state **ps)
1094 {
1095 pid_t pid = uval & FUTEX_TID_MASK;
1096 u32 uval2;
1097 int ret;
1098
1099 /*
1100 * Userspace might have messed up non-PI and PI futexes [3]
1101 */
1102 if (unlikely(!pi_state))
1103 return -EINVAL;
1104
1105 /*
1106 * We get here with hb->lock held, and having found a
1107 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1108 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1109 * which in turn means that futex_lock_pi() still has a reference on
1110 * our pi_state.
1111 *
1112 * The waiter holding a reference on @pi_state also protects against
1113 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1114 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1115 * free pi_state before we can take a reference ourselves.
1116 */
1117 WARN_ON(!atomic_read(&pi_state->refcount));
1118
1119 /*
1120 * Now that we have a pi_state, we can acquire wait_lock
1121 * and do the state validation.
1122 */
1123 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1124
1125 /*
1126 * Since {uval, pi_state} is serialized by wait_lock, and our current
1127 * uval was read without holding it, it can have changed. Verify it
1128 * still is what we expect it to be, otherwise retry the entire
1129 * operation.
1130 */
1131 if (get_futex_value_locked(&uval2, uaddr))
1132 goto out_efault;
1133
1134 if (uval != uval2)
1135 goto out_eagain;
1136
1137 /*
1138 * Handle the owner died case:
1139 */
1140 if (uval & FUTEX_OWNER_DIED) {
1141 /*
1142 * exit_pi_state_list sets owner to NULL and wakes the
1143 * topmost waiter. The task which acquires the
1144 * pi_state->rt_mutex will fixup owner.
1145 */
1146 if (!pi_state->owner) {
1147 /*
1148 * No pi state owner, but the user space TID
1149 * is not 0. Inconsistent state. [5]
1150 */
1151 if (pid)
1152 goto out_einval;
1153 /*
1154 * Take a ref on the state and return success. [4]
1155 */
1156 goto out_attach;
1157 }
1158
1159 /*
1160 * If TID is 0, then either the dying owner has not
1161 * yet executed exit_pi_state_list() or some waiter
1162 * acquired the rtmutex in the pi state, but did not
1163 * yet fixup the TID in user space.
1164 *
1165 * Take a ref on the state and return success. [6]
1166 */
1167 if (!pid)
1168 goto out_attach;
1169 } else {
1170 /*
1171 * If the owner died bit is not set, then the pi_state
1172 * must have an owner. [7]
1173 */
1174 if (!pi_state->owner)
1175 goto out_einval;
1176 }
1177
1178 /*
1179 * Bail out if user space manipulated the futex value. If pi
1180 * state exists then the owner TID must be the same as the
1181 * user space TID. [9/10]
1182 */
1183 if (pid != task_pid_vnr(pi_state->owner))
1184 goto out_einval;
1185
1186 out_attach:
1187 get_pi_state(pi_state);
1188 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1189 *ps = pi_state;
1190 return 0;
1191
1192 out_einval:
1193 ret = -EINVAL;
1194 goto out_error;
1195
1196 out_eagain:
1197 ret = -EAGAIN;
1198 goto out_error;
1199
1200 out_efault:
1201 ret = -EFAULT;
1202 goto out_error;
1203
1204 out_error:
1205 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1206 return ret;
1207 }
1208
1209 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1210 struct task_struct *tsk)
1211 {
1212 u32 uval2;
1213
1214 /*
1215 * If PF_EXITPIDONE is not yet set, then try again.
1216 */
1217 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1218 return -EAGAIN;
1219
1220 /*
1221 * Reread the user space value to handle the following situation:
1222 *
1223 * CPU0 CPU1
1224 *
1225 * sys_exit() sys_futex()
1226 * do_exit() futex_lock_pi()
1227 * futex_lock_pi_atomic()
1228 * exit_signals(tsk) No waiters:
1229 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1230 * mm_release(tsk) Set waiter bit
1231 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1232 * Set owner died attach_to_pi_owner() {
1233 * *uaddr = 0xC0000000; tsk = get_task(PID);
1234 * } if (!tsk->flags & PF_EXITING) {
1235 * ... attach();
1236 * tsk->flags |= PF_EXITPIDONE; } else {
1237 * if (!(tsk->flags & PF_EXITPIDONE))
1238 * return -EAGAIN;
1239 * return -ESRCH; <--- FAIL
1240 * }
1241 *
1242 * Returning ESRCH unconditionally is wrong here because the
1243 * user space value has been changed by the exiting task.
1244 *
1245 * The same logic applies to the case where the exiting task is
1246 * already gone.
1247 */
1248 if (get_futex_value_locked(&uval2, uaddr))
1249 return -EFAULT;
1250
1251 /* If the user space value has changed, try again. */
1252 if (uval2 != uval)
1253 return -EAGAIN;
1254
1255 /*
1256 * The exiting task did not have a robust list, the robust list was
1257 * corrupted or the user space value in *uaddr is simply bogus.
1258 * Give up and tell user space.
1259 */
1260 return -ESRCH;
1261 }
1262
1263 /*
1264 * Lookup the task for the TID provided from user space and attach to
1265 * it after doing proper sanity checks.
1266 */
1267 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1268 struct futex_pi_state **ps)
1269 {
1270 pid_t pid = uval & FUTEX_TID_MASK;
1271 struct futex_pi_state *pi_state;
1272 struct task_struct *p;
1273
1274 /*
1275 * We are the first waiter - try to look up the real owner and attach
1276 * the new pi_state to it, but bail out when TID = 0 [1]
1277 *
1278 * The !pid check is paranoid. None of the call sites should end up
1279 * with pid == 0, but better safe than sorry. Let the caller retry
1280 */
1281 if (!pid)
1282 return -EAGAIN;
1283 p = futex_find_get_task(pid);
1284 if (!p)
1285 return handle_exit_race(uaddr, uval, NULL);
1286
1287 if (unlikely(p->flags & PF_KTHREAD)) {
1288 put_task_struct(p);
1289 return -EPERM;
1290 }
1291
1292 /*
1293 * We need to look at the task state flags to figure out,
1294 * whether the task is exiting. To protect against the do_exit
1295 * change of the task flags, we do this protected by
1296 * p->pi_lock:
1297 */
1298 raw_spin_lock_irq(&p->pi_lock);
1299 if (unlikely(p->flags & PF_EXITING)) {
1300 /*
1301 * The task is on the way out. When PF_EXITPIDONE is
1302 * set, we know that the task has finished the
1303 * cleanup:
1304 */
1305 int ret = handle_exit_race(uaddr, uval, p);
1306
1307 raw_spin_unlock_irq(&p->pi_lock);
1308 put_task_struct(p);
1309 return ret;
1310 }
1311
1312 /*
1313 * No existing pi state. First waiter. [2]
1314 *
1315 * This creates pi_state, we have hb->lock held, this means nothing can
1316 * observe this state, wait_lock is irrelevant.
1317 */
1318 pi_state = alloc_pi_state();
1319
1320 /*
1321 * Initialize the pi_mutex in locked state and make @p
1322 * the owner of it:
1323 */
1324 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1325
1326 /* Store the key for possible exit cleanups: */
1327 pi_state->key = *key;
1328
1329 WARN_ON(!list_empty(&pi_state->list));
1330 list_add(&pi_state->list, &p->pi_state_list);
1331 /*
1332 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1333 * because there is no concurrency as the object is not published yet.
1334 */
1335 pi_state->owner = p;
1336 raw_spin_unlock_irq(&p->pi_lock);
1337
1338 put_task_struct(p);
1339
1340 *ps = pi_state;
1341
1342 return 0;
1343 }
1344
1345 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1346 struct futex_hash_bucket *hb,
1347 union futex_key *key, struct futex_pi_state **ps)
1348 {
1349 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1350
1351 /*
1352 * If there is a waiter on that futex, validate it and
1353 * attach to the pi_state when the validation succeeds.
1354 */
1355 if (top_waiter)
1356 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1357
1358 /*
1359 * We are the first waiter - try to look up the owner based on
1360 * @uval and attach to it.
1361 */
1362 return attach_to_pi_owner(uaddr, uval, key, ps);
1363 }
1364
1365 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1366 {
1367 u32 uninitialized_var(curval);
1368
1369 if (unlikely(should_fail_futex(true)))
1370 return -EFAULT;
1371
1372 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1373 return -EFAULT;
1374
1375 /* If user space value changed, let the caller retry */
1376 return curval != uval ? -EAGAIN : 0;
1377 }
1378
1379 /**
1380 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1381 * @uaddr: the pi futex user address
1382 * @hb: the pi futex hash bucket
1383 * @key: the futex key associated with uaddr and hb
1384 * @ps: the pi_state pointer where we store the result of the
1385 * lookup
1386 * @task: the task to perform the atomic lock work for. This will
1387 * be "current" except in the case of requeue pi.
1388 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1389 *
1390 * Return:
1391 * - 0 - ready to wait;
1392 * - 1 - acquired the lock;
1393 * - <0 - error
1394 *
1395 * The hb->lock and futex_key refs shall be held by the caller.
1396 */
1397 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1398 union futex_key *key,
1399 struct futex_pi_state **ps,
1400 struct task_struct *task, int set_waiters)
1401 {
1402 u32 uval, newval, vpid = task_pid_vnr(task);
1403 struct futex_q *top_waiter;
1404 int ret;
1405
1406 /*
1407 * Read the user space value first so we can validate a few
1408 * things before proceeding further.
1409 */
1410 if (get_futex_value_locked(&uval, uaddr))
1411 return -EFAULT;
1412
1413 if (unlikely(should_fail_futex(true)))
1414 return -EFAULT;
1415
1416 /*
1417 * Detect deadlocks.
1418 */
1419 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1420 return -EDEADLK;
1421
1422 if ((unlikely(should_fail_futex(true))))
1423 return -EDEADLK;
1424
1425 /*
1426 * Lookup existing state first. If it exists, try to attach to
1427 * its pi_state.
1428 */
1429 top_waiter = futex_top_waiter(hb, key);
1430 if (top_waiter)
1431 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1432
1433 /*
1434 * No waiter and user TID is 0. We are here because the
1435 * waiters or the owner died bit is set or called from
1436 * requeue_cmp_pi or for whatever reason something took the
1437 * syscall.
1438 */
1439 if (!(uval & FUTEX_TID_MASK)) {
1440 /*
1441 * We take over the futex. No other waiters and the user space
1442 * TID is 0. We preserve the owner died bit.
1443 */
1444 newval = uval & FUTEX_OWNER_DIED;
1445 newval |= vpid;
1446
1447 /* The futex requeue_pi code can enforce the waiters bit */
1448 if (set_waiters)
1449 newval |= FUTEX_WAITERS;
1450
1451 ret = lock_pi_update_atomic(uaddr, uval, newval);
1452 /* If the take over worked, return 1 */
1453 return ret < 0 ? ret : 1;
1454 }
1455
1456 /*
1457 * First waiter. Set the waiters bit before attaching ourself to
1458 * the owner. If owner tries to unlock, it will be forced into
1459 * the kernel and blocked on hb->lock.
1460 */
1461 newval = uval | FUTEX_WAITERS;
1462 ret = lock_pi_update_atomic(uaddr, uval, newval);
1463 if (ret)
1464 return ret;
1465 /*
1466 * If the update of the user space value succeeded, we try to
1467 * attach to the owner. If that fails, no harm done, we only
1468 * set the FUTEX_WAITERS bit in the user space variable.
1469 */
1470 return attach_to_pi_owner(uaddr, newval, key, ps);
1471 }
1472
1473 /**
1474 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1475 * @q: The futex_q to unqueue
1476 *
1477 * The q->lock_ptr must not be NULL and must be held by the caller.
1478 */
1479 static void __unqueue_futex(struct futex_q *q)
1480 {
1481 struct futex_hash_bucket *hb;
1482
1483 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1484 || WARN_ON(plist_node_empty(&q->list)))
1485 return;
1486
1487 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1488 plist_del(&q->list, &hb->chain);
1489 hb_waiters_dec(hb);
1490 }
1491
1492 /*
1493 * The hash bucket lock must be held when this is called.
1494 * Afterwards, the futex_q must not be accessed. Callers
1495 * must ensure to later call wake_up_q() for the actual
1496 * wakeups to occur.
1497 */
1498 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1499 {
1500 struct task_struct *p = q->task;
1501
1502 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1503 return;
1504
1505 get_task_struct(p);
1506 __unqueue_futex(q);
1507 /*
1508 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1509 * is written, without taking any locks. This is possible in the event
1510 * of a spurious wakeup, for example. A memory barrier is required here
1511 * to prevent the following store to lock_ptr from getting ahead of the
1512 * plist_del in __unqueue_futex().
1513 */
1514 smp_store_release(&q->lock_ptr, NULL);
1515
1516 /*
1517 * Queue the task for later wakeup for after we've released
1518 * the hb->lock. wake_q_add() grabs reference to p.
1519 */
1520 wake_q_add(wake_q, p);
1521 put_task_struct(p);
1522 }
1523
1524 /*
1525 * Caller must hold a reference on @pi_state.
1526 */
1527 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1528 {
1529 u32 uninitialized_var(curval), newval;
1530 struct task_struct *new_owner;
1531 bool postunlock = false;
1532 DEFINE_WAKE_Q(wake_q);
1533 int ret = 0;
1534
1535 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1536 if (WARN_ON_ONCE(!new_owner)) {
1537 /*
1538 * As per the comment in futex_unlock_pi() this should not happen.
1539 *
1540 * When this happens, give up our locks and try again, giving
1541 * the futex_lock_pi() instance time to complete, either by
1542 * waiting on the rtmutex or removing itself from the futex
1543 * queue.
1544 */
1545 ret = -EAGAIN;
1546 goto out_unlock;
1547 }
1548
1549 /*
1550 * We pass it to the next owner. The WAITERS bit is always kept
1551 * enabled while there is PI state around. We cleanup the owner
1552 * died bit, because we are the owner.
1553 */
1554 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1555
1556 if (unlikely(should_fail_futex(true)))
1557 ret = -EFAULT;
1558
1559 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1560 ret = -EFAULT;
1561
1562 } else if (curval != uval) {
1563 /*
1564 * If a unconditional UNLOCK_PI operation (user space did not
1565 * try the TID->0 transition) raced with a waiter setting the
1566 * FUTEX_WAITERS flag between get_user() and locking the hash
1567 * bucket lock, retry the operation.
1568 */
1569 if ((FUTEX_TID_MASK & curval) == uval)
1570 ret = -EAGAIN;
1571 else
1572 ret = -EINVAL;
1573 }
1574
1575 if (!ret) {
1576 /*
1577 * This is a point of no return; once we modified the uval
1578 * there is no going back and subsequent operations must
1579 * not fail.
1580 */
1581 pi_state_update_owner(pi_state, new_owner);
1582 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1583 }
1584
1585 out_unlock:
1586 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1587
1588 if (postunlock)
1589 rt_mutex_postunlock(&wake_q);
1590
1591 return ret;
1592 }
1593
1594 /*
1595 * Express the locking dependencies for lockdep:
1596 */
1597 static inline void
1598 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1599 {
1600 if (hb1 <= hb2) {
1601 spin_lock(&hb1->lock);
1602 if (hb1 < hb2)
1603 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1604 } else { /* hb1 > hb2 */
1605 spin_lock(&hb2->lock);
1606 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1607 }
1608 }
1609
1610 static inline void
1611 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1612 {
1613 spin_unlock(&hb1->lock);
1614 if (hb1 != hb2)
1615 spin_unlock(&hb2->lock);
1616 }
1617
1618 /*
1619 * Wake up waiters matching bitset queued on this futex (uaddr).
1620 */
1621 static int
1622 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1623 {
1624 struct futex_hash_bucket *hb;
1625 struct futex_q *this, *next;
1626 union futex_key key = FUTEX_KEY_INIT;
1627 int ret;
1628 DEFINE_WAKE_Q(wake_q);
1629
1630 if (!bitset)
1631 return -EINVAL;
1632
1633 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1634 if (unlikely(ret != 0))
1635 goto out;
1636
1637 hb = hash_futex(&key);
1638
1639 /* Make sure we really have tasks to wakeup */
1640 if (!hb_waiters_pending(hb))
1641 goto out_put_key;
1642
1643 spin_lock(&hb->lock);
1644
1645 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1646 if (match_futex (&this->key, &key)) {
1647 if (this->pi_state || this->rt_waiter) {
1648 ret = -EINVAL;
1649 break;
1650 }
1651
1652 /* Check if one of the bits is set in both bitsets */
1653 if (!(this->bitset & bitset))
1654 continue;
1655
1656 mark_wake_futex(&wake_q, this);
1657 if (++ret >= nr_wake)
1658 break;
1659 }
1660 }
1661
1662 spin_unlock(&hb->lock);
1663 wake_up_q(&wake_q);
1664 out_put_key:
1665 put_futex_key(&key);
1666 out:
1667 return ret;
1668 }
1669
1670 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1671 {
1672 unsigned int op = (encoded_op & 0x70000000) >> 28;
1673 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1674 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1675 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1676 int oldval, ret;
1677
1678 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1679 if (oparg < 0 || oparg > 31) {
1680 char comm[sizeof(current->comm)];
1681 /*
1682 * kill this print and return -EINVAL when userspace
1683 * is sane again
1684 */
1685 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1686 get_task_comm(comm, current), oparg);
1687 oparg &= 31;
1688 }
1689 oparg = 1 << oparg;
1690 }
1691
1692 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1693 return -EFAULT;
1694
1695 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1696 if (ret)
1697 return ret;
1698
1699 switch (cmp) {
1700 case FUTEX_OP_CMP_EQ:
1701 return oldval == cmparg;
1702 case FUTEX_OP_CMP_NE:
1703 return oldval != cmparg;
1704 case FUTEX_OP_CMP_LT:
1705 return oldval < cmparg;
1706 case FUTEX_OP_CMP_GE:
1707 return oldval >= cmparg;
1708 case FUTEX_OP_CMP_LE:
1709 return oldval <= cmparg;
1710 case FUTEX_OP_CMP_GT:
1711 return oldval > cmparg;
1712 default:
1713 return -ENOSYS;
1714 }
1715 }
1716
1717 /*
1718 * Wake up all waiters hashed on the physical page that is mapped
1719 * to this virtual address:
1720 */
1721 static int
1722 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1723 int nr_wake, int nr_wake2, int op)
1724 {
1725 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1726 struct futex_hash_bucket *hb1, *hb2;
1727 struct futex_q *this, *next;
1728 int ret, op_ret;
1729 DEFINE_WAKE_Q(wake_q);
1730
1731 retry:
1732 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1733 if (unlikely(ret != 0))
1734 goto out;
1735 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1736 if (unlikely(ret != 0))
1737 goto out_put_key1;
1738
1739 hb1 = hash_futex(&key1);
1740 hb2 = hash_futex(&key2);
1741
1742 retry_private:
1743 double_lock_hb(hb1, hb2);
1744 op_ret = futex_atomic_op_inuser(op, uaddr2);
1745 if (unlikely(op_ret < 0)) {
1746
1747 double_unlock_hb(hb1, hb2);
1748
1749 #ifndef CONFIG_MMU
1750 /*
1751 * we don't get EFAULT from MMU faults if we don't have an MMU,
1752 * but we might get them from range checking
1753 */
1754 ret = op_ret;
1755 goto out_put_keys;
1756 #endif
1757
1758 if (unlikely(op_ret != -EFAULT)) {
1759 ret = op_ret;
1760 goto out_put_keys;
1761 }
1762
1763 ret = fault_in_user_writeable(uaddr2);
1764 if (ret)
1765 goto out_put_keys;
1766
1767 if (!(flags & FLAGS_SHARED))
1768 goto retry_private;
1769
1770 put_futex_key(&key2);
1771 put_futex_key(&key1);
1772 goto retry;
1773 }
1774
1775 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1776 if (match_futex (&this->key, &key1)) {
1777 if (this->pi_state || this->rt_waiter) {
1778 ret = -EINVAL;
1779 goto out_unlock;
1780 }
1781 mark_wake_futex(&wake_q, this);
1782 if (++ret >= nr_wake)
1783 break;
1784 }
1785 }
1786
1787 if (op_ret > 0) {
1788 op_ret = 0;
1789 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1790 if (match_futex (&this->key, &key2)) {
1791 if (this->pi_state || this->rt_waiter) {
1792 ret = -EINVAL;
1793 goto out_unlock;
1794 }
1795 mark_wake_futex(&wake_q, this);
1796 if (++op_ret >= nr_wake2)
1797 break;
1798 }
1799 }
1800 ret += op_ret;
1801 }
1802
1803 out_unlock:
1804 double_unlock_hb(hb1, hb2);
1805 wake_up_q(&wake_q);
1806 out_put_keys:
1807 put_futex_key(&key2);
1808 out_put_key1:
1809 put_futex_key(&key1);
1810 out:
1811 return ret;
1812 }
1813
1814 /**
1815 * requeue_futex() - Requeue a futex_q from one hb to another
1816 * @q: the futex_q to requeue
1817 * @hb1: the source hash_bucket
1818 * @hb2: the target hash_bucket
1819 * @key2: the new key for the requeued futex_q
1820 */
1821 static inline
1822 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1823 struct futex_hash_bucket *hb2, union futex_key *key2)
1824 {
1825
1826 /*
1827 * If key1 and key2 hash to the same bucket, no need to
1828 * requeue.
1829 */
1830 if (likely(&hb1->chain != &hb2->chain)) {
1831 plist_del(&q->list, &hb1->chain);
1832 hb_waiters_dec(hb1);
1833 hb_waiters_inc(hb2);
1834 plist_add(&q->list, &hb2->chain);
1835 q->lock_ptr = &hb2->lock;
1836 }
1837 get_futex_key_refs(key2);
1838 q->key = *key2;
1839 }
1840
1841 /**
1842 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1843 * @q: the futex_q
1844 * @key: the key of the requeue target futex
1845 * @hb: the hash_bucket of the requeue target futex
1846 *
1847 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1848 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1849 * to the requeue target futex so the waiter can detect the wakeup on the right
1850 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1851 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1852 * to protect access to the pi_state to fixup the owner later. Must be called
1853 * with both q->lock_ptr and hb->lock held.
1854 */
1855 static inline
1856 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1857 struct futex_hash_bucket *hb)
1858 {
1859 get_futex_key_refs(key);
1860 q->key = *key;
1861
1862 __unqueue_futex(q);
1863
1864 WARN_ON(!q->rt_waiter);
1865 q->rt_waiter = NULL;
1866
1867 q->lock_ptr = &hb->lock;
1868
1869 wake_up_state(q->task, TASK_NORMAL);
1870 }
1871
1872 /**
1873 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1874 * @pifutex: the user address of the to futex
1875 * @hb1: the from futex hash bucket, must be locked by the caller
1876 * @hb2: the to futex hash bucket, must be locked by the caller
1877 * @key1: the from futex key
1878 * @key2: the to futex key
1879 * @ps: address to store the pi_state pointer
1880 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1881 *
1882 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1883 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1884 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1885 * hb1 and hb2 must be held by the caller.
1886 *
1887 * Return:
1888 * - 0 - failed to acquire the lock atomically;
1889 * - >0 - acquired the lock, return value is vpid of the top_waiter
1890 * - <0 - error
1891 */
1892 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1893 struct futex_hash_bucket *hb1,
1894 struct futex_hash_bucket *hb2,
1895 union futex_key *key1, union futex_key *key2,
1896 struct futex_pi_state **ps, int set_waiters)
1897 {
1898 struct futex_q *top_waiter = NULL;
1899 u32 curval;
1900 int ret, vpid;
1901
1902 if (get_futex_value_locked(&curval, pifutex))
1903 return -EFAULT;
1904
1905 if (unlikely(should_fail_futex(true)))
1906 return -EFAULT;
1907
1908 /*
1909 * Find the top_waiter and determine if there are additional waiters.
1910 * If the caller intends to requeue more than 1 waiter to pifutex,
1911 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1912 * as we have means to handle the possible fault. If not, don't set
1913 * the bit unecessarily as it will force the subsequent unlock to enter
1914 * the kernel.
1915 */
1916 top_waiter = futex_top_waiter(hb1, key1);
1917
1918 /* There are no waiters, nothing for us to do. */
1919 if (!top_waiter)
1920 return 0;
1921
1922 /* Ensure we requeue to the expected futex. */
1923 if (!match_futex(top_waiter->requeue_pi_key, key2))
1924 return -EINVAL;
1925
1926 /*
1927 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1928 * the contended case or if set_waiters is 1. The pi_state is returned
1929 * in ps in contended cases.
1930 */
1931 vpid = task_pid_vnr(top_waiter->task);
1932 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1933 set_waiters);
1934 if (ret == 1) {
1935 requeue_pi_wake_futex(top_waiter, key2, hb2);
1936 return vpid;
1937 }
1938 return ret;
1939 }
1940
1941 /**
1942 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1943 * @uaddr1: source futex user address
1944 * @flags: futex flags (FLAGS_SHARED, etc.)
1945 * @uaddr2: target futex user address
1946 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1947 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1948 * @cmpval: @uaddr1 expected value (or %NULL)
1949 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1950 * pi futex (pi to pi requeue is not supported)
1951 *
1952 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1953 * uaddr2 atomically on behalf of the top waiter.
1954 *
1955 * Return:
1956 * - >=0 - on success, the number of tasks requeued or woken;
1957 * - <0 - on error
1958 */
1959 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1960 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1961 u32 *cmpval, int requeue_pi)
1962 {
1963 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1964 int drop_count = 0, task_count = 0, ret;
1965 struct futex_pi_state *pi_state = NULL;
1966 struct futex_hash_bucket *hb1, *hb2;
1967 struct futex_q *this, *next;
1968 DEFINE_WAKE_Q(wake_q);
1969
1970 if (nr_wake < 0 || nr_requeue < 0)
1971 return -EINVAL;
1972
1973 /*
1974 * When PI not supported: return -ENOSYS if requeue_pi is true,
1975 * consequently the compiler knows requeue_pi is always false past
1976 * this point which will optimize away all the conditional code
1977 * further down.
1978 */
1979 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1980 return -ENOSYS;
1981
1982 if (requeue_pi) {
1983 /*
1984 * Requeue PI only works on two distinct uaddrs. This
1985 * check is only valid for private futexes. See below.
1986 */
1987 if (uaddr1 == uaddr2)
1988 return -EINVAL;
1989
1990 /*
1991 * requeue_pi requires a pi_state, try to allocate it now
1992 * without any locks in case it fails.
1993 */
1994 if (refill_pi_state_cache())
1995 return -ENOMEM;
1996 /*
1997 * requeue_pi must wake as many tasks as it can, up to nr_wake
1998 * + nr_requeue, since it acquires the rt_mutex prior to
1999 * returning to userspace, so as to not leave the rt_mutex with
2000 * waiters and no owner. However, second and third wake-ups
2001 * cannot be predicted as they involve race conditions with the
2002 * first wake and a fault while looking up the pi_state. Both
2003 * pthread_cond_signal() and pthread_cond_broadcast() should
2004 * use nr_wake=1.
2005 */
2006 if (nr_wake != 1)
2007 return -EINVAL;
2008 }
2009
2010 retry:
2011 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
2012 if (unlikely(ret != 0))
2013 goto out;
2014 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2015 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
2016 if (unlikely(ret != 0))
2017 goto out_put_key1;
2018
2019 /*
2020 * The check above which compares uaddrs is not sufficient for
2021 * shared futexes. We need to compare the keys:
2022 */
2023 if (requeue_pi && match_futex(&key1, &key2)) {
2024 ret = -EINVAL;
2025 goto out_put_keys;
2026 }
2027
2028 hb1 = hash_futex(&key1);
2029 hb2 = hash_futex(&key2);
2030
2031 retry_private:
2032 hb_waiters_inc(hb2);
2033 double_lock_hb(hb1, hb2);
2034
2035 if (likely(cmpval != NULL)) {
2036 u32 curval;
2037
2038 ret = get_futex_value_locked(&curval, uaddr1);
2039
2040 if (unlikely(ret)) {
2041 double_unlock_hb(hb1, hb2);
2042 hb_waiters_dec(hb2);
2043
2044 ret = get_user(curval, uaddr1);
2045 if (ret)
2046 goto out_put_keys;
2047
2048 if (!(flags & FLAGS_SHARED))
2049 goto retry_private;
2050
2051 put_futex_key(&key2);
2052 put_futex_key(&key1);
2053 goto retry;
2054 }
2055 if (curval != *cmpval) {
2056 ret = -EAGAIN;
2057 goto out_unlock;
2058 }
2059 }
2060
2061 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2062 /*
2063 * Attempt to acquire uaddr2 and wake the top waiter. If we
2064 * intend to requeue waiters, force setting the FUTEX_WAITERS
2065 * bit. We force this here where we are able to easily handle
2066 * faults rather in the requeue loop below.
2067 */
2068 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2069 &key2, &pi_state, nr_requeue);
2070
2071 /*
2072 * At this point the top_waiter has either taken uaddr2 or is
2073 * waiting on it. If the former, then the pi_state will not
2074 * exist yet, look it up one more time to ensure we have a
2075 * reference to it. If the lock was taken, ret contains the
2076 * vpid of the top waiter task.
2077 * If the lock was not taken, we have pi_state and an initial
2078 * refcount on it. In case of an error we have nothing.
2079 */
2080 if (ret > 0) {
2081 WARN_ON(pi_state);
2082 drop_count++;
2083 task_count++;
2084 /*
2085 * If we acquired the lock, then the user space value
2086 * of uaddr2 should be vpid. It cannot be changed by
2087 * the top waiter as it is blocked on hb2 lock if it
2088 * tries to do so. If something fiddled with it behind
2089 * our back the pi state lookup might unearth it. So
2090 * we rather use the known value than rereading and
2091 * handing potential crap to lookup_pi_state.
2092 *
2093 * If that call succeeds then we have pi_state and an
2094 * initial refcount on it.
2095 */
2096 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2097 }
2098
2099 switch (ret) {
2100 case 0:
2101 /* We hold a reference on the pi state. */
2102 break;
2103
2104 /* If the above failed, then pi_state is NULL */
2105 case -EFAULT:
2106 double_unlock_hb(hb1, hb2);
2107 hb_waiters_dec(hb2);
2108 put_futex_key(&key2);
2109 put_futex_key(&key1);
2110 ret = fault_in_user_writeable(uaddr2);
2111 if (!ret)
2112 goto retry;
2113 goto out;
2114 case -EAGAIN:
2115 /*
2116 * Two reasons for this:
2117 * - Owner is exiting and we just wait for the
2118 * exit to complete.
2119 * - The user space value changed.
2120 */
2121 double_unlock_hb(hb1, hb2);
2122 hb_waiters_dec(hb2);
2123 put_futex_key(&key2);
2124 put_futex_key(&key1);
2125 cond_resched();
2126 goto retry;
2127 default:
2128 goto out_unlock;
2129 }
2130 }
2131
2132 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2133 if (task_count - nr_wake >= nr_requeue)
2134 break;
2135
2136 if (!match_futex(&this->key, &key1))
2137 continue;
2138
2139 /*
2140 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2141 * be paired with each other and no other futex ops.
2142 *
2143 * We should never be requeueing a futex_q with a pi_state,
2144 * which is awaiting a futex_unlock_pi().
2145 */
2146 if ((requeue_pi && !this->rt_waiter) ||
2147 (!requeue_pi && this->rt_waiter) ||
2148 this->pi_state) {
2149 ret = -EINVAL;
2150 break;
2151 }
2152
2153 /*
2154 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2155 * lock, we already woke the top_waiter. If not, it will be
2156 * woken by futex_unlock_pi().
2157 */
2158 if (++task_count <= nr_wake && !requeue_pi) {
2159 mark_wake_futex(&wake_q, this);
2160 continue;
2161 }
2162
2163 /* Ensure we requeue to the expected futex for requeue_pi. */
2164 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2165 ret = -EINVAL;
2166 break;
2167 }
2168
2169 /*
2170 * Requeue nr_requeue waiters and possibly one more in the case
2171 * of requeue_pi if we couldn't acquire the lock atomically.
2172 */
2173 if (requeue_pi) {
2174 /*
2175 * Prepare the waiter to take the rt_mutex. Take a
2176 * refcount on the pi_state and store the pointer in
2177 * the futex_q object of the waiter.
2178 */
2179 get_pi_state(pi_state);
2180 this->pi_state = pi_state;
2181 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2182 this->rt_waiter,
2183 this->task);
2184 if (ret == 1) {
2185 /*
2186 * We got the lock. We do neither drop the
2187 * refcount on pi_state nor clear
2188 * this->pi_state because the waiter needs the
2189 * pi_state for cleaning up the user space
2190 * value. It will drop the refcount after
2191 * doing so.
2192 */
2193 requeue_pi_wake_futex(this, &key2, hb2);
2194 drop_count++;
2195 continue;
2196 } else if (ret) {
2197 /*
2198 * rt_mutex_start_proxy_lock() detected a
2199 * potential deadlock when we tried to queue
2200 * that waiter. Drop the pi_state reference
2201 * which we took above and remove the pointer
2202 * to the state from the waiters futex_q
2203 * object.
2204 */
2205 this->pi_state = NULL;
2206 put_pi_state(pi_state);
2207 /*
2208 * We stop queueing more waiters and let user
2209 * space deal with the mess.
2210 */
2211 break;
2212 }
2213 }
2214 requeue_futex(this, hb1, hb2, &key2);
2215 drop_count++;
2216 }
2217
2218 /*
2219 * We took an extra initial reference to the pi_state either
2220 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2221 * need to drop it here again.
2222 */
2223 put_pi_state(pi_state);
2224
2225 out_unlock:
2226 double_unlock_hb(hb1, hb2);
2227 wake_up_q(&wake_q);
2228 hb_waiters_dec(hb2);
2229
2230 /*
2231 * drop_futex_key_refs() must be called outside the spinlocks. During
2232 * the requeue we moved futex_q's from the hash bucket at key1 to the
2233 * one at key2 and updated their key pointer. We no longer need to
2234 * hold the references to key1.
2235 */
2236 while (--drop_count >= 0)
2237 drop_futex_key_refs(&key1);
2238
2239 out_put_keys:
2240 put_futex_key(&key2);
2241 out_put_key1:
2242 put_futex_key(&key1);
2243 out:
2244 return ret ? ret : task_count;
2245 }
2246
2247 /* The key must be already stored in q->key. */
2248 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2249 __acquires(&hb->lock)
2250 {
2251 struct futex_hash_bucket *hb;
2252
2253 hb = hash_futex(&q->key);
2254
2255 /*
2256 * Increment the counter before taking the lock so that
2257 * a potential waker won't miss a to-be-slept task that is
2258 * waiting for the spinlock. This is safe as all queue_lock()
2259 * users end up calling queue_me(). Similarly, for housekeeping,
2260 * decrement the counter at queue_unlock() when some error has
2261 * occurred and we don't end up adding the task to the list.
2262 */
2263 hb_waiters_inc(hb);
2264
2265 q->lock_ptr = &hb->lock;
2266
2267 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2268 return hb;
2269 }
2270
2271 static inline void
2272 queue_unlock(struct futex_hash_bucket *hb)
2273 __releases(&hb->lock)
2274 {
2275 spin_unlock(&hb->lock);
2276 hb_waiters_dec(hb);
2277 }
2278
2279 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2280 {
2281 int prio;
2282
2283 /*
2284 * The priority used to register this element is
2285 * - either the real thread-priority for the real-time threads
2286 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2287 * - or MAX_RT_PRIO for non-RT threads.
2288 * Thus, all RT-threads are woken first in priority order, and
2289 * the others are woken last, in FIFO order.
2290 */
2291 prio = min(current->normal_prio, MAX_RT_PRIO);
2292
2293 plist_node_init(&q->list, prio);
2294 plist_add(&q->list, &hb->chain);
2295 q->task = current;
2296 }
2297
2298 /**
2299 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2300 * @q: The futex_q to enqueue
2301 * @hb: The destination hash bucket
2302 *
2303 * The hb->lock must be held by the caller, and is released here. A call to
2304 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2305 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2306 * or nothing if the unqueue is done as part of the wake process and the unqueue
2307 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2308 * an example).
2309 */
2310 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2311 __releases(&hb->lock)
2312 {
2313 __queue_me(q, hb);
2314 spin_unlock(&hb->lock);
2315 }
2316
2317 /**
2318 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2319 * @q: The futex_q to unqueue
2320 *
2321 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2322 * be paired with exactly one earlier call to queue_me().
2323 *
2324 * Return:
2325 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2326 * - 0 - if the futex_q was already removed by the waking thread
2327 */
2328 static int unqueue_me(struct futex_q *q)
2329 {
2330 spinlock_t *lock_ptr;
2331 int ret = 0;
2332
2333 /* In the common case we don't take the spinlock, which is nice. */
2334 retry:
2335 /*
2336 * q->lock_ptr can change between this read and the following spin_lock.
2337 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2338 * optimizing lock_ptr out of the logic below.
2339 */
2340 lock_ptr = READ_ONCE(q->lock_ptr);
2341 if (lock_ptr != NULL) {
2342 spin_lock(lock_ptr);
2343 /*
2344 * q->lock_ptr can change between reading it and
2345 * spin_lock(), causing us to take the wrong lock. This
2346 * corrects the race condition.
2347 *
2348 * Reasoning goes like this: if we have the wrong lock,
2349 * q->lock_ptr must have changed (maybe several times)
2350 * between reading it and the spin_lock(). It can
2351 * change again after the spin_lock() but only if it was
2352 * already changed before the spin_lock(). It cannot,
2353 * however, change back to the original value. Therefore
2354 * we can detect whether we acquired the correct lock.
2355 */
2356 if (unlikely(lock_ptr != q->lock_ptr)) {
2357 spin_unlock(lock_ptr);
2358 goto retry;
2359 }
2360 __unqueue_futex(q);
2361
2362 BUG_ON(q->pi_state);
2363
2364 spin_unlock(lock_ptr);
2365 ret = 1;
2366 }
2367
2368 drop_futex_key_refs(&q->key);
2369 return ret;
2370 }
2371
2372 /*
2373 * PI futexes can not be requeued and must remove themself from the
2374 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2375 * and dropped here.
2376 */
2377 static void unqueue_me_pi(struct futex_q *q)
2378 __releases(q->lock_ptr)
2379 {
2380 __unqueue_futex(q);
2381
2382 BUG_ON(!q->pi_state);
2383 put_pi_state(q->pi_state);
2384 q->pi_state = NULL;
2385
2386 spin_unlock(q->lock_ptr);
2387 }
2388
2389 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2390 struct task_struct *argowner)
2391 {
2392 struct futex_pi_state *pi_state = q->pi_state;
2393 u32 uval, uninitialized_var(curval), newval;
2394 struct task_struct *oldowner, *newowner;
2395 u32 newtid;
2396 int ret;
2397
2398 lockdep_assert_held(q->lock_ptr);
2399
2400 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2401
2402 oldowner = pi_state->owner;
2403
2404 /*
2405 * We are here because either:
2406 *
2407 * - we stole the lock and pi_state->owner needs updating to reflect
2408 * that (@argowner == current),
2409 *
2410 * or:
2411 *
2412 * - someone stole our lock and we need to fix things to point to the
2413 * new owner (@argowner == NULL).
2414 *
2415 * Either way, we have to replace the TID in the user space variable.
2416 * This must be atomic as we have to preserve the owner died bit here.
2417 *
2418 * Note: We write the user space value _before_ changing the pi_state
2419 * because we can fault here. Imagine swapped out pages or a fork
2420 * that marked all the anonymous memory readonly for cow.
2421 *
2422 * Modifying pi_state _before_ the user space value would leave the
2423 * pi_state in an inconsistent state when we fault here, because we
2424 * need to drop the locks to handle the fault. This might be observed
2425 * in the PID check in lookup_pi_state.
2426 */
2427 retry:
2428 if (!argowner) {
2429 if (oldowner != current) {
2430 /*
2431 * We raced against a concurrent self; things are
2432 * already fixed up. Nothing to do.
2433 */
2434 ret = 0;
2435 goto out_unlock;
2436 }
2437
2438 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2439 /* We got the lock after all, nothing to fix. */
2440 ret = 0;
2441 goto out_unlock;
2442 }
2443
2444 /*
2445 * Since we just failed the trylock; there must be an owner.
2446 */
2447 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2448 BUG_ON(!newowner);
2449 } else {
2450 WARN_ON_ONCE(argowner != current);
2451 if (oldowner == current) {
2452 /*
2453 * We raced against a concurrent self; things are
2454 * already fixed up. Nothing to do.
2455 */
2456 ret = 0;
2457 goto out_unlock;
2458 }
2459 newowner = argowner;
2460 }
2461
2462 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2463 /* Owner died? */
2464 if (!pi_state->owner)
2465 newtid |= FUTEX_OWNER_DIED;
2466
2467 if (get_futex_value_locked(&uval, uaddr))
2468 goto handle_fault;
2469
2470 for (;;) {
2471 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2472
2473 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2474 goto handle_fault;
2475 if (curval == uval)
2476 break;
2477 uval = curval;
2478 }
2479
2480 /*
2481 * We fixed up user space. Now we need to fix the pi_state
2482 * itself.
2483 */
2484 pi_state_update_owner(pi_state, newowner);
2485 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2486
2487 return 0;
2488
2489 /*
2490 * To handle the page fault we need to drop the locks here. That gives
2491 * the other task (either the highest priority waiter itself or the
2492 * task which stole the rtmutex) the chance to try the fixup of the
2493 * pi_state. So once we are back from handling the fault we need to
2494 * check the pi_state after reacquiring the locks and before trying to
2495 * do another fixup. When the fixup has been done already we simply
2496 * return.
2497 *
2498 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2499 * drop hb->lock since the caller owns the hb -> futex_q relation.
2500 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2501 */
2502 handle_fault:
2503 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2504 spin_unlock(q->lock_ptr);
2505
2506 ret = fault_in_user_writeable(uaddr);
2507
2508 spin_lock(q->lock_ptr);
2509 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2510
2511 /*
2512 * Check if someone else fixed it for us:
2513 */
2514 if (pi_state->owner != oldowner) {
2515 ret = 0;
2516 goto out_unlock;
2517 }
2518
2519 if (ret)
2520 goto out_unlock;
2521
2522 goto retry;
2523
2524 out_unlock:
2525 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2526 return ret;
2527 }
2528
2529 static long futex_wait_restart(struct restart_block *restart);
2530
2531 /**
2532 * fixup_owner() - Post lock pi_state and corner case management
2533 * @uaddr: user address of the futex
2534 * @q: futex_q (contains pi_state and access to the rt_mutex)
2535 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2536 *
2537 * After attempting to lock an rt_mutex, this function is called to cleanup
2538 * the pi_state owner as well as handle race conditions that may allow us to
2539 * acquire the lock. Must be called with the hb lock held.
2540 *
2541 * Return:
2542 * - 1 - success, lock taken;
2543 * - 0 - success, lock not taken;
2544 * - <0 - on error (-EFAULT)
2545 */
2546 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2547 {
2548 int ret = 0;
2549
2550 if (locked) {
2551 /*
2552 * Got the lock. We might not be the anticipated owner if we
2553 * did a lock-steal - fix up the PI-state in that case:
2554 *
2555 * Speculative pi_state->owner read (we don't hold wait_lock);
2556 * since we own the lock pi_state->owner == current is the
2557 * stable state, anything else needs more attention.
2558 */
2559 if (q->pi_state->owner != current)
2560 ret = fixup_pi_state_owner(uaddr, q, current);
2561 goto out;
2562 }
2563
2564 /*
2565 * If we didn't get the lock; check if anybody stole it from us. In
2566 * that case, we need to fix up the uval to point to them instead of
2567 * us, otherwise bad things happen. [10]
2568 *
2569 * Another speculative read; pi_state->owner == current is unstable
2570 * but needs our attention.
2571 */
2572 if (q->pi_state->owner == current) {
2573 ret = fixup_pi_state_owner(uaddr, q, NULL);
2574 goto out;
2575 }
2576
2577 /*
2578 * Paranoia check. If we did not take the lock, then we should not be
2579 * the owner of the rt_mutex.
2580 */
2581 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2582 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2583 "pi-state %p\n", ret,
2584 q->pi_state->pi_mutex.owner,
2585 q->pi_state->owner);
2586 }
2587
2588 out:
2589 return ret ? ret : locked;
2590 }
2591
2592 /**
2593 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2594 * @hb: the futex hash bucket, must be locked by the caller
2595 * @q: the futex_q to queue up on
2596 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2597 */
2598 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2599 struct hrtimer_sleeper *timeout)
2600 {
2601 /*
2602 * The task state is guaranteed to be set before another task can
2603 * wake it. set_current_state() is implemented using smp_store_mb() and
2604 * queue_me() calls spin_unlock() upon completion, both serializing
2605 * access to the hash list and forcing another memory barrier.
2606 */
2607 set_current_state(TASK_INTERRUPTIBLE);
2608 queue_me(q, hb);
2609
2610 /* Arm the timer */
2611 if (timeout)
2612 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2613
2614 /*
2615 * If we have been removed from the hash list, then another task
2616 * has tried to wake us, and we can skip the call to schedule().
2617 */
2618 if (likely(!plist_node_empty(&q->list))) {
2619 /*
2620 * If the timer has already expired, current will already be
2621 * flagged for rescheduling. Only call schedule if there
2622 * is no timeout, or if it has yet to expire.
2623 */
2624 if (!timeout || timeout->task)
2625 freezable_schedule();
2626 }
2627 __set_current_state(TASK_RUNNING);
2628 }
2629
2630 /**
2631 * futex_wait_setup() - Prepare to wait on a futex
2632 * @uaddr: the futex userspace address
2633 * @val: the expected value
2634 * @flags: futex flags (FLAGS_SHARED, etc.)
2635 * @q: the associated futex_q
2636 * @hb: storage for hash_bucket pointer to be returned to caller
2637 *
2638 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2639 * compare it with the expected value. Handle atomic faults internally.
2640 * Return with the hb lock held and a q.key reference on success, and unlocked
2641 * with no q.key reference on failure.
2642 *
2643 * Return:
2644 * - 0 - uaddr contains val and hb has been locked;
2645 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2646 */
2647 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2648 struct futex_q *q, struct futex_hash_bucket **hb)
2649 {
2650 u32 uval;
2651 int ret;
2652
2653 /*
2654 * Access the page AFTER the hash-bucket is locked.
2655 * Order is important:
2656 *
2657 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2658 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2659 *
2660 * The basic logical guarantee of a futex is that it blocks ONLY
2661 * if cond(var) is known to be true at the time of blocking, for
2662 * any cond. If we locked the hash-bucket after testing *uaddr, that
2663 * would open a race condition where we could block indefinitely with
2664 * cond(var) false, which would violate the guarantee.
2665 *
2666 * On the other hand, we insert q and release the hash-bucket only
2667 * after testing *uaddr. This guarantees that futex_wait() will NOT
2668 * absorb a wakeup if *uaddr does not match the desired values
2669 * while the syscall executes.
2670 */
2671 retry:
2672 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2673 if (unlikely(ret != 0))
2674 return ret;
2675
2676 retry_private:
2677 *hb = queue_lock(q);
2678
2679 ret = get_futex_value_locked(&uval, uaddr);
2680
2681 if (ret) {
2682 queue_unlock(*hb);
2683
2684 ret = get_user(uval, uaddr);
2685 if (ret)
2686 goto out;
2687
2688 if (!(flags & FLAGS_SHARED))
2689 goto retry_private;
2690
2691 put_futex_key(&q->key);
2692 goto retry;
2693 }
2694
2695 if (uval != val) {
2696 queue_unlock(*hb);
2697 ret = -EWOULDBLOCK;
2698 }
2699
2700 out:
2701 if (ret)
2702 put_futex_key(&q->key);
2703 return ret;
2704 }
2705
2706 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2707 ktime_t *abs_time, u32 bitset)
2708 {
2709 struct hrtimer_sleeper timeout, *to = NULL;
2710 struct restart_block *restart;
2711 struct futex_hash_bucket *hb;
2712 struct futex_q q = futex_q_init;
2713 int ret;
2714
2715 if (!bitset)
2716 return -EINVAL;
2717 q.bitset = bitset;
2718
2719 if (abs_time) {
2720 to = &timeout;
2721
2722 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2723 CLOCK_REALTIME : CLOCK_MONOTONIC,
2724 HRTIMER_MODE_ABS);
2725 hrtimer_init_sleeper(to, current);
2726 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2727 current->timer_slack_ns);
2728 }
2729
2730 retry:
2731 /*
2732 * Prepare to wait on uaddr. On success, holds hb lock and increments
2733 * q.key refs.
2734 */
2735 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2736 if (ret)
2737 goto out;
2738
2739 /* queue_me and wait for wakeup, timeout, or a signal. */
2740 futex_wait_queue_me(hb, &q, to);
2741
2742 /* If we were woken (and unqueued), we succeeded, whatever. */
2743 ret = 0;
2744 /* unqueue_me() drops q.key ref */
2745 if (!unqueue_me(&q))
2746 goto out;
2747 ret = -ETIMEDOUT;
2748 if (to && !to->task)
2749 goto out;
2750
2751 /*
2752 * We expect signal_pending(current), but we might be the
2753 * victim of a spurious wakeup as well.
2754 */
2755 if (!signal_pending(current))
2756 goto retry;
2757
2758 ret = -ERESTARTSYS;
2759 if (!abs_time)
2760 goto out;
2761
2762 restart = &current->restart_block;
2763 restart->fn = futex_wait_restart;
2764 restart->futex.uaddr = uaddr;
2765 restart->futex.val = val;
2766 restart->futex.time = *abs_time;
2767 restart->futex.bitset = bitset;
2768 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2769
2770 ret = -ERESTART_RESTARTBLOCK;
2771
2772 out:
2773 if (to) {
2774 hrtimer_cancel(&to->timer);
2775 destroy_hrtimer_on_stack(&to->timer);
2776 }
2777 return ret;
2778 }
2779
2780
2781 static long futex_wait_restart(struct restart_block *restart)
2782 {
2783 u32 __user *uaddr = restart->futex.uaddr;
2784 ktime_t t, *tp = NULL;
2785
2786 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2787 t = restart->futex.time;
2788 tp = &t;
2789 }
2790 restart->fn = do_no_restart_syscall;
2791
2792 return (long)futex_wait(uaddr, restart->futex.flags,
2793 restart->futex.val, tp, restart->futex.bitset);
2794 }
2795
2796
2797 /*
2798 * Userspace tried a 0 -> TID atomic transition of the futex value
2799 * and failed. The kernel side here does the whole locking operation:
2800 * if there are waiters then it will block as a consequence of relying
2801 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2802 * a 0 value of the futex too.).
2803 *
2804 * Also serves as futex trylock_pi()'ing, and due semantics.
2805 */
2806 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2807 ktime_t *time, int trylock)
2808 {
2809 struct hrtimer_sleeper timeout, *to = NULL;
2810 struct futex_pi_state *pi_state = NULL;
2811 struct rt_mutex_waiter rt_waiter;
2812 struct futex_hash_bucket *hb;
2813 struct futex_q q = futex_q_init;
2814 int res, ret;
2815
2816 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2817 return -ENOSYS;
2818
2819 if (refill_pi_state_cache())
2820 return -ENOMEM;
2821
2822 if (time) {
2823 to = &timeout;
2824 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2825 HRTIMER_MODE_ABS);
2826 hrtimer_init_sleeper(to, current);
2827 hrtimer_set_expires(&to->timer, *time);
2828 }
2829
2830 retry:
2831 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2832 if (unlikely(ret != 0))
2833 goto out;
2834
2835 retry_private:
2836 hb = queue_lock(&q);
2837
2838 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2839 if (unlikely(ret)) {
2840 /*
2841 * Atomic work succeeded and we got the lock,
2842 * or failed. Either way, we do _not_ block.
2843 */
2844 switch (ret) {
2845 case 1:
2846 /* We got the lock. */
2847 ret = 0;
2848 goto out_unlock_put_key;
2849 case -EFAULT:
2850 goto uaddr_faulted;
2851 case -EAGAIN:
2852 /*
2853 * Two reasons for this:
2854 * - Task is exiting and we just wait for the
2855 * exit to complete.
2856 * - The user space value changed.
2857 */
2858 queue_unlock(hb);
2859 put_futex_key(&q.key);
2860 cond_resched();
2861 goto retry;
2862 default:
2863 goto out_unlock_put_key;
2864 }
2865 }
2866
2867 WARN_ON(!q.pi_state);
2868
2869 /*
2870 * Only actually queue now that the atomic ops are done:
2871 */
2872 __queue_me(&q, hb);
2873
2874 if (trylock) {
2875 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2876 /* Fixup the trylock return value: */
2877 ret = ret ? 0 : -EWOULDBLOCK;
2878 goto no_block;
2879 }
2880
2881 rt_mutex_init_waiter(&rt_waiter);
2882
2883 /*
2884 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2885 * hold it while doing rt_mutex_start_proxy(), because then it will
2886 * include hb->lock in the blocking chain, even through we'll not in
2887 * fact hold it while blocking. This will lead it to report -EDEADLK
2888 * and BUG when futex_unlock_pi() interleaves with this.
2889 *
2890 * Therefore acquire wait_lock while holding hb->lock, but drop the
2891 * latter before calling __rt_mutex_start_proxy_lock(). This
2892 * interleaves with futex_unlock_pi() -- which does a similar lock
2893 * handoff -- such that the latter can observe the futex_q::pi_state
2894 * before __rt_mutex_start_proxy_lock() is done.
2895 */
2896 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2897 spin_unlock(q.lock_ptr);
2898 /*
2899 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2900 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2901 * it sees the futex_q::pi_state.
2902 */
2903 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2904 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2905
2906 if (ret) {
2907 if (ret == 1)
2908 ret = 0;
2909 goto cleanup;
2910 }
2911
2912 if (unlikely(to))
2913 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2914
2915 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2916
2917 cleanup:
2918 spin_lock(q.lock_ptr);
2919 /*
2920 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2921 * first acquire the hb->lock before removing the lock from the
2922 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2923 * lists consistent.
2924 *
2925 * In particular; it is important that futex_unlock_pi() can not
2926 * observe this inconsistency.
2927 */
2928 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2929 ret = 0;
2930
2931 no_block:
2932 /*
2933 * Fixup the pi_state owner and possibly acquire the lock if we
2934 * haven't already.
2935 */
2936 res = fixup_owner(uaddr, &q, !ret);
2937 /*
2938 * If fixup_owner() returned an error, proprogate that. If it acquired
2939 * the lock, clear our -ETIMEDOUT or -EINTR.
2940 */
2941 if (res)
2942 ret = (res < 0) ? res : 0;
2943
2944 /*
2945 * If fixup_owner() faulted and was unable to handle the fault, unlock
2946 * it and return the fault to userspace.
2947 */
2948 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2949 pi_state = q.pi_state;
2950 get_pi_state(pi_state);
2951 }
2952
2953 /* Unqueue and drop the lock */
2954 unqueue_me_pi(&q);
2955
2956 if (pi_state) {
2957 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2958 put_pi_state(pi_state);
2959 }
2960
2961 goto out_put_key;
2962
2963 out_unlock_put_key:
2964 queue_unlock(hb);
2965
2966 out_put_key:
2967 put_futex_key(&q.key);
2968 out:
2969 if (to) {
2970 hrtimer_cancel(&to->timer);
2971 destroy_hrtimer_on_stack(&to->timer);
2972 }
2973 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2974
2975 uaddr_faulted:
2976 queue_unlock(hb);
2977
2978 ret = fault_in_user_writeable(uaddr);
2979 if (ret)
2980 goto out_put_key;
2981
2982 if (!(flags & FLAGS_SHARED))
2983 goto retry_private;
2984
2985 put_futex_key(&q.key);
2986 goto retry;
2987 }
2988
2989 /*
2990 * Userspace attempted a TID -> 0 atomic transition, and failed.
2991 * This is the in-kernel slowpath: we look up the PI state (if any),
2992 * and do the rt-mutex unlock.
2993 */
2994 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2995 {
2996 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2997 union futex_key key = FUTEX_KEY_INIT;
2998 struct futex_hash_bucket *hb;
2999 struct futex_q *top_waiter;
3000 int ret;
3001
3002 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3003 return -ENOSYS;
3004
3005 retry:
3006 if (get_user(uval, uaddr))
3007 return -EFAULT;
3008 /*
3009 * We release only a lock we actually own:
3010 */
3011 if ((uval & FUTEX_TID_MASK) != vpid)
3012 return -EPERM;
3013
3014 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3015 if (ret)
3016 return ret;
3017
3018 hb = hash_futex(&key);
3019 spin_lock(&hb->lock);
3020
3021 /*
3022 * Check waiters first. We do not trust user space values at
3023 * all and we at least want to know if user space fiddled
3024 * with the futex value instead of blindly unlocking.
3025 */
3026 top_waiter = futex_top_waiter(hb, &key);
3027 if (top_waiter) {
3028 struct futex_pi_state *pi_state = top_waiter->pi_state;
3029
3030 ret = -EINVAL;
3031 if (!pi_state)
3032 goto out_unlock;
3033
3034 /*
3035 * If current does not own the pi_state then the futex is
3036 * inconsistent and user space fiddled with the futex value.
3037 */
3038 if (pi_state->owner != current)
3039 goto out_unlock;
3040
3041 get_pi_state(pi_state);
3042 /*
3043 * By taking wait_lock while still holding hb->lock, we ensure
3044 * there is no point where we hold neither; and therefore
3045 * wake_futex_pi() must observe a state consistent with what we
3046 * observed.
3047 *
3048 * In particular; this forces __rt_mutex_start_proxy() to
3049 * complete such that we're guaranteed to observe the
3050 * rt_waiter. Also see the WARN in wake_futex_pi().
3051 */
3052 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3053 spin_unlock(&hb->lock);
3054
3055 /* drops pi_state->pi_mutex.wait_lock */
3056 ret = wake_futex_pi(uaddr, uval, pi_state);
3057
3058 put_pi_state(pi_state);
3059
3060 /*
3061 * Success, we're done! No tricky corner cases.
3062 */
3063 if (!ret)
3064 goto out_putkey;
3065 /*
3066 * The atomic access to the futex value generated a
3067 * pagefault, so retry the user-access and the wakeup:
3068 */
3069 if (ret == -EFAULT)
3070 goto pi_faulted;
3071 /*
3072 * A unconditional UNLOCK_PI op raced against a waiter
3073 * setting the FUTEX_WAITERS bit. Try again.
3074 */
3075 if (ret == -EAGAIN) {
3076 put_futex_key(&key);
3077 goto retry;
3078 }
3079 /*
3080 * wake_futex_pi has detected invalid state. Tell user
3081 * space.
3082 */
3083 goto out_putkey;
3084 }
3085
3086 /*
3087 * We have no kernel internal state, i.e. no waiters in the
3088 * kernel. Waiters which are about to queue themselves are stuck
3089 * on hb->lock. So we can safely ignore them. We do neither
3090 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3091 * owner.
3092 */
3093 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3094 spin_unlock(&hb->lock);
3095 goto pi_faulted;
3096 }
3097
3098 /*
3099 * If uval has changed, let user space handle it.
3100 */
3101 ret = (curval == uval) ? 0 : -EAGAIN;
3102
3103 out_unlock:
3104 spin_unlock(&hb->lock);
3105 out_putkey:
3106 put_futex_key(&key);
3107 return ret;
3108
3109 pi_faulted:
3110 put_futex_key(&key);
3111
3112 ret = fault_in_user_writeable(uaddr);
3113 if (!ret)
3114 goto retry;
3115
3116 return ret;
3117 }
3118
3119 /**
3120 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3121 * @hb: the hash_bucket futex_q was original enqueued on
3122 * @q: the futex_q woken while waiting to be requeued
3123 * @key2: the futex_key of the requeue target futex
3124 * @timeout: the timeout associated with the wait (NULL if none)
3125 *
3126 * Detect if the task was woken on the initial futex as opposed to the requeue
3127 * target futex. If so, determine if it was a timeout or a signal that caused
3128 * the wakeup and return the appropriate error code to the caller. Must be
3129 * called with the hb lock held.
3130 *
3131 * Return:
3132 * - 0 = no early wakeup detected;
3133 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3134 */
3135 static inline
3136 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3137 struct futex_q *q, union futex_key *key2,
3138 struct hrtimer_sleeper *timeout)
3139 {
3140 int ret = 0;
3141
3142 /*
3143 * With the hb lock held, we avoid races while we process the wakeup.
3144 * We only need to hold hb (and not hb2) to ensure atomicity as the
3145 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3146 * It can't be requeued from uaddr2 to something else since we don't
3147 * support a PI aware source futex for requeue.
3148 */
3149 if (!match_futex(&q->key, key2)) {
3150 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3151 /*
3152 * We were woken prior to requeue by a timeout or a signal.
3153 * Unqueue the futex_q and determine which it was.
3154 */
3155 plist_del(&q->list, &hb->chain);
3156 hb_waiters_dec(hb);
3157
3158 /* Handle spurious wakeups gracefully */
3159 ret = -EWOULDBLOCK;
3160 if (timeout && !timeout->task)
3161 ret = -ETIMEDOUT;
3162 else if (signal_pending(current))
3163 ret = -ERESTARTNOINTR;
3164 }
3165 return ret;
3166 }
3167
3168 /**
3169 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3170 * @uaddr: the futex we initially wait on (non-pi)
3171 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3172 * the same type, no requeueing from private to shared, etc.
3173 * @val: the expected value of uaddr
3174 * @abs_time: absolute timeout
3175 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3176 * @uaddr2: the pi futex we will take prior to returning to user-space
3177 *
3178 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3179 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3180 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3181 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3182 * without one, the pi logic would not know which task to boost/deboost, if
3183 * there was a need to.
3184 *
3185 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3186 * via the following--
3187 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3188 * 2) wakeup on uaddr2 after a requeue
3189 * 3) signal
3190 * 4) timeout
3191 *
3192 * If 3, cleanup and return -ERESTARTNOINTR.
3193 *
3194 * If 2, we may then block on trying to take the rt_mutex and return via:
3195 * 5) successful lock
3196 * 6) signal
3197 * 7) timeout
3198 * 8) other lock acquisition failure
3199 *
3200 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3201 *
3202 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3203 *
3204 * Return:
3205 * - 0 - On success;
3206 * - <0 - On error
3207 */
3208 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3209 u32 val, ktime_t *abs_time, u32 bitset,
3210 u32 __user *uaddr2)
3211 {
3212 struct hrtimer_sleeper timeout, *to = NULL;
3213 struct futex_pi_state *pi_state = NULL;
3214 struct rt_mutex_waiter rt_waiter;
3215 struct futex_hash_bucket *hb;
3216 union futex_key key2 = FUTEX_KEY_INIT;
3217 struct futex_q q = futex_q_init;
3218 int res, ret;
3219
3220 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3221 return -ENOSYS;
3222
3223 if (uaddr == uaddr2)
3224 return -EINVAL;
3225
3226 if (!bitset)
3227 return -EINVAL;
3228
3229 if (abs_time) {
3230 to = &timeout;
3231 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3232 CLOCK_REALTIME : CLOCK_MONOTONIC,
3233 HRTIMER_MODE_ABS);
3234 hrtimer_init_sleeper(to, current);
3235 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3236 current->timer_slack_ns);
3237 }
3238
3239 /*
3240 * The waiter is allocated on our stack, manipulated by the requeue
3241 * code while we sleep on uaddr.
3242 */
3243 rt_mutex_init_waiter(&rt_waiter);
3244
3245 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3246 if (unlikely(ret != 0))
3247 goto out;
3248
3249 q.bitset = bitset;
3250 q.rt_waiter = &rt_waiter;
3251 q.requeue_pi_key = &key2;
3252
3253 /*
3254 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3255 * count.
3256 */
3257 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3258 if (ret)
3259 goto out_key2;
3260
3261 /*
3262 * The check above which compares uaddrs is not sufficient for
3263 * shared futexes. We need to compare the keys:
3264 */
3265 if (match_futex(&q.key, &key2)) {
3266 queue_unlock(hb);
3267 ret = -EINVAL;
3268 goto out_put_keys;
3269 }
3270
3271 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3272 futex_wait_queue_me(hb, &q, to);
3273
3274 spin_lock(&hb->lock);
3275 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3276 spin_unlock(&hb->lock);
3277 if (ret)
3278 goto out_put_keys;
3279
3280 /*
3281 * In order for us to be here, we know our q.key == key2, and since
3282 * we took the hb->lock above, we also know that futex_requeue() has
3283 * completed and we no longer have to concern ourselves with a wakeup
3284 * race with the atomic proxy lock acquisition by the requeue code. The
3285 * futex_requeue dropped our key1 reference and incremented our key2
3286 * reference count.
3287 */
3288
3289 /* Check if the requeue code acquired the second futex for us. */
3290 if (!q.rt_waiter) {
3291 /*
3292 * Got the lock. We might not be the anticipated owner if we
3293 * did a lock-steal - fix up the PI-state in that case.
3294 */
3295 if (q.pi_state && (q.pi_state->owner != current)) {
3296 spin_lock(q.lock_ptr);
3297 ret = fixup_pi_state_owner(uaddr2, &q, current);
3298 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3299 pi_state = q.pi_state;
3300 get_pi_state(pi_state);
3301 }
3302 /*
3303 * Drop the reference to the pi state which
3304 * the requeue_pi() code acquired for us.
3305 */
3306 put_pi_state(q.pi_state);
3307 spin_unlock(q.lock_ptr);
3308 }
3309 } else {
3310 struct rt_mutex *pi_mutex;
3311
3312 /*
3313 * We have been woken up by futex_unlock_pi(), a timeout, or a
3314 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3315 * the pi_state.
3316 */
3317 WARN_ON(!q.pi_state);
3318 pi_mutex = &q.pi_state->pi_mutex;
3319 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3320
3321 spin_lock(q.lock_ptr);
3322 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3323 ret = 0;
3324
3325 debug_rt_mutex_free_waiter(&rt_waiter);
3326 /*
3327 * Fixup the pi_state owner and possibly acquire the lock if we
3328 * haven't already.
3329 */
3330 res = fixup_owner(uaddr2, &q, !ret);
3331 /*
3332 * If fixup_owner() returned an error, proprogate that. If it
3333 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3334 */
3335 if (res)
3336 ret = (res < 0) ? res : 0;
3337
3338 /*
3339 * If fixup_pi_state_owner() faulted and was unable to handle
3340 * the fault, unlock the rt_mutex and return the fault to
3341 * userspace.
3342 */
3343 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3344 pi_state = q.pi_state;
3345 get_pi_state(pi_state);
3346 }
3347
3348 /* Unqueue and drop the lock. */
3349 unqueue_me_pi(&q);
3350 }
3351
3352 if (pi_state) {
3353 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3354 put_pi_state(pi_state);
3355 }
3356
3357 if (ret == -EINTR) {
3358 /*
3359 * We've already been requeued, but cannot restart by calling
3360 * futex_lock_pi() directly. We could restart this syscall, but
3361 * it would detect that the user space "val" changed and return
3362 * -EWOULDBLOCK. Save the overhead of the restart and return
3363 * -EWOULDBLOCK directly.
3364 */
3365 ret = -EWOULDBLOCK;
3366 }
3367
3368 out_put_keys:
3369 put_futex_key(&q.key);
3370 out_key2:
3371 put_futex_key(&key2);
3372
3373 out:
3374 if (to) {
3375 hrtimer_cancel(&to->timer);
3376 destroy_hrtimer_on_stack(&to->timer);
3377 }
3378 return ret;
3379 }
3380
3381 /*
3382 * Support for robust futexes: the kernel cleans up held futexes at
3383 * thread exit time.
3384 *
3385 * Implementation: user-space maintains a per-thread list of locks it
3386 * is holding. Upon do_exit(), the kernel carefully walks this list,
3387 * and marks all locks that are owned by this thread with the
3388 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3389 * always manipulated with the lock held, so the list is private and
3390 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3391 * field, to allow the kernel to clean up if the thread dies after
3392 * acquiring the lock, but just before it could have added itself to
3393 * the list. There can only be one such pending lock.
3394 */
3395
3396 /**
3397 * sys_set_robust_list() - Set the robust-futex list head of a task
3398 * @head: pointer to the list-head
3399 * @len: length of the list-head, as userspace expects
3400 */
3401 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3402 size_t, len)
3403 {
3404 if (!futex_cmpxchg_enabled)
3405 return -ENOSYS;
3406 /*
3407 * The kernel knows only one size for now:
3408 */
3409 if (unlikely(len != sizeof(*head)))
3410 return -EINVAL;
3411
3412 current->robust_list = head;
3413
3414 return 0;
3415 }
3416
3417 /**
3418 * sys_get_robust_list() - Get the robust-futex list head of a task
3419 * @pid: pid of the process [zero for current task]
3420 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3421 * @len_ptr: pointer to a length field, the kernel fills in the header size
3422 */
3423 SYSCALL_DEFINE3(get_robust_list, int, pid,
3424 struct robust_list_head __user * __user *, head_ptr,
3425 size_t __user *, len_ptr)
3426 {
3427 struct robust_list_head __user *head;
3428 unsigned long ret;
3429 struct task_struct *p;
3430
3431 if (!futex_cmpxchg_enabled)
3432 return -ENOSYS;
3433
3434 rcu_read_lock();
3435
3436 ret = -ESRCH;
3437 if (!pid)
3438 p = current;
3439 else {
3440 p = find_task_by_vpid(pid);
3441 if (!p)
3442 goto err_unlock;
3443 }
3444
3445 ret = -EPERM;
3446 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3447 goto err_unlock;
3448
3449 head = p->robust_list;
3450 rcu_read_unlock();
3451
3452 if (put_user(sizeof(*head), len_ptr))
3453 return -EFAULT;
3454 return put_user(head, head_ptr);
3455
3456 err_unlock:
3457 rcu_read_unlock();
3458
3459 return ret;
3460 }
3461
3462 /*
3463 * Process a futex-list entry, check whether it's owned by the
3464 * dying task, and do notification if so:
3465 */
3466 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3467 {
3468 u32 uval, uninitialized_var(nval), mval;
3469
3470 /* Futex address must be 32bit aligned */
3471 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3472 return -1;
3473
3474 retry:
3475 if (get_user(uval, uaddr))
3476 return -1;
3477
3478 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3479 /*
3480 * Ok, this dying thread is truly holding a futex
3481 * of interest. Set the OWNER_DIED bit atomically
3482 * via cmpxchg, and if the value had FUTEX_WAITERS
3483 * set, wake up a waiter (if any). (We have to do a
3484 * futex_wake() even if OWNER_DIED is already set -
3485 * to handle the rare but possible case of recursive
3486 * thread-death.) The rest of the cleanup is done in
3487 * userspace.
3488 */
3489 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3490 /*
3491 * We are not holding a lock here, but we want to have
3492 * the pagefault_disable/enable() protection because
3493 * we want to handle the fault gracefully. If the
3494 * access fails we try to fault in the futex with R/W
3495 * verification via get_user_pages. get_user() above
3496 * does not guarantee R/W access. If that fails we
3497 * give up and leave the futex locked.
3498 */
3499 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3500 if (fault_in_user_writeable(uaddr))
3501 return -1;
3502 goto retry;
3503 }
3504 if (nval != uval)
3505 goto retry;
3506
3507 /*
3508 * Wake robust non-PI futexes here. The wakeup of
3509 * PI futexes happens in exit_pi_state():
3510 */
3511 if (!pi && (uval & FUTEX_WAITERS))
3512 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3513 }
3514 return 0;
3515 }
3516
3517 /*
3518 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3519 */
3520 static inline int fetch_robust_entry(struct robust_list __user **entry,
3521 struct robust_list __user * __user *head,
3522 unsigned int *pi)
3523 {
3524 unsigned long uentry;
3525
3526 if (get_user(uentry, (unsigned long __user *)head))
3527 return -EFAULT;
3528
3529 *entry = (void __user *)(uentry & ~1UL);
3530 *pi = uentry & 1;
3531
3532 return 0;
3533 }
3534
3535 /*
3536 * Walk curr->robust_list (very carefully, it's a userspace list!)
3537 * and mark any locks found there dead, and notify any waiters.
3538 *
3539 * We silently return on any sign of list-walking problem.
3540 */
3541 void exit_robust_list(struct task_struct *curr)
3542 {
3543 struct robust_list_head __user *head = curr->robust_list;
3544 struct robust_list __user *entry, *next_entry, *pending;
3545 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3546 unsigned int uninitialized_var(next_pi);
3547 unsigned long futex_offset;
3548 int rc;
3549
3550 if (!futex_cmpxchg_enabled)
3551 return;
3552
3553 /*
3554 * Fetch the list head (which was registered earlier, via
3555 * sys_set_robust_list()):
3556 */
3557 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3558 return;
3559 /*
3560 * Fetch the relative futex offset:
3561 */
3562 if (get_user(futex_offset, &head->futex_offset))
3563 return;
3564 /*
3565 * Fetch any possibly pending lock-add first, and handle it
3566 * if it exists:
3567 */
3568 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3569 return;
3570
3571 next_entry = NULL; /* avoid warning with gcc */
3572 while (entry != &head->list) {
3573 /*
3574 * Fetch the next entry in the list before calling
3575 * handle_futex_death:
3576 */
3577 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3578 /*
3579 * A pending lock might already be on the list, so
3580 * don't process it twice:
3581 */
3582 if (entry != pending)
3583 if (handle_futex_death((void __user *)entry + futex_offset,
3584 curr, pi))
3585 return;
3586 if (rc)
3587 return;
3588 entry = next_entry;
3589 pi = next_pi;
3590 /*
3591 * Avoid excessively long or circular lists:
3592 */
3593 if (!--limit)
3594 break;
3595
3596 cond_resched();
3597 }
3598
3599 if (pending)
3600 handle_futex_death((void __user *)pending + futex_offset,
3601 curr, pip);
3602 }
3603
3604 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3605 u32 __user *uaddr2, u32 val2, u32 val3)
3606 {
3607 int cmd = op & FUTEX_CMD_MASK;
3608 unsigned int flags = 0;
3609
3610 if (!(op & FUTEX_PRIVATE_FLAG))
3611 flags |= FLAGS_SHARED;
3612
3613 if (op & FUTEX_CLOCK_REALTIME) {
3614 flags |= FLAGS_CLOCKRT;
3615 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3616 cmd != FUTEX_WAIT_REQUEUE_PI)
3617 return -ENOSYS;
3618 }
3619
3620 switch (cmd) {
3621 case FUTEX_LOCK_PI:
3622 case FUTEX_UNLOCK_PI:
3623 case FUTEX_TRYLOCK_PI:
3624 case FUTEX_WAIT_REQUEUE_PI:
3625 case FUTEX_CMP_REQUEUE_PI:
3626 if (!futex_cmpxchg_enabled)
3627 return -ENOSYS;
3628 }
3629
3630 switch (cmd) {
3631 case FUTEX_WAIT:
3632 val3 = FUTEX_BITSET_MATCH_ANY;
3633 case FUTEX_WAIT_BITSET:
3634 return futex_wait(uaddr, flags, val, timeout, val3);
3635 case FUTEX_WAKE:
3636 val3 = FUTEX_BITSET_MATCH_ANY;
3637 case FUTEX_WAKE_BITSET:
3638 return futex_wake(uaddr, flags, val, val3);
3639 case FUTEX_REQUEUE:
3640 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3641 case FUTEX_CMP_REQUEUE:
3642 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3643 case FUTEX_WAKE_OP:
3644 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3645 case FUTEX_LOCK_PI:
3646 return futex_lock_pi(uaddr, flags, timeout, 0);
3647 case FUTEX_UNLOCK_PI:
3648 return futex_unlock_pi(uaddr, flags);
3649 case FUTEX_TRYLOCK_PI:
3650 return futex_lock_pi(uaddr, flags, NULL, 1);
3651 case FUTEX_WAIT_REQUEUE_PI:
3652 val3 = FUTEX_BITSET_MATCH_ANY;
3653 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3654 uaddr2);
3655 case FUTEX_CMP_REQUEUE_PI:
3656 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3657 }
3658 return -ENOSYS;
3659 }
3660
3661
3662 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3663 struct timespec __user *, utime, u32 __user *, uaddr2,
3664 u32, val3)
3665 {
3666 struct timespec ts;
3667 ktime_t t, *tp = NULL;
3668 u32 val2 = 0;
3669 int cmd = op & FUTEX_CMD_MASK;
3670
3671 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3672 cmd == FUTEX_WAIT_BITSET ||
3673 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3674 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3675 return -EFAULT;
3676 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3677 return -EFAULT;
3678 if (!timespec_valid(&ts))
3679 return -EINVAL;
3680
3681 t = timespec_to_ktime(ts);
3682 if (cmd == FUTEX_WAIT)
3683 t = ktime_add_safe(ktime_get(), t);
3684 tp = &t;
3685 }
3686 /*
3687 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3688 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3689 */
3690 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3691 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3692 val2 = (u32) (unsigned long) utime;
3693
3694 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3695 }
3696
3697 static void __init futex_detect_cmpxchg(void)
3698 {
3699 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3700 u32 curval;
3701
3702 /*
3703 * This will fail and we want it. Some arch implementations do
3704 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3705 * functionality. We want to know that before we call in any
3706 * of the complex code paths. Also we want to prevent
3707 * registration of robust lists in that case. NULL is
3708 * guaranteed to fault and we get -EFAULT on functional
3709 * implementation, the non-functional ones will return
3710 * -ENOSYS.
3711 */
3712 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3713 futex_cmpxchg_enabled = 1;
3714 #endif
3715 }
3716
3717 static int __init futex_init(void)
3718 {
3719 unsigned int futex_shift;
3720 unsigned long i;
3721
3722 #if CONFIG_BASE_SMALL
3723 futex_hashsize = 16;
3724 #else
3725 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3726 #endif
3727
3728 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3729 futex_hashsize, 0,
3730 futex_hashsize < 256 ? HASH_SMALL : 0,
3731 &futex_shift, NULL,
3732 futex_hashsize, futex_hashsize);
3733 futex_hashsize = 1UL << futex_shift;
3734
3735 futex_detect_cmpxchg();
3736
3737 for (i = 0; i < futex_hashsize; i++) {
3738 atomic_set(&futex_queues[i].waiters, 0);
3739 plist_head_init(&futex_queues[i].chain);
3740 spin_lock_init(&futex_queues[i].lock);
3741 }
3742
3743 return 0;
3744 }
3745 core_initcall(futex_init);