Merge branch 'for-4.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 #include <linux/refcount.h>
26
27 #include <linux/atomic.h>
28 #include <asm/types.h>
29 #include <linux/spinlock.h>
30 #include <linux/net.h>
31 #include <linux/textsearch.h>
32 #include <net/checksum.h>
33 #include <linux/rcupdate.h>
34 #include <linux/hrtimer.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/netdev_features.h>
37 #include <linux/sched.h>
38 #include <linux/sched/clock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/splice.h>
41 #include <linux/in6.h>
42 #include <linux/if_packet.h>
43 #include <net/flow.h>
44
45 /* The interface for checksum offload between the stack and networking drivers
46 * is as follows...
47 *
48 * A. IP checksum related features
49 *
50 * Drivers advertise checksum offload capabilities in the features of a device.
51 * From the stack's point of view these are capabilities offered by the driver,
52 * a driver typically only advertises features that it is capable of offloading
53 * to its device.
54 *
55 * The checksum related features are:
56 *
57 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
58 * IP (one's complement) checksum for any combination
59 * of protocols or protocol layering. The checksum is
60 * computed and set in a packet per the CHECKSUM_PARTIAL
61 * interface (see below).
62 *
63 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64 * TCP or UDP packets over IPv4. These are specifically
65 * unencapsulated packets of the form IPv4|TCP or
66 * IPv4|UDP where the Protocol field in the IPv4 header
67 * is TCP or UDP. The IPv4 header may contain IP options
68 * This feature cannot be set in features for a device
69 * with NETIF_F_HW_CSUM also set. This feature is being
70 * DEPRECATED (see below).
71 *
72 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73 * TCP or UDP packets over IPv6. These are specifically
74 * unencapsulated packets of the form IPv6|TCP or
75 * IPv4|UDP where the Next Header field in the IPv6
76 * header is either TCP or UDP. IPv6 extension headers
77 * are not supported with this feature. This feature
78 * cannot be set in features for a device with
79 * NETIF_F_HW_CSUM also set. This feature is being
80 * DEPRECATED (see below).
81 *
82 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83 * This flag is used only used to disable the RX checksum
84 * feature for a device. The stack will accept receive
85 * checksum indication in packets received on a device
86 * regardless of whether NETIF_F_RXCSUM is set.
87 *
88 * B. Checksumming of received packets by device. Indication of checksum
89 * verification is in set skb->ip_summed. Possible values are:
90 *
91 * CHECKSUM_NONE:
92 *
93 * Device did not checksum this packet e.g. due to lack of capabilities.
94 * The packet contains full (though not verified) checksum in packet but
95 * not in skb->csum. Thus, skb->csum is undefined in this case.
96 *
97 * CHECKSUM_UNNECESSARY:
98 *
99 * The hardware you're dealing with doesn't calculate the full checksum
100 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102 * if their checksums are okay. skb->csum is still undefined in this case
103 * though. A driver or device must never modify the checksum field in the
104 * packet even if checksum is verified.
105 *
106 * CHECKSUM_UNNECESSARY is applicable to following protocols:
107 * TCP: IPv6 and IPv4.
108 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109 * zero UDP checksum for either IPv4 or IPv6, the networking stack
110 * may perform further validation in this case.
111 * GRE: only if the checksum is present in the header.
112 * SCTP: indicates the CRC in SCTP header has been validated.
113 * FCOE: indicates the CRC in FC frame has been validated.
114 *
115 * skb->csum_level indicates the number of consecutive checksums found in
116 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118 * and a device is able to verify the checksums for UDP (possibly zero),
119 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
120 * two. If the device were only able to verify the UDP checksum and not
121 * GRE, either because it doesn't support GRE checksum of because GRE
122 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123 * not considered in this case).
124 *
125 * CHECKSUM_COMPLETE:
126 *
127 * This is the most generic way. The device supplied checksum of the _whole_
128 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
129 * hardware doesn't need to parse L3/L4 headers to implement this.
130 *
131 * Notes:
132 * - Even if device supports only some protocols, but is able to produce
133 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135 *
136 * CHECKSUM_PARTIAL:
137 *
138 * A checksum is set up to be offloaded to a device as described in the
139 * output description for CHECKSUM_PARTIAL. This may occur on a packet
140 * received directly from another Linux OS, e.g., a virtualized Linux kernel
141 * on the same host, or it may be set in the input path in GRO or remote
142 * checksum offload. For the purposes of checksum verification, the checksum
143 * referred to by skb->csum_start + skb->csum_offset and any preceding
144 * checksums in the packet are considered verified. Any checksums in the
145 * packet that are after the checksum being offloaded are not considered to
146 * be verified.
147 *
148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149 * in the skb->ip_summed for a packet. Values are:
150 *
151 * CHECKSUM_PARTIAL:
152 *
153 * The driver is required to checksum the packet as seen by hard_start_xmit()
154 * from skb->csum_start up to the end, and to record/write the checksum at
155 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
156 * csum_start and csum_offset values are valid values given the length and
157 * offset of the packet, however they should not attempt to validate that the
158 * checksum refers to a legitimate transport layer checksum-- it is the
159 * purview of the stack to validate that csum_start and csum_offset are set
160 * correctly.
161 *
162 * When the stack requests checksum offload for a packet, the driver MUST
163 * ensure that the checksum is set correctly. A driver can either offload the
164 * checksum calculation to the device, or call skb_checksum_help (in the case
165 * that the device does not support offload for a particular checksum).
166 *
167 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169 * checksum offload capability.
170 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171 * on network device checksumming capabilities: if a packet does not match
172 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
173 * csum_not_inet, see item D.) is called to resolve the checksum.
174 *
175 * CHECKSUM_NONE:
176 *
177 * The skb was already checksummed by the protocol, or a checksum is not
178 * required.
179 *
180 * CHECKSUM_UNNECESSARY:
181 *
182 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
183 * output.
184 *
185 * CHECKSUM_COMPLETE:
186 * Not used in checksum output. If a driver observes a packet with this value
187 * set in skbuff, if should treat as CHECKSUM_NONE being set.
188 *
189 * D. Non-IP checksum (CRC) offloads
190 *
191 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192 * offloading the SCTP CRC in a packet. To perform this offload the stack
193 * will set set csum_start and csum_offset accordingly, set ip_summed to
194 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196 * A driver that supports both IP checksum offload and SCTP CRC32c offload
197 * must verify which offload is configured for a packet by testing the
198 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200 *
201 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202 * offloading the FCOE CRC in a packet. To perform this offload the stack
203 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204 * accordingly. Note the there is no indication in the skbuff that the
205 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
206 * both IP checksum offload and FCOE CRC offload must verify which offload
207 * is configured for a packet presumably by inspecting packet headers.
208 *
209 * E. Checksumming on output with GSO.
210 *
211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214 * part of the GSO operation is implied. If a checksum is being offloaded
215 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
216 * are set to refer to the outermost checksum being offload (two offloaded
217 * checksums are possible with UDP encapsulation).
218 */
219
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE 0
222 #define CHECKSUM_UNNECESSARY 1
223 #define CHECKSUM_COMPLETE 2
224 #define CHECKSUM_PARTIAL 3
225
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL 3
228
229 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X) \
231 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
236
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) + \
239 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
240 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247
248 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
249 struct nf_conntrack {
250 atomic_t use;
251 };
252 #endif
253
254 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
255 struct nf_bridge_info {
256 refcount_t use;
257 enum {
258 BRNF_PROTO_UNCHANGED,
259 BRNF_PROTO_8021Q,
260 BRNF_PROTO_PPPOE
261 } orig_proto:8;
262 u8 pkt_otherhost:1;
263 u8 in_prerouting:1;
264 u8 bridged_dnat:1;
265 __u16 frag_max_size;
266 struct net_device *physindev;
267
268 /* always valid & non-NULL from FORWARD on, for physdev match */
269 struct net_device *physoutdev;
270 union {
271 /* prerouting: detect dnat in orig/reply direction */
272 __be32 ipv4_daddr;
273 struct in6_addr ipv6_daddr;
274
275 /* after prerouting + nat detected: store original source
276 * mac since neigh resolution overwrites it, only used while
277 * skb is out in neigh layer.
278 */
279 char neigh_header[8];
280 };
281 };
282 #endif
283
284 struct sk_buff_head {
285 /* These two members must be first. */
286 struct sk_buff *next;
287 struct sk_buff *prev;
288
289 __u32 qlen;
290 spinlock_t lock;
291 };
292
293 struct sk_buff;
294
295 /* To allow 64K frame to be packed as single skb without frag_list we
296 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
297 * buffers which do not start on a page boundary.
298 *
299 * Since GRO uses frags we allocate at least 16 regardless of page
300 * size.
301 */
302 #if (65536/PAGE_SIZE + 1) < 16
303 #define MAX_SKB_FRAGS 16UL
304 #else
305 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
306 #endif
307 extern int sysctl_max_skb_frags;
308
309 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
310 * segment using its current segmentation instead.
311 */
312 #define GSO_BY_FRAGS 0xFFFF
313
314 typedef struct skb_frag_struct skb_frag_t;
315
316 struct skb_frag_struct {
317 struct {
318 struct page *p;
319 } page;
320 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
321 __u32 page_offset;
322 __u32 size;
323 #else
324 __u16 page_offset;
325 __u16 size;
326 #endif
327 };
328
329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331 return frag->size;
332 }
333
334 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
335 {
336 frag->size = size;
337 }
338
339 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
340 {
341 frag->size += delta;
342 }
343
344 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
345 {
346 frag->size -= delta;
347 }
348
349 static inline bool skb_frag_must_loop(struct page *p)
350 {
351 #if defined(CONFIG_HIGHMEM)
352 if (PageHighMem(p))
353 return true;
354 #endif
355 return false;
356 }
357
358 /**
359 * skb_frag_foreach_page - loop over pages in a fragment
360 *
361 * @f: skb frag to operate on
362 * @f_off: offset from start of f->page.p
363 * @f_len: length from f_off to loop over
364 * @p: (temp var) current page
365 * @p_off: (temp var) offset from start of current page,
366 * non-zero only on first page.
367 * @p_len: (temp var) length in current page,
368 * < PAGE_SIZE only on first and last page.
369 * @copied: (temp var) length so far, excluding current p_len.
370 *
371 * A fragment can hold a compound page, in which case per-page
372 * operations, notably kmap_atomic, must be called for each
373 * regular page.
374 */
375 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
376 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
377 p_off = (f_off) & (PAGE_SIZE - 1), \
378 p_len = skb_frag_must_loop(p) ? \
379 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
380 copied = 0; \
381 copied < f_len; \
382 copied += p_len, p++, p_off = 0, \
383 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
384
385 #define HAVE_HW_TIME_STAMP
386
387 /**
388 * struct skb_shared_hwtstamps - hardware time stamps
389 * @hwtstamp: hardware time stamp transformed into duration
390 * since arbitrary point in time
391 *
392 * Software time stamps generated by ktime_get_real() are stored in
393 * skb->tstamp.
394 *
395 * hwtstamps can only be compared against other hwtstamps from
396 * the same device.
397 *
398 * This structure is attached to packets as part of the
399 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
400 */
401 struct skb_shared_hwtstamps {
402 ktime_t hwtstamp;
403 };
404
405 /* Definitions for tx_flags in struct skb_shared_info */
406 enum {
407 /* generate hardware time stamp */
408 SKBTX_HW_TSTAMP = 1 << 0,
409
410 /* generate software time stamp when queueing packet to NIC */
411 SKBTX_SW_TSTAMP = 1 << 1,
412
413 /* device driver is going to provide hardware time stamp */
414 SKBTX_IN_PROGRESS = 1 << 2,
415
416 /* device driver supports TX zero-copy buffers */
417 SKBTX_DEV_ZEROCOPY = 1 << 3,
418
419 /* generate wifi status information (where possible) */
420 SKBTX_WIFI_STATUS = 1 << 4,
421
422 /* This indicates at least one fragment might be overwritten
423 * (as in vmsplice(), sendfile() ...)
424 * If we need to compute a TX checksum, we'll need to copy
425 * all frags to avoid possible bad checksum
426 */
427 SKBTX_SHARED_FRAG = 1 << 5,
428
429 /* generate software time stamp when entering packet scheduling */
430 SKBTX_SCHED_TSTAMP = 1 << 6,
431 };
432
433 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
434 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
435 SKBTX_SCHED_TSTAMP)
436 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
437
438 /*
439 * The callback notifies userspace to release buffers when skb DMA is done in
440 * lower device, the skb last reference should be 0 when calling this.
441 * The zerocopy_success argument is true if zero copy transmit occurred,
442 * false on data copy or out of memory error caused by data copy attempt.
443 * The ctx field is used to track device context.
444 * The desc field is used to track userspace buffer index.
445 */
446 struct ubuf_info {
447 void (*callback)(struct ubuf_info *, bool zerocopy_success);
448 union {
449 struct {
450 unsigned long desc;
451 void *ctx;
452 };
453 struct {
454 u32 id;
455 u16 len;
456 u16 zerocopy:1;
457 u32 bytelen;
458 };
459 };
460 refcount_t refcnt;
461
462 struct mmpin {
463 struct user_struct *user;
464 unsigned int num_pg;
465 } mmp;
466 };
467
468 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
469
470 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
471 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
472 struct ubuf_info *uarg);
473
474 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
475 {
476 refcount_inc(&uarg->refcnt);
477 }
478
479 void sock_zerocopy_put(struct ubuf_info *uarg);
480 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
481
482 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
483
484 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
485 struct msghdr *msg, int len,
486 struct ubuf_info *uarg);
487
488 /* This data is invariant across clones and lives at
489 * the end of the header data, ie. at skb->end.
490 */
491 struct skb_shared_info {
492 unsigned short _unused;
493 unsigned char nr_frags;
494 __u8 tx_flags;
495 unsigned short gso_size;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs;
498 struct sk_buff *frag_list;
499 struct skb_shared_hwtstamps hwtstamps;
500 unsigned int gso_type;
501 u32 tskey;
502 __be32 ip6_frag_id;
503
504 /*
505 * Warning : all fields before dataref are cleared in __alloc_skb()
506 */
507 atomic_t dataref;
508
509 /* Intermediate layers must ensure that destructor_arg
510 * remains valid until skb destructor */
511 void * destructor_arg;
512
513 /* must be last field, see pskb_expand_head() */
514 skb_frag_t frags[MAX_SKB_FRAGS];
515 };
516
517 /* We divide dataref into two halves. The higher 16 bits hold references
518 * to the payload part of skb->data. The lower 16 bits hold references to
519 * the entire skb->data. A clone of a headerless skb holds the length of
520 * the header in skb->hdr_len.
521 *
522 * All users must obey the rule that the skb->data reference count must be
523 * greater than or equal to the payload reference count.
524 *
525 * Holding a reference to the payload part means that the user does not
526 * care about modifications to the header part of skb->data.
527 */
528 #define SKB_DATAREF_SHIFT 16
529 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
530
531
532 enum {
533 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
534 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
535 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
536 };
537
538 enum {
539 SKB_GSO_TCPV4 = 1 << 0,
540
541 /* This indicates the skb is from an untrusted source. */
542 SKB_GSO_DODGY = 1 << 1,
543
544 /* This indicates the tcp segment has CWR set. */
545 SKB_GSO_TCP_ECN = 1 << 2,
546
547 SKB_GSO_TCP_FIXEDID = 1 << 3,
548
549 SKB_GSO_TCPV6 = 1 << 4,
550
551 SKB_GSO_FCOE = 1 << 5,
552
553 SKB_GSO_GRE = 1 << 6,
554
555 SKB_GSO_GRE_CSUM = 1 << 7,
556
557 SKB_GSO_IPXIP4 = 1 << 8,
558
559 SKB_GSO_IPXIP6 = 1 << 9,
560
561 SKB_GSO_UDP_TUNNEL = 1 << 10,
562
563 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
564
565 SKB_GSO_PARTIAL = 1 << 12,
566
567 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
568
569 SKB_GSO_SCTP = 1 << 14,
570
571 SKB_GSO_ESP = 1 << 15,
572 };
573
574 #if BITS_PER_LONG > 32
575 #define NET_SKBUFF_DATA_USES_OFFSET 1
576 #endif
577
578 #ifdef NET_SKBUFF_DATA_USES_OFFSET
579 typedef unsigned int sk_buff_data_t;
580 #else
581 typedef unsigned char *sk_buff_data_t;
582 #endif
583
584 /**
585 * struct sk_buff - socket buffer
586 * @next: Next buffer in list
587 * @prev: Previous buffer in list
588 * @tstamp: Time we arrived/left
589 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
590 * @sk: Socket we are owned by
591 * @dev: Device we arrived on/are leaving by
592 * @cb: Control buffer. Free for use by every layer. Put private vars here
593 * @_skb_refdst: destination entry (with norefcount bit)
594 * @sp: the security path, used for xfrm
595 * @len: Length of actual data
596 * @data_len: Data length
597 * @mac_len: Length of link layer header
598 * @hdr_len: writable header length of cloned skb
599 * @csum: Checksum (must include start/offset pair)
600 * @csum_start: Offset from skb->head where checksumming should start
601 * @csum_offset: Offset from csum_start where checksum should be stored
602 * @priority: Packet queueing priority
603 * @ignore_df: allow local fragmentation
604 * @cloned: Head may be cloned (check refcnt to be sure)
605 * @ip_summed: Driver fed us an IP checksum
606 * @nohdr: Payload reference only, must not modify header
607 * @pkt_type: Packet class
608 * @fclone: skbuff clone status
609 * @ipvs_property: skbuff is owned by ipvs
610 * @tc_skip_classify: do not classify packet. set by IFB device
611 * @tc_at_ingress: used within tc_classify to distinguish in/egress
612 * @tc_redirected: packet was redirected by a tc action
613 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
614 * @peeked: this packet has been seen already, so stats have been
615 * done for it, don't do them again
616 * @nf_trace: netfilter packet trace flag
617 * @protocol: Packet protocol from driver
618 * @destructor: Destruct function
619 * @_nfct: Associated connection, if any (with nfctinfo bits)
620 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
621 * @skb_iif: ifindex of device we arrived on
622 * @tc_index: Traffic control index
623 * @hash: the packet hash
624 * @queue_mapping: Queue mapping for multiqueue devices
625 * @xmit_more: More SKBs are pending for this queue
626 * @ndisc_nodetype: router type (from link layer)
627 * @ooo_okay: allow the mapping of a socket to a queue to be changed
628 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
629 * ports.
630 * @sw_hash: indicates hash was computed in software stack
631 * @wifi_acked_valid: wifi_acked was set
632 * @wifi_acked: whether frame was acked on wifi or not
633 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
634 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
635 * @dst_pending_confirm: need to confirm neighbour
636 * @napi_id: id of the NAPI struct this skb came from
637 * @secmark: security marking
638 * @mark: Generic packet mark
639 * @vlan_proto: vlan encapsulation protocol
640 * @vlan_tci: vlan tag control information
641 * @inner_protocol: Protocol (encapsulation)
642 * @inner_transport_header: Inner transport layer header (encapsulation)
643 * @inner_network_header: Network layer header (encapsulation)
644 * @inner_mac_header: Link layer header (encapsulation)
645 * @transport_header: Transport layer header
646 * @network_header: Network layer header
647 * @mac_header: Link layer header
648 * @tail: Tail pointer
649 * @end: End pointer
650 * @head: Head of buffer
651 * @data: Data head pointer
652 * @truesize: Buffer size
653 * @users: User count - see {datagram,tcp}.c
654 */
655
656 struct sk_buff {
657 union {
658 struct {
659 /* These two members must be first. */
660 struct sk_buff *next;
661 struct sk_buff *prev;
662
663 union {
664 ktime_t tstamp;
665 u64 skb_mstamp;
666 };
667 };
668 struct rb_node rbnode; /* used in netem & tcp stack */
669 };
670 struct sock *sk;
671
672 union {
673 struct net_device *dev;
674 /* Some protocols might use this space to store information,
675 * while device pointer would be NULL.
676 * UDP receive path is one user.
677 */
678 unsigned long dev_scratch;
679 };
680 /*
681 * This is the control buffer. It is free to use for every
682 * layer. Please put your private variables there. If you
683 * want to keep them across layers you have to do a skb_clone()
684 * first. This is owned by whoever has the skb queued ATM.
685 */
686 char cb[48] __aligned(8);
687
688 unsigned long _skb_refdst;
689 void (*destructor)(struct sk_buff *skb);
690 #ifdef CONFIG_XFRM
691 struct sec_path *sp;
692 #endif
693 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
694 unsigned long _nfct;
695 #endif
696 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
697 struct nf_bridge_info *nf_bridge;
698 #endif
699 unsigned int len,
700 data_len;
701 __u16 mac_len,
702 hdr_len;
703
704 /* Following fields are _not_ copied in __copy_skb_header()
705 * Note that queue_mapping is here mostly to fill a hole.
706 */
707 kmemcheck_bitfield_begin(flags1);
708 __u16 queue_mapping;
709
710 /* if you move cloned around you also must adapt those constants */
711 #ifdef __BIG_ENDIAN_BITFIELD
712 #define CLONED_MASK (1 << 7)
713 #else
714 #define CLONED_MASK 1
715 #endif
716 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
717
718 __u8 __cloned_offset[0];
719 __u8 cloned:1,
720 nohdr:1,
721 fclone:2,
722 peeked:1,
723 head_frag:1,
724 xmit_more:1,
725 __unused:1; /* one bit hole */
726 kmemcheck_bitfield_end(flags1);
727
728 /* fields enclosed in headers_start/headers_end are copied
729 * using a single memcpy() in __copy_skb_header()
730 */
731 /* private: */
732 __u32 headers_start[0];
733 /* public: */
734
735 /* if you move pkt_type around you also must adapt those constants */
736 #ifdef __BIG_ENDIAN_BITFIELD
737 #define PKT_TYPE_MAX (7 << 5)
738 #else
739 #define PKT_TYPE_MAX 7
740 #endif
741 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
742
743 __u8 __pkt_type_offset[0];
744 __u8 pkt_type:3;
745 __u8 pfmemalloc:1;
746 __u8 ignore_df:1;
747
748 __u8 nf_trace:1;
749 __u8 ip_summed:2;
750 __u8 ooo_okay:1;
751 __u8 l4_hash:1;
752 __u8 sw_hash:1;
753 __u8 wifi_acked_valid:1;
754 __u8 wifi_acked:1;
755
756 __u8 no_fcs:1;
757 /* Indicates the inner headers are valid in the skbuff. */
758 __u8 encapsulation:1;
759 __u8 encap_hdr_csum:1;
760 __u8 csum_valid:1;
761 __u8 csum_complete_sw:1;
762 __u8 csum_level:2;
763 __u8 csum_not_inet:1;
764
765 __u8 dst_pending_confirm:1;
766 #ifdef CONFIG_IPV6_NDISC_NODETYPE
767 __u8 ndisc_nodetype:2;
768 #endif
769 __u8 ipvs_property:1;
770 __u8 inner_protocol_type:1;
771 __u8 remcsum_offload:1;
772 #ifdef CONFIG_NET_SWITCHDEV
773 __u8 offload_fwd_mark:1;
774 #endif
775 #ifdef CONFIG_NET_CLS_ACT
776 __u8 tc_skip_classify:1;
777 __u8 tc_at_ingress:1;
778 __u8 tc_redirected:1;
779 __u8 tc_from_ingress:1;
780 #endif
781
782 #ifdef CONFIG_NET_SCHED
783 __u16 tc_index; /* traffic control index */
784 #endif
785
786 union {
787 __wsum csum;
788 struct {
789 __u16 csum_start;
790 __u16 csum_offset;
791 };
792 };
793 __u32 priority;
794 int skb_iif;
795 __u32 hash;
796 __be16 vlan_proto;
797 __u16 vlan_tci;
798 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
799 union {
800 unsigned int napi_id;
801 unsigned int sender_cpu;
802 };
803 #endif
804 #ifdef CONFIG_NETWORK_SECMARK
805 __u32 secmark;
806 #endif
807
808 union {
809 __u32 mark;
810 __u32 reserved_tailroom;
811 };
812
813 union {
814 __be16 inner_protocol;
815 __u8 inner_ipproto;
816 };
817
818 __u16 inner_transport_header;
819 __u16 inner_network_header;
820 __u16 inner_mac_header;
821
822 __be16 protocol;
823 __u16 transport_header;
824 __u16 network_header;
825 __u16 mac_header;
826
827 /* private: */
828 __u32 headers_end[0];
829 /* public: */
830
831 /* These elements must be at the end, see alloc_skb() for details. */
832 sk_buff_data_t tail;
833 sk_buff_data_t end;
834 unsigned char *head,
835 *data;
836 unsigned int truesize;
837 refcount_t users;
838 };
839
840 #ifdef __KERNEL__
841 /*
842 * Handling routines are only of interest to the kernel
843 */
844 #include <linux/slab.h>
845
846
847 #define SKB_ALLOC_FCLONE 0x01
848 #define SKB_ALLOC_RX 0x02
849 #define SKB_ALLOC_NAPI 0x04
850
851 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
852 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
853 {
854 return unlikely(skb->pfmemalloc);
855 }
856
857 /*
858 * skb might have a dst pointer attached, refcounted or not.
859 * _skb_refdst low order bit is set if refcount was _not_ taken
860 */
861 #define SKB_DST_NOREF 1UL
862 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
863
864 #define SKB_NFCT_PTRMASK ~(7UL)
865 /**
866 * skb_dst - returns skb dst_entry
867 * @skb: buffer
868 *
869 * Returns skb dst_entry, regardless of reference taken or not.
870 */
871 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
872 {
873 /* If refdst was not refcounted, check we still are in a
874 * rcu_read_lock section
875 */
876 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
877 !rcu_read_lock_held() &&
878 !rcu_read_lock_bh_held());
879 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
880 }
881
882 /**
883 * skb_dst_set - sets skb dst
884 * @skb: buffer
885 * @dst: dst entry
886 *
887 * Sets skb dst, assuming a reference was taken on dst and should
888 * be released by skb_dst_drop()
889 */
890 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
891 {
892 skb->_skb_refdst = (unsigned long)dst;
893 }
894
895 /**
896 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
897 * @skb: buffer
898 * @dst: dst entry
899 *
900 * Sets skb dst, assuming a reference was not taken on dst.
901 * If dst entry is cached, we do not take reference and dst_release
902 * will be avoided by refdst_drop. If dst entry is not cached, we take
903 * reference, so that last dst_release can destroy the dst immediately.
904 */
905 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
906 {
907 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
908 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
909 }
910
911 /**
912 * skb_dst_is_noref - Test if skb dst isn't refcounted
913 * @skb: buffer
914 */
915 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
916 {
917 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
918 }
919
920 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
921 {
922 return (struct rtable *)skb_dst(skb);
923 }
924
925 /* For mangling skb->pkt_type from user space side from applications
926 * such as nft, tc, etc, we only allow a conservative subset of
927 * possible pkt_types to be set.
928 */
929 static inline bool skb_pkt_type_ok(u32 ptype)
930 {
931 return ptype <= PACKET_OTHERHOST;
932 }
933
934 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
935 {
936 #ifdef CONFIG_NET_RX_BUSY_POLL
937 return skb->napi_id;
938 #else
939 return 0;
940 #endif
941 }
942
943 /* decrement the reference count and return true if we can free the skb */
944 static inline bool skb_unref(struct sk_buff *skb)
945 {
946 if (unlikely(!skb))
947 return false;
948 if (likely(refcount_read(&skb->users) == 1))
949 smp_rmb();
950 else if (likely(!refcount_dec_and_test(&skb->users)))
951 return false;
952
953 return true;
954 }
955
956 void skb_release_head_state(struct sk_buff *skb);
957 void kfree_skb(struct sk_buff *skb);
958 void kfree_skb_list(struct sk_buff *segs);
959 void skb_tx_error(struct sk_buff *skb);
960 void consume_skb(struct sk_buff *skb);
961 void __consume_stateless_skb(struct sk_buff *skb);
962 void __kfree_skb(struct sk_buff *skb);
963 extern struct kmem_cache *skbuff_head_cache;
964
965 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
966 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
967 bool *fragstolen, int *delta_truesize);
968
969 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
970 int node);
971 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
972 struct sk_buff *build_skb(void *data, unsigned int frag_size);
973 static inline struct sk_buff *alloc_skb(unsigned int size,
974 gfp_t priority)
975 {
976 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
977 }
978
979 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
980 unsigned long data_len,
981 int max_page_order,
982 int *errcode,
983 gfp_t gfp_mask);
984
985 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
986 struct sk_buff_fclones {
987 struct sk_buff skb1;
988
989 struct sk_buff skb2;
990
991 refcount_t fclone_ref;
992 };
993
994 /**
995 * skb_fclone_busy - check if fclone is busy
996 * @sk: socket
997 * @skb: buffer
998 *
999 * Returns true if skb is a fast clone, and its clone is not freed.
1000 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1001 * so we also check that this didnt happen.
1002 */
1003 static inline bool skb_fclone_busy(const struct sock *sk,
1004 const struct sk_buff *skb)
1005 {
1006 const struct sk_buff_fclones *fclones;
1007
1008 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1009
1010 return skb->fclone == SKB_FCLONE_ORIG &&
1011 refcount_read(&fclones->fclone_ref) > 1 &&
1012 fclones->skb2.sk == sk;
1013 }
1014
1015 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1016 gfp_t priority)
1017 {
1018 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1019 }
1020
1021 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1022 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1023 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1024 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1025 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1026 gfp_t gfp_mask, bool fclone);
1027 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1028 gfp_t gfp_mask)
1029 {
1030 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1031 }
1032
1033 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1034 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1035 unsigned int headroom);
1036 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1037 int newtailroom, gfp_t priority);
1038 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1039 int offset, int len);
1040 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1041 int offset, int len);
1042 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1043 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1044
1045 /**
1046 * skb_pad - zero pad the tail of an skb
1047 * @skb: buffer to pad
1048 * @pad: space to pad
1049 *
1050 * Ensure that a buffer is followed by a padding area that is zero
1051 * filled. Used by network drivers which may DMA or transfer data
1052 * beyond the buffer end onto the wire.
1053 *
1054 * May return error in out of memory cases. The skb is freed on error.
1055 */
1056 static inline int skb_pad(struct sk_buff *skb, int pad)
1057 {
1058 return __skb_pad(skb, pad, true);
1059 }
1060 #define dev_kfree_skb(a) consume_skb(a)
1061
1062 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1063 int getfrag(void *from, char *to, int offset,
1064 int len, int odd, struct sk_buff *skb),
1065 void *from, int length);
1066
1067 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1068 int offset, size_t size);
1069
1070 struct skb_seq_state {
1071 __u32 lower_offset;
1072 __u32 upper_offset;
1073 __u32 frag_idx;
1074 __u32 stepped_offset;
1075 struct sk_buff *root_skb;
1076 struct sk_buff *cur_skb;
1077 __u8 *frag_data;
1078 };
1079
1080 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1081 unsigned int to, struct skb_seq_state *st);
1082 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1083 struct skb_seq_state *st);
1084 void skb_abort_seq_read(struct skb_seq_state *st);
1085
1086 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1087 unsigned int to, struct ts_config *config);
1088
1089 /*
1090 * Packet hash types specify the type of hash in skb_set_hash.
1091 *
1092 * Hash types refer to the protocol layer addresses which are used to
1093 * construct a packet's hash. The hashes are used to differentiate or identify
1094 * flows of the protocol layer for the hash type. Hash types are either
1095 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1096 *
1097 * Properties of hashes:
1098 *
1099 * 1) Two packets in different flows have different hash values
1100 * 2) Two packets in the same flow should have the same hash value
1101 *
1102 * A hash at a higher layer is considered to be more specific. A driver should
1103 * set the most specific hash possible.
1104 *
1105 * A driver cannot indicate a more specific hash than the layer at which a hash
1106 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1107 *
1108 * A driver may indicate a hash level which is less specific than the
1109 * actual layer the hash was computed on. For instance, a hash computed
1110 * at L4 may be considered an L3 hash. This should only be done if the
1111 * driver can't unambiguously determine that the HW computed the hash at
1112 * the higher layer. Note that the "should" in the second property above
1113 * permits this.
1114 */
1115 enum pkt_hash_types {
1116 PKT_HASH_TYPE_NONE, /* Undefined type */
1117 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1118 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1119 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1120 };
1121
1122 static inline void skb_clear_hash(struct sk_buff *skb)
1123 {
1124 skb->hash = 0;
1125 skb->sw_hash = 0;
1126 skb->l4_hash = 0;
1127 }
1128
1129 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1130 {
1131 if (!skb->l4_hash)
1132 skb_clear_hash(skb);
1133 }
1134
1135 static inline void
1136 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1137 {
1138 skb->l4_hash = is_l4;
1139 skb->sw_hash = is_sw;
1140 skb->hash = hash;
1141 }
1142
1143 static inline void
1144 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1145 {
1146 /* Used by drivers to set hash from HW */
1147 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1148 }
1149
1150 static inline void
1151 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1152 {
1153 __skb_set_hash(skb, hash, true, is_l4);
1154 }
1155
1156 void __skb_get_hash(struct sk_buff *skb);
1157 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1158 u32 skb_get_poff(const struct sk_buff *skb);
1159 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1160 const struct flow_keys *keys, int hlen);
1161 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1162 void *data, int hlen_proto);
1163
1164 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1165 int thoff, u8 ip_proto)
1166 {
1167 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1168 }
1169
1170 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1171 const struct flow_dissector_key *key,
1172 unsigned int key_count);
1173
1174 bool __skb_flow_dissect(const struct sk_buff *skb,
1175 struct flow_dissector *flow_dissector,
1176 void *target_container,
1177 void *data, __be16 proto, int nhoff, int hlen,
1178 unsigned int flags);
1179
1180 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1181 struct flow_dissector *flow_dissector,
1182 void *target_container, unsigned int flags)
1183 {
1184 return __skb_flow_dissect(skb, flow_dissector, target_container,
1185 NULL, 0, 0, 0, flags);
1186 }
1187
1188 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1189 struct flow_keys *flow,
1190 unsigned int flags)
1191 {
1192 memset(flow, 0, sizeof(*flow));
1193 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1194 NULL, 0, 0, 0, flags);
1195 }
1196
1197 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1198 void *data, __be16 proto,
1199 int nhoff, int hlen,
1200 unsigned int flags)
1201 {
1202 memset(flow, 0, sizeof(*flow));
1203 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1204 data, proto, nhoff, hlen, flags);
1205 }
1206
1207 static inline __u32 skb_get_hash(struct sk_buff *skb)
1208 {
1209 if (!skb->l4_hash && !skb->sw_hash)
1210 __skb_get_hash(skb);
1211
1212 return skb->hash;
1213 }
1214
1215 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1216 {
1217 if (!skb->l4_hash && !skb->sw_hash) {
1218 struct flow_keys keys;
1219 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1220
1221 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1222 }
1223
1224 return skb->hash;
1225 }
1226
1227 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1228
1229 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1230 {
1231 return skb->hash;
1232 }
1233
1234 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1235 {
1236 to->hash = from->hash;
1237 to->sw_hash = from->sw_hash;
1238 to->l4_hash = from->l4_hash;
1239 };
1240
1241 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1242 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1243 {
1244 return skb->head + skb->end;
1245 }
1246
1247 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1248 {
1249 return skb->end;
1250 }
1251 #else
1252 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1253 {
1254 return skb->end;
1255 }
1256
1257 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1258 {
1259 return skb->end - skb->head;
1260 }
1261 #endif
1262
1263 /* Internal */
1264 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1265
1266 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1267 {
1268 return &skb_shinfo(skb)->hwtstamps;
1269 }
1270
1271 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1272 {
1273 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1274
1275 return is_zcopy ? skb_uarg(skb) : NULL;
1276 }
1277
1278 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1279 {
1280 if (skb && uarg && !skb_zcopy(skb)) {
1281 sock_zerocopy_get(uarg);
1282 skb_shinfo(skb)->destructor_arg = uarg;
1283 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1284 }
1285 }
1286
1287 /* Release a reference on a zerocopy structure */
1288 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1289 {
1290 struct ubuf_info *uarg = skb_zcopy(skb);
1291
1292 if (uarg) {
1293 if (uarg->callback == sock_zerocopy_callback) {
1294 uarg->zerocopy = uarg->zerocopy && zerocopy;
1295 sock_zerocopy_put(uarg);
1296 } else {
1297 uarg->callback(uarg, zerocopy);
1298 }
1299
1300 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1301 }
1302 }
1303
1304 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1305 static inline void skb_zcopy_abort(struct sk_buff *skb)
1306 {
1307 struct ubuf_info *uarg = skb_zcopy(skb);
1308
1309 if (uarg) {
1310 sock_zerocopy_put_abort(uarg);
1311 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1312 }
1313 }
1314
1315 /**
1316 * skb_queue_empty - check if a queue is empty
1317 * @list: queue head
1318 *
1319 * Returns true if the queue is empty, false otherwise.
1320 */
1321 static inline int skb_queue_empty(const struct sk_buff_head *list)
1322 {
1323 return list->next == (const struct sk_buff *) list;
1324 }
1325
1326 /**
1327 * skb_queue_is_last - check if skb is the last entry in the queue
1328 * @list: queue head
1329 * @skb: buffer
1330 *
1331 * Returns true if @skb is the last buffer on the list.
1332 */
1333 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1334 const struct sk_buff *skb)
1335 {
1336 return skb->next == (const struct sk_buff *) list;
1337 }
1338
1339 /**
1340 * skb_queue_is_first - check if skb is the first entry in the queue
1341 * @list: queue head
1342 * @skb: buffer
1343 *
1344 * Returns true if @skb is the first buffer on the list.
1345 */
1346 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1347 const struct sk_buff *skb)
1348 {
1349 return skb->prev == (const struct sk_buff *) list;
1350 }
1351
1352 /**
1353 * skb_queue_next - return the next packet in the queue
1354 * @list: queue head
1355 * @skb: current buffer
1356 *
1357 * Return the next packet in @list after @skb. It is only valid to
1358 * call this if skb_queue_is_last() evaluates to false.
1359 */
1360 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1361 const struct sk_buff *skb)
1362 {
1363 /* This BUG_ON may seem severe, but if we just return then we
1364 * are going to dereference garbage.
1365 */
1366 BUG_ON(skb_queue_is_last(list, skb));
1367 return skb->next;
1368 }
1369
1370 /**
1371 * skb_queue_prev - return the prev packet in the queue
1372 * @list: queue head
1373 * @skb: current buffer
1374 *
1375 * Return the prev packet in @list before @skb. It is only valid to
1376 * call this if skb_queue_is_first() evaluates to false.
1377 */
1378 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1379 const struct sk_buff *skb)
1380 {
1381 /* This BUG_ON may seem severe, but if we just return then we
1382 * are going to dereference garbage.
1383 */
1384 BUG_ON(skb_queue_is_first(list, skb));
1385 return skb->prev;
1386 }
1387
1388 /**
1389 * skb_get - reference buffer
1390 * @skb: buffer to reference
1391 *
1392 * Makes another reference to a socket buffer and returns a pointer
1393 * to the buffer.
1394 */
1395 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1396 {
1397 refcount_inc(&skb->users);
1398 return skb;
1399 }
1400
1401 /*
1402 * If users == 1, we are the only owner and are can avoid redundant
1403 * atomic change.
1404 */
1405
1406 /**
1407 * skb_cloned - is the buffer a clone
1408 * @skb: buffer to check
1409 *
1410 * Returns true if the buffer was generated with skb_clone() and is
1411 * one of multiple shared copies of the buffer. Cloned buffers are
1412 * shared data so must not be written to under normal circumstances.
1413 */
1414 static inline int skb_cloned(const struct sk_buff *skb)
1415 {
1416 return skb->cloned &&
1417 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1418 }
1419
1420 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1421 {
1422 might_sleep_if(gfpflags_allow_blocking(pri));
1423
1424 if (skb_cloned(skb))
1425 return pskb_expand_head(skb, 0, 0, pri);
1426
1427 return 0;
1428 }
1429
1430 /**
1431 * skb_header_cloned - is the header a clone
1432 * @skb: buffer to check
1433 *
1434 * Returns true if modifying the header part of the buffer requires
1435 * the data to be copied.
1436 */
1437 static inline int skb_header_cloned(const struct sk_buff *skb)
1438 {
1439 int dataref;
1440
1441 if (!skb->cloned)
1442 return 0;
1443
1444 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1445 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1446 return dataref != 1;
1447 }
1448
1449 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1450 {
1451 might_sleep_if(gfpflags_allow_blocking(pri));
1452
1453 if (skb_header_cloned(skb))
1454 return pskb_expand_head(skb, 0, 0, pri);
1455
1456 return 0;
1457 }
1458
1459 /**
1460 * skb_header_release - release reference to header
1461 * @skb: buffer to operate on
1462 *
1463 * Drop a reference to the header part of the buffer. This is done
1464 * by acquiring a payload reference. You must not read from the header
1465 * part of skb->data after this.
1466 * Note : Check if you can use __skb_header_release() instead.
1467 */
1468 static inline void skb_header_release(struct sk_buff *skb)
1469 {
1470 BUG_ON(skb->nohdr);
1471 skb->nohdr = 1;
1472 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1473 }
1474
1475 /**
1476 * __skb_header_release - release reference to header
1477 * @skb: buffer to operate on
1478 *
1479 * Variant of skb_header_release() assuming skb is private to caller.
1480 * We can avoid one atomic operation.
1481 */
1482 static inline void __skb_header_release(struct sk_buff *skb)
1483 {
1484 skb->nohdr = 1;
1485 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1486 }
1487
1488
1489 /**
1490 * skb_shared - is the buffer shared
1491 * @skb: buffer to check
1492 *
1493 * Returns true if more than one person has a reference to this
1494 * buffer.
1495 */
1496 static inline int skb_shared(const struct sk_buff *skb)
1497 {
1498 return refcount_read(&skb->users) != 1;
1499 }
1500
1501 /**
1502 * skb_share_check - check if buffer is shared and if so clone it
1503 * @skb: buffer to check
1504 * @pri: priority for memory allocation
1505 *
1506 * If the buffer is shared the buffer is cloned and the old copy
1507 * drops a reference. A new clone with a single reference is returned.
1508 * If the buffer is not shared the original buffer is returned. When
1509 * being called from interrupt status or with spinlocks held pri must
1510 * be GFP_ATOMIC.
1511 *
1512 * NULL is returned on a memory allocation failure.
1513 */
1514 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1515 {
1516 might_sleep_if(gfpflags_allow_blocking(pri));
1517 if (skb_shared(skb)) {
1518 struct sk_buff *nskb = skb_clone(skb, pri);
1519
1520 if (likely(nskb))
1521 consume_skb(skb);
1522 else
1523 kfree_skb(skb);
1524 skb = nskb;
1525 }
1526 return skb;
1527 }
1528
1529 /*
1530 * Copy shared buffers into a new sk_buff. We effectively do COW on
1531 * packets to handle cases where we have a local reader and forward
1532 * and a couple of other messy ones. The normal one is tcpdumping
1533 * a packet thats being forwarded.
1534 */
1535
1536 /**
1537 * skb_unshare - make a copy of a shared buffer
1538 * @skb: buffer to check
1539 * @pri: priority for memory allocation
1540 *
1541 * If the socket buffer is a clone then this function creates a new
1542 * copy of the data, drops a reference count on the old copy and returns
1543 * the new copy with the reference count at 1. If the buffer is not a clone
1544 * the original buffer is returned. When called with a spinlock held or
1545 * from interrupt state @pri must be %GFP_ATOMIC
1546 *
1547 * %NULL is returned on a memory allocation failure.
1548 */
1549 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1550 gfp_t pri)
1551 {
1552 might_sleep_if(gfpflags_allow_blocking(pri));
1553 if (skb_cloned(skb)) {
1554 struct sk_buff *nskb = skb_copy(skb, pri);
1555
1556 /* Free our shared copy */
1557 if (likely(nskb))
1558 consume_skb(skb);
1559 else
1560 kfree_skb(skb);
1561 skb = nskb;
1562 }
1563 return skb;
1564 }
1565
1566 /**
1567 * skb_peek - peek at the head of an &sk_buff_head
1568 * @list_: list to peek at
1569 *
1570 * Peek an &sk_buff. Unlike most other operations you _MUST_
1571 * be careful with this one. A peek leaves the buffer on the
1572 * list and someone else may run off with it. You must hold
1573 * the appropriate locks or have a private queue to do this.
1574 *
1575 * Returns %NULL for an empty list or a pointer to the head element.
1576 * The reference count is not incremented and the reference is therefore
1577 * volatile. Use with caution.
1578 */
1579 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1580 {
1581 struct sk_buff *skb = list_->next;
1582
1583 if (skb == (struct sk_buff *)list_)
1584 skb = NULL;
1585 return skb;
1586 }
1587
1588 /**
1589 * skb_peek_next - peek skb following the given one from a queue
1590 * @skb: skb to start from
1591 * @list_: list to peek at
1592 *
1593 * Returns %NULL when the end of the list is met or a pointer to the
1594 * next element. The reference count is not incremented and the
1595 * reference is therefore volatile. Use with caution.
1596 */
1597 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1598 const struct sk_buff_head *list_)
1599 {
1600 struct sk_buff *next = skb->next;
1601
1602 if (next == (struct sk_buff *)list_)
1603 next = NULL;
1604 return next;
1605 }
1606
1607 /**
1608 * skb_peek_tail - peek at the tail of an &sk_buff_head
1609 * @list_: list to peek at
1610 *
1611 * Peek an &sk_buff. Unlike most other operations you _MUST_
1612 * be careful with this one. A peek leaves the buffer on the
1613 * list and someone else may run off with it. You must hold
1614 * the appropriate locks or have a private queue to do this.
1615 *
1616 * Returns %NULL for an empty list or a pointer to the tail element.
1617 * The reference count is not incremented and the reference is therefore
1618 * volatile. Use with caution.
1619 */
1620 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1621 {
1622 struct sk_buff *skb = list_->prev;
1623
1624 if (skb == (struct sk_buff *)list_)
1625 skb = NULL;
1626 return skb;
1627
1628 }
1629
1630 /**
1631 * skb_queue_len - get queue length
1632 * @list_: list to measure
1633 *
1634 * Return the length of an &sk_buff queue.
1635 */
1636 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1637 {
1638 return list_->qlen;
1639 }
1640
1641 /**
1642 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1643 * @list: queue to initialize
1644 *
1645 * This initializes only the list and queue length aspects of
1646 * an sk_buff_head object. This allows to initialize the list
1647 * aspects of an sk_buff_head without reinitializing things like
1648 * the spinlock. It can also be used for on-stack sk_buff_head
1649 * objects where the spinlock is known to not be used.
1650 */
1651 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1652 {
1653 list->prev = list->next = (struct sk_buff *)list;
1654 list->qlen = 0;
1655 }
1656
1657 /*
1658 * This function creates a split out lock class for each invocation;
1659 * this is needed for now since a whole lot of users of the skb-queue
1660 * infrastructure in drivers have different locking usage (in hardirq)
1661 * than the networking core (in softirq only). In the long run either the
1662 * network layer or drivers should need annotation to consolidate the
1663 * main types of usage into 3 classes.
1664 */
1665 static inline void skb_queue_head_init(struct sk_buff_head *list)
1666 {
1667 spin_lock_init(&list->lock);
1668 __skb_queue_head_init(list);
1669 }
1670
1671 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1672 struct lock_class_key *class)
1673 {
1674 skb_queue_head_init(list);
1675 lockdep_set_class(&list->lock, class);
1676 }
1677
1678 /*
1679 * Insert an sk_buff on a list.
1680 *
1681 * The "__skb_xxxx()" functions are the non-atomic ones that
1682 * can only be called with interrupts disabled.
1683 */
1684 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1685 struct sk_buff_head *list);
1686 static inline void __skb_insert(struct sk_buff *newsk,
1687 struct sk_buff *prev, struct sk_buff *next,
1688 struct sk_buff_head *list)
1689 {
1690 newsk->next = next;
1691 newsk->prev = prev;
1692 next->prev = prev->next = newsk;
1693 list->qlen++;
1694 }
1695
1696 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1697 struct sk_buff *prev,
1698 struct sk_buff *next)
1699 {
1700 struct sk_buff *first = list->next;
1701 struct sk_buff *last = list->prev;
1702
1703 first->prev = prev;
1704 prev->next = first;
1705
1706 last->next = next;
1707 next->prev = last;
1708 }
1709
1710 /**
1711 * skb_queue_splice - join two skb lists, this is designed for stacks
1712 * @list: the new list to add
1713 * @head: the place to add it in the first list
1714 */
1715 static inline void skb_queue_splice(const struct sk_buff_head *list,
1716 struct sk_buff_head *head)
1717 {
1718 if (!skb_queue_empty(list)) {
1719 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1720 head->qlen += list->qlen;
1721 }
1722 }
1723
1724 /**
1725 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1726 * @list: the new list to add
1727 * @head: the place to add it in the first list
1728 *
1729 * The list at @list is reinitialised
1730 */
1731 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1732 struct sk_buff_head *head)
1733 {
1734 if (!skb_queue_empty(list)) {
1735 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1736 head->qlen += list->qlen;
1737 __skb_queue_head_init(list);
1738 }
1739 }
1740
1741 /**
1742 * skb_queue_splice_tail - join two skb lists, each list being a queue
1743 * @list: the new list to add
1744 * @head: the place to add it in the first list
1745 */
1746 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1747 struct sk_buff_head *head)
1748 {
1749 if (!skb_queue_empty(list)) {
1750 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1751 head->qlen += list->qlen;
1752 }
1753 }
1754
1755 /**
1756 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1757 * @list: the new list to add
1758 * @head: the place to add it in the first list
1759 *
1760 * Each of the lists is a queue.
1761 * The list at @list is reinitialised
1762 */
1763 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1764 struct sk_buff_head *head)
1765 {
1766 if (!skb_queue_empty(list)) {
1767 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1768 head->qlen += list->qlen;
1769 __skb_queue_head_init(list);
1770 }
1771 }
1772
1773 /**
1774 * __skb_queue_after - queue a buffer at the list head
1775 * @list: list to use
1776 * @prev: place after this buffer
1777 * @newsk: buffer to queue
1778 *
1779 * Queue a buffer int the middle of a list. This function takes no locks
1780 * and you must therefore hold required locks before calling it.
1781 *
1782 * A buffer cannot be placed on two lists at the same time.
1783 */
1784 static inline void __skb_queue_after(struct sk_buff_head *list,
1785 struct sk_buff *prev,
1786 struct sk_buff *newsk)
1787 {
1788 __skb_insert(newsk, prev, prev->next, list);
1789 }
1790
1791 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1792 struct sk_buff_head *list);
1793
1794 static inline void __skb_queue_before(struct sk_buff_head *list,
1795 struct sk_buff *next,
1796 struct sk_buff *newsk)
1797 {
1798 __skb_insert(newsk, next->prev, next, list);
1799 }
1800
1801 /**
1802 * __skb_queue_head - queue a buffer at the list head
1803 * @list: list to use
1804 * @newsk: buffer to queue
1805 *
1806 * Queue a buffer at the start of a list. This function takes no locks
1807 * and you must therefore hold required locks before calling it.
1808 *
1809 * A buffer cannot be placed on two lists at the same time.
1810 */
1811 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1812 static inline void __skb_queue_head(struct sk_buff_head *list,
1813 struct sk_buff *newsk)
1814 {
1815 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1816 }
1817
1818 /**
1819 * __skb_queue_tail - queue a buffer at the list tail
1820 * @list: list to use
1821 * @newsk: buffer to queue
1822 *
1823 * Queue a buffer at the end of a list. This function takes no locks
1824 * and you must therefore hold required locks before calling it.
1825 *
1826 * A buffer cannot be placed on two lists at the same time.
1827 */
1828 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1829 static inline void __skb_queue_tail(struct sk_buff_head *list,
1830 struct sk_buff *newsk)
1831 {
1832 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1833 }
1834
1835 /*
1836 * remove sk_buff from list. _Must_ be called atomically, and with
1837 * the list known..
1838 */
1839 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1840 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1841 {
1842 struct sk_buff *next, *prev;
1843
1844 list->qlen--;
1845 next = skb->next;
1846 prev = skb->prev;
1847 skb->next = skb->prev = NULL;
1848 next->prev = prev;
1849 prev->next = next;
1850 }
1851
1852 /**
1853 * __skb_dequeue - remove from the head of the queue
1854 * @list: list to dequeue from
1855 *
1856 * Remove the head of the list. This function does not take any locks
1857 * so must be used with appropriate locks held only. The head item is
1858 * returned or %NULL if the list is empty.
1859 */
1860 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1861 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1862 {
1863 struct sk_buff *skb = skb_peek(list);
1864 if (skb)
1865 __skb_unlink(skb, list);
1866 return skb;
1867 }
1868
1869 /**
1870 * __skb_dequeue_tail - remove from the tail of the queue
1871 * @list: list to dequeue from
1872 *
1873 * Remove the tail of the list. This function does not take any locks
1874 * so must be used with appropriate locks held only. The tail item is
1875 * returned or %NULL if the list is empty.
1876 */
1877 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1878 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1879 {
1880 struct sk_buff *skb = skb_peek_tail(list);
1881 if (skb)
1882 __skb_unlink(skb, list);
1883 return skb;
1884 }
1885
1886
1887 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1888 {
1889 return skb->data_len;
1890 }
1891
1892 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1893 {
1894 return skb->len - skb->data_len;
1895 }
1896
1897 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1898 {
1899 unsigned int i, len = 0;
1900
1901 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1902 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1903 return len;
1904 }
1905
1906 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1907 {
1908 return skb_headlen(skb) + __skb_pagelen(skb);
1909 }
1910
1911 /**
1912 * __skb_fill_page_desc - initialise a paged fragment in an skb
1913 * @skb: buffer containing fragment to be initialised
1914 * @i: paged fragment index to initialise
1915 * @page: the page to use for this fragment
1916 * @off: the offset to the data with @page
1917 * @size: the length of the data
1918 *
1919 * Initialises the @i'th fragment of @skb to point to &size bytes at
1920 * offset @off within @page.
1921 *
1922 * Does not take any additional reference on the fragment.
1923 */
1924 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1925 struct page *page, int off, int size)
1926 {
1927 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1928
1929 /*
1930 * Propagate page pfmemalloc to the skb if we can. The problem is
1931 * that not all callers have unique ownership of the page but rely
1932 * on page_is_pfmemalloc doing the right thing(tm).
1933 */
1934 frag->page.p = page;
1935 frag->page_offset = off;
1936 skb_frag_size_set(frag, size);
1937
1938 page = compound_head(page);
1939 if (page_is_pfmemalloc(page))
1940 skb->pfmemalloc = true;
1941 }
1942
1943 /**
1944 * skb_fill_page_desc - initialise a paged fragment in an skb
1945 * @skb: buffer containing fragment to be initialised
1946 * @i: paged fragment index to initialise
1947 * @page: the page to use for this fragment
1948 * @off: the offset to the data with @page
1949 * @size: the length of the data
1950 *
1951 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1952 * @skb to point to @size bytes at offset @off within @page. In
1953 * addition updates @skb such that @i is the last fragment.
1954 *
1955 * Does not take any additional reference on the fragment.
1956 */
1957 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1958 struct page *page, int off, int size)
1959 {
1960 __skb_fill_page_desc(skb, i, page, off, size);
1961 skb_shinfo(skb)->nr_frags = i + 1;
1962 }
1963
1964 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1965 int size, unsigned int truesize);
1966
1967 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1968 unsigned int truesize);
1969
1970 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1971 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1972 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1973
1974 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1975 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1976 {
1977 return skb->head + skb->tail;
1978 }
1979
1980 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1981 {
1982 skb->tail = skb->data - skb->head;
1983 }
1984
1985 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1986 {
1987 skb_reset_tail_pointer(skb);
1988 skb->tail += offset;
1989 }
1990
1991 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1992 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1993 {
1994 return skb->tail;
1995 }
1996
1997 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1998 {
1999 skb->tail = skb->data;
2000 }
2001
2002 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2003 {
2004 skb->tail = skb->data + offset;
2005 }
2006
2007 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2008
2009 /*
2010 * Add data to an sk_buff
2011 */
2012 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2013 void *skb_put(struct sk_buff *skb, unsigned int len);
2014 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2015 {
2016 void *tmp = skb_tail_pointer(skb);
2017 SKB_LINEAR_ASSERT(skb);
2018 skb->tail += len;
2019 skb->len += len;
2020 return tmp;
2021 }
2022
2023 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2024 {
2025 void *tmp = __skb_put(skb, len);
2026
2027 memset(tmp, 0, len);
2028 return tmp;
2029 }
2030
2031 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2032 unsigned int len)
2033 {
2034 void *tmp = __skb_put(skb, len);
2035
2036 memcpy(tmp, data, len);
2037 return tmp;
2038 }
2039
2040 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2041 {
2042 *(u8 *)__skb_put(skb, 1) = val;
2043 }
2044
2045 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2046 {
2047 void *tmp = skb_put(skb, len);
2048
2049 memset(tmp, 0, len);
2050
2051 return tmp;
2052 }
2053
2054 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2055 unsigned int len)
2056 {
2057 void *tmp = skb_put(skb, len);
2058
2059 memcpy(tmp, data, len);
2060
2061 return tmp;
2062 }
2063
2064 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2065 {
2066 *(u8 *)skb_put(skb, 1) = val;
2067 }
2068
2069 void *skb_push(struct sk_buff *skb, unsigned int len);
2070 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2071 {
2072 skb->data -= len;
2073 skb->len += len;
2074 return skb->data;
2075 }
2076
2077 void *skb_pull(struct sk_buff *skb, unsigned int len);
2078 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2079 {
2080 skb->len -= len;
2081 BUG_ON(skb->len < skb->data_len);
2082 return skb->data += len;
2083 }
2084
2085 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2086 {
2087 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2088 }
2089
2090 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2091
2092 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2093 {
2094 if (len > skb_headlen(skb) &&
2095 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2096 return NULL;
2097 skb->len -= len;
2098 return skb->data += len;
2099 }
2100
2101 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2102 {
2103 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2104 }
2105
2106 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2107 {
2108 if (likely(len <= skb_headlen(skb)))
2109 return 1;
2110 if (unlikely(len > skb->len))
2111 return 0;
2112 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2113 }
2114
2115 void skb_condense(struct sk_buff *skb);
2116
2117 /**
2118 * skb_headroom - bytes at buffer head
2119 * @skb: buffer to check
2120 *
2121 * Return the number of bytes of free space at the head of an &sk_buff.
2122 */
2123 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2124 {
2125 return skb->data - skb->head;
2126 }
2127
2128 /**
2129 * skb_tailroom - bytes at buffer end
2130 * @skb: buffer to check
2131 *
2132 * Return the number of bytes of free space at the tail of an sk_buff
2133 */
2134 static inline int skb_tailroom(const struct sk_buff *skb)
2135 {
2136 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2137 }
2138
2139 /**
2140 * skb_availroom - bytes at buffer end
2141 * @skb: buffer to check
2142 *
2143 * Return the number of bytes of free space at the tail of an sk_buff
2144 * allocated by sk_stream_alloc()
2145 */
2146 static inline int skb_availroom(const struct sk_buff *skb)
2147 {
2148 if (skb_is_nonlinear(skb))
2149 return 0;
2150
2151 return skb->end - skb->tail - skb->reserved_tailroom;
2152 }
2153
2154 /**
2155 * skb_reserve - adjust headroom
2156 * @skb: buffer to alter
2157 * @len: bytes to move
2158 *
2159 * Increase the headroom of an empty &sk_buff by reducing the tail
2160 * room. This is only allowed for an empty buffer.
2161 */
2162 static inline void skb_reserve(struct sk_buff *skb, int len)
2163 {
2164 skb->data += len;
2165 skb->tail += len;
2166 }
2167
2168 /**
2169 * skb_tailroom_reserve - adjust reserved_tailroom
2170 * @skb: buffer to alter
2171 * @mtu: maximum amount of headlen permitted
2172 * @needed_tailroom: minimum amount of reserved_tailroom
2173 *
2174 * Set reserved_tailroom so that headlen can be as large as possible but
2175 * not larger than mtu and tailroom cannot be smaller than
2176 * needed_tailroom.
2177 * The required headroom should already have been reserved before using
2178 * this function.
2179 */
2180 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2181 unsigned int needed_tailroom)
2182 {
2183 SKB_LINEAR_ASSERT(skb);
2184 if (mtu < skb_tailroom(skb) - needed_tailroom)
2185 /* use at most mtu */
2186 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2187 else
2188 /* use up to all available space */
2189 skb->reserved_tailroom = needed_tailroom;
2190 }
2191
2192 #define ENCAP_TYPE_ETHER 0
2193 #define ENCAP_TYPE_IPPROTO 1
2194
2195 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2196 __be16 protocol)
2197 {
2198 skb->inner_protocol = protocol;
2199 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2200 }
2201
2202 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2203 __u8 ipproto)
2204 {
2205 skb->inner_ipproto = ipproto;
2206 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2207 }
2208
2209 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2210 {
2211 skb->inner_mac_header = skb->mac_header;
2212 skb->inner_network_header = skb->network_header;
2213 skb->inner_transport_header = skb->transport_header;
2214 }
2215
2216 static inline void skb_reset_mac_len(struct sk_buff *skb)
2217 {
2218 skb->mac_len = skb->network_header - skb->mac_header;
2219 }
2220
2221 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2222 *skb)
2223 {
2224 return skb->head + skb->inner_transport_header;
2225 }
2226
2227 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2228 {
2229 return skb_inner_transport_header(skb) - skb->data;
2230 }
2231
2232 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2233 {
2234 skb->inner_transport_header = skb->data - skb->head;
2235 }
2236
2237 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2238 const int offset)
2239 {
2240 skb_reset_inner_transport_header(skb);
2241 skb->inner_transport_header += offset;
2242 }
2243
2244 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2245 {
2246 return skb->head + skb->inner_network_header;
2247 }
2248
2249 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2250 {
2251 skb->inner_network_header = skb->data - skb->head;
2252 }
2253
2254 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2255 const int offset)
2256 {
2257 skb_reset_inner_network_header(skb);
2258 skb->inner_network_header += offset;
2259 }
2260
2261 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2262 {
2263 return skb->head + skb->inner_mac_header;
2264 }
2265
2266 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2267 {
2268 skb->inner_mac_header = skb->data - skb->head;
2269 }
2270
2271 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2272 const int offset)
2273 {
2274 skb_reset_inner_mac_header(skb);
2275 skb->inner_mac_header += offset;
2276 }
2277 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2278 {
2279 return skb->transport_header != (typeof(skb->transport_header))~0U;
2280 }
2281
2282 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2283 {
2284 return skb->head + skb->transport_header;
2285 }
2286
2287 static inline void skb_reset_transport_header(struct sk_buff *skb)
2288 {
2289 skb->transport_header = skb->data - skb->head;
2290 }
2291
2292 static inline void skb_set_transport_header(struct sk_buff *skb,
2293 const int offset)
2294 {
2295 skb_reset_transport_header(skb);
2296 skb->transport_header += offset;
2297 }
2298
2299 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2300 {
2301 return skb->head + skb->network_header;
2302 }
2303
2304 static inline void skb_reset_network_header(struct sk_buff *skb)
2305 {
2306 skb->network_header = skb->data - skb->head;
2307 }
2308
2309 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2310 {
2311 skb_reset_network_header(skb);
2312 skb->network_header += offset;
2313 }
2314
2315 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2316 {
2317 return skb->head + skb->mac_header;
2318 }
2319
2320 static inline int skb_mac_offset(const struct sk_buff *skb)
2321 {
2322 return skb_mac_header(skb) - skb->data;
2323 }
2324
2325 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2326 {
2327 return skb->network_header - skb->mac_header;
2328 }
2329
2330 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2331 {
2332 return skb->mac_header != (typeof(skb->mac_header))~0U;
2333 }
2334
2335 static inline void skb_reset_mac_header(struct sk_buff *skb)
2336 {
2337 skb->mac_header = skb->data - skb->head;
2338 }
2339
2340 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2341 {
2342 skb_reset_mac_header(skb);
2343 skb->mac_header += offset;
2344 }
2345
2346 static inline void skb_pop_mac_header(struct sk_buff *skb)
2347 {
2348 skb->mac_header = skb->network_header;
2349 }
2350
2351 static inline void skb_probe_transport_header(struct sk_buff *skb,
2352 const int offset_hint)
2353 {
2354 struct flow_keys keys;
2355
2356 if (skb_transport_header_was_set(skb))
2357 return;
2358 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2359 skb_set_transport_header(skb, keys.control.thoff);
2360 else
2361 skb_set_transport_header(skb, offset_hint);
2362 }
2363
2364 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2365 {
2366 if (skb_mac_header_was_set(skb)) {
2367 const unsigned char *old_mac = skb_mac_header(skb);
2368
2369 skb_set_mac_header(skb, -skb->mac_len);
2370 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2371 }
2372 }
2373
2374 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2375 {
2376 return skb->csum_start - skb_headroom(skb);
2377 }
2378
2379 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2380 {
2381 return skb->head + skb->csum_start;
2382 }
2383
2384 static inline int skb_transport_offset(const struct sk_buff *skb)
2385 {
2386 return skb_transport_header(skb) - skb->data;
2387 }
2388
2389 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2390 {
2391 return skb->transport_header - skb->network_header;
2392 }
2393
2394 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2395 {
2396 return skb->inner_transport_header - skb->inner_network_header;
2397 }
2398
2399 static inline int skb_network_offset(const struct sk_buff *skb)
2400 {
2401 return skb_network_header(skb) - skb->data;
2402 }
2403
2404 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2405 {
2406 return skb_inner_network_header(skb) - skb->data;
2407 }
2408
2409 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2410 {
2411 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2412 }
2413
2414 /*
2415 * CPUs often take a performance hit when accessing unaligned memory
2416 * locations. The actual performance hit varies, it can be small if the
2417 * hardware handles it or large if we have to take an exception and fix it
2418 * in software.
2419 *
2420 * Since an ethernet header is 14 bytes network drivers often end up with
2421 * the IP header at an unaligned offset. The IP header can be aligned by
2422 * shifting the start of the packet by 2 bytes. Drivers should do this
2423 * with:
2424 *
2425 * skb_reserve(skb, NET_IP_ALIGN);
2426 *
2427 * The downside to this alignment of the IP header is that the DMA is now
2428 * unaligned. On some architectures the cost of an unaligned DMA is high
2429 * and this cost outweighs the gains made by aligning the IP header.
2430 *
2431 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2432 * to be overridden.
2433 */
2434 #ifndef NET_IP_ALIGN
2435 #define NET_IP_ALIGN 2
2436 #endif
2437
2438 /*
2439 * The networking layer reserves some headroom in skb data (via
2440 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2441 * the header has to grow. In the default case, if the header has to grow
2442 * 32 bytes or less we avoid the reallocation.
2443 *
2444 * Unfortunately this headroom changes the DMA alignment of the resulting
2445 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2446 * on some architectures. An architecture can override this value,
2447 * perhaps setting it to a cacheline in size (since that will maintain
2448 * cacheline alignment of the DMA). It must be a power of 2.
2449 *
2450 * Various parts of the networking layer expect at least 32 bytes of
2451 * headroom, you should not reduce this.
2452 *
2453 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2454 * to reduce average number of cache lines per packet.
2455 * get_rps_cpus() for example only access one 64 bytes aligned block :
2456 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2457 */
2458 #ifndef NET_SKB_PAD
2459 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2460 #endif
2461
2462 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2463
2464 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2465 {
2466 if (unlikely(skb_is_nonlinear(skb))) {
2467 WARN_ON(1);
2468 return;
2469 }
2470 skb->len = len;
2471 skb_set_tail_pointer(skb, len);
2472 }
2473
2474 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2475 {
2476 __skb_set_length(skb, len);
2477 }
2478
2479 void skb_trim(struct sk_buff *skb, unsigned int len);
2480
2481 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2482 {
2483 if (skb->data_len)
2484 return ___pskb_trim(skb, len);
2485 __skb_trim(skb, len);
2486 return 0;
2487 }
2488
2489 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2490 {
2491 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2492 }
2493
2494 /**
2495 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2496 * @skb: buffer to alter
2497 * @len: new length
2498 *
2499 * This is identical to pskb_trim except that the caller knows that
2500 * the skb is not cloned so we should never get an error due to out-
2501 * of-memory.
2502 */
2503 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2504 {
2505 int err = pskb_trim(skb, len);
2506 BUG_ON(err);
2507 }
2508
2509 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2510 {
2511 unsigned int diff = len - skb->len;
2512
2513 if (skb_tailroom(skb) < diff) {
2514 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2515 GFP_ATOMIC);
2516 if (ret)
2517 return ret;
2518 }
2519 __skb_set_length(skb, len);
2520 return 0;
2521 }
2522
2523 /**
2524 * skb_orphan - orphan a buffer
2525 * @skb: buffer to orphan
2526 *
2527 * If a buffer currently has an owner then we call the owner's
2528 * destructor function and make the @skb unowned. The buffer continues
2529 * to exist but is no longer charged to its former owner.
2530 */
2531 static inline void skb_orphan(struct sk_buff *skb)
2532 {
2533 if (skb->destructor) {
2534 skb->destructor(skb);
2535 skb->destructor = NULL;
2536 skb->sk = NULL;
2537 } else {
2538 BUG_ON(skb->sk);
2539 }
2540 }
2541
2542 /**
2543 * skb_orphan_frags - orphan the frags contained in a buffer
2544 * @skb: buffer to orphan frags from
2545 * @gfp_mask: allocation mask for replacement pages
2546 *
2547 * For each frag in the SKB which needs a destructor (i.e. has an
2548 * owner) create a copy of that frag and release the original
2549 * page by calling the destructor.
2550 */
2551 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2552 {
2553 if (likely(!skb_zcopy(skb)))
2554 return 0;
2555 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2556 return 0;
2557 return skb_copy_ubufs(skb, gfp_mask);
2558 }
2559
2560 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2561 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2562 {
2563 if (likely(!skb_zcopy(skb)))
2564 return 0;
2565 return skb_copy_ubufs(skb, gfp_mask);
2566 }
2567
2568 /**
2569 * __skb_queue_purge - empty a list
2570 * @list: list to empty
2571 *
2572 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2573 * the list and one reference dropped. This function does not take the
2574 * list lock and the caller must hold the relevant locks to use it.
2575 */
2576 void skb_queue_purge(struct sk_buff_head *list);
2577 static inline void __skb_queue_purge(struct sk_buff_head *list)
2578 {
2579 struct sk_buff *skb;
2580 while ((skb = __skb_dequeue(list)) != NULL)
2581 kfree_skb(skb);
2582 }
2583
2584 void skb_rbtree_purge(struct rb_root *root);
2585
2586 void *netdev_alloc_frag(unsigned int fragsz);
2587
2588 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2589 gfp_t gfp_mask);
2590
2591 /**
2592 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2593 * @dev: network device to receive on
2594 * @length: length to allocate
2595 *
2596 * Allocate a new &sk_buff and assign it a usage count of one. The
2597 * buffer has unspecified headroom built in. Users should allocate
2598 * the headroom they think they need without accounting for the
2599 * built in space. The built in space is used for optimisations.
2600 *
2601 * %NULL is returned if there is no free memory. Although this function
2602 * allocates memory it can be called from an interrupt.
2603 */
2604 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2605 unsigned int length)
2606 {
2607 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2608 }
2609
2610 /* legacy helper around __netdev_alloc_skb() */
2611 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2612 gfp_t gfp_mask)
2613 {
2614 return __netdev_alloc_skb(NULL, length, gfp_mask);
2615 }
2616
2617 /* legacy helper around netdev_alloc_skb() */
2618 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2619 {
2620 return netdev_alloc_skb(NULL, length);
2621 }
2622
2623
2624 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2625 unsigned int length, gfp_t gfp)
2626 {
2627 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2628
2629 if (NET_IP_ALIGN && skb)
2630 skb_reserve(skb, NET_IP_ALIGN);
2631 return skb;
2632 }
2633
2634 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2635 unsigned int length)
2636 {
2637 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2638 }
2639
2640 static inline void skb_free_frag(void *addr)
2641 {
2642 page_frag_free(addr);
2643 }
2644
2645 void *napi_alloc_frag(unsigned int fragsz);
2646 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2647 unsigned int length, gfp_t gfp_mask);
2648 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2649 unsigned int length)
2650 {
2651 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2652 }
2653 void napi_consume_skb(struct sk_buff *skb, int budget);
2654
2655 void __kfree_skb_flush(void);
2656 void __kfree_skb_defer(struct sk_buff *skb);
2657
2658 /**
2659 * __dev_alloc_pages - allocate page for network Rx
2660 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2661 * @order: size of the allocation
2662 *
2663 * Allocate a new page.
2664 *
2665 * %NULL is returned if there is no free memory.
2666 */
2667 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2668 unsigned int order)
2669 {
2670 /* This piece of code contains several assumptions.
2671 * 1. This is for device Rx, therefor a cold page is preferred.
2672 * 2. The expectation is the user wants a compound page.
2673 * 3. If requesting a order 0 page it will not be compound
2674 * due to the check to see if order has a value in prep_new_page
2675 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2676 * code in gfp_to_alloc_flags that should be enforcing this.
2677 */
2678 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2679
2680 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2681 }
2682
2683 static inline struct page *dev_alloc_pages(unsigned int order)
2684 {
2685 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2686 }
2687
2688 /**
2689 * __dev_alloc_page - allocate a page for network Rx
2690 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2691 *
2692 * Allocate a new page.
2693 *
2694 * %NULL is returned if there is no free memory.
2695 */
2696 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2697 {
2698 return __dev_alloc_pages(gfp_mask, 0);
2699 }
2700
2701 static inline struct page *dev_alloc_page(void)
2702 {
2703 return dev_alloc_pages(0);
2704 }
2705
2706 /**
2707 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2708 * @page: The page that was allocated from skb_alloc_page
2709 * @skb: The skb that may need pfmemalloc set
2710 */
2711 static inline void skb_propagate_pfmemalloc(struct page *page,
2712 struct sk_buff *skb)
2713 {
2714 if (page_is_pfmemalloc(page))
2715 skb->pfmemalloc = true;
2716 }
2717
2718 /**
2719 * skb_frag_page - retrieve the page referred to by a paged fragment
2720 * @frag: the paged fragment
2721 *
2722 * Returns the &struct page associated with @frag.
2723 */
2724 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2725 {
2726 return frag->page.p;
2727 }
2728
2729 /**
2730 * __skb_frag_ref - take an addition reference on a paged fragment.
2731 * @frag: the paged fragment
2732 *
2733 * Takes an additional reference on the paged fragment @frag.
2734 */
2735 static inline void __skb_frag_ref(skb_frag_t *frag)
2736 {
2737 get_page(skb_frag_page(frag));
2738 }
2739
2740 /**
2741 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2742 * @skb: the buffer
2743 * @f: the fragment offset.
2744 *
2745 * Takes an additional reference on the @f'th paged fragment of @skb.
2746 */
2747 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2748 {
2749 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2750 }
2751
2752 /**
2753 * __skb_frag_unref - release a reference on a paged fragment.
2754 * @frag: the paged fragment
2755 *
2756 * Releases a reference on the paged fragment @frag.
2757 */
2758 static inline void __skb_frag_unref(skb_frag_t *frag)
2759 {
2760 put_page(skb_frag_page(frag));
2761 }
2762
2763 /**
2764 * skb_frag_unref - release a reference on a paged fragment of an skb.
2765 * @skb: the buffer
2766 * @f: the fragment offset
2767 *
2768 * Releases a reference on the @f'th paged fragment of @skb.
2769 */
2770 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2771 {
2772 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2773 }
2774
2775 /**
2776 * skb_frag_address - gets the address of the data contained in a paged fragment
2777 * @frag: the paged fragment buffer
2778 *
2779 * Returns the address of the data within @frag. The page must already
2780 * be mapped.
2781 */
2782 static inline void *skb_frag_address(const skb_frag_t *frag)
2783 {
2784 return page_address(skb_frag_page(frag)) + frag->page_offset;
2785 }
2786
2787 /**
2788 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2789 * @frag: the paged fragment buffer
2790 *
2791 * Returns the address of the data within @frag. Checks that the page
2792 * is mapped and returns %NULL otherwise.
2793 */
2794 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2795 {
2796 void *ptr = page_address(skb_frag_page(frag));
2797 if (unlikely(!ptr))
2798 return NULL;
2799
2800 return ptr + frag->page_offset;
2801 }
2802
2803 /**
2804 * __skb_frag_set_page - sets the page contained in a paged fragment
2805 * @frag: the paged fragment
2806 * @page: the page to set
2807 *
2808 * Sets the fragment @frag to contain @page.
2809 */
2810 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2811 {
2812 frag->page.p = page;
2813 }
2814
2815 /**
2816 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2817 * @skb: the buffer
2818 * @f: the fragment offset
2819 * @page: the page to set
2820 *
2821 * Sets the @f'th fragment of @skb to contain @page.
2822 */
2823 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2824 struct page *page)
2825 {
2826 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2827 }
2828
2829 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2830
2831 /**
2832 * skb_frag_dma_map - maps a paged fragment via the DMA API
2833 * @dev: the device to map the fragment to
2834 * @frag: the paged fragment to map
2835 * @offset: the offset within the fragment (starting at the
2836 * fragment's own offset)
2837 * @size: the number of bytes to map
2838 * @dir: the direction of the mapping (``PCI_DMA_*``)
2839 *
2840 * Maps the page associated with @frag to @device.
2841 */
2842 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2843 const skb_frag_t *frag,
2844 size_t offset, size_t size,
2845 enum dma_data_direction dir)
2846 {
2847 return dma_map_page(dev, skb_frag_page(frag),
2848 frag->page_offset + offset, size, dir);
2849 }
2850
2851 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2852 gfp_t gfp_mask)
2853 {
2854 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2855 }
2856
2857
2858 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2859 gfp_t gfp_mask)
2860 {
2861 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2862 }
2863
2864
2865 /**
2866 * skb_clone_writable - is the header of a clone writable
2867 * @skb: buffer to check
2868 * @len: length up to which to write
2869 *
2870 * Returns true if modifying the header part of the cloned buffer
2871 * does not requires the data to be copied.
2872 */
2873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2874 {
2875 return !skb_header_cloned(skb) &&
2876 skb_headroom(skb) + len <= skb->hdr_len;
2877 }
2878
2879 static inline int skb_try_make_writable(struct sk_buff *skb,
2880 unsigned int write_len)
2881 {
2882 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2883 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2884 }
2885
2886 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2887 int cloned)
2888 {
2889 int delta = 0;
2890
2891 if (headroom > skb_headroom(skb))
2892 delta = headroom - skb_headroom(skb);
2893
2894 if (delta || cloned)
2895 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2896 GFP_ATOMIC);
2897 return 0;
2898 }
2899
2900 /**
2901 * skb_cow - copy header of skb when it is required
2902 * @skb: buffer to cow
2903 * @headroom: needed headroom
2904 *
2905 * If the skb passed lacks sufficient headroom or its data part
2906 * is shared, data is reallocated. If reallocation fails, an error
2907 * is returned and original skb is not changed.
2908 *
2909 * The result is skb with writable area skb->head...skb->tail
2910 * and at least @headroom of space at head.
2911 */
2912 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2913 {
2914 return __skb_cow(skb, headroom, skb_cloned(skb));
2915 }
2916
2917 /**
2918 * skb_cow_head - skb_cow but only making the head writable
2919 * @skb: buffer to cow
2920 * @headroom: needed headroom
2921 *
2922 * This function is identical to skb_cow except that we replace the
2923 * skb_cloned check by skb_header_cloned. It should be used when
2924 * you only need to push on some header and do not need to modify
2925 * the data.
2926 */
2927 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2928 {
2929 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2930 }
2931
2932 /**
2933 * skb_padto - pad an skbuff up to a minimal size
2934 * @skb: buffer to pad
2935 * @len: minimal length
2936 *
2937 * Pads up a buffer to ensure the trailing bytes exist and are
2938 * blanked. If the buffer already contains sufficient data it
2939 * is untouched. Otherwise it is extended. Returns zero on
2940 * success. The skb is freed on error.
2941 */
2942 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2943 {
2944 unsigned int size = skb->len;
2945 if (likely(size >= len))
2946 return 0;
2947 return skb_pad(skb, len - size);
2948 }
2949
2950 /**
2951 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2952 * @skb: buffer to pad
2953 * @len: minimal length
2954 * @free_on_error: free buffer on error
2955 *
2956 * Pads up a buffer to ensure the trailing bytes exist and are
2957 * blanked. If the buffer already contains sufficient data it
2958 * is untouched. Otherwise it is extended. Returns zero on
2959 * success. The skb is freed on error if @free_on_error is true.
2960 */
2961 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2962 bool free_on_error)
2963 {
2964 unsigned int size = skb->len;
2965
2966 if (unlikely(size < len)) {
2967 len -= size;
2968 if (__skb_pad(skb, len, free_on_error))
2969 return -ENOMEM;
2970 __skb_put(skb, len);
2971 }
2972 return 0;
2973 }
2974
2975 /**
2976 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2977 * @skb: buffer to pad
2978 * @len: minimal length
2979 *
2980 * Pads up a buffer to ensure the trailing bytes exist and are
2981 * blanked. If the buffer already contains sufficient data it
2982 * is untouched. Otherwise it is extended. Returns zero on
2983 * success. The skb is freed on error.
2984 */
2985 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2986 {
2987 return __skb_put_padto(skb, len, true);
2988 }
2989
2990 static inline int skb_add_data(struct sk_buff *skb,
2991 struct iov_iter *from, int copy)
2992 {
2993 const int off = skb->len;
2994
2995 if (skb->ip_summed == CHECKSUM_NONE) {
2996 __wsum csum = 0;
2997 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2998 &csum, from)) {
2999 skb->csum = csum_block_add(skb->csum, csum, off);
3000 return 0;
3001 }
3002 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3003 return 0;
3004
3005 __skb_trim(skb, off);
3006 return -EFAULT;
3007 }
3008
3009 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3010 const struct page *page, int off)
3011 {
3012 if (skb_zcopy(skb))
3013 return false;
3014 if (i) {
3015 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3016
3017 return page == skb_frag_page(frag) &&
3018 off == frag->page_offset + skb_frag_size(frag);
3019 }
3020 return false;
3021 }
3022
3023 static inline int __skb_linearize(struct sk_buff *skb)
3024 {
3025 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3026 }
3027
3028 /**
3029 * skb_linearize - convert paged skb to linear one
3030 * @skb: buffer to linarize
3031 *
3032 * If there is no free memory -ENOMEM is returned, otherwise zero
3033 * is returned and the old skb data released.
3034 */
3035 static inline int skb_linearize(struct sk_buff *skb)
3036 {
3037 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3038 }
3039
3040 /**
3041 * skb_has_shared_frag - can any frag be overwritten
3042 * @skb: buffer to test
3043 *
3044 * Return true if the skb has at least one frag that might be modified
3045 * by an external entity (as in vmsplice()/sendfile())
3046 */
3047 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3048 {
3049 return skb_is_nonlinear(skb) &&
3050 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3051 }
3052
3053 /**
3054 * skb_linearize_cow - make sure skb is linear and writable
3055 * @skb: buffer to process
3056 *
3057 * If there is no free memory -ENOMEM is returned, otherwise zero
3058 * is returned and the old skb data released.
3059 */
3060 static inline int skb_linearize_cow(struct sk_buff *skb)
3061 {
3062 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3063 __skb_linearize(skb) : 0;
3064 }
3065
3066 static __always_inline void
3067 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3068 unsigned int off)
3069 {
3070 if (skb->ip_summed == CHECKSUM_COMPLETE)
3071 skb->csum = csum_block_sub(skb->csum,
3072 csum_partial(start, len, 0), off);
3073 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3074 skb_checksum_start_offset(skb) < 0)
3075 skb->ip_summed = CHECKSUM_NONE;
3076 }
3077
3078 /**
3079 * skb_postpull_rcsum - update checksum for received skb after pull
3080 * @skb: buffer to update
3081 * @start: start of data before pull
3082 * @len: length of data pulled
3083 *
3084 * After doing a pull on a received packet, you need to call this to
3085 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3086 * CHECKSUM_NONE so that it can be recomputed from scratch.
3087 */
3088 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3089 const void *start, unsigned int len)
3090 {
3091 __skb_postpull_rcsum(skb, start, len, 0);
3092 }
3093
3094 static __always_inline void
3095 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3096 unsigned int off)
3097 {
3098 if (skb->ip_summed == CHECKSUM_COMPLETE)
3099 skb->csum = csum_block_add(skb->csum,
3100 csum_partial(start, len, 0), off);
3101 }
3102
3103 /**
3104 * skb_postpush_rcsum - update checksum for received skb after push
3105 * @skb: buffer to update
3106 * @start: start of data after push
3107 * @len: length of data pushed
3108 *
3109 * After doing a push on a received packet, you need to call this to
3110 * update the CHECKSUM_COMPLETE checksum.
3111 */
3112 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3113 const void *start, unsigned int len)
3114 {
3115 __skb_postpush_rcsum(skb, start, len, 0);
3116 }
3117
3118 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3119
3120 /**
3121 * skb_push_rcsum - push skb and update receive checksum
3122 * @skb: buffer to update
3123 * @len: length of data pulled
3124 *
3125 * This function performs an skb_push on the packet and updates
3126 * the CHECKSUM_COMPLETE checksum. It should be used on
3127 * receive path processing instead of skb_push unless you know
3128 * that the checksum difference is zero (e.g., a valid IP header)
3129 * or you are setting ip_summed to CHECKSUM_NONE.
3130 */
3131 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3132 {
3133 skb_push(skb, len);
3134 skb_postpush_rcsum(skb, skb->data, len);
3135 return skb->data;
3136 }
3137
3138 /**
3139 * pskb_trim_rcsum - trim received skb and update checksum
3140 * @skb: buffer to trim
3141 * @len: new length
3142 *
3143 * This is exactly the same as pskb_trim except that it ensures the
3144 * checksum of received packets are still valid after the operation.
3145 */
3146
3147 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3148 {
3149 if (likely(len >= skb->len))
3150 return 0;
3151 if (skb->ip_summed == CHECKSUM_COMPLETE)
3152 skb->ip_summed = CHECKSUM_NONE;
3153 return __pskb_trim(skb, len);
3154 }
3155
3156 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3157 {
3158 if (skb->ip_summed == CHECKSUM_COMPLETE)
3159 skb->ip_summed = CHECKSUM_NONE;
3160 __skb_trim(skb, len);
3161 return 0;
3162 }
3163
3164 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3165 {
3166 if (skb->ip_summed == CHECKSUM_COMPLETE)
3167 skb->ip_summed = CHECKSUM_NONE;
3168 return __skb_grow(skb, len);
3169 }
3170
3171 #define skb_queue_walk(queue, skb) \
3172 for (skb = (queue)->next; \
3173 skb != (struct sk_buff *)(queue); \
3174 skb = skb->next)
3175
3176 #define skb_queue_walk_safe(queue, skb, tmp) \
3177 for (skb = (queue)->next, tmp = skb->next; \
3178 skb != (struct sk_buff *)(queue); \
3179 skb = tmp, tmp = skb->next)
3180
3181 #define skb_queue_walk_from(queue, skb) \
3182 for (; skb != (struct sk_buff *)(queue); \
3183 skb = skb->next)
3184
3185 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3186 for (tmp = skb->next; \
3187 skb != (struct sk_buff *)(queue); \
3188 skb = tmp, tmp = skb->next)
3189
3190 #define skb_queue_reverse_walk(queue, skb) \
3191 for (skb = (queue)->prev; \
3192 skb != (struct sk_buff *)(queue); \
3193 skb = skb->prev)
3194
3195 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3196 for (skb = (queue)->prev, tmp = skb->prev; \
3197 skb != (struct sk_buff *)(queue); \
3198 skb = tmp, tmp = skb->prev)
3199
3200 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3201 for (tmp = skb->prev; \
3202 skb != (struct sk_buff *)(queue); \
3203 skb = tmp, tmp = skb->prev)
3204
3205 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3206 {
3207 return skb_shinfo(skb)->frag_list != NULL;
3208 }
3209
3210 static inline void skb_frag_list_init(struct sk_buff *skb)
3211 {
3212 skb_shinfo(skb)->frag_list = NULL;
3213 }
3214
3215 #define skb_walk_frags(skb, iter) \
3216 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3217
3218
3219 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3220 const struct sk_buff *skb);
3221 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3222 struct sk_buff_head *queue,
3223 unsigned int flags,
3224 void (*destructor)(struct sock *sk,
3225 struct sk_buff *skb),
3226 int *peeked, int *off, int *err,
3227 struct sk_buff **last);
3228 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3229 void (*destructor)(struct sock *sk,
3230 struct sk_buff *skb),
3231 int *peeked, int *off, int *err,
3232 struct sk_buff **last);
3233 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3234 void (*destructor)(struct sock *sk,
3235 struct sk_buff *skb),
3236 int *peeked, int *off, int *err);
3237 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3238 int *err);
3239 unsigned int datagram_poll(struct file *file, struct socket *sock,
3240 struct poll_table_struct *wait);
3241 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3242 struct iov_iter *to, int size);
3243 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3244 struct msghdr *msg, int size)
3245 {
3246 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3247 }
3248 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3249 struct msghdr *msg);
3250 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3251 struct iov_iter *from, int len);
3252 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3253 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3254 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3255 static inline void skb_free_datagram_locked(struct sock *sk,
3256 struct sk_buff *skb)
3257 {
3258 __skb_free_datagram_locked(sk, skb, 0);
3259 }
3260 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3261 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3262 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3263 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3264 int len, __wsum csum);
3265 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3266 struct pipe_inode_info *pipe, unsigned int len,
3267 unsigned int flags);
3268 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3269 int len);
3270 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3271 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3272 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3273 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3274 int len, int hlen);
3275 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3276 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3277 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3278 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3279 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3280 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3281 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3282 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3283 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3284 int skb_vlan_pop(struct sk_buff *skb);
3285 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3286 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3287 gfp_t gfp);
3288
3289 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3290 {
3291 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3292 }
3293
3294 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3295 {
3296 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3297 }
3298
3299 struct skb_checksum_ops {
3300 __wsum (*update)(const void *mem, int len, __wsum wsum);
3301 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3302 };
3303
3304 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3305
3306 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3307 __wsum csum, const struct skb_checksum_ops *ops);
3308 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3309 __wsum csum);
3310
3311 static inline void * __must_check
3312 __skb_header_pointer(const struct sk_buff *skb, int offset,
3313 int len, void *data, int hlen, void *buffer)
3314 {
3315 if (hlen - offset >= len)
3316 return data + offset;
3317
3318 if (!skb ||
3319 skb_copy_bits(skb, offset, buffer, len) < 0)
3320 return NULL;
3321
3322 return buffer;
3323 }
3324
3325 static inline void * __must_check
3326 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3327 {
3328 return __skb_header_pointer(skb, offset, len, skb->data,
3329 skb_headlen(skb), buffer);
3330 }
3331
3332 /**
3333 * skb_needs_linearize - check if we need to linearize a given skb
3334 * depending on the given device features.
3335 * @skb: socket buffer to check
3336 * @features: net device features
3337 *
3338 * Returns true if either:
3339 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3340 * 2. skb is fragmented and the device does not support SG.
3341 */
3342 static inline bool skb_needs_linearize(struct sk_buff *skb,
3343 netdev_features_t features)
3344 {
3345 return skb_is_nonlinear(skb) &&
3346 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3347 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3348 }
3349
3350 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3351 void *to,
3352 const unsigned int len)
3353 {
3354 memcpy(to, skb->data, len);
3355 }
3356
3357 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3358 const int offset, void *to,
3359 const unsigned int len)
3360 {
3361 memcpy(to, skb->data + offset, len);
3362 }
3363
3364 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3365 const void *from,
3366 const unsigned int len)
3367 {
3368 memcpy(skb->data, from, len);
3369 }
3370
3371 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3372 const int offset,
3373 const void *from,
3374 const unsigned int len)
3375 {
3376 memcpy(skb->data + offset, from, len);
3377 }
3378
3379 void skb_init(void);
3380
3381 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3382 {
3383 return skb->tstamp;
3384 }
3385
3386 /**
3387 * skb_get_timestamp - get timestamp from a skb
3388 * @skb: skb to get stamp from
3389 * @stamp: pointer to struct timeval to store stamp in
3390 *
3391 * Timestamps are stored in the skb as offsets to a base timestamp.
3392 * This function converts the offset back to a struct timeval and stores
3393 * it in stamp.
3394 */
3395 static inline void skb_get_timestamp(const struct sk_buff *skb,
3396 struct timeval *stamp)
3397 {
3398 *stamp = ktime_to_timeval(skb->tstamp);
3399 }
3400
3401 static inline void skb_get_timestampns(const struct sk_buff *skb,
3402 struct timespec *stamp)
3403 {
3404 *stamp = ktime_to_timespec(skb->tstamp);
3405 }
3406
3407 static inline void __net_timestamp(struct sk_buff *skb)
3408 {
3409 skb->tstamp = ktime_get_real();
3410 }
3411
3412 static inline ktime_t net_timedelta(ktime_t t)
3413 {
3414 return ktime_sub(ktime_get_real(), t);
3415 }
3416
3417 static inline ktime_t net_invalid_timestamp(void)
3418 {
3419 return 0;
3420 }
3421
3422 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3423
3424 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3425
3426 void skb_clone_tx_timestamp(struct sk_buff *skb);
3427 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3428
3429 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3430
3431 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3432 {
3433 }
3434
3435 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3436 {
3437 return false;
3438 }
3439
3440 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3441
3442 /**
3443 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3444 *
3445 * PHY drivers may accept clones of transmitted packets for
3446 * timestamping via their phy_driver.txtstamp method. These drivers
3447 * must call this function to return the skb back to the stack with a
3448 * timestamp.
3449 *
3450 * @skb: clone of the the original outgoing packet
3451 * @hwtstamps: hardware time stamps
3452 *
3453 */
3454 void skb_complete_tx_timestamp(struct sk_buff *skb,
3455 struct skb_shared_hwtstamps *hwtstamps);
3456
3457 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3458 struct skb_shared_hwtstamps *hwtstamps,
3459 struct sock *sk, int tstype);
3460
3461 /**
3462 * skb_tstamp_tx - queue clone of skb with send time stamps
3463 * @orig_skb: the original outgoing packet
3464 * @hwtstamps: hardware time stamps, may be NULL if not available
3465 *
3466 * If the skb has a socket associated, then this function clones the
3467 * skb (thus sharing the actual data and optional structures), stores
3468 * the optional hardware time stamping information (if non NULL) or
3469 * generates a software time stamp (otherwise), then queues the clone
3470 * to the error queue of the socket. Errors are silently ignored.
3471 */
3472 void skb_tstamp_tx(struct sk_buff *orig_skb,
3473 struct skb_shared_hwtstamps *hwtstamps);
3474
3475 /**
3476 * skb_tx_timestamp() - Driver hook for transmit timestamping
3477 *
3478 * Ethernet MAC Drivers should call this function in their hard_xmit()
3479 * function immediately before giving the sk_buff to the MAC hardware.
3480 *
3481 * Specifically, one should make absolutely sure that this function is
3482 * called before TX completion of this packet can trigger. Otherwise
3483 * the packet could potentially already be freed.
3484 *
3485 * @skb: A socket buffer.
3486 */
3487 static inline void skb_tx_timestamp(struct sk_buff *skb)
3488 {
3489 skb_clone_tx_timestamp(skb);
3490 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3491 skb_tstamp_tx(skb, NULL);
3492 }
3493
3494 /**
3495 * skb_complete_wifi_ack - deliver skb with wifi status
3496 *
3497 * @skb: the original outgoing packet
3498 * @acked: ack status
3499 *
3500 */
3501 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3502
3503 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3504 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3505
3506 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3507 {
3508 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3509 skb->csum_valid ||
3510 (skb->ip_summed == CHECKSUM_PARTIAL &&
3511 skb_checksum_start_offset(skb) >= 0));
3512 }
3513
3514 /**
3515 * skb_checksum_complete - Calculate checksum of an entire packet
3516 * @skb: packet to process
3517 *
3518 * This function calculates the checksum over the entire packet plus
3519 * the value of skb->csum. The latter can be used to supply the
3520 * checksum of a pseudo header as used by TCP/UDP. It returns the
3521 * checksum.
3522 *
3523 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3524 * this function can be used to verify that checksum on received
3525 * packets. In that case the function should return zero if the
3526 * checksum is correct. In particular, this function will return zero
3527 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3528 * hardware has already verified the correctness of the checksum.
3529 */
3530 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3531 {
3532 return skb_csum_unnecessary(skb) ?
3533 0 : __skb_checksum_complete(skb);
3534 }
3535
3536 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3537 {
3538 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3539 if (skb->csum_level == 0)
3540 skb->ip_summed = CHECKSUM_NONE;
3541 else
3542 skb->csum_level--;
3543 }
3544 }
3545
3546 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3547 {
3548 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3549 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3550 skb->csum_level++;
3551 } else if (skb->ip_summed == CHECKSUM_NONE) {
3552 skb->ip_summed = CHECKSUM_UNNECESSARY;
3553 skb->csum_level = 0;
3554 }
3555 }
3556
3557 /* Check if we need to perform checksum complete validation.
3558 *
3559 * Returns true if checksum complete is needed, false otherwise
3560 * (either checksum is unnecessary or zero checksum is allowed).
3561 */
3562 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3563 bool zero_okay,
3564 __sum16 check)
3565 {
3566 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3567 skb->csum_valid = 1;
3568 __skb_decr_checksum_unnecessary(skb);
3569 return false;
3570 }
3571
3572 return true;
3573 }
3574
3575 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3576 * in checksum_init.
3577 */
3578 #define CHECKSUM_BREAK 76
3579
3580 /* Unset checksum-complete
3581 *
3582 * Unset checksum complete can be done when packet is being modified
3583 * (uncompressed for instance) and checksum-complete value is
3584 * invalidated.
3585 */
3586 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3587 {
3588 if (skb->ip_summed == CHECKSUM_COMPLETE)
3589 skb->ip_summed = CHECKSUM_NONE;
3590 }
3591
3592 /* Validate (init) checksum based on checksum complete.
3593 *
3594 * Return values:
3595 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3596 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3597 * checksum is stored in skb->csum for use in __skb_checksum_complete
3598 * non-zero: value of invalid checksum
3599 *
3600 */
3601 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3602 bool complete,
3603 __wsum psum)
3604 {
3605 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3606 if (!csum_fold(csum_add(psum, skb->csum))) {
3607 skb->csum_valid = 1;
3608 return 0;
3609 }
3610 }
3611
3612 skb->csum = psum;
3613
3614 if (complete || skb->len <= CHECKSUM_BREAK) {
3615 __sum16 csum;
3616
3617 csum = __skb_checksum_complete(skb);
3618 skb->csum_valid = !csum;
3619 return csum;
3620 }
3621
3622 return 0;
3623 }
3624
3625 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3626 {
3627 return 0;
3628 }
3629
3630 /* Perform checksum validate (init). Note that this is a macro since we only
3631 * want to calculate the pseudo header which is an input function if necessary.
3632 * First we try to validate without any computation (checksum unnecessary) and
3633 * then calculate based on checksum complete calling the function to compute
3634 * pseudo header.
3635 *
3636 * Return values:
3637 * 0: checksum is validated or try to in skb_checksum_complete
3638 * non-zero: value of invalid checksum
3639 */
3640 #define __skb_checksum_validate(skb, proto, complete, \
3641 zero_okay, check, compute_pseudo) \
3642 ({ \
3643 __sum16 __ret = 0; \
3644 skb->csum_valid = 0; \
3645 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3646 __ret = __skb_checksum_validate_complete(skb, \
3647 complete, compute_pseudo(skb, proto)); \
3648 __ret; \
3649 })
3650
3651 #define skb_checksum_init(skb, proto, compute_pseudo) \
3652 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3653
3654 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3655 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3656
3657 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3658 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3659
3660 #define skb_checksum_validate_zero_check(skb, proto, check, \
3661 compute_pseudo) \
3662 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3663
3664 #define skb_checksum_simple_validate(skb) \
3665 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3666
3667 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3668 {
3669 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3670 }
3671
3672 static inline void __skb_checksum_convert(struct sk_buff *skb,
3673 __sum16 check, __wsum pseudo)
3674 {
3675 skb->csum = ~pseudo;
3676 skb->ip_summed = CHECKSUM_COMPLETE;
3677 }
3678
3679 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3680 do { \
3681 if (__skb_checksum_convert_check(skb)) \
3682 __skb_checksum_convert(skb, check, \
3683 compute_pseudo(skb, proto)); \
3684 } while (0)
3685
3686 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3687 u16 start, u16 offset)
3688 {
3689 skb->ip_summed = CHECKSUM_PARTIAL;
3690 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3691 skb->csum_offset = offset - start;
3692 }
3693
3694 /* Update skbuf and packet to reflect the remote checksum offload operation.
3695 * When called, ptr indicates the starting point for skb->csum when
3696 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3697 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3698 */
3699 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3700 int start, int offset, bool nopartial)
3701 {
3702 __wsum delta;
3703
3704 if (!nopartial) {
3705 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3706 return;
3707 }
3708
3709 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3710 __skb_checksum_complete(skb);
3711 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3712 }
3713
3714 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3715
3716 /* Adjust skb->csum since we changed the packet */
3717 skb->csum = csum_add(skb->csum, delta);
3718 }
3719
3720 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3721 {
3722 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3723 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3724 #else
3725 return NULL;
3726 #endif
3727 }
3728
3729 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3730 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3731 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3732 {
3733 if (nfct && atomic_dec_and_test(&nfct->use))
3734 nf_conntrack_destroy(nfct);
3735 }
3736 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3737 {
3738 if (nfct)
3739 atomic_inc(&nfct->use);
3740 }
3741 #endif
3742 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3743 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3744 {
3745 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3746 kfree(nf_bridge);
3747 }
3748 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3749 {
3750 if (nf_bridge)
3751 refcount_inc(&nf_bridge->use);
3752 }
3753 #endif /* CONFIG_BRIDGE_NETFILTER */
3754 static inline void nf_reset(struct sk_buff *skb)
3755 {
3756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3757 nf_conntrack_put(skb_nfct(skb));
3758 skb->_nfct = 0;
3759 #endif
3760 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3761 nf_bridge_put(skb->nf_bridge);
3762 skb->nf_bridge = NULL;
3763 #endif
3764 }
3765
3766 static inline void nf_reset_trace(struct sk_buff *skb)
3767 {
3768 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3769 skb->nf_trace = 0;
3770 #endif
3771 }
3772
3773 /* Note: This doesn't put any conntrack and bridge info in dst. */
3774 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3775 bool copy)
3776 {
3777 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3778 dst->_nfct = src->_nfct;
3779 nf_conntrack_get(skb_nfct(src));
3780 #endif
3781 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3782 dst->nf_bridge = src->nf_bridge;
3783 nf_bridge_get(src->nf_bridge);
3784 #endif
3785 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3786 if (copy)
3787 dst->nf_trace = src->nf_trace;
3788 #endif
3789 }
3790
3791 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3792 {
3793 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3794 nf_conntrack_put(skb_nfct(dst));
3795 #endif
3796 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3797 nf_bridge_put(dst->nf_bridge);
3798 #endif
3799 __nf_copy(dst, src, true);
3800 }
3801
3802 #ifdef CONFIG_NETWORK_SECMARK
3803 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3804 {
3805 to->secmark = from->secmark;
3806 }
3807
3808 static inline void skb_init_secmark(struct sk_buff *skb)
3809 {
3810 skb->secmark = 0;
3811 }
3812 #else
3813 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3814 { }
3815
3816 static inline void skb_init_secmark(struct sk_buff *skb)
3817 { }
3818 #endif
3819
3820 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3821 {
3822 return !skb->destructor &&
3823 #if IS_ENABLED(CONFIG_XFRM)
3824 !skb->sp &&
3825 #endif
3826 !skb_nfct(skb) &&
3827 !skb->_skb_refdst &&
3828 !skb_has_frag_list(skb);
3829 }
3830
3831 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3832 {
3833 skb->queue_mapping = queue_mapping;
3834 }
3835
3836 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3837 {
3838 return skb->queue_mapping;
3839 }
3840
3841 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3842 {
3843 to->queue_mapping = from->queue_mapping;
3844 }
3845
3846 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3847 {
3848 skb->queue_mapping = rx_queue + 1;
3849 }
3850
3851 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3852 {
3853 return skb->queue_mapping - 1;
3854 }
3855
3856 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3857 {
3858 return skb->queue_mapping != 0;
3859 }
3860
3861 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3862 {
3863 skb->dst_pending_confirm = val;
3864 }
3865
3866 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3867 {
3868 return skb->dst_pending_confirm != 0;
3869 }
3870
3871 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3872 {
3873 #ifdef CONFIG_XFRM
3874 return skb->sp;
3875 #else
3876 return NULL;
3877 #endif
3878 }
3879
3880 /* Keeps track of mac header offset relative to skb->head.
3881 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3882 * For non-tunnel skb it points to skb_mac_header() and for
3883 * tunnel skb it points to outer mac header.
3884 * Keeps track of level of encapsulation of network headers.
3885 */
3886 struct skb_gso_cb {
3887 union {
3888 int mac_offset;
3889 int data_offset;
3890 };
3891 int encap_level;
3892 __wsum csum;
3893 __u16 csum_start;
3894 };
3895 #define SKB_SGO_CB_OFFSET 32
3896 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3897
3898 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3899 {
3900 return (skb_mac_header(inner_skb) - inner_skb->head) -
3901 SKB_GSO_CB(inner_skb)->mac_offset;
3902 }
3903
3904 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3905 {
3906 int new_headroom, headroom;
3907 int ret;
3908
3909 headroom = skb_headroom(skb);
3910 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3911 if (ret)
3912 return ret;
3913
3914 new_headroom = skb_headroom(skb);
3915 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3916 return 0;
3917 }
3918
3919 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3920 {
3921 /* Do not update partial checksums if remote checksum is enabled. */
3922 if (skb->remcsum_offload)
3923 return;
3924
3925 SKB_GSO_CB(skb)->csum = res;
3926 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3927 }
3928
3929 /* Compute the checksum for a gso segment. First compute the checksum value
3930 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3931 * then add in skb->csum (checksum from csum_start to end of packet).
3932 * skb->csum and csum_start are then updated to reflect the checksum of the
3933 * resultant packet starting from the transport header-- the resultant checksum
3934 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3935 * header.
3936 */
3937 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3938 {
3939 unsigned char *csum_start = skb_transport_header(skb);
3940 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3941 __wsum partial = SKB_GSO_CB(skb)->csum;
3942
3943 SKB_GSO_CB(skb)->csum = res;
3944 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3945
3946 return csum_fold(csum_partial(csum_start, plen, partial));
3947 }
3948
3949 static inline bool skb_is_gso(const struct sk_buff *skb)
3950 {
3951 return skb_shinfo(skb)->gso_size;
3952 }
3953
3954 /* Note: Should be called only if skb_is_gso(skb) is true */
3955 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3956 {
3957 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3958 }
3959
3960 static inline void skb_gso_reset(struct sk_buff *skb)
3961 {
3962 skb_shinfo(skb)->gso_size = 0;
3963 skb_shinfo(skb)->gso_segs = 0;
3964 skb_shinfo(skb)->gso_type = 0;
3965 }
3966
3967 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3968
3969 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3970 {
3971 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3972 * wanted then gso_type will be set. */
3973 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3974
3975 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3976 unlikely(shinfo->gso_type == 0)) {
3977 __skb_warn_lro_forwarding(skb);
3978 return true;
3979 }
3980 return false;
3981 }
3982
3983 static inline void skb_forward_csum(struct sk_buff *skb)
3984 {
3985 /* Unfortunately we don't support this one. Any brave souls? */
3986 if (skb->ip_summed == CHECKSUM_COMPLETE)
3987 skb->ip_summed = CHECKSUM_NONE;
3988 }
3989
3990 /**
3991 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3992 * @skb: skb to check
3993 *
3994 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3995 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3996 * use this helper, to document places where we make this assertion.
3997 */
3998 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3999 {
4000 #ifdef DEBUG
4001 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4002 #endif
4003 }
4004
4005 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4006
4007 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4008 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4009 unsigned int transport_len,
4010 __sum16(*skb_chkf)(struct sk_buff *skb));
4011
4012 /**
4013 * skb_head_is_locked - Determine if the skb->head is locked down
4014 * @skb: skb to check
4015 *
4016 * The head on skbs build around a head frag can be removed if they are
4017 * not cloned. This function returns true if the skb head is locked down
4018 * due to either being allocated via kmalloc, or by being a clone with
4019 * multiple references to the head.
4020 */
4021 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4022 {
4023 return !skb->head_frag || skb_cloned(skb);
4024 }
4025
4026 /**
4027 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4028 *
4029 * @skb: GSO skb
4030 *
4031 * skb_gso_network_seglen is used to determine the real size of the
4032 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4033 *
4034 * The MAC/L2 header is not accounted for.
4035 */
4036 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4037 {
4038 unsigned int hdr_len = skb_transport_header(skb) -
4039 skb_network_header(skb);
4040 return hdr_len + skb_gso_transport_seglen(skb);
4041 }
4042
4043 /* Local Checksum Offload.
4044 * Compute outer checksum based on the assumption that the
4045 * inner checksum will be offloaded later.
4046 * See Documentation/networking/checksum-offloads.txt for
4047 * explanation of how this works.
4048 * Fill in outer checksum adjustment (e.g. with sum of outer
4049 * pseudo-header) before calling.
4050 * Also ensure that inner checksum is in linear data area.
4051 */
4052 static inline __wsum lco_csum(struct sk_buff *skb)
4053 {
4054 unsigned char *csum_start = skb_checksum_start(skb);
4055 unsigned char *l4_hdr = skb_transport_header(skb);
4056 __wsum partial;
4057
4058 /* Start with complement of inner checksum adjustment */
4059 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4060 skb->csum_offset));
4061
4062 /* Add in checksum of our headers (incl. outer checksum
4063 * adjustment filled in by caller) and return result.
4064 */
4065 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4066 }
4067
4068 #endif /* __KERNEL__ */
4069 #endif /* _LINUX_SKBUFF_H */