Merge 4.14.42 into android-4.14
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
114 */
115 ret = wake_up_state(wq->private, mode);
116 if (ret) {
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
127 */
128 list_del_init(&wq->entry);
129 }
130 out:
131 return ret;
132 }
133
134 /**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
138 */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143 }
144
145 /**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 mmdrop(ctx->mm);
165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 }
167 }
168
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177 }
178
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
181 unsigned long reason,
182 unsigned int features)
183 {
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
188 if (flags & FAULT_FLAG_WRITE)
189 /*
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
195 */
196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 if (reason & VM_UFFD_WP)
198 /*
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
204 */
205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 if (features & UFFD_FEATURE_THREAD_ID)
207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 if (!pte)
230 goto out;
231
232 ret = false;
233
234 /*
235 * Lockless access: we're in a wait_event so it's ok if it
236 * changes under us.
237 */
238 if (huge_pte_none(*pte))
239 ret = true;
240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 ret = true;
242 out:
243 return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 struct vm_area_struct *vma,
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251 {
252 return false; /* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255
256 /*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267 {
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd, _pmd;
273 pte_t *pte;
274 bool ret = true;
275
276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 pgd = pgd_offset(mm, address);
279 if (!pgd_present(*pgd))
280 goto out;
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 goto out;
284 pud = pud_offset(p4d, address);
285 if (!pud_present(*pud))
286 goto out;
287 pmd = pmd_offset(pud, address);
288 /*
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
292 *
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
295 */
296 _pmd = READ_ONCE(*pmd);
297 if (!pmd_present(_pmd))
298 goto out;
299
300 ret = false;
301 if (pmd_trans_huge(_pmd))
302 goto out;
303
304 /*
305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 * and use the standard pte_offset_map() instead of parsing _pmd.
307 */
308 pte = pte_offset_map(pmd, address);
309 /*
310 * Lockless access: we're in a wait_event so it's ok if it
311 * changes under us.
312 */
313 if (pte_none(*pte))
314 ret = true;
315 pte_unmap(pte);
316
317 out:
318 return ret;
319 }
320
321 /*
322 * The locking rules involved in returning VM_FAULT_RETRY depending on
323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325 * recommendation in __lock_page_or_retry is not an understatement.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329 * not set.
330 *
331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332 * set, VM_FAULT_RETRY can still be returned if and only if there are
333 * fatal_signal_pending()s, and the mmap_sem must be released before
334 * returning it.
335 */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 struct mm_struct *mm = vmf->vma->vm_mm;
339 struct userfaultfd_ctx *ctx;
340 struct userfaultfd_wait_queue uwq;
341 int ret;
342 bool must_wait, return_to_userland;
343 long blocking_state;
344
345 ret = VM_FAULT_SIGBUS;
346
347 /*
348 * We don't do userfault handling for the final child pid update.
349 *
350 * We also don't do userfault handling during
351 * coredumping. hugetlbfs has the special
352 * follow_hugetlb_page() to skip missing pages in the
353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 * the no_page_table() helper in follow_page_mask(), but the
355 * shmem_vm_ops->fault method is invoked even during
356 * coredumping without mmap_sem and it ends up here.
357 */
358 if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 goto out;
360
361 /*
362 * Coredumping runs without mmap_sem so we can only check that
363 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 */
365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366
367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 if (!ctx)
369 goto out;
370
371 BUG_ON(ctx->mm != mm);
372
373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375
376 if (ctx->features & UFFD_FEATURE_SIGBUS)
377 goto out;
378
379 /*
380 * If it's already released don't get it. This avoids to loop
381 * in __get_user_pages if userfaultfd_release waits on the
382 * caller of handle_userfault to release the mmap_sem.
383 */
384 if (unlikely(ACCESS_ONCE(ctx->released))) {
385 /*
386 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 * cooperative manager can close the uffd after the
388 * last UFFDIO_COPY, without risking to trigger an
389 * involuntary SIGBUS if the process was starting the
390 * userfaultfd while the userfaultfd was still armed
391 * (but after the last UFFDIO_COPY). If the uffd
392 * wasn't already closed when the userfault reached
393 * this point, that would normally be solved by
394 * userfaultfd_must_wait returning 'false'.
395 *
396 * If we were to return VM_FAULT_SIGBUS here, the non
397 * cooperative manager would be instead forced to
398 * always call UFFDIO_UNREGISTER before it can safely
399 * close the uffd.
400 */
401 ret = VM_FAULT_NOPAGE;
402 goto out;
403 }
404
405 /*
406 * Check that we can return VM_FAULT_RETRY.
407 *
408 * NOTE: it should become possible to return VM_FAULT_RETRY
409 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 * -EBUSY failures, if the userfaultfd is to be extended for
411 * VM_UFFD_WP tracking and we intend to arm the userfault
412 * without first stopping userland access to the memory. For
413 * VM_UFFD_MISSING userfaults this is enough for now.
414 */
415 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 /*
417 * Validate the invariant that nowait must allow retry
418 * to be sure not to return SIGBUS erroneously on
419 * nowait invocations.
420 */
421 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 #ifdef CONFIG_DEBUG_VM
423 if (printk_ratelimit()) {
424 printk(KERN_WARNING
425 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
426 vmf->flags);
427 dump_stack();
428 }
429 #endif
430 goto out;
431 }
432
433 /*
434 * Handle nowait, not much to do other than tell it to retry
435 * and wait.
436 */
437 ret = VM_FAULT_RETRY;
438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439 goto out;
440
441 /* take the reference before dropping the mmap_sem */
442 userfaultfd_ctx_get(ctx);
443
444 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
445 uwq.wq.private = current;
446 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
447 ctx->features);
448 uwq.ctx = ctx;
449 uwq.waken = false;
450
451 return_to_userland =
452 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
455 TASK_KILLABLE;
456
457 spin_lock(&ctx->fault_pending_wqh.lock);
458 /*
459 * After the __add_wait_queue the uwq is visible to userland
460 * through poll/read().
461 */
462 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
463 /*
464 * The smp_mb() after __set_current_state prevents the reads
465 * following the spin_unlock to happen before the list_add in
466 * __add_wait_queue.
467 */
468 set_current_state(blocking_state);
469 spin_unlock(&ctx->fault_pending_wqh.lock);
470
471 if (!is_vm_hugetlb_page(vmf->vma))
472 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
473 reason);
474 else
475 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
476 vmf->address,
477 vmf->flags, reason);
478 up_read(&mm->mmap_sem);
479
480 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
481 (return_to_userland ? !signal_pending(current) :
482 !fatal_signal_pending(current)))) {
483 wake_up_poll(&ctx->fd_wqh, POLLIN);
484 schedule();
485 ret |= VM_FAULT_MAJOR;
486
487 /*
488 * False wakeups can orginate even from rwsem before
489 * up_read() however userfaults will wait either for a
490 * targeted wakeup on the specific uwq waitqueue from
491 * wake_userfault() or for signals or for uffd
492 * release.
493 */
494 while (!READ_ONCE(uwq.waken)) {
495 /*
496 * This needs the full smp_store_mb()
497 * guarantee as the state write must be
498 * visible to other CPUs before reading
499 * uwq.waken from other CPUs.
500 */
501 set_current_state(blocking_state);
502 if (READ_ONCE(uwq.waken) ||
503 READ_ONCE(ctx->released) ||
504 (return_to_userland ? signal_pending(current) :
505 fatal_signal_pending(current)))
506 break;
507 schedule();
508 }
509 }
510
511 __set_current_state(TASK_RUNNING);
512
513 if (return_to_userland) {
514 if (signal_pending(current) &&
515 !fatal_signal_pending(current)) {
516 /*
517 * If we got a SIGSTOP or SIGCONT and this is
518 * a normal userland page fault, just let
519 * userland return so the signal will be
520 * handled and gdb debugging works. The page
521 * fault code immediately after we return from
522 * this function is going to release the
523 * mmap_sem and it's not depending on it
524 * (unlike gup would if we were not to return
525 * VM_FAULT_RETRY).
526 *
527 * If a fatal signal is pending we still take
528 * the streamlined VM_FAULT_RETRY failure path
529 * and there's no need to retake the mmap_sem
530 * in such case.
531 */
532 down_read(&mm->mmap_sem);
533 ret = VM_FAULT_NOPAGE;
534 }
535 }
536
537 /*
538 * Here we race with the list_del; list_add in
539 * userfaultfd_ctx_read(), however because we don't ever run
540 * list_del_init() to refile across the two lists, the prev
541 * and next pointers will never point to self. list_add also
542 * would never let any of the two pointers to point to
543 * self. So list_empty_careful won't risk to see both pointers
544 * pointing to self at any time during the list refile. The
545 * only case where list_del_init() is called is the full
546 * removal in the wake function and there we don't re-list_add
547 * and it's fine not to block on the spinlock. The uwq on this
548 * kernel stack can be released after the list_del_init.
549 */
550 if (!list_empty_careful(&uwq.wq.entry)) {
551 spin_lock(&ctx->fault_pending_wqh.lock);
552 /*
553 * No need of list_del_init(), the uwq on the stack
554 * will be freed shortly anyway.
555 */
556 list_del(&uwq.wq.entry);
557 spin_unlock(&ctx->fault_pending_wqh.lock);
558 }
559
560 /*
561 * ctx may go away after this if the userfault pseudo fd is
562 * already released.
563 */
564 userfaultfd_ctx_put(ctx);
565
566 out:
567 return ret;
568 }
569
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
571 struct userfaultfd_wait_queue *ewq)
572 {
573 struct userfaultfd_ctx *release_new_ctx;
574
575 if (WARN_ON_ONCE(current->flags & PF_EXITING))
576 goto out;
577
578 ewq->ctx = ctx;
579 init_waitqueue_entry(&ewq->wq, current);
580 release_new_ctx = NULL;
581
582 spin_lock(&ctx->event_wqh.lock);
583 /*
584 * After the __add_wait_queue the uwq is visible to userland
585 * through poll/read().
586 */
587 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
588 for (;;) {
589 set_current_state(TASK_KILLABLE);
590 if (ewq->msg.event == 0)
591 break;
592 if (ACCESS_ONCE(ctx->released) ||
593 fatal_signal_pending(current)) {
594 /*
595 * &ewq->wq may be queued in fork_event, but
596 * __remove_wait_queue ignores the head
597 * parameter. It would be a problem if it
598 * didn't.
599 */
600 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
601 if (ewq->msg.event == UFFD_EVENT_FORK) {
602 struct userfaultfd_ctx *new;
603
604 new = (struct userfaultfd_ctx *)
605 (unsigned long)
606 ewq->msg.arg.reserved.reserved1;
607 release_new_ctx = new;
608 }
609 break;
610 }
611
612 spin_unlock(&ctx->event_wqh.lock);
613
614 wake_up_poll(&ctx->fd_wqh, POLLIN);
615 schedule();
616
617 spin_lock(&ctx->event_wqh.lock);
618 }
619 __set_current_state(TASK_RUNNING);
620 spin_unlock(&ctx->event_wqh.lock);
621
622 if (release_new_ctx) {
623 struct vm_area_struct *vma;
624 struct mm_struct *mm = release_new_ctx->mm;
625
626 /* the various vma->vm_userfaultfd_ctx still points to it */
627 down_write(&mm->mmap_sem);
628 for (vma = mm->mmap; vma; vma = vma->vm_next)
629 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
630 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
631 up_write(&mm->mmap_sem);
632
633 userfaultfd_ctx_put(release_new_ctx);
634 }
635
636 /*
637 * ctx may go away after this if the userfault pseudo fd is
638 * already released.
639 */
640 out:
641 userfaultfd_ctx_put(ctx);
642 }
643
644 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
645 struct userfaultfd_wait_queue *ewq)
646 {
647 ewq->msg.event = 0;
648 wake_up_locked(&ctx->event_wqh);
649 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
650 }
651
652 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
653 {
654 struct userfaultfd_ctx *ctx = NULL, *octx;
655 struct userfaultfd_fork_ctx *fctx;
656
657 octx = vma->vm_userfaultfd_ctx.ctx;
658 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
659 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
660 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
661 return 0;
662 }
663
664 list_for_each_entry(fctx, fcs, list)
665 if (fctx->orig == octx) {
666 ctx = fctx->new;
667 break;
668 }
669
670 if (!ctx) {
671 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
672 if (!fctx)
673 return -ENOMEM;
674
675 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
676 if (!ctx) {
677 kfree(fctx);
678 return -ENOMEM;
679 }
680
681 atomic_set(&ctx->refcount, 1);
682 ctx->flags = octx->flags;
683 ctx->state = UFFD_STATE_RUNNING;
684 ctx->features = octx->features;
685 ctx->released = false;
686 ctx->mm = vma->vm_mm;
687 atomic_inc(&ctx->mm->mm_count);
688
689 userfaultfd_ctx_get(octx);
690 fctx->orig = octx;
691 fctx->new = ctx;
692 list_add_tail(&fctx->list, fcs);
693 }
694
695 vma->vm_userfaultfd_ctx.ctx = ctx;
696 return 0;
697 }
698
699 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
700 {
701 struct userfaultfd_ctx *ctx = fctx->orig;
702 struct userfaultfd_wait_queue ewq;
703
704 msg_init(&ewq.msg);
705
706 ewq.msg.event = UFFD_EVENT_FORK;
707 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
708
709 userfaultfd_event_wait_completion(ctx, &ewq);
710 }
711
712 void dup_userfaultfd_complete(struct list_head *fcs)
713 {
714 struct userfaultfd_fork_ctx *fctx, *n;
715
716 list_for_each_entry_safe(fctx, n, fcs, list) {
717 dup_fctx(fctx);
718 list_del(&fctx->list);
719 kfree(fctx);
720 }
721 }
722
723 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
724 struct vm_userfaultfd_ctx *vm_ctx)
725 {
726 struct userfaultfd_ctx *ctx;
727
728 ctx = vma->vm_userfaultfd_ctx.ctx;
729 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
730 vm_ctx->ctx = ctx;
731 userfaultfd_ctx_get(ctx);
732 }
733 }
734
735 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
736 unsigned long from, unsigned long to,
737 unsigned long len)
738 {
739 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
740 struct userfaultfd_wait_queue ewq;
741
742 if (!ctx)
743 return;
744
745 if (to & ~PAGE_MASK) {
746 userfaultfd_ctx_put(ctx);
747 return;
748 }
749
750 msg_init(&ewq.msg);
751
752 ewq.msg.event = UFFD_EVENT_REMAP;
753 ewq.msg.arg.remap.from = from;
754 ewq.msg.arg.remap.to = to;
755 ewq.msg.arg.remap.len = len;
756
757 userfaultfd_event_wait_completion(ctx, &ewq);
758 }
759
760 bool userfaultfd_remove(struct vm_area_struct *vma,
761 unsigned long start, unsigned long end)
762 {
763 struct mm_struct *mm = vma->vm_mm;
764 struct userfaultfd_ctx *ctx;
765 struct userfaultfd_wait_queue ewq;
766
767 ctx = vma->vm_userfaultfd_ctx.ctx;
768 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
769 return true;
770
771 userfaultfd_ctx_get(ctx);
772 up_read(&mm->mmap_sem);
773
774 msg_init(&ewq.msg);
775
776 ewq.msg.event = UFFD_EVENT_REMOVE;
777 ewq.msg.arg.remove.start = start;
778 ewq.msg.arg.remove.end = end;
779
780 userfaultfd_event_wait_completion(ctx, &ewq);
781
782 return false;
783 }
784
785 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
786 unsigned long start, unsigned long end)
787 {
788 struct userfaultfd_unmap_ctx *unmap_ctx;
789
790 list_for_each_entry(unmap_ctx, unmaps, list)
791 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
792 unmap_ctx->end == end)
793 return true;
794
795 return false;
796 }
797
798 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
799 unsigned long start, unsigned long end,
800 struct list_head *unmaps)
801 {
802 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
803 struct userfaultfd_unmap_ctx *unmap_ctx;
804 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
805
806 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
807 has_unmap_ctx(ctx, unmaps, start, end))
808 continue;
809
810 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
811 if (!unmap_ctx)
812 return -ENOMEM;
813
814 userfaultfd_ctx_get(ctx);
815 unmap_ctx->ctx = ctx;
816 unmap_ctx->start = start;
817 unmap_ctx->end = end;
818 list_add_tail(&unmap_ctx->list, unmaps);
819 }
820
821 return 0;
822 }
823
824 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825 {
826 struct userfaultfd_unmap_ctx *ctx, *n;
827 struct userfaultfd_wait_queue ewq;
828
829 list_for_each_entry_safe(ctx, n, uf, list) {
830 msg_init(&ewq.msg);
831
832 ewq.msg.event = UFFD_EVENT_UNMAP;
833 ewq.msg.arg.remove.start = ctx->start;
834 ewq.msg.arg.remove.end = ctx->end;
835
836 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837
838 list_del(&ctx->list);
839 kfree(ctx);
840 }
841 }
842
843 static int userfaultfd_release(struct inode *inode, struct file *file)
844 {
845 struct userfaultfd_ctx *ctx = file->private_data;
846 struct mm_struct *mm = ctx->mm;
847 struct vm_area_struct *vma, *prev;
848 /* len == 0 means wake all */
849 struct userfaultfd_wake_range range = { .len = 0, };
850 unsigned long new_flags;
851
852 ACCESS_ONCE(ctx->released) = true;
853
854 if (!mmget_not_zero(mm))
855 goto wakeup;
856
857 /*
858 * Flush page faults out of all CPUs. NOTE: all page faults
859 * must be retried without returning VM_FAULT_SIGBUS if
860 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
861 * changes while handle_userfault released the mmap_sem. So
862 * it's critical that released is set to true (above), before
863 * taking the mmap_sem for writing.
864 */
865 down_write(&mm->mmap_sem);
866 prev = NULL;
867 for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 cond_resched();
869 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
870 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
871 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
872 prev = vma;
873 continue;
874 }
875 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
876 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
877 new_flags, vma->anon_vma,
878 vma->vm_file, vma->vm_pgoff,
879 vma_policy(vma),
880 NULL_VM_UFFD_CTX,
881 vma_get_anon_name(vma));
882 if (prev)
883 vma = prev;
884 else
885 prev = vma;
886 vma->vm_flags = new_flags;
887 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
888 }
889 up_write(&mm->mmap_sem);
890 mmput(mm);
891 wakeup:
892 /*
893 * After no new page faults can wait on this fault_*wqh, flush
894 * the last page faults that may have been already waiting on
895 * the fault_*wqh.
896 */
897 spin_lock(&ctx->fault_pending_wqh.lock);
898 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
899 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
900 spin_unlock(&ctx->fault_pending_wqh.lock);
901
902 /* Flush pending events that may still wait on event_wqh */
903 wake_up_all(&ctx->event_wqh);
904
905 wake_up_poll(&ctx->fd_wqh, POLLHUP);
906 userfaultfd_ctx_put(ctx);
907 return 0;
908 }
909
910 /* fault_pending_wqh.lock must be hold by the caller */
911 static inline struct userfaultfd_wait_queue *find_userfault_in(
912 wait_queue_head_t *wqh)
913 {
914 wait_queue_entry_t *wq;
915 struct userfaultfd_wait_queue *uwq;
916
917 VM_BUG_ON(!spin_is_locked(&wqh->lock));
918
919 uwq = NULL;
920 if (!waitqueue_active(wqh))
921 goto out;
922 /* walk in reverse to provide FIFO behavior to read userfaults */
923 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
924 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
925 out:
926 return uwq;
927 }
928
929 static inline struct userfaultfd_wait_queue *find_userfault(
930 struct userfaultfd_ctx *ctx)
931 {
932 return find_userfault_in(&ctx->fault_pending_wqh);
933 }
934
935 static inline struct userfaultfd_wait_queue *find_userfault_evt(
936 struct userfaultfd_ctx *ctx)
937 {
938 return find_userfault_in(&ctx->event_wqh);
939 }
940
941 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
942 {
943 struct userfaultfd_ctx *ctx = file->private_data;
944 unsigned int ret;
945
946 poll_wait(file, &ctx->fd_wqh, wait);
947
948 switch (ctx->state) {
949 case UFFD_STATE_WAIT_API:
950 return POLLERR;
951 case UFFD_STATE_RUNNING:
952 /*
953 * poll() never guarantees that read won't block.
954 * userfaults can be waken before they're read().
955 */
956 if (unlikely(!(file->f_flags & O_NONBLOCK)))
957 return POLLERR;
958 /*
959 * lockless access to see if there are pending faults
960 * __pollwait last action is the add_wait_queue but
961 * the spin_unlock would allow the waitqueue_active to
962 * pass above the actual list_add inside
963 * add_wait_queue critical section. So use a full
964 * memory barrier to serialize the list_add write of
965 * add_wait_queue() with the waitqueue_active read
966 * below.
967 */
968 ret = 0;
969 smp_mb();
970 if (waitqueue_active(&ctx->fault_pending_wqh))
971 ret = POLLIN;
972 else if (waitqueue_active(&ctx->event_wqh))
973 ret = POLLIN;
974
975 return ret;
976 default:
977 WARN_ON_ONCE(1);
978 return POLLERR;
979 }
980 }
981
982 static const struct file_operations userfaultfd_fops;
983
984 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
985 struct userfaultfd_ctx *new,
986 struct uffd_msg *msg)
987 {
988 int fd;
989 struct file *file;
990 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
991
992 fd = get_unused_fd_flags(flags);
993 if (fd < 0)
994 return fd;
995
996 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
997 O_RDWR | flags);
998 if (IS_ERR(file)) {
999 put_unused_fd(fd);
1000 return PTR_ERR(file);
1001 }
1002
1003 fd_install(fd, file);
1004 msg->arg.reserved.reserved1 = 0;
1005 msg->arg.fork.ufd = fd;
1006
1007 return 0;
1008 }
1009
1010 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1011 struct uffd_msg *msg)
1012 {
1013 ssize_t ret;
1014 DECLARE_WAITQUEUE(wait, current);
1015 struct userfaultfd_wait_queue *uwq;
1016 /*
1017 * Handling fork event requires sleeping operations, so
1018 * we drop the event_wqh lock, then do these ops, then
1019 * lock it back and wake up the waiter. While the lock is
1020 * dropped the ewq may go away so we keep track of it
1021 * carefully.
1022 */
1023 LIST_HEAD(fork_event);
1024 struct userfaultfd_ctx *fork_nctx = NULL;
1025
1026 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1027 spin_lock(&ctx->fd_wqh.lock);
1028 __add_wait_queue(&ctx->fd_wqh, &wait);
1029 for (;;) {
1030 set_current_state(TASK_INTERRUPTIBLE);
1031 spin_lock(&ctx->fault_pending_wqh.lock);
1032 uwq = find_userfault(ctx);
1033 if (uwq) {
1034 /*
1035 * Use a seqcount to repeat the lockless check
1036 * in wake_userfault() to avoid missing
1037 * wakeups because during the refile both
1038 * waitqueue could become empty if this is the
1039 * only userfault.
1040 */
1041 write_seqcount_begin(&ctx->refile_seq);
1042
1043 /*
1044 * The fault_pending_wqh.lock prevents the uwq
1045 * to disappear from under us.
1046 *
1047 * Refile this userfault from
1048 * fault_pending_wqh to fault_wqh, it's not
1049 * pending anymore after we read it.
1050 *
1051 * Use list_del() by hand (as
1052 * userfaultfd_wake_function also uses
1053 * list_del_init() by hand) to be sure nobody
1054 * changes __remove_wait_queue() to use
1055 * list_del_init() in turn breaking the
1056 * !list_empty_careful() check in
1057 * handle_userfault(). The uwq->wq.head list
1058 * must never be empty at any time during the
1059 * refile, or the waitqueue could disappear
1060 * from under us. The "wait_queue_head_t"
1061 * parameter of __remove_wait_queue() is unused
1062 * anyway.
1063 */
1064 list_del(&uwq->wq.entry);
1065 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1066
1067 write_seqcount_end(&ctx->refile_seq);
1068
1069 /* careful to always initialize msg if ret == 0 */
1070 *msg = uwq->msg;
1071 spin_unlock(&ctx->fault_pending_wqh.lock);
1072 ret = 0;
1073 break;
1074 }
1075 spin_unlock(&ctx->fault_pending_wqh.lock);
1076
1077 spin_lock(&ctx->event_wqh.lock);
1078 uwq = find_userfault_evt(ctx);
1079 if (uwq) {
1080 *msg = uwq->msg;
1081
1082 if (uwq->msg.event == UFFD_EVENT_FORK) {
1083 fork_nctx = (struct userfaultfd_ctx *)
1084 (unsigned long)
1085 uwq->msg.arg.reserved.reserved1;
1086 list_move(&uwq->wq.entry, &fork_event);
1087 /*
1088 * fork_nctx can be freed as soon as
1089 * we drop the lock, unless we take a
1090 * reference on it.
1091 */
1092 userfaultfd_ctx_get(fork_nctx);
1093 spin_unlock(&ctx->event_wqh.lock);
1094 ret = 0;
1095 break;
1096 }
1097
1098 userfaultfd_event_complete(ctx, uwq);
1099 spin_unlock(&ctx->event_wqh.lock);
1100 ret = 0;
1101 break;
1102 }
1103 spin_unlock(&ctx->event_wqh.lock);
1104
1105 if (signal_pending(current)) {
1106 ret = -ERESTARTSYS;
1107 break;
1108 }
1109 if (no_wait) {
1110 ret = -EAGAIN;
1111 break;
1112 }
1113 spin_unlock(&ctx->fd_wqh.lock);
1114 schedule();
1115 spin_lock(&ctx->fd_wqh.lock);
1116 }
1117 __remove_wait_queue(&ctx->fd_wqh, &wait);
1118 __set_current_state(TASK_RUNNING);
1119 spin_unlock(&ctx->fd_wqh.lock);
1120
1121 if (!ret && msg->event == UFFD_EVENT_FORK) {
1122 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1123 spin_lock(&ctx->event_wqh.lock);
1124 if (!list_empty(&fork_event)) {
1125 /*
1126 * The fork thread didn't abort, so we can
1127 * drop the temporary refcount.
1128 */
1129 userfaultfd_ctx_put(fork_nctx);
1130
1131 uwq = list_first_entry(&fork_event,
1132 typeof(*uwq),
1133 wq.entry);
1134 /*
1135 * If fork_event list wasn't empty and in turn
1136 * the event wasn't already released by fork
1137 * (the event is allocated on fork kernel
1138 * stack), put the event back to its place in
1139 * the event_wq. fork_event head will be freed
1140 * as soon as we return so the event cannot
1141 * stay queued there no matter the current
1142 * "ret" value.
1143 */
1144 list_del(&uwq->wq.entry);
1145 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1146
1147 /*
1148 * Leave the event in the waitqueue and report
1149 * error to userland if we failed to resolve
1150 * the userfault fork.
1151 */
1152 if (likely(!ret))
1153 userfaultfd_event_complete(ctx, uwq);
1154 } else {
1155 /*
1156 * Here the fork thread aborted and the
1157 * refcount from the fork thread on fork_nctx
1158 * has already been released. We still hold
1159 * the reference we took before releasing the
1160 * lock above. If resolve_userfault_fork
1161 * failed we've to drop it because the
1162 * fork_nctx has to be freed in such case. If
1163 * it succeeded we'll hold it because the new
1164 * uffd references it.
1165 */
1166 if (ret)
1167 userfaultfd_ctx_put(fork_nctx);
1168 }
1169 spin_unlock(&ctx->event_wqh.lock);
1170 }
1171
1172 return ret;
1173 }
1174
1175 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1176 size_t count, loff_t *ppos)
1177 {
1178 struct userfaultfd_ctx *ctx = file->private_data;
1179 ssize_t _ret, ret = 0;
1180 struct uffd_msg msg;
1181 int no_wait = file->f_flags & O_NONBLOCK;
1182
1183 if (ctx->state == UFFD_STATE_WAIT_API)
1184 return -EINVAL;
1185
1186 for (;;) {
1187 if (count < sizeof(msg))
1188 return ret ? ret : -EINVAL;
1189 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1190 if (_ret < 0)
1191 return ret ? ret : _ret;
1192 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1193 return ret ? ret : -EFAULT;
1194 ret += sizeof(msg);
1195 buf += sizeof(msg);
1196 count -= sizeof(msg);
1197 /*
1198 * Allow to read more than one fault at time but only
1199 * block if waiting for the very first one.
1200 */
1201 no_wait = O_NONBLOCK;
1202 }
1203 }
1204
1205 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1206 struct userfaultfd_wake_range *range)
1207 {
1208 spin_lock(&ctx->fault_pending_wqh.lock);
1209 /* wake all in the range and autoremove */
1210 if (waitqueue_active(&ctx->fault_pending_wqh))
1211 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1212 range);
1213 if (waitqueue_active(&ctx->fault_wqh))
1214 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1215 spin_unlock(&ctx->fault_pending_wqh.lock);
1216 }
1217
1218 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1219 struct userfaultfd_wake_range *range)
1220 {
1221 unsigned seq;
1222 bool need_wakeup;
1223
1224 /*
1225 * To be sure waitqueue_active() is not reordered by the CPU
1226 * before the pagetable update, use an explicit SMP memory
1227 * barrier here. PT lock release or up_read(mmap_sem) still
1228 * have release semantics that can allow the
1229 * waitqueue_active() to be reordered before the pte update.
1230 */
1231 smp_mb();
1232
1233 /*
1234 * Use waitqueue_active because it's very frequent to
1235 * change the address space atomically even if there are no
1236 * userfaults yet. So we take the spinlock only when we're
1237 * sure we've userfaults to wake.
1238 */
1239 do {
1240 seq = read_seqcount_begin(&ctx->refile_seq);
1241 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1242 waitqueue_active(&ctx->fault_wqh);
1243 cond_resched();
1244 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1245 if (need_wakeup)
1246 __wake_userfault(ctx, range);
1247 }
1248
1249 static __always_inline int validate_range(struct mm_struct *mm,
1250 __u64 start, __u64 len)
1251 {
1252 __u64 task_size = mm->task_size;
1253
1254 if (start & ~PAGE_MASK)
1255 return -EINVAL;
1256 if (len & ~PAGE_MASK)
1257 return -EINVAL;
1258 if (!len)
1259 return -EINVAL;
1260 if (start < mmap_min_addr)
1261 return -EINVAL;
1262 if (start >= task_size)
1263 return -EINVAL;
1264 if (len > task_size - start)
1265 return -EINVAL;
1266 return 0;
1267 }
1268
1269 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1270 {
1271 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1272 vma_is_shmem(vma);
1273 }
1274
1275 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1276 unsigned long arg)
1277 {
1278 struct mm_struct *mm = ctx->mm;
1279 struct vm_area_struct *vma, *prev, *cur;
1280 int ret;
1281 struct uffdio_register uffdio_register;
1282 struct uffdio_register __user *user_uffdio_register;
1283 unsigned long vm_flags, new_flags;
1284 bool found;
1285 bool basic_ioctls;
1286 unsigned long start, end, vma_end;
1287
1288 user_uffdio_register = (struct uffdio_register __user *) arg;
1289
1290 ret = -EFAULT;
1291 if (copy_from_user(&uffdio_register, user_uffdio_register,
1292 sizeof(uffdio_register)-sizeof(__u64)))
1293 goto out;
1294
1295 ret = -EINVAL;
1296 if (!uffdio_register.mode)
1297 goto out;
1298 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1299 UFFDIO_REGISTER_MODE_WP))
1300 goto out;
1301 vm_flags = 0;
1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 vm_flags |= VM_UFFD_MISSING;
1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 vm_flags |= VM_UFFD_WP;
1306 /*
1307 * FIXME: remove the below error constraint by
1308 * implementing the wprotect tracking mode.
1309 */
1310 ret = -EINVAL;
1311 goto out;
1312 }
1313
1314 ret = validate_range(mm, uffdio_register.range.start,
1315 uffdio_register.range.len);
1316 if (ret)
1317 goto out;
1318
1319 start = uffdio_register.range.start;
1320 end = start + uffdio_register.range.len;
1321
1322 ret = -ENOMEM;
1323 if (!mmget_not_zero(mm))
1324 goto out;
1325
1326 down_write(&mm->mmap_sem);
1327 vma = find_vma_prev(mm, start, &prev);
1328 if (!vma)
1329 goto out_unlock;
1330
1331 /* check that there's at least one vma in the range */
1332 ret = -EINVAL;
1333 if (vma->vm_start >= end)
1334 goto out_unlock;
1335
1336 /*
1337 * If the first vma contains huge pages, make sure start address
1338 * is aligned to huge page size.
1339 */
1340 if (is_vm_hugetlb_page(vma)) {
1341 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1342
1343 if (start & (vma_hpagesize - 1))
1344 goto out_unlock;
1345 }
1346
1347 /*
1348 * Search for not compatible vmas.
1349 */
1350 found = false;
1351 basic_ioctls = false;
1352 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1353 cond_resched();
1354
1355 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1356 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1357
1358 /* check not compatible vmas */
1359 ret = -EINVAL;
1360 if (!vma_can_userfault(cur))
1361 goto out_unlock;
1362 /*
1363 * If this vma contains ending address, and huge pages
1364 * check alignment.
1365 */
1366 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367 end > cur->vm_start) {
1368 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369
1370 ret = -EINVAL;
1371
1372 if (end & (vma_hpagesize - 1))
1373 goto out_unlock;
1374 }
1375
1376 /*
1377 * Check that this vma isn't already owned by a
1378 * different userfaultfd. We can't allow more than one
1379 * userfaultfd to own a single vma simultaneously or we
1380 * wouldn't know which one to deliver the userfaults to.
1381 */
1382 ret = -EBUSY;
1383 if (cur->vm_userfaultfd_ctx.ctx &&
1384 cur->vm_userfaultfd_ctx.ctx != ctx)
1385 goto out_unlock;
1386
1387 /*
1388 * Note vmas containing huge pages
1389 */
1390 if (is_vm_hugetlb_page(cur))
1391 basic_ioctls = true;
1392
1393 found = true;
1394 }
1395 BUG_ON(!found);
1396
1397 if (vma->vm_start < start)
1398 prev = vma;
1399
1400 ret = 0;
1401 do {
1402 cond_resched();
1403
1404 BUG_ON(!vma_can_userfault(vma));
1405 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1406 vma->vm_userfaultfd_ctx.ctx != ctx);
1407
1408 /*
1409 * Nothing to do: this vma is already registered into this
1410 * userfaultfd and with the right tracking mode too.
1411 */
1412 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1413 (vma->vm_flags & vm_flags) == vm_flags)
1414 goto skip;
1415
1416 if (vma->vm_start > start)
1417 start = vma->vm_start;
1418 vma_end = min(end, vma->vm_end);
1419
1420 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1421 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1422 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1423 vma_policy(vma),
1424 ((struct vm_userfaultfd_ctx){ ctx }),
1425 vma_get_anon_name(vma));
1426 if (prev) {
1427 vma = prev;
1428 goto next;
1429 }
1430 if (vma->vm_start < start) {
1431 ret = split_vma(mm, vma, start, 1);
1432 if (ret)
1433 break;
1434 }
1435 if (vma->vm_end > end) {
1436 ret = split_vma(mm, vma, end, 0);
1437 if (ret)
1438 break;
1439 }
1440 next:
1441 /*
1442 * In the vma_merge() successful mprotect-like case 8:
1443 * the next vma was merged into the current one and
1444 * the current one has not been updated yet.
1445 */
1446 vma->vm_flags = new_flags;
1447 vma->vm_userfaultfd_ctx.ctx = ctx;
1448
1449 skip:
1450 prev = vma;
1451 start = vma->vm_end;
1452 vma = vma->vm_next;
1453 } while (vma && vma->vm_start < end);
1454 out_unlock:
1455 up_write(&mm->mmap_sem);
1456 mmput(mm);
1457 if (!ret) {
1458 /*
1459 * Now that we scanned all vmas we can already tell
1460 * userland which ioctls methods are guaranteed to
1461 * succeed on this range.
1462 */
1463 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1464 UFFD_API_RANGE_IOCTLS,
1465 &user_uffdio_register->ioctls))
1466 ret = -EFAULT;
1467 }
1468 out:
1469 return ret;
1470 }
1471
1472 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1473 unsigned long arg)
1474 {
1475 struct mm_struct *mm = ctx->mm;
1476 struct vm_area_struct *vma, *prev, *cur;
1477 int ret;
1478 struct uffdio_range uffdio_unregister;
1479 unsigned long new_flags;
1480 bool found;
1481 unsigned long start, end, vma_end;
1482 const void __user *buf = (void __user *)arg;
1483
1484 ret = -EFAULT;
1485 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1486 goto out;
1487
1488 ret = validate_range(mm, uffdio_unregister.start,
1489 uffdio_unregister.len);
1490 if (ret)
1491 goto out;
1492
1493 start = uffdio_unregister.start;
1494 end = start + uffdio_unregister.len;
1495
1496 ret = -ENOMEM;
1497 if (!mmget_not_zero(mm))
1498 goto out;
1499
1500 down_write(&mm->mmap_sem);
1501 vma = find_vma_prev(mm, start, &prev);
1502 if (!vma)
1503 goto out_unlock;
1504
1505 /* check that there's at least one vma in the range */
1506 ret = -EINVAL;
1507 if (vma->vm_start >= end)
1508 goto out_unlock;
1509
1510 /*
1511 * If the first vma contains huge pages, make sure start address
1512 * is aligned to huge page size.
1513 */
1514 if (is_vm_hugetlb_page(vma)) {
1515 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1516
1517 if (start & (vma_hpagesize - 1))
1518 goto out_unlock;
1519 }
1520
1521 /*
1522 * Search for not compatible vmas.
1523 */
1524 found = false;
1525 ret = -EINVAL;
1526 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1527 cond_resched();
1528
1529 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1530 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1531
1532 /*
1533 * Check not compatible vmas, not strictly required
1534 * here as not compatible vmas cannot have an
1535 * userfaultfd_ctx registered on them, but this
1536 * provides for more strict behavior to notice
1537 * unregistration errors.
1538 */
1539 if (!vma_can_userfault(cur))
1540 goto out_unlock;
1541
1542 found = true;
1543 }
1544 BUG_ON(!found);
1545
1546 if (vma->vm_start < start)
1547 prev = vma;
1548
1549 ret = 0;
1550 do {
1551 cond_resched();
1552
1553 BUG_ON(!vma_can_userfault(vma));
1554
1555 /*
1556 * Nothing to do: this vma is already registered into this
1557 * userfaultfd and with the right tracking mode too.
1558 */
1559 if (!vma->vm_userfaultfd_ctx.ctx)
1560 goto skip;
1561
1562 if (vma->vm_start > start)
1563 start = vma->vm_start;
1564 vma_end = min(end, vma->vm_end);
1565
1566 if (userfaultfd_missing(vma)) {
1567 /*
1568 * Wake any concurrent pending userfault while
1569 * we unregister, so they will not hang
1570 * permanently and it avoids userland to call
1571 * UFFDIO_WAKE explicitly.
1572 */
1573 struct userfaultfd_wake_range range;
1574 range.start = start;
1575 range.len = vma_end - start;
1576 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1577 }
1578
1579 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1580 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1581 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1582 vma_policy(vma),
1583 NULL_VM_UFFD_CTX,
1584 vma_get_anon_name(vma));
1585 if (prev) {
1586 vma = prev;
1587 goto next;
1588 }
1589 if (vma->vm_start < start) {
1590 ret = split_vma(mm, vma, start, 1);
1591 if (ret)
1592 break;
1593 }
1594 if (vma->vm_end > end) {
1595 ret = split_vma(mm, vma, end, 0);
1596 if (ret)
1597 break;
1598 }
1599 next:
1600 /*
1601 * In the vma_merge() successful mprotect-like case 8:
1602 * the next vma was merged into the current one and
1603 * the current one has not been updated yet.
1604 */
1605 vma->vm_flags = new_flags;
1606 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1607
1608 skip:
1609 prev = vma;
1610 start = vma->vm_end;
1611 vma = vma->vm_next;
1612 } while (vma && vma->vm_start < end);
1613 out_unlock:
1614 up_write(&mm->mmap_sem);
1615 mmput(mm);
1616 out:
1617 return ret;
1618 }
1619
1620 /*
1621 * userfaultfd_wake may be used in combination with the
1622 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1623 */
1624 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1625 unsigned long arg)
1626 {
1627 int ret;
1628 struct uffdio_range uffdio_wake;
1629 struct userfaultfd_wake_range range;
1630 const void __user *buf = (void __user *)arg;
1631
1632 ret = -EFAULT;
1633 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1634 goto out;
1635
1636 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1637 if (ret)
1638 goto out;
1639
1640 range.start = uffdio_wake.start;
1641 range.len = uffdio_wake.len;
1642
1643 /*
1644 * len == 0 means wake all and we don't want to wake all here,
1645 * so check it again to be sure.
1646 */
1647 VM_BUG_ON(!range.len);
1648
1649 wake_userfault(ctx, &range);
1650 ret = 0;
1651
1652 out:
1653 return ret;
1654 }
1655
1656 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1657 unsigned long arg)
1658 {
1659 __s64 ret;
1660 struct uffdio_copy uffdio_copy;
1661 struct uffdio_copy __user *user_uffdio_copy;
1662 struct userfaultfd_wake_range range;
1663
1664 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1665
1666 ret = -EFAULT;
1667 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1668 /* don't copy "copy" last field */
1669 sizeof(uffdio_copy)-sizeof(__s64)))
1670 goto out;
1671
1672 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1673 if (ret)
1674 goto out;
1675 /*
1676 * double check for wraparound just in case. copy_from_user()
1677 * will later check uffdio_copy.src + uffdio_copy.len to fit
1678 * in the userland range.
1679 */
1680 ret = -EINVAL;
1681 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1682 goto out;
1683 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1684 goto out;
1685 if (mmget_not_zero(ctx->mm)) {
1686 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1687 uffdio_copy.len);
1688 mmput(ctx->mm);
1689 } else {
1690 return -ESRCH;
1691 }
1692 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1693 return -EFAULT;
1694 if (ret < 0)
1695 goto out;
1696 BUG_ON(!ret);
1697 /* len == 0 would wake all */
1698 range.len = ret;
1699 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1700 range.start = uffdio_copy.dst;
1701 wake_userfault(ctx, &range);
1702 }
1703 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1704 out:
1705 return ret;
1706 }
1707
1708 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1709 unsigned long arg)
1710 {
1711 __s64 ret;
1712 struct uffdio_zeropage uffdio_zeropage;
1713 struct uffdio_zeropage __user *user_uffdio_zeropage;
1714 struct userfaultfd_wake_range range;
1715
1716 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1717
1718 ret = -EFAULT;
1719 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1720 /* don't copy "zeropage" last field */
1721 sizeof(uffdio_zeropage)-sizeof(__s64)))
1722 goto out;
1723
1724 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1725 uffdio_zeropage.range.len);
1726 if (ret)
1727 goto out;
1728 ret = -EINVAL;
1729 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1730 goto out;
1731
1732 if (mmget_not_zero(ctx->mm)) {
1733 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1734 uffdio_zeropage.range.len);
1735 mmput(ctx->mm);
1736 } else {
1737 return -ESRCH;
1738 }
1739 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1740 return -EFAULT;
1741 if (ret < 0)
1742 goto out;
1743 /* len == 0 would wake all */
1744 BUG_ON(!ret);
1745 range.len = ret;
1746 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1747 range.start = uffdio_zeropage.range.start;
1748 wake_userfault(ctx, &range);
1749 }
1750 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1751 out:
1752 return ret;
1753 }
1754
1755 static inline unsigned int uffd_ctx_features(__u64 user_features)
1756 {
1757 /*
1758 * For the current set of features the bits just coincide
1759 */
1760 return (unsigned int)user_features;
1761 }
1762
1763 /*
1764 * userland asks for a certain API version and we return which bits
1765 * and ioctl commands are implemented in this kernel for such API
1766 * version or -EINVAL if unknown.
1767 */
1768 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1769 unsigned long arg)
1770 {
1771 struct uffdio_api uffdio_api;
1772 void __user *buf = (void __user *)arg;
1773 int ret;
1774 __u64 features;
1775
1776 ret = -EINVAL;
1777 if (ctx->state != UFFD_STATE_WAIT_API)
1778 goto out;
1779 ret = -EFAULT;
1780 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1781 goto out;
1782 features = uffdio_api.features;
1783 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1784 memset(&uffdio_api, 0, sizeof(uffdio_api));
1785 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1786 goto out;
1787 ret = -EINVAL;
1788 goto out;
1789 }
1790 /* report all available features and ioctls to userland */
1791 uffdio_api.features = UFFD_API_FEATURES;
1792 uffdio_api.ioctls = UFFD_API_IOCTLS;
1793 ret = -EFAULT;
1794 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1795 goto out;
1796 ctx->state = UFFD_STATE_RUNNING;
1797 /* only enable the requested features for this uffd context */
1798 ctx->features = uffd_ctx_features(features);
1799 ret = 0;
1800 out:
1801 return ret;
1802 }
1803
1804 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1805 unsigned long arg)
1806 {
1807 int ret = -EINVAL;
1808 struct userfaultfd_ctx *ctx = file->private_data;
1809
1810 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1811 return -EINVAL;
1812
1813 switch(cmd) {
1814 case UFFDIO_API:
1815 ret = userfaultfd_api(ctx, arg);
1816 break;
1817 case UFFDIO_REGISTER:
1818 ret = userfaultfd_register(ctx, arg);
1819 break;
1820 case UFFDIO_UNREGISTER:
1821 ret = userfaultfd_unregister(ctx, arg);
1822 break;
1823 case UFFDIO_WAKE:
1824 ret = userfaultfd_wake(ctx, arg);
1825 break;
1826 case UFFDIO_COPY:
1827 ret = userfaultfd_copy(ctx, arg);
1828 break;
1829 case UFFDIO_ZEROPAGE:
1830 ret = userfaultfd_zeropage(ctx, arg);
1831 break;
1832 }
1833 return ret;
1834 }
1835
1836 #ifdef CONFIG_PROC_FS
1837 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1838 {
1839 struct userfaultfd_ctx *ctx = f->private_data;
1840 wait_queue_entry_t *wq;
1841 struct userfaultfd_wait_queue *uwq;
1842 unsigned long pending = 0, total = 0;
1843
1844 spin_lock(&ctx->fault_pending_wqh.lock);
1845 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1846 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1847 pending++;
1848 total++;
1849 }
1850 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1851 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1852 total++;
1853 }
1854 spin_unlock(&ctx->fault_pending_wqh.lock);
1855
1856 /*
1857 * If more protocols will be added, there will be all shown
1858 * separated by a space. Like this:
1859 * protocols: aa:... bb:...
1860 */
1861 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1862 pending, total, UFFD_API, ctx->features,
1863 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1864 }
1865 #endif
1866
1867 static const struct file_operations userfaultfd_fops = {
1868 #ifdef CONFIG_PROC_FS
1869 .show_fdinfo = userfaultfd_show_fdinfo,
1870 #endif
1871 .release = userfaultfd_release,
1872 .poll = userfaultfd_poll,
1873 .read = userfaultfd_read,
1874 .unlocked_ioctl = userfaultfd_ioctl,
1875 .compat_ioctl = userfaultfd_ioctl,
1876 .llseek = noop_llseek,
1877 };
1878
1879 static void init_once_userfaultfd_ctx(void *mem)
1880 {
1881 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1882
1883 init_waitqueue_head(&ctx->fault_pending_wqh);
1884 init_waitqueue_head(&ctx->fault_wqh);
1885 init_waitqueue_head(&ctx->event_wqh);
1886 init_waitqueue_head(&ctx->fd_wqh);
1887 seqcount_init(&ctx->refile_seq);
1888 }
1889
1890 /**
1891 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1892 * @flags: Flags for the userfaultfd file.
1893 *
1894 * This function creates a userfaultfd file pointer, w/out installing
1895 * it into the fd table. This is useful when the userfaultfd file is
1896 * used during the initialization of data structures that require
1897 * extra setup after the userfaultfd creation. So the userfaultfd
1898 * creation is split into the file pointer creation phase, and the
1899 * file descriptor installation phase. In this way races with
1900 * userspace closing the newly installed file descriptor can be
1901 * avoided. Returns a userfaultfd file pointer, or a proper error
1902 * pointer.
1903 */
1904 static struct file *userfaultfd_file_create(int flags)
1905 {
1906 struct file *file;
1907 struct userfaultfd_ctx *ctx;
1908
1909 BUG_ON(!current->mm);
1910
1911 /* Check the UFFD_* constants for consistency. */
1912 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1913 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1914
1915 file = ERR_PTR(-EINVAL);
1916 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1917 goto out;
1918
1919 file = ERR_PTR(-ENOMEM);
1920 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1921 if (!ctx)
1922 goto out;
1923
1924 atomic_set(&ctx->refcount, 1);
1925 ctx->flags = flags;
1926 ctx->features = 0;
1927 ctx->state = UFFD_STATE_WAIT_API;
1928 ctx->released = false;
1929 ctx->mm = current->mm;
1930 /* prevent the mm struct to be freed */
1931 mmgrab(ctx->mm);
1932
1933 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1934 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1935 if (IS_ERR(file)) {
1936 mmdrop(ctx->mm);
1937 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1938 }
1939 out:
1940 return file;
1941 }
1942
1943 SYSCALL_DEFINE1(userfaultfd, int, flags)
1944 {
1945 int fd, error;
1946 struct file *file;
1947
1948 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1949 if (error < 0)
1950 return error;
1951 fd = error;
1952
1953 file = userfaultfd_file_create(flags);
1954 if (IS_ERR(file)) {
1955 error = PTR_ERR(file);
1956 goto err_put_unused_fd;
1957 }
1958 fd_install(fd, file);
1959
1960 return fd;
1961
1962 err_put_unused_fd:
1963 put_unused_fd(fd);
1964
1965 return error;
1966 }
1967
1968 static int __init userfaultfd_init(void)
1969 {
1970 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1971 sizeof(struct userfaultfd_ctx),
1972 0,
1973 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1974 init_once_userfaultfd_ctx);
1975 return 0;
1976 }
1977 __initcall(userfaultfd_init);