0c57b3cae0fe137e602200d819a8aaa952e72a77
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic permission checking
292 */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 unsigned int mode = inode->i_mode;
296
297 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 mode >>= 6;
299 else {
300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 int error = check_acl(inode, mask);
302 if (error != -EAGAIN)
303 return error;
304 }
305
306 if (in_group_p(inode->i_gid))
307 mode >>= 3;
308 }
309
310 /*
311 * If the DACs are ok we don't need any capability check.
312 */
313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 return 0;
315 return -EACCES;
316 }
317
318 /**
319 * generic_permission - check for access rights on a Posix-like filesystem
320 * @inode: inode to check access rights for
321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 *
323 * Used to check for read/write/execute permissions on a file.
324 * We use "fsuid" for this, letting us set arbitrary permissions
325 * for filesystem access without changing the "normal" uids which
326 * are used for other things.
327 *
328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329 * request cannot be satisfied (eg. requires blocking or too much complexity).
330 * It would then be called again in ref-walk mode.
331 */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 int ret;
335
336 /*
337 * Do the basic permission checks.
338 */
339 ret = acl_permission_check(inode, mask);
340 if (ret != -EACCES)
341 return ret;
342
343 if (S_ISDIR(inode->i_mode)) {
344 /* DACs are overridable for directories */
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351 return -EACCES;
352 }
353
354 /*
355 * Searching includes executable on directories, else just read.
356 */
357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 if (mask == MAY_READ)
359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 return 0;
361 /*
362 * Read/write DACs are always overridable.
363 * Executable DACs are overridable when there is
364 * at least one exec bit set.
365 */
366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 return 0;
369
370 return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375 * We _really_ want to just do "generic_permission()" without
376 * even looking at the inode->i_op values. So we keep a cache
377 * flag in inode->i_opflags, that says "this has not special
378 * permission function, use the fast case".
379 */
380 static inline int do_inode_permission(struct vfsmount *mnt, struct inode *inode, int mask)
381 {
382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 if (likely(mnt && inode->i_op->permission2))
384 return inode->i_op->permission2(mnt, inode, mask);
385 if (likely(inode->i_op->permission))
386 return inode->i_op->permission(inode, mask);
387
388 /* This gets set once for the inode lifetime */
389 spin_lock(&inode->i_lock);
390 inode->i_opflags |= IOP_FASTPERM;
391 spin_unlock(&inode->i_lock);
392 }
393 return generic_permission(inode, mask);
394 }
395
396 /**
397 * __inode_permission - Check for access rights to a given inode
398 * @inode: Inode to check permission on
399 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
400 *
401 * Check for read/write/execute permissions on an inode.
402 *
403 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
404 *
405 * This does not check for a read-only file system. You probably want
406 * inode_permission().
407 */
408 int __inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
409 {
410 int retval;
411
412 if (unlikely(mask & MAY_WRITE)) {
413 /*
414 * Nobody gets write access to an immutable file.
415 */
416 if (IS_IMMUTABLE(inode))
417 return -EPERM;
418
419 /*
420 * Updating mtime will likely cause i_uid and i_gid to be
421 * written back improperly if their true value is unknown
422 * to the vfs.
423 */
424 if (HAS_UNMAPPED_ID(inode))
425 return -EACCES;
426 }
427
428 retval = do_inode_permission(mnt, inode, mask);
429 if (retval)
430 return retval;
431
432 retval = devcgroup_inode_permission(inode, mask);
433 if (retval)
434 return retval;
435
436 retval = security_inode_permission(inode, mask);
437 return retval;
438 }
439 EXPORT_SYMBOL(__inode_permission2);
440
441 int __inode_permission(struct inode *inode, int mask)
442 {
443 return __inode_permission2(NULL, inode, mask);
444 }
445 EXPORT_SYMBOL(__inode_permission);
446
447 /**
448 * sb_permission - Check superblock-level permissions
449 * @sb: Superblock of inode to check permission on
450 * @inode: Inode to check permission on
451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 *
453 * Separate out file-system wide checks from inode-specific permission checks.
454 */
455 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
456 {
457 if (unlikely(mask & MAY_WRITE)) {
458 umode_t mode = inode->i_mode;
459
460 /* Nobody gets write access to a read-only fs. */
461 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
462 return -EROFS;
463 }
464 return 0;
465 }
466
467 /**
468 * inode_permission - Check for access rights to a given inode
469 * @inode: Inode to check permission on
470 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
471 *
472 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
473 * this, letting us set arbitrary permissions for filesystem access without
474 * changing the "normal" UIDs which are used for other things.
475 *
476 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
477 */
478 int inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
479 {
480 int retval;
481
482 retval = sb_permission(inode->i_sb, inode, mask);
483 if (retval)
484 return retval;
485 return __inode_permission2(mnt, inode, mask);
486 }
487 EXPORT_SYMBOL(inode_permission2);
488
489 int inode_permission(struct inode *inode, int mask)
490 {
491 return inode_permission2(NULL, inode, mask);
492 }
493 EXPORT_SYMBOL(inode_permission);
494
495 /**
496 * path_get - get a reference to a path
497 * @path: path to get the reference to
498 *
499 * Given a path increment the reference count to the dentry and the vfsmount.
500 */
501 void path_get(const struct path *path)
502 {
503 mntget(path->mnt);
504 dget(path->dentry);
505 }
506 EXPORT_SYMBOL(path_get);
507
508 /**
509 * path_put - put a reference to a path
510 * @path: path to put the reference to
511 *
512 * Given a path decrement the reference count to the dentry and the vfsmount.
513 */
514 void path_put(const struct path *path)
515 {
516 dput(path->dentry);
517 mntput(path->mnt);
518 }
519 EXPORT_SYMBOL(path_put);
520
521 #define EMBEDDED_LEVELS 2
522 struct nameidata {
523 struct path path;
524 struct qstr last;
525 struct path root;
526 struct inode *inode; /* path.dentry.d_inode */
527 unsigned int flags;
528 unsigned seq, m_seq;
529 int last_type;
530 unsigned depth;
531 int total_link_count;
532 struct saved {
533 struct path link;
534 struct delayed_call done;
535 const char *name;
536 unsigned seq;
537 } *stack, internal[EMBEDDED_LEVELS];
538 struct filename *name;
539 struct nameidata *saved;
540 struct inode *link_inode;
541 unsigned root_seq;
542 int dfd;
543 } __randomize_layout;
544
545 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
546 {
547 struct nameidata *old = current->nameidata;
548 p->stack = p->internal;
549 p->dfd = dfd;
550 p->name = name;
551 p->total_link_count = old ? old->total_link_count : 0;
552 p->saved = old;
553 current->nameidata = p;
554 }
555
556 static void restore_nameidata(void)
557 {
558 struct nameidata *now = current->nameidata, *old = now->saved;
559
560 current->nameidata = old;
561 if (old)
562 old->total_link_count = now->total_link_count;
563 if (now->stack != now->internal)
564 kfree(now->stack);
565 }
566
567 static int __nd_alloc_stack(struct nameidata *nd)
568 {
569 struct saved *p;
570
571 if (nd->flags & LOOKUP_RCU) {
572 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
573 GFP_ATOMIC);
574 if (unlikely(!p))
575 return -ECHILD;
576 } else {
577 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
578 GFP_KERNEL);
579 if (unlikely(!p))
580 return -ENOMEM;
581 }
582 memcpy(p, nd->internal, sizeof(nd->internal));
583 nd->stack = p;
584 return 0;
585 }
586
587 /**
588 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
589 * @path: nameidate to verify
590 *
591 * Rename can sometimes move a file or directory outside of a bind
592 * mount, path_connected allows those cases to be detected.
593 */
594 static bool path_connected(const struct path *path)
595 {
596 struct vfsmount *mnt = path->mnt;
597 struct super_block *sb = mnt->mnt_sb;
598
599 /* Bind mounts and multi-root filesystems can have disconnected paths */
600 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
601 return true;
602
603 return is_subdir(path->dentry, mnt->mnt_root);
604 }
605
606 static inline int nd_alloc_stack(struct nameidata *nd)
607 {
608 if (likely(nd->depth != EMBEDDED_LEVELS))
609 return 0;
610 if (likely(nd->stack != nd->internal))
611 return 0;
612 return __nd_alloc_stack(nd);
613 }
614
615 static void drop_links(struct nameidata *nd)
616 {
617 int i = nd->depth;
618 while (i--) {
619 struct saved *last = nd->stack + i;
620 do_delayed_call(&last->done);
621 clear_delayed_call(&last->done);
622 }
623 }
624
625 static void terminate_walk(struct nameidata *nd)
626 {
627 drop_links(nd);
628 if (!(nd->flags & LOOKUP_RCU)) {
629 int i;
630 path_put(&nd->path);
631 for (i = 0; i < nd->depth; i++)
632 path_put(&nd->stack[i].link);
633 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
634 path_put(&nd->root);
635 nd->root.mnt = NULL;
636 }
637 } else {
638 nd->flags &= ~LOOKUP_RCU;
639 if (!(nd->flags & LOOKUP_ROOT))
640 nd->root.mnt = NULL;
641 rcu_read_unlock();
642 }
643 nd->depth = 0;
644 }
645
646 /* path_put is needed afterwards regardless of success or failure */
647 static bool legitimize_path(struct nameidata *nd,
648 struct path *path, unsigned seq)
649 {
650 int res = __legitimize_mnt(path->mnt, nd->m_seq);
651 if (unlikely(res)) {
652 if (res > 0)
653 path->mnt = NULL;
654 path->dentry = NULL;
655 return false;
656 }
657 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
658 path->dentry = NULL;
659 return false;
660 }
661 return !read_seqcount_retry(&path->dentry->d_seq, seq);
662 }
663
664 static bool legitimize_links(struct nameidata *nd)
665 {
666 int i;
667 for (i = 0; i < nd->depth; i++) {
668 struct saved *last = nd->stack + i;
669 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
670 drop_links(nd);
671 nd->depth = i + 1;
672 return false;
673 }
674 }
675 return true;
676 }
677
678 /*
679 * Path walking has 2 modes, rcu-walk and ref-walk (see
680 * Documentation/filesystems/path-lookup.txt). In situations when we can't
681 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
682 * normal reference counts on dentries and vfsmounts to transition to ref-walk
683 * mode. Refcounts are grabbed at the last known good point before rcu-walk
684 * got stuck, so ref-walk may continue from there. If this is not successful
685 * (eg. a seqcount has changed), then failure is returned and it's up to caller
686 * to restart the path walk from the beginning in ref-walk mode.
687 */
688
689 /**
690 * unlazy_walk - try to switch to ref-walk mode.
691 * @nd: nameidata pathwalk data
692 * Returns: 0 on success, -ECHILD on failure
693 *
694 * unlazy_walk attempts to legitimize the current nd->path and nd->root
695 * for ref-walk mode.
696 * Must be called from rcu-walk context.
697 * Nothing should touch nameidata between unlazy_walk() failure and
698 * terminate_walk().
699 */
700 static int unlazy_walk(struct nameidata *nd)
701 {
702 struct dentry *parent = nd->path.dentry;
703
704 BUG_ON(!(nd->flags & LOOKUP_RCU));
705
706 nd->flags &= ~LOOKUP_RCU;
707 if (unlikely(!legitimize_links(nd)))
708 goto out2;
709 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
710 goto out1;
711 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
712 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
713 goto out;
714 }
715 rcu_read_unlock();
716 BUG_ON(nd->inode != parent->d_inode);
717 return 0;
718
719 out2:
720 nd->path.mnt = NULL;
721 nd->path.dentry = NULL;
722 out1:
723 if (!(nd->flags & LOOKUP_ROOT))
724 nd->root.mnt = NULL;
725 out:
726 rcu_read_unlock();
727 return -ECHILD;
728 }
729
730 /**
731 * unlazy_child - try to switch to ref-walk mode.
732 * @nd: nameidata pathwalk data
733 * @dentry: child of nd->path.dentry
734 * @seq: seq number to check dentry against
735 * Returns: 0 on success, -ECHILD on failure
736 *
737 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
738 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
739 * @nd. Must be called from rcu-walk context.
740 * Nothing should touch nameidata between unlazy_child() failure and
741 * terminate_walk().
742 */
743 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
744 {
745 BUG_ON(!(nd->flags & LOOKUP_RCU));
746
747 nd->flags &= ~LOOKUP_RCU;
748 if (unlikely(!legitimize_links(nd)))
749 goto out2;
750 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
751 goto out2;
752 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
753 goto out1;
754
755 /*
756 * We need to move both the parent and the dentry from the RCU domain
757 * to be properly refcounted. And the sequence number in the dentry
758 * validates *both* dentry counters, since we checked the sequence
759 * number of the parent after we got the child sequence number. So we
760 * know the parent must still be valid if the child sequence number is
761 */
762 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
763 goto out;
764 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
765 rcu_read_unlock();
766 dput(dentry);
767 goto drop_root_mnt;
768 }
769 /*
770 * Sequence counts matched. Now make sure that the root is
771 * still valid and get it if required.
772 */
773 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
774 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
775 rcu_read_unlock();
776 dput(dentry);
777 return -ECHILD;
778 }
779 }
780
781 rcu_read_unlock();
782 return 0;
783
784 out2:
785 nd->path.mnt = NULL;
786 out1:
787 nd->path.dentry = NULL;
788 out:
789 rcu_read_unlock();
790 drop_root_mnt:
791 if (!(nd->flags & LOOKUP_ROOT))
792 nd->root.mnt = NULL;
793 return -ECHILD;
794 }
795
796 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
797 {
798 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
799 return dentry->d_op->d_revalidate(dentry, flags);
800 else
801 return 1;
802 }
803
804 /**
805 * complete_walk - successful completion of path walk
806 * @nd: pointer nameidata
807 *
808 * If we had been in RCU mode, drop out of it and legitimize nd->path.
809 * Revalidate the final result, unless we'd already done that during
810 * the path walk or the filesystem doesn't ask for it. Return 0 on
811 * success, -error on failure. In case of failure caller does not
812 * need to drop nd->path.
813 */
814 static int complete_walk(struct nameidata *nd)
815 {
816 struct dentry *dentry = nd->path.dentry;
817 int status;
818
819 if (nd->flags & LOOKUP_RCU) {
820 if (!(nd->flags & LOOKUP_ROOT))
821 nd->root.mnt = NULL;
822 if (unlikely(unlazy_walk(nd)))
823 return -ECHILD;
824 }
825
826 if (likely(!(nd->flags & LOOKUP_JUMPED)))
827 return 0;
828
829 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
830 return 0;
831
832 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
833 if (status > 0)
834 return 0;
835
836 if (!status)
837 status = -ESTALE;
838
839 return status;
840 }
841
842 static void set_root(struct nameidata *nd)
843 {
844 struct fs_struct *fs = current->fs;
845
846 if (nd->flags & LOOKUP_RCU) {
847 unsigned seq;
848
849 do {
850 seq = read_seqcount_begin(&fs->seq);
851 nd->root = fs->root;
852 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
853 } while (read_seqcount_retry(&fs->seq, seq));
854 } else {
855 get_fs_root(fs, &nd->root);
856 }
857 }
858
859 static void path_put_conditional(struct path *path, struct nameidata *nd)
860 {
861 dput(path->dentry);
862 if (path->mnt != nd->path.mnt)
863 mntput(path->mnt);
864 }
865
866 static inline void path_to_nameidata(const struct path *path,
867 struct nameidata *nd)
868 {
869 if (!(nd->flags & LOOKUP_RCU)) {
870 dput(nd->path.dentry);
871 if (nd->path.mnt != path->mnt)
872 mntput(nd->path.mnt);
873 }
874 nd->path.mnt = path->mnt;
875 nd->path.dentry = path->dentry;
876 }
877
878 static int nd_jump_root(struct nameidata *nd)
879 {
880 if (nd->flags & LOOKUP_RCU) {
881 struct dentry *d;
882 nd->path = nd->root;
883 d = nd->path.dentry;
884 nd->inode = d->d_inode;
885 nd->seq = nd->root_seq;
886 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
887 return -ECHILD;
888 } else {
889 path_put(&nd->path);
890 nd->path = nd->root;
891 path_get(&nd->path);
892 nd->inode = nd->path.dentry->d_inode;
893 }
894 nd->flags |= LOOKUP_JUMPED;
895 return 0;
896 }
897
898 /*
899 * Helper to directly jump to a known parsed path from ->get_link,
900 * caller must have taken a reference to path beforehand.
901 */
902 void nd_jump_link(struct path *path)
903 {
904 struct nameidata *nd = current->nameidata;
905 path_put(&nd->path);
906
907 nd->path = *path;
908 nd->inode = nd->path.dentry->d_inode;
909 nd->flags |= LOOKUP_JUMPED;
910 }
911
912 static inline void put_link(struct nameidata *nd)
913 {
914 struct saved *last = nd->stack + --nd->depth;
915 do_delayed_call(&last->done);
916 if (!(nd->flags & LOOKUP_RCU))
917 path_put(&last->link);
918 }
919
920 int sysctl_protected_symlinks __read_mostly = 0;
921 int sysctl_protected_hardlinks __read_mostly = 0;
922 int sysctl_protected_fifos __read_mostly;
923 int sysctl_protected_regular __read_mostly;
924
925 /**
926 * may_follow_link - Check symlink following for unsafe situations
927 * @nd: nameidata pathwalk data
928 *
929 * In the case of the sysctl_protected_symlinks sysctl being enabled,
930 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
931 * in a sticky world-writable directory. This is to protect privileged
932 * processes from failing races against path names that may change out
933 * from under them by way of other users creating malicious symlinks.
934 * It will permit symlinks to be followed only when outside a sticky
935 * world-writable directory, or when the uid of the symlink and follower
936 * match, or when the directory owner matches the symlink's owner.
937 *
938 * Returns 0 if following the symlink is allowed, -ve on error.
939 */
940 static inline int may_follow_link(struct nameidata *nd)
941 {
942 const struct inode *inode;
943 const struct inode *parent;
944 kuid_t puid;
945
946 if (!sysctl_protected_symlinks)
947 return 0;
948
949 /* Allowed if owner and follower match. */
950 inode = nd->link_inode;
951 if (uid_eq(current_cred()->fsuid, inode->i_uid))
952 return 0;
953
954 /* Allowed if parent directory not sticky and world-writable. */
955 parent = nd->inode;
956 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
957 return 0;
958
959 /* Allowed if parent directory and link owner match. */
960 puid = parent->i_uid;
961 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
962 return 0;
963
964 if (nd->flags & LOOKUP_RCU)
965 return -ECHILD;
966
967 audit_log_link_denied("follow_link", &nd->stack[0].link);
968 return -EACCES;
969 }
970
971 /**
972 * safe_hardlink_source - Check for safe hardlink conditions
973 * @inode: the source inode to hardlink from
974 *
975 * Return false if at least one of the following conditions:
976 * - inode is not a regular file
977 * - inode is setuid
978 * - inode is setgid and group-exec
979 * - access failure for read and write
980 *
981 * Otherwise returns true.
982 */
983 static bool safe_hardlink_source(struct inode *inode)
984 {
985 umode_t mode = inode->i_mode;
986
987 /* Special files should not get pinned to the filesystem. */
988 if (!S_ISREG(mode))
989 return false;
990
991 /* Setuid files should not get pinned to the filesystem. */
992 if (mode & S_ISUID)
993 return false;
994
995 /* Executable setgid files should not get pinned to the filesystem. */
996 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
997 return false;
998
999 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1000 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1001 return false;
1002
1003 return true;
1004 }
1005
1006 /**
1007 * may_linkat - Check permissions for creating a hardlink
1008 * @link: the source to hardlink from
1009 *
1010 * Block hardlink when all of:
1011 * - sysctl_protected_hardlinks enabled
1012 * - fsuid does not match inode
1013 * - hardlink source is unsafe (see safe_hardlink_source() above)
1014 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1015 *
1016 * Returns 0 if successful, -ve on error.
1017 */
1018 static int may_linkat(struct path *link)
1019 {
1020 struct inode *inode;
1021
1022 if (!sysctl_protected_hardlinks)
1023 return 0;
1024
1025 inode = link->dentry->d_inode;
1026
1027 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1028 * otherwise, it must be a safe source.
1029 */
1030 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1031 return 0;
1032
1033 audit_log_link_denied("linkat", link);
1034 return -EPERM;
1035 }
1036
1037 /**
1038 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1039 * should be allowed, or not, on files that already
1040 * exist.
1041 * @dir_mode: mode bits of directory
1042 * @dir_uid: owner of directory
1043 * @inode: the inode of the file to open
1044 *
1045 * Block an O_CREAT open of a FIFO (or a regular file) when:
1046 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1047 * - the file already exists
1048 * - we are in a sticky directory
1049 * - we don't own the file
1050 * - the owner of the directory doesn't own the file
1051 * - the directory is world writable
1052 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1053 * the directory doesn't have to be world writable: being group writable will
1054 * be enough.
1055 *
1056 * Returns 0 if the open is allowed, -ve on error.
1057 */
1058 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1059 struct inode * const inode)
1060 {
1061 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1062 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1063 likely(!(dir_mode & S_ISVTX)) ||
1064 uid_eq(inode->i_uid, dir_uid) ||
1065 uid_eq(current_fsuid(), inode->i_uid))
1066 return 0;
1067
1068 if (likely(dir_mode & 0002) ||
1069 (dir_mode & 0020 &&
1070 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1071 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1072 return -EACCES;
1073 }
1074 return 0;
1075 }
1076
1077 static __always_inline
1078 const char *get_link(struct nameidata *nd)
1079 {
1080 struct saved *last = nd->stack + nd->depth - 1;
1081 struct dentry *dentry = last->link.dentry;
1082 struct inode *inode = nd->link_inode;
1083 int error;
1084 const char *res;
1085
1086 if (!(nd->flags & LOOKUP_RCU)) {
1087 touch_atime(&last->link);
1088 cond_resched();
1089 } else if (atime_needs_update_rcu(&last->link, inode)) {
1090 if (unlikely(unlazy_walk(nd)))
1091 return ERR_PTR(-ECHILD);
1092 touch_atime(&last->link);
1093 }
1094
1095 error = security_inode_follow_link(dentry, inode,
1096 nd->flags & LOOKUP_RCU);
1097 if (unlikely(error))
1098 return ERR_PTR(error);
1099
1100 nd->last_type = LAST_BIND;
1101 res = inode->i_link;
1102 if (!res) {
1103 const char * (*get)(struct dentry *, struct inode *,
1104 struct delayed_call *);
1105 get = inode->i_op->get_link;
1106 if (nd->flags & LOOKUP_RCU) {
1107 res = get(NULL, inode, &last->done);
1108 if (res == ERR_PTR(-ECHILD)) {
1109 if (unlikely(unlazy_walk(nd)))
1110 return ERR_PTR(-ECHILD);
1111 res = get(dentry, inode, &last->done);
1112 }
1113 } else {
1114 res = get(dentry, inode, &last->done);
1115 }
1116 if (IS_ERR_OR_NULL(res))
1117 return res;
1118 }
1119 if (*res == '/') {
1120 if (!nd->root.mnt)
1121 set_root(nd);
1122 if (unlikely(nd_jump_root(nd)))
1123 return ERR_PTR(-ECHILD);
1124 while (unlikely(*++res == '/'))
1125 ;
1126 }
1127 if (!*res)
1128 res = NULL;
1129 return res;
1130 }
1131
1132 /*
1133 * follow_up - Find the mountpoint of path's vfsmount
1134 *
1135 * Given a path, find the mountpoint of its source file system.
1136 * Replace @path with the path of the mountpoint in the parent mount.
1137 * Up is towards /.
1138 *
1139 * Return 1 if we went up a level and 0 if we were already at the
1140 * root.
1141 */
1142 int follow_up(struct path *path)
1143 {
1144 struct mount *mnt = real_mount(path->mnt);
1145 struct mount *parent;
1146 struct dentry *mountpoint;
1147
1148 read_seqlock_excl(&mount_lock);
1149 parent = mnt->mnt_parent;
1150 if (parent == mnt) {
1151 read_sequnlock_excl(&mount_lock);
1152 return 0;
1153 }
1154 mntget(&parent->mnt);
1155 mountpoint = dget(mnt->mnt_mountpoint);
1156 read_sequnlock_excl(&mount_lock);
1157 dput(path->dentry);
1158 path->dentry = mountpoint;
1159 mntput(path->mnt);
1160 path->mnt = &parent->mnt;
1161 return 1;
1162 }
1163 EXPORT_SYMBOL(follow_up);
1164
1165 /*
1166 * Perform an automount
1167 * - return -EISDIR to tell follow_managed() to stop and return the path we
1168 * were called with.
1169 */
1170 static int follow_automount(struct path *path, struct nameidata *nd,
1171 bool *need_mntput)
1172 {
1173 struct vfsmount *mnt;
1174 int err;
1175
1176 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1177 return -EREMOTE;
1178
1179 /* We don't want to mount if someone's just doing a stat -
1180 * unless they're stat'ing a directory and appended a '/' to
1181 * the name.
1182 *
1183 * We do, however, want to mount if someone wants to open or
1184 * create a file of any type under the mountpoint, wants to
1185 * traverse through the mountpoint or wants to open the
1186 * mounted directory. Also, autofs may mark negative dentries
1187 * as being automount points. These will need the attentions
1188 * of the daemon to instantiate them before they can be used.
1189 */
1190 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 path->dentry->d_inode)
1193 return -EISDIR;
1194
1195 nd->total_link_count++;
1196 if (nd->total_link_count >= 40)
1197 return -ELOOP;
1198
1199 mnt = path->dentry->d_op->d_automount(path);
1200 if (IS_ERR(mnt)) {
1201 /*
1202 * The filesystem is allowed to return -EISDIR here to indicate
1203 * it doesn't want to automount. For instance, autofs would do
1204 * this so that its userspace daemon can mount on this dentry.
1205 *
1206 * However, we can only permit this if it's a terminal point in
1207 * the path being looked up; if it wasn't then the remainder of
1208 * the path is inaccessible and we should say so.
1209 */
1210 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1211 return -EREMOTE;
1212 return PTR_ERR(mnt);
1213 }
1214
1215 if (!mnt) /* mount collision */
1216 return 0;
1217
1218 if (!*need_mntput) {
1219 /* lock_mount() may release path->mnt on error */
1220 mntget(path->mnt);
1221 *need_mntput = true;
1222 }
1223 err = finish_automount(mnt, path);
1224
1225 switch (err) {
1226 case -EBUSY:
1227 /* Someone else made a mount here whilst we were busy */
1228 return 0;
1229 case 0:
1230 path_put(path);
1231 path->mnt = mnt;
1232 path->dentry = dget(mnt->mnt_root);
1233 return 0;
1234 default:
1235 return err;
1236 }
1237
1238 }
1239
1240 /*
1241 * Handle a dentry that is managed in some way.
1242 * - Flagged for transit management (autofs)
1243 * - Flagged as mountpoint
1244 * - Flagged as automount point
1245 *
1246 * This may only be called in refwalk mode.
1247 *
1248 * Serialization is taken care of in namespace.c
1249 */
1250 static int follow_managed(struct path *path, struct nameidata *nd)
1251 {
1252 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1253 unsigned managed;
1254 bool need_mntput = false;
1255 int ret = 0;
1256
1257 /* Given that we're not holding a lock here, we retain the value in a
1258 * local variable for each dentry as we look at it so that we don't see
1259 * the components of that value change under us */
1260 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1261 managed &= DCACHE_MANAGED_DENTRY,
1262 unlikely(managed != 0)) {
1263 /* Allow the filesystem to manage the transit without i_mutex
1264 * being held. */
1265 if (managed & DCACHE_MANAGE_TRANSIT) {
1266 BUG_ON(!path->dentry->d_op);
1267 BUG_ON(!path->dentry->d_op->d_manage);
1268 ret = path->dentry->d_op->d_manage(path, false);
1269 if (ret < 0)
1270 break;
1271 }
1272
1273 /* Transit to a mounted filesystem. */
1274 if (managed & DCACHE_MOUNTED) {
1275 struct vfsmount *mounted = lookup_mnt(path);
1276 if (mounted) {
1277 dput(path->dentry);
1278 if (need_mntput)
1279 mntput(path->mnt);
1280 path->mnt = mounted;
1281 path->dentry = dget(mounted->mnt_root);
1282 need_mntput = true;
1283 continue;
1284 }
1285
1286 /* Something is mounted on this dentry in another
1287 * namespace and/or whatever was mounted there in this
1288 * namespace got unmounted before lookup_mnt() could
1289 * get it */
1290 }
1291
1292 /* Handle an automount point */
1293 if (managed & DCACHE_NEED_AUTOMOUNT) {
1294 ret = follow_automount(path, nd, &need_mntput);
1295 if (ret < 0)
1296 break;
1297 continue;
1298 }
1299
1300 /* We didn't change the current path point */
1301 break;
1302 }
1303
1304 if (need_mntput && path->mnt == mnt)
1305 mntput(path->mnt);
1306 if (ret == -EISDIR || !ret)
1307 ret = 1;
1308 if (need_mntput)
1309 nd->flags |= LOOKUP_JUMPED;
1310 if (unlikely(ret < 0))
1311 path_put_conditional(path, nd);
1312 return ret;
1313 }
1314
1315 int follow_down_one(struct path *path)
1316 {
1317 struct vfsmount *mounted;
1318
1319 mounted = lookup_mnt(path);
1320 if (mounted) {
1321 dput(path->dentry);
1322 mntput(path->mnt);
1323 path->mnt = mounted;
1324 path->dentry = dget(mounted->mnt_root);
1325 return 1;
1326 }
1327 return 0;
1328 }
1329 EXPORT_SYMBOL(follow_down_one);
1330
1331 static inline int managed_dentry_rcu(const struct path *path)
1332 {
1333 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1334 path->dentry->d_op->d_manage(path, true) : 0;
1335 }
1336
1337 /*
1338 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1339 * we meet a managed dentry that would need blocking.
1340 */
1341 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1342 struct inode **inode, unsigned *seqp)
1343 {
1344 for (;;) {
1345 struct mount *mounted;
1346 /*
1347 * Don't forget we might have a non-mountpoint managed dentry
1348 * that wants to block transit.
1349 */
1350 switch (managed_dentry_rcu(path)) {
1351 case -ECHILD:
1352 default:
1353 return false;
1354 case -EISDIR:
1355 return true;
1356 case 0:
1357 break;
1358 }
1359
1360 if (!d_mountpoint(path->dentry))
1361 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1362
1363 mounted = __lookup_mnt(path->mnt, path->dentry);
1364 if (!mounted)
1365 break;
1366 path->mnt = &mounted->mnt;
1367 path->dentry = mounted->mnt.mnt_root;
1368 nd->flags |= LOOKUP_JUMPED;
1369 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1370 /*
1371 * Update the inode too. We don't need to re-check the
1372 * dentry sequence number here after this d_inode read,
1373 * because a mount-point is always pinned.
1374 */
1375 *inode = path->dentry->d_inode;
1376 }
1377 return !read_seqretry(&mount_lock, nd->m_seq) &&
1378 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1379 }
1380
1381 static int follow_dotdot_rcu(struct nameidata *nd)
1382 {
1383 struct inode *inode = nd->inode;
1384
1385 while (1) {
1386 if (path_equal(&nd->path, &nd->root))
1387 break;
1388 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1389 struct dentry *old = nd->path.dentry;
1390 struct dentry *parent = old->d_parent;
1391 unsigned seq;
1392
1393 inode = parent->d_inode;
1394 seq = read_seqcount_begin(&parent->d_seq);
1395 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1396 return -ECHILD;
1397 nd->path.dentry = parent;
1398 nd->seq = seq;
1399 if (unlikely(!path_connected(&nd->path)))
1400 return -ENOENT;
1401 break;
1402 } else {
1403 struct mount *mnt = real_mount(nd->path.mnt);
1404 struct mount *mparent = mnt->mnt_parent;
1405 struct dentry *mountpoint = mnt->mnt_mountpoint;
1406 struct inode *inode2 = mountpoint->d_inode;
1407 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1408 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1409 return -ECHILD;
1410 if (&mparent->mnt == nd->path.mnt)
1411 break;
1412 /* we know that mountpoint was pinned */
1413 nd->path.dentry = mountpoint;
1414 nd->path.mnt = &mparent->mnt;
1415 inode = inode2;
1416 nd->seq = seq;
1417 }
1418 }
1419 while (unlikely(d_mountpoint(nd->path.dentry))) {
1420 struct mount *mounted;
1421 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1422 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1423 return -ECHILD;
1424 if (!mounted)
1425 break;
1426 nd->path.mnt = &mounted->mnt;
1427 nd->path.dentry = mounted->mnt.mnt_root;
1428 inode = nd->path.dentry->d_inode;
1429 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1430 }
1431 nd->inode = inode;
1432 return 0;
1433 }
1434
1435 /*
1436 * Follow down to the covering mount currently visible to userspace. At each
1437 * point, the filesystem owning that dentry may be queried as to whether the
1438 * caller is permitted to proceed or not.
1439 */
1440 int follow_down(struct path *path)
1441 {
1442 unsigned managed;
1443 int ret;
1444
1445 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1446 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1447 /* Allow the filesystem to manage the transit without i_mutex
1448 * being held.
1449 *
1450 * We indicate to the filesystem if someone is trying to mount
1451 * something here. This gives autofs the chance to deny anyone
1452 * other than its daemon the right to mount on its
1453 * superstructure.
1454 *
1455 * The filesystem may sleep at this point.
1456 */
1457 if (managed & DCACHE_MANAGE_TRANSIT) {
1458 BUG_ON(!path->dentry->d_op);
1459 BUG_ON(!path->dentry->d_op->d_manage);
1460 ret = path->dentry->d_op->d_manage(path, false);
1461 if (ret < 0)
1462 return ret == -EISDIR ? 0 : ret;
1463 }
1464
1465 /* Transit to a mounted filesystem. */
1466 if (managed & DCACHE_MOUNTED) {
1467 struct vfsmount *mounted = lookup_mnt(path);
1468 if (!mounted)
1469 break;
1470 dput(path->dentry);
1471 mntput(path->mnt);
1472 path->mnt = mounted;
1473 path->dentry = dget(mounted->mnt_root);
1474 continue;
1475 }
1476
1477 /* Don't handle automount points here */
1478 break;
1479 }
1480 return 0;
1481 }
1482 EXPORT_SYMBOL(follow_down);
1483
1484 /*
1485 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1486 */
1487 static void follow_mount(struct path *path)
1488 {
1489 while (d_mountpoint(path->dentry)) {
1490 struct vfsmount *mounted = lookup_mnt(path);
1491 if (!mounted)
1492 break;
1493 dput(path->dentry);
1494 mntput(path->mnt);
1495 path->mnt = mounted;
1496 path->dentry = dget(mounted->mnt_root);
1497 }
1498 }
1499
1500 static int path_parent_directory(struct path *path)
1501 {
1502 struct dentry *old = path->dentry;
1503 /* rare case of legitimate dget_parent()... */
1504 path->dentry = dget_parent(path->dentry);
1505 dput(old);
1506 if (unlikely(!path_connected(path)))
1507 return -ENOENT;
1508 return 0;
1509 }
1510
1511 static int follow_dotdot(struct nameidata *nd)
1512 {
1513 while(1) {
1514 if (nd->path.dentry == nd->root.dentry &&
1515 nd->path.mnt == nd->root.mnt) {
1516 break;
1517 }
1518 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1519 int ret = path_parent_directory(&nd->path);
1520 if (ret)
1521 return ret;
1522 break;
1523 }
1524 if (!follow_up(&nd->path))
1525 break;
1526 }
1527 follow_mount(&nd->path);
1528 nd->inode = nd->path.dentry->d_inode;
1529 return 0;
1530 }
1531
1532 /*
1533 * This looks up the name in dcache and possibly revalidates the found dentry.
1534 * NULL is returned if the dentry does not exist in the cache.
1535 */
1536 static struct dentry *lookup_dcache(const struct qstr *name,
1537 struct dentry *dir,
1538 unsigned int flags)
1539 {
1540 struct dentry *dentry = d_lookup(dir, name);
1541 if (dentry) {
1542 int error = d_revalidate(dentry, flags);
1543 if (unlikely(error <= 0)) {
1544 if (!error)
1545 d_invalidate(dentry);
1546 dput(dentry);
1547 return ERR_PTR(error);
1548 }
1549 }
1550 return dentry;
1551 }
1552
1553 /*
1554 * Call i_op->lookup on the dentry. The dentry must be negative and
1555 * unhashed.
1556 *
1557 * dir->d_inode->i_mutex must be held
1558 */
1559 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1560 unsigned int flags)
1561 {
1562 struct dentry *old;
1563
1564 /* Don't create child dentry for a dead directory. */
1565 if (unlikely(IS_DEADDIR(dir))) {
1566 dput(dentry);
1567 return ERR_PTR(-ENOENT);
1568 }
1569
1570 old = dir->i_op->lookup(dir, dentry, flags);
1571 if (unlikely(old)) {
1572 dput(dentry);
1573 dentry = old;
1574 }
1575 return dentry;
1576 }
1577
1578 static struct dentry *__lookup_hash(const struct qstr *name,
1579 struct dentry *base, unsigned int flags)
1580 {
1581 struct dentry *dentry = lookup_dcache(name, base, flags);
1582
1583 if (dentry)
1584 return dentry;
1585
1586 dentry = d_alloc(base, name);
1587 if (unlikely(!dentry))
1588 return ERR_PTR(-ENOMEM);
1589
1590 return lookup_real(base->d_inode, dentry, flags);
1591 }
1592
1593 static int lookup_fast(struct nameidata *nd,
1594 struct path *path, struct inode **inode,
1595 unsigned *seqp)
1596 {
1597 struct vfsmount *mnt = nd->path.mnt;
1598 struct dentry *dentry, *parent = nd->path.dentry;
1599 int status = 1;
1600 int err;
1601
1602 /*
1603 * Rename seqlock is not required here because in the off chance
1604 * of a false negative due to a concurrent rename, the caller is
1605 * going to fall back to non-racy lookup.
1606 */
1607 if (nd->flags & LOOKUP_RCU) {
1608 unsigned seq;
1609 bool negative;
1610 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1611 if (unlikely(!dentry)) {
1612 if (unlazy_walk(nd))
1613 return -ECHILD;
1614 return 0;
1615 }
1616
1617 /*
1618 * This sequence count validates that the inode matches
1619 * the dentry name information from lookup.
1620 */
1621 *inode = d_backing_inode(dentry);
1622 negative = d_is_negative(dentry);
1623 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1624 return -ECHILD;
1625
1626 /*
1627 * This sequence count validates that the parent had no
1628 * changes while we did the lookup of the dentry above.
1629 *
1630 * The memory barrier in read_seqcount_begin of child is
1631 * enough, we can use __read_seqcount_retry here.
1632 */
1633 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1634 return -ECHILD;
1635
1636 *seqp = seq;
1637 status = d_revalidate(dentry, nd->flags);
1638 if (likely(status > 0)) {
1639 /*
1640 * Note: do negative dentry check after revalidation in
1641 * case that drops it.
1642 */
1643 if (unlikely(negative))
1644 return -ENOENT;
1645 path->mnt = mnt;
1646 path->dentry = dentry;
1647 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1648 return 1;
1649 }
1650 if (unlazy_child(nd, dentry, seq))
1651 return -ECHILD;
1652 if (unlikely(status == -ECHILD))
1653 /* we'd been told to redo it in non-rcu mode */
1654 status = d_revalidate(dentry, nd->flags);
1655 } else {
1656 dentry = __d_lookup(parent, &nd->last);
1657 if (unlikely(!dentry))
1658 return 0;
1659 status = d_revalidate(dentry, nd->flags);
1660 }
1661 if (unlikely(status <= 0)) {
1662 if (!status)
1663 d_invalidate(dentry);
1664 dput(dentry);
1665 return status;
1666 }
1667 if (unlikely(d_is_negative(dentry))) {
1668 dput(dentry);
1669 return -ENOENT;
1670 }
1671
1672 path->mnt = mnt;
1673 path->dentry = dentry;
1674 err = follow_managed(path, nd);
1675 if (likely(err > 0))
1676 *inode = d_backing_inode(path->dentry);
1677 return err;
1678 }
1679
1680 /* Fast lookup failed, do it the slow way */
1681 static struct dentry *lookup_slow(const struct qstr *name,
1682 struct dentry *dir,
1683 unsigned int flags)
1684 {
1685 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1686 struct inode *inode = dir->d_inode;
1687 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1688
1689 inode_lock_shared(inode);
1690 /* Don't go there if it's already dead */
1691 if (unlikely(IS_DEADDIR(inode)))
1692 goto out;
1693 again:
1694 dentry = d_alloc_parallel(dir, name, &wq);
1695 if (IS_ERR(dentry))
1696 goto out;
1697 if (unlikely(!d_in_lookup(dentry))) {
1698 if (!(flags & LOOKUP_NO_REVAL)) {
1699 int error = d_revalidate(dentry, flags);
1700 if (unlikely(error <= 0)) {
1701 if (!error) {
1702 d_invalidate(dentry);
1703 dput(dentry);
1704 goto again;
1705 }
1706 dput(dentry);
1707 dentry = ERR_PTR(error);
1708 }
1709 }
1710 } else {
1711 old = inode->i_op->lookup(inode, dentry, flags);
1712 d_lookup_done(dentry);
1713 if (unlikely(old)) {
1714 dput(dentry);
1715 dentry = old;
1716 }
1717 }
1718 out:
1719 inode_unlock_shared(inode);
1720 return dentry;
1721 }
1722
1723 static inline int may_lookup(struct nameidata *nd)
1724 {
1725 if (nd->flags & LOOKUP_RCU) {
1726 int err = inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1727 if (err != -ECHILD)
1728 return err;
1729 if (unlazy_walk(nd))
1730 return -ECHILD;
1731 }
1732 return inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC);
1733 }
1734
1735 static inline int handle_dots(struct nameidata *nd, int type)
1736 {
1737 if (type == LAST_DOTDOT) {
1738 if (!nd->root.mnt)
1739 set_root(nd);
1740 if (nd->flags & LOOKUP_RCU) {
1741 return follow_dotdot_rcu(nd);
1742 } else
1743 return follow_dotdot(nd);
1744 }
1745 return 0;
1746 }
1747
1748 static int pick_link(struct nameidata *nd, struct path *link,
1749 struct inode *inode, unsigned seq)
1750 {
1751 int error;
1752 struct saved *last;
1753 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1754 path_to_nameidata(link, nd);
1755 return -ELOOP;
1756 }
1757 if (!(nd->flags & LOOKUP_RCU)) {
1758 if (link->mnt == nd->path.mnt)
1759 mntget(link->mnt);
1760 }
1761 error = nd_alloc_stack(nd);
1762 if (unlikely(error)) {
1763 if (error == -ECHILD) {
1764 if (unlikely(!legitimize_path(nd, link, seq))) {
1765 drop_links(nd);
1766 nd->depth = 0;
1767 nd->flags &= ~LOOKUP_RCU;
1768 nd->path.mnt = NULL;
1769 nd->path.dentry = NULL;
1770 if (!(nd->flags & LOOKUP_ROOT))
1771 nd->root.mnt = NULL;
1772 rcu_read_unlock();
1773 } else if (likely(unlazy_walk(nd)) == 0)
1774 error = nd_alloc_stack(nd);
1775 }
1776 if (error) {
1777 path_put(link);
1778 return error;
1779 }
1780 }
1781
1782 last = nd->stack + nd->depth++;
1783 last->link = *link;
1784 clear_delayed_call(&last->done);
1785 nd->link_inode = inode;
1786 last->seq = seq;
1787 return 1;
1788 }
1789
1790 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1791
1792 /*
1793 * Do we need to follow links? We _really_ want to be able
1794 * to do this check without having to look at inode->i_op,
1795 * so we keep a cache of "no, this doesn't need follow_link"
1796 * for the common case.
1797 */
1798 static inline int step_into(struct nameidata *nd, struct path *path,
1799 int flags, struct inode *inode, unsigned seq)
1800 {
1801 if (!(flags & WALK_MORE) && nd->depth)
1802 put_link(nd);
1803 if (likely(!d_is_symlink(path->dentry)) ||
1804 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1805 /* not a symlink or should not follow */
1806 path_to_nameidata(path, nd);
1807 nd->inode = inode;
1808 nd->seq = seq;
1809 return 0;
1810 }
1811 /* make sure that d_is_symlink above matches inode */
1812 if (nd->flags & LOOKUP_RCU) {
1813 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1814 return -ECHILD;
1815 }
1816 return pick_link(nd, path, inode, seq);
1817 }
1818
1819 static int walk_component(struct nameidata *nd, int flags)
1820 {
1821 struct path path;
1822 struct inode *inode;
1823 unsigned seq;
1824 int err;
1825 /*
1826 * "." and ".." are special - ".." especially so because it has
1827 * to be able to know about the current root directory and
1828 * parent relationships.
1829 */
1830 if (unlikely(nd->last_type != LAST_NORM)) {
1831 err = handle_dots(nd, nd->last_type);
1832 if (!(flags & WALK_MORE) && nd->depth)
1833 put_link(nd);
1834 return err;
1835 }
1836 err = lookup_fast(nd, &path, &inode, &seq);
1837 if (unlikely(err <= 0)) {
1838 if (err < 0)
1839 return err;
1840 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1841 nd->flags);
1842 if (IS_ERR(path.dentry))
1843 return PTR_ERR(path.dentry);
1844
1845 path.mnt = nd->path.mnt;
1846 err = follow_managed(&path, nd);
1847 if (unlikely(err < 0))
1848 return err;
1849
1850 if (unlikely(d_is_negative(path.dentry))) {
1851 path_to_nameidata(&path, nd);
1852 return -ENOENT;
1853 }
1854
1855 seq = 0; /* we are already out of RCU mode */
1856 inode = d_backing_inode(path.dentry);
1857 }
1858
1859 return step_into(nd, &path, flags, inode, seq);
1860 }
1861
1862 /*
1863 * We can do the critical dentry name comparison and hashing
1864 * operations one word at a time, but we are limited to:
1865 *
1866 * - Architectures with fast unaligned word accesses. We could
1867 * do a "get_unaligned()" if this helps and is sufficiently
1868 * fast.
1869 *
1870 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1871 * do not trap on the (extremely unlikely) case of a page
1872 * crossing operation.
1873 *
1874 * - Furthermore, we need an efficient 64-bit compile for the
1875 * 64-bit case in order to generate the "number of bytes in
1876 * the final mask". Again, that could be replaced with a
1877 * efficient population count instruction or similar.
1878 */
1879 #ifdef CONFIG_DCACHE_WORD_ACCESS
1880
1881 #include <asm/word-at-a-time.h>
1882
1883 #ifdef HASH_MIX
1884
1885 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1886
1887 #elif defined(CONFIG_64BIT)
1888 /*
1889 * Register pressure in the mixing function is an issue, particularly
1890 * on 32-bit x86, but almost any function requires one state value and
1891 * one temporary. Instead, use a function designed for two state values
1892 * and no temporaries.
1893 *
1894 * This function cannot create a collision in only two iterations, so
1895 * we have two iterations to achieve avalanche. In those two iterations,
1896 * we have six layers of mixing, which is enough to spread one bit's
1897 * influence out to 2^6 = 64 state bits.
1898 *
1899 * Rotate constants are scored by considering either 64 one-bit input
1900 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1901 * probability of that delta causing a change to each of the 128 output
1902 * bits, using a sample of random initial states.
1903 *
1904 * The Shannon entropy of the computed probabilities is then summed
1905 * to produce a score. Ideally, any input change has a 50% chance of
1906 * toggling any given output bit.
1907 *
1908 * Mixing scores (in bits) for (12,45):
1909 * Input delta: 1-bit 2-bit
1910 * 1 round: 713.3 42542.6
1911 * 2 rounds: 2753.7 140389.8
1912 * 3 rounds: 5954.1 233458.2
1913 * 4 rounds: 7862.6 256672.2
1914 * Perfect: 8192 258048
1915 * (64*128) (64*63/2 * 128)
1916 */
1917 #define HASH_MIX(x, y, a) \
1918 ( x ^= (a), \
1919 y ^= x, x = rol64(x,12),\
1920 x += y, y = rol64(y,45),\
1921 y *= 9 )
1922
1923 /*
1924 * Fold two longs into one 32-bit hash value. This must be fast, but
1925 * latency isn't quite as critical, as there is a fair bit of additional
1926 * work done before the hash value is used.
1927 */
1928 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1929 {
1930 y ^= x * GOLDEN_RATIO_64;
1931 y *= GOLDEN_RATIO_64;
1932 return y >> 32;
1933 }
1934
1935 #else /* 32-bit case */
1936
1937 /*
1938 * Mixing scores (in bits) for (7,20):
1939 * Input delta: 1-bit 2-bit
1940 * 1 round: 330.3 9201.6
1941 * 2 rounds: 1246.4 25475.4
1942 * 3 rounds: 1907.1 31295.1
1943 * 4 rounds: 2042.3 31718.6
1944 * Perfect: 2048 31744
1945 * (32*64) (32*31/2 * 64)
1946 */
1947 #define HASH_MIX(x, y, a) \
1948 ( x ^= (a), \
1949 y ^= x, x = rol32(x, 7),\
1950 x += y, y = rol32(y,20),\
1951 y *= 9 )
1952
1953 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1954 {
1955 /* Use arch-optimized multiply if one exists */
1956 return __hash_32(y ^ __hash_32(x));
1957 }
1958
1959 #endif
1960
1961 /*
1962 * Return the hash of a string of known length. This is carfully
1963 * designed to match hash_name(), which is the more critical function.
1964 * In particular, we must end by hashing a final word containing 0..7
1965 * payload bytes, to match the way that hash_name() iterates until it
1966 * finds the delimiter after the name.
1967 */
1968 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1969 {
1970 unsigned long a, x = 0, y = (unsigned long)salt;
1971
1972 for (;;) {
1973 if (!len)
1974 goto done;
1975 a = load_unaligned_zeropad(name);
1976 if (len < sizeof(unsigned long))
1977 break;
1978 HASH_MIX(x, y, a);
1979 name += sizeof(unsigned long);
1980 len -= sizeof(unsigned long);
1981 }
1982 x ^= a & bytemask_from_count(len);
1983 done:
1984 return fold_hash(x, y);
1985 }
1986 EXPORT_SYMBOL(full_name_hash);
1987
1988 /* Return the "hash_len" (hash and length) of a null-terminated string */
1989 u64 hashlen_string(const void *salt, const char *name)
1990 {
1991 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1992 unsigned long adata, mask, len;
1993 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1994
1995 len = 0;
1996 goto inside;
1997
1998 do {
1999 HASH_MIX(x, y, a);
2000 len += sizeof(unsigned long);
2001 inside:
2002 a = load_unaligned_zeropad(name+len);
2003 } while (!has_zero(a, &adata, &constants));
2004
2005 adata = prep_zero_mask(a, adata, &constants);
2006 mask = create_zero_mask(adata);
2007 x ^= a & zero_bytemask(mask);
2008
2009 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2010 }
2011 EXPORT_SYMBOL(hashlen_string);
2012
2013 /*
2014 * Calculate the length and hash of the path component, and
2015 * return the "hash_len" as the result.
2016 */
2017 static inline u64 hash_name(const void *salt, const char *name)
2018 {
2019 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2020 unsigned long adata, bdata, mask, len;
2021 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2022
2023 len = 0;
2024 goto inside;
2025
2026 do {
2027 HASH_MIX(x, y, a);
2028 len += sizeof(unsigned long);
2029 inside:
2030 a = load_unaligned_zeropad(name+len);
2031 b = a ^ REPEAT_BYTE('/');
2032 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2033
2034 adata = prep_zero_mask(a, adata, &constants);
2035 bdata = prep_zero_mask(b, bdata, &constants);
2036 mask = create_zero_mask(adata | bdata);
2037 x ^= a & zero_bytemask(mask);
2038
2039 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2040 }
2041
2042 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2043
2044 /* Return the hash of a string of known length */
2045 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2046 {
2047 unsigned long hash = init_name_hash(salt);
2048 while (len--)
2049 hash = partial_name_hash((unsigned char)*name++, hash);
2050 return end_name_hash(hash);
2051 }
2052 EXPORT_SYMBOL(full_name_hash);
2053
2054 /* Return the "hash_len" (hash and length) of a null-terminated string */
2055 u64 hashlen_string(const void *salt, const char *name)
2056 {
2057 unsigned long hash = init_name_hash(salt);
2058 unsigned long len = 0, c;
2059
2060 c = (unsigned char)*name;
2061 while (c) {
2062 len++;
2063 hash = partial_name_hash(c, hash);
2064 c = (unsigned char)name[len];
2065 }
2066 return hashlen_create(end_name_hash(hash), len);
2067 }
2068 EXPORT_SYMBOL(hashlen_string);
2069
2070 /*
2071 * We know there's a real path component here of at least
2072 * one character.
2073 */
2074 static inline u64 hash_name(const void *salt, const char *name)
2075 {
2076 unsigned long hash = init_name_hash(salt);
2077 unsigned long len = 0, c;
2078
2079 c = (unsigned char)*name;
2080 do {
2081 len++;
2082 hash = partial_name_hash(c, hash);
2083 c = (unsigned char)name[len];
2084 } while (c && c != '/');
2085 return hashlen_create(end_name_hash(hash), len);
2086 }
2087
2088 #endif
2089
2090 /*
2091 * Name resolution.
2092 * This is the basic name resolution function, turning a pathname into
2093 * the final dentry. We expect 'base' to be positive and a directory.
2094 *
2095 * Returns 0 and nd will have valid dentry and mnt on success.
2096 * Returns error and drops reference to input namei data on failure.
2097 */
2098 static int link_path_walk(const char *name, struct nameidata *nd)
2099 {
2100 int err;
2101
2102 while (*name=='/')
2103 name++;
2104 if (!*name)
2105 return 0;
2106
2107 /* At this point we know we have a real path component. */
2108 for(;;) {
2109 u64 hash_len;
2110 int type;
2111
2112 err = may_lookup(nd);
2113 if (err)
2114 return err;
2115
2116 hash_len = hash_name(nd->path.dentry, name);
2117
2118 type = LAST_NORM;
2119 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2120 case 2:
2121 if (name[1] == '.') {
2122 type = LAST_DOTDOT;
2123 nd->flags |= LOOKUP_JUMPED;
2124 }
2125 break;
2126 case 1:
2127 type = LAST_DOT;
2128 }
2129 if (likely(type == LAST_NORM)) {
2130 struct dentry *parent = nd->path.dentry;
2131 nd->flags &= ~LOOKUP_JUMPED;
2132 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2133 struct qstr this = { { .hash_len = hash_len }, .name = name };
2134 err = parent->d_op->d_hash(parent, &this);
2135 if (err < 0)
2136 return err;
2137 hash_len = this.hash_len;
2138 name = this.name;
2139 }
2140 }
2141
2142 nd->last.hash_len = hash_len;
2143 nd->last.name = name;
2144 nd->last_type = type;
2145
2146 name += hashlen_len(hash_len);
2147 if (!*name)
2148 goto OK;
2149 /*
2150 * If it wasn't NUL, we know it was '/'. Skip that
2151 * slash, and continue until no more slashes.
2152 */
2153 do {
2154 name++;
2155 } while (unlikely(*name == '/'));
2156 if (unlikely(!*name)) {
2157 OK:
2158 /* pathname body, done */
2159 if (!nd->depth)
2160 return 0;
2161 name = nd->stack[nd->depth - 1].name;
2162 /* trailing symlink, done */
2163 if (!name)
2164 return 0;
2165 /* last component of nested symlink */
2166 err = walk_component(nd, WALK_FOLLOW);
2167 } else {
2168 /* not the last component */
2169 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2170 }
2171 if (err < 0)
2172 return err;
2173
2174 if (err) {
2175 const char *s = get_link(nd);
2176
2177 if (IS_ERR(s))
2178 return PTR_ERR(s);
2179 err = 0;
2180 if (unlikely(!s)) {
2181 /* jumped */
2182 put_link(nd);
2183 } else {
2184 nd->stack[nd->depth - 1].name = name;
2185 name = s;
2186 continue;
2187 }
2188 }
2189 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2190 if (nd->flags & LOOKUP_RCU) {
2191 if (unlazy_walk(nd))
2192 return -ECHILD;
2193 }
2194 return -ENOTDIR;
2195 }
2196 }
2197 }
2198
2199 static const char *path_init(struct nameidata *nd, unsigned flags)
2200 {
2201 const char *s = nd->name->name;
2202
2203 if (!*s)
2204 flags &= ~LOOKUP_RCU;
2205
2206 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2207 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2208 nd->depth = 0;
2209 if (flags & LOOKUP_ROOT) {
2210 struct dentry *root = nd->root.dentry;
2211 struct inode *inode = root->d_inode;
2212 if (*s && unlikely(!d_can_lookup(root)))
2213 return ERR_PTR(-ENOTDIR);
2214 nd->path = nd->root;
2215 nd->inode = inode;
2216 if (flags & LOOKUP_RCU) {
2217 rcu_read_lock();
2218 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2219 nd->root_seq = nd->seq;
2220 nd->m_seq = read_seqbegin(&mount_lock);
2221 } else {
2222 path_get(&nd->path);
2223 }
2224 return s;
2225 }
2226
2227 nd->root.mnt = NULL;
2228 nd->path.mnt = NULL;
2229 nd->path.dentry = NULL;
2230
2231 nd->m_seq = read_seqbegin(&mount_lock);
2232 if (*s == '/') {
2233 if (flags & LOOKUP_RCU)
2234 rcu_read_lock();
2235 set_root(nd);
2236 if (likely(!nd_jump_root(nd)))
2237 return s;
2238 nd->root.mnt = NULL;
2239 rcu_read_unlock();
2240 return ERR_PTR(-ECHILD);
2241 } else if (nd->dfd == AT_FDCWD) {
2242 if (flags & LOOKUP_RCU) {
2243 struct fs_struct *fs = current->fs;
2244 unsigned seq;
2245
2246 rcu_read_lock();
2247
2248 do {
2249 seq = read_seqcount_begin(&fs->seq);
2250 nd->path = fs->pwd;
2251 nd->inode = nd->path.dentry->d_inode;
2252 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2253 } while (read_seqcount_retry(&fs->seq, seq));
2254 } else {
2255 get_fs_pwd(current->fs, &nd->path);
2256 nd->inode = nd->path.dentry->d_inode;
2257 }
2258 return s;
2259 } else {
2260 /* Caller must check execute permissions on the starting path component */
2261 struct fd f = fdget_raw(nd->dfd);
2262 struct dentry *dentry;
2263
2264 if (!f.file)
2265 return ERR_PTR(-EBADF);
2266
2267 dentry = f.file->f_path.dentry;
2268
2269 if (*s) {
2270 if (!d_can_lookup(dentry)) {
2271 fdput(f);
2272 return ERR_PTR(-ENOTDIR);
2273 }
2274 }
2275
2276 nd->path = f.file->f_path;
2277 if (flags & LOOKUP_RCU) {
2278 rcu_read_lock();
2279 nd->inode = nd->path.dentry->d_inode;
2280 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2281 } else {
2282 path_get(&nd->path);
2283 nd->inode = nd->path.dentry->d_inode;
2284 }
2285 fdput(f);
2286 return s;
2287 }
2288 }
2289
2290 static const char *trailing_symlink(struct nameidata *nd)
2291 {
2292 const char *s;
2293 int error = may_follow_link(nd);
2294 if (unlikely(error))
2295 return ERR_PTR(error);
2296 nd->flags |= LOOKUP_PARENT;
2297 nd->stack[0].name = NULL;
2298 s = get_link(nd);
2299 return s ? s : "";
2300 }
2301
2302 static inline int lookup_last(struct nameidata *nd)
2303 {
2304 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2305 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2306
2307 nd->flags &= ~LOOKUP_PARENT;
2308 return walk_component(nd, 0);
2309 }
2310
2311 static int handle_lookup_down(struct nameidata *nd)
2312 {
2313 struct path path = nd->path;
2314 struct inode *inode = nd->inode;
2315 unsigned seq = nd->seq;
2316 int err;
2317
2318 if (nd->flags & LOOKUP_RCU) {
2319 /*
2320 * don't bother with unlazy_walk on failure - we are
2321 * at the very beginning of walk, so we lose nothing
2322 * if we simply redo everything in non-RCU mode
2323 */
2324 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2325 return -ECHILD;
2326 } else {
2327 dget(path.dentry);
2328 err = follow_managed(&path, nd);
2329 if (unlikely(err < 0))
2330 return err;
2331 inode = d_backing_inode(path.dentry);
2332 seq = 0;
2333 }
2334 path_to_nameidata(&path, nd);
2335 nd->inode = inode;
2336 nd->seq = seq;
2337 return 0;
2338 }
2339
2340 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2341 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2342 {
2343 const char *s = path_init(nd, flags);
2344 int err;
2345
2346 if (IS_ERR(s))
2347 return PTR_ERR(s);
2348
2349 if (unlikely(flags & LOOKUP_DOWN)) {
2350 err = handle_lookup_down(nd);
2351 if (unlikely(err < 0)) {
2352 terminate_walk(nd);
2353 return err;
2354 }
2355 }
2356
2357 while (!(err = link_path_walk(s, nd))
2358 && ((err = lookup_last(nd)) > 0)) {
2359 s = trailing_symlink(nd);
2360 if (IS_ERR(s)) {
2361 err = PTR_ERR(s);
2362 break;
2363 }
2364 }
2365 if (!err)
2366 err = complete_walk(nd);
2367
2368 if (!err && nd->flags & LOOKUP_DIRECTORY)
2369 if (!d_can_lookup(nd->path.dentry))
2370 err = -ENOTDIR;
2371 if (!err) {
2372 *path = nd->path;
2373 nd->path.mnt = NULL;
2374 nd->path.dentry = NULL;
2375 }
2376 terminate_walk(nd);
2377 return err;
2378 }
2379
2380 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2381 struct path *path, struct path *root)
2382 {
2383 int retval;
2384 struct nameidata nd;
2385 if (IS_ERR(name))
2386 return PTR_ERR(name);
2387 if (unlikely(root)) {
2388 nd.root = *root;
2389 flags |= LOOKUP_ROOT;
2390 }
2391 set_nameidata(&nd, dfd, name);
2392 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2393 if (unlikely(retval == -ECHILD))
2394 retval = path_lookupat(&nd, flags, path);
2395 if (unlikely(retval == -ESTALE))
2396 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2397
2398 if (likely(!retval))
2399 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2400 restore_nameidata();
2401 putname(name);
2402 return retval;
2403 }
2404
2405 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2406 static int path_parentat(struct nameidata *nd, unsigned flags,
2407 struct path *parent)
2408 {
2409 const char *s = path_init(nd, flags);
2410 int err;
2411 if (IS_ERR(s))
2412 return PTR_ERR(s);
2413 err = link_path_walk(s, nd);
2414 if (!err)
2415 err = complete_walk(nd);
2416 if (!err) {
2417 *parent = nd->path;
2418 nd->path.mnt = NULL;
2419 nd->path.dentry = NULL;
2420 }
2421 terminate_walk(nd);
2422 return err;
2423 }
2424
2425 static struct filename *filename_parentat(int dfd, struct filename *name,
2426 unsigned int flags, struct path *parent,
2427 struct qstr *last, int *type)
2428 {
2429 int retval;
2430 struct nameidata nd;
2431
2432 if (IS_ERR(name))
2433 return name;
2434 set_nameidata(&nd, dfd, name);
2435 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2436 if (unlikely(retval == -ECHILD))
2437 retval = path_parentat(&nd, flags, parent);
2438 if (unlikely(retval == -ESTALE))
2439 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2440 if (likely(!retval)) {
2441 *last = nd.last;
2442 *type = nd.last_type;
2443 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2444 } else {
2445 putname(name);
2446 name = ERR_PTR(retval);
2447 }
2448 restore_nameidata();
2449 return name;
2450 }
2451
2452 /* does lookup, returns the object with parent locked */
2453 struct dentry *kern_path_locked(const char *name, struct path *path)
2454 {
2455 struct filename *filename;
2456 struct dentry *d;
2457 struct qstr last;
2458 int type;
2459
2460 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2461 &last, &type);
2462 if (IS_ERR(filename))
2463 return ERR_CAST(filename);
2464 if (unlikely(type != LAST_NORM)) {
2465 path_put(path);
2466 putname(filename);
2467 return ERR_PTR(-EINVAL);
2468 }
2469 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2470 d = __lookup_hash(&last, path->dentry, 0);
2471 if (IS_ERR(d)) {
2472 inode_unlock(path->dentry->d_inode);
2473 path_put(path);
2474 }
2475 putname(filename);
2476 return d;
2477 }
2478
2479 int kern_path(const char *name, unsigned int flags, struct path *path)
2480 {
2481 return filename_lookup(AT_FDCWD, getname_kernel(name),
2482 flags, path, NULL);
2483 }
2484 EXPORT_SYMBOL(kern_path);
2485
2486 /**
2487 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2488 * @dentry: pointer to dentry of the base directory
2489 * @mnt: pointer to vfs mount of the base directory
2490 * @name: pointer to file name
2491 * @flags: lookup flags
2492 * @path: pointer to struct path to fill
2493 */
2494 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2495 const char *name, unsigned int flags,
2496 struct path *path)
2497 {
2498 struct path root = {.mnt = mnt, .dentry = dentry};
2499 /* the first argument of filename_lookup() is ignored with root */
2500 return filename_lookup(AT_FDCWD, getname_kernel(name),
2501 flags , path, &root);
2502 }
2503 EXPORT_SYMBOL(vfs_path_lookup);
2504
2505 /**
2506 * lookup_one_len - filesystem helper to lookup single pathname component
2507 * @name: pathname component to lookup
2508 * @mnt: mount we are looking up on
2509 * @base: base directory to lookup from
2510 * @len: maximum length @len should be interpreted to
2511 *
2512 * Note that this routine is purely a helper for filesystem usage and should
2513 * not be called by generic code.
2514 *
2515 * The caller must hold base->i_mutex.
2516 */
2517 struct dentry *lookup_one_len2(const char *name, struct vfsmount *mnt, struct dentry *base, int len)
2518 {
2519 struct qstr this;
2520 unsigned int c;
2521 int err;
2522
2523 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2524
2525 this.name = name;
2526 this.len = len;
2527 this.hash = full_name_hash(base, name, len);
2528 if (!len)
2529 return ERR_PTR(-EACCES);
2530
2531 if (unlikely(name[0] == '.')) {
2532 if (len < 2 || (len == 2 && name[1] == '.'))
2533 return ERR_PTR(-EACCES);
2534 }
2535
2536 while (len--) {
2537 c = *(const unsigned char *)name++;
2538 if (c == '/' || c == '\0')
2539 return ERR_PTR(-EACCES);
2540 }
2541 /*
2542 * See if the low-level filesystem might want
2543 * to use its own hash..
2544 */
2545 if (base->d_flags & DCACHE_OP_HASH) {
2546 int err = base->d_op->d_hash(base, &this);
2547 if (err < 0)
2548 return ERR_PTR(err);
2549 }
2550
2551 err = inode_permission2(mnt, base->d_inode, MAY_EXEC);
2552 if (err)
2553 return ERR_PTR(err);
2554
2555 return __lookup_hash(&this, base, 0);
2556 }
2557 EXPORT_SYMBOL(lookup_one_len2);
2558
2559 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2560 {
2561 return lookup_one_len2(name, NULL, base, len);
2562 }
2563 EXPORT_SYMBOL(lookup_one_len);
2564
2565 /**
2566 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2567 * @name: pathname component to lookup
2568 * @base: base directory to lookup from
2569 * @len: maximum length @len should be interpreted to
2570 *
2571 * Note that this routine is purely a helper for filesystem usage and should
2572 * not be called by generic code.
2573 *
2574 * Unlike lookup_one_len, it should be called without the parent
2575 * i_mutex held, and will take the i_mutex itself if necessary.
2576 */
2577 struct dentry *lookup_one_len_unlocked(const char *name,
2578 struct dentry *base, int len)
2579 {
2580 struct qstr this;
2581 unsigned int c;
2582 int err;
2583 struct dentry *ret;
2584
2585 this.name = name;
2586 this.len = len;
2587 this.hash = full_name_hash(base, name, len);
2588 if (!len)
2589 return ERR_PTR(-EACCES);
2590
2591 if (unlikely(name[0] == '.')) {
2592 if (len < 2 || (len == 2 && name[1] == '.'))
2593 return ERR_PTR(-EACCES);
2594 }
2595
2596 while (len--) {
2597 c = *(const unsigned char *)name++;
2598 if (c == '/' || c == '\0')
2599 return ERR_PTR(-EACCES);
2600 }
2601 /*
2602 * See if the low-level filesystem might want
2603 * to use its own hash..
2604 */
2605 if (base->d_flags & DCACHE_OP_HASH) {
2606 int err = base->d_op->d_hash(base, &this);
2607 if (err < 0)
2608 return ERR_PTR(err);
2609 }
2610
2611 err = inode_permission(base->d_inode, MAY_EXEC);
2612 if (err)
2613 return ERR_PTR(err);
2614
2615 ret = lookup_dcache(&this, base, 0);
2616 if (!ret)
2617 ret = lookup_slow(&this, base, 0);
2618 return ret;
2619 }
2620 EXPORT_SYMBOL(lookup_one_len_unlocked);
2621
2622 #ifdef CONFIG_UNIX98_PTYS
2623 int path_pts(struct path *path)
2624 {
2625 /* Find something mounted on "pts" in the same directory as
2626 * the input path.
2627 */
2628 struct dentry *child, *parent;
2629 struct qstr this;
2630 int ret;
2631
2632 ret = path_parent_directory(path);
2633 if (ret)
2634 return ret;
2635
2636 parent = path->dentry;
2637 this.name = "pts";
2638 this.len = 3;
2639 child = d_hash_and_lookup(parent, &this);
2640 if (!child)
2641 return -ENOENT;
2642
2643 path->dentry = child;
2644 dput(parent);
2645 follow_mount(path);
2646 return 0;
2647 }
2648 #endif
2649
2650 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2651 struct path *path, int *empty)
2652 {
2653 return filename_lookup(dfd, getname_flags(name, flags, empty),
2654 flags, path, NULL);
2655 }
2656 EXPORT_SYMBOL(user_path_at_empty);
2657
2658 /**
2659 * mountpoint_last - look up last component for umount
2660 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2661 *
2662 * This is a special lookup_last function just for umount. In this case, we
2663 * need to resolve the path without doing any revalidation.
2664 *
2665 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2666 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2667 * in almost all cases, this lookup will be served out of the dcache. The only
2668 * cases where it won't are if nd->last refers to a symlink or the path is
2669 * bogus and it doesn't exist.
2670 *
2671 * Returns:
2672 * -error: if there was an error during lookup. This includes -ENOENT if the
2673 * lookup found a negative dentry.
2674 *
2675 * 0: if we successfully resolved nd->last and found it to not to be a
2676 * symlink that needs to be followed.
2677 *
2678 * 1: if we successfully resolved nd->last and found it to be a symlink
2679 * that needs to be followed.
2680 */
2681 static int
2682 mountpoint_last(struct nameidata *nd)
2683 {
2684 int error = 0;
2685 struct dentry *dir = nd->path.dentry;
2686 struct path path;
2687
2688 /* If we're in rcuwalk, drop out of it to handle last component */
2689 if (nd->flags & LOOKUP_RCU) {
2690 if (unlazy_walk(nd))
2691 return -ECHILD;
2692 }
2693
2694 nd->flags &= ~LOOKUP_PARENT;
2695
2696 if (unlikely(nd->last_type != LAST_NORM)) {
2697 error = handle_dots(nd, nd->last_type);
2698 if (error)
2699 return error;
2700 path.dentry = dget(nd->path.dentry);
2701 } else {
2702 path.dentry = d_lookup(dir, &nd->last);
2703 if (!path.dentry) {
2704 /*
2705 * No cached dentry. Mounted dentries are pinned in the
2706 * cache, so that means that this dentry is probably
2707 * a symlink or the path doesn't actually point
2708 * to a mounted dentry.
2709 */
2710 path.dentry = lookup_slow(&nd->last, dir,
2711 nd->flags | LOOKUP_NO_REVAL);
2712 if (IS_ERR(path.dentry))
2713 return PTR_ERR(path.dentry);
2714 }
2715 }
2716 if (d_is_negative(path.dentry)) {
2717 dput(path.dentry);
2718 return -ENOENT;
2719 }
2720 path.mnt = nd->path.mnt;
2721 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2722 }
2723
2724 /**
2725 * path_mountpoint - look up a path to be umounted
2726 * @nd: lookup context
2727 * @flags: lookup flags
2728 * @path: pointer to container for result
2729 *
2730 * Look up the given name, but don't attempt to revalidate the last component.
2731 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2732 */
2733 static int
2734 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2735 {
2736 const char *s = path_init(nd, flags);
2737 int err;
2738 if (IS_ERR(s))
2739 return PTR_ERR(s);
2740 while (!(err = link_path_walk(s, nd)) &&
2741 (err = mountpoint_last(nd)) > 0) {
2742 s = trailing_symlink(nd);
2743 if (IS_ERR(s)) {
2744 err = PTR_ERR(s);
2745 break;
2746 }
2747 }
2748 if (!err) {
2749 *path = nd->path;
2750 nd->path.mnt = NULL;
2751 nd->path.dentry = NULL;
2752 follow_mount(path);
2753 }
2754 terminate_walk(nd);
2755 return err;
2756 }
2757
2758 static int
2759 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2760 unsigned int flags)
2761 {
2762 struct nameidata nd;
2763 int error;
2764 if (IS_ERR(name))
2765 return PTR_ERR(name);
2766 set_nameidata(&nd, dfd, name);
2767 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2768 if (unlikely(error == -ECHILD))
2769 error = path_mountpoint(&nd, flags, path);
2770 if (unlikely(error == -ESTALE))
2771 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2772 if (likely(!error))
2773 audit_inode(name, path->dentry, 0);
2774 restore_nameidata();
2775 putname(name);
2776 return error;
2777 }
2778
2779 /**
2780 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2781 * @dfd: directory file descriptor
2782 * @name: pathname from userland
2783 * @flags: lookup flags
2784 * @path: pointer to container to hold result
2785 *
2786 * A umount is a special case for path walking. We're not actually interested
2787 * in the inode in this situation, and ESTALE errors can be a problem. We
2788 * simply want track down the dentry and vfsmount attached at the mountpoint
2789 * and avoid revalidating the last component.
2790 *
2791 * Returns 0 and populates "path" on success.
2792 */
2793 int
2794 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2795 struct path *path)
2796 {
2797 return filename_mountpoint(dfd, getname(name), path, flags);
2798 }
2799
2800 int
2801 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2802 unsigned int flags)
2803 {
2804 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2805 }
2806 EXPORT_SYMBOL(kern_path_mountpoint);
2807
2808 int __check_sticky(struct inode *dir, struct inode *inode)
2809 {
2810 kuid_t fsuid = current_fsuid();
2811
2812 if (uid_eq(inode->i_uid, fsuid))
2813 return 0;
2814 if (uid_eq(dir->i_uid, fsuid))
2815 return 0;
2816 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2817 }
2818 EXPORT_SYMBOL(__check_sticky);
2819
2820 /*
2821 * Check whether we can remove a link victim from directory dir, check
2822 * whether the type of victim is right.
2823 * 1. We can't do it if dir is read-only (done in permission())
2824 * 2. We should have write and exec permissions on dir
2825 * 3. We can't remove anything from append-only dir
2826 * 4. We can't do anything with immutable dir (done in permission())
2827 * 5. If the sticky bit on dir is set we should either
2828 * a. be owner of dir, or
2829 * b. be owner of victim, or
2830 * c. have CAP_FOWNER capability
2831 * 6. If the victim is append-only or immutable we can't do antyhing with
2832 * links pointing to it.
2833 * 7. If the victim has an unknown uid or gid we can't change the inode.
2834 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2835 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2836 * 10. We can't remove a root or mountpoint.
2837 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2838 * nfs_async_unlink().
2839 */
2840 static int may_delete(struct vfsmount *mnt, struct inode *dir, struct dentry *victim, bool isdir)
2841 {
2842 struct inode *inode = d_backing_inode(victim);
2843 int error;
2844
2845 if (d_is_negative(victim))
2846 return -ENOENT;
2847 BUG_ON(!inode);
2848
2849 BUG_ON(victim->d_parent->d_inode != dir);
2850 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2851
2852 error = inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2853 if (error)
2854 return error;
2855 if (IS_APPEND(dir))
2856 return -EPERM;
2857
2858 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2859 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2860 return -EPERM;
2861 if (isdir) {
2862 if (!d_is_dir(victim))
2863 return -ENOTDIR;
2864 if (IS_ROOT(victim))
2865 return -EBUSY;
2866 } else if (d_is_dir(victim))
2867 return -EISDIR;
2868 if (IS_DEADDIR(dir))
2869 return -ENOENT;
2870 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2871 return -EBUSY;
2872 return 0;
2873 }
2874
2875 /* Check whether we can create an object with dentry child in directory
2876 * dir.
2877 * 1. We can't do it if child already exists (open has special treatment for
2878 * this case, but since we are inlined it's OK)
2879 * 2. We can't do it if dir is read-only (done in permission())
2880 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2881 * 4. We should have write and exec permissions on dir
2882 * 5. We can't do it if dir is immutable (done in permission())
2883 */
2884 static inline int may_create(struct vfsmount *mnt, struct inode *dir, struct dentry *child)
2885 {
2886 struct user_namespace *s_user_ns;
2887 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2888 if (child->d_inode)
2889 return -EEXIST;
2890 if (IS_DEADDIR(dir))
2891 return -ENOENT;
2892 s_user_ns = dir->i_sb->s_user_ns;
2893 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2894 !kgid_has_mapping(s_user_ns, current_fsgid()))
2895 return -EOVERFLOW;
2896 return inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2897 }
2898
2899 /*
2900 * p1 and p2 should be directories on the same fs.
2901 */
2902 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2903 {
2904 struct dentry *p;
2905
2906 if (p1 == p2) {
2907 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2908 return NULL;
2909 }
2910
2911 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2912
2913 p = d_ancestor(p2, p1);
2914 if (p) {
2915 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2916 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2917 return p;
2918 }
2919
2920 p = d_ancestor(p1, p2);
2921 if (p) {
2922 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2923 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2924 return p;
2925 }
2926
2927 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2928 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2929 return NULL;
2930 }
2931 EXPORT_SYMBOL(lock_rename);
2932
2933 void unlock_rename(struct dentry *p1, struct dentry *p2)
2934 {
2935 inode_unlock(p1->d_inode);
2936 if (p1 != p2) {
2937 inode_unlock(p2->d_inode);
2938 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2939 }
2940 }
2941 EXPORT_SYMBOL(unlock_rename);
2942
2943 int vfs_create2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry,
2944 umode_t mode, bool want_excl)
2945 {
2946 int error = may_create(mnt, dir, dentry);
2947 if (error)
2948 return error;
2949
2950 if (!dir->i_op->create)
2951 return -EACCES; /* shouldn't it be ENOSYS? */
2952 mode &= S_IALLUGO;
2953 mode |= S_IFREG;
2954 error = security_inode_create(dir, dentry, mode);
2955 if (error)
2956 return error;
2957 error = dir->i_op->create(dir, dentry, mode, want_excl);
2958 if (!error)
2959 fsnotify_create(dir, dentry);
2960 return error;
2961 }
2962 EXPORT_SYMBOL(vfs_create2);
2963
2964 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2965 bool want_excl)
2966 {
2967 return vfs_create2(NULL, dir, dentry, mode, want_excl);
2968 }
2969 EXPORT_SYMBOL(vfs_create);
2970
2971 bool may_open_dev(const struct path *path)
2972 {
2973 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2974 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2975 }
2976
2977 static int may_open(const struct path *path, int acc_mode, int flag)
2978 {
2979 struct dentry *dentry = path->dentry;
2980 struct vfsmount *mnt = path->mnt;
2981 struct inode *inode = dentry->d_inode;
2982 int error;
2983
2984 if (!inode)
2985 return -ENOENT;
2986
2987 switch (inode->i_mode & S_IFMT) {
2988 case S_IFLNK:
2989 return -ELOOP;
2990 case S_IFDIR:
2991 if (acc_mode & MAY_WRITE)
2992 return -EISDIR;
2993 break;
2994 case S_IFBLK:
2995 case S_IFCHR:
2996 if (!may_open_dev(path))
2997 return -EACCES;
2998 /*FALLTHRU*/
2999 case S_IFIFO:
3000 case S_IFSOCK:
3001 flag &= ~O_TRUNC;
3002 break;
3003 }
3004
3005 error = inode_permission2(mnt, inode, MAY_OPEN | acc_mode);
3006 if (error)
3007 return error;
3008
3009 /*
3010 * An append-only file must be opened in append mode for writing.
3011 */
3012 if (IS_APPEND(inode)) {
3013 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3014 return -EPERM;
3015 if (flag & O_TRUNC)
3016 return -EPERM;
3017 }
3018
3019 /* O_NOATIME can only be set by the owner or superuser */
3020 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3021 return -EPERM;
3022
3023 return 0;
3024 }
3025
3026 static int handle_truncate(struct file *filp)
3027 {
3028 const struct path *path = &filp->f_path;
3029 struct inode *inode = path->dentry->d_inode;
3030 int error = get_write_access(inode);
3031 if (error)
3032 return error;
3033 /*
3034 * Refuse to truncate files with mandatory locks held on them.
3035 */
3036 error = locks_verify_locked(filp);
3037 if (!error)
3038 error = security_path_truncate(path);
3039 if (!error) {
3040 error = do_truncate2(path->mnt, path->dentry, 0,
3041 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3042 filp);
3043 }
3044 put_write_access(inode);
3045 return error;
3046 }
3047
3048 static inline int open_to_namei_flags(int flag)
3049 {
3050 if ((flag & O_ACCMODE) == 3)
3051 flag--;
3052 return flag;
3053 }
3054
3055 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3056 {
3057 struct user_namespace *s_user_ns;
3058 int error = security_path_mknod(dir, dentry, mode, 0);
3059 if (error)
3060 return error;
3061
3062 s_user_ns = dir->dentry->d_sb->s_user_ns;
3063 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3064 !kgid_has_mapping(s_user_ns, current_fsgid()))
3065 return -EOVERFLOW;
3066
3067 error = inode_permission2(dir->mnt, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3068 if (error)
3069 return error;
3070
3071 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3072 }
3073
3074 /*
3075 * Attempt to atomically look up, create and open a file from a negative
3076 * dentry.
3077 *
3078 * Returns 0 if successful. The file will have been created and attached to
3079 * @file by the filesystem calling finish_open().
3080 *
3081 * Returns 1 if the file was looked up only or didn't need creating. The
3082 * caller will need to perform the open themselves. @path will have been
3083 * updated to point to the new dentry. This may be negative.
3084 *
3085 * Returns an error code otherwise.
3086 */
3087 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3088 struct path *path, struct file *file,
3089 const struct open_flags *op,
3090 int open_flag, umode_t mode,
3091 int *opened)
3092 {
3093 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3094 struct inode *dir = nd->path.dentry->d_inode;
3095 int error;
3096
3097 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3098 open_flag &= ~O_TRUNC;
3099
3100 if (nd->flags & LOOKUP_DIRECTORY)
3101 open_flag |= O_DIRECTORY;
3102
3103 file->f_path.dentry = DENTRY_NOT_SET;
3104 file->f_path.mnt = nd->path.mnt;
3105 error = dir->i_op->atomic_open(dir, dentry, file,
3106 open_to_namei_flags(open_flag),
3107 mode, opened);
3108 d_lookup_done(dentry);
3109 if (!error) {
3110 /*
3111 * We didn't have the inode before the open, so check open
3112 * permission here.
3113 */
3114 int acc_mode = op->acc_mode;
3115 if (*opened & FILE_CREATED) {
3116 WARN_ON(!(open_flag & O_CREAT));
3117 fsnotify_create(dir, dentry);
3118 acc_mode = 0;
3119 }
3120 error = may_open(&file->f_path, acc_mode, open_flag);
3121 if (WARN_ON(error > 0))
3122 error = -EINVAL;
3123 } else if (error > 0) {
3124 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3125 error = -EIO;
3126 } else {
3127 if (file->f_path.dentry) {
3128 dput(dentry);
3129 dentry = file->f_path.dentry;
3130 }
3131 if (*opened & FILE_CREATED)
3132 fsnotify_create(dir, dentry);
3133 if (unlikely(d_is_negative(dentry))) {
3134 error = -ENOENT;
3135 } else {
3136 path->dentry = dentry;
3137 path->mnt = nd->path.mnt;
3138 return 1;
3139 }
3140 }
3141 }
3142 dput(dentry);
3143 return error;
3144 }
3145
3146 /*
3147 * Look up and maybe create and open the last component.
3148 *
3149 * Must be called with i_mutex held on parent.
3150 *
3151 * Returns 0 if the file was successfully atomically created (if necessary) and
3152 * opened. In this case the file will be returned attached to @file.
3153 *
3154 * Returns 1 if the file was not completely opened at this time, though lookups
3155 * and creations will have been performed and the dentry returned in @path will
3156 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3157 * specified then a negative dentry may be returned.
3158 *
3159 * An error code is returned otherwise.
3160 *
3161 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3162 * cleared otherwise prior to returning.
3163 */
3164 static int lookup_open(struct nameidata *nd, struct path *path,
3165 struct file *file,
3166 const struct open_flags *op,
3167 bool got_write, int *opened)
3168 {
3169 struct dentry *dir = nd->path.dentry;
3170 struct inode *dir_inode = dir->d_inode;
3171 int open_flag = op->open_flag;
3172 struct dentry *dentry;
3173 int error, create_error = 0;
3174 umode_t mode = op->mode;
3175 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3176
3177 if (unlikely(IS_DEADDIR(dir_inode)))
3178 return -ENOENT;
3179
3180 *opened &= ~FILE_CREATED;
3181 dentry = d_lookup(dir, &nd->last);
3182 for (;;) {
3183 if (!dentry) {
3184 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3185 if (IS_ERR(dentry))
3186 return PTR_ERR(dentry);
3187 }
3188 if (d_in_lookup(dentry))
3189 break;
3190
3191 error = d_revalidate(dentry, nd->flags);
3192 if (likely(error > 0))
3193 break;
3194 if (error)
3195 goto out_dput;
3196 d_invalidate(dentry);
3197 dput(dentry);
3198 dentry = NULL;
3199 }
3200 if (dentry->d_inode) {
3201 /* Cached positive dentry: will open in f_op->open */
3202 goto out_no_open;
3203 }
3204
3205 /*
3206 * Checking write permission is tricky, bacuse we don't know if we are
3207 * going to actually need it: O_CREAT opens should work as long as the
3208 * file exists. But checking existence breaks atomicity. The trick is
3209 * to check access and if not granted clear O_CREAT from the flags.
3210 *
3211 * Another problem is returing the "right" error value (e.g. for an
3212 * O_EXCL open we want to return EEXIST not EROFS).
3213 */
3214 if (open_flag & O_CREAT) {
3215 if (!IS_POSIXACL(dir->d_inode))
3216 mode &= ~current_umask();
3217 if (unlikely(!got_write)) {
3218 create_error = -EROFS;
3219 open_flag &= ~O_CREAT;
3220 if (open_flag & (O_EXCL | O_TRUNC))
3221 goto no_open;
3222 /* No side effects, safe to clear O_CREAT */
3223 } else {
3224 create_error = may_o_create(&nd->path, dentry, mode);
3225 if (create_error) {
3226 open_flag &= ~O_CREAT;
3227 if (open_flag & O_EXCL)
3228 goto no_open;
3229 }
3230 }
3231 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3232 unlikely(!got_write)) {
3233 /*
3234 * No O_CREATE -> atomicity not a requirement -> fall
3235 * back to lookup + open
3236 */
3237 goto no_open;
3238 }
3239
3240 if (dir_inode->i_op->atomic_open) {
3241 error = atomic_open(nd, dentry, path, file, op, open_flag,
3242 mode, opened);
3243 if (unlikely(error == -ENOENT) && create_error)
3244 error = create_error;
3245 return error;
3246 }
3247
3248 no_open:
3249 if (d_in_lookup(dentry)) {
3250 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3251 nd->flags);
3252 d_lookup_done(dentry);
3253 if (unlikely(res)) {
3254 if (IS_ERR(res)) {
3255 error = PTR_ERR(res);
3256 goto out_dput;
3257 }
3258 dput(dentry);
3259 dentry = res;
3260 }
3261 }
3262
3263 /* Negative dentry, just create the file */
3264 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3265 *opened |= FILE_CREATED;
3266 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3267 if (!dir_inode->i_op->create) {
3268 error = -EACCES;
3269 goto out_dput;
3270 }
3271 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3272 open_flag & O_EXCL);
3273 if (error)
3274 goto out_dput;
3275 fsnotify_create(dir_inode, dentry);
3276 }
3277 if (unlikely(create_error) && !dentry->d_inode) {
3278 error = create_error;
3279 goto out_dput;
3280 }
3281 out_no_open:
3282 path->dentry = dentry;
3283 path->mnt = nd->path.mnt;
3284 return 1;
3285
3286 out_dput:
3287 dput(dentry);
3288 return error;
3289 }
3290
3291 /*
3292 * Handle the last step of open()
3293 */
3294 static int do_last(struct nameidata *nd,
3295 struct file *file, const struct open_flags *op,
3296 int *opened)
3297 {
3298 struct dentry *dir = nd->path.dentry;
3299 kuid_t dir_uid = dir->d_inode->i_uid;
3300 umode_t dir_mode = dir->d_inode->i_mode;
3301 int open_flag = op->open_flag;
3302 bool will_truncate = (open_flag & O_TRUNC) != 0;
3303 bool got_write = false;
3304 int acc_mode = op->acc_mode;
3305 unsigned seq;
3306 struct inode *inode;
3307 struct path path;
3308 int error;
3309
3310 nd->flags &= ~LOOKUP_PARENT;
3311 nd->flags |= op->intent;
3312
3313 if (nd->last_type != LAST_NORM) {
3314 error = handle_dots(nd, nd->last_type);
3315 if (unlikely(error))
3316 return error;
3317 goto finish_open;
3318 }
3319
3320 if (!(open_flag & O_CREAT)) {
3321 if (nd->last.name[nd->last.len])
3322 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3323 /* we _can_ be in RCU mode here */
3324 error = lookup_fast(nd, &path, &inode, &seq);
3325 if (likely(error > 0))
3326 goto finish_lookup;
3327
3328 if (error < 0)
3329 return error;
3330
3331 BUG_ON(nd->inode != dir->d_inode);
3332 BUG_ON(nd->flags & LOOKUP_RCU);
3333 } else {
3334 /* create side of things */
3335 /*
3336 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3337 * has been cleared when we got to the last component we are
3338 * about to look up
3339 */
3340 error = complete_walk(nd);
3341 if (error)
3342 return error;
3343
3344 audit_inode(nd->name, dir, LOOKUP_PARENT);
3345 /* trailing slashes? */
3346 if (unlikely(nd->last.name[nd->last.len]))
3347 return -EISDIR;
3348 }
3349
3350 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3351 error = mnt_want_write(nd->path.mnt);
3352 if (!error)
3353 got_write = true;
3354 /*
3355 * do _not_ fail yet - we might not need that or fail with
3356 * a different error; let lookup_open() decide; we'll be
3357 * dropping this one anyway.
3358 */
3359 }
3360 if (open_flag & O_CREAT)
3361 inode_lock(dir->d_inode);
3362 else
3363 inode_lock_shared(dir->d_inode);
3364 error = lookup_open(nd, &path, file, op, got_write, opened);
3365 if (open_flag & O_CREAT)
3366 inode_unlock(dir->d_inode);
3367 else
3368 inode_unlock_shared(dir->d_inode);
3369
3370 if (error <= 0) {
3371 if (error)
3372 goto out;
3373
3374 if ((*opened & FILE_CREATED) ||
3375 !S_ISREG(file_inode(file)->i_mode))
3376 will_truncate = false;
3377
3378 audit_inode(nd->name, file->f_path.dentry, 0);
3379 goto opened;
3380 }
3381
3382 if (*opened & FILE_CREATED) {
3383 /* Don't check for write permission, don't truncate */
3384 open_flag &= ~O_TRUNC;
3385 will_truncate = false;
3386 acc_mode = 0;
3387 path_to_nameidata(&path, nd);
3388 goto finish_open_created;
3389 }
3390
3391 /*
3392 * If atomic_open() acquired write access it is dropped now due to
3393 * possible mount and symlink following (this might be optimized away if
3394 * necessary...)
3395 */
3396 if (got_write) {
3397 mnt_drop_write(nd->path.mnt);
3398 got_write = false;
3399 }
3400
3401 error = follow_managed(&path, nd);
3402 if (unlikely(error < 0))
3403 return error;
3404
3405 if (unlikely(d_is_negative(path.dentry))) {
3406 path_to_nameidata(&path, nd);
3407 return -ENOENT;
3408 }
3409
3410 /*
3411 * create/update audit record if it already exists.
3412 */
3413 audit_inode(nd->name, path.dentry, 0);
3414
3415 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3416 path_to_nameidata(&path, nd);
3417 return -EEXIST;
3418 }
3419
3420 seq = 0; /* out of RCU mode, so the value doesn't matter */
3421 inode = d_backing_inode(path.dentry);
3422 finish_lookup:
3423 error = step_into(nd, &path, 0, inode, seq);
3424 if (unlikely(error))
3425 return error;
3426 finish_open:
3427 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3428 error = complete_walk(nd);
3429 if (error)
3430 return error;
3431 audit_inode(nd->name, nd->path.dentry, 0);
3432 if (open_flag & O_CREAT) {
3433 error = -EISDIR;
3434 if (d_is_dir(nd->path.dentry))
3435 goto out;
3436 error = may_create_in_sticky(dir_mode, dir_uid,
3437 d_backing_inode(nd->path.dentry));
3438 if (unlikely(error))
3439 goto out;
3440 }
3441 error = -ENOTDIR;
3442 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3443 goto out;
3444 if (!d_is_reg(nd->path.dentry))
3445 will_truncate = false;
3446
3447 if (will_truncate) {
3448 error = mnt_want_write(nd->path.mnt);
3449 if (error)
3450 goto out;
3451 got_write = true;
3452 }
3453 finish_open_created:
3454 error = may_open(&nd->path, acc_mode, open_flag);
3455 if (error)
3456 goto out;
3457 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3458 error = vfs_open(&nd->path, file, current_cred());
3459 if (error)
3460 goto out;
3461 *opened |= FILE_OPENED;
3462 opened:
3463 error = open_check_o_direct(file);
3464 if (!error)
3465 error = ima_file_check(file, op->acc_mode, *opened);
3466 if (!error && will_truncate)
3467 error = handle_truncate(file);
3468 out:
3469 if (unlikely(error) && (*opened & FILE_OPENED))
3470 fput(file);
3471 if (unlikely(error > 0)) {
3472 WARN_ON(1);
3473 error = -EINVAL;
3474 }
3475 if (got_write)
3476 mnt_drop_write(nd->path.mnt);
3477 return error;
3478 }
3479
3480 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3481 {
3482 struct dentry *child = NULL;
3483 struct inode *dir = dentry->d_inode;
3484 struct inode *inode;
3485 int error;
3486
3487 /* we want directory to be writable */
3488 error = inode_permission2(ERR_PTR(-EOPNOTSUPP), dir,
3489 MAY_WRITE | MAY_EXEC);
3490 if (error)
3491 goto out_err;
3492 error = -EOPNOTSUPP;
3493 if (!dir->i_op->tmpfile)
3494 goto out_err;
3495 error = -ENOMEM;
3496 child = d_alloc(dentry, &slash_name);
3497 if (unlikely(!child))
3498 goto out_err;
3499 error = dir->i_op->tmpfile(dir, child, mode);
3500 if (error)
3501 goto out_err;
3502 error = -ENOENT;
3503 inode = child->d_inode;
3504 if (unlikely(!inode))
3505 goto out_err;
3506 if (!(open_flag & O_EXCL)) {
3507 spin_lock(&inode->i_lock);
3508 inode->i_state |= I_LINKABLE;
3509 spin_unlock(&inode->i_lock);
3510 }
3511 return child;
3512
3513 out_err:
3514 dput(child);
3515 return ERR_PTR(error);
3516 }
3517 EXPORT_SYMBOL(vfs_tmpfile);
3518
3519 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3520 const struct open_flags *op,
3521 struct file *file, int *opened)
3522 {
3523 struct dentry *child;
3524 struct path path;
3525 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3526 if (unlikely(error))
3527 return error;
3528 error = mnt_want_write(path.mnt);
3529 if (unlikely(error))
3530 goto out;
3531 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3532 error = PTR_ERR(child);
3533 if (unlikely(IS_ERR(child)))
3534 goto out2;
3535 dput(path.dentry);
3536 path.dentry = child;
3537 audit_inode(nd->name, child, 0);
3538 /* Don't check for other permissions, the inode was just created */
3539 error = may_open(&path, 0, op->open_flag);
3540 if (error)
3541 goto out2;
3542 file->f_path.mnt = path.mnt;
3543 error = finish_open(file, child, NULL, opened);
3544 if (error)
3545 goto out2;
3546 error = open_check_o_direct(file);
3547 if (error)
3548 fput(file);
3549 out2:
3550 mnt_drop_write(path.mnt);
3551 out:
3552 path_put(&path);
3553 return error;
3554 }
3555
3556 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3557 {
3558 struct path path;
3559 int error = path_lookupat(nd, flags, &path);
3560 if (!error) {
3561 audit_inode(nd->name, path.dentry, 0);
3562 error = vfs_open(&path, file, current_cred());
3563 path_put(&path);
3564 }
3565 return error;
3566 }
3567
3568 static struct file *path_openat(struct nameidata *nd,
3569 const struct open_flags *op, unsigned flags)
3570 {
3571 const char *s;
3572 struct file *file;
3573 int opened = 0;
3574 int error;
3575
3576 file = get_empty_filp();
3577 if (IS_ERR(file))
3578 return file;
3579
3580 file->f_flags = op->open_flag;
3581
3582 if (unlikely(file->f_flags & __O_TMPFILE)) {
3583 error = do_tmpfile(nd, flags, op, file, &opened);
3584 goto out2;
3585 }
3586
3587 if (unlikely(file->f_flags & O_PATH)) {
3588 error = do_o_path(nd, flags, file);
3589 if (!error)
3590 opened |= FILE_OPENED;
3591 goto out2;
3592 }
3593
3594 s = path_init(nd, flags);
3595 if (IS_ERR(s)) {
3596 put_filp(file);
3597 return ERR_CAST(s);
3598 }
3599 while (!(error = link_path_walk(s, nd)) &&
3600 (error = do_last(nd, file, op, &opened)) > 0) {
3601 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3602 s = trailing_symlink(nd);
3603 if (IS_ERR(s)) {
3604 error = PTR_ERR(s);
3605 break;
3606 }
3607 }
3608 terminate_walk(nd);
3609 out2:
3610 if (!(opened & FILE_OPENED)) {
3611 BUG_ON(!error);
3612 put_filp(file);
3613 }
3614 if (unlikely(error)) {
3615 if (error == -EOPENSTALE) {
3616 if (flags & LOOKUP_RCU)
3617 error = -ECHILD;
3618 else
3619 error = -ESTALE;
3620 }
3621 file = ERR_PTR(error);
3622 }
3623 return file;
3624 }
3625
3626 struct file *do_filp_open(int dfd, struct filename *pathname,
3627 const struct open_flags *op)
3628 {
3629 struct nameidata nd;
3630 int flags = op->lookup_flags;
3631 struct file *filp;
3632
3633 set_nameidata(&nd, dfd, pathname);
3634 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3635 if (unlikely(filp == ERR_PTR(-ECHILD)))
3636 filp = path_openat(&nd, op, flags);
3637 if (unlikely(filp == ERR_PTR(-ESTALE)))
3638 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3639 restore_nameidata();
3640 return filp;
3641 }
3642
3643 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3644 const char *name, const struct open_flags *op)
3645 {
3646 struct nameidata nd;
3647 struct file *file;
3648 struct filename *filename;
3649 int flags = op->lookup_flags | LOOKUP_ROOT;
3650
3651 nd.root.mnt = mnt;
3652 nd.root.dentry = dentry;
3653
3654 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3655 return ERR_PTR(-ELOOP);
3656
3657 filename = getname_kernel(name);
3658 if (IS_ERR(filename))
3659 return ERR_CAST(filename);
3660
3661 set_nameidata(&nd, -1, filename);
3662 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3663 if (unlikely(file == ERR_PTR(-ECHILD)))
3664 file = path_openat(&nd, op, flags);
3665 if (unlikely(file == ERR_PTR(-ESTALE)))
3666 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3667 restore_nameidata();
3668 putname(filename);
3669 return file;
3670 }
3671
3672 static struct dentry *filename_create(int dfd, struct filename *name,
3673 struct path *path, unsigned int lookup_flags)
3674 {
3675 struct dentry *dentry = ERR_PTR(-EEXIST);
3676 struct qstr last;
3677 int type;
3678 int err2;
3679 int error;
3680 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3681
3682 /*
3683 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3684 * other flags passed in are ignored!
3685 */
3686 lookup_flags &= LOOKUP_REVAL;
3687
3688 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3689 if (IS_ERR(name))
3690 return ERR_CAST(name);
3691
3692 /*
3693 * Yucky last component or no last component at all?
3694 * (foo/., foo/.., /////)
3695 */
3696 if (unlikely(type != LAST_NORM))
3697 goto out;
3698
3699 /* don't fail immediately if it's r/o, at least try to report other errors */
3700 err2 = mnt_want_write(path->mnt);
3701 /*
3702 * Do the final lookup.
3703 */
3704 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3705 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3706 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3707 if (IS_ERR(dentry))
3708 goto unlock;
3709
3710 error = -EEXIST;
3711 if (d_is_positive(dentry))
3712 goto fail;
3713
3714 /*
3715 * Special case - lookup gave negative, but... we had foo/bar/
3716 * From the vfs_mknod() POV we just have a negative dentry -
3717 * all is fine. Let's be bastards - you had / on the end, you've
3718 * been asking for (non-existent) directory. -ENOENT for you.
3719 */
3720 if (unlikely(!is_dir && last.name[last.len])) {
3721 error = -ENOENT;
3722 goto fail;
3723 }
3724 if (unlikely(err2)) {
3725 error = err2;
3726 goto fail;
3727 }
3728 putname(name);
3729 return dentry;
3730 fail:
3731 dput(dentry);
3732 dentry = ERR_PTR(error);
3733 unlock:
3734 inode_unlock(path->dentry->d_inode);
3735 if (!err2)
3736 mnt_drop_write(path->mnt);
3737 out:
3738 path_put(path);
3739 putname(name);
3740 return dentry;
3741 }
3742
3743 struct dentry *kern_path_create(int dfd, const char *pathname,
3744 struct path *path, unsigned int lookup_flags)
3745 {
3746 return filename_create(dfd, getname_kernel(pathname),
3747 path, lookup_flags);
3748 }
3749 EXPORT_SYMBOL(kern_path_create);
3750
3751 void done_path_create(struct path *path, struct dentry *dentry)
3752 {
3753 dput(dentry);
3754 inode_unlock(path->dentry->d_inode);
3755 mnt_drop_write(path->mnt);
3756 path_put(path);
3757 }
3758 EXPORT_SYMBOL(done_path_create);
3759
3760 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3761 struct path *path, unsigned int lookup_flags)
3762 {
3763 return filename_create(dfd, getname(pathname), path, lookup_flags);
3764 }
3765 EXPORT_SYMBOL(user_path_create);
3766
3767 int vfs_mknod2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3768 {
3769 int error = may_create(mnt, dir, dentry);
3770
3771 if (error)
3772 return error;
3773
3774 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3775 return -EPERM;
3776
3777 if (!dir->i_op->mknod)
3778 return -EPERM;
3779
3780 error = devcgroup_inode_mknod(mode, dev);
3781 if (error)
3782 return error;
3783
3784 error = security_inode_mknod(dir, dentry, mode, dev);
3785 if (error)
3786 return error;
3787
3788 error = dir->i_op->mknod(dir, dentry, mode, dev);
3789 if (!error)
3790 fsnotify_create(dir, dentry);
3791 return error;
3792 }
3793 EXPORT_SYMBOL(vfs_mknod2);
3794
3795 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3796 {
3797 return vfs_mknod2(NULL, dir, dentry, mode, dev);
3798 }
3799 EXPORT_SYMBOL(vfs_mknod);
3800
3801 static int may_mknod(umode_t mode)
3802 {
3803 switch (mode & S_IFMT) {
3804 case S_IFREG:
3805 case S_IFCHR:
3806 case S_IFBLK:
3807 case S_IFIFO:
3808 case S_IFSOCK:
3809 case 0: /* zero mode translates to S_IFREG */
3810 return 0;
3811 case S_IFDIR:
3812 return -EPERM;
3813 default:
3814 return -EINVAL;
3815 }
3816 }
3817
3818 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3819 unsigned, dev)
3820 {
3821 struct dentry *dentry;
3822 struct path path;
3823 int error;
3824 unsigned int lookup_flags = 0;
3825
3826 error = may_mknod(mode);
3827 if (error)
3828 return error;
3829 retry:
3830 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3831 if (IS_ERR(dentry))
3832 return PTR_ERR(dentry);
3833
3834 if (!IS_POSIXACL(path.dentry->d_inode))
3835 mode &= ~current_umask();
3836 error = security_path_mknod(&path, dentry, mode, dev);
3837 if (error)
3838 goto out;
3839 switch (mode & S_IFMT) {
3840 case 0: case S_IFREG:
3841 error = vfs_create2(path.mnt, path.dentry->d_inode,dentry,mode,true);
3842 if (!error)
3843 ima_post_path_mknod(dentry);
3844 break;
3845 case S_IFCHR: case S_IFBLK:
3846 error = vfs_mknod2(path.mnt, path.dentry->d_inode,dentry,mode,
3847 new_decode_dev(dev));
3848 break;
3849 case S_IFIFO: case S_IFSOCK:
3850 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3851 break;
3852 }
3853 out:
3854 done_path_create(&path, dentry);
3855 if (retry_estale(error, lookup_flags)) {
3856 lookup_flags |= LOOKUP_REVAL;
3857 goto retry;
3858 }
3859 return error;
3860 }
3861
3862 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3863 {
3864 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3865 }
3866
3867 int vfs_mkdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode)
3868 {
3869 int error = may_create(mnt, dir, dentry);
3870 unsigned max_links = dir->i_sb->s_max_links;
3871
3872 if (error)
3873 return error;
3874
3875 if (!dir->i_op->mkdir)
3876 return -EPERM;
3877
3878 mode &= (S_IRWXUGO|S_ISVTX);
3879 error = security_inode_mkdir(dir, dentry, mode);
3880 if (error)
3881 return error;
3882
3883 if (max_links && dir->i_nlink >= max_links)
3884 return -EMLINK;
3885
3886 error = dir->i_op->mkdir(dir, dentry, mode);
3887 if (!error)
3888 fsnotify_mkdir(dir, dentry);
3889 return error;
3890 }
3891 EXPORT_SYMBOL(vfs_mkdir2);
3892
3893 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3894 {
3895 return vfs_mkdir2(NULL, dir, dentry, mode);
3896 }
3897 EXPORT_SYMBOL(vfs_mkdir);
3898
3899 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3900 {
3901 struct dentry *dentry;
3902 struct path path;
3903 int error;
3904 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3905
3906 retry:
3907 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3908 if (IS_ERR(dentry))
3909 return PTR_ERR(dentry);
3910
3911 if (!IS_POSIXACL(path.dentry->d_inode))
3912 mode &= ~current_umask();
3913 error = security_path_mkdir(&path, dentry, mode);
3914 if (!error)
3915 error = vfs_mkdir2(path.mnt, path.dentry->d_inode, dentry, mode);
3916 done_path_create(&path, dentry);
3917 if (retry_estale(error, lookup_flags)) {
3918 lookup_flags |= LOOKUP_REVAL;
3919 goto retry;
3920 }
3921 return error;
3922 }
3923
3924 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3925 {
3926 return sys_mkdirat(AT_FDCWD, pathname, mode);
3927 }
3928
3929 int vfs_rmdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3930 {
3931 int error = may_delete(mnt, dir, dentry, 1);
3932
3933 if (error)
3934 return error;
3935
3936 if (!dir->i_op->rmdir)
3937 return -EPERM;
3938
3939 dget(dentry);
3940 inode_lock(dentry->d_inode);
3941
3942 error = -EBUSY;
3943 if (is_local_mountpoint(dentry))
3944 goto out;
3945
3946 error = security_inode_rmdir(dir, dentry);
3947 if (error)
3948 goto out;
3949
3950 shrink_dcache_parent(dentry);
3951 error = dir->i_op->rmdir(dir, dentry);
3952 if (error)
3953 goto out;
3954
3955 dentry->d_inode->i_flags |= S_DEAD;
3956 dont_mount(dentry);
3957 detach_mounts(dentry);
3958
3959 out:
3960 inode_unlock(dentry->d_inode);
3961 dput(dentry);
3962 if (!error)
3963 d_delete(dentry);
3964 return error;
3965 }
3966 EXPORT_SYMBOL(vfs_rmdir2);
3967
3968 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3969 {
3970 return vfs_rmdir2(NULL, dir, dentry);
3971 }
3972 EXPORT_SYMBOL(vfs_rmdir);
3973
3974 static long do_rmdir(int dfd, const char __user *pathname)
3975 {
3976 int error = 0;
3977 struct filename *name;
3978 struct dentry *dentry;
3979 struct path path;
3980 struct qstr last;
3981 int type;
3982 unsigned int lookup_flags = 0;
3983 retry:
3984 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3985 &path, &last, &type);
3986 if (IS_ERR(name))
3987 return PTR_ERR(name);
3988
3989 switch (type) {
3990 case LAST_DOTDOT:
3991 error = -ENOTEMPTY;
3992 goto exit1;
3993 case LAST_DOT:
3994 error = -EINVAL;
3995 goto exit1;
3996 case LAST_ROOT:
3997 error = -EBUSY;
3998 goto exit1;
3999 }
4000
4001 error = mnt_want_write(path.mnt);
4002 if (error)
4003 goto exit1;
4004
4005 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4006 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4007 error = PTR_ERR(dentry);
4008 if (IS_ERR(dentry))
4009 goto exit2;
4010 if (!dentry->d_inode) {
4011 error = -ENOENT;
4012 goto exit3;
4013 }
4014 error = security_path_rmdir(&path, dentry);
4015 if (error)
4016 goto exit3;
4017 error = vfs_rmdir2(path.mnt, path.dentry->d_inode, dentry);
4018 exit3:
4019 dput(dentry);
4020 exit2:
4021 inode_unlock(path.dentry->d_inode);
4022 mnt_drop_write(path.mnt);
4023 exit1:
4024 path_put(&path);
4025 putname(name);
4026 if (retry_estale(error, lookup_flags)) {
4027 lookup_flags |= LOOKUP_REVAL;
4028 goto retry;
4029 }
4030 return error;
4031 }
4032
4033 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4034 {
4035 return do_rmdir(AT_FDCWD, pathname);
4036 }
4037
4038 /**
4039 * vfs_unlink - unlink a filesystem object
4040 * @dir: parent directory
4041 * @dentry: victim
4042 * @delegated_inode: returns victim inode, if the inode is delegated.
4043 *
4044 * The caller must hold dir->i_mutex.
4045 *
4046 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4047 * return a reference to the inode in delegated_inode. The caller
4048 * should then break the delegation on that inode and retry. Because
4049 * breaking a delegation may take a long time, the caller should drop
4050 * dir->i_mutex before doing so.
4051 *
4052 * Alternatively, a caller may pass NULL for delegated_inode. This may
4053 * be appropriate for callers that expect the underlying filesystem not
4054 * to be NFS exported.
4055 */
4056 int vfs_unlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4057 {
4058 struct inode *target = dentry->d_inode;
4059 int error = may_delete(mnt, dir, dentry, 0);
4060
4061 if (error)
4062 return error;
4063
4064 if (!dir->i_op->unlink)
4065 return -EPERM;
4066
4067 inode_lock(target);
4068 if (is_local_mountpoint(dentry))
4069 error = -EBUSY;
4070 else {
4071 error = security_inode_unlink(dir, dentry);
4072 if (!error) {
4073 error = try_break_deleg(target, delegated_inode);
4074 if (error)
4075 goto out;
4076 error = dir->i_op->unlink(dir, dentry);
4077 if (!error) {
4078 dont_mount(dentry);
4079 detach_mounts(dentry);
4080 }
4081 }
4082 }
4083 out:
4084 inode_unlock(target);
4085
4086 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4087 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4088 fsnotify_link_count(target);
4089 d_delete(dentry);
4090 }
4091
4092 return error;
4093 }
4094 EXPORT_SYMBOL(vfs_unlink2);
4095
4096 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4097 {
4098 return vfs_unlink2(NULL, dir, dentry, delegated_inode);
4099 }
4100 EXPORT_SYMBOL(vfs_unlink);
4101
4102 /*
4103 * Make sure that the actual truncation of the file will occur outside its
4104 * directory's i_mutex. Truncate can take a long time if there is a lot of
4105 * writeout happening, and we don't want to prevent access to the directory
4106 * while waiting on the I/O.
4107 */
4108 static long do_unlinkat(int dfd, const char __user *pathname)
4109 {
4110 int error;
4111 struct filename *name;
4112 struct dentry *dentry;
4113 struct path path;
4114 struct qstr last;
4115 int type;
4116 struct inode *inode = NULL;
4117 struct inode *delegated_inode = NULL;
4118 unsigned int lookup_flags = 0;
4119 retry:
4120 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4121 &path, &last, &type);
4122 if (IS_ERR(name))
4123 return PTR_ERR(name);
4124
4125 error = -EISDIR;
4126 if (type != LAST_NORM)
4127 goto exit1;
4128
4129 error = mnt_want_write(path.mnt);
4130 if (error)
4131 goto exit1;
4132 retry_deleg:
4133 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4134 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4135 error = PTR_ERR(dentry);
4136 if (!IS_ERR(dentry)) {
4137 /* Why not before? Because we want correct error value */
4138 if (last.name[last.len])
4139 goto slashes;
4140 inode = dentry->d_inode;
4141 if (d_is_negative(dentry))
4142 goto slashes;
4143 ihold(inode);
4144 error = security_path_unlink(&path, dentry);
4145 if (error)
4146 goto exit2;
4147 error = vfs_unlink2(path.mnt, path.dentry->d_inode, dentry, &delegated_inode);
4148 exit2:
4149 dput(dentry);
4150 }
4151 inode_unlock(path.dentry->d_inode);
4152 if (inode)
4153 iput(inode); /* truncate the inode here */
4154 inode = NULL;
4155 if (delegated_inode) {
4156 error = break_deleg_wait(&delegated_inode);
4157 if (!error)
4158 goto retry_deleg;
4159 }
4160 mnt_drop_write(path.mnt);
4161 exit1:
4162 path_put(&path);
4163 putname(name);
4164 if (retry_estale(error, lookup_flags)) {
4165 lookup_flags |= LOOKUP_REVAL;
4166 inode = NULL;
4167 goto retry;
4168 }
4169 return error;
4170
4171 slashes:
4172 if (d_is_negative(dentry))
4173 error = -ENOENT;
4174 else if (d_is_dir(dentry))
4175 error = -EISDIR;
4176 else
4177 error = -ENOTDIR;
4178 goto exit2;
4179 }
4180
4181 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4182 {
4183 if ((flag & ~AT_REMOVEDIR) != 0)
4184 return -EINVAL;
4185
4186 if (flag & AT_REMOVEDIR)
4187 return do_rmdir(dfd, pathname);
4188
4189 return do_unlinkat(dfd, pathname);
4190 }
4191
4192 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4193 {
4194 return do_unlinkat(AT_FDCWD, pathname);
4195 }
4196
4197 int vfs_symlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, const char *oldname)
4198 {
4199 int error = may_create(mnt, dir, dentry);
4200
4201 if (error)
4202 return error;
4203
4204 if (!dir->i_op->symlink)
4205 return -EPERM;
4206
4207 error = security_inode_symlink(dir, dentry, oldname);
4208 if (error)
4209 return error;
4210
4211 error = dir->i_op->symlink(dir, dentry, oldname);
4212 if (!error)
4213 fsnotify_create(dir, dentry);
4214 return error;
4215 }
4216 EXPORT_SYMBOL(vfs_symlink2);
4217
4218 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4219 {
4220 return vfs_symlink2(NULL, dir, dentry, oldname);
4221 }
4222 EXPORT_SYMBOL(vfs_symlink);
4223
4224 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4225 int, newdfd, const char __user *, newname)
4226 {
4227 int error;
4228 struct filename *from;
4229 struct dentry *dentry;
4230 struct path path;
4231 unsigned int lookup_flags = 0;
4232
4233 from = getname(oldname);
4234 if (IS_ERR(from))
4235 return PTR_ERR(from);
4236 retry:
4237 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4238 error = PTR_ERR(dentry);
4239 if (IS_ERR(dentry))
4240 goto out_putname;
4241
4242 error = security_path_symlink(&path, dentry, from->name);
4243 if (!error)
4244 error = vfs_symlink2(path.mnt, path.dentry->d_inode, dentry, from->name);
4245 done_path_create(&path, dentry);
4246 if (retry_estale(error, lookup_flags)) {
4247 lookup_flags |= LOOKUP_REVAL;
4248 goto retry;
4249 }
4250 out_putname:
4251 putname(from);
4252 return error;
4253 }
4254
4255 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4256 {
4257 return sys_symlinkat(oldname, AT_FDCWD, newname);
4258 }
4259
4260 /**
4261 * vfs_link - create a new link
4262 * @old_dentry: object to be linked
4263 * @dir: new parent
4264 * @new_dentry: where to create the new link
4265 * @delegated_inode: returns inode needing a delegation break
4266 *
4267 * The caller must hold dir->i_mutex
4268 *
4269 * If vfs_link discovers a delegation on the to-be-linked file in need
4270 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4271 * inode in delegated_inode. The caller should then break the delegation
4272 * and retry. Because breaking a delegation may take a long time, the
4273 * caller should drop the i_mutex before doing so.
4274 *
4275 * Alternatively, a caller may pass NULL for delegated_inode. This may
4276 * be appropriate for callers that expect the underlying filesystem not
4277 * to be NFS exported.
4278 */
4279 int vfs_link2(struct vfsmount *mnt, struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4280 {
4281 struct inode *inode = old_dentry->d_inode;
4282 unsigned max_links = dir->i_sb->s_max_links;
4283 int error;
4284
4285 if (!inode)
4286 return -ENOENT;
4287
4288 error = may_create(mnt, dir, new_dentry);
4289 if (error)
4290 return error;
4291
4292 if (dir->i_sb != inode->i_sb)
4293 return -EXDEV;
4294
4295 /*
4296 * A link to an append-only or immutable file cannot be created.
4297 */
4298 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4299 return -EPERM;
4300 /*
4301 * Updating the link count will likely cause i_uid and i_gid to
4302 * be writen back improperly if their true value is unknown to
4303 * the vfs.
4304 */
4305 if (HAS_UNMAPPED_ID(inode))
4306 return -EPERM;
4307 if (!dir->i_op->link)
4308 return -EPERM;
4309 if (S_ISDIR(inode->i_mode))
4310 return -EPERM;
4311
4312 error = security_inode_link(old_dentry, dir, new_dentry);
4313 if (error)
4314 return error;
4315
4316 inode_lock(inode);
4317 /* Make sure we don't allow creating hardlink to an unlinked file */
4318 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4319 error = -ENOENT;
4320 else if (max_links && inode->i_nlink >= max_links)
4321 error = -EMLINK;
4322 else {
4323 error = try_break_deleg(inode, delegated_inode);
4324 if (!error)
4325 error = dir->i_op->link(old_dentry, dir, new_dentry);
4326 }
4327
4328 if (!error && (inode->i_state & I_LINKABLE)) {
4329 spin_lock(&inode->i_lock);
4330 inode->i_state &= ~I_LINKABLE;
4331 spin_unlock(&inode->i_lock);
4332 }
4333 inode_unlock(inode);
4334 if (!error)
4335 fsnotify_link(dir, inode, new_dentry);
4336 return error;
4337 }
4338 EXPORT_SYMBOL(vfs_link2);
4339
4340 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4341 {
4342 return vfs_link2(NULL, old_dentry, dir, new_dentry, delegated_inode);
4343 }
4344 EXPORT_SYMBOL(vfs_link);
4345
4346 /*
4347 * Hardlinks are often used in delicate situations. We avoid
4348 * security-related surprises by not following symlinks on the
4349 * newname. --KAB
4350 *
4351 * We don't follow them on the oldname either to be compatible
4352 * with linux 2.0, and to avoid hard-linking to directories
4353 * and other special files. --ADM
4354 */
4355 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4356 int, newdfd, const char __user *, newname, int, flags)
4357 {
4358 struct dentry *new_dentry;
4359 struct path old_path, new_path;
4360 struct inode *delegated_inode = NULL;
4361 int how = 0;
4362 int error;
4363
4364 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4365 return -EINVAL;
4366 /*
4367 * To use null names we require CAP_DAC_READ_SEARCH
4368 * This ensures that not everyone will be able to create
4369 * handlink using the passed filedescriptor.
4370 */
4371 if (flags & AT_EMPTY_PATH) {
4372 if (!capable(CAP_DAC_READ_SEARCH))
4373 return -ENOENT;
4374 how = LOOKUP_EMPTY;
4375 }
4376
4377 if (flags & AT_SYMLINK_FOLLOW)
4378 how |= LOOKUP_FOLLOW;
4379 retry:
4380 error = user_path_at(olddfd, oldname, how, &old_path);
4381 if (error)
4382 return error;
4383
4384 new_dentry = user_path_create(newdfd, newname, &new_path,
4385 (how & LOOKUP_REVAL));
4386 error = PTR_ERR(new_dentry);
4387 if (IS_ERR(new_dentry))
4388 goto out;
4389
4390 error = -EXDEV;
4391 if (old_path.mnt != new_path.mnt)
4392 goto out_dput;
4393 error = may_linkat(&old_path);
4394 if (unlikely(error))
4395 goto out_dput;
4396 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4397 if (error)
4398 goto out_dput;
4399 error = vfs_link2(old_path.mnt, old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4400 out_dput:
4401 done_path_create(&new_path, new_dentry);
4402 if (delegated_inode) {
4403 error = break_deleg_wait(&delegated_inode);
4404 if (!error) {
4405 path_put(&old_path);
4406 goto retry;
4407 }
4408 }
4409 if (retry_estale(error, how)) {
4410 path_put(&old_path);
4411 how |= LOOKUP_REVAL;
4412 goto retry;
4413 }
4414 out:
4415 path_put(&old_path);
4416
4417 return error;
4418 }
4419
4420 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4421 {
4422 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4423 }
4424
4425 /**
4426 * vfs_rename - rename a filesystem object
4427 * @old_dir: parent of source
4428 * @old_dentry: source
4429 * @new_dir: parent of destination
4430 * @new_dentry: destination
4431 * @delegated_inode: returns an inode needing a delegation break
4432 * @flags: rename flags
4433 *
4434 * The caller must hold multiple mutexes--see lock_rename()).
4435 *
4436 * If vfs_rename discovers a delegation in need of breaking at either
4437 * the source or destination, it will return -EWOULDBLOCK and return a
4438 * reference to the inode in delegated_inode. The caller should then
4439 * break the delegation and retry. Because breaking a delegation may
4440 * take a long time, the caller should drop all locks before doing
4441 * so.
4442 *
4443 * Alternatively, a caller may pass NULL for delegated_inode. This may
4444 * be appropriate for callers that expect the underlying filesystem not
4445 * to be NFS exported.
4446 *
4447 * The worst of all namespace operations - renaming directory. "Perverted"
4448 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4449 * Problems:
4450 *
4451 * a) we can get into loop creation.
4452 * b) race potential - two innocent renames can create a loop together.
4453 * That's where 4.4 screws up. Current fix: serialization on
4454 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4455 * story.
4456 * c) we have to lock _four_ objects - parents and victim (if it exists),
4457 * and source (if it is not a directory).
4458 * And that - after we got ->i_mutex on parents (until then we don't know
4459 * whether the target exists). Solution: try to be smart with locking
4460 * order for inodes. We rely on the fact that tree topology may change
4461 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4462 * move will be locked. Thus we can rank directories by the tree
4463 * (ancestors first) and rank all non-directories after them.
4464 * That works since everybody except rename does "lock parent, lookup,
4465 * lock child" and rename is under ->s_vfs_rename_mutex.
4466 * HOWEVER, it relies on the assumption that any object with ->lookup()
4467 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4468 * we'd better make sure that there's no link(2) for them.
4469 * d) conversion from fhandle to dentry may come in the wrong moment - when
4470 * we are removing the target. Solution: we will have to grab ->i_mutex
4471 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4472 * ->i_mutex on parents, which works but leads to some truly excessive
4473 * locking].
4474 */
4475 int vfs_rename2(struct vfsmount *mnt,
4476 struct inode *old_dir, struct dentry *old_dentry,
4477 struct inode *new_dir, struct dentry *new_dentry,
4478 struct inode **delegated_inode, unsigned int flags)
4479 {
4480 int error;
4481 bool is_dir = d_is_dir(old_dentry);
4482 struct inode *source = old_dentry->d_inode;
4483 struct inode *target = new_dentry->d_inode;
4484 bool new_is_dir = false;
4485 unsigned max_links = new_dir->i_sb->s_max_links;
4486 struct name_snapshot old_name;
4487
4488 if (source == target)
4489 return 0;
4490
4491 error = may_delete(mnt, old_dir, old_dentry, is_dir);
4492 if (error)
4493 return error;
4494
4495 if (!target) {
4496 error = may_create(mnt, new_dir, new_dentry);
4497 } else {
4498 new_is_dir = d_is_dir(new_dentry);
4499
4500 if (!(flags & RENAME_EXCHANGE))
4501 error = may_delete(mnt, new_dir, new_dentry, is_dir);
4502 else
4503 error = may_delete(mnt, new_dir, new_dentry, new_is_dir);
4504 }
4505 if (error)
4506 return error;
4507
4508 if (!old_dir->i_op->rename)
4509 return -EPERM;
4510
4511 /*
4512 * If we are going to change the parent - check write permissions,
4513 * we'll need to flip '..'.
4514 */
4515 if (new_dir != old_dir) {
4516 if (is_dir) {
4517 error = inode_permission2(mnt, source, MAY_WRITE);
4518 if (error)
4519 return error;
4520 }
4521 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4522 error = inode_permission2(mnt, target, MAY_WRITE);
4523 if (error)
4524 return error;
4525 }
4526 }
4527
4528 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4529 flags);
4530 if (error)
4531 return error;
4532
4533 take_dentry_name_snapshot(&old_name, old_dentry);
4534 dget(new_dentry);
4535 if (!is_dir || (flags & RENAME_EXCHANGE))
4536 lock_two_nondirectories(source, target);
4537 else if (target)
4538 inode_lock(target);
4539
4540 error = -EBUSY;
4541 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4542 goto out;
4543
4544 if (max_links && new_dir != old_dir) {
4545 error = -EMLINK;
4546 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4547 goto out;
4548 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4549 old_dir->i_nlink >= max_links)
4550 goto out;
4551 }
4552 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4553 shrink_dcache_parent(new_dentry);
4554 if (!is_dir) {
4555 error = try_break_deleg(source, delegated_inode);
4556 if (error)
4557 goto out;
4558 }
4559 if (target && !new_is_dir) {
4560 error = try_break_deleg(target, delegated_inode);
4561 if (error)
4562 goto out;
4563 }
4564 error = old_dir->i_op->rename(old_dir, old_dentry,
4565 new_dir, new_dentry, flags);
4566 if (error)
4567 goto out;
4568
4569 if (!(flags & RENAME_EXCHANGE) && target) {
4570 if (is_dir)
4571 target->i_flags |= S_DEAD;
4572 dont_mount(new_dentry);
4573 detach_mounts(new_dentry);
4574 }
4575 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4576 if (!(flags & RENAME_EXCHANGE))
4577 d_move(old_dentry, new_dentry);
4578 else
4579 d_exchange(old_dentry, new_dentry);
4580 }
4581 out:
4582 if (!is_dir || (flags & RENAME_EXCHANGE))
4583 unlock_two_nondirectories(source, target);
4584 else if (target)
4585 inode_unlock(target);
4586 dput(new_dentry);
4587 if (!error) {
4588 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4589 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4590 if (flags & RENAME_EXCHANGE) {
4591 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4592 new_is_dir, NULL, new_dentry);
4593 }
4594 }
4595 release_dentry_name_snapshot(&old_name);
4596
4597 return error;
4598 }
4599 EXPORT_SYMBOL(vfs_rename2);
4600
4601 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4602 struct inode *new_dir, struct dentry *new_dentry,
4603 struct inode **delegated_inode, unsigned int flags)
4604 {
4605 return vfs_rename2(NULL, old_dir, old_dentry, new_dir, new_dentry, delegated_inode, flags);
4606 }
4607 EXPORT_SYMBOL(vfs_rename);
4608
4609 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4610 int, newdfd, const char __user *, newname, unsigned int, flags)
4611 {
4612 struct dentry *old_dentry, *new_dentry;
4613 struct dentry *trap;
4614 struct path old_path, new_path;
4615 struct qstr old_last, new_last;
4616 int old_type, new_type;
4617 struct inode *delegated_inode = NULL;
4618 struct filename *from;
4619 struct filename *to;
4620 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4621 bool should_retry = false;
4622 int error;
4623
4624 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4625 return -EINVAL;
4626
4627 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4628 (flags & RENAME_EXCHANGE))
4629 return -EINVAL;
4630
4631 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4632 return -EPERM;
4633
4634 if (flags & RENAME_EXCHANGE)
4635 target_flags = 0;
4636
4637 retry:
4638 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4639 &old_path, &old_last, &old_type);
4640 if (IS_ERR(from)) {
4641 error = PTR_ERR(from);
4642 goto exit;
4643 }
4644
4645 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4646 &new_path, &new_last, &new_type);
4647 if (IS_ERR(to)) {
4648 error = PTR_ERR(to);
4649 goto exit1;
4650 }
4651
4652 error = -EXDEV;
4653 if (old_path.mnt != new_path.mnt)
4654 goto exit2;
4655
4656 error = -EBUSY;
4657 if (old_type != LAST_NORM)
4658 goto exit2;
4659
4660 if (flags & RENAME_NOREPLACE)
4661 error = -EEXIST;
4662 if (new_type != LAST_NORM)
4663 goto exit2;
4664
4665 error = mnt_want_write(old_path.mnt);
4666 if (error)
4667 goto exit2;
4668
4669 retry_deleg:
4670 trap = lock_rename(new_path.dentry, old_path.dentry);
4671
4672 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4673 error = PTR_ERR(old_dentry);
4674 if (IS_ERR(old_dentry))
4675 goto exit3;
4676 /* source must exist */
4677 error = -ENOENT;
4678 if (d_is_negative(old_dentry))
4679 goto exit4;
4680 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4681 error = PTR_ERR(new_dentry);
4682 if (IS_ERR(new_dentry))
4683 goto exit4;
4684 error = -EEXIST;
4685 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4686 goto exit5;
4687 if (flags & RENAME_EXCHANGE) {
4688 error = -ENOENT;
4689 if (d_is_negative(new_dentry))
4690 goto exit5;
4691
4692 if (!d_is_dir(new_dentry)) {
4693 error = -ENOTDIR;
4694 if (new_last.name[new_last.len])
4695 goto exit5;
4696 }
4697 }
4698 /* unless the source is a directory trailing slashes give -ENOTDIR */
4699 if (!d_is_dir(old_dentry)) {
4700 error = -ENOTDIR;
4701 if (old_last.name[old_last.len])
4702 goto exit5;
4703 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4704 goto exit5;
4705 }
4706 /* source should not be ancestor of target */
4707 error = -EINVAL;
4708 if (old_dentry == trap)
4709 goto exit5;
4710 /* target should not be an ancestor of source */
4711 if (!(flags & RENAME_EXCHANGE))
4712 error = -ENOTEMPTY;
4713 if (new_dentry == trap)
4714 goto exit5;
4715
4716 error = security_path_rename(&old_path, old_dentry,
4717 &new_path, new_dentry, flags);
4718 if (error)
4719 goto exit5;
4720 error = vfs_rename2(old_path.mnt, old_path.dentry->d_inode, old_dentry,
4721 new_path.dentry->d_inode, new_dentry,
4722 &delegated_inode, flags);
4723 exit5:
4724 dput(new_dentry);
4725 exit4:
4726 dput(old_dentry);
4727 exit3:
4728 unlock_rename(new_path.dentry, old_path.dentry);
4729 if (delegated_inode) {
4730 error = break_deleg_wait(&delegated_inode);
4731 if (!error)
4732 goto retry_deleg;
4733 }
4734 mnt_drop_write(old_path.mnt);
4735 exit2:
4736 if (retry_estale(error, lookup_flags))
4737 should_retry = true;
4738 path_put(&new_path);
4739 putname(to);
4740 exit1:
4741 path_put(&old_path);
4742 putname(from);
4743 if (should_retry) {
4744 should_retry = false;
4745 lookup_flags |= LOOKUP_REVAL;
4746 goto retry;
4747 }
4748 exit:
4749 return error;
4750 }
4751
4752 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4753 int, newdfd, const char __user *, newname)
4754 {
4755 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4756 }
4757
4758 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4759 {
4760 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4761 }
4762
4763 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4764 {
4765 int error = may_create(NULL, dir, dentry);
4766 if (error)
4767 return error;
4768
4769 if (!dir->i_op->mknod)
4770 return -EPERM;
4771
4772 return dir->i_op->mknod(dir, dentry,
4773 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4774 }
4775 EXPORT_SYMBOL(vfs_whiteout);
4776
4777 int readlink_copy(char __user *buffer, int buflen, const char *link)
4778 {
4779 int len = PTR_ERR(link);
4780 if (IS_ERR(link))
4781 goto out;
4782
4783 len = strlen(link);
4784 if (len > (unsigned) buflen)
4785 len = buflen;
4786 if (copy_to_user(buffer, link, len))
4787 len = -EFAULT;
4788 out:
4789 return len;
4790 }
4791
4792 /*
4793 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4794 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4795 * for any given inode is up to filesystem.
4796 */
4797 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4798 int buflen)
4799 {
4800 DEFINE_DELAYED_CALL(done);
4801 struct inode *inode = d_inode(dentry);
4802 const char *link = inode->i_link;
4803 int res;
4804
4805 if (!link) {
4806 link = inode->i_op->get_link(dentry, inode, &done);
4807 if (IS_ERR(link))
4808 return PTR_ERR(link);
4809 }
4810 res = readlink_copy(buffer, buflen, link);
4811 do_delayed_call(&done);
4812 return res;
4813 }
4814
4815 /**
4816 * vfs_readlink - copy symlink body into userspace buffer
4817 * @dentry: dentry on which to get symbolic link
4818 * @buffer: user memory pointer
4819 * @buflen: size of buffer
4820 *
4821 * Does not touch atime. That's up to the caller if necessary
4822 *
4823 * Does not call security hook.
4824 */
4825 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4826 {
4827 struct inode *inode = d_inode(dentry);
4828
4829 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4830 if (unlikely(inode->i_op->readlink))
4831 return inode->i_op->readlink(dentry, buffer, buflen);
4832
4833 if (!d_is_symlink(dentry))
4834 return -EINVAL;
4835
4836 spin_lock(&inode->i_lock);
4837 inode->i_opflags |= IOP_DEFAULT_READLINK;
4838 spin_unlock(&inode->i_lock);
4839 }
4840
4841 return generic_readlink(dentry, buffer, buflen);
4842 }
4843 EXPORT_SYMBOL(vfs_readlink);
4844
4845 /**
4846 * vfs_get_link - get symlink body
4847 * @dentry: dentry on which to get symbolic link
4848 * @done: caller needs to free returned data with this
4849 *
4850 * Calls security hook and i_op->get_link() on the supplied inode.
4851 *
4852 * It does not touch atime. That's up to the caller if necessary.
4853 *
4854 * Does not work on "special" symlinks like /proc/$$/fd/N
4855 */
4856 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4857 {
4858 const char *res = ERR_PTR(-EINVAL);
4859 struct inode *inode = d_inode(dentry);
4860
4861 if (d_is_symlink(dentry)) {
4862 res = ERR_PTR(security_inode_readlink(dentry));
4863 if (!res)
4864 res = inode->i_op->get_link(dentry, inode, done);
4865 }
4866 return res;
4867 }
4868 EXPORT_SYMBOL(vfs_get_link);
4869
4870 /* get the link contents into pagecache */
4871 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4872 struct delayed_call *callback)
4873 {
4874 char *kaddr;
4875 struct page *page;
4876 struct address_space *mapping = inode->i_mapping;
4877
4878 if (!dentry) {
4879 page = find_get_page(mapping, 0);
4880 if (!page)
4881 return ERR_PTR(-ECHILD);
4882 if (!PageUptodate(page)) {
4883 put_page(page);
4884 return ERR_PTR(-ECHILD);
4885 }
4886 } else {
4887 page = read_mapping_page(mapping, 0, NULL);
4888 if (IS_ERR(page))
4889 return (char*)page;
4890 }
4891 set_delayed_call(callback, page_put_link, page);
4892 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4893 kaddr = page_address(page);
4894 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4895 return kaddr;
4896 }
4897
4898 EXPORT_SYMBOL(page_get_link);
4899
4900 void page_put_link(void *arg)
4901 {
4902 put_page(arg);
4903 }
4904 EXPORT_SYMBOL(page_put_link);
4905
4906 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4907 {
4908 DEFINE_DELAYED_CALL(done);
4909 int res = readlink_copy(buffer, buflen,
4910 page_get_link(dentry, d_inode(dentry),
4911 &done));
4912 do_delayed_call(&done);
4913 return res;
4914 }
4915 EXPORT_SYMBOL(page_readlink);
4916
4917 /*
4918 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4919 */
4920 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4921 {
4922 struct address_space *mapping = inode->i_mapping;
4923 struct page *page;
4924 void *fsdata;
4925 int err;
4926 unsigned int flags = 0;
4927 if (nofs)
4928 flags |= AOP_FLAG_NOFS;
4929
4930 retry:
4931 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4932 flags, &page, &fsdata);
4933 if (err)
4934 goto fail;
4935
4936 memcpy(page_address(page), symname, len-1);
4937
4938 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4939 page, fsdata);
4940 if (err < 0)
4941 goto fail;
4942 if (err < len-1)
4943 goto retry;
4944
4945 mark_inode_dirty(inode);
4946 return 0;
4947 fail:
4948 return err;
4949 }
4950 EXPORT_SYMBOL(__page_symlink);
4951
4952 int page_symlink(struct inode *inode, const char *symname, int len)
4953 {
4954 return __page_symlink(inode, symname, len,
4955 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4956 }
4957 EXPORT_SYMBOL(page_symlink);
4958
4959 const struct inode_operations page_symlink_inode_operations = {
4960 .get_link = page_get_link,
4961 };
4962 EXPORT_SYMBOL(page_symlink_inode_operations);