Merge 4.14.83 into android-4.14-p
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_KVMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_PAGE_GET,
50 FAULT_ALLOC_BIO,
51 FAULT_ALLOC_NID,
52 FAULT_ORPHAN,
53 FAULT_BLOCK,
54 FAULT_DIR_DEPTH,
55 FAULT_EVICT_INODE,
56 FAULT_TRUNCATE,
57 FAULT_IO,
58 FAULT_CHECKPOINT,
59 FAULT_MAX,
60 };
61
62 struct f2fs_fault_info {
63 atomic_t inject_ops;
64 unsigned int inject_rate;
65 unsigned int inject_type;
66 };
67
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71
72 /*
73 * For mount options
74 */
75 #define F2FS_MOUNT_BG_GC 0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
77 #define F2FS_MOUNT_DISCARD 0x00000004
78 #define F2FS_MOUNT_NOHEAP 0x00000008
79 #define F2FS_MOUNT_XATTR_USER 0x00000010
80 #define F2FS_MOUNT_POSIX_ACL 0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
83 #define F2FS_MOUNT_INLINE_DATA 0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
86 #define F2FS_MOUNT_NOBARRIER 0x00000800
87 #define F2FS_MOUNT_FASTBOOT 0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
92 #define F2FS_MOUNT_ADAPTIVE 0x00020000
93 #define F2FS_MOUNT_LFS 0x00040000
94 #define F2FS_MOUNT_USRQUOTA 0x00080000
95 #define F2FS_MOUNT_GRPQUOTA 0x00100000
96 #define F2FS_MOUNT_PRJQUOTA 0x00200000
97 #define F2FS_MOUNT_QUOTA 0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
100
101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105
106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
107 typecheck(unsigned long long, b) && \
108 ((long long)((a) - (b)) > 0))
109
110 typedef u32 block_t; /*
111 * should not change u32, since it is the on-disk block
112 * address format, __le32.
113 */
114 typedef u32 nid_t;
115
116 struct f2fs_mount_info {
117 unsigned int opt;
118 int write_io_size_bits; /* Write IO size bits */
119 block_t root_reserved_blocks; /* root reserved blocks */
120 kuid_t s_resuid; /* reserved blocks for uid */
121 kgid_t s_resgid; /* reserved blocks for gid */
122 int active_logs; /* # of active logs */
123 int inline_xattr_size; /* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 struct f2fs_fault_info fault_info; /* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 /* Names of quota files with journalled quota */
129 char *s_qf_names[MAXQUOTAS];
130 int s_jquota_fmt; /* Format of quota to use */
131 #endif
132 /* For which write hints are passed down to block layer */
133 int whint_mode;
134 int alloc_mode; /* segment allocation policy */
135 int fsync_mode; /* fsync policy */
136 bool test_dummy_encryption; /* test dummy encryption */
137 };
138
139 #define F2FS_FEATURE_ENCRYPT 0x0001
140 #define F2FS_FEATURE_BLKZONED 0x0002
141 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
142 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
143 #define F2FS_FEATURE_PRJQUOTA 0x0010
144 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
146 #define F2FS_FEATURE_QUOTA_INO 0x0080
147 #define F2FS_FEATURE_INODE_CRTIME 0x0100
148 #define F2FS_FEATURE_LOST_FOUND 0x0200
149 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
150
151 #define F2FS_HAS_FEATURE(sb, mask) \
152 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
153 #define F2FS_SET_FEATURE(sb, mask) \
154 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
155 #define F2FS_CLEAR_FEATURE(sb, mask) \
156 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
157
158 /*
159 * Default values for user and/or group using reserved blocks
160 */
161 #define F2FS_DEF_RESUID 0
162 #define F2FS_DEF_RESGID 0
163
164 /*
165 * For checkpoint manager
166 */
167 enum {
168 NAT_BITMAP,
169 SIT_BITMAP
170 };
171
172 #define CP_UMOUNT 0x00000001
173 #define CP_FASTBOOT 0x00000002
174 #define CP_SYNC 0x00000004
175 #define CP_RECOVERY 0x00000008
176 #define CP_DISCARD 0x00000010
177 #define CP_TRIMMED 0x00000020
178
179 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
180 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
181 #define DEF_MAX_DISCARD_LEN 512 /* Max. 2MB per discard */
182 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
183 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
184 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
185 #define DEF_CP_INTERVAL 60 /* 60 secs */
186 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
187
188 struct cp_control {
189 int reason;
190 __u64 trim_start;
191 __u64 trim_end;
192 __u64 trim_minlen;
193 };
194
195 /*
196 * For CP/NAT/SIT/SSA readahead
197 */
198 enum {
199 META_CP,
200 META_NAT,
201 META_SIT,
202 META_SSA,
203 META_POR,
204 };
205
206 /* for the list of ino */
207 enum {
208 ORPHAN_INO, /* for orphan ino list */
209 APPEND_INO, /* for append ino list */
210 UPDATE_INO, /* for update ino list */
211 TRANS_DIR_INO, /* for trasactions dir ino list */
212 FLUSH_INO, /* for multiple device flushing */
213 MAX_INO_ENTRY, /* max. list */
214 };
215
216 struct ino_entry {
217 struct list_head list; /* list head */
218 nid_t ino; /* inode number */
219 unsigned int dirty_device; /* dirty device bitmap */
220 };
221
222 /* for the list of inodes to be GCed */
223 struct inode_entry {
224 struct list_head list; /* list head */
225 struct inode *inode; /* vfs inode pointer */
226 };
227
228 /* for the bitmap indicate blocks to be discarded */
229 struct discard_entry {
230 struct list_head list; /* list head */
231 block_t start_blkaddr; /* start blockaddr of current segment */
232 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
233 };
234
235 /* default discard granularity of inner discard thread, unit: block count */
236 #define DEFAULT_DISCARD_GRANULARITY 16
237
238 /* max discard pend list number */
239 #define MAX_PLIST_NUM 512
240 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
241 (MAX_PLIST_NUM - 1) : (blk_num - 1))
242
243 enum {
244 D_PREP,
245 D_SUBMIT,
246 D_DONE,
247 };
248
249 struct discard_info {
250 block_t lstart; /* logical start address */
251 block_t len; /* length */
252 block_t start; /* actual start address in dev */
253 };
254
255 struct discard_cmd {
256 struct rb_node rb_node; /* rb node located in rb-tree */
257 union {
258 struct {
259 block_t lstart; /* logical start address */
260 block_t len; /* length */
261 block_t start; /* actual start address in dev */
262 };
263 struct discard_info di; /* discard info */
264
265 };
266 struct list_head list; /* command list */
267 struct completion wait; /* compleation */
268 struct block_device *bdev; /* bdev */
269 unsigned short ref; /* reference count */
270 unsigned char state; /* state */
271 int error; /* bio error */
272 };
273
274 enum {
275 DPOLICY_BG,
276 DPOLICY_FORCE,
277 DPOLICY_FSTRIM,
278 DPOLICY_UMOUNT,
279 MAX_DPOLICY,
280 };
281
282 struct discard_policy {
283 int type; /* type of discard */
284 unsigned int min_interval; /* used for candidates exist */
285 unsigned int max_interval; /* used for candidates not exist */
286 unsigned int max_requests; /* # of discards issued per round */
287 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
288 bool io_aware; /* issue discard in idle time */
289 bool sync; /* submit discard with REQ_SYNC flag */
290 unsigned int granularity; /* discard granularity */
291 };
292
293 struct discard_cmd_control {
294 struct task_struct *f2fs_issue_discard; /* discard thread */
295 struct list_head entry_list; /* 4KB discard entry list */
296 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
297 struct list_head wait_list; /* store on-flushing entries */
298 struct list_head fstrim_list; /* in-flight discard from fstrim */
299 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
300 unsigned int discard_wake; /* to wake up discard thread */
301 struct mutex cmd_lock;
302 unsigned int nr_discards; /* # of discards in the list */
303 unsigned int max_discards; /* max. discards to be issued */
304 unsigned int discard_granularity; /* discard granularity */
305 unsigned int undiscard_blks; /* # of undiscard blocks */
306 atomic_t issued_discard; /* # of issued discard */
307 atomic_t issing_discard; /* # of issing discard */
308 atomic_t discard_cmd_cnt; /* # of cached cmd count */
309 struct rb_root root; /* root of discard rb-tree */
310 };
311
312 /* for the list of fsync inodes, used only during recovery */
313 struct fsync_inode_entry {
314 struct list_head list; /* list head */
315 struct inode *inode; /* vfs inode pointer */
316 block_t blkaddr; /* block address locating the last fsync */
317 block_t last_dentry; /* block address locating the last dentry */
318 };
319
320 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
321 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
322
323 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
324 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
325 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
326 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
327
328 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
329 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
330
331 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
332 {
333 int before = nats_in_cursum(journal);
334
335 journal->n_nats = cpu_to_le16(before + i);
336 return before;
337 }
338
339 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
340 {
341 int before = sits_in_cursum(journal);
342
343 journal->n_sits = cpu_to_le16(before + i);
344 return before;
345 }
346
347 static inline bool __has_cursum_space(struct f2fs_journal *journal,
348 int size, int type)
349 {
350 if (type == NAT_JOURNAL)
351 return size <= MAX_NAT_JENTRIES(journal);
352 return size <= MAX_SIT_JENTRIES(journal);
353 }
354
355 /*
356 * ioctl commands
357 */
358 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
359 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
360 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
361
362 #define F2FS_IOCTL_MAGIC 0xf5
363 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
364 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
365 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
366 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
367 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
368 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
369 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
370 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
371 struct f2fs_defragment)
372 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
373 struct f2fs_move_range)
374 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
375 struct f2fs_flush_device)
376 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
377 struct f2fs_gc_range)
378 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
379 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
380 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
381 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
382
383 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
384 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
385 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
386
387 /*
388 * should be same as XFS_IOC_GOINGDOWN.
389 * Flags for going down operation used by FS_IOC_GOINGDOWN
390 */
391 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
392 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
393 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
394 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
395 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
396
397 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
398 /*
399 * ioctl commands in 32 bit emulation
400 */
401 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
402 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
403 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
404 #endif
405
406 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
407 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
408
409 struct f2fs_gc_range {
410 u32 sync;
411 u64 start;
412 u64 len;
413 };
414
415 struct f2fs_defragment {
416 u64 start;
417 u64 len;
418 };
419
420 struct f2fs_move_range {
421 u32 dst_fd; /* destination fd */
422 u64 pos_in; /* start position in src_fd */
423 u64 pos_out; /* start position in dst_fd */
424 u64 len; /* size to move */
425 };
426
427 struct f2fs_flush_device {
428 u32 dev_num; /* device number to flush */
429 u32 segments; /* # of segments to flush */
430 };
431
432 /* for inline stuff */
433 #define DEF_INLINE_RESERVED_SIZE 1
434 #define DEF_MIN_INLINE_SIZE 1
435 static inline int get_extra_isize(struct inode *inode);
436 static inline int get_inline_xattr_addrs(struct inode *inode);
437 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
438 (CUR_ADDRS_PER_INODE(inode) - \
439 get_inline_xattr_addrs(inode) - \
440 DEF_INLINE_RESERVED_SIZE))
441
442 /* for inline dir */
443 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
444 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
445 BITS_PER_BYTE + 1))
446 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
447 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
448 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
449 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
450 NR_INLINE_DENTRY(inode) + \
451 INLINE_DENTRY_BITMAP_SIZE(inode)))
452
453 /*
454 * For INODE and NODE manager
455 */
456 /* for directory operations */
457 struct f2fs_dentry_ptr {
458 struct inode *inode;
459 void *bitmap;
460 struct f2fs_dir_entry *dentry;
461 __u8 (*filename)[F2FS_SLOT_LEN];
462 int max;
463 int nr_bitmap;
464 };
465
466 static inline void make_dentry_ptr_block(struct inode *inode,
467 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
468 {
469 d->inode = inode;
470 d->max = NR_DENTRY_IN_BLOCK;
471 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
472 d->bitmap = t->dentry_bitmap;
473 d->dentry = t->dentry;
474 d->filename = t->filename;
475 }
476
477 static inline void make_dentry_ptr_inline(struct inode *inode,
478 struct f2fs_dentry_ptr *d, void *t)
479 {
480 int entry_cnt = NR_INLINE_DENTRY(inode);
481 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
482 int reserved_size = INLINE_RESERVED_SIZE(inode);
483
484 d->inode = inode;
485 d->max = entry_cnt;
486 d->nr_bitmap = bitmap_size;
487 d->bitmap = t;
488 d->dentry = t + bitmap_size + reserved_size;
489 d->filename = t + bitmap_size + reserved_size +
490 SIZE_OF_DIR_ENTRY * entry_cnt;
491 }
492
493 /*
494 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
495 * as its node offset to distinguish from index node blocks.
496 * But some bits are used to mark the node block.
497 */
498 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
499 >> OFFSET_BIT_SHIFT)
500 enum {
501 ALLOC_NODE, /* allocate a new node page if needed */
502 LOOKUP_NODE, /* look up a node without readahead */
503 LOOKUP_NODE_RA, /*
504 * look up a node with readahead called
505 * by get_data_block.
506 */
507 };
508
509 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
510
511 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
512
513 /* vector size for gang look-up from extent cache that consists of radix tree */
514 #define EXT_TREE_VEC_SIZE 64
515
516 /* for in-memory extent cache entry */
517 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
518
519 /* number of extent info in extent cache we try to shrink */
520 #define EXTENT_CACHE_SHRINK_NUMBER 128
521
522 struct rb_entry {
523 struct rb_node rb_node; /* rb node located in rb-tree */
524 unsigned int ofs; /* start offset of the entry */
525 unsigned int len; /* length of the entry */
526 };
527
528 struct extent_info {
529 unsigned int fofs; /* start offset in a file */
530 unsigned int len; /* length of the extent */
531 u32 blk; /* start block address of the extent */
532 };
533
534 struct extent_node {
535 struct rb_node rb_node;
536 union {
537 struct {
538 unsigned int fofs;
539 unsigned int len;
540 u32 blk;
541 };
542 struct extent_info ei; /* extent info */
543
544 };
545 struct list_head list; /* node in global extent list of sbi */
546 struct extent_tree *et; /* extent tree pointer */
547 };
548
549 struct extent_tree {
550 nid_t ino; /* inode number */
551 struct rb_root root; /* root of extent info rb-tree */
552 struct extent_node *cached_en; /* recently accessed extent node */
553 struct extent_info largest; /* largested extent info */
554 struct list_head list; /* to be used by sbi->zombie_list */
555 rwlock_t lock; /* protect extent info rb-tree */
556 atomic_t node_cnt; /* # of extent node in rb-tree*/
557 };
558
559 /*
560 * This structure is taken from ext4_map_blocks.
561 *
562 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
563 */
564 #define F2FS_MAP_NEW (1 << BH_New)
565 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
566 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
567 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
568 F2FS_MAP_UNWRITTEN)
569
570 struct f2fs_map_blocks {
571 block_t m_pblk;
572 block_t m_lblk;
573 unsigned int m_len;
574 unsigned int m_flags;
575 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
576 pgoff_t *m_next_extent; /* point to next possible extent */
577 int m_seg_type;
578 };
579
580 /* for flag in get_data_block */
581 enum {
582 F2FS_GET_BLOCK_DEFAULT,
583 F2FS_GET_BLOCK_FIEMAP,
584 F2FS_GET_BLOCK_BMAP,
585 F2FS_GET_BLOCK_PRE_DIO,
586 F2FS_GET_BLOCK_PRE_AIO,
587 F2FS_GET_BLOCK_PRECACHE,
588 };
589
590 /*
591 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
592 */
593 #define FADVISE_COLD_BIT 0x01
594 #define FADVISE_LOST_PINO_BIT 0x02
595 #define FADVISE_ENCRYPT_BIT 0x04
596 #define FADVISE_ENC_NAME_BIT 0x08
597 #define FADVISE_KEEP_SIZE_BIT 0x10
598 #define FADVISE_HOT_BIT 0x20
599 #define FADVISE_VERITY_BIT 0x40 /* reserved */
600
601 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
602 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
603 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
604 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
605 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
606 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
607 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
608 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
609 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
610 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
611 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
612 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
613 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
614 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
615 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
616 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
617
618 #define DEF_DIR_LEVEL 0
619
620 struct f2fs_inode_info {
621 struct inode vfs_inode; /* serve a vfs inode */
622 unsigned long i_flags; /* keep an inode flags for ioctl */
623 unsigned char i_advise; /* use to give file attribute hints */
624 unsigned char i_dir_level; /* use for dentry level for large dir */
625 union {
626 unsigned int i_current_depth; /* only for directory depth */
627 unsigned short i_gc_failures; /* only for regular file */
628 };
629 unsigned int i_pino; /* parent inode number */
630 umode_t i_acl_mode; /* keep file acl mode temporarily */
631
632 /* Use below internally in f2fs*/
633 unsigned long flags; /* use to pass per-file flags */
634 struct rw_semaphore i_sem; /* protect fi info */
635 atomic_t dirty_pages; /* # of dirty pages */
636 f2fs_hash_t chash; /* hash value of given file name */
637 unsigned int clevel; /* maximum level of given file name */
638 struct task_struct *task; /* lookup and create consistency */
639 struct task_struct *cp_task; /* separate cp/wb IO stats*/
640 nid_t i_xattr_nid; /* node id that contains xattrs */
641 loff_t last_disk_size; /* lastly written file size */
642
643 #ifdef CONFIG_QUOTA
644 struct dquot *i_dquot[MAXQUOTAS];
645
646 /* quota space reservation, managed internally by quota code */
647 qsize_t i_reserved_quota;
648 #endif
649 struct list_head dirty_list; /* dirty list for dirs and files */
650 struct list_head gdirty_list; /* linked in global dirty list */
651 struct list_head inmem_ilist; /* list for inmem inodes */
652 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
653 struct task_struct *inmem_task; /* store inmemory task */
654 struct mutex inmem_lock; /* lock for inmemory pages */
655 struct extent_tree *extent_tree; /* cached extent_tree entry */
656 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
657 struct rw_semaphore i_mmap_sem;
658 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
659
660 int i_extra_isize; /* size of extra space located in i_addr */
661 kprojid_t i_projid; /* id for project quota */
662 int i_inline_xattr_size; /* inline xattr size */
663 struct timespec i_crtime; /* inode creation time */
664 struct timespec i_disk_time[4]; /* inode disk times */
665 };
666
667 static inline void get_extent_info(struct extent_info *ext,
668 struct f2fs_extent *i_ext)
669 {
670 ext->fofs = le32_to_cpu(i_ext->fofs);
671 ext->blk = le32_to_cpu(i_ext->blk);
672 ext->len = le32_to_cpu(i_ext->len);
673 }
674
675 static inline void set_raw_extent(struct extent_info *ext,
676 struct f2fs_extent *i_ext)
677 {
678 i_ext->fofs = cpu_to_le32(ext->fofs);
679 i_ext->blk = cpu_to_le32(ext->blk);
680 i_ext->len = cpu_to_le32(ext->len);
681 }
682
683 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
684 u32 blk, unsigned int len)
685 {
686 ei->fofs = fofs;
687 ei->blk = blk;
688 ei->len = len;
689 }
690
691 static inline bool __is_discard_mergeable(struct discard_info *back,
692 struct discard_info *front)
693 {
694 return (back->lstart + back->len == front->lstart) &&
695 (back->len + front->len < DEF_MAX_DISCARD_LEN);
696 }
697
698 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
699 struct discard_info *back)
700 {
701 return __is_discard_mergeable(back, cur);
702 }
703
704 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
705 struct discard_info *front)
706 {
707 return __is_discard_mergeable(cur, front);
708 }
709
710 static inline bool __is_extent_mergeable(struct extent_info *back,
711 struct extent_info *front)
712 {
713 return (back->fofs + back->len == front->fofs &&
714 back->blk + back->len == front->blk);
715 }
716
717 static inline bool __is_back_mergeable(struct extent_info *cur,
718 struct extent_info *back)
719 {
720 return __is_extent_mergeable(back, cur);
721 }
722
723 static inline bool __is_front_mergeable(struct extent_info *cur,
724 struct extent_info *front)
725 {
726 return __is_extent_mergeable(cur, front);
727 }
728
729 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
730 static inline void __try_update_largest_extent(struct inode *inode,
731 struct extent_tree *et, struct extent_node *en)
732 {
733 if (en->ei.len > et->largest.len) {
734 et->largest = en->ei;
735 f2fs_mark_inode_dirty_sync(inode, true);
736 }
737 }
738
739 /*
740 * For free nid management
741 */
742 enum nid_state {
743 FREE_NID, /* newly added to free nid list */
744 PREALLOC_NID, /* it is preallocated */
745 MAX_NID_STATE,
746 };
747
748 struct f2fs_nm_info {
749 block_t nat_blkaddr; /* base disk address of NAT */
750 nid_t max_nid; /* maximum possible node ids */
751 nid_t available_nids; /* # of available node ids */
752 nid_t next_scan_nid; /* the next nid to be scanned */
753 unsigned int ram_thresh; /* control the memory footprint */
754 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
755 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
756
757 /* NAT cache management */
758 struct radix_tree_root nat_root;/* root of the nat entry cache */
759 struct radix_tree_root nat_set_root;/* root of the nat set cache */
760 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
761 struct list_head nat_entries; /* cached nat entry list (clean) */
762 unsigned int nat_cnt; /* the # of cached nat entries */
763 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
764 unsigned int nat_blocks; /* # of nat blocks */
765
766 /* free node ids management */
767 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
768 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
769 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
770 spinlock_t nid_list_lock; /* protect nid lists ops */
771 struct mutex build_lock; /* lock for build free nids */
772 unsigned char **free_nid_bitmap;
773 unsigned char *nat_block_bitmap;
774 unsigned short *free_nid_count; /* free nid count of NAT block */
775
776 /* for checkpoint */
777 char *nat_bitmap; /* NAT bitmap pointer */
778
779 unsigned int nat_bits_blocks; /* # of nat bits blocks */
780 unsigned char *nat_bits; /* NAT bits blocks */
781 unsigned char *full_nat_bits; /* full NAT pages */
782 unsigned char *empty_nat_bits; /* empty NAT pages */
783 #ifdef CONFIG_F2FS_CHECK_FS
784 char *nat_bitmap_mir; /* NAT bitmap mirror */
785 #endif
786 int bitmap_size; /* bitmap size */
787 };
788
789 /*
790 * this structure is used as one of function parameters.
791 * all the information are dedicated to a given direct node block determined
792 * by the data offset in a file.
793 */
794 struct dnode_of_data {
795 struct inode *inode; /* vfs inode pointer */
796 struct page *inode_page; /* its inode page, NULL is possible */
797 struct page *node_page; /* cached direct node page */
798 nid_t nid; /* node id of the direct node block */
799 unsigned int ofs_in_node; /* data offset in the node page */
800 bool inode_page_locked; /* inode page is locked or not */
801 bool node_changed; /* is node block changed */
802 char cur_level; /* level of hole node page */
803 char max_level; /* level of current page located */
804 block_t data_blkaddr; /* block address of the node block */
805 };
806
807 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
808 struct page *ipage, struct page *npage, nid_t nid)
809 {
810 memset(dn, 0, sizeof(*dn));
811 dn->inode = inode;
812 dn->inode_page = ipage;
813 dn->node_page = npage;
814 dn->nid = nid;
815 }
816
817 /*
818 * For SIT manager
819 *
820 * By default, there are 6 active log areas across the whole main area.
821 * When considering hot and cold data separation to reduce cleaning overhead,
822 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
823 * respectively.
824 * In the current design, you should not change the numbers intentionally.
825 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
826 * logs individually according to the underlying devices. (default: 6)
827 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
828 * data and 8 for node logs.
829 */
830 #define NR_CURSEG_DATA_TYPE (3)
831 #define NR_CURSEG_NODE_TYPE (3)
832 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
833
834 enum {
835 CURSEG_HOT_DATA = 0, /* directory entry blocks */
836 CURSEG_WARM_DATA, /* data blocks */
837 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
838 CURSEG_HOT_NODE, /* direct node blocks of directory files */
839 CURSEG_WARM_NODE, /* direct node blocks of normal files */
840 CURSEG_COLD_NODE, /* indirect node blocks */
841 NO_CHECK_TYPE,
842 };
843
844 struct flush_cmd {
845 struct completion wait;
846 struct llist_node llnode;
847 nid_t ino;
848 int ret;
849 };
850
851 struct flush_cmd_control {
852 struct task_struct *f2fs_issue_flush; /* flush thread */
853 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
854 atomic_t issued_flush; /* # of issued flushes */
855 atomic_t issing_flush; /* # of issing flushes */
856 struct llist_head issue_list; /* list for command issue */
857 struct llist_node *dispatch_list; /* list for command dispatch */
858 };
859
860 struct f2fs_sm_info {
861 struct sit_info *sit_info; /* whole segment information */
862 struct free_segmap_info *free_info; /* free segment information */
863 struct dirty_seglist_info *dirty_info; /* dirty segment information */
864 struct curseg_info *curseg_array; /* active segment information */
865
866 struct rw_semaphore curseg_lock; /* for preventing curseg change */
867
868 block_t seg0_blkaddr; /* block address of 0'th segment */
869 block_t main_blkaddr; /* start block address of main area */
870 block_t ssa_blkaddr; /* start block address of SSA area */
871
872 unsigned int segment_count; /* total # of segments */
873 unsigned int main_segments; /* # of segments in main area */
874 unsigned int reserved_segments; /* # of reserved segments */
875 unsigned int ovp_segments; /* # of overprovision segments */
876
877 /* a threshold to reclaim prefree segments */
878 unsigned int rec_prefree_segments;
879
880 /* for batched trimming */
881 unsigned int trim_sections; /* # of sections to trim */
882
883 struct list_head sit_entry_set; /* sit entry set list */
884
885 unsigned int ipu_policy; /* in-place-update policy */
886 unsigned int min_ipu_util; /* in-place-update threshold */
887 unsigned int min_fsync_blocks; /* threshold for fsync */
888 unsigned int min_hot_blocks; /* threshold for hot block allocation */
889 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
890
891 /* for flush command control */
892 struct flush_cmd_control *fcc_info;
893
894 /* for discard command control */
895 struct discard_cmd_control *dcc_info;
896 };
897
898 /*
899 * For superblock
900 */
901 /*
902 * COUNT_TYPE for monitoring
903 *
904 * f2fs monitors the number of several block types such as on-writeback,
905 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
906 */
907 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
908 enum count_type {
909 F2FS_DIRTY_DENTS,
910 F2FS_DIRTY_DATA,
911 F2FS_DIRTY_QDATA,
912 F2FS_DIRTY_NODES,
913 F2FS_DIRTY_META,
914 F2FS_INMEM_PAGES,
915 F2FS_DIRTY_IMETA,
916 F2FS_WB_CP_DATA,
917 F2FS_WB_DATA,
918 NR_COUNT_TYPE,
919 };
920
921 /*
922 * The below are the page types of bios used in submit_bio().
923 * The available types are:
924 * DATA User data pages. It operates as async mode.
925 * NODE Node pages. It operates as async mode.
926 * META FS metadata pages such as SIT, NAT, CP.
927 * NR_PAGE_TYPE The number of page types.
928 * META_FLUSH Make sure the previous pages are written
929 * with waiting the bio's completion
930 * ... Only can be used with META.
931 */
932 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
933 enum page_type {
934 DATA,
935 NODE,
936 META,
937 NR_PAGE_TYPE,
938 META_FLUSH,
939 INMEM, /* the below types are used by tracepoints only. */
940 INMEM_DROP,
941 INMEM_INVALIDATE,
942 INMEM_REVOKE,
943 IPU,
944 OPU,
945 };
946
947 enum temp_type {
948 HOT = 0, /* must be zero for meta bio */
949 WARM,
950 COLD,
951 NR_TEMP_TYPE,
952 };
953
954 enum need_lock_type {
955 LOCK_REQ = 0,
956 LOCK_DONE,
957 LOCK_RETRY,
958 };
959
960 enum cp_reason_type {
961 CP_NO_NEEDED,
962 CP_NON_REGULAR,
963 CP_HARDLINK,
964 CP_SB_NEED_CP,
965 CP_WRONG_PINO,
966 CP_NO_SPC_ROLL,
967 CP_NODE_NEED_CP,
968 CP_FASTBOOT_MODE,
969 CP_SPEC_LOG_NUM,
970 CP_RECOVER_DIR,
971 };
972
973 enum iostat_type {
974 APP_DIRECT_IO, /* app direct IOs */
975 APP_BUFFERED_IO, /* app buffered IOs */
976 APP_WRITE_IO, /* app write IOs */
977 APP_MAPPED_IO, /* app mapped IOs */
978 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
979 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
980 FS_META_IO, /* meta IOs from kworker/reclaimer */
981 FS_GC_DATA_IO, /* data IOs from forground gc */
982 FS_GC_NODE_IO, /* node IOs from forground gc */
983 FS_CP_DATA_IO, /* data IOs from checkpoint */
984 FS_CP_NODE_IO, /* node IOs from checkpoint */
985 FS_CP_META_IO, /* meta IOs from checkpoint */
986 FS_DISCARD, /* discard */
987 NR_IO_TYPE,
988 };
989
990 struct f2fs_io_info {
991 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
992 nid_t ino; /* inode number */
993 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
994 enum temp_type temp; /* contains HOT/WARM/COLD */
995 int op; /* contains REQ_OP_ */
996 int op_flags; /* req_flag_bits */
997 block_t new_blkaddr; /* new block address to be written */
998 block_t old_blkaddr; /* old block address before Cow */
999 struct page *page; /* page to be written */
1000 struct page *encrypted_page; /* encrypted page */
1001 struct list_head list; /* serialize IOs */
1002 bool submitted; /* indicate IO submission */
1003 int need_lock; /* indicate we need to lock cp_rwsem */
1004 bool in_list; /* indicate fio is in io_list */
1005 bool is_meta; /* indicate borrow meta inode mapping or not */
1006 enum iostat_type io_type; /* io type */
1007 struct writeback_control *io_wbc; /* writeback control */
1008 };
1009
1010 #define is_read_io(rw) ((rw) == READ)
1011 struct f2fs_bio_info {
1012 struct f2fs_sb_info *sbi; /* f2fs superblock */
1013 struct bio *bio; /* bios to merge */
1014 sector_t last_block_in_bio; /* last block number */
1015 struct f2fs_io_info fio; /* store buffered io info. */
1016 struct rw_semaphore io_rwsem; /* blocking op for bio */
1017 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1018 struct list_head io_list; /* track fios */
1019 };
1020
1021 #define FDEV(i) (sbi->devs[i])
1022 #define RDEV(i) (raw_super->devs[i])
1023 struct f2fs_dev_info {
1024 struct block_device *bdev;
1025 char path[MAX_PATH_LEN];
1026 unsigned int total_segments;
1027 block_t start_blk;
1028 block_t end_blk;
1029 #ifdef CONFIG_BLK_DEV_ZONED
1030 unsigned int nr_blkz; /* Total number of zones */
1031 u8 *blkz_type; /* Array of zones type */
1032 #endif
1033 };
1034
1035 enum inode_type {
1036 DIR_INODE, /* for dirty dir inode */
1037 FILE_INODE, /* for dirty regular/symlink inode */
1038 DIRTY_META, /* for all dirtied inode metadata */
1039 ATOMIC_FILE, /* for all atomic files */
1040 NR_INODE_TYPE,
1041 };
1042
1043 /* for inner inode cache management */
1044 struct inode_management {
1045 struct radix_tree_root ino_root; /* ino entry array */
1046 spinlock_t ino_lock; /* for ino entry lock */
1047 struct list_head ino_list; /* inode list head */
1048 unsigned long ino_num; /* number of entries */
1049 };
1050
1051 /* For s_flag in struct f2fs_sb_info */
1052 enum {
1053 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1054 SBI_IS_CLOSE, /* specify unmounting */
1055 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1056 SBI_POR_DOING, /* recovery is doing or not */
1057 SBI_NEED_SB_WRITE, /* need to recover superblock */
1058 SBI_NEED_CP, /* need to checkpoint */
1059 };
1060
1061 enum {
1062 CP_TIME,
1063 REQ_TIME,
1064 MAX_TIME,
1065 };
1066
1067 enum {
1068 WHINT_MODE_OFF, /* not pass down write hints */
1069 WHINT_MODE_USER, /* try to pass down hints given by users */
1070 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1071 };
1072
1073 enum {
1074 ALLOC_MODE_DEFAULT, /* stay default */
1075 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1076 };
1077
1078 enum fsync_mode {
1079 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1080 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1081 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1082 };
1083
1084 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1085 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1086 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1087 #else
1088 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1089 #endif
1090
1091 struct f2fs_sb_info {
1092 struct super_block *sb; /* pointer to VFS super block */
1093 struct proc_dir_entry *s_proc; /* proc entry */
1094 struct f2fs_super_block *raw_super; /* raw super block pointer */
1095 struct rw_semaphore sb_lock; /* lock for raw super block */
1096 int valid_super_block; /* valid super block no */
1097 unsigned long s_flag; /* flags for sbi */
1098
1099 #ifdef CONFIG_BLK_DEV_ZONED
1100 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1101 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1102 #endif
1103
1104 /* for node-related operations */
1105 struct f2fs_nm_info *nm_info; /* node manager */
1106 struct inode *node_inode; /* cache node blocks */
1107
1108 /* for segment-related operations */
1109 struct f2fs_sm_info *sm_info; /* segment manager */
1110
1111 /* for bio operations */
1112 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1113 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1114 /* bio ordering for NODE/DATA */
1115 mempool_t *write_io_dummy; /* Dummy pages */
1116
1117 /* for checkpoint */
1118 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1119 int cur_cp_pack; /* remain current cp pack */
1120 spinlock_t cp_lock; /* for flag in ckpt */
1121 struct inode *meta_inode; /* cache meta blocks */
1122 struct mutex cp_mutex; /* checkpoint procedure lock */
1123 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1124 struct rw_semaphore node_write; /* locking node writes */
1125 struct rw_semaphore node_change; /* locking node change */
1126 wait_queue_head_t cp_wait;
1127 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1128 long interval_time[MAX_TIME]; /* to store thresholds */
1129
1130 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1131
1132 /* for orphan inode, use 0'th array */
1133 unsigned int max_orphans; /* max orphan inodes */
1134
1135 /* for inode management */
1136 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1137 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1138
1139 /* for extent tree cache */
1140 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1141 struct mutex extent_tree_lock; /* locking extent radix tree */
1142 struct list_head extent_list; /* lru list for shrinker */
1143 spinlock_t extent_lock; /* locking extent lru list */
1144 atomic_t total_ext_tree; /* extent tree count */
1145 struct list_head zombie_list; /* extent zombie tree list */
1146 atomic_t total_zombie_tree; /* extent zombie tree count */
1147 atomic_t total_ext_node; /* extent info count */
1148
1149 /* basic filesystem units */
1150 unsigned int log_sectors_per_block; /* log2 sectors per block */
1151 unsigned int log_blocksize; /* log2 block size */
1152 unsigned int blocksize; /* block size */
1153 unsigned int root_ino_num; /* root inode number*/
1154 unsigned int node_ino_num; /* node inode number*/
1155 unsigned int meta_ino_num; /* meta inode number*/
1156 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1157 unsigned int blocks_per_seg; /* blocks per segment */
1158 unsigned int segs_per_sec; /* segments per section */
1159 unsigned int secs_per_zone; /* sections per zone */
1160 unsigned int total_sections; /* total section count */
1161 unsigned int total_node_count; /* total node block count */
1162 unsigned int total_valid_node_count; /* valid node block count */
1163 loff_t max_file_blocks; /* max block index of file */
1164 int dir_level; /* directory level */
1165 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1166 int readdir_ra; /* readahead inode in readdir */
1167
1168 block_t user_block_count; /* # of user blocks */
1169 block_t total_valid_block_count; /* # of valid blocks */
1170 block_t discard_blks; /* discard command candidats */
1171 block_t last_valid_block_count; /* for recovery */
1172 block_t reserved_blocks; /* configurable reserved blocks */
1173 block_t current_reserved_blocks; /* current reserved blocks */
1174
1175 unsigned int nquota_files; /* # of quota sysfile */
1176
1177 u32 s_next_generation; /* for NFS support */
1178
1179 /* # of pages, see count_type */
1180 atomic_t nr_pages[NR_COUNT_TYPE];
1181 /* # of allocated blocks */
1182 struct percpu_counter alloc_valid_block_count;
1183
1184 /* writeback control */
1185 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1186
1187 /* valid inode count */
1188 struct percpu_counter total_valid_inode_count;
1189
1190 struct f2fs_mount_info mount_opt; /* mount options */
1191
1192 /* for cleaning operations */
1193 struct mutex gc_mutex; /* mutex for GC */
1194 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1195 unsigned int cur_victim_sec; /* current victim section num */
1196
1197 /* threshold for converting bg victims for fg */
1198 u64 fggc_threshold;
1199
1200 /* threshold for gc trials on pinned files */
1201 u64 gc_pin_file_threshold;
1202
1203 /* maximum # of trials to find a victim segment for SSR and GC */
1204 unsigned int max_victim_search;
1205
1206 /*
1207 * for stat information.
1208 * one is for the LFS mode, and the other is for the SSR mode.
1209 */
1210 #ifdef CONFIG_F2FS_STAT_FS
1211 struct f2fs_stat_info *stat_info; /* FS status information */
1212 unsigned int segment_count[2]; /* # of allocated segments */
1213 unsigned int block_count[2]; /* # of allocated blocks */
1214 atomic_t inplace_count; /* # of inplace update */
1215 atomic64_t total_hit_ext; /* # of lookup extent cache */
1216 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1217 atomic64_t read_hit_largest; /* # of hit largest extent node */
1218 atomic64_t read_hit_cached; /* # of hit cached extent node */
1219 atomic_t inline_xattr; /* # of inline_xattr inodes */
1220 atomic_t inline_inode; /* # of inline_data inodes */
1221 atomic_t inline_dir; /* # of inline_dentry inodes */
1222 atomic_t aw_cnt; /* # of atomic writes */
1223 atomic_t vw_cnt; /* # of volatile writes */
1224 atomic_t max_aw_cnt; /* max # of atomic writes */
1225 atomic_t max_vw_cnt; /* max # of volatile writes */
1226 int bg_gc; /* background gc calls */
1227 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1228 #endif
1229 spinlock_t stat_lock; /* lock for stat operations */
1230
1231 /* For app/fs IO statistics */
1232 spinlock_t iostat_lock;
1233 unsigned long long write_iostat[NR_IO_TYPE];
1234 bool iostat_enable;
1235
1236 /* For sysfs suppport */
1237 struct kobject s_kobj;
1238 struct completion s_kobj_unregister;
1239
1240 /* For shrinker support */
1241 struct list_head s_list;
1242 int s_ndevs; /* number of devices */
1243 struct f2fs_dev_info *devs; /* for device list */
1244 unsigned int dirty_device; /* for checkpoint data flush */
1245 spinlock_t dev_lock; /* protect dirty_device */
1246 struct mutex umount_mutex;
1247 unsigned int shrinker_run_no;
1248
1249 /* For write statistics */
1250 u64 sectors_written_start;
1251 u64 kbytes_written;
1252
1253 /* Reference to checksum algorithm driver via cryptoapi */
1254 struct crypto_shash *s_chksum_driver;
1255
1256 /* Precomputed FS UUID checksum for seeding other checksums */
1257 __u32 s_chksum_seed;
1258 };
1259
1260 #ifdef CONFIG_F2FS_FAULT_INJECTION
1261 #define f2fs_show_injection_info(type) \
1262 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1263 KERN_INFO, fault_name[type], \
1264 __func__, __builtin_return_address(0))
1265 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1266 {
1267 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1268
1269 if (!ffi->inject_rate)
1270 return false;
1271
1272 if (!IS_FAULT_SET(ffi, type))
1273 return false;
1274
1275 atomic_inc(&ffi->inject_ops);
1276 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1277 atomic_set(&ffi->inject_ops, 0);
1278 return true;
1279 }
1280 return false;
1281 }
1282 #endif
1283
1284 /* For write statistics. Suppose sector size is 512 bytes,
1285 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1286 */
1287 #define BD_PART_WRITTEN(s) \
1288 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1289 (s)->sectors_written_start) >> 1)
1290
1291 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1292 {
1293 sbi->last_time[type] = jiffies;
1294 }
1295
1296 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1297 {
1298 unsigned long interval = sbi->interval_time[type] * HZ;
1299
1300 return time_after(jiffies, sbi->last_time[type] + interval);
1301 }
1302
1303 static inline bool is_idle(struct f2fs_sb_info *sbi)
1304 {
1305 struct block_device *bdev = sbi->sb->s_bdev;
1306 struct request_queue *q = bdev_get_queue(bdev);
1307 struct request_list *rl = &q->root_rl;
1308
1309 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1310 return 0;
1311
1312 return f2fs_time_over(sbi, REQ_TIME);
1313 }
1314
1315 /*
1316 * Inline functions
1317 */
1318 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1319 const void *address, unsigned int length)
1320 {
1321 struct {
1322 struct shash_desc shash;
1323 char ctx[4];
1324 } desc;
1325 int err;
1326
1327 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1328
1329 desc.shash.tfm = sbi->s_chksum_driver;
1330 desc.shash.flags = 0;
1331 *(u32 *)desc.ctx = crc;
1332
1333 err = crypto_shash_update(&desc.shash, address, length);
1334 BUG_ON(err);
1335
1336 return *(u32 *)desc.ctx;
1337 }
1338
1339 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1340 unsigned int length)
1341 {
1342 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1343 }
1344
1345 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1346 void *buf, size_t buf_size)
1347 {
1348 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1349 }
1350
1351 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1352 const void *address, unsigned int length)
1353 {
1354 return __f2fs_crc32(sbi, crc, address, length);
1355 }
1356
1357 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1358 {
1359 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1360 }
1361
1362 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1363 {
1364 return sb->s_fs_info;
1365 }
1366
1367 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1368 {
1369 return F2FS_SB(inode->i_sb);
1370 }
1371
1372 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1373 {
1374 return F2FS_I_SB(mapping->host);
1375 }
1376
1377 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1378 {
1379 return F2FS_M_SB(page->mapping);
1380 }
1381
1382 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1383 {
1384 return (struct f2fs_super_block *)(sbi->raw_super);
1385 }
1386
1387 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1388 {
1389 return (struct f2fs_checkpoint *)(sbi->ckpt);
1390 }
1391
1392 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1393 {
1394 return (struct f2fs_node *)page_address(page);
1395 }
1396
1397 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1398 {
1399 return &((struct f2fs_node *)page_address(page))->i;
1400 }
1401
1402 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1403 {
1404 return (struct f2fs_nm_info *)(sbi->nm_info);
1405 }
1406
1407 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1408 {
1409 return (struct f2fs_sm_info *)(sbi->sm_info);
1410 }
1411
1412 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1413 {
1414 return (struct sit_info *)(SM_I(sbi)->sit_info);
1415 }
1416
1417 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1418 {
1419 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1420 }
1421
1422 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1423 {
1424 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1425 }
1426
1427 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1428 {
1429 return sbi->meta_inode->i_mapping;
1430 }
1431
1432 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1433 {
1434 return sbi->node_inode->i_mapping;
1435 }
1436
1437 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1438 {
1439 return test_bit(type, &sbi->s_flag);
1440 }
1441
1442 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1443 {
1444 set_bit(type, &sbi->s_flag);
1445 }
1446
1447 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1448 {
1449 clear_bit(type, &sbi->s_flag);
1450 }
1451
1452 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1453 {
1454 return le64_to_cpu(cp->checkpoint_ver);
1455 }
1456
1457 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1458 {
1459 if (type < F2FS_MAX_QUOTAS)
1460 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1461 return 0;
1462 }
1463
1464 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1465 {
1466 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1467 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1468 }
1469
1470 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1471 {
1472 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1473
1474 return ckpt_flags & f;
1475 }
1476
1477 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1478 {
1479 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1480 }
1481
1482 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1483 {
1484 unsigned int ckpt_flags;
1485
1486 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1487 ckpt_flags |= f;
1488 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1489 }
1490
1491 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1492 {
1493 unsigned long flags;
1494
1495 spin_lock_irqsave(&sbi->cp_lock, flags);
1496 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1497 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1498 }
1499
1500 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1501 {
1502 unsigned int ckpt_flags;
1503
1504 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1505 ckpt_flags &= (~f);
1506 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1507 }
1508
1509 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1510 {
1511 unsigned long flags;
1512
1513 spin_lock_irqsave(&sbi->cp_lock, flags);
1514 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1515 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1516 }
1517
1518 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1519 {
1520 unsigned long flags;
1521
1522 set_sbi_flag(sbi, SBI_NEED_FSCK);
1523
1524 if (lock)
1525 spin_lock_irqsave(&sbi->cp_lock, flags);
1526 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1527 kfree(NM_I(sbi)->nat_bits);
1528 NM_I(sbi)->nat_bits = NULL;
1529 if (lock)
1530 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1531 }
1532
1533 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1534 struct cp_control *cpc)
1535 {
1536 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1537
1538 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1539 }
1540
1541 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1542 {
1543 down_read(&sbi->cp_rwsem);
1544 }
1545
1546 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1547 {
1548 return down_read_trylock(&sbi->cp_rwsem);
1549 }
1550
1551 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1552 {
1553 up_read(&sbi->cp_rwsem);
1554 }
1555
1556 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1557 {
1558 down_write(&sbi->cp_rwsem);
1559 }
1560
1561 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1562 {
1563 up_write(&sbi->cp_rwsem);
1564 }
1565
1566 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1567 {
1568 int reason = CP_SYNC;
1569
1570 if (test_opt(sbi, FASTBOOT))
1571 reason = CP_FASTBOOT;
1572 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1573 reason = CP_UMOUNT;
1574 return reason;
1575 }
1576
1577 static inline bool __remain_node_summaries(int reason)
1578 {
1579 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1580 }
1581
1582 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1583 {
1584 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1585 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1586 }
1587
1588 /*
1589 * Check whether the inode has blocks or not
1590 */
1591 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1592 {
1593 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1594
1595 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1596 }
1597
1598 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1599 {
1600 return ofs == XATTR_NODE_OFFSET;
1601 }
1602
1603 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1604 struct inode *inode, bool cap)
1605 {
1606 if (!inode)
1607 return true;
1608 if (!test_opt(sbi, RESERVE_ROOT))
1609 return false;
1610 if (IS_NOQUOTA(inode))
1611 return true;
1612 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1613 return true;
1614 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1615 in_group_p(F2FS_OPTION(sbi).s_resgid))
1616 return true;
1617 if (cap && capable(CAP_SYS_RESOURCE))
1618 return true;
1619 return false;
1620 }
1621
1622 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1623 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1624 struct inode *inode, blkcnt_t *count)
1625 {
1626 blkcnt_t diff = 0, release = 0;
1627 block_t avail_user_block_count;
1628 int ret;
1629
1630 ret = dquot_reserve_block(inode, *count);
1631 if (ret)
1632 return ret;
1633
1634 #ifdef CONFIG_F2FS_FAULT_INJECTION
1635 if (time_to_inject(sbi, FAULT_BLOCK)) {
1636 f2fs_show_injection_info(FAULT_BLOCK);
1637 release = *count;
1638 goto enospc;
1639 }
1640 #endif
1641 /*
1642 * let's increase this in prior to actual block count change in order
1643 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1644 */
1645 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1646
1647 spin_lock(&sbi->stat_lock);
1648 sbi->total_valid_block_count += (block_t)(*count);
1649 avail_user_block_count = sbi->user_block_count -
1650 sbi->current_reserved_blocks;
1651
1652 if (!__allow_reserved_blocks(sbi, inode, true))
1653 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1654
1655 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1656 diff = sbi->total_valid_block_count - avail_user_block_count;
1657 if (diff > *count)
1658 diff = *count;
1659 *count -= diff;
1660 release = diff;
1661 sbi->total_valid_block_count -= diff;
1662 if (!*count) {
1663 spin_unlock(&sbi->stat_lock);
1664 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1665 goto enospc;
1666 }
1667 }
1668 spin_unlock(&sbi->stat_lock);
1669
1670 if (unlikely(release))
1671 dquot_release_reservation_block(inode, release);
1672 f2fs_i_blocks_write(inode, *count, true, true);
1673 return 0;
1674
1675 enospc:
1676 dquot_release_reservation_block(inode, release);
1677 return -ENOSPC;
1678 }
1679
1680 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1681 struct inode *inode,
1682 block_t count)
1683 {
1684 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1685
1686 spin_lock(&sbi->stat_lock);
1687 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1688 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1689 sbi->total_valid_block_count -= (block_t)count;
1690 if (sbi->reserved_blocks &&
1691 sbi->current_reserved_blocks < sbi->reserved_blocks)
1692 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1693 sbi->current_reserved_blocks + count);
1694 spin_unlock(&sbi->stat_lock);
1695 f2fs_i_blocks_write(inode, count, false, true);
1696 }
1697
1698 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1699 {
1700 atomic_inc(&sbi->nr_pages[count_type]);
1701
1702 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1703 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1704 return;
1705
1706 set_sbi_flag(sbi, SBI_IS_DIRTY);
1707 }
1708
1709 static inline void inode_inc_dirty_pages(struct inode *inode)
1710 {
1711 atomic_inc(&F2FS_I(inode)->dirty_pages);
1712 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1713 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1714 if (IS_NOQUOTA(inode))
1715 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1716 }
1717
1718 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1719 {
1720 atomic_dec(&sbi->nr_pages[count_type]);
1721 }
1722
1723 static inline void inode_dec_dirty_pages(struct inode *inode)
1724 {
1725 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1726 !S_ISLNK(inode->i_mode))
1727 return;
1728
1729 atomic_dec(&F2FS_I(inode)->dirty_pages);
1730 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1731 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1732 if (IS_NOQUOTA(inode))
1733 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1734 }
1735
1736 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1737 {
1738 return atomic_read(&sbi->nr_pages[count_type]);
1739 }
1740
1741 static inline int get_dirty_pages(struct inode *inode)
1742 {
1743 return atomic_read(&F2FS_I(inode)->dirty_pages);
1744 }
1745
1746 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1747 {
1748 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1749 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1750 sbi->log_blocks_per_seg;
1751
1752 return segs / sbi->segs_per_sec;
1753 }
1754
1755 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1756 {
1757 return sbi->total_valid_block_count;
1758 }
1759
1760 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1761 {
1762 return sbi->discard_blks;
1763 }
1764
1765 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1766 {
1767 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1768
1769 /* return NAT or SIT bitmap */
1770 if (flag == NAT_BITMAP)
1771 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1772 else if (flag == SIT_BITMAP)
1773 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1774
1775 return 0;
1776 }
1777
1778 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1779 {
1780 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1781 }
1782
1783 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1784 {
1785 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1786 int offset;
1787
1788 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1789 offset = (flag == SIT_BITMAP) ?
1790 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1791 return &ckpt->sit_nat_version_bitmap + offset;
1792 }
1793
1794 if (__cp_payload(sbi) > 0) {
1795 if (flag == NAT_BITMAP)
1796 return &ckpt->sit_nat_version_bitmap;
1797 else
1798 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1799 } else {
1800 offset = (flag == NAT_BITMAP) ?
1801 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1802 return &ckpt->sit_nat_version_bitmap + offset;
1803 }
1804 }
1805
1806 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1807 {
1808 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1809
1810 if (sbi->cur_cp_pack == 2)
1811 start_addr += sbi->blocks_per_seg;
1812 return start_addr;
1813 }
1814
1815 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1816 {
1817 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1818
1819 if (sbi->cur_cp_pack == 1)
1820 start_addr += sbi->blocks_per_seg;
1821 return start_addr;
1822 }
1823
1824 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1825 {
1826 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1827 }
1828
1829 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1830 {
1831 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1832 }
1833
1834 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1835 struct inode *inode, bool is_inode)
1836 {
1837 block_t valid_block_count;
1838 unsigned int valid_node_count;
1839 bool quota = inode && !is_inode;
1840
1841 if (quota) {
1842 int ret = dquot_reserve_block(inode, 1);
1843 if (ret)
1844 return ret;
1845 }
1846
1847 #ifdef CONFIG_F2FS_FAULT_INJECTION
1848 if (time_to_inject(sbi, FAULT_BLOCK)) {
1849 f2fs_show_injection_info(FAULT_BLOCK);
1850 goto enospc;
1851 }
1852 #endif
1853
1854 spin_lock(&sbi->stat_lock);
1855
1856 valid_block_count = sbi->total_valid_block_count +
1857 sbi->current_reserved_blocks + 1;
1858
1859 if (!__allow_reserved_blocks(sbi, inode, false))
1860 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1861
1862 if (unlikely(valid_block_count > sbi->user_block_count)) {
1863 spin_unlock(&sbi->stat_lock);
1864 goto enospc;
1865 }
1866
1867 valid_node_count = sbi->total_valid_node_count + 1;
1868 if (unlikely(valid_node_count > sbi->total_node_count)) {
1869 spin_unlock(&sbi->stat_lock);
1870 goto enospc;
1871 }
1872
1873 sbi->total_valid_node_count++;
1874 sbi->total_valid_block_count++;
1875 spin_unlock(&sbi->stat_lock);
1876
1877 if (inode) {
1878 if (is_inode)
1879 f2fs_mark_inode_dirty_sync(inode, true);
1880 else
1881 f2fs_i_blocks_write(inode, 1, true, true);
1882 }
1883
1884 percpu_counter_inc(&sbi->alloc_valid_block_count);
1885 return 0;
1886
1887 enospc:
1888 if (quota)
1889 dquot_release_reservation_block(inode, 1);
1890 return -ENOSPC;
1891 }
1892
1893 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1894 struct inode *inode, bool is_inode)
1895 {
1896 spin_lock(&sbi->stat_lock);
1897
1898 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1899 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1900 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1901
1902 sbi->total_valid_node_count--;
1903 sbi->total_valid_block_count--;
1904 if (sbi->reserved_blocks &&
1905 sbi->current_reserved_blocks < sbi->reserved_blocks)
1906 sbi->current_reserved_blocks++;
1907
1908 spin_unlock(&sbi->stat_lock);
1909
1910 if (!is_inode)
1911 f2fs_i_blocks_write(inode, 1, false, true);
1912 }
1913
1914 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1915 {
1916 return sbi->total_valid_node_count;
1917 }
1918
1919 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1920 {
1921 percpu_counter_inc(&sbi->total_valid_inode_count);
1922 }
1923
1924 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1925 {
1926 percpu_counter_dec(&sbi->total_valid_inode_count);
1927 }
1928
1929 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1930 {
1931 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1932 }
1933
1934 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1935 pgoff_t index, bool for_write)
1936 {
1937 #ifdef CONFIG_F2FS_FAULT_INJECTION
1938 struct page *page;
1939
1940 if (!for_write)
1941 page = find_get_page_flags(mapping, index,
1942 FGP_LOCK | FGP_ACCESSED);
1943 else
1944 page = find_lock_page(mapping, index);
1945 if (page)
1946 return page;
1947
1948 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1949 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1950 return NULL;
1951 }
1952 #endif
1953 if (!for_write)
1954 return grab_cache_page(mapping, index);
1955 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1956 }
1957
1958 static inline struct page *f2fs_pagecache_get_page(
1959 struct address_space *mapping, pgoff_t index,
1960 int fgp_flags, gfp_t gfp_mask)
1961 {
1962 #ifdef CONFIG_F2FS_FAULT_INJECTION
1963 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1964 f2fs_show_injection_info(FAULT_PAGE_GET);
1965 return NULL;
1966 }
1967 #endif
1968 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1969 }
1970
1971 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1972 {
1973 char *src_kaddr = kmap(src);
1974 char *dst_kaddr = kmap(dst);
1975
1976 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1977 kunmap(dst);
1978 kunmap(src);
1979 }
1980
1981 static inline void f2fs_put_page(struct page *page, int unlock)
1982 {
1983 if (!page)
1984 return;
1985
1986 if (unlock) {
1987 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1988 unlock_page(page);
1989 }
1990 put_page(page);
1991 }
1992
1993 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1994 {
1995 if (dn->node_page)
1996 f2fs_put_page(dn->node_page, 1);
1997 if (dn->inode_page && dn->node_page != dn->inode_page)
1998 f2fs_put_page(dn->inode_page, 0);
1999 dn->node_page = NULL;
2000 dn->inode_page = NULL;
2001 }
2002
2003 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2004 size_t size)
2005 {
2006 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2007 }
2008
2009 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2010 gfp_t flags)
2011 {
2012 void *entry;
2013
2014 entry = kmem_cache_alloc(cachep, flags);
2015 if (!entry)
2016 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2017 return entry;
2018 }
2019
2020 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2021 int npages, bool no_fail)
2022 {
2023 struct bio *bio;
2024
2025 if (no_fail) {
2026 /* No failure on bio allocation */
2027 bio = bio_alloc(GFP_NOIO, npages);
2028 if (!bio)
2029 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2030 return bio;
2031 }
2032 #ifdef CONFIG_F2FS_FAULT_INJECTION
2033 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2034 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2035 return NULL;
2036 }
2037 #endif
2038 return bio_alloc(GFP_KERNEL, npages);
2039 }
2040
2041 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2042 unsigned long index, void *item)
2043 {
2044 while (radix_tree_insert(root, index, item))
2045 cond_resched();
2046 }
2047
2048 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2049
2050 static inline bool IS_INODE(struct page *page)
2051 {
2052 struct f2fs_node *p = F2FS_NODE(page);
2053
2054 return RAW_IS_INODE(p);
2055 }
2056
2057 static inline int offset_in_addr(struct f2fs_inode *i)
2058 {
2059 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2060 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2061 }
2062
2063 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2064 {
2065 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2066 }
2067
2068 static inline int f2fs_has_extra_attr(struct inode *inode);
2069 static inline block_t datablock_addr(struct inode *inode,
2070 struct page *node_page, unsigned int offset)
2071 {
2072 struct f2fs_node *raw_node;
2073 __le32 *addr_array;
2074 int base = 0;
2075 bool is_inode = IS_INODE(node_page);
2076
2077 raw_node = F2FS_NODE(node_page);
2078
2079 /* from GC path only */
2080 if (is_inode) {
2081 if (!inode)
2082 base = offset_in_addr(&raw_node->i);
2083 else if (f2fs_has_extra_attr(inode))
2084 base = get_extra_isize(inode);
2085 }
2086
2087 addr_array = blkaddr_in_node(raw_node);
2088 return le32_to_cpu(addr_array[base + offset]);
2089 }
2090
2091 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2092 {
2093 int mask;
2094
2095 addr += (nr >> 3);
2096 mask = 1 << (7 - (nr & 0x07));
2097 return mask & *addr;
2098 }
2099
2100 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2101 {
2102 int mask;
2103
2104 addr += (nr >> 3);
2105 mask = 1 << (7 - (nr & 0x07));
2106 *addr |= mask;
2107 }
2108
2109 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2110 {
2111 int mask;
2112
2113 addr += (nr >> 3);
2114 mask = 1 << (7 - (nr & 0x07));
2115 *addr &= ~mask;
2116 }
2117
2118 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2119 {
2120 int mask;
2121 int ret;
2122
2123 addr += (nr >> 3);
2124 mask = 1 << (7 - (nr & 0x07));
2125 ret = mask & *addr;
2126 *addr |= mask;
2127 return ret;
2128 }
2129
2130 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2131 {
2132 int mask;
2133 int ret;
2134
2135 addr += (nr >> 3);
2136 mask = 1 << (7 - (nr & 0x07));
2137 ret = mask & *addr;
2138 *addr &= ~mask;
2139 return ret;
2140 }
2141
2142 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2143 {
2144 int mask;
2145
2146 addr += (nr >> 3);
2147 mask = 1 << (7 - (nr & 0x07));
2148 *addr ^= mask;
2149 }
2150
2151 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2152 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2153 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2154
2155 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2156 {
2157 if (S_ISDIR(mode))
2158 return flags;
2159 else if (S_ISREG(mode))
2160 return flags & F2FS_REG_FLMASK;
2161 else
2162 return flags & F2FS_OTHER_FLMASK;
2163 }
2164
2165 /* used for f2fs_inode_info->flags */
2166 enum {
2167 FI_NEW_INODE, /* indicate newly allocated inode */
2168 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2169 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2170 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2171 FI_INC_LINK, /* need to increment i_nlink */
2172 FI_ACL_MODE, /* indicate acl mode */
2173 FI_NO_ALLOC, /* should not allocate any blocks */
2174 FI_FREE_NID, /* free allocated nide */
2175 FI_NO_EXTENT, /* not to use the extent cache */
2176 FI_INLINE_XATTR, /* used for inline xattr */
2177 FI_INLINE_DATA, /* used for inline data*/
2178 FI_INLINE_DENTRY, /* used for inline dentry */
2179 FI_APPEND_WRITE, /* inode has appended data */
2180 FI_UPDATE_WRITE, /* inode has in-place-update data */
2181 FI_NEED_IPU, /* used for ipu per file */
2182 FI_ATOMIC_FILE, /* indicate atomic file */
2183 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2184 FI_VOLATILE_FILE, /* indicate volatile file */
2185 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2186 FI_DROP_CACHE, /* drop dirty page cache */
2187 FI_DATA_EXIST, /* indicate data exists */
2188 FI_INLINE_DOTS, /* indicate inline dot dentries */
2189 FI_DO_DEFRAG, /* indicate defragment is running */
2190 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2191 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2192 FI_HOT_DATA, /* indicate file is hot */
2193 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2194 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2195 FI_PIN_FILE, /* indicate file should not be gced */
2196 };
2197
2198 static inline void __mark_inode_dirty_flag(struct inode *inode,
2199 int flag, bool set)
2200 {
2201 switch (flag) {
2202 case FI_INLINE_XATTR:
2203 case FI_INLINE_DATA:
2204 case FI_INLINE_DENTRY:
2205 case FI_NEW_INODE:
2206 if (set)
2207 return;
2208 case FI_DATA_EXIST:
2209 case FI_INLINE_DOTS:
2210 case FI_PIN_FILE:
2211 f2fs_mark_inode_dirty_sync(inode, true);
2212 }
2213 }
2214
2215 static inline void set_inode_flag(struct inode *inode, int flag)
2216 {
2217 if (!test_bit(flag, &F2FS_I(inode)->flags))
2218 set_bit(flag, &F2FS_I(inode)->flags);
2219 __mark_inode_dirty_flag(inode, flag, true);
2220 }
2221
2222 static inline int is_inode_flag_set(struct inode *inode, int flag)
2223 {
2224 return test_bit(flag, &F2FS_I(inode)->flags);
2225 }
2226
2227 static inline void clear_inode_flag(struct inode *inode, int flag)
2228 {
2229 if (test_bit(flag, &F2FS_I(inode)->flags))
2230 clear_bit(flag, &F2FS_I(inode)->flags);
2231 __mark_inode_dirty_flag(inode, flag, false);
2232 }
2233
2234 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2235 {
2236 F2FS_I(inode)->i_acl_mode = mode;
2237 set_inode_flag(inode, FI_ACL_MODE);
2238 f2fs_mark_inode_dirty_sync(inode, false);
2239 }
2240
2241 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2242 {
2243 if (inc)
2244 inc_nlink(inode);
2245 else
2246 drop_nlink(inode);
2247 f2fs_mark_inode_dirty_sync(inode, true);
2248 }
2249
2250 static inline void f2fs_i_blocks_write(struct inode *inode,
2251 block_t diff, bool add, bool claim)
2252 {
2253 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2254 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2255
2256 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2257 if (add) {
2258 if (claim)
2259 dquot_claim_block(inode, diff);
2260 else
2261 dquot_alloc_block_nofail(inode, diff);
2262 } else {
2263 dquot_free_block(inode, diff);
2264 }
2265
2266 f2fs_mark_inode_dirty_sync(inode, true);
2267 if (clean || recover)
2268 set_inode_flag(inode, FI_AUTO_RECOVER);
2269 }
2270
2271 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2272 {
2273 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2274 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2275
2276 if (i_size_read(inode) == i_size)
2277 return;
2278
2279 i_size_write(inode, i_size);
2280 f2fs_mark_inode_dirty_sync(inode, true);
2281 if (clean || recover)
2282 set_inode_flag(inode, FI_AUTO_RECOVER);
2283 }
2284
2285 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2286 {
2287 F2FS_I(inode)->i_current_depth = depth;
2288 f2fs_mark_inode_dirty_sync(inode, true);
2289 }
2290
2291 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2292 unsigned int count)
2293 {
2294 F2FS_I(inode)->i_gc_failures = count;
2295 f2fs_mark_inode_dirty_sync(inode, true);
2296 }
2297
2298 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2299 {
2300 F2FS_I(inode)->i_xattr_nid = xnid;
2301 f2fs_mark_inode_dirty_sync(inode, true);
2302 }
2303
2304 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2305 {
2306 F2FS_I(inode)->i_pino = pino;
2307 f2fs_mark_inode_dirty_sync(inode, true);
2308 }
2309
2310 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2311 {
2312 struct f2fs_inode_info *fi = F2FS_I(inode);
2313
2314 if (ri->i_inline & F2FS_INLINE_XATTR)
2315 set_bit(FI_INLINE_XATTR, &fi->flags);
2316 if (ri->i_inline & F2FS_INLINE_DATA)
2317 set_bit(FI_INLINE_DATA, &fi->flags);
2318 if (ri->i_inline & F2FS_INLINE_DENTRY)
2319 set_bit(FI_INLINE_DENTRY, &fi->flags);
2320 if (ri->i_inline & F2FS_DATA_EXIST)
2321 set_bit(FI_DATA_EXIST, &fi->flags);
2322 if (ri->i_inline & F2FS_INLINE_DOTS)
2323 set_bit(FI_INLINE_DOTS, &fi->flags);
2324 if (ri->i_inline & F2FS_EXTRA_ATTR)
2325 set_bit(FI_EXTRA_ATTR, &fi->flags);
2326 if (ri->i_inline & F2FS_PIN_FILE)
2327 set_bit(FI_PIN_FILE, &fi->flags);
2328 }
2329
2330 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2331 {
2332 ri->i_inline = 0;
2333
2334 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2335 ri->i_inline |= F2FS_INLINE_XATTR;
2336 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2337 ri->i_inline |= F2FS_INLINE_DATA;
2338 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2339 ri->i_inline |= F2FS_INLINE_DENTRY;
2340 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2341 ri->i_inline |= F2FS_DATA_EXIST;
2342 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2343 ri->i_inline |= F2FS_INLINE_DOTS;
2344 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2345 ri->i_inline |= F2FS_EXTRA_ATTR;
2346 if (is_inode_flag_set(inode, FI_PIN_FILE))
2347 ri->i_inline |= F2FS_PIN_FILE;
2348 }
2349
2350 static inline int f2fs_has_extra_attr(struct inode *inode)
2351 {
2352 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2353 }
2354
2355 static inline int f2fs_has_inline_xattr(struct inode *inode)
2356 {
2357 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2358 }
2359
2360 static inline unsigned int addrs_per_inode(struct inode *inode)
2361 {
2362 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2363 }
2364
2365 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2366 {
2367 struct f2fs_inode *ri = F2FS_INODE(page);
2368
2369 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2370 get_inline_xattr_addrs(inode)]);
2371 }
2372
2373 static inline int inline_xattr_size(struct inode *inode)
2374 {
2375 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2376 }
2377
2378 static inline int f2fs_has_inline_data(struct inode *inode)
2379 {
2380 return is_inode_flag_set(inode, FI_INLINE_DATA);
2381 }
2382
2383 static inline int f2fs_exist_data(struct inode *inode)
2384 {
2385 return is_inode_flag_set(inode, FI_DATA_EXIST);
2386 }
2387
2388 static inline int f2fs_has_inline_dots(struct inode *inode)
2389 {
2390 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2391 }
2392
2393 static inline bool f2fs_is_pinned_file(struct inode *inode)
2394 {
2395 return is_inode_flag_set(inode, FI_PIN_FILE);
2396 }
2397
2398 static inline bool f2fs_is_atomic_file(struct inode *inode)
2399 {
2400 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2401 }
2402
2403 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2404 {
2405 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2406 }
2407
2408 static inline bool f2fs_is_volatile_file(struct inode *inode)
2409 {
2410 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2411 }
2412
2413 static inline bool f2fs_is_first_block_written(struct inode *inode)
2414 {
2415 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2416 }
2417
2418 static inline bool f2fs_is_drop_cache(struct inode *inode)
2419 {
2420 return is_inode_flag_set(inode, FI_DROP_CACHE);
2421 }
2422
2423 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2424 {
2425 struct f2fs_inode *ri = F2FS_INODE(page);
2426 int extra_size = get_extra_isize(inode);
2427
2428 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2429 }
2430
2431 static inline int f2fs_has_inline_dentry(struct inode *inode)
2432 {
2433 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2434 }
2435
2436 static inline int is_file(struct inode *inode, int type)
2437 {
2438 return F2FS_I(inode)->i_advise & type;
2439 }
2440
2441 static inline void set_file(struct inode *inode, int type)
2442 {
2443 F2FS_I(inode)->i_advise |= type;
2444 f2fs_mark_inode_dirty_sync(inode, true);
2445 }
2446
2447 static inline void clear_file(struct inode *inode, int type)
2448 {
2449 F2FS_I(inode)->i_advise &= ~type;
2450 f2fs_mark_inode_dirty_sync(inode, true);
2451 }
2452
2453 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2454 {
2455 bool ret;
2456
2457 if (dsync) {
2458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2459
2460 spin_lock(&sbi->inode_lock[DIRTY_META]);
2461 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2462 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2463 return ret;
2464 }
2465 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2466 file_keep_isize(inode) ||
2467 i_size_read(inode) & ~PAGE_MASK)
2468 return false;
2469
2470 if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2471 return false;
2472 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2473 return false;
2474 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2475 return false;
2476 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2477 &F2FS_I(inode)->i_crtime))
2478 return false;
2479
2480 down_read(&F2FS_I(inode)->i_sem);
2481 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2482 up_read(&F2FS_I(inode)->i_sem);
2483
2484 return ret;
2485 }
2486
2487 static inline bool f2fs_readonly(struct super_block *sb)
2488 {
2489 return sb_rdonly(sb);
2490 }
2491
2492 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2493 {
2494 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2495 }
2496
2497 static inline bool is_dot_dotdot(const struct qstr *str)
2498 {
2499 if (str->len == 1 && str->name[0] == '.')
2500 return true;
2501
2502 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2503 return true;
2504
2505 return false;
2506 }
2507
2508 static inline bool f2fs_may_extent_tree(struct inode *inode)
2509 {
2510 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2511 is_inode_flag_set(inode, FI_NO_EXTENT))
2512 return false;
2513
2514 return S_ISREG(inode->i_mode);
2515 }
2516
2517 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2518 size_t size, gfp_t flags)
2519 {
2520 #ifdef CONFIG_F2FS_FAULT_INJECTION
2521 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2522 f2fs_show_injection_info(FAULT_KMALLOC);
2523 return NULL;
2524 }
2525 #endif
2526 return kmalloc(size, flags);
2527 }
2528
2529 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2530 size_t size, gfp_t flags)
2531 {
2532 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2533 }
2534
2535 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2536 size_t size, gfp_t flags)
2537 {
2538 #ifdef CONFIG_F2FS_FAULT_INJECTION
2539 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2540 f2fs_show_injection_info(FAULT_KVMALLOC);
2541 return NULL;
2542 }
2543 #endif
2544 return kvmalloc(size, flags);
2545 }
2546
2547 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2548 size_t size, gfp_t flags)
2549 {
2550 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2551 }
2552
2553 static inline int get_extra_isize(struct inode *inode)
2554 {
2555 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2556 }
2557
2558 static inline int get_inline_xattr_addrs(struct inode *inode)
2559 {
2560 return F2FS_I(inode)->i_inline_xattr_size;
2561 }
2562
2563 #define get_inode_mode(i) \
2564 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2565 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2566
2567 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2568 (offsetof(struct f2fs_inode, i_extra_end) - \
2569 offsetof(struct f2fs_inode, i_extra_isize)) \
2570
2571 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2572 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2573 ((offsetof(typeof(*f2fs_inode), field) + \
2574 sizeof((f2fs_inode)->field)) \
2575 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2576
2577 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2578 {
2579 int i;
2580
2581 spin_lock(&sbi->iostat_lock);
2582 for (i = 0; i < NR_IO_TYPE; i++)
2583 sbi->write_iostat[i] = 0;
2584 spin_unlock(&sbi->iostat_lock);
2585 }
2586
2587 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2588 enum iostat_type type, unsigned long long io_bytes)
2589 {
2590 if (!sbi->iostat_enable)
2591 return;
2592 spin_lock(&sbi->iostat_lock);
2593 sbi->write_iostat[type] += io_bytes;
2594
2595 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2596 sbi->write_iostat[APP_BUFFERED_IO] =
2597 sbi->write_iostat[APP_WRITE_IO] -
2598 sbi->write_iostat[APP_DIRECT_IO];
2599 spin_unlock(&sbi->iostat_lock);
2600 }
2601
2602 /*
2603 * file.c
2604 */
2605 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2606 void truncate_data_blocks(struct dnode_of_data *dn);
2607 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2608 int f2fs_truncate(struct inode *inode);
2609 int f2fs_getattr(const struct path *path, struct kstat *stat,
2610 u32 request_mask, unsigned int flags);
2611 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2612 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2613 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2614 int f2fs_precache_extents(struct inode *inode);
2615 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2616 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2617 int f2fs_pin_file_control(struct inode *inode, bool inc);
2618
2619 /*
2620 * inode.c
2621 */
2622 void f2fs_set_inode_flags(struct inode *inode);
2623 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2624 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2625 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2626 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2627 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2628 void update_inode(struct inode *inode, struct page *node_page);
2629 void update_inode_page(struct inode *inode);
2630 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2631 void f2fs_evict_inode(struct inode *inode);
2632 void handle_failed_inode(struct inode *inode);
2633
2634 /*
2635 * namei.c
2636 */
2637 int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2638 bool hot, bool set);
2639 struct dentry *f2fs_get_parent(struct dentry *child);
2640
2641 /*
2642 * dir.c
2643 */
2644 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2645 unsigned char get_de_type(struct f2fs_dir_entry *de);
2646 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2647 f2fs_hash_t namehash, int *max_slots,
2648 struct f2fs_dentry_ptr *d);
2649 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2650 unsigned int start_pos, struct fscrypt_str *fstr);
2651 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2652 struct f2fs_dentry_ptr *d);
2653 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2654 const struct qstr *new_name,
2655 const struct qstr *orig_name, struct page *dpage);
2656 void update_parent_metadata(struct inode *dir, struct inode *inode,
2657 unsigned int current_depth);
2658 int room_for_filename(const void *bitmap, int slots, int max_slots);
2659 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2660 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2661 struct fscrypt_name *fname, struct page **res_page);
2662 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2663 const struct qstr *child, struct page **res_page);
2664 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2665 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2666 struct page **page);
2667 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2668 struct page *page, struct inode *inode);
2669 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2670 const struct qstr *name, f2fs_hash_t name_hash,
2671 unsigned int bit_pos);
2672 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2673 const struct qstr *orig_name,
2674 struct inode *inode, nid_t ino, umode_t mode);
2675 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2676 struct inode *inode, nid_t ino, umode_t mode);
2677 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2678 struct inode *inode, nid_t ino, umode_t mode);
2679 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2680 struct inode *dir, struct inode *inode);
2681 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2682 bool f2fs_empty_dir(struct inode *dir);
2683
2684 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2685 {
2686 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2687 inode, inode->i_ino, inode->i_mode);
2688 }
2689
2690 /*
2691 * super.c
2692 */
2693 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2694 void f2fs_inode_synced(struct inode *inode);
2695 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2696 void f2fs_quota_off_umount(struct super_block *sb);
2697 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2698 int f2fs_sync_fs(struct super_block *sb, int sync);
2699 extern __printf(3, 4)
2700 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2701 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2702
2703 /*
2704 * hash.c
2705 */
2706 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2707 struct fscrypt_name *fname);
2708
2709 /*
2710 * node.c
2711 */
2712 struct dnode_of_data;
2713 struct node_info;
2714
2715 int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2716 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2717 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2718 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2719 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2720 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2721 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2722 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2723 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2724 int truncate_xattr_node(struct inode *inode);
2725 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2726 int remove_inode_page(struct inode *inode);
2727 struct page *new_inode_page(struct inode *inode);
2728 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2729 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2730 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2731 struct page *get_node_page_ra(struct page *parent, int start);
2732 void move_node_page(struct page *node_page, int gc_type);
2733 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2734 struct writeback_control *wbc, bool atomic);
2735 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2736 bool do_balance, enum iostat_type io_type);
2737 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2738 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2739 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2740 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2741 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2742 void recover_inline_xattr(struct inode *inode, struct page *page);
2743 int recover_xattr_data(struct inode *inode, struct page *page);
2744 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2745 void restore_node_summary(struct f2fs_sb_info *sbi,
2746 unsigned int segno, struct f2fs_summary_block *sum);
2747 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2748 int build_node_manager(struct f2fs_sb_info *sbi);
2749 void destroy_node_manager(struct f2fs_sb_info *sbi);
2750 int __init create_node_manager_caches(void);
2751 void destroy_node_manager_caches(void);
2752
2753 /*
2754 * segment.c
2755 */
2756 bool need_SSR(struct f2fs_sb_info *sbi);
2757 void register_inmem_page(struct inode *inode, struct page *page);
2758 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2759 void drop_inmem_pages(struct inode *inode);
2760 void drop_inmem_page(struct inode *inode, struct page *page);
2761 int commit_inmem_pages(struct inode *inode);
2762 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2763 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2764 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2765 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2766 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2767 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2768 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2769 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2770 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2771 void stop_discard_thread(struct f2fs_sb_info *sbi);
2772 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2773 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2774 void release_discard_addrs(struct f2fs_sb_info *sbi);
2775 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2776 void allocate_new_segments(struct f2fs_sb_info *sbi);
2777 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2778 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2779 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2780 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2781 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2782 enum iostat_type io_type);
2783 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2784 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2785 int rewrite_data_page(struct f2fs_io_info *fio);
2786 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2787 block_t old_blkaddr, block_t new_blkaddr,
2788 bool recover_curseg, bool recover_newaddr);
2789 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2790 block_t old_addr, block_t new_addr,
2791 unsigned char version, bool recover_curseg,
2792 bool recover_newaddr);
2793 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2794 block_t old_blkaddr, block_t *new_blkaddr,
2795 struct f2fs_summary *sum, int type,
2796 struct f2fs_io_info *fio, bool add_list);
2797 void f2fs_wait_on_page_writeback(struct page *page,
2798 enum page_type type, bool ordered);
2799 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2800 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2801 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2802 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2803 unsigned int val, int alloc);
2804 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2805 int build_segment_manager(struct f2fs_sb_info *sbi);
2806 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2807 int __init create_segment_manager_caches(void);
2808 void destroy_segment_manager_caches(void);
2809 int rw_hint_to_seg_type(enum rw_hint hint);
2810 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2811 enum temp_type temp);
2812
2813 /*
2814 * checkpoint.c
2815 */
2816 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2817 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2818 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2819 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2820 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2821 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2822 int type, bool sync);
2823 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2824 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2825 long nr_to_write, enum iostat_type io_type);
2826 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2827 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2828 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2829 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2830 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2831 unsigned int devidx, int type);
2832 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2833 unsigned int devidx, int type);
2834 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2835 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2836 void release_orphan_inode(struct f2fs_sb_info *sbi);
2837 void add_orphan_inode(struct inode *inode);
2838 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2839 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2840 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2841 void update_dirty_page(struct inode *inode, struct page *page);
2842 void remove_dirty_inode(struct inode *inode);
2843 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2844 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2845 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2846 int __init create_checkpoint_caches(void);
2847 void destroy_checkpoint_caches(void);
2848
2849 /*
2850 * data.c
2851 */
2852 int f2fs_init_post_read_processing(void);
2853 void f2fs_destroy_post_read_processing(void);
2854 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2855 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2856 struct inode *inode, nid_t ino, pgoff_t idx,
2857 enum page_type type);
2858 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2859 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2860 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2861 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2862 block_t blk_addr, struct bio *bio);
2863 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2864 void set_data_blkaddr(struct dnode_of_data *dn);
2865 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2866 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2867 int reserve_new_block(struct dnode_of_data *dn);
2868 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2869 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2870 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2871 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2872 int op_flags, bool for_write);
2873 struct page *find_data_page(struct inode *inode, pgoff_t index);
2874 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2875 bool for_write);
2876 struct page *get_new_data_page(struct inode *inode,
2877 struct page *ipage, pgoff_t index, bool new_i_size);
2878 int do_write_data_page(struct f2fs_io_info *fio);
2879 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2880 int create, int flag);
2881 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2882 u64 start, u64 len);
2883 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2884 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2885 int __f2fs_write_data_pages(struct address_space *mapping,
2886 struct writeback_control *wbc,
2887 enum iostat_type io_type);
2888 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2889 unsigned int length);
2890 int f2fs_release_page(struct page *page, gfp_t wait);
2891 #ifdef CONFIG_MIGRATION
2892 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2893 struct page *page, enum migrate_mode mode);
2894 #endif
2895 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2896
2897 /*
2898 * gc.c
2899 */
2900 int start_gc_thread(struct f2fs_sb_info *sbi);
2901 void stop_gc_thread(struct f2fs_sb_info *sbi);
2902 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2903 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2904 unsigned int segno);
2905 void build_gc_manager(struct f2fs_sb_info *sbi);
2906
2907 /*
2908 * recovery.c
2909 */
2910 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2911 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2912
2913 /*
2914 * debug.c
2915 */
2916 #ifdef CONFIG_F2FS_STAT_FS
2917 struct f2fs_stat_info {
2918 struct list_head stat_list;
2919 struct f2fs_sb_info *sbi;
2920 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2921 int main_area_segs, main_area_sections, main_area_zones;
2922 unsigned long long hit_largest, hit_cached, hit_rbtree;
2923 unsigned long long hit_total, total_ext;
2924 int ext_tree, zombie_tree, ext_node;
2925 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2926 int ndirty_data, ndirty_qdata;
2927 int inmem_pages;
2928 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2929 int nats, dirty_nats, sits, dirty_sits;
2930 int free_nids, avail_nids, alloc_nids;
2931 int total_count, utilization;
2932 int bg_gc, nr_wb_cp_data, nr_wb_data;
2933 int nr_flushing, nr_flushed, flush_list_empty;
2934 int nr_discarding, nr_discarded;
2935 int nr_discard_cmd;
2936 unsigned int undiscard_blks;
2937 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2938 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2939 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2940 unsigned int bimodal, avg_vblocks;
2941 int util_free, util_valid, util_invalid;
2942 int rsvd_segs, overp_segs;
2943 int dirty_count, node_pages, meta_pages;
2944 int prefree_count, call_count, cp_count, bg_cp_count;
2945 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2946 int bg_node_segs, bg_data_segs;
2947 int tot_blks, data_blks, node_blks;
2948 int bg_data_blks, bg_node_blks;
2949 int curseg[NR_CURSEG_TYPE];
2950 int cursec[NR_CURSEG_TYPE];
2951 int curzone[NR_CURSEG_TYPE];
2952
2953 unsigned int segment_count[2];
2954 unsigned int block_count[2];
2955 unsigned int inplace_count;
2956 unsigned long long base_mem, cache_mem, page_mem;
2957 };
2958
2959 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2960 {
2961 return (struct f2fs_stat_info *)sbi->stat_info;
2962 }
2963
2964 #define stat_inc_cp_count(si) ((si)->cp_count++)
2965 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2966 #define stat_inc_call_count(si) ((si)->call_count++)
2967 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2968 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2969 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2970 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2971 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2972 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2973 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2974 #define stat_inc_inline_xattr(inode) \
2975 do { \
2976 if (f2fs_has_inline_xattr(inode)) \
2977 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2978 } while (0)
2979 #define stat_dec_inline_xattr(inode) \
2980 do { \
2981 if (f2fs_has_inline_xattr(inode)) \
2982 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2983 } while (0)
2984 #define stat_inc_inline_inode(inode) \
2985 do { \
2986 if (f2fs_has_inline_data(inode)) \
2987 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2988 } while (0)
2989 #define stat_dec_inline_inode(inode) \
2990 do { \
2991 if (f2fs_has_inline_data(inode)) \
2992 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2993 } while (0)
2994 #define stat_inc_inline_dir(inode) \
2995 do { \
2996 if (f2fs_has_inline_dentry(inode)) \
2997 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2998 } while (0)
2999 #define stat_dec_inline_dir(inode) \
3000 do { \
3001 if (f2fs_has_inline_dentry(inode)) \
3002 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3003 } while (0)
3004 #define stat_inc_seg_type(sbi, curseg) \
3005 ((sbi)->segment_count[(curseg)->alloc_type]++)
3006 #define stat_inc_block_count(sbi, curseg) \
3007 ((sbi)->block_count[(curseg)->alloc_type]++)
3008 #define stat_inc_inplace_blocks(sbi) \
3009 (atomic_inc(&(sbi)->inplace_count))
3010 #define stat_inc_atomic_write(inode) \
3011 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3012 #define stat_dec_atomic_write(inode) \
3013 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3014 #define stat_update_max_atomic_write(inode) \
3015 do { \
3016 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3017 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3018 if (cur > max) \
3019 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3020 } while (0)
3021 #define stat_inc_volatile_write(inode) \
3022 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3023 #define stat_dec_volatile_write(inode) \
3024 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3025 #define stat_update_max_volatile_write(inode) \
3026 do { \
3027 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3028 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3029 if (cur > max) \
3030 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3031 } while (0)
3032 #define stat_inc_seg_count(sbi, type, gc_type) \
3033 do { \
3034 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3035 si->tot_segs++; \
3036 if ((type) == SUM_TYPE_DATA) { \
3037 si->data_segs++; \
3038 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3039 } else { \
3040 si->node_segs++; \
3041 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3042 } \
3043 } while (0)
3044
3045 #define stat_inc_tot_blk_count(si, blks) \
3046 ((si)->tot_blks += (blks))
3047
3048 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3049 do { \
3050 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3051 stat_inc_tot_blk_count(si, blks); \
3052 si->data_blks += (blks); \
3053 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3054 } while (0)
3055
3056 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3057 do { \
3058 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3059 stat_inc_tot_blk_count(si, blks); \
3060 si->node_blks += (blks); \
3061 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3062 } while (0)
3063
3064 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3065 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3066 int __init f2fs_create_root_stats(void);
3067 void f2fs_destroy_root_stats(void);
3068 #else
3069 #define stat_inc_cp_count(si) do { } while (0)
3070 #define stat_inc_bg_cp_count(si) do { } while (0)
3071 #define stat_inc_call_count(si) do { } while (0)
3072 #define stat_inc_bggc_count(si) do { } while (0)
3073 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3074 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3075 #define stat_inc_total_hit(sb) do { } while (0)
3076 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3077 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3078 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3079 #define stat_inc_inline_xattr(inode) do { } while (0)
3080 #define stat_dec_inline_xattr(inode) do { } while (0)
3081 #define stat_inc_inline_inode(inode) do { } while (0)
3082 #define stat_dec_inline_inode(inode) do { } while (0)
3083 #define stat_inc_inline_dir(inode) do { } while (0)
3084 #define stat_dec_inline_dir(inode) do { } while (0)
3085 #define stat_inc_atomic_write(inode) do { } while (0)
3086 #define stat_dec_atomic_write(inode) do { } while (0)
3087 #define stat_update_max_atomic_write(inode) do { } while (0)
3088 #define stat_inc_volatile_write(inode) do { } while (0)
3089 #define stat_dec_volatile_write(inode) do { } while (0)
3090 #define stat_update_max_volatile_write(inode) do { } while (0)
3091 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3092 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3093 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3094 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3095 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3096 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3097 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3098
3099 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3100 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3101 static inline int __init f2fs_create_root_stats(void) { return 0; }
3102 static inline void f2fs_destroy_root_stats(void) { }
3103 #endif
3104
3105 extern const struct file_operations f2fs_dir_operations;
3106 extern const struct file_operations f2fs_file_operations;
3107 extern const struct inode_operations f2fs_file_inode_operations;
3108 extern const struct address_space_operations f2fs_dblock_aops;
3109 extern const struct address_space_operations f2fs_node_aops;
3110 extern const struct address_space_operations f2fs_meta_aops;
3111 extern const struct inode_operations f2fs_dir_inode_operations;
3112 extern const struct inode_operations f2fs_symlink_inode_operations;
3113 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3114 extern const struct inode_operations f2fs_special_inode_operations;
3115 extern struct kmem_cache *inode_entry_slab;
3116
3117 /*
3118 * inline.c
3119 */
3120 bool f2fs_may_inline_data(struct inode *inode);
3121 bool f2fs_may_inline_dentry(struct inode *inode);
3122 void read_inline_data(struct page *page, struct page *ipage);
3123 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3124 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3125 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3126 int f2fs_convert_inline_inode(struct inode *inode);
3127 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3128 bool recover_inline_data(struct inode *inode, struct page *npage);
3129 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3130 struct fscrypt_name *fname, struct page **res_page);
3131 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3132 struct page *ipage);
3133 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3134 const struct qstr *orig_name,
3135 struct inode *inode, nid_t ino, umode_t mode);
3136 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3137 struct inode *dir, struct inode *inode);
3138 bool f2fs_empty_inline_dir(struct inode *dir);
3139 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3140 struct fscrypt_str *fstr);
3141 int f2fs_inline_data_fiemap(struct inode *inode,
3142 struct fiemap_extent_info *fieinfo,
3143 __u64 start, __u64 len);
3144
3145 /*
3146 * shrinker.c
3147 */
3148 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3149 struct shrink_control *sc);
3150 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3151 struct shrink_control *sc);
3152 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3153 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3154
3155 /*
3156 * extent_cache.c
3157 */
3158 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3159 struct rb_entry *cached_re, unsigned int ofs);
3160 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3161 struct rb_root *root, struct rb_node **parent,
3162 unsigned int ofs);
3163 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3164 struct rb_entry *cached_re, unsigned int ofs,
3165 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3166 struct rb_node ***insert_p, struct rb_node **insert_parent,
3167 bool force);
3168 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3169 struct rb_root *root);
3170 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3171 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3172 void f2fs_drop_extent_tree(struct inode *inode);
3173 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3174 void f2fs_destroy_extent_tree(struct inode *inode);
3175 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3176 struct extent_info *ei);
3177 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3178 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3179 pgoff_t fofs, block_t blkaddr, unsigned int len);
3180 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3181 int __init create_extent_cache(void);
3182 void destroy_extent_cache(void);
3183
3184 /*
3185 * sysfs.c
3186 */
3187 int __init f2fs_init_sysfs(void);
3188 void f2fs_exit_sysfs(void);
3189 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3190 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3191
3192 /*
3193 * crypto support
3194 */
3195 static inline bool f2fs_encrypted_inode(struct inode *inode)
3196 {
3197 return file_is_encrypt(inode);
3198 }
3199
3200 static inline bool f2fs_encrypted_file(struct inode *inode)
3201 {
3202 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3203 }
3204
3205 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3206 {
3207 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3208 file_set_encrypt(inode);
3209 inode->i_flags |= S_ENCRYPTED;
3210 #endif
3211 }
3212
3213 /*
3214 * Returns true if the reads of the inode's data need to undergo some
3215 * postprocessing step, like decryption or authenticity verification.
3216 */
3217 static inline bool f2fs_post_read_required(struct inode *inode)
3218 {
3219 return f2fs_encrypted_file(inode);
3220 }
3221
3222 #define F2FS_FEATURE_FUNCS(name, flagname) \
3223 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3224 { \
3225 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3226 }
3227
3228 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3229 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3230 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3231 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3232 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3233 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3234 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3235 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3236 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3237
3238 #ifdef CONFIG_BLK_DEV_ZONED
3239 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3240 struct block_device *bdev, block_t blkaddr)
3241 {
3242 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3243 int i;
3244
3245 for (i = 0; i < sbi->s_ndevs; i++)
3246 if (FDEV(i).bdev == bdev)
3247 return FDEV(i).blkz_type[zno];
3248 return -EINVAL;
3249 }
3250 #endif
3251
3252 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3253 {
3254 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3255
3256 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3257 }
3258
3259 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3260 {
3261 clear_opt(sbi, ADAPTIVE);
3262 clear_opt(sbi, LFS);
3263
3264 switch (mt) {
3265 case F2FS_MOUNT_ADAPTIVE:
3266 set_opt(sbi, ADAPTIVE);
3267 break;
3268 case F2FS_MOUNT_LFS:
3269 set_opt(sbi, LFS);
3270 break;
3271 }
3272 }
3273
3274 static inline bool f2fs_may_encrypt(struct inode *inode)
3275 {
3276 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3277 umode_t mode = inode->i_mode;
3278
3279 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3280 #else
3281 return 0;
3282 #endif
3283 }
3284
3285 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3286 {
3287 return (f2fs_post_read_required(inode) ||
3288 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3289 F2FS_I_SB(inode)->s_ndevs);
3290 }
3291
3292 #endif