[RAMEN9610-21536]f2fs: avoid wrong decrypted data from disk
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_KVMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_PAGE_GET,
50 FAULT_ALLOC_BIO,
51 FAULT_ALLOC_NID,
52 FAULT_ORPHAN,
53 FAULT_BLOCK,
54 FAULT_DIR_DEPTH,
55 FAULT_EVICT_INODE,
56 FAULT_TRUNCATE,
57 FAULT_IO,
58 FAULT_CHECKPOINT,
59 FAULT_MAX,
60 };
61
62 struct f2fs_fault_info {
63 atomic_t inject_ops;
64 unsigned int inject_rate;
65 unsigned int inject_type;
66 };
67
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71
72 /*
73 * For mount options
74 */
75 #define F2FS_MOUNT_BG_GC 0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
77 #define F2FS_MOUNT_DISCARD 0x00000004
78 #define F2FS_MOUNT_NOHEAP 0x00000008
79 #define F2FS_MOUNT_XATTR_USER 0x00000010
80 #define F2FS_MOUNT_POSIX_ACL 0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
83 #define F2FS_MOUNT_INLINE_DATA 0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
86 #define F2FS_MOUNT_NOBARRIER 0x00000800
87 #define F2FS_MOUNT_FASTBOOT 0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
92 #define F2FS_MOUNT_ADAPTIVE 0x00020000
93 #define F2FS_MOUNT_LFS 0x00040000
94 #define F2FS_MOUNT_USRQUOTA 0x00080000
95 #define F2FS_MOUNT_GRPQUOTA 0x00100000
96 #define F2FS_MOUNT_PRJQUOTA 0x00200000
97 #define F2FS_MOUNT_QUOTA 0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
100
101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105
106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
107 typecheck(unsigned long long, b) && \
108 ((long long)((a) - (b)) > 0))
109
110 typedef u32 block_t; /*
111 * should not change u32, since it is the on-disk block
112 * address format, __le32.
113 */
114 typedef u32 nid_t;
115
116 struct f2fs_mount_info {
117 unsigned int opt;
118 int write_io_size_bits; /* Write IO size bits */
119 block_t root_reserved_blocks; /* root reserved blocks */
120 kuid_t s_resuid; /* reserved blocks for uid */
121 kgid_t s_resgid; /* reserved blocks for gid */
122 int active_logs; /* # of active logs */
123 int inline_xattr_size; /* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 struct f2fs_fault_info fault_info; /* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 /* Names of quota files with journalled quota */
129 char *s_qf_names[MAXQUOTAS];
130 int s_jquota_fmt; /* Format of quota to use */
131 #endif
132 /* For which write hints are passed down to block layer */
133 int whint_mode;
134 int alloc_mode; /* segment allocation policy */
135 int fsync_mode; /* fsync policy */
136 bool test_dummy_encryption; /* test dummy encryption */
137 };
138
139 #define F2FS_FEATURE_ENCRYPT 0x0001
140 #define F2FS_FEATURE_BLKZONED 0x0002
141 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
142 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
143 #define F2FS_FEATURE_PRJQUOTA 0x0010
144 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
146 #define F2FS_FEATURE_QUOTA_INO 0x0080
147 #define F2FS_FEATURE_INODE_CRTIME 0x0100
148 #define F2FS_FEATURE_LOST_FOUND 0x0200
149 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
150
151 #define F2FS_HAS_FEATURE(sb, mask) \
152 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
153 #define F2FS_SET_FEATURE(sb, mask) \
154 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
155 #define F2FS_CLEAR_FEATURE(sb, mask) \
156 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
157
158 /*
159 * Default values for user and/or group using reserved blocks
160 */
161 #define F2FS_DEF_RESUID 0
162 #define F2FS_DEF_RESGID 0
163
164 /*
165 * For checkpoint manager
166 */
167 enum {
168 NAT_BITMAP,
169 SIT_BITMAP
170 };
171
172 #define CP_UMOUNT 0x00000001
173 #define CP_FASTBOOT 0x00000002
174 #define CP_SYNC 0x00000004
175 #define CP_RECOVERY 0x00000008
176 #define CP_DISCARD 0x00000010
177 #define CP_TRIMMED 0x00000020
178
179 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
180 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
181 #define DEF_MAX_DISCARD_LEN 512 /* Max. 2MB per discard */
182 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
183 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
184 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
185 #define DEF_CP_INTERVAL 60 /* 60 secs */
186 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
187
188 struct cp_control {
189 int reason;
190 __u64 trim_start;
191 __u64 trim_end;
192 __u64 trim_minlen;
193 };
194
195 /*
196 * indicate meta/data type
197 */
198 enum {
199 META_CP,
200 META_NAT,
201 META_SIT,
202 META_SSA,
203 META_POR,
204 DATA_GENERIC,
205 META_GENERIC,
206 };
207
208 /* for the list of ino */
209 enum {
210 ORPHAN_INO, /* for orphan ino list */
211 APPEND_INO, /* for append ino list */
212 UPDATE_INO, /* for update ino list */
213 TRANS_DIR_INO, /* for trasactions dir ino list */
214 FLUSH_INO, /* for multiple device flushing */
215 MAX_INO_ENTRY, /* max. list */
216 };
217
218 struct ino_entry {
219 struct list_head list; /* list head */
220 nid_t ino; /* inode number */
221 unsigned int dirty_device; /* dirty device bitmap */
222 };
223
224 /* for the list of inodes to be GCed */
225 struct inode_entry {
226 struct list_head list; /* list head */
227 struct inode *inode; /* vfs inode pointer */
228 };
229
230 /* for the bitmap indicate blocks to be discarded */
231 struct discard_entry {
232 struct list_head list; /* list head */
233 block_t start_blkaddr; /* start blockaddr of current segment */
234 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
235 };
236
237 /* default discard granularity of inner discard thread, unit: block count */
238 #define DEFAULT_DISCARD_GRANULARITY 16
239
240 /* max discard pend list number */
241 #define MAX_PLIST_NUM 512
242 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
243 (MAX_PLIST_NUM - 1) : (blk_num - 1))
244
245 enum {
246 D_PREP,
247 D_SUBMIT,
248 D_DONE,
249 };
250
251 struct discard_info {
252 block_t lstart; /* logical start address */
253 block_t len; /* length */
254 block_t start; /* actual start address in dev */
255 };
256
257 struct discard_cmd {
258 struct rb_node rb_node; /* rb node located in rb-tree */
259 union {
260 struct {
261 block_t lstart; /* logical start address */
262 block_t len; /* length */
263 block_t start; /* actual start address in dev */
264 };
265 struct discard_info di; /* discard info */
266
267 };
268 struct list_head list; /* command list */
269 struct completion wait; /* compleation */
270 struct block_device *bdev; /* bdev */
271 unsigned short ref; /* reference count */
272 unsigned char state; /* state */
273 int error; /* bio error */
274 };
275
276 enum {
277 DPOLICY_BG,
278 DPOLICY_FORCE,
279 DPOLICY_FSTRIM,
280 DPOLICY_UMOUNT,
281 MAX_DPOLICY,
282 };
283
284 struct discard_policy {
285 int type; /* type of discard */
286 unsigned int min_interval; /* used for candidates exist */
287 unsigned int max_interval; /* used for candidates not exist */
288 unsigned int max_requests; /* # of discards issued per round */
289 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
290 bool io_aware; /* issue discard in idle time */
291 bool sync; /* submit discard with REQ_SYNC flag */
292 unsigned int granularity; /* discard granularity */
293 };
294
295 struct discard_cmd_control {
296 struct task_struct *f2fs_issue_discard; /* discard thread */
297 struct list_head entry_list; /* 4KB discard entry list */
298 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
299 struct list_head wait_list; /* store on-flushing entries */
300 struct list_head fstrim_list; /* in-flight discard from fstrim */
301 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
302 unsigned int discard_wake; /* to wake up discard thread */
303 struct mutex cmd_lock;
304 unsigned int nr_discards; /* # of discards in the list */
305 unsigned int max_discards; /* max. discards to be issued */
306 unsigned int discard_granularity; /* discard granularity */
307 unsigned int undiscard_blks; /* # of undiscard blocks */
308 atomic_t issued_discard; /* # of issued discard */
309 atomic_t issing_discard; /* # of issing discard */
310 atomic_t discard_cmd_cnt; /* # of cached cmd count */
311 struct rb_root root; /* root of discard rb-tree */
312 };
313
314 /* for the list of fsync inodes, used only during recovery */
315 struct fsync_inode_entry {
316 struct list_head list; /* list head */
317 struct inode *inode; /* vfs inode pointer */
318 block_t blkaddr; /* block address locating the last fsync */
319 block_t last_dentry; /* block address locating the last dentry */
320 };
321
322 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
323 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
324
325 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
326 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
327 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
328 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
329
330 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
331 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
332
333 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
334 {
335 int before = nats_in_cursum(journal);
336
337 journal->n_nats = cpu_to_le16(before + i);
338 return before;
339 }
340
341 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
342 {
343 int before = sits_in_cursum(journal);
344
345 journal->n_sits = cpu_to_le16(before + i);
346 return before;
347 }
348
349 static inline bool __has_cursum_space(struct f2fs_journal *journal,
350 int size, int type)
351 {
352 if (type == NAT_JOURNAL)
353 return size <= MAX_NAT_JENTRIES(journal);
354 return size <= MAX_SIT_JENTRIES(journal);
355 }
356
357 /*
358 * ioctl commands
359 */
360 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
361 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
362 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
363
364 #define F2FS_IOCTL_MAGIC 0xf5
365 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
366 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
367 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
368 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
369 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
370 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
371 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
372 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
373 struct f2fs_defragment)
374 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
375 struct f2fs_move_range)
376 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
377 struct f2fs_flush_device)
378 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
379 struct f2fs_gc_range)
380 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
381 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
382 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
383 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
384
385 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
386 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
387 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
388
389 /*
390 * should be same as XFS_IOC_GOINGDOWN.
391 * Flags for going down operation used by FS_IOC_GOINGDOWN
392 */
393 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
394 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
395 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
396 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
397 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
398
399 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
400 /*
401 * ioctl commands in 32 bit emulation
402 */
403 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
404 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
405 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
406 #endif
407
408 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
409 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
410
411 struct f2fs_gc_range {
412 u32 sync;
413 u64 start;
414 u64 len;
415 };
416
417 struct f2fs_defragment {
418 u64 start;
419 u64 len;
420 };
421
422 struct f2fs_move_range {
423 u32 dst_fd; /* destination fd */
424 u64 pos_in; /* start position in src_fd */
425 u64 pos_out; /* start position in dst_fd */
426 u64 len; /* size to move */
427 };
428
429 struct f2fs_flush_device {
430 u32 dev_num; /* device number to flush */
431 u32 segments; /* # of segments to flush */
432 };
433
434 /* for inline stuff */
435 #define DEF_INLINE_RESERVED_SIZE 1
436 #define DEF_MIN_INLINE_SIZE 1
437 static inline int get_extra_isize(struct inode *inode);
438 static inline int get_inline_xattr_addrs(struct inode *inode);
439 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
440 (CUR_ADDRS_PER_INODE(inode) - \
441 get_inline_xattr_addrs(inode) - \
442 DEF_INLINE_RESERVED_SIZE))
443
444 /* for inline dir */
445 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
446 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
447 BITS_PER_BYTE + 1))
448 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
449 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
450 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
451 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
452 NR_INLINE_DENTRY(inode) + \
453 INLINE_DENTRY_BITMAP_SIZE(inode)))
454
455 /*
456 * For INODE and NODE manager
457 */
458 /* for directory operations */
459 struct f2fs_dentry_ptr {
460 struct inode *inode;
461 void *bitmap;
462 struct f2fs_dir_entry *dentry;
463 __u8 (*filename)[F2FS_SLOT_LEN];
464 int max;
465 int nr_bitmap;
466 };
467
468 static inline void make_dentry_ptr_block(struct inode *inode,
469 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
470 {
471 d->inode = inode;
472 d->max = NR_DENTRY_IN_BLOCK;
473 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
474 d->bitmap = t->dentry_bitmap;
475 d->dentry = t->dentry;
476 d->filename = t->filename;
477 }
478
479 static inline void make_dentry_ptr_inline(struct inode *inode,
480 struct f2fs_dentry_ptr *d, void *t)
481 {
482 int entry_cnt = NR_INLINE_DENTRY(inode);
483 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
484 int reserved_size = INLINE_RESERVED_SIZE(inode);
485
486 d->inode = inode;
487 d->max = entry_cnt;
488 d->nr_bitmap = bitmap_size;
489 d->bitmap = t;
490 d->dentry = t + bitmap_size + reserved_size;
491 d->filename = t + bitmap_size + reserved_size +
492 SIZE_OF_DIR_ENTRY * entry_cnt;
493 }
494
495 /*
496 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
497 * as its node offset to distinguish from index node blocks.
498 * But some bits are used to mark the node block.
499 */
500 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
501 >> OFFSET_BIT_SHIFT)
502 enum {
503 ALLOC_NODE, /* allocate a new node page if needed */
504 LOOKUP_NODE, /* look up a node without readahead */
505 LOOKUP_NODE_RA, /*
506 * look up a node with readahead called
507 * by get_data_block.
508 */
509 };
510
511 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
512
513 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
514
515 /* vector size for gang look-up from extent cache that consists of radix tree */
516 #define EXT_TREE_VEC_SIZE 64
517
518 /* for in-memory extent cache entry */
519 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
520
521 /* number of extent info in extent cache we try to shrink */
522 #define EXTENT_CACHE_SHRINK_NUMBER 128
523
524 struct rb_entry {
525 struct rb_node rb_node; /* rb node located in rb-tree */
526 unsigned int ofs; /* start offset of the entry */
527 unsigned int len; /* length of the entry */
528 };
529
530 struct extent_info {
531 unsigned int fofs; /* start offset in a file */
532 unsigned int len; /* length of the extent */
533 u32 blk; /* start block address of the extent */
534 };
535
536 struct extent_node {
537 struct rb_node rb_node;
538 union {
539 struct {
540 unsigned int fofs;
541 unsigned int len;
542 u32 blk;
543 };
544 struct extent_info ei; /* extent info */
545
546 };
547 struct list_head list; /* node in global extent list of sbi */
548 struct extent_tree *et; /* extent tree pointer */
549 };
550
551 struct extent_tree {
552 nid_t ino; /* inode number */
553 struct rb_root root; /* root of extent info rb-tree */
554 struct extent_node *cached_en; /* recently accessed extent node */
555 struct extent_info largest; /* largested extent info */
556 struct list_head list; /* to be used by sbi->zombie_list */
557 rwlock_t lock; /* protect extent info rb-tree */
558 atomic_t node_cnt; /* # of extent node in rb-tree*/
559 };
560
561 /*
562 * This structure is taken from ext4_map_blocks.
563 *
564 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
565 */
566 #define F2FS_MAP_NEW (1 << BH_New)
567 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
568 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
569 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
570 F2FS_MAP_UNWRITTEN)
571
572 struct f2fs_map_blocks {
573 block_t m_pblk;
574 block_t m_lblk;
575 unsigned int m_len;
576 unsigned int m_flags;
577 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
578 pgoff_t *m_next_extent; /* point to next possible extent */
579 int m_seg_type;
580 };
581
582 /* for flag in get_data_block */
583 enum {
584 F2FS_GET_BLOCK_DEFAULT,
585 F2FS_GET_BLOCK_FIEMAP,
586 F2FS_GET_BLOCK_BMAP,
587 F2FS_GET_BLOCK_PRE_DIO,
588 F2FS_GET_BLOCK_PRE_AIO,
589 F2FS_GET_BLOCK_PRECACHE,
590 };
591
592 /*
593 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
594 */
595 #define FADVISE_COLD_BIT 0x01
596 #define FADVISE_LOST_PINO_BIT 0x02
597 #define FADVISE_ENCRYPT_BIT 0x04
598 #define FADVISE_ENC_NAME_BIT 0x08
599 #define FADVISE_KEEP_SIZE_BIT 0x10
600 #define FADVISE_HOT_BIT 0x20
601 #define FADVISE_VERITY_BIT 0x40 /* reserved */
602
603 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
604 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
605 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
606 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
607 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
608 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
609 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
610 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
611 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
612 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
613 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
614 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
615 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
616 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
617 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
618 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
619
620 #define DEF_DIR_LEVEL 0
621
622 struct f2fs_inode_info {
623 struct inode vfs_inode; /* serve a vfs inode */
624 unsigned long i_flags; /* keep an inode flags for ioctl */
625 unsigned char i_advise; /* use to give file attribute hints */
626 unsigned char i_dir_level; /* use for dentry level for large dir */
627 union {
628 unsigned int i_current_depth; /* only for directory depth */
629 unsigned short i_gc_failures; /* only for regular file */
630 };
631 unsigned int i_pino; /* parent inode number */
632 umode_t i_acl_mode; /* keep file acl mode temporarily */
633
634 /* Use below internally in f2fs*/
635 unsigned long flags; /* use to pass per-file flags */
636 struct rw_semaphore i_sem; /* protect fi info */
637 atomic_t dirty_pages; /* # of dirty pages */
638 f2fs_hash_t chash; /* hash value of given file name */
639 unsigned int clevel; /* maximum level of given file name */
640 struct task_struct *task; /* lookup and create consistency */
641 struct task_struct *cp_task; /* separate cp/wb IO stats*/
642 nid_t i_xattr_nid; /* node id that contains xattrs */
643 loff_t last_disk_size; /* lastly written file size */
644
645 #ifdef CONFIG_QUOTA
646 struct dquot *i_dquot[MAXQUOTAS];
647
648 /* quota space reservation, managed internally by quota code */
649 qsize_t i_reserved_quota;
650 #endif
651 struct list_head dirty_list; /* dirty list for dirs and files */
652 struct list_head gdirty_list; /* linked in global dirty list */
653 struct list_head inmem_ilist; /* list for inmem inodes */
654 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
655 struct task_struct *inmem_task; /* store inmemory task */
656 struct mutex inmem_lock; /* lock for inmemory pages */
657 struct extent_tree *extent_tree; /* cached extent_tree entry */
658 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
659 struct rw_semaphore i_mmap_sem;
660 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
661
662 int i_extra_isize; /* size of extra space located in i_addr */
663 kprojid_t i_projid; /* id for project quota */
664 int i_inline_xattr_size; /* inline xattr size */
665 struct timespec i_crtime; /* inode creation time */
666 struct timespec i_disk_time[4]; /* inode disk times */
667 };
668
669 static inline void get_extent_info(struct extent_info *ext,
670 struct f2fs_extent *i_ext)
671 {
672 ext->fofs = le32_to_cpu(i_ext->fofs);
673 ext->blk = le32_to_cpu(i_ext->blk);
674 ext->len = le32_to_cpu(i_ext->len);
675 }
676
677 static inline void set_raw_extent(struct extent_info *ext,
678 struct f2fs_extent *i_ext)
679 {
680 i_ext->fofs = cpu_to_le32(ext->fofs);
681 i_ext->blk = cpu_to_le32(ext->blk);
682 i_ext->len = cpu_to_le32(ext->len);
683 }
684
685 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
686 u32 blk, unsigned int len)
687 {
688 ei->fofs = fofs;
689 ei->blk = blk;
690 ei->len = len;
691 }
692
693 static inline bool __is_discard_mergeable(struct discard_info *back,
694 struct discard_info *front)
695 {
696 return (back->lstart + back->len == front->lstart) &&
697 (back->len + front->len < DEF_MAX_DISCARD_LEN);
698 }
699
700 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
701 struct discard_info *back)
702 {
703 return __is_discard_mergeable(back, cur);
704 }
705
706 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
707 struct discard_info *front)
708 {
709 return __is_discard_mergeable(cur, front);
710 }
711
712 static inline bool __is_extent_mergeable(struct extent_info *back,
713 struct extent_info *front)
714 {
715 return (back->fofs + back->len == front->fofs &&
716 back->blk + back->len == front->blk);
717 }
718
719 static inline bool __is_back_mergeable(struct extent_info *cur,
720 struct extent_info *back)
721 {
722 return __is_extent_mergeable(back, cur);
723 }
724
725 static inline bool __is_front_mergeable(struct extent_info *cur,
726 struct extent_info *front)
727 {
728 return __is_extent_mergeable(cur, front);
729 }
730
731 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
732 static inline void __try_update_largest_extent(struct inode *inode,
733 struct extent_tree *et, struct extent_node *en)
734 {
735 if (en->ei.len > et->largest.len) {
736 et->largest = en->ei;
737 f2fs_mark_inode_dirty_sync(inode, true);
738 }
739 }
740
741 /*
742 * For free nid management
743 */
744 enum nid_state {
745 FREE_NID, /* newly added to free nid list */
746 PREALLOC_NID, /* it is preallocated */
747 MAX_NID_STATE,
748 };
749
750 struct f2fs_nm_info {
751 block_t nat_blkaddr; /* base disk address of NAT */
752 nid_t max_nid; /* maximum possible node ids */
753 nid_t available_nids; /* # of available node ids */
754 nid_t next_scan_nid; /* the next nid to be scanned */
755 unsigned int ram_thresh; /* control the memory footprint */
756 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
757 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
758
759 /* NAT cache management */
760 struct radix_tree_root nat_root;/* root of the nat entry cache */
761 struct radix_tree_root nat_set_root;/* root of the nat set cache */
762 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
763 struct list_head nat_entries; /* cached nat entry list (clean) */
764 unsigned int nat_cnt; /* the # of cached nat entries */
765 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
766 unsigned int nat_blocks; /* # of nat blocks */
767
768 /* free node ids management */
769 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
770 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
771 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
772 spinlock_t nid_list_lock; /* protect nid lists ops */
773 struct mutex build_lock; /* lock for build free nids */
774 unsigned char **free_nid_bitmap;
775 unsigned char *nat_block_bitmap;
776 unsigned short *free_nid_count; /* free nid count of NAT block */
777
778 /* for checkpoint */
779 char *nat_bitmap; /* NAT bitmap pointer */
780
781 unsigned int nat_bits_blocks; /* # of nat bits blocks */
782 unsigned char *nat_bits; /* NAT bits blocks */
783 unsigned char *full_nat_bits; /* full NAT pages */
784 unsigned char *empty_nat_bits; /* empty NAT pages */
785 #ifdef CONFIG_F2FS_CHECK_FS
786 char *nat_bitmap_mir; /* NAT bitmap mirror */
787 #endif
788 int bitmap_size; /* bitmap size */
789 };
790
791 /*
792 * this structure is used as one of function parameters.
793 * all the information are dedicated to a given direct node block determined
794 * by the data offset in a file.
795 */
796 struct dnode_of_data {
797 struct inode *inode; /* vfs inode pointer */
798 struct page *inode_page; /* its inode page, NULL is possible */
799 struct page *node_page; /* cached direct node page */
800 nid_t nid; /* node id of the direct node block */
801 unsigned int ofs_in_node; /* data offset in the node page */
802 bool inode_page_locked; /* inode page is locked or not */
803 bool node_changed; /* is node block changed */
804 char cur_level; /* level of hole node page */
805 char max_level; /* level of current page located */
806 block_t data_blkaddr; /* block address of the node block */
807 };
808
809 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
810 struct page *ipage, struct page *npage, nid_t nid)
811 {
812 memset(dn, 0, sizeof(*dn));
813 dn->inode = inode;
814 dn->inode_page = ipage;
815 dn->node_page = npage;
816 dn->nid = nid;
817 }
818
819 /*
820 * For SIT manager
821 *
822 * By default, there are 6 active log areas across the whole main area.
823 * When considering hot and cold data separation to reduce cleaning overhead,
824 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
825 * respectively.
826 * In the current design, you should not change the numbers intentionally.
827 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
828 * logs individually according to the underlying devices. (default: 6)
829 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
830 * data and 8 for node logs.
831 */
832 #define NR_CURSEG_DATA_TYPE (3)
833 #define NR_CURSEG_NODE_TYPE (3)
834 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
835
836 enum {
837 CURSEG_HOT_DATA = 0, /* directory entry blocks */
838 CURSEG_WARM_DATA, /* data blocks */
839 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
840 CURSEG_HOT_NODE, /* direct node blocks of directory files */
841 CURSEG_WARM_NODE, /* direct node blocks of normal files */
842 CURSEG_COLD_NODE, /* indirect node blocks */
843 NO_CHECK_TYPE,
844 };
845
846 struct flush_cmd {
847 struct completion wait;
848 struct llist_node llnode;
849 nid_t ino;
850 int ret;
851 };
852
853 struct flush_cmd_control {
854 struct task_struct *f2fs_issue_flush; /* flush thread */
855 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
856 atomic_t issued_flush; /* # of issued flushes */
857 atomic_t issing_flush; /* # of issing flushes */
858 struct llist_head issue_list; /* list for command issue */
859 struct llist_node *dispatch_list; /* list for command dispatch */
860 };
861
862 struct f2fs_sm_info {
863 struct sit_info *sit_info; /* whole segment information */
864 struct free_segmap_info *free_info; /* free segment information */
865 struct dirty_seglist_info *dirty_info; /* dirty segment information */
866 struct curseg_info *curseg_array; /* active segment information */
867
868 struct rw_semaphore curseg_lock; /* for preventing curseg change */
869
870 block_t seg0_blkaddr; /* block address of 0'th segment */
871 block_t main_blkaddr; /* start block address of main area */
872 block_t ssa_blkaddr; /* start block address of SSA area */
873
874 unsigned int segment_count; /* total # of segments */
875 unsigned int main_segments; /* # of segments in main area */
876 unsigned int reserved_segments; /* # of reserved segments */
877 unsigned int ovp_segments; /* # of overprovision segments */
878
879 /* a threshold to reclaim prefree segments */
880 unsigned int rec_prefree_segments;
881
882 /* for batched trimming */
883 unsigned int trim_sections; /* # of sections to trim */
884
885 struct list_head sit_entry_set; /* sit entry set list */
886
887 unsigned int ipu_policy; /* in-place-update policy */
888 unsigned int min_ipu_util; /* in-place-update threshold */
889 unsigned int min_fsync_blocks; /* threshold for fsync */
890 unsigned int min_hot_blocks; /* threshold for hot block allocation */
891 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
892
893 /* for flush command control */
894 struct flush_cmd_control *fcc_info;
895
896 /* for discard command control */
897 struct discard_cmd_control *dcc_info;
898 };
899
900 /*
901 * For superblock
902 */
903 /*
904 * COUNT_TYPE for monitoring
905 *
906 * f2fs monitors the number of several block types such as on-writeback,
907 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
908 */
909 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
910 enum count_type {
911 F2FS_DIRTY_DENTS,
912 F2FS_DIRTY_DATA,
913 F2FS_DIRTY_QDATA,
914 F2FS_DIRTY_NODES,
915 F2FS_DIRTY_META,
916 F2FS_INMEM_PAGES,
917 F2FS_DIRTY_IMETA,
918 F2FS_WB_CP_DATA,
919 F2FS_WB_DATA,
920 NR_COUNT_TYPE,
921 };
922
923 /*
924 * The below are the page types of bios used in submit_bio().
925 * The available types are:
926 * DATA User data pages. It operates as async mode.
927 * NODE Node pages. It operates as async mode.
928 * META FS metadata pages such as SIT, NAT, CP.
929 * NR_PAGE_TYPE The number of page types.
930 * META_FLUSH Make sure the previous pages are written
931 * with waiting the bio's completion
932 * ... Only can be used with META.
933 */
934 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
935 enum page_type {
936 DATA,
937 NODE,
938 META,
939 NR_PAGE_TYPE,
940 META_FLUSH,
941 INMEM, /* the below types are used by tracepoints only. */
942 INMEM_DROP,
943 INMEM_INVALIDATE,
944 INMEM_REVOKE,
945 IPU,
946 OPU,
947 };
948
949 enum temp_type {
950 HOT = 0, /* must be zero for meta bio */
951 WARM,
952 COLD,
953 NR_TEMP_TYPE,
954 };
955
956 enum need_lock_type {
957 LOCK_REQ = 0,
958 LOCK_DONE,
959 LOCK_RETRY,
960 };
961
962 enum cp_reason_type {
963 CP_NO_NEEDED,
964 CP_NON_REGULAR,
965 CP_HARDLINK,
966 CP_SB_NEED_CP,
967 CP_WRONG_PINO,
968 CP_NO_SPC_ROLL,
969 CP_NODE_NEED_CP,
970 CP_FASTBOOT_MODE,
971 CP_SPEC_LOG_NUM,
972 CP_RECOVER_DIR,
973 };
974
975 enum iostat_type {
976 APP_DIRECT_IO, /* app direct IOs */
977 APP_BUFFERED_IO, /* app buffered IOs */
978 APP_WRITE_IO, /* app write IOs */
979 APP_MAPPED_IO, /* app mapped IOs */
980 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
981 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
982 FS_META_IO, /* meta IOs from kworker/reclaimer */
983 FS_GC_DATA_IO, /* data IOs from forground gc */
984 FS_GC_NODE_IO, /* node IOs from forground gc */
985 FS_CP_DATA_IO, /* data IOs from checkpoint */
986 FS_CP_NODE_IO, /* node IOs from checkpoint */
987 FS_CP_META_IO, /* meta IOs from checkpoint */
988 FS_DISCARD, /* discard */
989 NR_IO_TYPE,
990 };
991
992 struct f2fs_io_info {
993 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
994 nid_t ino; /* inode number */
995 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
996 enum temp_type temp; /* contains HOT/WARM/COLD */
997 int op; /* contains REQ_OP_ */
998 int op_flags; /* req_flag_bits */
999 block_t new_blkaddr; /* new block address to be written */
1000 block_t old_blkaddr; /* old block address before Cow */
1001 struct page *page; /* page to be written */
1002 struct page *encrypted_page; /* encrypted page */
1003 struct list_head list; /* serialize IOs */
1004 bool submitted; /* indicate IO submission */
1005 int need_lock; /* indicate we need to lock cp_rwsem */
1006 bool in_list; /* indicate fio is in io_list */
1007 bool is_meta; /* indicate borrow meta inode mapping or not */
1008 enum iostat_type io_type; /* io type */
1009 struct writeback_control *io_wbc; /* writeback control */
1010 };
1011
1012 #define is_read_io(rw) ((rw) == READ)
1013 struct f2fs_bio_info {
1014 struct f2fs_sb_info *sbi; /* f2fs superblock */
1015 struct bio *bio; /* bios to merge */
1016 sector_t last_block_in_bio; /* last block number */
1017 struct f2fs_io_info fio; /* store buffered io info. */
1018 struct rw_semaphore io_rwsem; /* blocking op for bio */
1019 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1020 struct list_head io_list; /* track fios */
1021 };
1022
1023 #define FDEV(i) (sbi->devs[i])
1024 #define RDEV(i) (raw_super->devs[i])
1025 struct f2fs_dev_info {
1026 struct block_device *bdev;
1027 char path[MAX_PATH_LEN];
1028 unsigned int total_segments;
1029 block_t start_blk;
1030 block_t end_blk;
1031 #ifdef CONFIG_BLK_DEV_ZONED
1032 unsigned int nr_blkz; /* Total number of zones */
1033 u8 *blkz_type; /* Array of zones type */
1034 #endif
1035 };
1036
1037 enum inode_type {
1038 DIR_INODE, /* for dirty dir inode */
1039 FILE_INODE, /* for dirty regular/symlink inode */
1040 DIRTY_META, /* for all dirtied inode metadata */
1041 ATOMIC_FILE, /* for all atomic files */
1042 NR_INODE_TYPE,
1043 };
1044
1045 /* for inner inode cache management */
1046 struct inode_management {
1047 struct radix_tree_root ino_root; /* ino entry array */
1048 spinlock_t ino_lock; /* for ino entry lock */
1049 struct list_head ino_list; /* inode list head */
1050 unsigned long ino_num; /* number of entries */
1051 };
1052
1053 /* For s_flag in struct f2fs_sb_info */
1054 enum {
1055 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1056 SBI_IS_CLOSE, /* specify unmounting */
1057 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1058 SBI_POR_DOING, /* recovery is doing or not */
1059 SBI_NEED_SB_WRITE, /* need to recover superblock */
1060 SBI_NEED_CP, /* need to checkpoint */
1061 };
1062
1063 enum {
1064 CP_TIME,
1065 REQ_TIME,
1066 MAX_TIME,
1067 };
1068
1069 enum {
1070 WHINT_MODE_OFF, /* not pass down write hints */
1071 WHINT_MODE_USER, /* try to pass down hints given by users */
1072 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1073 };
1074
1075 enum {
1076 ALLOC_MODE_DEFAULT, /* stay default */
1077 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1078 };
1079
1080 enum fsync_mode {
1081 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1082 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1083 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1084 };
1085
1086 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1087 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1088 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1089 #else
1090 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1091 #endif
1092
1093 struct f2fs_sb_info {
1094 struct super_block *sb; /* pointer to VFS super block */
1095 struct proc_dir_entry *s_proc; /* proc entry */
1096 struct f2fs_super_block *raw_super; /* raw super block pointer */
1097 struct rw_semaphore sb_lock; /* lock for raw super block */
1098 int valid_super_block; /* valid super block no */
1099 unsigned long s_flag; /* flags for sbi */
1100
1101 #ifdef CONFIG_BLK_DEV_ZONED
1102 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1103 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1104 #endif
1105
1106 /* for node-related operations */
1107 struct f2fs_nm_info *nm_info; /* node manager */
1108 struct inode *node_inode; /* cache node blocks */
1109
1110 /* for segment-related operations */
1111 struct f2fs_sm_info *sm_info; /* segment manager */
1112
1113 /* for bio operations */
1114 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1115 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1116 /* bio ordering for NODE/DATA */
1117 mempool_t *write_io_dummy; /* Dummy pages */
1118
1119 /* for checkpoint */
1120 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1121 int cur_cp_pack; /* remain current cp pack */
1122 spinlock_t cp_lock; /* for flag in ckpt */
1123 struct inode *meta_inode; /* cache meta blocks */
1124 struct mutex cp_mutex; /* checkpoint procedure lock */
1125 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1126 struct rw_semaphore node_write; /* locking node writes */
1127 struct rw_semaphore node_change; /* locking node change */
1128 wait_queue_head_t cp_wait;
1129 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1130 long interval_time[MAX_TIME]; /* to store thresholds */
1131
1132 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1133
1134 /* for orphan inode, use 0'th array */
1135 unsigned int max_orphans; /* max orphan inodes */
1136
1137 /* for inode management */
1138 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1139 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1140
1141 /* for extent tree cache */
1142 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1143 struct mutex extent_tree_lock; /* locking extent radix tree */
1144 struct list_head extent_list; /* lru list for shrinker */
1145 spinlock_t extent_lock; /* locking extent lru list */
1146 atomic_t total_ext_tree; /* extent tree count */
1147 struct list_head zombie_list; /* extent zombie tree list */
1148 atomic_t total_zombie_tree; /* extent zombie tree count */
1149 atomic_t total_ext_node; /* extent info count */
1150
1151 /* basic filesystem units */
1152 unsigned int log_sectors_per_block; /* log2 sectors per block */
1153 unsigned int log_blocksize; /* log2 block size */
1154 unsigned int blocksize; /* block size */
1155 unsigned int root_ino_num; /* root inode number*/
1156 unsigned int node_ino_num; /* node inode number*/
1157 unsigned int meta_ino_num; /* meta inode number*/
1158 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1159 unsigned int blocks_per_seg; /* blocks per segment */
1160 unsigned int segs_per_sec; /* segments per section */
1161 unsigned int secs_per_zone; /* sections per zone */
1162 unsigned int total_sections; /* total section count */
1163 unsigned int total_node_count; /* total node block count */
1164 unsigned int total_valid_node_count; /* valid node block count */
1165 loff_t max_file_blocks; /* max block index of file */
1166 int dir_level; /* directory level */
1167 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1168 int readdir_ra; /* readahead inode in readdir */
1169
1170 block_t user_block_count; /* # of user blocks */
1171 block_t total_valid_block_count; /* # of valid blocks */
1172 block_t discard_blks; /* discard command candidats */
1173 block_t last_valid_block_count; /* for recovery */
1174 block_t reserved_blocks; /* configurable reserved blocks */
1175 block_t current_reserved_blocks; /* current reserved blocks */
1176
1177 unsigned int nquota_files; /* # of quota sysfile */
1178
1179 u32 s_next_generation; /* for NFS support */
1180
1181 /* # of pages, see count_type */
1182 atomic_t nr_pages[NR_COUNT_TYPE];
1183 /* # of allocated blocks */
1184 struct percpu_counter alloc_valid_block_count;
1185
1186 /* writeback control */
1187 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1188
1189 /* valid inode count */
1190 struct percpu_counter total_valid_inode_count;
1191
1192 struct f2fs_mount_info mount_opt; /* mount options */
1193
1194 /* for cleaning operations */
1195 struct mutex gc_mutex; /* mutex for GC */
1196 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1197 unsigned int cur_victim_sec; /* current victim section num */
1198
1199 /* threshold for converting bg victims for fg */
1200 u64 fggc_threshold;
1201
1202 /* threshold for gc trials on pinned files */
1203 u64 gc_pin_file_threshold;
1204
1205 /* maximum # of trials to find a victim segment for SSR and GC */
1206 unsigned int max_victim_search;
1207
1208 /*
1209 * for stat information.
1210 * one is for the LFS mode, and the other is for the SSR mode.
1211 */
1212 #ifdef CONFIG_F2FS_STAT_FS
1213 struct f2fs_stat_info *stat_info; /* FS status information */
1214 unsigned int segment_count[2]; /* # of allocated segments */
1215 unsigned int block_count[2]; /* # of allocated blocks */
1216 atomic_t inplace_count; /* # of inplace update */
1217 atomic64_t total_hit_ext; /* # of lookup extent cache */
1218 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1219 atomic64_t read_hit_largest; /* # of hit largest extent node */
1220 atomic64_t read_hit_cached; /* # of hit cached extent node */
1221 atomic_t inline_xattr; /* # of inline_xattr inodes */
1222 atomic_t inline_inode; /* # of inline_data inodes */
1223 atomic_t inline_dir; /* # of inline_dentry inodes */
1224 atomic_t aw_cnt; /* # of atomic writes */
1225 atomic_t vw_cnt; /* # of volatile writes */
1226 atomic_t max_aw_cnt; /* max # of atomic writes */
1227 atomic_t max_vw_cnt; /* max # of volatile writes */
1228 int bg_gc; /* background gc calls */
1229 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1230 #endif
1231 spinlock_t stat_lock; /* lock for stat operations */
1232
1233 /* For app/fs IO statistics */
1234 spinlock_t iostat_lock;
1235 unsigned long long write_iostat[NR_IO_TYPE];
1236 bool iostat_enable;
1237
1238 /* For sysfs suppport */
1239 struct kobject s_kobj;
1240 struct completion s_kobj_unregister;
1241
1242 /* For shrinker support */
1243 struct list_head s_list;
1244 int s_ndevs; /* number of devices */
1245 struct f2fs_dev_info *devs; /* for device list */
1246 unsigned int dirty_device; /* for checkpoint data flush */
1247 spinlock_t dev_lock; /* protect dirty_device */
1248 struct mutex umount_mutex;
1249 unsigned int shrinker_run_no;
1250
1251 /* For write statistics */
1252 u64 sectors_written_start;
1253 u64 kbytes_written;
1254
1255 /* Reference to checksum algorithm driver via cryptoapi */
1256 struct crypto_shash *s_chksum_driver;
1257
1258 /* Precomputed FS UUID checksum for seeding other checksums */
1259 __u32 s_chksum_seed;
1260 };
1261
1262 #ifdef CONFIG_F2FS_FAULT_INJECTION
1263 #define f2fs_show_injection_info(type) \
1264 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1265 KERN_INFO, fault_name[type], \
1266 __func__, __builtin_return_address(0))
1267 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1268 {
1269 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1270
1271 if (!ffi->inject_rate)
1272 return false;
1273
1274 if (!IS_FAULT_SET(ffi, type))
1275 return false;
1276
1277 atomic_inc(&ffi->inject_ops);
1278 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1279 atomic_set(&ffi->inject_ops, 0);
1280 return true;
1281 }
1282 return false;
1283 }
1284 #endif
1285
1286 /* For write statistics. Suppose sector size is 512 bytes,
1287 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1288 */
1289 #define BD_PART_WRITTEN(s) \
1290 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1291 (s)->sectors_written_start) >> 1)
1292
1293 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1294 {
1295 sbi->last_time[type] = jiffies;
1296 }
1297
1298 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1299 {
1300 unsigned long interval = sbi->interval_time[type] * HZ;
1301
1302 return time_after(jiffies, sbi->last_time[type] + interval);
1303 }
1304
1305 static inline bool is_idle(struct f2fs_sb_info *sbi)
1306 {
1307 struct block_device *bdev = sbi->sb->s_bdev;
1308 struct request_queue *q = bdev_get_queue(bdev);
1309 struct request_list *rl = &q->root_rl;
1310
1311 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1312 return 0;
1313
1314 return f2fs_time_over(sbi, REQ_TIME);
1315 }
1316
1317 /*
1318 * Inline functions
1319 */
1320 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1321 const void *address, unsigned int length)
1322 {
1323 struct {
1324 struct shash_desc shash;
1325 char ctx[4];
1326 } desc;
1327 int err;
1328
1329 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1330
1331 desc.shash.tfm = sbi->s_chksum_driver;
1332 desc.shash.flags = 0;
1333 *(u32 *)desc.ctx = crc;
1334
1335 err = crypto_shash_update(&desc.shash, address, length);
1336 BUG_ON(err);
1337
1338 return *(u32 *)desc.ctx;
1339 }
1340
1341 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1342 unsigned int length)
1343 {
1344 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1345 }
1346
1347 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1348 void *buf, size_t buf_size)
1349 {
1350 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1351 }
1352
1353 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1354 const void *address, unsigned int length)
1355 {
1356 return __f2fs_crc32(sbi, crc, address, length);
1357 }
1358
1359 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1360 {
1361 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1362 }
1363
1364 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1365 {
1366 return sb->s_fs_info;
1367 }
1368
1369 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1370 {
1371 return F2FS_SB(inode->i_sb);
1372 }
1373
1374 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1375 {
1376 return F2FS_I_SB(mapping->host);
1377 }
1378
1379 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1380 {
1381 return F2FS_M_SB(page->mapping);
1382 }
1383
1384 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1385 {
1386 return (struct f2fs_super_block *)(sbi->raw_super);
1387 }
1388
1389 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1390 {
1391 return (struct f2fs_checkpoint *)(sbi->ckpt);
1392 }
1393
1394 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1395 {
1396 return (struct f2fs_node *)page_address(page);
1397 }
1398
1399 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1400 {
1401 return &((struct f2fs_node *)page_address(page))->i;
1402 }
1403
1404 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1405 {
1406 return (struct f2fs_nm_info *)(sbi->nm_info);
1407 }
1408
1409 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1410 {
1411 return (struct f2fs_sm_info *)(sbi->sm_info);
1412 }
1413
1414 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1415 {
1416 return (struct sit_info *)(SM_I(sbi)->sit_info);
1417 }
1418
1419 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1420 {
1421 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1422 }
1423
1424 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1425 {
1426 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1427 }
1428
1429 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1430 {
1431 return sbi->meta_inode->i_mapping;
1432 }
1433
1434 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1435 {
1436 return sbi->node_inode->i_mapping;
1437 }
1438
1439 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1440 {
1441 return test_bit(type, &sbi->s_flag);
1442 }
1443
1444 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1445 {
1446 set_bit(type, &sbi->s_flag);
1447 }
1448
1449 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1450 {
1451 clear_bit(type, &sbi->s_flag);
1452 }
1453
1454 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1455 {
1456 return le64_to_cpu(cp->checkpoint_ver);
1457 }
1458
1459 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1460 {
1461 if (type < F2FS_MAX_QUOTAS)
1462 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1463 return 0;
1464 }
1465
1466 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1467 {
1468 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1469 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1470 }
1471
1472 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1473 {
1474 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1475
1476 return ckpt_flags & f;
1477 }
1478
1479 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1480 {
1481 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1482 }
1483
1484 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1485 {
1486 unsigned int ckpt_flags;
1487
1488 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1489 ckpt_flags |= f;
1490 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1491 }
1492
1493 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1494 {
1495 unsigned long flags;
1496
1497 spin_lock_irqsave(&sbi->cp_lock, flags);
1498 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1499 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1500 }
1501
1502 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1503 {
1504 unsigned int ckpt_flags;
1505
1506 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1507 ckpt_flags &= (~f);
1508 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1509 }
1510
1511 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1512 {
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(&sbi->cp_lock, flags);
1516 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1517 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1518 }
1519
1520 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1521 {
1522 unsigned long flags;
1523
1524 set_sbi_flag(sbi, SBI_NEED_FSCK);
1525
1526 if (lock)
1527 spin_lock_irqsave(&sbi->cp_lock, flags);
1528 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1529 kfree(NM_I(sbi)->nat_bits);
1530 NM_I(sbi)->nat_bits = NULL;
1531 if (lock)
1532 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1533 }
1534
1535 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1536 struct cp_control *cpc)
1537 {
1538 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1539
1540 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1541 }
1542
1543 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1544 {
1545 down_read(&sbi->cp_rwsem);
1546 }
1547
1548 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1549 {
1550 return down_read_trylock(&sbi->cp_rwsem);
1551 }
1552
1553 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1554 {
1555 up_read(&sbi->cp_rwsem);
1556 }
1557
1558 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1559 {
1560 down_write(&sbi->cp_rwsem);
1561 }
1562
1563 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1564 {
1565 up_write(&sbi->cp_rwsem);
1566 }
1567
1568 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1569 {
1570 int reason = CP_SYNC;
1571
1572 if (test_opt(sbi, FASTBOOT))
1573 reason = CP_FASTBOOT;
1574 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1575 reason = CP_UMOUNT;
1576 return reason;
1577 }
1578
1579 static inline bool __remain_node_summaries(int reason)
1580 {
1581 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1582 }
1583
1584 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1585 {
1586 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1587 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1588 }
1589
1590 /*
1591 * Check whether the inode has blocks or not
1592 */
1593 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1594 {
1595 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1596
1597 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1598 }
1599
1600 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1601 {
1602 return ofs == XATTR_NODE_OFFSET;
1603 }
1604
1605 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1606 struct inode *inode, bool cap)
1607 {
1608 if (!inode)
1609 return true;
1610 if (!test_opt(sbi, RESERVE_ROOT))
1611 return false;
1612 if (IS_NOQUOTA(inode))
1613 return true;
1614 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1615 return true;
1616 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1617 in_group_p(F2FS_OPTION(sbi).s_resgid))
1618 return true;
1619 if (cap && capable(CAP_SYS_RESOURCE))
1620 return true;
1621 return false;
1622 }
1623
1624 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1625 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1626 struct inode *inode, blkcnt_t *count)
1627 {
1628 blkcnt_t diff = 0, release = 0;
1629 block_t avail_user_block_count;
1630 int ret;
1631
1632 ret = dquot_reserve_block(inode, *count);
1633 if (ret)
1634 return ret;
1635
1636 #ifdef CONFIG_F2FS_FAULT_INJECTION
1637 if (time_to_inject(sbi, FAULT_BLOCK)) {
1638 f2fs_show_injection_info(FAULT_BLOCK);
1639 release = *count;
1640 goto enospc;
1641 }
1642 #endif
1643 /*
1644 * let's increase this in prior to actual block count change in order
1645 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1646 */
1647 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1648
1649 spin_lock(&sbi->stat_lock);
1650 sbi->total_valid_block_count += (block_t)(*count);
1651 avail_user_block_count = sbi->user_block_count -
1652 sbi->current_reserved_blocks;
1653
1654 if (!__allow_reserved_blocks(sbi, inode, true))
1655 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1656
1657 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1658 diff = sbi->total_valid_block_count - avail_user_block_count;
1659 if (diff > *count)
1660 diff = *count;
1661 *count -= diff;
1662 release = diff;
1663 sbi->total_valid_block_count -= diff;
1664 if (!*count) {
1665 spin_unlock(&sbi->stat_lock);
1666 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1667 goto enospc;
1668 }
1669 }
1670 spin_unlock(&sbi->stat_lock);
1671
1672 if (unlikely(release))
1673 dquot_release_reservation_block(inode, release);
1674 f2fs_i_blocks_write(inode, *count, true, true);
1675 return 0;
1676
1677 enospc:
1678 dquot_release_reservation_block(inode, release);
1679 return -ENOSPC;
1680 }
1681
1682 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1683 struct inode *inode,
1684 block_t count)
1685 {
1686 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1687
1688 spin_lock(&sbi->stat_lock);
1689 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1690 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1691 sbi->total_valid_block_count -= (block_t)count;
1692 if (sbi->reserved_blocks &&
1693 sbi->current_reserved_blocks < sbi->reserved_blocks)
1694 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1695 sbi->current_reserved_blocks + count);
1696 spin_unlock(&sbi->stat_lock);
1697 f2fs_i_blocks_write(inode, count, false, true);
1698 }
1699
1700 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1701 {
1702 atomic_inc(&sbi->nr_pages[count_type]);
1703
1704 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1705 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1706 return;
1707
1708 set_sbi_flag(sbi, SBI_IS_DIRTY);
1709 }
1710
1711 static inline void inode_inc_dirty_pages(struct inode *inode)
1712 {
1713 atomic_inc(&F2FS_I(inode)->dirty_pages);
1714 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1715 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1716 if (IS_NOQUOTA(inode))
1717 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1718 }
1719
1720 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1721 {
1722 atomic_dec(&sbi->nr_pages[count_type]);
1723 }
1724
1725 static inline void inode_dec_dirty_pages(struct inode *inode)
1726 {
1727 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1728 !S_ISLNK(inode->i_mode))
1729 return;
1730
1731 atomic_dec(&F2FS_I(inode)->dirty_pages);
1732 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1733 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1734 if (IS_NOQUOTA(inode))
1735 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1736 }
1737
1738 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1739 {
1740 return atomic_read(&sbi->nr_pages[count_type]);
1741 }
1742
1743 static inline int get_dirty_pages(struct inode *inode)
1744 {
1745 return atomic_read(&F2FS_I(inode)->dirty_pages);
1746 }
1747
1748 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1749 {
1750 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1751 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1752 sbi->log_blocks_per_seg;
1753
1754 return segs / sbi->segs_per_sec;
1755 }
1756
1757 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1758 {
1759 return sbi->total_valid_block_count;
1760 }
1761
1762 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1763 {
1764 return sbi->discard_blks;
1765 }
1766
1767 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1768 {
1769 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1770
1771 /* return NAT or SIT bitmap */
1772 if (flag == NAT_BITMAP)
1773 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1774 else if (flag == SIT_BITMAP)
1775 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1776
1777 return 0;
1778 }
1779
1780 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1781 {
1782 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1783 }
1784
1785 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1786 {
1787 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1788 int offset;
1789
1790 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1791 offset = (flag == SIT_BITMAP) ?
1792 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1793 return &ckpt->sit_nat_version_bitmap + offset;
1794 }
1795
1796 if (__cp_payload(sbi) > 0) {
1797 if (flag == NAT_BITMAP)
1798 return &ckpt->sit_nat_version_bitmap;
1799 else
1800 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1801 } else {
1802 offset = (flag == NAT_BITMAP) ?
1803 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1804 return &ckpt->sit_nat_version_bitmap + offset;
1805 }
1806 }
1807
1808 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1809 {
1810 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1811
1812 if (sbi->cur_cp_pack == 2)
1813 start_addr += sbi->blocks_per_seg;
1814 return start_addr;
1815 }
1816
1817 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1818 {
1819 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1820
1821 if (sbi->cur_cp_pack == 1)
1822 start_addr += sbi->blocks_per_seg;
1823 return start_addr;
1824 }
1825
1826 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1827 {
1828 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1829 }
1830
1831 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1832 {
1833 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1834 }
1835
1836 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1837 struct inode *inode, bool is_inode)
1838 {
1839 block_t valid_block_count;
1840 unsigned int valid_node_count;
1841 bool quota = inode && !is_inode;
1842
1843 if (quota) {
1844 int ret = dquot_reserve_block(inode, 1);
1845 if (ret)
1846 return ret;
1847 }
1848
1849 #ifdef CONFIG_F2FS_FAULT_INJECTION
1850 if (time_to_inject(sbi, FAULT_BLOCK)) {
1851 f2fs_show_injection_info(FAULT_BLOCK);
1852 goto enospc;
1853 }
1854 #endif
1855
1856 spin_lock(&sbi->stat_lock);
1857
1858 valid_block_count = sbi->total_valid_block_count +
1859 sbi->current_reserved_blocks + 1;
1860
1861 if (!__allow_reserved_blocks(sbi, inode, false))
1862 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1863
1864 if (unlikely(valid_block_count > sbi->user_block_count)) {
1865 spin_unlock(&sbi->stat_lock);
1866 goto enospc;
1867 }
1868
1869 valid_node_count = sbi->total_valid_node_count + 1;
1870 if (unlikely(valid_node_count > sbi->total_node_count)) {
1871 spin_unlock(&sbi->stat_lock);
1872 goto enospc;
1873 }
1874
1875 sbi->total_valid_node_count++;
1876 sbi->total_valid_block_count++;
1877 spin_unlock(&sbi->stat_lock);
1878
1879 if (inode) {
1880 if (is_inode)
1881 f2fs_mark_inode_dirty_sync(inode, true);
1882 else
1883 f2fs_i_blocks_write(inode, 1, true, true);
1884 }
1885
1886 percpu_counter_inc(&sbi->alloc_valid_block_count);
1887 return 0;
1888
1889 enospc:
1890 if (quota)
1891 dquot_release_reservation_block(inode, 1);
1892 return -ENOSPC;
1893 }
1894
1895 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1896 struct inode *inode, bool is_inode)
1897 {
1898 spin_lock(&sbi->stat_lock);
1899
1900 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1901 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1902 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1903
1904 sbi->total_valid_node_count--;
1905 sbi->total_valid_block_count--;
1906 if (sbi->reserved_blocks &&
1907 sbi->current_reserved_blocks < sbi->reserved_blocks)
1908 sbi->current_reserved_blocks++;
1909
1910 spin_unlock(&sbi->stat_lock);
1911
1912 if (!is_inode)
1913 f2fs_i_blocks_write(inode, 1, false, true);
1914 }
1915
1916 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1917 {
1918 return sbi->total_valid_node_count;
1919 }
1920
1921 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1922 {
1923 percpu_counter_inc(&sbi->total_valid_inode_count);
1924 }
1925
1926 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1927 {
1928 percpu_counter_dec(&sbi->total_valid_inode_count);
1929 }
1930
1931 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1932 {
1933 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1934 }
1935
1936 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1937 pgoff_t index, bool for_write)
1938 {
1939 #ifdef CONFIG_F2FS_FAULT_INJECTION
1940 struct page *page;
1941
1942 if (!for_write)
1943 page = find_get_page_flags(mapping, index,
1944 FGP_LOCK | FGP_ACCESSED);
1945 else
1946 page = find_lock_page(mapping, index);
1947 if (page)
1948 return page;
1949
1950 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1951 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1952 return NULL;
1953 }
1954 #endif
1955 if (!for_write)
1956 return grab_cache_page(mapping, index);
1957 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1958 }
1959
1960 static inline struct page *f2fs_pagecache_get_page(
1961 struct address_space *mapping, pgoff_t index,
1962 int fgp_flags, gfp_t gfp_mask)
1963 {
1964 #ifdef CONFIG_F2FS_FAULT_INJECTION
1965 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1966 f2fs_show_injection_info(FAULT_PAGE_GET);
1967 return NULL;
1968 }
1969 #endif
1970 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1971 }
1972
1973 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1974 {
1975 char *src_kaddr = kmap(src);
1976 char *dst_kaddr = kmap(dst);
1977
1978 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1979 kunmap(dst);
1980 kunmap(src);
1981 }
1982
1983 static inline void f2fs_put_page(struct page *page, int unlock)
1984 {
1985 if (!page)
1986 return;
1987
1988 if (unlock) {
1989 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1990 unlock_page(page);
1991 }
1992 put_page(page);
1993 }
1994
1995 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1996 {
1997 if (dn->node_page)
1998 f2fs_put_page(dn->node_page, 1);
1999 if (dn->inode_page && dn->node_page != dn->inode_page)
2000 f2fs_put_page(dn->inode_page, 0);
2001 dn->node_page = NULL;
2002 dn->inode_page = NULL;
2003 }
2004
2005 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2006 size_t size)
2007 {
2008 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2009 }
2010
2011 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2012 gfp_t flags)
2013 {
2014 void *entry;
2015
2016 entry = kmem_cache_alloc(cachep, flags);
2017 if (!entry)
2018 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2019 return entry;
2020 }
2021
2022 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2023 int npages, bool no_fail)
2024 {
2025 struct bio *bio;
2026
2027 if (no_fail) {
2028 /* No failure on bio allocation */
2029 bio = bio_alloc(GFP_NOIO, npages);
2030 if (!bio)
2031 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2032 return bio;
2033 }
2034 #ifdef CONFIG_F2FS_FAULT_INJECTION
2035 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2036 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2037 return NULL;
2038 }
2039 #endif
2040 return bio_alloc(GFP_KERNEL, npages);
2041 }
2042
2043 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2044 unsigned long index, void *item)
2045 {
2046 while (radix_tree_insert(root, index, item))
2047 cond_resched();
2048 }
2049
2050 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2051
2052 static inline bool IS_INODE(struct page *page)
2053 {
2054 struct f2fs_node *p = F2FS_NODE(page);
2055
2056 return RAW_IS_INODE(p);
2057 }
2058
2059 static inline int offset_in_addr(struct f2fs_inode *i)
2060 {
2061 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2062 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2063 }
2064
2065 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2066 {
2067 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2068 }
2069
2070 static inline int f2fs_has_extra_attr(struct inode *inode);
2071 static inline block_t datablock_addr(struct inode *inode,
2072 struct page *node_page, unsigned int offset)
2073 {
2074 struct f2fs_node *raw_node;
2075 __le32 *addr_array;
2076 int base = 0;
2077 bool is_inode = IS_INODE(node_page);
2078
2079 raw_node = F2FS_NODE(node_page);
2080
2081 /* from GC path only */
2082 if (is_inode) {
2083 if (!inode)
2084 base = offset_in_addr(&raw_node->i);
2085 else if (f2fs_has_extra_attr(inode))
2086 base = get_extra_isize(inode);
2087 }
2088
2089 addr_array = blkaddr_in_node(raw_node);
2090 return le32_to_cpu(addr_array[base + offset]);
2091 }
2092
2093 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2094 {
2095 int mask;
2096
2097 addr += (nr >> 3);
2098 mask = 1 << (7 - (nr & 0x07));
2099 return mask & *addr;
2100 }
2101
2102 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2103 {
2104 int mask;
2105
2106 addr += (nr >> 3);
2107 mask = 1 << (7 - (nr & 0x07));
2108 *addr |= mask;
2109 }
2110
2111 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2112 {
2113 int mask;
2114
2115 addr += (nr >> 3);
2116 mask = 1 << (7 - (nr & 0x07));
2117 *addr &= ~mask;
2118 }
2119
2120 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2121 {
2122 int mask;
2123 int ret;
2124
2125 addr += (nr >> 3);
2126 mask = 1 << (7 - (nr & 0x07));
2127 ret = mask & *addr;
2128 *addr |= mask;
2129 return ret;
2130 }
2131
2132 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2133 {
2134 int mask;
2135 int ret;
2136
2137 addr += (nr >> 3);
2138 mask = 1 << (7 - (nr & 0x07));
2139 ret = mask & *addr;
2140 *addr &= ~mask;
2141 return ret;
2142 }
2143
2144 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2145 {
2146 int mask;
2147
2148 addr += (nr >> 3);
2149 mask = 1 << (7 - (nr & 0x07));
2150 *addr ^= mask;
2151 }
2152
2153 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2154 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2155 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2156
2157 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2158 {
2159 if (S_ISDIR(mode))
2160 return flags;
2161 else if (S_ISREG(mode))
2162 return flags & F2FS_REG_FLMASK;
2163 else
2164 return flags & F2FS_OTHER_FLMASK;
2165 }
2166
2167 /* used for f2fs_inode_info->flags */
2168 enum {
2169 FI_NEW_INODE, /* indicate newly allocated inode */
2170 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2171 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2172 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2173 FI_INC_LINK, /* need to increment i_nlink */
2174 FI_ACL_MODE, /* indicate acl mode */
2175 FI_NO_ALLOC, /* should not allocate any blocks */
2176 FI_FREE_NID, /* free allocated nide */
2177 FI_NO_EXTENT, /* not to use the extent cache */
2178 FI_INLINE_XATTR, /* used for inline xattr */
2179 FI_INLINE_DATA, /* used for inline data*/
2180 FI_INLINE_DENTRY, /* used for inline dentry */
2181 FI_APPEND_WRITE, /* inode has appended data */
2182 FI_UPDATE_WRITE, /* inode has in-place-update data */
2183 FI_NEED_IPU, /* used for ipu per file */
2184 FI_ATOMIC_FILE, /* indicate atomic file */
2185 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2186 FI_VOLATILE_FILE, /* indicate volatile file */
2187 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2188 FI_DROP_CACHE, /* drop dirty page cache */
2189 FI_DATA_EXIST, /* indicate data exists */
2190 FI_INLINE_DOTS, /* indicate inline dot dentries */
2191 FI_DO_DEFRAG, /* indicate defragment is running */
2192 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2193 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2194 FI_HOT_DATA, /* indicate file is hot */
2195 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2196 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2197 FI_PIN_FILE, /* indicate file should not be gced */
2198 };
2199
2200 static inline void __mark_inode_dirty_flag(struct inode *inode,
2201 int flag, bool set)
2202 {
2203 switch (flag) {
2204 case FI_INLINE_XATTR:
2205 case FI_INLINE_DATA:
2206 case FI_INLINE_DENTRY:
2207 case FI_NEW_INODE:
2208 if (set)
2209 return;
2210 case FI_DATA_EXIST:
2211 case FI_INLINE_DOTS:
2212 case FI_PIN_FILE:
2213 f2fs_mark_inode_dirty_sync(inode, true);
2214 }
2215 }
2216
2217 static inline void set_inode_flag(struct inode *inode, int flag)
2218 {
2219 if (!test_bit(flag, &F2FS_I(inode)->flags))
2220 set_bit(flag, &F2FS_I(inode)->flags);
2221 __mark_inode_dirty_flag(inode, flag, true);
2222 }
2223
2224 static inline int is_inode_flag_set(struct inode *inode, int flag)
2225 {
2226 return test_bit(flag, &F2FS_I(inode)->flags);
2227 }
2228
2229 static inline void clear_inode_flag(struct inode *inode, int flag)
2230 {
2231 if (test_bit(flag, &F2FS_I(inode)->flags))
2232 clear_bit(flag, &F2FS_I(inode)->flags);
2233 __mark_inode_dirty_flag(inode, flag, false);
2234 }
2235
2236 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2237 {
2238 F2FS_I(inode)->i_acl_mode = mode;
2239 set_inode_flag(inode, FI_ACL_MODE);
2240 f2fs_mark_inode_dirty_sync(inode, false);
2241 }
2242
2243 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2244 {
2245 if (inc)
2246 inc_nlink(inode);
2247 else
2248 drop_nlink(inode);
2249 f2fs_mark_inode_dirty_sync(inode, true);
2250 }
2251
2252 static inline void f2fs_i_blocks_write(struct inode *inode,
2253 block_t diff, bool add, bool claim)
2254 {
2255 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2256 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2257
2258 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2259 if (add) {
2260 if (claim)
2261 dquot_claim_block(inode, diff);
2262 else
2263 dquot_alloc_block_nofail(inode, diff);
2264 } else {
2265 dquot_free_block(inode, diff);
2266 }
2267
2268 f2fs_mark_inode_dirty_sync(inode, true);
2269 if (clean || recover)
2270 set_inode_flag(inode, FI_AUTO_RECOVER);
2271 }
2272
2273 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2274 {
2275 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2276 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2277
2278 if (i_size_read(inode) == i_size)
2279 return;
2280
2281 i_size_write(inode, i_size);
2282 f2fs_mark_inode_dirty_sync(inode, true);
2283 if (clean || recover)
2284 set_inode_flag(inode, FI_AUTO_RECOVER);
2285 }
2286
2287 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2288 {
2289 F2FS_I(inode)->i_current_depth = depth;
2290 f2fs_mark_inode_dirty_sync(inode, true);
2291 }
2292
2293 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2294 unsigned int count)
2295 {
2296 F2FS_I(inode)->i_gc_failures = count;
2297 f2fs_mark_inode_dirty_sync(inode, true);
2298 }
2299
2300 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2301 {
2302 F2FS_I(inode)->i_xattr_nid = xnid;
2303 f2fs_mark_inode_dirty_sync(inode, true);
2304 }
2305
2306 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2307 {
2308 F2FS_I(inode)->i_pino = pino;
2309 f2fs_mark_inode_dirty_sync(inode, true);
2310 }
2311
2312 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2313 {
2314 struct f2fs_inode_info *fi = F2FS_I(inode);
2315
2316 if (ri->i_inline & F2FS_INLINE_XATTR)
2317 set_bit(FI_INLINE_XATTR, &fi->flags);
2318 if (ri->i_inline & F2FS_INLINE_DATA)
2319 set_bit(FI_INLINE_DATA, &fi->flags);
2320 if (ri->i_inline & F2FS_INLINE_DENTRY)
2321 set_bit(FI_INLINE_DENTRY, &fi->flags);
2322 if (ri->i_inline & F2FS_DATA_EXIST)
2323 set_bit(FI_DATA_EXIST, &fi->flags);
2324 if (ri->i_inline & F2FS_INLINE_DOTS)
2325 set_bit(FI_INLINE_DOTS, &fi->flags);
2326 if (ri->i_inline & F2FS_EXTRA_ATTR)
2327 set_bit(FI_EXTRA_ATTR, &fi->flags);
2328 if (ri->i_inline & F2FS_PIN_FILE)
2329 set_bit(FI_PIN_FILE, &fi->flags);
2330 }
2331
2332 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2333 {
2334 ri->i_inline = 0;
2335
2336 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2337 ri->i_inline |= F2FS_INLINE_XATTR;
2338 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2339 ri->i_inline |= F2FS_INLINE_DATA;
2340 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2341 ri->i_inline |= F2FS_INLINE_DENTRY;
2342 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2343 ri->i_inline |= F2FS_DATA_EXIST;
2344 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2345 ri->i_inline |= F2FS_INLINE_DOTS;
2346 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2347 ri->i_inline |= F2FS_EXTRA_ATTR;
2348 if (is_inode_flag_set(inode, FI_PIN_FILE))
2349 ri->i_inline |= F2FS_PIN_FILE;
2350 }
2351
2352 static inline int f2fs_has_extra_attr(struct inode *inode)
2353 {
2354 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2355 }
2356
2357 static inline int f2fs_has_inline_xattr(struct inode *inode)
2358 {
2359 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2360 }
2361
2362 static inline unsigned int addrs_per_inode(struct inode *inode)
2363 {
2364 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2365 }
2366
2367 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2368 {
2369 struct f2fs_inode *ri = F2FS_INODE(page);
2370
2371 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2372 get_inline_xattr_addrs(inode)]);
2373 }
2374
2375 static inline int inline_xattr_size(struct inode *inode)
2376 {
2377 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2378 }
2379
2380 static inline int f2fs_has_inline_data(struct inode *inode)
2381 {
2382 return is_inode_flag_set(inode, FI_INLINE_DATA);
2383 }
2384
2385 static inline int f2fs_exist_data(struct inode *inode)
2386 {
2387 return is_inode_flag_set(inode, FI_DATA_EXIST);
2388 }
2389
2390 static inline int f2fs_has_inline_dots(struct inode *inode)
2391 {
2392 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2393 }
2394
2395 static inline bool f2fs_is_pinned_file(struct inode *inode)
2396 {
2397 return is_inode_flag_set(inode, FI_PIN_FILE);
2398 }
2399
2400 static inline bool f2fs_is_atomic_file(struct inode *inode)
2401 {
2402 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2403 }
2404
2405 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2406 {
2407 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2408 }
2409
2410 static inline bool f2fs_is_volatile_file(struct inode *inode)
2411 {
2412 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2413 }
2414
2415 static inline bool f2fs_is_first_block_written(struct inode *inode)
2416 {
2417 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2418 }
2419
2420 static inline bool f2fs_is_drop_cache(struct inode *inode)
2421 {
2422 return is_inode_flag_set(inode, FI_DROP_CACHE);
2423 }
2424
2425 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2426 {
2427 struct f2fs_inode *ri = F2FS_INODE(page);
2428 int extra_size = get_extra_isize(inode);
2429
2430 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2431 }
2432
2433 static inline int f2fs_has_inline_dentry(struct inode *inode)
2434 {
2435 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2436 }
2437
2438 static inline int is_file(struct inode *inode, int type)
2439 {
2440 return F2FS_I(inode)->i_advise & type;
2441 }
2442
2443 static inline void set_file(struct inode *inode, int type)
2444 {
2445 F2FS_I(inode)->i_advise |= type;
2446 f2fs_mark_inode_dirty_sync(inode, true);
2447 }
2448
2449 static inline void clear_file(struct inode *inode, int type)
2450 {
2451 F2FS_I(inode)->i_advise &= ~type;
2452 f2fs_mark_inode_dirty_sync(inode, true);
2453 }
2454
2455 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2456 {
2457 bool ret;
2458
2459 if (dsync) {
2460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2461
2462 spin_lock(&sbi->inode_lock[DIRTY_META]);
2463 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2464 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2465 return ret;
2466 }
2467 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2468 file_keep_isize(inode) ||
2469 i_size_read(inode) & ~PAGE_MASK)
2470 return false;
2471
2472 if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2473 return false;
2474 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2475 return false;
2476 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2477 return false;
2478 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2479 &F2FS_I(inode)->i_crtime))
2480 return false;
2481
2482 down_read(&F2FS_I(inode)->i_sem);
2483 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2484 up_read(&F2FS_I(inode)->i_sem);
2485
2486 return ret;
2487 }
2488
2489 static inline bool f2fs_readonly(struct super_block *sb)
2490 {
2491 return sb_rdonly(sb);
2492 }
2493
2494 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2495 {
2496 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2497 }
2498
2499 static inline bool is_dot_dotdot(const struct qstr *str)
2500 {
2501 if (str->len == 1 && str->name[0] == '.')
2502 return true;
2503
2504 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2505 return true;
2506
2507 return false;
2508 }
2509
2510 static inline bool f2fs_may_extent_tree(struct inode *inode)
2511 {
2512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2513
2514 if (!test_opt(sbi, EXTENT_CACHE) ||
2515 is_inode_flag_set(inode, FI_NO_EXTENT))
2516 return false;
2517
2518 /*
2519 * for recovered files during mount do not create extents
2520 * if shrinker is not registered.
2521 */
2522 if (list_empty(&sbi->s_list))
2523 return false;
2524
2525 return S_ISREG(inode->i_mode);
2526 }
2527
2528 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2529 size_t size, gfp_t flags)
2530 {
2531 #ifdef CONFIG_F2FS_FAULT_INJECTION
2532 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2533 f2fs_show_injection_info(FAULT_KMALLOC);
2534 return NULL;
2535 }
2536 #endif
2537 return kmalloc(size, flags);
2538 }
2539
2540 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2541 size_t size, gfp_t flags)
2542 {
2543 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2544 }
2545
2546 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2547 size_t size, gfp_t flags)
2548 {
2549 #ifdef CONFIG_F2FS_FAULT_INJECTION
2550 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2551 f2fs_show_injection_info(FAULT_KVMALLOC);
2552 return NULL;
2553 }
2554 #endif
2555 return kvmalloc(size, flags);
2556 }
2557
2558 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2559 size_t size, gfp_t flags)
2560 {
2561 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2562 }
2563
2564 static inline int get_extra_isize(struct inode *inode)
2565 {
2566 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2567 }
2568
2569 static inline int get_inline_xattr_addrs(struct inode *inode)
2570 {
2571 return F2FS_I(inode)->i_inline_xattr_size;
2572 }
2573
2574 #define get_inode_mode(i) \
2575 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2576 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2577
2578 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2579 (offsetof(struct f2fs_inode, i_extra_end) - \
2580 offsetof(struct f2fs_inode, i_extra_isize)) \
2581
2582 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2583 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2584 ((offsetof(typeof(*f2fs_inode), field) + \
2585 sizeof((f2fs_inode)->field)) \
2586 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2587
2588 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2589 {
2590 int i;
2591
2592 spin_lock(&sbi->iostat_lock);
2593 for (i = 0; i < NR_IO_TYPE; i++)
2594 sbi->write_iostat[i] = 0;
2595 spin_unlock(&sbi->iostat_lock);
2596 }
2597
2598 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2599 enum iostat_type type, unsigned long long io_bytes)
2600 {
2601 if (!sbi->iostat_enable)
2602 return;
2603 spin_lock(&sbi->iostat_lock);
2604 sbi->write_iostat[type] += io_bytes;
2605
2606 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2607 sbi->write_iostat[APP_BUFFERED_IO] =
2608 sbi->write_iostat[APP_WRITE_IO] -
2609 sbi->write_iostat[APP_DIRECT_IO];
2610 spin_unlock(&sbi->iostat_lock);
2611 }
2612
2613 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \
2614 (!is_read_io(fio->op) || fio->is_meta))
2615
2616 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2617 block_t blkaddr, int type);
2618 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2619 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2620 block_t blkaddr, int type)
2621 {
2622 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2623 f2fs_msg(sbi->sb, KERN_ERR,
2624 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2625 blkaddr, type);
2626 f2fs_bug_on(sbi, 1);
2627 }
2628 }
2629
2630 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2631 {
2632 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2633 return false;
2634 return true;
2635 }
2636
2637 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2638 block_t blkaddr)
2639 {
2640 if (!__is_valid_data_blkaddr(blkaddr))
2641 return false;
2642 verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2643 return true;
2644 }
2645
2646 /*
2647 * file.c
2648 */
2649 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2650 void truncate_data_blocks(struct dnode_of_data *dn);
2651 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2652 int f2fs_truncate(struct inode *inode);
2653 int f2fs_getattr(const struct path *path, struct kstat *stat,
2654 u32 request_mask, unsigned int flags);
2655 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2656 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2657 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2658 int f2fs_precache_extents(struct inode *inode);
2659 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2660 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2661 int f2fs_pin_file_control(struct inode *inode, bool inc);
2662
2663 /*
2664 * inode.c
2665 */
2666 void f2fs_set_inode_flags(struct inode *inode);
2667 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2668 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2669 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2670 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2671 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2672 void update_inode(struct inode *inode, struct page *node_page);
2673 void update_inode_page(struct inode *inode);
2674 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2675 void f2fs_evict_inode(struct inode *inode);
2676 void handle_failed_inode(struct inode *inode);
2677
2678 /*
2679 * namei.c
2680 */
2681 int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2682 bool hot, bool set);
2683 struct dentry *f2fs_get_parent(struct dentry *child);
2684
2685 /*
2686 * dir.c
2687 */
2688 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2689 unsigned char get_de_type(struct f2fs_dir_entry *de);
2690 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2691 f2fs_hash_t namehash, int *max_slots,
2692 struct f2fs_dentry_ptr *d);
2693 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2694 unsigned int start_pos, struct fscrypt_str *fstr);
2695 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2696 struct f2fs_dentry_ptr *d);
2697 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2698 const struct qstr *new_name,
2699 const struct qstr *orig_name, struct page *dpage);
2700 void update_parent_metadata(struct inode *dir, struct inode *inode,
2701 unsigned int current_depth);
2702 int room_for_filename(const void *bitmap, int slots, int max_slots);
2703 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2704 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2705 struct fscrypt_name *fname, struct page **res_page);
2706 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2707 const struct qstr *child, struct page **res_page);
2708 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2709 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2710 struct page **page);
2711 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2712 struct page *page, struct inode *inode);
2713 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2714 const struct qstr *name, f2fs_hash_t name_hash,
2715 unsigned int bit_pos);
2716 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2717 const struct qstr *orig_name,
2718 struct inode *inode, nid_t ino, umode_t mode);
2719 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2720 struct inode *inode, nid_t ino, umode_t mode);
2721 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2722 struct inode *inode, nid_t ino, umode_t mode);
2723 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2724 struct inode *dir, struct inode *inode);
2725 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2726 bool f2fs_empty_dir(struct inode *dir);
2727
2728 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2729 {
2730 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2731 inode, inode->i_ino, inode->i_mode);
2732 }
2733
2734 /*
2735 * super.c
2736 */
2737 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2738 void f2fs_inode_synced(struct inode *inode);
2739 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2740 void f2fs_quota_off_umount(struct super_block *sb);
2741 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2742 int f2fs_sync_fs(struct super_block *sb, int sync);
2743 extern __printf(3, 4)
2744 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2745 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2746
2747 /*
2748 * hash.c
2749 */
2750 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2751 struct fscrypt_name *fname);
2752
2753 /*
2754 * node.c
2755 */
2756 struct dnode_of_data;
2757 struct node_info;
2758
2759 int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2760 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2761 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2762 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2763 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2764 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2765 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2766 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2767 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2768 int truncate_xattr_node(struct inode *inode);
2769 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2770 int remove_inode_page(struct inode *inode);
2771 struct page *new_inode_page(struct inode *inode);
2772 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2773 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2774 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2775 struct page *get_node_page_ra(struct page *parent, int start);
2776 void move_node_page(struct page *node_page, int gc_type);
2777 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2778 struct writeback_control *wbc, bool atomic);
2779 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2780 bool do_balance, enum iostat_type io_type);
2781 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2782 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2783 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2784 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2785 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2786 void recover_inline_xattr(struct inode *inode, struct page *page);
2787 int recover_xattr_data(struct inode *inode, struct page *page);
2788 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2789 void restore_node_summary(struct f2fs_sb_info *sbi,
2790 unsigned int segno, struct f2fs_summary_block *sum);
2791 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2792 int build_node_manager(struct f2fs_sb_info *sbi);
2793 void destroy_node_manager(struct f2fs_sb_info *sbi);
2794 int __init create_node_manager_caches(void);
2795 void destroy_node_manager_caches(void);
2796
2797 /*
2798 * segment.c
2799 */
2800 bool need_SSR(struct f2fs_sb_info *sbi);
2801 void register_inmem_page(struct inode *inode, struct page *page);
2802 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2803 void drop_inmem_pages(struct inode *inode);
2804 void drop_inmem_page(struct inode *inode, struct page *page);
2805 int commit_inmem_pages(struct inode *inode);
2806 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2807 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2808 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2809 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2810 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2811 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2812 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2813 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2814 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2815 void stop_discard_thread(struct f2fs_sb_info *sbi);
2816 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2817 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2818 void release_discard_addrs(struct f2fs_sb_info *sbi);
2819 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2820 void allocate_new_segments(struct f2fs_sb_info *sbi);
2821 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2822 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2823 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2824 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2825 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2826 enum iostat_type io_type);
2827 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2828 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2829 int rewrite_data_page(struct f2fs_io_info *fio);
2830 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2831 block_t old_blkaddr, block_t new_blkaddr,
2832 bool recover_curseg, bool recover_newaddr);
2833 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2834 block_t old_addr, block_t new_addr,
2835 unsigned char version, bool recover_curseg,
2836 bool recover_newaddr);
2837 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2838 block_t old_blkaddr, block_t *new_blkaddr,
2839 struct f2fs_summary *sum, int type,
2840 struct f2fs_io_info *fio, bool add_list);
2841 void f2fs_wait_on_page_writeback(struct page *page,
2842 enum page_type type, bool ordered);
2843 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
2844 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2845 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2846 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2847 unsigned int val, int alloc);
2848 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2849 int build_segment_manager(struct f2fs_sb_info *sbi);
2850 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2851 int __init create_segment_manager_caches(void);
2852 void destroy_segment_manager_caches(void);
2853 int rw_hint_to_seg_type(enum rw_hint hint);
2854 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2855 enum temp_type temp);
2856
2857 /*
2858 * checkpoint.c
2859 */
2860 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2861 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2862 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2863 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2864 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2865 block_t blkaddr, int type);
2866 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2867 int type, bool sync);
2868 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2869 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2870 long nr_to_write, enum iostat_type io_type);
2871 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2872 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2873 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2874 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2875 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2876 unsigned int devidx, int type);
2877 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2878 unsigned int devidx, int type);
2879 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2880 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2881 void release_orphan_inode(struct f2fs_sb_info *sbi);
2882 void add_orphan_inode(struct inode *inode);
2883 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2884 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2885 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2886 void update_dirty_page(struct inode *inode, struct page *page);
2887 void remove_dirty_inode(struct inode *inode);
2888 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2889 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2890 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2891 int __init create_checkpoint_caches(void);
2892 void destroy_checkpoint_caches(void);
2893
2894 /*
2895 * data.c
2896 */
2897 int f2fs_init_post_read_processing(void);
2898 void f2fs_destroy_post_read_processing(void);
2899 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2900 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2901 struct inode *inode, nid_t ino, pgoff_t idx,
2902 enum page_type type);
2903 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2904 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2905 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2906 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2907 block_t blk_addr, struct bio *bio);
2908 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2909 void set_data_blkaddr(struct dnode_of_data *dn);
2910 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2911 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2912 int reserve_new_block(struct dnode_of_data *dn);
2913 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2914 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2915 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2916 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2917 int op_flags, bool for_write);
2918 struct page *find_data_page(struct inode *inode, pgoff_t index);
2919 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2920 bool for_write);
2921 struct page *get_new_data_page(struct inode *inode,
2922 struct page *ipage, pgoff_t index, bool new_i_size);
2923 int do_write_data_page(struct f2fs_io_info *fio);
2924 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2925 int create, int flag);
2926 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2927 u64 start, u64 len);
2928 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2929 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2930 int __f2fs_write_data_pages(struct address_space *mapping,
2931 struct writeback_control *wbc,
2932 enum iostat_type io_type);
2933 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2934 unsigned int length);
2935 int f2fs_release_page(struct page *page, gfp_t wait);
2936 #ifdef CONFIG_MIGRATION
2937 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2938 struct page *page, enum migrate_mode mode);
2939 #endif
2940 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2941
2942 /*
2943 * gc.c
2944 */
2945 int start_gc_thread(struct f2fs_sb_info *sbi);
2946 void stop_gc_thread(struct f2fs_sb_info *sbi);
2947 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2948 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2949 unsigned int segno);
2950 void build_gc_manager(struct f2fs_sb_info *sbi);
2951
2952 /*
2953 * recovery.c
2954 */
2955 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2956 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2957
2958 /*
2959 * debug.c
2960 */
2961 #ifdef CONFIG_F2FS_STAT_FS
2962 struct f2fs_stat_info {
2963 struct list_head stat_list;
2964 struct f2fs_sb_info *sbi;
2965 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2966 int main_area_segs, main_area_sections, main_area_zones;
2967 unsigned long long hit_largest, hit_cached, hit_rbtree;
2968 unsigned long long hit_total, total_ext;
2969 int ext_tree, zombie_tree, ext_node;
2970 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2971 int ndirty_data, ndirty_qdata;
2972 int inmem_pages;
2973 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2974 int nats, dirty_nats, sits, dirty_sits;
2975 int free_nids, avail_nids, alloc_nids;
2976 int total_count, utilization;
2977 int bg_gc, nr_wb_cp_data, nr_wb_data;
2978 int nr_flushing, nr_flushed, flush_list_empty;
2979 int nr_discarding, nr_discarded;
2980 int nr_discard_cmd;
2981 unsigned int undiscard_blks;
2982 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2983 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2984 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2985 unsigned int bimodal, avg_vblocks;
2986 int util_free, util_valid, util_invalid;
2987 int rsvd_segs, overp_segs;
2988 int dirty_count, node_pages, meta_pages;
2989 int prefree_count, call_count, cp_count, bg_cp_count;
2990 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2991 int bg_node_segs, bg_data_segs;
2992 int tot_blks, data_blks, node_blks;
2993 int bg_data_blks, bg_node_blks;
2994 int curseg[NR_CURSEG_TYPE];
2995 int cursec[NR_CURSEG_TYPE];
2996 int curzone[NR_CURSEG_TYPE];
2997
2998 unsigned int segment_count[2];
2999 unsigned int block_count[2];
3000 unsigned int inplace_count;
3001 unsigned long long base_mem, cache_mem, page_mem;
3002 };
3003
3004 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3005 {
3006 return (struct f2fs_stat_info *)sbi->stat_info;
3007 }
3008
3009 #define stat_inc_cp_count(si) ((si)->cp_count++)
3010 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3011 #define stat_inc_call_count(si) ((si)->call_count++)
3012 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3013 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3014 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3015 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3016 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3017 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3018 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3019 #define stat_inc_inline_xattr(inode) \
3020 do { \
3021 if (f2fs_has_inline_xattr(inode)) \
3022 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3023 } while (0)
3024 #define stat_dec_inline_xattr(inode) \
3025 do { \
3026 if (f2fs_has_inline_xattr(inode)) \
3027 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3028 } while (0)
3029 #define stat_inc_inline_inode(inode) \
3030 do { \
3031 if (f2fs_has_inline_data(inode)) \
3032 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3033 } while (0)
3034 #define stat_dec_inline_inode(inode) \
3035 do { \
3036 if (f2fs_has_inline_data(inode)) \
3037 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3038 } while (0)
3039 #define stat_inc_inline_dir(inode) \
3040 do { \
3041 if (f2fs_has_inline_dentry(inode)) \
3042 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3043 } while (0)
3044 #define stat_dec_inline_dir(inode) \
3045 do { \
3046 if (f2fs_has_inline_dentry(inode)) \
3047 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3048 } while (0)
3049 #define stat_inc_seg_type(sbi, curseg) \
3050 ((sbi)->segment_count[(curseg)->alloc_type]++)
3051 #define stat_inc_block_count(sbi, curseg) \
3052 ((sbi)->block_count[(curseg)->alloc_type]++)
3053 #define stat_inc_inplace_blocks(sbi) \
3054 (atomic_inc(&(sbi)->inplace_count))
3055 #define stat_inc_atomic_write(inode) \
3056 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3057 #define stat_dec_atomic_write(inode) \
3058 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3059 #define stat_update_max_atomic_write(inode) \
3060 do { \
3061 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3062 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3063 if (cur > max) \
3064 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3065 } while (0)
3066 #define stat_inc_volatile_write(inode) \
3067 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3068 #define stat_dec_volatile_write(inode) \
3069 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3070 #define stat_update_max_volatile_write(inode) \
3071 do { \
3072 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3073 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3074 if (cur > max) \
3075 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3076 } while (0)
3077 #define stat_inc_seg_count(sbi, type, gc_type) \
3078 do { \
3079 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3080 si->tot_segs++; \
3081 if ((type) == SUM_TYPE_DATA) { \
3082 si->data_segs++; \
3083 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3084 } else { \
3085 si->node_segs++; \
3086 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3087 } \
3088 } while (0)
3089
3090 #define stat_inc_tot_blk_count(si, blks) \
3091 ((si)->tot_blks += (blks))
3092
3093 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3094 do { \
3095 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3096 stat_inc_tot_blk_count(si, blks); \
3097 si->data_blks += (blks); \
3098 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3099 } while (0)
3100
3101 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3102 do { \
3103 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3104 stat_inc_tot_blk_count(si, blks); \
3105 si->node_blks += (blks); \
3106 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3107 } while (0)
3108
3109 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3110 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3111 int __init f2fs_create_root_stats(void);
3112 void f2fs_destroy_root_stats(void);
3113 #else
3114 #define stat_inc_cp_count(si) do { } while (0)
3115 #define stat_inc_bg_cp_count(si) do { } while (0)
3116 #define stat_inc_call_count(si) do { } while (0)
3117 #define stat_inc_bggc_count(si) do { } while (0)
3118 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3119 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3120 #define stat_inc_total_hit(sb) do { } while (0)
3121 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3122 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3123 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3124 #define stat_inc_inline_xattr(inode) do { } while (0)
3125 #define stat_dec_inline_xattr(inode) do { } while (0)
3126 #define stat_inc_inline_inode(inode) do { } while (0)
3127 #define stat_dec_inline_inode(inode) do { } while (0)
3128 #define stat_inc_inline_dir(inode) do { } while (0)
3129 #define stat_dec_inline_dir(inode) do { } while (0)
3130 #define stat_inc_atomic_write(inode) do { } while (0)
3131 #define stat_dec_atomic_write(inode) do { } while (0)
3132 #define stat_update_max_atomic_write(inode) do { } while (0)
3133 #define stat_inc_volatile_write(inode) do { } while (0)
3134 #define stat_dec_volatile_write(inode) do { } while (0)
3135 #define stat_update_max_volatile_write(inode) do { } while (0)
3136 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3137 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3138 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3139 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3140 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3141 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3142 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3143
3144 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3145 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3146 static inline int __init f2fs_create_root_stats(void) { return 0; }
3147 static inline void f2fs_destroy_root_stats(void) { }
3148 #endif
3149
3150 extern const struct file_operations f2fs_dir_operations;
3151 extern const struct file_operations f2fs_file_operations;
3152 extern const struct inode_operations f2fs_file_inode_operations;
3153 extern const struct address_space_operations f2fs_dblock_aops;
3154 extern const struct address_space_operations f2fs_node_aops;
3155 extern const struct address_space_operations f2fs_meta_aops;
3156 extern const struct inode_operations f2fs_dir_inode_operations;
3157 extern const struct inode_operations f2fs_symlink_inode_operations;
3158 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3159 extern const struct inode_operations f2fs_special_inode_operations;
3160 extern struct kmem_cache *inode_entry_slab;
3161
3162 /*
3163 * inline.c
3164 */
3165 bool f2fs_may_inline_data(struct inode *inode);
3166 bool f2fs_may_inline_dentry(struct inode *inode);
3167 void read_inline_data(struct page *page, struct page *ipage);
3168 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3169 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3170 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3171 int f2fs_convert_inline_inode(struct inode *inode);
3172 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3173 bool recover_inline_data(struct inode *inode, struct page *npage);
3174 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3175 struct fscrypt_name *fname, struct page **res_page);
3176 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3177 struct page *ipage);
3178 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3179 const struct qstr *orig_name,
3180 struct inode *inode, nid_t ino, umode_t mode);
3181 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3182 struct inode *dir, struct inode *inode);
3183 bool f2fs_empty_inline_dir(struct inode *dir);
3184 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3185 struct fscrypt_str *fstr);
3186 int f2fs_inline_data_fiemap(struct inode *inode,
3187 struct fiemap_extent_info *fieinfo,
3188 __u64 start, __u64 len);
3189
3190 /*
3191 * shrinker.c
3192 */
3193 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3194 struct shrink_control *sc);
3195 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3196 struct shrink_control *sc);
3197 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3198 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3199
3200 /*
3201 * extent_cache.c
3202 */
3203 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3204 struct rb_entry *cached_re, unsigned int ofs);
3205 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3206 struct rb_root *root, struct rb_node **parent,
3207 unsigned int ofs);
3208 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3209 struct rb_entry *cached_re, unsigned int ofs,
3210 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3211 struct rb_node ***insert_p, struct rb_node **insert_parent,
3212 bool force);
3213 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3214 struct rb_root *root);
3215 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3216 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3217 void f2fs_drop_extent_tree(struct inode *inode);
3218 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3219 void f2fs_destroy_extent_tree(struct inode *inode);
3220 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3221 struct extent_info *ei);
3222 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3223 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3224 pgoff_t fofs, block_t blkaddr, unsigned int len);
3225 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3226 int __init create_extent_cache(void);
3227 void destroy_extent_cache(void);
3228
3229 /*
3230 * sysfs.c
3231 */
3232 int __init f2fs_init_sysfs(void);
3233 void f2fs_exit_sysfs(void);
3234 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3235 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3236
3237 /*
3238 * crypto support
3239 */
3240 static inline bool f2fs_encrypted_inode(struct inode *inode)
3241 {
3242 return file_is_encrypt(inode);
3243 }
3244
3245 static inline bool f2fs_encrypted_file(struct inode *inode)
3246 {
3247 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3248 }
3249
3250 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3251 {
3252 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3253 file_set_encrypt(inode);
3254 inode->i_flags |= S_ENCRYPTED;
3255 #endif
3256 }
3257
3258 /*
3259 * Returns true if the reads of the inode's data need to undergo some
3260 * postprocessing step, like decryption or authenticity verification.
3261 */
3262 static inline bool f2fs_post_read_required(struct inode *inode)
3263 {
3264 return f2fs_encrypted_file(inode);
3265 }
3266
3267 #define F2FS_FEATURE_FUNCS(name, flagname) \
3268 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3269 { \
3270 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3271 }
3272
3273 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3274 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3275 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3276 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3277 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3278 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3279 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3280 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3281 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3282
3283 #ifdef CONFIG_BLK_DEV_ZONED
3284 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3285 struct block_device *bdev, block_t blkaddr)
3286 {
3287 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3288 int i;
3289
3290 for (i = 0; i < sbi->s_ndevs; i++)
3291 if (FDEV(i).bdev == bdev)
3292 return FDEV(i).blkz_type[zno];
3293 return -EINVAL;
3294 }
3295 #endif
3296
3297 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3298 {
3299 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3300
3301 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3302 }
3303
3304 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3305 {
3306 clear_opt(sbi, ADAPTIVE);
3307 clear_opt(sbi, LFS);
3308
3309 switch (mt) {
3310 case F2FS_MOUNT_ADAPTIVE:
3311 set_opt(sbi, ADAPTIVE);
3312 break;
3313 case F2FS_MOUNT_LFS:
3314 set_opt(sbi, LFS);
3315 break;
3316 }
3317 }
3318
3319 static inline bool f2fs_may_encrypt(struct inode *inode)
3320 {
3321 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3322 umode_t mode = inode->i_mode;
3323
3324 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3325 #else
3326 return 0;
3327 #endif
3328 }
3329
3330 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3331 {
3332 return ((f2fs_post_read_required(inode) &&
3333 !fscrypt_disk_encrypted(inode)) ||
3334 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3335 F2FS_I_SB(inode)->s_ndevs);
3336 }
3337
3338 #endif